A possibilistic no-go theorem on the Wigner’s friend paradox

The famous ‘Wigner’s friend’ paradox highlights the difficulty of modelling the evolution of quantum systems under measurement in situations where observers themselves are considered to be subject to the laws of quantum mechanics. In recent years, variations of the original Wigner’s friend paradox h...

Full description

Saved in:
Bibliographic Details
Published inNew journal of physics Vol. 25; no. 9; pp. 93028 - 93037
Main Authors Haddara, Marwan, Cavalcanti, Eric G
Format Journal Article
LanguageEnglish
Published Bristol IOP Publishing 01.09.2023
Subjects
Online AccessGet full text
ISSN1367-2630
1367-2630
DOI10.1088/1367-2630/aceea3

Cover

Loading…
Abstract The famous ‘Wigner’s friend’ paradox highlights the difficulty of modelling the evolution of quantum systems under measurement in situations where observers themselves are considered to be subject to the laws of quantum mechanics. In recent years, variations of the original Wigner’s friend paradox have been recognized as fruitful arenas for probing the foundations of quantum theory. In particular (Bong et al 2020 Nat. Phys. 16 1199) demonstrated a contradiction between a set of intuitive assumptions called ‘Local Friendliness’ (LF) and certain quantum phenomena on an extended version of the Wigner’s friend paradox. The LF assumptions can be understood as the conjunction of two independent assumptions: Absoluteness of Observed Events requires that any event observed by any observer has an absolute, rather than relative, value; Local Agency is the assumption that an intervention cannot be correlated with relevant events outside its future light cone. These assumptions are weaker than the assumptions that lead to Bell’s theorem, and thus while the LF result may be considered to be conceptually comparable to Bell’s result, its implications are even deeper. The proof of the LF no-go theorem, however, relies on probability theory, and a fundamental question remained whether or not LF is an inherently statistical concept. Here we present a probability-free version of the LF theorem, building upon Hardy’s no-go theorem for local hidden variables. The argument is phrased in the language of possibilities, which we make formal by using a modal logical approach. It relies on a weaker version of Local Agency, which we call ‘Possibilistic Local Agency’: the assumption that an intervention cannot affect the possibilities of events outside its future light cone.
AbstractList The famous ‘Wigner’s friend’ paradox highlights the difficulty of modelling the evolution of quantum systems under measurement in situations where observers themselves are considered to be subject to the laws of quantum mechanics. In recent years, variations of the original Wigner’s friend paradox have been recognized as fruitful arenas for probing the foundations of quantum theory. In particular (Bong et al 2020 Nat. Phys.16 1199) demonstrated a contradiction between a set of intuitive assumptions called ‘Local Friendliness’ (LF) and certain quantum phenomena on an extended version of the Wigner’s friend paradox. The LF assumptions can be understood as the conjunction of two independent assumptions: Absoluteness of Observed Events requires that any event observed by any observer has an absolute, rather than relative, value; Local Agency is the assumption that an intervention cannot be correlated with relevant events outside its future light cone. These assumptions are weaker than the assumptions that lead to Bell’s theorem, and thus while the LF result may be considered to be conceptually comparable to Bell’s result, its implications are even deeper. The proof of the LF no-go theorem, however, relies on probability theory, and a fundamental question remained whether or not LF is an inherently statistical concept. Here we present a probability-free version of the LF theorem, building upon Hardy’s no-go theorem for local hidden variables. The argument is phrased in the language of possibilities, which we make formal by using a modal logical approach. It relies on a weaker version of Local Agency, which we call ‘Possibilistic Local Agency’: the assumption that an intervention cannot affect the possibilities of events outside its future light cone.
The famous ‘Wigner’s friend’ paradox highlights the difficulty of modelling the evolution of quantum systems under measurement in situations where observers themselves are considered to be subject to the laws of quantum mechanics. In recent years, variations of the original Wigner’s friend paradox have been recognized as fruitful arenas for probing the foundations of quantum theory. In particular (Bong et al 2020 Nat. Phys. 16 1199) demonstrated a contradiction between a set of intuitive assumptions called ‘Local Friendliness’ (LF) and certain quantum phenomena on an extended version of the Wigner’s friend paradox. The LF assumptions can be understood as the conjunction of two independent assumptions: Absoluteness of Observed Events requires that any event observed by any observer has an absolute, rather than relative, value; Local Agency is the assumption that an intervention cannot be correlated with relevant events outside its future light cone. These assumptions are weaker than the assumptions that lead to Bell’s theorem, and thus while the LF result may be considered to be conceptually comparable to Bell’s result, its implications are even deeper. The proof of the LF no-go theorem, however, relies on probability theory, and a fundamental question remained whether or not LF is an inherently statistical concept. Here we present a probability-free version of the LF theorem, building upon Hardy’s no-go theorem for local hidden variables. The argument is phrased in the language of possibilities, which we make formal by using a modal logical approach. It relies on a weaker version of Local Agency, which we call ‘Possibilistic Local Agency’: the assumption that an intervention cannot affect the possibilities of events outside its future light cone.
Author Haddara, Marwan
Cavalcanti, Eric G
Author_xml – sequence: 1
  givenname: Marwan
  orcidid: 0000-0001-5889-3460
  surname: Haddara
  fullname: Haddara, Marwan
  organization: Centre for Quantum Dynamics, Griffith University , Yugambeh Country, Gold Coast, Queensland 4222, Australia
– sequence: 2
  givenname: Eric G
  orcidid: 0000-0001-9627-0520
  surname: Cavalcanti
  fullname: Cavalcanti, Eric G
  organization: Centre for Quantum Dynamics, Griffith University , Yugambeh Country, Gold Coast, Queensland 4222, Australia
BookMark eNp9kEtLw0AUhQdRsK3uXQbcGnsnk8xkNkIpPgoFN4rLYV6pU9JMnKSgO_-Gf89fYmJ8IejqHi7nHA7fGO1WvrIIHWE4xZDnU0woixNKYCq1tZLsoNHXa_eH3kfjplkDYJwnyQidzaLaN41TrnRN63RU-Xjlo_be-mA3ka96Gd25VWXD6_NLExXB2cpEtQzS-McDtFfIsrGHH3eCbi_Ob-ZX8fL6cjGfLWOdYtrGRhJGs0xJbllaUADNKWCVFUWWcy0xJThNLMspMZwzleGEFwoSKokFkhJNJmgx9Bov16IObiPDk_DSifeHDyshQze_tIIwZRS3hmUcUqUhl8ZwgJwkoCBTRdd1PHTVwT9sbdOKtd-Gqpsvkpym3bosZZ2LDi4dOj7BFkK7VrbOV22QrhQYRM9d9GBFD1YM3Lsg_Ap-zv0ncjJEnK-_x_xpfwNITZU_
CODEN NJOPFM
CitedBy_id crossref_primary_10_22331_q_2024_12_03_1543
crossref_primary_10_3390_e25101420
crossref_primary_10_1098_rspa_2024_0040
crossref_primary_10_3390_e27030302
crossref_primary_10_22331_q_2023_09_14_1112
crossref_primary_10_1007_s10699_024_09971_y
crossref_primary_10_1103_PhysRevA_111_012206
crossref_primary_10_1007_s13194_023_00551_8
Cites_doi 10.3390/e23080925
10.1007/978-3-319-38987-5_5
10.1103/PhysRevLett.71.1665
10.1038/s41467-018-05739-8
10.1038/s41567-018-0293-7
10.1007/s10701-021-00417-0
10.1103/PhysRevLett.48.1299
10.4204/EPTCS.287.16
10.1119/1.16243
10.1007/s10701-012-9640-1
10.1007/978-3-319-38987-5_6
10.1007/978-94-017-0849-4_10
10.1103/PhysicsPhysiqueFizika.1.195
10.1007/s10701-018-0216-6
10.1103/PhysRevA.95.022122
10.1088/1367-2630/13/11/113036
10.1038/s41567-020-0990-x
10.1007/s11225-013-9477-4
10.22331/q-2018-10-15-99
10.3390/e20050350
10.1038/s42005-021-00589-1
10.3390/e24070903
10.1103/PhysRevA.104.022201
10.1103/PhysRevLett.68.2981
ContentType Journal Article
Copyright 2023 The Author(s). Published by IOP Publishing Ltd on behalf of the Institute of Physics and Deutsche Physikalische Gesellschaft
2023 The Author(s). Published by IOP Publishing Ltd on behalf of the Institute of Physics and Deutsche Physikalische Gesellschaft. This work is published under http://creativecommons.org/licenses/by/4.0 (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2023 The Author(s). Published by IOP Publishing Ltd on behalf of the Institute of Physics and Deutsche Physikalische Gesellschaft
– notice: 2023 The Author(s). Published by IOP Publishing Ltd on behalf of the Institute of Physics and Deutsche Physikalische Gesellschaft. This work is published under http://creativecommons.org/licenses/by/4.0 (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID O3W
TSCCA
AAYXX
CITATION
8FD
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
H8D
L7M
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQQKQ
PQUKI
DOA
DOI 10.1088/1367-2630/aceea3
DatabaseName Institute of Physics Open Access Journal Titles
IOPscience (Open Access)
CrossRef
Technology Research Database
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials Local Electronic Collection Information
ProQuest Central
ProQuest One Community College
ProQuest Central
Aerospace Database
Advanced Technologies Database with Aerospace
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest Central
Aerospace Database
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
Advanced Technologies Database with Aerospace
ProQuest One Academic (New)
DatabaseTitleList Publicly Available Content Database
CrossRef

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: O3W
  name: Institute of Physics Open Access Journal Titles
  url: http://iopscience.iop.org/
  sourceTypes: Publisher
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 1367-2630
ExternalDocumentID oai_doaj_org_article_37bdb9ed75904bc08add9008320b05bf
10_1088_1367_2630_aceea3
njpaceea3
GrantInformation_xml – fundername: Australian Research Council
  grantid: FT180100317
  funderid: http://dx.doi.org/10.13039/501100000923
– fundername: Foundational Questions Institute
  grantid: FQXi-RFP-CPW-2019
  funderid: http://dx.doi.org/10.13039/100009566
GroupedDBID 123
1JI
1PV
29N
2WC
5PX
5VS
7.M
AAFWJ
AAJIO
AAJKP
ABHWH
ACAFW
ACGFO
ACHIP
ADBBV
AEFHF
AEJGL
AENEX
AFKRA
AFPKN
AFYNE
AHSEE
AIYBF
AKPSB
ALMA_UNASSIGNED_HOLDINGS
ASPBG
ATQHT
AVWKF
AZFZN
BCNDV
BENPR
CBCFC
CCPQU
CEBXE
CJUJL
CRLBU
CS3
DU5
E3Z
EBS
EDWGO
EQZZN
F5P
GROUPED_DOAJ
GX1
HH5
IJHAN
IOP
IZVLO
J9A
KNG
KQ8
LAP
M~E
N5L
N9A
O3W
OK1
P2P
PIMPY
PJBAE
RIN
RNS
RO9
ROL
SY9
T37
TR2
TSCCA
UCJ
W28
XPP
XSB
ZMT
AAYXX
CITATION
OVT
PHGZM
PHGZT
8FD
ABUWG
AZQEC
DWQXO
H8D
L7M
PKEHL
PQEST
PQQKQ
PQUKI
PUEGO
ID FETCH-LOGICAL-c416t-da37655ba9e74f600c9601b5ff589ca163142e7863d997b5129fb026a3e0343c3
IEDL.DBID BENPR
ISSN 1367-2630
IngestDate Wed Aug 27 01:29:28 EDT 2025
Mon Jun 30 14:58:23 EDT 2025
Tue Jul 01 01:30:34 EDT 2025
Thu Apr 24 22:51:22 EDT 2025
Wed Aug 21 03:40:57 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 9
Language English
License Original content from this work may be used under the terms of the Creative Commons Attribution 4.0 license. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c416t-da37655ba9e74f600c9601b5ff589ca163142e7863d997b5129fb026a3e0343c3
Notes NJP-115683.R1
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-5889-3460
0000-0001-9627-0520
OpenAccessLink https://www.proquest.com/docview/2864600547?pq-origsite=%requestingapplication%
PQID 2864600547
PQPubID 4491272
PageCount 10
ParticipantIDs proquest_journals_2864600547
iop_journals_10_1088_1367_2630_aceea3
doaj_primary_oai_doaj_org_article_37bdb9ed75904bc08add9008320b05bf
crossref_primary_10_1088_1367_2630_aceea3
crossref_citationtrail_10_1088_1367_2630_aceea3
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-09-01
PublicationDateYYYYMMDD 2023-09-01
PublicationDate_xml – month: 09
  year: 2023
  text: 2023-09-01
  day: 01
PublicationDecade 2020
PublicationPlace Bristol
PublicationPlace_xml – name: Bristol
PublicationTitle New journal of physics
PublicationTitleAbbrev NJP
PublicationTitleAlternate New J. Phys
PublicationYear 2023
Publisher IOP Publishing
Publisher_xml – name: IOP Publishing
References Cavalcanti (njpaceea3bib29) 2020
Wiseman (njpaceea3bib2) 2017
Bong (njpaceea3bib16) 2020; 16
Brukner (njpaceea3bib9) 2017
Healey (njpaceea3bib13) 2018; 48
Allard Guérin (njpaceea3bib14) 2021; 4
Cavalcanti (njpaceea3bib3) 2021; 23
Pitowsky (njpaceea3bib4) 1982; 48
Greenberger (njpaceea3bib8) 1990; 58
Mansfield (njpaceea3bib22) 2012; 42
Santos (njpaceea3bib25) 2021; 104
Garson (njpaceea3bib28) 2021
Greenberger (njpaceea3bib5) 1989; vol 37
Pusey (njpaceea3bib18) 2018; 14
Bell (njpaceea3bib1) 1964; 1
Mansfield (njpaceea3bib24) 2017; 95
Rantala (njpaceea3bib21) 2004
Hardy (njpaceea3bib6) 1992; 68
Brukner (njpaceea3bib11) 2018; 20
Frauchiger (njpaceea3bib10) 2018; 9
Cavalcanti (njpaceea3bib26) 2021; 51
Abramsky (njpaceea3bib27) 2011; 13
Yang (njpaceea3bib17) 2022; 24
Abramsky (njpaceea3bib23) 2013; 101
Wigner (njpaceea3bib15) 1961
Baumann (njpaceea3bib12) 2018; 2
Nurgalieva (njpaceea3bib20) 2019; vol 287
Aaronson (njpaceea3bib19) 2018
Hardy (njpaceea3bib7) 1993; 71
References_xml – volume: 23
  start-page: 925
  year: 2021
  ident: njpaceea3bib3
  article-title: Implications of Local Friendliness Violation for quantum causality
  publication-title: Entropy
  doi: 10.3390/e23080925
– start-page: 95
  year: 2017
  ident: njpaceea3bib9
  article-title: On the quantum measurement problem
  doi: 10.1007/978-3-319-38987-5_5
– volume: 71
  start-page: 1665
  year: 1993
  ident: njpaceea3bib7
  article-title: Nonlocality for two particles without inequalities for almost all entangled states
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.71.1665
– volume: 9
  start-page: 3711
  year: 2018
  ident: njpaceea3bib10
  article-title: Quantum theory cannot consistently describe the use of itself
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-018-05739-8
– start-page: pp 284
  year: 1961
  ident: njpaceea3bib15
  article-title: Remarks on the mind-body question
– volume: 14
  start-page: 977
  year: 2018
  ident: njpaceea3bib18
  article-title: An inconsistent friend
  publication-title: Nat. Phys.
  doi: 10.1038/s41567-018-0293-7
– volume: 51
  start-page: 39
  year: 2021
  ident: njpaceea3bib26
  article-title: The view from a Wigner bubble
  publication-title: Found. Phys.
  doi: 10.1007/s10701-021-00417-0
– volume: 48
  start-page: 1299
  year: 1982
  ident: njpaceea3bib4
  article-title: Resolution of the Einstein-Podolsky-Rosen and Bell Paradoxes
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.48.1299
– volume: vol 287
  start-page: 267
  year: 2019
  ident: njpaceea3bib20
  article-title: Inadequacy of modal logic in quantum settings
  doi: 10.4204/EPTCS.287.16
– volume: 58
  start-page: 1131
  year: 1990
  ident: njpaceea3bib8
  article-title: Bell’s theorem without inequalities
  publication-title: Am. J. Phys.
  doi: 10.1119/1.16243
– year: 2004
  ident: njpaceea3bib21
– year: 2020
  ident: njpaceea3bib29
  article-title: Implications of Wigner’s Friend paradox for quantum causality
– volume: 42
  start-page: 709
  year: 2012
  ident: njpaceea3bib22
  article-title: Hardy’s non-locality paradox and possibilistic conditions for non-locality
  publication-title: Found. Phys.
  doi: 10.1007/s10701-012-9640-1
– start-page: 119
  year: 2017
  ident: njpaceea3bib2
  article-title: Causarum Investigatio and the Two Bell’s Theorems of John Bell
  doi: 10.1007/978-3-319-38987-5_6
– volume: vol 37
  start-page: 69
  year: 1989
  ident: njpaceea3bib5
  article-title: Going beyond Bell’s theorem
  doi: 10.1007/978-94-017-0849-4_10
– volume: 1
  start-page: 195
  year: 1964
  ident: njpaceea3bib1
  article-title: On the Einstein Podolsky Rosen paradox
  publication-title: Phys. Phys. Fiz.
  doi: 10.1103/PhysicsPhysiqueFizika.1.195
– volume: 48
  start-page: 1568
  year: 2018
  ident: njpaceea3bib13
  article-title: Quantum theory and the limits of objectivity
  publication-title: Found. Phys.
  doi: 10.1007/s10701-018-0216-6
– volume: 95
  year: 2017
  ident: njpaceea3bib24
  article-title: Consequences and applications of the completeness of Hardy’s nonlocality
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.95.022122
– volume: 13
  year: 2011
  ident: njpaceea3bib27
  article-title: The sheaf-theoretic structure of non-locality and contextuality
  publication-title: New J. Phys.
  doi: 10.1088/1367-2630/13/11/113036
– volume: 16
  start-page: 1199
  year: 2020
  ident: njpaceea3bib16
  article-title: A strong no-go theorem on the Wigner’s friend paradox
  publication-title: Nat. Phys.
  doi: 10.1038/s41567-020-0990-x
– year: 2018
  ident: njpaceea3bib19
  article-title: It’s hard to think when someone Hadamards your brain
– volume: 101
  start-page: 411
  year: 2013
  ident: njpaceea3bib23
  article-title: Relational hidden variables and non-locality
  publication-title: Stud. Log.
  doi: 10.1007/s11225-013-9477-4
– year: 2021
  ident: njpaceea3bib28
  article-title: Modal logic
– volume: 2
  start-page: 99
  year: 2018
  ident: njpaceea3bib12
  article-title: On formalisms and interpretations
  publication-title: Quantum
  doi: 10.22331/q-2018-10-15-99
– volume: 20
  start-page: 350
  year: 2018
  ident: njpaceea3bib11
  article-title: A No-Go Theorem for Observer-Independent Facts
  publication-title: Entropy
  doi: 10.3390/e20050350
– volume: 4
  start-page: 93
  year: 2021
  ident: njpaceea3bib14
  article-title: A no-go theorem for the persistent reality of Wigner’s friend’s perception
  publication-title: Commun. Phys.
  doi: 10.1038/s42005-021-00589-1
– volume: 24
  start-page: 903
  year: 2022
  ident: njpaceea3bib17
  article-title: Law of total probability in quantum theory and its application in Wigner’s friend scenario
  publication-title: Entropy
  doi: 10.3390/e24070903
– volume: 104
  year: 2021
  ident: njpaceea3bib25
  article-title: Conditions for logical contextuality and nonlocality
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.104.022201
– volume: 68
  start-page: 2981
  year: 1992
  ident: njpaceea3bib6
  article-title: Quantum mechanics, local realistic theories, and Lorentz-invariant realistic theories
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.68.2981
SSID ssj0011822
Score 2.46778
Snippet The famous ‘Wigner’s friend’ paradox highlights the difficulty of modelling the evolution of quantum systems under measurement in situations where observers...
SourceID doaj
proquest
crossref
iop
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 93028
SubjectTerms Experiments
Logic
Metaphysics
modal logic
No-go theorem
Paradoxes
Physics
Probability
Probability theory
quantum foundations
Quantum mechanics
Quantum phenomena
Quantum physics
Quantum theory
Statistical analysis
Theorems
Wigner’s friend
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NS8NAEF2kIHgRP7FaZQ968BCS7ibZzUWoYhFBTxZ7Czv7UQqalLaCR_-Gf89f4mySVkWoF28hTMjyJrPzhp28IeTUATNWSB1oxbBAgQwCaUAFwLuAASaUrCTz7-7Tm0F8O0yG30Z9-Z6wWh64Bi7kAgxk1ogki2LQkcSAzDxxYBFECTi_-2LOWxRTzfkBsmbWHEpiGIVelyxgKY9ChUlB8R9JqNLqx9QyLie_NuQqy_S3yGZDD2mvXtY2WbPFDlmv2jT1bJdc9OiknNUdrV5gmRZlMCpp_TfiMy0Lf0kfx6PCTj_e3mfUeRljQ73Atylf98igf_1wdRM0ExACjURpHhiF8Z8koDIrYofcRGPB0YXEuURmWiGX6sYMoU65yTIBPnk7wKpKcRvxmGu-T1pFWdgDQp21TEgHxmJCBsWVQhMmgGmmjEuiNgkXkOS6kQf3Uyqe8uqYWsrcg5h7EPMaxDY5Xz4xqaUxVtheepSXdl7UurqBrs4bV-d_ubpNztBHeRNksxUv6yy8-GXMZBqnnqCKw_9YyxHZ8IPn626zDmnNpy_2GOnJHE6qL_ETAGjhlA
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Institute of Physics Open Access Journal Titles
  dbid: O3W
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1bS8MwFA5eEHwRrzidkgd98KGuS9omRRCmKCKoL47treTkMgRtxzbBR_-Gf89f4knbTUQZvoVy0pTvNOd8ISdfCDlywIwVUgdaMVygQAqBNKAC4G3ACSaULCXz7-6Tm25024_7C-RsdhamGNah_xSblVBwBWFdECdbXmQsYAkPWwojvOKLZJnLRPp6vgfem20hIHFm9b7kX71-5KFSrh-zCw75KyaXieZ6nazVDJF2qu_ZIAs23yQrZaWmHm-R8w4dFuOqqNVrLNO8CAYFrQ4kvtAi903aexrkdvT5_jGmzisZG-o1vk3xtk2611ePlzdBfQlCoJErTQKjMATEMajUisghPdG45mhD7FwsU62QTrUjhmgn3KSpAJ-_HeDCSnEb8ohrvkOW8iK3u4Q6a5mQDozFnAyKK4UmTADTTBkXhw3SmkKS6Voh3F9U8ZyVO9VSZh7EzIOYVSA2yMmsx7BSx5hje-FRntl5XevyAfo4q32ccQEGUmtEnIYR6FBi-E09TWQhhDG4BjlGH2X1PBvPGaw59eK3MZNJlHiOKvb--Zp9suqvl69qyppkaTJ6tQdIQiZwWP5sX_u915o
  priority: 102
  providerName: IOP Publishing
Title A possibilistic no-go theorem on the Wigner’s friend paradox
URI https://iopscience.iop.org/article/10.1088/1367-2630/aceea3
https://www.proquest.com/docview/2864600547
https://doaj.org/article/37bdb9ed75904bc08add9008320b05bf
Volume 25
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1La9wwEBbthkIvpU-6zQMd2kMPYr2SZcmXhiQkpIUmoTQkN6PRYwmk1na9gR77N_r38ks6srUbSmEvwthjDDOal2b8DSHvA3DnlbbMGo4JCtTAtAPDQEwBFUwZ3UPmfz2rTi_LL9fyOh-4dbmtcmUTe0Ptok1n5BOuq7JKAYban_9kaWpUqq7mERqPyRaaYC1HZOvw-Ozi27qOgNEzz8VJVKdJwidjvBLFxKBzMOIfZ9Rj9qOLuYnz_wxz721OnpNnOUykB4NcX5BHvn1JnvTtmrZ7RT4d0Hnshs7WBLRM28hmkQ5_Jf6gsU2X9Opm1vrF_e8_HQ0JztjRBPTt4q_X5PLk-PvRKcuTEJjFgGnJnEE7ICWY2qsyIBssJh5TkCFIXVuDMdW05MjySri6VpCceADMrozwhSiFFW_IqI2tf0to8J4rHcB5dMxghDFIwhVwy40LshiTyYoljc0w4WlaxW3Tl6u1bhITm8TEZmDimHxcvzEfIDI20B4mLq_pErh1fyMuZk3WlUYocFB7p2RdlGALjTa4TrEiL6CQEMbkA8qoycrWbfjYzkqKD8QP--jd5sfb5GkaLT_0k-2Q0XJx53cxAFnCXt5le30Cj-vn8wtcz8XVXzlE3Qs
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VVgguiKe6pYAP9MAh2qydh3MA1EKrLW1XCLWit-DxY1WJxstmEXDjb_An-FH8EsZ5bIWQ9tZblEweGs94PmfG3wA8d8iNzaWOtOK0QMECI2lQRShGSA6WK9lQ5p9MsvFZ8u48PV-D3_1emFBW2c-JzURtvA7_yIdcZkkWAEb-evYlCl2jQna1b6HRmsWR_fGNlmz1y8O3NL47nB_sn74ZR11XgUgT-FhERpFPpSmqwuaJo0dqAvEjTJ1LZaEV4ZNRwunzM2GKIscQEB3SSkUJG4tEaEHPvQEbBDMK8qKNvf3J-w_LvAWhdd4lQ8l9h4EPLeKZiIeKgpES_wS_pkcAhbQLP_svEDTR7eAu3OlgKdtt7egerNnqPtxsykN1_QBe7bKZr9tK2kDszCofTT1rd0FeMl-FQ_bxYlrZ-Z-fv2rmAn2yYYFY3PjvD-HsWnT0CNYrX9lNYM5ankuHxhIQQCWUIhGeI9dcGZfGAxj2Kil1R0seumN8Lpv0uJRlUGIZlFi2ShzAi-Uds5aSY4XsXtDyUi6QaTcn_Hxadr5ZihwNFtbkaREnqGNJc34RsCmPMU7RDWCHxqjsnLte8bLtfhSvhK_sdmv15Wdwa3x6clweH06OHsPt0Na-rWXbhvXF_Kt9QuBngU87i2Pw6bqN_C8DqxVh
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NTtwwELZgqyIuqKUgFmjrQzn0kG7WjmPngrS0XQEF2kMR3CyPfxASJCt2kTj2NXi9PgnjxGxVtULcrGhsRzP2zGd5_A0hHwIw56WymTUMDyhQQaYcmAz4EHCDSaNayvzjk3L_tDg8F-epzmn7FqaZJNf_CZsdUXCnwpQQpwaRZCxjJc8HBj284YOJC4vkheAYTHFBf-dn82sEBM8s3U3-r-dfsail7McIg9P-45fbYDN-RVYSSqSj7p9ekwVfr5KXbbamnb4huyM6aaZdYmvkWaZ1k100tHuUeE2bOjbp2eVF7W9-_7qf0hDZjB2NPN-uuVsjp-OvPz_vZ6kQQmYRL80yZ9ANCAGm8rIICFEsnjuGIEIQqrIGIdWwYKjxkruqkhBjeAA8XBnuc15wy9dJr25qv0Fo8J5JFcB5jMtguDEowiQwy4wLIu-TwaNKtE0s4bFYxZVub6uV0lGJOipRd0rsk4_zHpOOIeMJ2b2o5blc5LZuP6CddbKz5hIcVN5JUeUF2FyhC64iVGQ55AJCn-ygjXTaa9MnJtt-tOIfYabKoow4VW4-c5j3ZOnHl7E-Ojj5tkWWY7X5LsVsm_RmN7f-LWKSGbxr190Dbmnbkg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+possibilistic+no-go+theorem+on+the+Wigner%E2%80%99s+friend+paradox&rft.jtitle=New+journal+of+physics&rft.au=Haddara%2C+Marwan&rft.au=Cavalcanti%2C+Eric+G&rft.date=2023-09-01&rft.issn=1367-2630&rft.eissn=1367-2630&rft.volume=25&rft.issue=9&rft.spage=93028&rft_id=info:doi/10.1088%2F1367-2630%2Faceea3&rft.externalDBID=n%2Fa&rft.externalDocID=10_1088_1367_2630_aceea3
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1367-2630&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1367-2630&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1367-2630&client=summon