A possibilistic no-go theorem on the Wigner’s friend paradox
The famous ‘Wigner’s friend’ paradox highlights the difficulty of modelling the evolution of quantum systems under measurement in situations where observers themselves are considered to be subject to the laws of quantum mechanics. In recent years, variations of the original Wigner’s friend paradox h...
Saved in:
Published in | New journal of physics Vol. 25; no. 9; pp. 93028 - 93037 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Bristol
IOP Publishing
01.09.2023
|
Subjects | |
Online Access | Get full text |
ISSN | 1367-2630 1367-2630 |
DOI | 10.1088/1367-2630/aceea3 |
Cover
Loading…
Abstract | The famous ‘Wigner’s friend’ paradox highlights the difficulty of modelling the evolution of quantum systems under measurement in situations where observers themselves are considered to be subject to the laws of quantum mechanics. In recent years, variations of the original Wigner’s friend paradox have been recognized as fruitful arenas for probing the foundations of quantum theory. In particular (Bong
et al
2020
Nat. Phys.
16
1199) demonstrated a contradiction between a set of intuitive assumptions called ‘Local Friendliness’ (LF) and certain quantum phenomena on an extended version of the Wigner’s friend paradox. The LF assumptions can be understood as the conjunction of two independent assumptions: Absoluteness of Observed Events requires that any event observed by any observer has an absolute, rather than relative, value; Local Agency is the assumption that an intervention cannot be correlated with relevant events outside its future light cone. These assumptions are weaker than the assumptions that lead to Bell’s theorem, and thus while the LF result may be considered to be conceptually comparable to Bell’s result, its implications are even deeper. The proof of the LF no-go theorem, however, relies on probability theory, and a fundamental question remained whether or not LF is an inherently statistical concept. Here we present a probability-free version of the LF theorem, building upon Hardy’s no-go theorem for local hidden variables. The argument is phrased in the language of possibilities, which we make formal by using a modal logical approach. It relies on a weaker version of Local Agency, which we call ‘Possibilistic Local Agency’: the assumption that an intervention cannot affect the
possibilities
of events outside its future light cone. |
---|---|
AbstractList | The famous ‘Wigner’s friend’ paradox highlights the difficulty of modelling the evolution of quantum systems under measurement in situations where observers themselves are considered to be subject to the laws of quantum mechanics. In recent years, variations of the original Wigner’s friend paradox have been recognized as fruitful arenas for probing the foundations of quantum theory. In particular (Bong et al 2020 Nat. Phys.16 1199) demonstrated a contradiction between a set of intuitive assumptions called ‘Local Friendliness’ (LF) and certain quantum phenomena on an extended version of the Wigner’s friend paradox. The LF assumptions can be understood as the conjunction of two independent assumptions: Absoluteness of Observed Events requires that any event observed by any observer has an absolute, rather than relative, value; Local Agency is the assumption that an intervention cannot be correlated with relevant events outside its future light cone. These assumptions are weaker than the assumptions that lead to Bell’s theorem, and thus while the LF result may be considered to be conceptually comparable to Bell’s result, its implications are even deeper. The proof of the LF no-go theorem, however, relies on probability theory, and a fundamental question remained whether or not LF is an inherently statistical concept. Here we present a probability-free version of the LF theorem, building upon Hardy’s no-go theorem for local hidden variables. The argument is phrased in the language of possibilities, which we make formal by using a modal logical approach. It relies on a weaker version of Local Agency, which we call ‘Possibilistic Local Agency’: the assumption that an intervention cannot affect the possibilities of events outside its future light cone. The famous ‘Wigner’s friend’ paradox highlights the difficulty of modelling the evolution of quantum systems under measurement in situations where observers themselves are considered to be subject to the laws of quantum mechanics. In recent years, variations of the original Wigner’s friend paradox have been recognized as fruitful arenas for probing the foundations of quantum theory. In particular (Bong et al 2020 Nat. Phys. 16 1199) demonstrated a contradiction between a set of intuitive assumptions called ‘Local Friendliness’ (LF) and certain quantum phenomena on an extended version of the Wigner’s friend paradox. The LF assumptions can be understood as the conjunction of two independent assumptions: Absoluteness of Observed Events requires that any event observed by any observer has an absolute, rather than relative, value; Local Agency is the assumption that an intervention cannot be correlated with relevant events outside its future light cone. These assumptions are weaker than the assumptions that lead to Bell’s theorem, and thus while the LF result may be considered to be conceptually comparable to Bell’s result, its implications are even deeper. The proof of the LF no-go theorem, however, relies on probability theory, and a fundamental question remained whether or not LF is an inherently statistical concept. Here we present a probability-free version of the LF theorem, building upon Hardy’s no-go theorem for local hidden variables. The argument is phrased in the language of possibilities, which we make formal by using a modal logical approach. It relies on a weaker version of Local Agency, which we call ‘Possibilistic Local Agency’: the assumption that an intervention cannot affect the possibilities of events outside its future light cone. |
Author | Haddara, Marwan Cavalcanti, Eric G |
Author_xml | – sequence: 1 givenname: Marwan orcidid: 0000-0001-5889-3460 surname: Haddara fullname: Haddara, Marwan organization: Centre for Quantum Dynamics, Griffith University , Yugambeh Country, Gold Coast, Queensland 4222, Australia – sequence: 2 givenname: Eric G orcidid: 0000-0001-9627-0520 surname: Cavalcanti fullname: Cavalcanti, Eric G organization: Centre for Quantum Dynamics, Griffith University , Yugambeh Country, Gold Coast, Queensland 4222, Australia |
BookMark | eNp9kEtLw0AUhQdRsK3uXQbcGnsnk8xkNkIpPgoFN4rLYV6pU9JMnKSgO_-Gf89fYmJ8IejqHi7nHA7fGO1WvrIIHWE4xZDnU0woixNKYCq1tZLsoNHXa_eH3kfjplkDYJwnyQidzaLaN41TrnRN63RU-Xjlo_be-mA3ka96Gd25VWXD6_NLExXB2cpEtQzS-McDtFfIsrGHH3eCbi_Ob-ZX8fL6cjGfLWOdYtrGRhJGs0xJbllaUADNKWCVFUWWcy0xJThNLMspMZwzleGEFwoSKokFkhJNJmgx9Bov16IObiPDk_DSifeHDyshQze_tIIwZRS3hmUcUqUhl8ZwgJwkoCBTRdd1PHTVwT9sbdOKtd-Gqpsvkpym3bosZZ2LDi4dOj7BFkK7VrbOV22QrhQYRM9d9GBFD1YM3Lsg_Ap-zv0ncjJEnK-_x_xpfwNITZU_ |
CODEN | NJOPFM |
CitedBy_id | crossref_primary_10_22331_q_2024_12_03_1543 crossref_primary_10_3390_e25101420 crossref_primary_10_1098_rspa_2024_0040 crossref_primary_10_3390_e27030302 crossref_primary_10_22331_q_2023_09_14_1112 crossref_primary_10_1007_s10699_024_09971_y crossref_primary_10_1103_PhysRevA_111_012206 crossref_primary_10_1007_s13194_023_00551_8 |
Cites_doi | 10.3390/e23080925 10.1007/978-3-319-38987-5_5 10.1103/PhysRevLett.71.1665 10.1038/s41467-018-05739-8 10.1038/s41567-018-0293-7 10.1007/s10701-021-00417-0 10.1103/PhysRevLett.48.1299 10.4204/EPTCS.287.16 10.1119/1.16243 10.1007/s10701-012-9640-1 10.1007/978-3-319-38987-5_6 10.1007/978-94-017-0849-4_10 10.1103/PhysicsPhysiqueFizika.1.195 10.1007/s10701-018-0216-6 10.1103/PhysRevA.95.022122 10.1088/1367-2630/13/11/113036 10.1038/s41567-020-0990-x 10.1007/s11225-013-9477-4 10.22331/q-2018-10-15-99 10.3390/e20050350 10.1038/s42005-021-00589-1 10.3390/e24070903 10.1103/PhysRevA.104.022201 10.1103/PhysRevLett.68.2981 |
ContentType | Journal Article |
Copyright | 2023 The Author(s). Published by IOP Publishing Ltd on behalf of the Institute of Physics and Deutsche Physikalische Gesellschaft 2023 The Author(s). Published by IOP Publishing Ltd on behalf of the Institute of Physics and Deutsche Physikalische Gesellschaft. This work is published under http://creativecommons.org/licenses/by/4.0 (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2023 The Author(s). Published by IOP Publishing Ltd on behalf of the Institute of Physics and Deutsche Physikalische Gesellschaft – notice: 2023 The Author(s). Published by IOP Publishing Ltd on behalf of the Institute of Physics and Deutsche Physikalische Gesellschaft. This work is published under http://creativecommons.org/licenses/by/4.0 (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | O3W TSCCA AAYXX CITATION 8FD ABUWG AFKRA AZQEC BENPR CCPQU DWQXO H8D L7M PHGZM PHGZT PIMPY PKEHL PQEST PQQKQ PQUKI DOA |
DOI | 10.1088/1367-2630/aceea3 |
DatabaseName | Institute of Physics Open Access Journal Titles IOPscience (Open Access) CrossRef Technology Research Database ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials Local Electronic Collection Information ProQuest Central ProQuest One Community College ProQuest Central Aerospace Database Advanced Technologies Database with Aerospace ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest Central Aerospace Database ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic Advanced Technologies Database with Aerospace ProQuest One Academic (New) |
DatabaseTitleList | Publicly Available Content Database CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: O3W name: Institute of Physics Open Access Journal Titles url: http://iopscience.iop.org/ sourceTypes: Publisher – sequence: 3 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics |
EISSN | 1367-2630 |
ExternalDocumentID | oai_doaj_org_article_37bdb9ed75904bc08add9008320b05bf 10_1088_1367_2630_aceea3 njpaceea3 |
GrantInformation_xml | – fundername: Australian Research Council grantid: FT180100317 funderid: http://dx.doi.org/10.13039/501100000923 – fundername: Foundational Questions Institute grantid: FQXi-RFP-CPW-2019 funderid: http://dx.doi.org/10.13039/100009566 |
GroupedDBID | 123 1JI 1PV 29N 2WC 5PX 5VS 7.M AAFWJ AAJIO AAJKP ABHWH ACAFW ACGFO ACHIP ADBBV AEFHF AEJGL AENEX AFKRA AFPKN AFYNE AHSEE AIYBF AKPSB ALMA_UNASSIGNED_HOLDINGS ASPBG ATQHT AVWKF AZFZN BCNDV BENPR CBCFC CCPQU CEBXE CJUJL CRLBU CS3 DU5 E3Z EBS EDWGO EQZZN F5P GROUPED_DOAJ GX1 HH5 IJHAN IOP IZVLO J9A KNG KQ8 LAP M~E N5L N9A O3W OK1 P2P PIMPY PJBAE RIN RNS RO9 ROL SY9 T37 TR2 TSCCA UCJ W28 XPP XSB ZMT AAYXX CITATION OVT PHGZM PHGZT 8FD ABUWG AZQEC DWQXO H8D L7M PKEHL PQEST PQQKQ PQUKI PUEGO |
ID | FETCH-LOGICAL-c416t-da37655ba9e74f600c9601b5ff589ca163142e7863d997b5129fb026a3e0343c3 |
IEDL.DBID | BENPR |
ISSN | 1367-2630 |
IngestDate | Wed Aug 27 01:29:28 EDT 2025 Mon Jun 30 14:58:23 EDT 2025 Tue Jul 01 01:30:34 EDT 2025 Thu Apr 24 22:51:22 EDT 2025 Wed Aug 21 03:40:57 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 9 |
Language | English |
License | Original content from this work may be used under the terms of the Creative Commons Attribution 4.0 license. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c416t-da37655ba9e74f600c9601b5ff589ca163142e7863d997b5129fb026a3e0343c3 |
Notes | NJP-115683.R1 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0001-5889-3460 0000-0001-9627-0520 |
OpenAccessLink | https://www.proquest.com/docview/2864600547?pq-origsite=%requestingapplication% |
PQID | 2864600547 |
PQPubID | 4491272 |
PageCount | 10 |
ParticipantIDs | proquest_journals_2864600547 iop_journals_10_1088_1367_2630_aceea3 doaj_primary_oai_doaj_org_article_37bdb9ed75904bc08add9008320b05bf crossref_primary_10_1088_1367_2630_aceea3 crossref_citationtrail_10_1088_1367_2630_aceea3 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-09-01 |
PublicationDateYYYYMMDD | 2023-09-01 |
PublicationDate_xml | – month: 09 year: 2023 text: 2023-09-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Bristol |
PublicationPlace_xml | – name: Bristol |
PublicationTitle | New journal of physics |
PublicationTitleAbbrev | NJP |
PublicationTitleAlternate | New J. Phys |
PublicationYear | 2023 |
Publisher | IOP Publishing |
Publisher_xml | – name: IOP Publishing |
References | Cavalcanti (njpaceea3bib29) 2020 Wiseman (njpaceea3bib2) 2017 Bong (njpaceea3bib16) 2020; 16 Brukner (njpaceea3bib9) 2017 Healey (njpaceea3bib13) 2018; 48 Allard Guérin (njpaceea3bib14) 2021; 4 Cavalcanti (njpaceea3bib3) 2021; 23 Pitowsky (njpaceea3bib4) 1982; 48 Greenberger (njpaceea3bib8) 1990; 58 Mansfield (njpaceea3bib22) 2012; 42 Santos (njpaceea3bib25) 2021; 104 Garson (njpaceea3bib28) 2021 Greenberger (njpaceea3bib5) 1989; vol 37 Pusey (njpaceea3bib18) 2018; 14 Bell (njpaceea3bib1) 1964; 1 Mansfield (njpaceea3bib24) 2017; 95 Rantala (njpaceea3bib21) 2004 Hardy (njpaceea3bib6) 1992; 68 Brukner (njpaceea3bib11) 2018; 20 Frauchiger (njpaceea3bib10) 2018; 9 Cavalcanti (njpaceea3bib26) 2021; 51 Abramsky (njpaceea3bib27) 2011; 13 Yang (njpaceea3bib17) 2022; 24 Abramsky (njpaceea3bib23) 2013; 101 Wigner (njpaceea3bib15) 1961 Baumann (njpaceea3bib12) 2018; 2 Nurgalieva (njpaceea3bib20) 2019; vol 287 Aaronson (njpaceea3bib19) 2018 Hardy (njpaceea3bib7) 1993; 71 |
References_xml | – volume: 23 start-page: 925 year: 2021 ident: njpaceea3bib3 article-title: Implications of Local Friendliness Violation for quantum causality publication-title: Entropy doi: 10.3390/e23080925 – start-page: 95 year: 2017 ident: njpaceea3bib9 article-title: On the quantum measurement problem doi: 10.1007/978-3-319-38987-5_5 – volume: 71 start-page: 1665 year: 1993 ident: njpaceea3bib7 article-title: Nonlocality for two particles without inequalities for almost all entangled states publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.71.1665 – volume: 9 start-page: 3711 year: 2018 ident: njpaceea3bib10 article-title: Quantum theory cannot consistently describe the use of itself publication-title: Nat. Commun. doi: 10.1038/s41467-018-05739-8 – start-page: pp 284 year: 1961 ident: njpaceea3bib15 article-title: Remarks on the mind-body question – volume: 14 start-page: 977 year: 2018 ident: njpaceea3bib18 article-title: An inconsistent friend publication-title: Nat. Phys. doi: 10.1038/s41567-018-0293-7 – volume: 51 start-page: 39 year: 2021 ident: njpaceea3bib26 article-title: The view from a Wigner bubble publication-title: Found. Phys. doi: 10.1007/s10701-021-00417-0 – volume: 48 start-page: 1299 year: 1982 ident: njpaceea3bib4 article-title: Resolution of the Einstein-Podolsky-Rosen and Bell Paradoxes publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.48.1299 – volume: vol 287 start-page: 267 year: 2019 ident: njpaceea3bib20 article-title: Inadequacy of modal logic in quantum settings doi: 10.4204/EPTCS.287.16 – volume: 58 start-page: 1131 year: 1990 ident: njpaceea3bib8 article-title: Bell’s theorem without inequalities publication-title: Am. J. Phys. doi: 10.1119/1.16243 – year: 2004 ident: njpaceea3bib21 – year: 2020 ident: njpaceea3bib29 article-title: Implications of Wigner’s Friend paradox for quantum causality – volume: 42 start-page: 709 year: 2012 ident: njpaceea3bib22 article-title: Hardy’s non-locality paradox and possibilistic conditions for non-locality publication-title: Found. Phys. doi: 10.1007/s10701-012-9640-1 – start-page: 119 year: 2017 ident: njpaceea3bib2 article-title: Causarum Investigatio and the Two Bell’s Theorems of John Bell doi: 10.1007/978-3-319-38987-5_6 – volume: vol 37 start-page: 69 year: 1989 ident: njpaceea3bib5 article-title: Going beyond Bell’s theorem doi: 10.1007/978-94-017-0849-4_10 – volume: 1 start-page: 195 year: 1964 ident: njpaceea3bib1 article-title: On the Einstein Podolsky Rosen paradox publication-title: Phys. Phys. Fiz. doi: 10.1103/PhysicsPhysiqueFizika.1.195 – volume: 48 start-page: 1568 year: 2018 ident: njpaceea3bib13 article-title: Quantum theory and the limits of objectivity publication-title: Found. Phys. doi: 10.1007/s10701-018-0216-6 – volume: 95 year: 2017 ident: njpaceea3bib24 article-title: Consequences and applications of the completeness of Hardy’s nonlocality publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.95.022122 – volume: 13 year: 2011 ident: njpaceea3bib27 article-title: The sheaf-theoretic structure of non-locality and contextuality publication-title: New J. Phys. doi: 10.1088/1367-2630/13/11/113036 – volume: 16 start-page: 1199 year: 2020 ident: njpaceea3bib16 article-title: A strong no-go theorem on the Wigner’s friend paradox publication-title: Nat. Phys. doi: 10.1038/s41567-020-0990-x – year: 2018 ident: njpaceea3bib19 article-title: It’s hard to think when someone Hadamards your brain – volume: 101 start-page: 411 year: 2013 ident: njpaceea3bib23 article-title: Relational hidden variables and non-locality publication-title: Stud. Log. doi: 10.1007/s11225-013-9477-4 – year: 2021 ident: njpaceea3bib28 article-title: Modal logic – volume: 2 start-page: 99 year: 2018 ident: njpaceea3bib12 article-title: On formalisms and interpretations publication-title: Quantum doi: 10.22331/q-2018-10-15-99 – volume: 20 start-page: 350 year: 2018 ident: njpaceea3bib11 article-title: A No-Go Theorem for Observer-Independent Facts publication-title: Entropy doi: 10.3390/e20050350 – volume: 4 start-page: 93 year: 2021 ident: njpaceea3bib14 article-title: A no-go theorem for the persistent reality of Wigner’s friend’s perception publication-title: Commun. Phys. doi: 10.1038/s42005-021-00589-1 – volume: 24 start-page: 903 year: 2022 ident: njpaceea3bib17 article-title: Law of total probability in quantum theory and its application in Wigner’s friend scenario publication-title: Entropy doi: 10.3390/e24070903 – volume: 104 year: 2021 ident: njpaceea3bib25 article-title: Conditions for logical contextuality and nonlocality publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.104.022201 – volume: 68 start-page: 2981 year: 1992 ident: njpaceea3bib6 article-title: Quantum mechanics, local realistic theories, and Lorentz-invariant realistic theories publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.68.2981 |
SSID | ssj0011822 |
Score | 2.46778 |
Snippet | The famous ‘Wigner’s friend’ paradox highlights the difficulty of modelling the evolution of quantum systems under measurement in situations where observers... |
SourceID | doaj proquest crossref iop |
SourceType | Open Website Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 93028 |
SubjectTerms | Experiments Logic Metaphysics modal logic No-go theorem Paradoxes Physics Probability Probability theory quantum foundations Quantum mechanics Quantum phenomena Quantum physics Quantum theory Statistical analysis Theorems Wigner’s friend |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NS8NAEF2kIHgRP7FaZQ968BCS7ibZzUWoYhFBTxZ7Czv7UQqalLaCR_-Gf89f4mySVkWoF28hTMjyJrPzhp28IeTUATNWSB1oxbBAgQwCaUAFwLuAASaUrCTz7-7Tm0F8O0yG30Z9-Z6wWh64Bi7kAgxk1ogki2LQkcSAzDxxYBFECTi_-2LOWxRTzfkBsmbWHEpiGIVelyxgKY9ChUlB8R9JqNLqx9QyLie_NuQqy_S3yGZDD2mvXtY2WbPFDlmv2jT1bJdc9OiknNUdrV5gmRZlMCpp_TfiMy0Lf0kfx6PCTj_e3mfUeRljQ73Atylf98igf_1wdRM0ExACjURpHhiF8Z8koDIrYofcRGPB0YXEuURmWiGX6sYMoU65yTIBPnk7wKpKcRvxmGu-T1pFWdgDQp21TEgHxmJCBsWVQhMmgGmmjEuiNgkXkOS6kQf3Uyqe8uqYWsrcg5h7EPMaxDY5Xz4xqaUxVtheepSXdl7UurqBrs4bV-d_ubpNztBHeRNksxUv6yy8-GXMZBqnnqCKw_9YyxHZ8IPn626zDmnNpy_2GOnJHE6qL_ETAGjhlA priority: 102 providerName: Directory of Open Access Journals – databaseName: Institute of Physics Open Access Journal Titles dbid: O3W link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1bS8MwFA5eEHwRrzidkgd98KGuS9omRRCmKCKoL47treTkMgRtxzbBR_-Gf89f4knbTUQZvoVy0pTvNOd8ISdfCDlywIwVUgdaMVygQAqBNKAC4G3ACSaULCXz7-6Tm25024_7C-RsdhamGNah_xSblVBwBWFdECdbXmQsYAkPWwojvOKLZJnLRPp6vgfem20hIHFm9b7kX71-5KFSrh-zCw75KyaXieZ6nazVDJF2qu_ZIAs23yQrZaWmHm-R8w4dFuOqqNVrLNO8CAYFrQ4kvtAi903aexrkdvT5_jGmzisZG-o1vk3xtk2611ePlzdBfQlCoJErTQKjMATEMajUisghPdG45mhD7FwsU62QTrUjhmgn3KSpAJ-_HeDCSnEb8ohrvkOW8iK3u4Q6a5mQDozFnAyKK4UmTADTTBkXhw3SmkKS6Voh3F9U8ZyVO9VSZh7EzIOYVSA2yMmsx7BSx5hje-FRntl5XevyAfo4q32ccQEGUmtEnIYR6FBi-E09TWQhhDG4BjlGH2X1PBvPGaw59eK3MZNJlHiOKvb--Zp9suqvl69qyppkaTJ6tQdIQiZwWP5sX_u915o priority: 102 providerName: IOP Publishing |
Title | A possibilistic no-go theorem on the Wigner’s friend paradox |
URI | https://iopscience.iop.org/article/10.1088/1367-2630/aceea3 https://www.proquest.com/docview/2864600547 https://doaj.org/article/37bdb9ed75904bc08add9008320b05bf |
Volume | 25 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1La9wwEBbthkIvpU-6zQMd2kMPYr2SZcmXhiQkpIUmoTQkN6PRYwmk1na9gR77N_r38ks6srUbSmEvwthjDDOal2b8DSHvA3DnlbbMGo4JCtTAtAPDQEwBFUwZ3UPmfz2rTi_LL9fyOh-4dbmtcmUTe0Ptok1n5BOuq7JKAYban_9kaWpUqq7mERqPyRaaYC1HZOvw-Ozi27qOgNEzz8VJVKdJwidjvBLFxKBzMOIfZ9Rj9qOLuYnz_wxz721OnpNnOUykB4NcX5BHvn1JnvTtmrZ7RT4d0Hnshs7WBLRM28hmkQ5_Jf6gsU2X9Opm1vrF_e8_HQ0JztjRBPTt4q_X5PLk-PvRKcuTEJjFgGnJnEE7ICWY2qsyIBssJh5TkCFIXVuDMdW05MjySri6VpCceADMrozwhSiFFW_IqI2tf0to8J4rHcB5dMxghDFIwhVwy40LshiTyYoljc0w4WlaxW3Tl6u1bhITm8TEZmDimHxcvzEfIDI20B4mLq_pErh1fyMuZk3WlUYocFB7p2RdlGALjTa4TrEiL6CQEMbkA8qoycrWbfjYzkqKD8QP--jd5sfb5GkaLT_0k-2Q0XJx53cxAFnCXt5le30Cj-vn8wtcz8XVXzlE3Qs |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VVgguiKe6pYAP9MAh2qydh3MA1EKrLW1XCLWit-DxY1WJxstmEXDjb_An-FH8EsZ5bIWQ9tZblEweGs94PmfG3wA8d8iNzaWOtOK0QMECI2lQRShGSA6WK9lQ5p9MsvFZ8u48PV-D3_1emFBW2c-JzURtvA7_yIdcZkkWAEb-evYlCl2jQna1b6HRmsWR_fGNlmz1y8O3NL47nB_sn74ZR11XgUgT-FhERpFPpSmqwuaJo0dqAvEjTJ1LZaEV4ZNRwunzM2GKIscQEB3SSkUJG4tEaEHPvQEbBDMK8qKNvf3J-w_LvAWhdd4lQ8l9h4EPLeKZiIeKgpES_wS_pkcAhbQLP_svEDTR7eAu3OlgKdtt7egerNnqPtxsykN1_QBe7bKZr9tK2kDszCofTT1rd0FeMl-FQ_bxYlrZ-Z-fv2rmAn2yYYFY3PjvD-HsWnT0CNYrX9lNYM5ankuHxhIQQCWUIhGeI9dcGZfGAxj2Kil1R0seumN8Lpv0uJRlUGIZlFi2ShzAi-Uds5aSY4XsXtDyUi6QaTcn_Hxadr5ZihwNFtbkaREnqGNJc34RsCmPMU7RDWCHxqjsnLte8bLtfhSvhK_sdmv15Wdwa3x6clweH06OHsPt0Na-rWXbhvXF_Kt9QuBngU87i2Pw6bqN_C8DqxVh |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NTtwwELZgqyIuqKUgFmjrQzn0kG7WjmPngrS0XQEF2kMR3CyPfxASJCt2kTj2NXi9PgnjxGxVtULcrGhsRzP2zGd5_A0hHwIw56WymTUMDyhQQaYcmAz4EHCDSaNayvzjk3L_tDg8F-epzmn7FqaZJNf_CZsdUXCnwpQQpwaRZCxjJc8HBj284YOJC4vkheAYTHFBf-dn82sEBM8s3U3-r-dfsail7McIg9P-45fbYDN-RVYSSqSj7p9ekwVfr5KXbbamnb4huyM6aaZdYmvkWaZ1k100tHuUeE2bOjbp2eVF7W9-_7qf0hDZjB2NPN-uuVsjp-OvPz_vZ6kQQmYRL80yZ9ANCAGm8rIICFEsnjuGIEIQqrIGIdWwYKjxkruqkhBjeAA8XBnuc15wy9dJr25qv0Fo8J5JFcB5jMtguDEowiQwy4wLIu-TwaNKtE0s4bFYxZVub6uV0lGJOipRd0rsk4_zHpOOIeMJ2b2o5blc5LZuP6CddbKz5hIcVN5JUeUF2FyhC64iVGQ55AJCn-ygjXTaa9MnJtt-tOIfYabKoow4VW4-c5j3ZOnHl7E-Ojj5tkWWY7X5LsVsm_RmN7f-LWKSGbxr190Dbmnbkg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+possibilistic+no-go+theorem+on+the+Wigner%E2%80%99s+friend+paradox&rft.jtitle=New+journal+of+physics&rft.au=Haddara%2C+Marwan&rft.au=Cavalcanti%2C+Eric+G&rft.date=2023-09-01&rft.issn=1367-2630&rft.eissn=1367-2630&rft.volume=25&rft.issue=9&rft.spage=93028&rft_id=info:doi/10.1088%2F1367-2630%2Faceea3&rft.externalDBID=n%2Fa&rft.externalDocID=10_1088_1367_2630_aceea3 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1367-2630&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1367-2630&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1367-2630&client=summon |