Permafrost microbial community traits and functional diversity indicate low activity at in situ thaw temperatures

Previously-frozen stores of organic carbon (C) are now subject to decomposition due to a warming Arctic climate and associated permafrost thaw; however, estimates of the amount of greenhouse gases (GHG) that may be released are not well constrained. Knowing more about the functions of the extant per...

Full description

Saved in:
Bibliographic Details
Published inSoil biology & biochemistry Vol. 87; no. C; pp. 78 - 89
Main Authors Ernakovich, Jessica G., Wallenstein, Matthew D.
Format Journal Article
LanguageEnglish
Published United Kingdom Elsevier Ltd 01.08.2015
Elsevier
Subjects
Online AccessGet full text
ISSN0038-0717
1879-3428
DOI10.1016/j.soilbio.2015.04.009

Cover

Abstract Previously-frozen stores of organic carbon (C) are now subject to decomposition due to a warming Arctic climate and associated permafrost thaw; however, estimates of the amount of greenhouse gases (GHG) that may be released are not well constrained. Knowing more about the functions of the extant permafrost microbial community will inform this knowledge gap. The exploration of microbial functional traits may be useful to elucidate the relationship between microbial diversity and ecosystem function. We characterized the community traits and functional diversity of the bacterial and Archaeal component of the microbial community from three depths of permafrost, as well as the organic and mineral horizons of the seasonally-thawed active layer, by assessing ‘substrate-use richness,’ ‘substrate preference,’ ‘growth rate,’ ‘and substrate specific growth rate.’ We measured the microbial community response to 31 substrates with an EcoPlate (Biolog, Inc.) assay at three incubation temperatures (1, 10, and 20 °C) using a kinetic approach, and modeled the microbial response to each substrate with a modified logistic growth function. We hypothesized that the permafrost communities would be selected for high functional potential and activity at cold temperatures. Rather, we found that the permafrost community did not have a higher functional diversity or activity at 1 °C than the organic active layer soils. In addition, permafrost communities increased their growth rates with increasing temperature, indicating that the highest incubation temperature (20 °C) was below their temperature optimum for growth. As predicted, the permafrost communities did exhibit temperature dependent substrate preferences. Thus, permafrost microbial communities did not appear to be selected for higher metabolism and the ability to use a broad suite of substrates at low temperatures, which suggests that they may have limited function immediately following thaw when temperatures are near 0 °C. However, changes in community composition or additional permafrost warming will increase the functional capabilities of permafrost microbes to decompose the C stored in those soils. •We explored arctic microbial community function at 3 temperatures with 31 substrates.•Permafrost microbes grew slower than active layer microbes, even at 1 °C.•Permafrost microbes utilized fewer substrates than active layer microbes.•Permafrost microbial communities may have low function immediately following thaw.•This may lead to a delay in decomposition and associated production of C gases.
AbstractList Previously-frozen stores of organic carbon (C) are now subject to decomposition due to a warming Arctic climate and associated permafrost thaw; however, estimates of the amount of greenhouse gases (GHG) that may be released are not well constrained. Knowing more about the functions of the extant permafrost microbial community will inform this knowledge gap. The exploration of microbial functional traits may be useful to elucidate the relationship between microbial diversity and ecosystem function. We characterized the community traits and functional diversity of the bacterial and Archaeal component of the microbial community from three depths of permafrost, as well as the organic and mineral horizons of the seasonally-thawed active layer, by assessing ‘substrate-use richness,’ ‘substrate preference,’ ‘growth rate,’ ‘and substrate specific growth rate.’ We measured the microbial community response to 31 substrates with an EcoPlate (Biolog, Inc.) assay at three incubation temperatures (1, 10, and 20 °C) using a kinetic approach, and modeled the microbial response to each substrate with a modified logistic growth function. We hypothesized that the permafrost communities would be selected for high functional potential and activity at cold temperatures. Rather, we found that the permafrost community did not have a higher functional diversity or activity at 1 °C than the organic active layer soils. In addition, permafrost communities increased their growth rates with increasing temperature, indicating that the highest incubation temperature (20 °C) was below their temperature optimum for growth. As predicted, the permafrost communities did exhibit temperature dependent substrate preferences. Thus, permafrost microbial communities did not appear to be selected for higher metabolism and the ability to use a broad suite of substrates at low temperatures, which suggests that they may have limited function immediately following thaw when temperatures are near 0 °C. However, changes in community composition or additional permafrost warming will increase the functional capabilities of permafrost microbes to decompose the C stored in those soils.
Previously-frozen stores of organic carbon (C) are now subject to decomposition due to a warming Arctic climate and associated permafrost thaw; however, estimates of the amount of greenhouse gases (GHG) that may be released are not well constrained. Knowing more about the functions of the extant permafrost microbial community will inform this knowledge gap. The exploration of microbial functional traits may be useful to elucidate the relationship between microbial diversity and ecosystem function. We characterized the community traits and functional diversity of the bacterial and Archaeal component of the microbial community from three depths of permafrost, as well as the organic and mineral horizons of the seasonally-thawed active layer, by assessing ‘substrate-use richness,’ ‘substrate preference,’ ‘growth rate,’ ‘and substrate specific growth rate.’ We measured the microbial community response to 31 substrates with an EcoPlate (Biolog, Inc.) assay at three incubation temperatures (1, 10, and 20 °C) using a kinetic approach, and modeled the microbial response to each substrate with a modified logistic growth function. We hypothesized that the permafrost communities would be selected for high functional potential and activity at cold temperatures. Rather, we found that the permafrost community did not have a higher functional diversity or activity at 1 °C than the organic active layer soils. In addition, permafrost communities increased their growth rates with increasing temperature, indicating that the highest incubation temperature (20 °C) was below their temperature optimum for growth. As predicted, the permafrost communities did exhibit temperature dependent substrate preferences. Thus, permafrost microbial communities did not appear to be selected for higher metabolism and the ability to use a broad suite of substrates at low temperatures, which suggests that they may have limited function immediately following thaw when temperatures are near 0 °C. However, changes in community composition or additional permafrost warming will increase the functional capabilities of permafrost microbes to decompose the C stored in those soils. •We explored arctic microbial community function at 3 temperatures with 31 substrates.•Permafrost microbes grew slower than active layer microbes, even at 1 °C.•Permafrost microbes utilized fewer substrates than active layer microbes.•Permafrost microbial communities may have low function immediately following thaw.•This may lead to a delay in decomposition and associated production of C gases.
Author Wallenstein, Matthew D.
Ernakovich, Jessica G.
Author_xml – sequence: 1
  givenname: Jessica G.
  surname: Ernakovich
  fullname: Ernakovich, Jessica G.
  email: jessica.ernakovich@colostate.edu
  organization: Graduate Degree Program in Ecology, 1021 Campus Delivery, Colorado State University, Fort Collins, CO 80523, USA
– sequence: 2
  givenname: Matthew D.
  surname: Wallenstein
  fullname: Wallenstein, Matthew D.
  organization: Graduate Degree Program in Ecology, 1021 Campus Delivery, Colorado State University, Fort Collins, CO 80523, USA
BackLink https://www.osti.gov/biblio/1251968$$D View this record in Osti.gov
BookMark eNqFUctq3DAUFSWFTtJ-QkF01Y0dva0hi1BCkgYC7aJdC1m-ZjTY0kSSJ-TvKzOz6iarC_c84JxziS5CDIDQV0paSqi63rc5-qn3sWWEypaIlpDtB7Shuts2XDB9gTaEcN2Qjnaf0GXOe0IIk5Rv0MtvSLMdU8wFz96l2Hs7YRfneQm-vOGSrC8Z2zDgcQmu-BgqPvgjpLziPgze2QJ4iq_YVvy4fm2pAK6EBZedfcUF5gMkW5YE-TP6ONopw5fzvUJ_H-7_3P1snn89Pt39eG6coKo0g2TcdbSnWhHBnbCD1FrCyJjsNTAmlCCd0krqnlJhWSdG2WlGh1F3DIDzK_Tt5FujeZOdL-B2LoYArhha02-VrqTvJ9IhxZcFcjGzzw6myQaISzZUc6W44FRU6s2JWkvKOcFoqqVdC1k7mgwlZl3D7M15DbOuYYgwdY2qlv-pD8nPNr29q7s96aBWdfSQ1iQQHAw-rUGG6N9x-AcDJqsj
CitedBy_id crossref_primary_10_1007_s00792_018_1007_x
crossref_primary_10_1007_s10498_017_9325_7
crossref_primary_10_1007_s11104_017_3322_x
crossref_primary_10_1099_mgen_0_000558
crossref_primary_10_1016_j_chemgeo_2019_119448
crossref_primary_10_1029_2018GB006030
crossref_primary_10_3389_feart_2021_739365
crossref_primary_10_1016_j_syapm_2024_126544
crossref_primary_10_1186_s40168_020_00838_5
crossref_primary_10_1016_j_apsoil_2020_103713
crossref_primary_10_1186_s13717_021_00337_x
crossref_primary_10_1016_j_chemosphere_2020_127375
crossref_primary_10_1038_s41598_020_65569_x
crossref_primary_10_1016_j_soilbio_2023_108991
crossref_primary_10_1007_s11356_022_22283_7
crossref_primary_10_1016_j_soilbio_2016_02_008
crossref_primary_10_1089_ast_2020_2327
crossref_primary_10_1007_s00300_017_2088_1
crossref_primary_10_1016_j_sedgeo_2024_106703
crossref_primary_10_1088_1748_9326_acc542
crossref_primary_10_1016_j_tim_2023_08_006
crossref_primary_10_1093_femsec_fiac134
crossref_primary_10_1111_1462_2920_15383
crossref_primary_10_3390_ijms20051207
crossref_primary_10_3390_jof8070701
crossref_primary_10_1038_srep43338
crossref_primary_10_1111_gcb_17281
crossref_primary_10_1016_j_rhisph_2024_100885
crossref_primary_10_1089_ast_2021_0072
crossref_primary_10_1007_s11356_021_13779_9
crossref_primary_10_1038_ncomms13046
crossref_primary_10_1016_j_scitotenv_2021_150720
crossref_primary_10_1111_gcb_16231
Cites_doi 10.1046/j.1462-2920.2003.00419.x
10.1073/pnas.0400522101
10.1111/j.1365-2486.2008.01819.x
10.1890/06-0164
10.1111/j.1461-0248.2005.00756.x
10.1007/s10533-011-9641-8
10.1016/0038-0717(94)90131-7
10.1111/j.1461-0248.2012.01807.x
10.2136/sssaj2009.0187
10.1016/j.soilbio.2008.01.030
10.2136/sssaj2014.10.0420
10.1038/ismej.2012.99
10.1073/pnas.1008885107
10.1126/science.1153475
10.1111/j.1365-2486.2009.02141.x
10.1016/S0167-7012(97)00041-9
10.1007/s10533-011-9638-3
10.1038/nrmicro2504
10.1111/j.1365-2486.2005.01065.x
10.1128/AEM.57.8.2351-2359.1991
10.1029/2006JF000578
10.1371/journal.pone.0084761
10.1038/ismej.2011.163
10.1007/s10584-005-5352-2
10.1111/j.1574-6941.2007.00375.x
10.1016/j.asr.2003.06.024
10.1111/1574-6976.12023
10.1111/j.1365-2486.2012.02663.x
10.1038/nature10576
10.1073/pnas.1103910108
10.1016/j.soilbio.2009.10.008
10.1016/j.jmb.2006.03.004
10.1007/BF01581991
10.1016/S0038-0717(99)00081-4
10.1089/153110702753621358
10.1111/gcb.12417
10.1126/science.1138544
10.1016/j.soilbio.2010.10.013
10.1111/j.1600-0889.2011.00527.x
10.1007/s002489900065
10.1016/S0038-0717(99)00141-8
10.1128/AEM.66.8.3230-3233.2000
10.1080/00275514.1999.12061081
10.3389/fmicb.2011.00094
10.1073/pnas.0706787104
10.1657/1938-4246-44.4.469
10.1007/s00248-009-9529-5
10.1111/j.1365-2486.2011.02546.x
10.1111/j.1574-6941.1999.tb00639.x
10.2136/sssaj2008.0276
10.1641/B580807
10.1007/s00792-006-0506-3
10.1023/B:PLSO.0000020933.32473.7e
10.1046/j.1365-2486.2003.00596.x
10.1111/j.1365-2486.2009.01946.x
10.1016/S0038-0717(97)00113-2
10.1038/ismej.2013.140
10.1029/2012GL051958
10.1016/j.geoderma.2004.12.024
10.2136/sssaj2002.5190
10.1111/ele.12206
10.1016/j.soilbio.2013.06.012
10.1080/01490459809378075
10.1016/j.soilbio.2013.02.019
ContentType Journal Article
Copyright 2015 Elsevier Ltd
Copyright_xml – notice: 2015 Elsevier Ltd
DBID AAYXX
CITATION
7S9
L.6
OTOTI
DOI 10.1016/j.soilbio.2015.04.009
DatabaseName CrossRef
AGRICOLA
AGRICOLA - Academic
OSTI.GOV
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA

DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
Agriculture
EISSN 1879-3428
EndPage 89
ExternalDocumentID 1251968
10_1016_j_soilbio_2015_04_009
S0038071715001510
GeographicLocations Arctic region
GeographicLocations_xml – name: Arctic region
GroupedDBID --K
--M
-~X
.~1
0R~
123
1B1
1RT
1~.
1~5
4.4
457
4G.
53G
5VS
7-5
71M
8P~
9JM
AABNK
AABVA
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALCJ
AALRI
AAOAW
AAQFI
AAQXK
AATLK
AAXUO
ABEFU
ABFNM
ABFYP
ABGRD
ABGSF
ABJNI
ABLST
ABMAC
ABUDA
ABXDB
ABYKQ
ACDAQ
ACGFS
ACIUM
ACRLP
ADBBV
ADEZE
ADMUD
ADQTV
ADUVX
AEBSH
AEHWI
AEKER
AENEX
AEQOU
AFKWA
AFTJW
AFXIZ
AGHFR
AGRDE
AGUBO
AGYEJ
AHEUO
AHHHB
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AKIFW
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLECG
BLXMC
CBWCG
CNWQP
CS3
DOVZS
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HLV
HLW
HMA
HMC
HMG
HVGLF
HZ~
IHE
J1W
K-O
KCYFY
KOM
LW9
LX3
LY3
LY9
M41
MO0
N9A
NHB
O-L
O9-
OAUVE
OHT
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SAB
SBG
SCU
SDF
SDG
SDP
SEN
SEP
SES
SEW
SIN
SPCBC
SSA
SSJ
SSU
SSZ
T5K
TN5
TWZ
WUQ
XPP
Y6R
ZMT
~02
~G-
~KM
AAHBH
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEGFY
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
7S9
EFKBS
L.6
AALMO
AAPBV
ABPIF
ABPTK
OTOTI
ID FETCH-LOGICAL-c416t-d523c71b186043c4ad5885ef225b8e224640768658b114a274f57821df872ee33
IEDL.DBID AIKHN
ISSN 0038-0717
IngestDate Fri May 19 02:09:10 EDT 2023
Fri Sep 05 06:08:11 EDT 2025
Thu Apr 24 23:01:50 EDT 2025
Tue Jul 01 03:19:53 EDT 2025
Fri Feb 23 02:23:27 EST 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue C
Keywords EcoPlate
Kinetic approach
Modified logistic growth model
CLPP
Biolog
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c416t-d523c71b186043c4ad5885ef225b8e224640768658b114a274f57821df872ee33
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
USDOE
OpenAccessLink https://www.osti.gov/biblio/1251968
PQID 1836634314
PQPubID 24069
PageCount 12
ParticipantIDs osti_scitechconnect_1251968
proquest_miscellaneous_1836634314
crossref_citationtrail_10_1016_j_soilbio_2015_04_009
crossref_primary_10_1016_j_soilbio_2015_04_009
elsevier_sciencedirect_doi_10_1016_j_soilbio_2015_04_009
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate August 2015
2015-08-00
20150801
2015-08-01
PublicationDateYYYYMMDD 2015-08-01
PublicationDate_xml – month: 08
  year: 2015
  text: August 2015
PublicationDecade 2010
PublicationPlace United Kingdom
PublicationPlace_xml – name: United Kingdom
PublicationTitle Soil biology & biochemistry
PublicationYear 2015
Publisher Elsevier Ltd
Elsevier
Publisher_xml – name: Elsevier Ltd
– name: Elsevier
References Davidson, Janssens, Luo (bib14) 2006; 12
Yergeau, Hogues, Whyte, Greer (bib71) 2010
Tarnocai (bib63) 1993
Balser, Wixon (bib5) 2009; 15
Hinzman, Bettez, Bolton, Chapin, Dyurgerov, Fastie, Griffith, Hollister, Hope, Huntington, Jensen, Jia, Jorgenson, Kane, Klein, Kofinas, Lynch, Lloyd, McGuire, Nelson, Oechel, Osterkamp, Racine, Romanovsky, Stone, Stow, Sturm, Tweedie, Vourlitis, Walker, Walker, Webber, Welker, Winker, Yoshikawa (bib31) 2005; 72
Boddy, Roberts, Hill, Farrar, Jones (bib7) 2008; 40
Ernakovich, Wallenstein, Calderón (bib21) 2015
Chaer, Fernandes, Myrold, Bottomley (bib12) 2009; 73
Johnson, Hebsgaard, Christensen, Mastepanov, Nielsen, Munch, Brand, Gilbert, Zuber, Bunce, Rønn, Gilichinsky, Froese, Willerslev (bib33) 2007; 104
Follows, Dutkiewicz, Grant, Chisholm (bib23) 2007; 315
Campbell, Grayston, Hirst (bib11) 1997; 30
Tang, Riley (bib62) 2013; 10
Wallenstein, McMahon, Schimel (bib69) 2009; 15
Osterkamp (bib45) 2007; 112
Goldfarb, Karaoz, Hanson, Santee, Bradford, Treseder, Wallenstein, Brodie (bib27) 2011; 2
Weedon, Aerts, Kowalchuk, van Logtestijn, Andringa, van Bogedom (bib70) 2013; 61
Treat, Natali, Ernakovich, Iversen, Lupascu, McGuire, Norby, Chowdhury, Richter, Santruckova, Schadel, Schuur, Sloan, Turetsky, Waldrop (bib64) 2014
Lupascu, Wadham, Hornibrook, Pancost (bib40) 2012; 44
Mackelprang, Waldrop, DeAngelis, David, Chavarria, Blazewicz, Rubin, Jansson (bib41) 2011; 480
Degens, Schipper, Sparling, Vojvodic-Vukovic (bib16) 2000; 32
Frank-Fahle, Yergeau, Greer, Lantuit, Wagner (bib24) 2014; 9
Koven, Ringeval, Friedlingstein, Ciais, Cadule, Khvorostyanov, Krinner, Tarnocai (bib36) 2011; 108
Ozerskaya, Kochkina, Ivanushkina, Gilichinsky (bib46) 2009
Gilichinsky, Soina, Petrova (bib26) 1993; 23
Price, Sowers (bib48) 2004; 101
Schuur, Bockheim, Canadell, Euskirchen, Field, Goryachkin, Hagemann, Kuhry, Lafleur, Lee (bib60) 2008; 58
D'Amico, Sohier, Feller (bib13) 2006; 358
Schmidt, Costello, Nemergut, Cleveland, Reed, Weintraub, Meyer, Martin (bib58) 2007; 88
Harden, Koven, Ping, Hugelius, David McGuire, Camill, Jorgenson, Kuhry, Michaelson, O'Donnell (bib30) 2012; 39
Preston-Mafham, Boddy, Randerson (bib47) 2002; 42
Nedwell (bib75) 1999; 30
Ramette (bib50) 2007; 62
Green, Bohannan, Whitaker (bib29) 2008; 320
Oksanen, Blanchet, Kindt, Pierre Legen- dre, OHara, Simpson, Peter Solymos, Wagner (bib44) 2013
Lindstrom, Barry, Braddock (bib39) 1999; 31
RStudio and Inc (bib54) 2013
Allison (bib1) 2005; 8
Rivkina, Laurinavichius, McGrath, Tiedje, Shcherbakova, Gilichinsky (bib52) 2004; 33
Bell, Acosta-Martinez, McIntyre, Cox, Tissue, Zak (bib6) 2009; 58
Balser, Kirchner, Firestone (bib4) 2002; 66
Rivkina, Gilichinsky, Wagener, Tiedje, McGrath (bib51) 1998; 15
Waldrop, Wickland, White, Berhe, Harden, Romanovsky (bib76) 2010; 16
Keuper, Bodegom, Dorrepaal, Weedon, Hal, Logtestijn, Aerts (bib34) 2012; 18
Dobranic, Zak (bib17) 1999; 91
Evans, Wallenstein (bib74) 2012; 109
Konopka, Oliver, Turco (bib35) 1998; 35
Schaefer, Zhang, Bruhwiler, Barrett (bib56) 2011; 63
Bakermans, Tsapin, Souza Egipsy, Gilichinsky, Nealson (bib3) 2003; 5
Lennon, Jones (bib37) 2011; 9
Santrucková, Bird, Kalaschnikov, Grund, Elhottova, Šimek, Grigoryev, Gleixner, Arneth, Schulze, Lloyd (bib55) 2003; 9
Vos, Wolf, Jennings, Kowalchuk (bib67) 2013
Brinton, Tsapin, Gilichinsky, McDonald (bib9) 2002; 2
Ekschmitt, Liu, Vetter, Fox, Wolters (bib19) 2005; 128
Ernakovich (bib20) 2014
Steven, Léveillé, Pollard, Whyte (bib61) 2006; 10
Zak, Willig, Moorhead, Wildman (bib72) 1994; 26
Rivkina, Friedmann, McKay, Gilichinsky (bib53) 2000; 66
Buckeridge, Banerjee, Siciliano, Grogan (bib10) 2013; 65
Jefferies, Walker, Edwards, Dainty (bib32) 2010; 42
R Core Development Team (bib49) 2013
Tuorto, Darias, McGuinness, Panikov, Zhang, HÃggblom, Kerkhof (bib65) 2014; 8
Wallenstein, Hall (bib68) 2011; 109
Drotz, Sparrman, Nilsson, Schleucher, Oquist (bib18) 2010; 107
Tveit, Schwacke, Svenning, Urich (bib66) 2012; 7
Schmidt, Lipson (bib59) 2004; 259
Davidson, Samanta, Caramori, Savage (bib15) 2011; 18
Lindstrom, Barry, Braddock (bib38) 1998; 30
Graham, Wallenstein, Vishnivetskaya, Waldrop, Phelps, Pfiffner, Onstott, Whyte, Rivkina, Gilichinsky, Elias, Mackelprang, VerBerkmoes, Hettich, Wagner, Wullschleger, Jansson (bib28) 2011; 6
Garland, Mills (bib25) 1991; 57
Allison (bib2) 2012; 15
Morita (bib43) 1997
Evans, Wallenstein (bib22) 2014; 17
Schädel, Schuur, Bracho, Elberling, Knoblauch, Lee, Luo, Shaver, Turetsky (bib57) 2014; 20
Borden, Ping, McCarthy, Naidu (bib8) 2010; 74
McMahon, Wallenstein, Schimel (bib42) 2011; 43
Bakermans (10.1016/j.soilbio.2015.04.009_bib3) 2003; 5
Lindstrom (10.1016/j.soilbio.2015.04.009_bib39) 1999; 31
Koven (10.1016/j.soilbio.2015.04.009_bib36) 2011; 108
Santrucková (10.1016/j.soilbio.2015.04.009_bib55) 2003; 9
Oksanen (10.1016/j.soilbio.2015.04.009_bib44) 2013
Hinzman (10.1016/j.soilbio.2015.04.009_bib31) 2005; 72
Balser (10.1016/j.soilbio.2015.04.009_bib4) 2002; 66
Ekschmitt (10.1016/j.soilbio.2015.04.009_bib19) 2005; 128
Weedon (10.1016/j.soilbio.2015.04.009_bib70) 2013; 61
Wallenstein (10.1016/j.soilbio.2015.04.009_bib68) 2011; 109
Ernakovich (10.1016/j.soilbio.2015.04.009_bib21) 2015
Steven (10.1016/j.soilbio.2015.04.009_bib61) 2006; 10
Gilichinsky (10.1016/j.soilbio.2015.04.009_bib26) 1993; 23
Keuper (10.1016/j.soilbio.2015.04.009_bib34) 2012; 18
Treat (10.1016/j.soilbio.2015.04.009_bib64) 2014
Balser (10.1016/j.soilbio.2015.04.009_bib5) 2009; 15
Tang (10.1016/j.soilbio.2015.04.009_bib62) 2013; 10
Schuur (10.1016/j.soilbio.2015.04.009_bib60) 2008; 58
Dobranic (10.1016/j.soilbio.2015.04.009_bib17) 1999; 91
Jefferies (10.1016/j.soilbio.2015.04.009_bib32) 2010; 42
Schmidt (10.1016/j.soilbio.2015.04.009_bib59) 2004; 259
Campbell (10.1016/j.soilbio.2015.04.009_bib11) 1997; 30
Rivkina (10.1016/j.soilbio.2015.04.009_bib52) 2004; 33
Tuorto (10.1016/j.soilbio.2015.04.009_bib65) 2014; 8
RStudio and Inc (10.1016/j.soilbio.2015.04.009_bib54) 2013
Wallenstein (10.1016/j.soilbio.2015.04.009_bib69) 2009; 15
Drotz (10.1016/j.soilbio.2015.04.009_bib18) 2010; 107
Ernakovich (10.1016/j.soilbio.2015.04.009_bib20) 2014
Evans (10.1016/j.soilbio.2015.04.009_bib22) 2014; 17
Frank-Fahle (10.1016/j.soilbio.2015.04.009_bib24) 2014; 9
Tveit (10.1016/j.soilbio.2015.04.009_bib66) 2012; 7
Allison (10.1016/j.soilbio.2015.04.009_bib1) 2005; 8
Lindstrom (10.1016/j.soilbio.2015.04.009_bib38) 1998; 30
Evans (10.1016/j.soilbio.2015.04.009_bib74) 2012; 109
Chaer (10.1016/j.soilbio.2015.04.009_bib12) 2009; 73
Yergeau (10.1016/j.soilbio.2015.04.009_bib71) 2010
Allison (10.1016/j.soilbio.2015.04.009_bib2) 2012; 15
Mackelprang (10.1016/j.soilbio.2015.04.009_bib41) 2011; 480
Tarnocai (10.1016/j.soilbio.2015.04.009_bib63) 1993
Vos (10.1016/j.soilbio.2015.04.009_bib67) 2013
Waldrop (10.1016/j.soilbio.2015.04.009_bib76) 2010; 16
Zak (10.1016/j.soilbio.2015.04.009_bib72) 1994; 26
Nedwell (10.1016/j.soilbio.2015.04.009_bib75) 1999; 30
Rivkina (10.1016/j.soilbio.2015.04.009_bib51) 1998; 15
D'Amico (10.1016/j.soilbio.2015.04.009_bib13) 2006; 358
Davidson (10.1016/j.soilbio.2015.04.009_bib14) 2006; 12
Buckeridge (10.1016/j.soilbio.2015.04.009_bib10) 2013; 65
Green (10.1016/j.soilbio.2015.04.009_bib29) 2008; 320
Price (10.1016/j.soilbio.2015.04.009_bib48) 2004; 101
Lennon (10.1016/j.soilbio.2015.04.009_bib37) 2011; 9
Graham (10.1016/j.soilbio.2015.04.009_bib28) 2011; 6
Schaefer (10.1016/j.soilbio.2015.04.009_bib56) 2011; 63
Borden (10.1016/j.soilbio.2015.04.009_bib8) 2010; 74
Bell (10.1016/j.soilbio.2015.04.009_bib6) 2009; 58
Preston-Mafham (10.1016/j.soilbio.2015.04.009_bib47) 2002; 42
Davidson (10.1016/j.soilbio.2015.04.009_bib15) 2011; 18
Osterkamp (10.1016/j.soilbio.2015.04.009_bib45) 2007; 112
Degens (10.1016/j.soilbio.2015.04.009_bib16) 2000; 32
Lupascu (10.1016/j.soilbio.2015.04.009_bib40) 2012; 44
Garland (10.1016/j.soilbio.2015.04.009_bib25) 1991; 57
Konopka (10.1016/j.soilbio.2015.04.009_bib35) 1998; 35
McMahon (10.1016/j.soilbio.2015.04.009_bib42) 2011; 43
Ramette (10.1016/j.soilbio.2015.04.009_bib50) 2007; 62
Boddy (10.1016/j.soilbio.2015.04.009_bib7) 2008; 40
Brinton (10.1016/j.soilbio.2015.04.009_bib9) 2002; 2
Ozerskaya (10.1016/j.soilbio.2015.04.009_bib46) 2009
Goldfarb (10.1016/j.soilbio.2015.04.009_bib27) 2011; 2
Rivkina (10.1016/j.soilbio.2015.04.009_bib53) 2000; 66
Follows (10.1016/j.soilbio.2015.04.009_bib23) 2007; 315
Schmidt (10.1016/j.soilbio.2015.04.009_bib58) 2007; 88
Morita (10.1016/j.soilbio.2015.04.009_bib43) 1997
Harden (10.1016/j.soilbio.2015.04.009_bib30) 2012; 39
Johnson (10.1016/j.soilbio.2015.04.009_bib33) 2007; 104
R Core Development Team (10.1016/j.soilbio.2015.04.009_bib49) 2013
Schädel (10.1016/j.soilbio.2015.04.009_bib57) 2014; 20
References_xml – volume: 9
  start-page: e84761
  year: 2014
  ident: bib24
  article-title: Microbial functional potential and community composition in permafrost-affected soils of the NW Canadian Arctic
  publication-title: PLoS ONE
– volume: 16
  start-page: 2543
  year: 2010
  end-page: 2554
  ident: bib76
  article-title: Molecular investigations into a globally important carbon pool: permafrost-protected carbon in Alaskan soils
  publication-title: Global Change Biology
– volume: 107
  start-page: 21046
  year: 2010
  end-page: 21051
  ident: bib18
  article-title: Both catabolic and anabolic heterotrophic microbial activity proceed in frozen soils
  publication-title: Proceedings of the National Academy of Sciences United States of America
– year: 2013
  ident: bib67
  article-title: Micro-scale determinants of bacterial diversity in soil
  publication-title: FEMS Microbiology Reviews
– year: 2009
  ident: bib46
  article-title: Fungi in permafrost
  publication-title: Permafrost Soils
– volume: 26
  start-page: 1101
  year: 1994
  end-page: 1108
  ident: bib72
  article-title: Functional diversity of microbial communities: a quantitative approach
  publication-title: Soil Biology and Biochemistry
– volume: 480
  start-page: 368
  year: 2011
  end-page: 371
  ident: bib41
  article-title: Metagenomic analysis of a permafrost microbial community reveals a rapid response to thaw
  publication-title: Nature
– volume: 315
  start-page: 1843
  year: 2007
  end-page: 1846
  ident: bib23
  article-title: Emergent biogeography of microbial communities in a model ocean
  publication-title: Science
– volume: 23
  start-page: 65
  year: 1993
  end-page: 75
  ident: bib26
  article-title: Cryoprotective properties of water in the Earth cryolithosphere and its role in exobiology
  publication-title: Origins of Life and Evolution of the Biosphere
– start-page: 755
  year: 1993
  end-page: 765
  ident: bib63
  article-title: Sampling frozen soils
  publication-title: Soil Sampling and Methods of Analysis
– volume: 66
  start-page: 519
  year: 2002
  end-page: 523
  ident: bib4
  article-title: Methodological variability in microbial community level physiological profiles
  publication-title: Soil Science Society of America Journal
– volume: 15
  start-page: 2935
  year: 2009
  end-page: 2949
  ident: bib5
  article-title: Investigating biological control over soil carbon temperature sensitivity
  publication-title: Global Change Biology
– year: 2013
  ident: bib54
  article-title: Shiny: Web Application Framework for R
– volume: 18
  start-page: 371
  year: 2011
  end-page: 384
  ident: bib15
  article-title: The dual Arrhenius and Michaelis-Menten kinetics model for decomposition of soil organic matter at hourly to seasonal time scales
  publication-title: Global Change Biology
– year: 2014
  ident: bib20
  article-title: The Vulnerability of Permafrost Carbon to Decomposition after Thaw: Exploring Chemical and Microbiological Controls
– volume: 73
  start-page: 1327
  year: 2009
  ident: bib12
  article-title: Shifts in microbial community composition and physiological profiles across a gradient of induced soil degradation
  publication-title: Soil Science Society of America Journal
– volume: 58
  start-page: 827
  year: 2009
  end-page: 842
  ident: bib6
  article-title: Linking microbial community structure and function to seasonal differences in soil moisture and temperature in a Chihuahuan desert grassland
  publication-title: Microbial Ecology
– volume: 108
  start-page: 14769
  year: 2011
  end-page: 14774
  ident: bib36
  article-title: Permafrost carbon-climate feedbacks accelerate global warming
  publication-title: Proceedings of the National Academy of Sciences
– volume: 42
  start-page: 129
  year: 2010
  end-page: 135
  ident: bib32
  article-title: Is the decline of soil microbial biomass in late winter coupled to changes in the physical state of cold soils?
  publication-title: Soil Biology and Biochemistry
– volume: 58
  start-page: 701
  year: 2008
  end-page: 714
  ident: bib60
  article-title: Vulnerability of permafrost carbon to climate change: implications for the global carbon cycle
  publication-title: BioScience
– volume: 10
  start-page: 259
  year: 2006
  end-page: 267
  ident: bib61
  article-title: Microbial ecology and biodiversity in permafrost
  publication-title: Extremophiles
– volume: 39
  start-page: L15704
  year: 2012
  ident: bib30
  article-title: Field information links permafrost carbon to physical vulnerabilities of thawing
  publication-title: Geophysical Research Letters
– year: 2013
  ident: bib49
  article-title: R: a Language and Environment for Statistical Computing
– volume: 8
  start-page: 139
  year: 2014
  end-page: 149
  ident: bib65
  article-title: Bacterial genome replication at subzero temperatures in permafrost
  publication-title: The ISME Journal
– volume: 5
  start-page: 321
  year: 2003
  end-page: 326
  ident: bib3
  article-title: Reproduction and metabolism at −10 C of bacteria isolated from Siberian permafrost
  publication-title: Environmental Microbiology
– volume: 17
  start-page: 155
  year: 2014
  end-page: 164
  ident: bib22
  article-title: Climate change alters ecological strategies of soil bacteria
  publication-title: Ecology Letters
– volume: 358
  start-page: 1296
  year: 2006
  end-page: 1304
  ident: bib13
  article-title: Kinetics and energetics of ligand binding determined by Microcalorimetry: insights into active site mobility in a psychrophilic α-Amylase
  publication-title: Journal of Molecular Biology
– volume: 30
  start-page: 101
  year: 1999
  end-page: 111
  ident: bib75
  article-title: Effect of low temperature on microbial growth: lowered affinity for substrates limits growth at low temperature
  publication-title: FEMS Microbiology Ecology
– volume: 42
  start-page: 1
  year: 2002
  end-page: 14
  ident: bib47
  article-title: Analysis of microbial community functional diversity using sole-carbon-source utilisation profiles – a critique
  publication-title: FEMS Microbiology Ecology
– volume: 7
  start-page: 299
  year: 2012
  end-page: 311
  ident: bib66
  article-title: Organic carbon transformations in high-Arctic peat soils: key functions and microorganisms
  publication-title: The ISME Journal
– volume: 43
  start-page: 287
  year: 2011
  end-page: 295
  ident: bib42
  article-title: A cross-seasonal comparison of active and total bacterial community composition in Arctic tundra soil using bromodeoxyuridine labeling
  publication-title: Soil Biology and Biochemistry
– volume: 33
  start-page: 1215
  year: 2004
  end-page: 1221
  ident: bib52
  article-title: Microbial life in permafrost
  publication-title: Advances in Space Research
– volume: 91
  start-page: 756
  year: 1999
  end-page: 765
  ident: bib17
  article-title: Microtiter plate procedure for evaluating fungal functional diversity
  publication-title: Mycologia
– volume: 62
  start-page: 142
  year: 2007
  end-page: 160
  ident: bib50
  article-title: Multivariate analyses in microbial ecology
  publication-title: FEMS Microbiology Ecology
– volume: 259
  start-page: 1
  year: 2004
  end-page: 7
  ident: bib59
  article-title: Microbial growth under the snow: implications for nutrient and allelochemical availability in temperate soils
  publication-title: Plant and Soil
– volume: 20
  start-page: 641
  year: 2014
  end-page: 652
  ident: bib57
  article-title: Circumpolar assessment of permafrost C quality and its vulnerability over time using long-term incubation data
  publication-title: Global Change Biology
– volume: 15
  start-page: 1058
  year: 2012
  end-page: 1070
  ident: bib2
  article-title: A trait-based approach for modelling microbial litter decomposition
  publication-title: Ecology Letters
– volume: 74
  start-page: 580
  year: 2010
  end-page: 592
  ident: bib8
  article-title: Clay mineralogy in Arctic tundra Gelisols, northern Alaska
  publication-title: Soil Science Society of America Journal
– volume: 40
  start-page: 1557
  year: 2008
  end-page: 1566
  ident: bib7
  article-title: Changes of the soil ecosystem along a receding glacier: testing the correlation between environmental factors and bacterial community structure
  publication-title: Soil Biology and Biochemistry
– volume: 10
  start-page: 10615
  year: 2013
  end-page: 10683
  ident: bib62
  article-title: A total quasi-steady-state formulation of substrate uptake kinetics in complex networks and an example application to microbial litter decomposition
  publication-title: Biogeosciences Discussion
– volume: 31
  start-page: 1677
  year: 1999
  end-page: 1689
  ident: bib39
  article-title: Long-term effects on microbial communities after a subarctic oil spill
  publication-title: Soil Biology and Biochemistry
– volume: 9
  start-page: 1106
  year: 2003
  end-page: 1117
  ident: bib55
  article-title: Microbial characteristics of soils on a latitudinal transect in Siberia
  publication-title: Global Change Biology
– volume: 61
  start-page: 109
  year: 2013
  end-page: 120
  ident: bib70
  article-title: Temperature sensitivity of peatland C and N cycling: does substrate supply play a role?
  publication-title: Soil Biology and Biochemistry
– volume: 109
  start-page: 101
  year: 2012
  end-page: 116
  ident: bib74
  article-title: Soil microbial community response to drying and rewetting stress: does historical precipitation regime matter?
  publication-title: Biogeochemistry
– year: 1997
  ident: bib43
  article-title: Bacteria in Oligotrophic Environments Starvation-Survival Lifestyle
– year: 2014
  ident: bib64
  article-title: Controls on CH
  publication-title: Global Change Biology
– volume: 32
  start-page: 189
  year: 2000
  end-page: 196
  ident: bib16
  article-title: Decreases in organic C reserves in soils can reduce the catabolic diversity of soil microbial communities
  publication-title: Soil Biology and Biochemistry
– volume: 9
  start-page: 119
  year: 2011
  end-page: 130
  ident: bib37
  article-title: Microbial seed banks: the ecological and evolutionary implications of dormancy
  publication-title: Nature reviews microbiology
– volume: 15
  start-page: 1631
  year: 2009
  end-page: 1639
  ident: bib69
  article-title: Seasonal variation in enzyme activities and temperature sensitivities in Arctic tundra soils
  publication-title: Global Change Biology
– volume: 72
  start-page: 251
  year: 2005
  end-page: 298
  ident: bib31
  article-title: Evidence and implications of recent climate change in northern Alaska and other Arctic regions
  publication-title: Climatic Change
– volume: 320
  start-page: 1039
  year: 2008
  end-page: 1043
  ident: bib29
  article-title: Microbial biogeography: from taxonomy to traits
  publication-title: Science
– volume: 101
  start-page: 4631
  year: 2004
  end-page: 4636
  ident: bib48
  article-title: Temperature dependence of metabolic rates for microbial growth, maintenance, and survival
  publication-title: Proceedings of the National Academy of Sciences
– volume: 66
  start-page: 3230
  year: 2000
  end-page: 3233
  ident: bib53
  article-title: Metabolic activity of permafrost bacteria below the freezing point
  publication-title: Applied and Environmental Microbiology
– volume: 30
  start-page: 33
  year: 1997
  end-page: 41
  ident: bib11
  article-title: Use of rhizosphere carbon sources in sole carbon source tests to discriminate soil microbial communities
  publication-title: Journal of Microbiological Methods
– volume: 63
  start-page: 165
  year: 2011
  end-page: 180
  ident: bib56
  article-title: Amount and timing of permafrost carbon release in response to climate warming
  publication-title: Tellus B
– volume: 15
  start-page: 187
  year: 1998
  end-page: 193
  ident: bib51
  article-title: Biogeochemical activity of anaerobic microorganisms from buried permafrost sediments
  publication-title: Geomicrobiology Journal
– year: 2013
  ident: bib44
  article-title: Vegan: Community Ecology Package
– volume: 88
  start-page: 1379
  year: 2007
  end-page: 1385
  ident: bib58
  article-title: Biogeochemical consequences of rapid microbial turnover and seasonal succession in soil
  publication-title: Ecology
– volume: 12
  start-page: 154
  year: 2006
  end-page: 164
  ident: bib14
  article-title: On the variability of respiration in terrestrial ecosystems: moving beyond Q10
  publication-title: Global Change Biology
– volume: 57
  start-page: 2351
  year: 1991
  end-page: 2359
  ident: bib25
  article-title: Classification and characterization of heterotrophic microbial communities on the basis of patterns of community-level sole-carbon-source utilization
  publication-title: Applied and Environmental Microbiology
– volume: 18
  start-page: 1998
  year: 2012
  end-page: 2007
  ident: bib34
  article-title: A frozen feast: thawing permafrost increases plant-available nitrogen in subarctic peatlands
  publication-title: Global Change Biology
– volume: 30
  start-page: 231
  year: 1998
  end-page: 239
  ident: bib38
  article-title: Microbial community analysis: a kinetic approach to constructing potential C source utilization patterns
  publication-title: Soil Biology and Biochemistry
– volume: 112
  start-page: F02S02
  year: 2007
  ident: bib45
  article-title: Characteristics of the recent warming of permafrost in Alaska
  publication-title: Journal of Geophysical Research
– volume: 44
  start-page: 469
  year: 2012
  end-page: 482
  ident: bib40
  article-title: Temperature sensitivity of methane production in the permafrost active layer at Stordalen, Sweden: a comparison with non-permafrost northern wetlands
  publication-title: Arctic, Antarctic, and Alpine Research
– volume: 8
  start-page: 626
  year: 2005
  end-page: 635
  ident: bib1
  article-title: Cheaters, diffusion and nutrients constrain decomposition by microbial enzymes in spatially structured environments
  publication-title: Ecology Letters
– start-page: 1
  year: 2010
  end-page: 9
  ident: bib71
  article-title: The functional potential of high Arctic permafrost revealed by metagenomic sequencing, qPCR and microarray analyses
  publication-title: The ISME Journal
– year: 2015
  ident: bib21
  article-title: Chemical indicators of cryoturbation and microbial processing throughout an Alaskan permafrost soil depth profile
  publication-title: Soil Science Society of America Journal
– volume: 2
  start-page: 1
  year: 2011
  end-page: 10
  ident: bib27
  article-title: Differential growth responses of soil bacterial taxa to carbon substrates of varying chemical recalcitrance
  publication-title: Frontiers in Microbiology
– volume: 35
  start-page: 103
  year: 1998
  end-page: 115
  ident: bib35
  article-title: The use of carbon substrate utilization patterns in environmental and ecological microbiology
  publication-title: Microbial Ecology
– volume: 128
  start-page: 167
  year: 2005
  end-page: 176
  ident: bib19
  article-title: Strategies used by soil biota to overcome soil organic matter stability — why is dead organic matter left over in the soil?
  publication-title: Geoderma
– volume: 104
  start-page: 14401
  year: 2007
  end-page: 14405
  ident: bib33
  article-title: Ancient bacteria show evidence of DNA repair
  publication-title: Proceedings of the National Academy of Sciences
– volume: 2
  start-page: 77
  year: 2002
  end-page: 82
  ident: bib9
  article-title: Aspartic acid racemization and age-depth relationships for organic carbon in Siberian permafrost
  publication-title: Astrobiology
– volume: 65
  start-page: 338
  year: 2013
  end-page: 347
  ident: bib10
  article-title: The seasonal pattern of soil microbial community structure in mesic low Arctic tundra
  publication-title: Soil Biology and Biochemistry
– volume: 109
  start-page: 35
  year: 2011
  end-page: 47
  ident: bib68
  article-title: A trait-based framework for predicting when and where microbial adaptation to climate change will affect ecosystem functioning
  publication-title: Biogeochemistry
– volume: 6
  start-page: 709
  year: 2011
  end-page: 712
  ident: bib28
  article-title: Microbes in thawing permafrost: the unknown variable in the climate change equation
  publication-title: The ISME Journal
– volume: 5
  start-page: 321
  year: 2003
  ident: 10.1016/j.soilbio.2015.04.009_bib3
  article-title: Reproduction and metabolism at −10 C of bacteria isolated from Siberian permafrost
  publication-title: Environmental Microbiology
  doi: 10.1046/j.1462-2920.2003.00419.x
– volume: 101
  start-page: 4631
  year: 2004
  ident: 10.1016/j.soilbio.2015.04.009_bib48
  article-title: Temperature dependence of metabolic rates for microbial growth, maintenance, and survival
  publication-title: Proceedings of the National Academy of Sciences
  doi: 10.1073/pnas.0400522101
– volume: 15
  start-page: 1631
  year: 2009
  ident: 10.1016/j.soilbio.2015.04.009_bib69
  article-title: Seasonal variation in enzyme activities and temperature sensitivities in Arctic tundra soils
  publication-title: Global Change Biology
  doi: 10.1111/j.1365-2486.2008.01819.x
– volume: 88
  start-page: 1379
  year: 2007
  ident: 10.1016/j.soilbio.2015.04.009_bib58
  article-title: Biogeochemical consequences of rapid microbial turnover and seasonal succession in soil
  publication-title: Ecology
  doi: 10.1890/06-0164
– volume: 8
  start-page: 626
  year: 2005
  ident: 10.1016/j.soilbio.2015.04.009_bib1
  article-title: Cheaters, diffusion and nutrients constrain decomposition by microbial enzymes in spatially structured environments
  publication-title: Ecology Letters
  doi: 10.1111/j.1461-0248.2005.00756.x
– volume: 109
  start-page: 35
  year: 2011
  ident: 10.1016/j.soilbio.2015.04.009_bib68
  article-title: A trait-based framework for predicting when and where microbial adaptation to climate change will affect ecosystem functioning
  publication-title: Biogeochemistry
  doi: 10.1007/s10533-011-9641-8
– volume: 26
  start-page: 1101
  year: 1994
  ident: 10.1016/j.soilbio.2015.04.009_bib72
  article-title: Functional diversity of microbial communities: a quantitative approach
  publication-title: Soil Biology and Biochemistry
  doi: 10.1016/0038-0717(94)90131-7
– start-page: 755
  year: 1993
  ident: 10.1016/j.soilbio.2015.04.009_bib63
  article-title: Sampling frozen soils
– volume: 15
  start-page: 1058
  year: 2012
  ident: 10.1016/j.soilbio.2015.04.009_bib2
  article-title: A trait-based approach for modelling microbial litter decomposition
  publication-title: Ecology Letters
  doi: 10.1111/j.1461-0248.2012.01807.x
– volume: 74
  start-page: 580
  year: 2010
  ident: 10.1016/j.soilbio.2015.04.009_bib8
  article-title: Clay mineralogy in Arctic tundra Gelisols, northern Alaska
  publication-title: Soil Science Society of America Journal
  doi: 10.2136/sssaj2009.0187
– volume: 40
  start-page: 1557
  year: 2008
  ident: 10.1016/j.soilbio.2015.04.009_bib7
  article-title: Changes of the soil ecosystem along a receding glacier: testing the correlation between environmental factors and bacterial community structure
  publication-title: Soil Biology and Biochemistry
  doi: 10.1016/j.soilbio.2008.01.030
– year: 2015
  ident: 10.1016/j.soilbio.2015.04.009_bib21
  article-title: Chemical indicators of cryoturbation and microbial processing throughout an Alaskan permafrost soil depth profile
  publication-title: Soil Science Society of America Journal
  doi: 10.2136/sssaj2014.10.0420
– volume: 7
  start-page: 299
  year: 2012
  ident: 10.1016/j.soilbio.2015.04.009_bib66
  article-title: Organic carbon transformations in high-Arctic peat soils: key functions and microorganisms
  publication-title: The ISME Journal
  doi: 10.1038/ismej.2012.99
– volume: 107
  start-page: 21046
  year: 2010
  ident: 10.1016/j.soilbio.2015.04.009_bib18
  article-title: Both catabolic and anabolic heterotrophic microbial activity proceed in frozen soils
  publication-title: Proceedings of the National Academy of Sciences United States of America
  doi: 10.1073/pnas.1008885107
– volume: 320
  start-page: 1039
  year: 2008
  ident: 10.1016/j.soilbio.2015.04.009_bib29
  article-title: Microbial biogeography: from taxonomy to traits
  publication-title: Science
  doi: 10.1126/science.1153475
– volume: 16
  start-page: 2543
  year: 2010
  ident: 10.1016/j.soilbio.2015.04.009_bib76
  article-title: Molecular investigations into a globally important carbon pool: permafrost-protected carbon in Alaskan soils
  publication-title: Global Change Biology
  doi: 10.1111/j.1365-2486.2009.02141.x
– start-page: 1
  year: 2010
  ident: 10.1016/j.soilbio.2015.04.009_bib71
  article-title: The functional potential of high Arctic permafrost revealed by metagenomic sequencing, qPCR and microarray analyses
  publication-title: The ISME Journal
– volume: 30
  start-page: 33
  year: 1997
  ident: 10.1016/j.soilbio.2015.04.009_bib11
  article-title: Use of rhizosphere carbon sources in sole carbon source tests to discriminate soil microbial communities
  publication-title: Journal of Microbiological Methods
  doi: 10.1016/S0167-7012(97)00041-9
– volume: 109
  start-page: 101
  year: 2012
  ident: 10.1016/j.soilbio.2015.04.009_bib74
  article-title: Soil microbial community response to drying and rewetting stress: does historical precipitation regime matter?
  publication-title: Biogeochemistry
  doi: 10.1007/s10533-011-9638-3
– volume: 9
  start-page: 119
  year: 2011
  ident: 10.1016/j.soilbio.2015.04.009_bib37
  article-title: Microbial seed banks: the ecological and evolutionary implications of dormancy
  publication-title: Nature reviews microbiology
  doi: 10.1038/nrmicro2504
– volume: 12
  start-page: 154
  year: 2006
  ident: 10.1016/j.soilbio.2015.04.009_bib14
  article-title: On the variability of respiration in terrestrial ecosystems: moving beyond Q10
  publication-title: Global Change Biology
  doi: 10.1111/j.1365-2486.2005.01065.x
– volume: 57
  start-page: 2351
  year: 1991
  ident: 10.1016/j.soilbio.2015.04.009_bib25
  article-title: Classification and characterization of heterotrophic microbial communities on the basis of patterns of community-level sole-carbon-source utilization
  publication-title: Applied and Environmental Microbiology
  doi: 10.1128/AEM.57.8.2351-2359.1991
– volume: 112
  start-page: F02S02
  year: 2007
  ident: 10.1016/j.soilbio.2015.04.009_bib45
  article-title: Characteristics of the recent warming of permafrost in Alaska
  publication-title: Journal of Geophysical Research
  doi: 10.1029/2006JF000578
– year: 2009
  ident: 10.1016/j.soilbio.2015.04.009_bib46
  article-title: Fungi in permafrost
– volume: 9
  start-page: e84761
  year: 2014
  ident: 10.1016/j.soilbio.2015.04.009_bib24
  article-title: Microbial functional potential and community composition in permafrost-affected soils of the NW Canadian Arctic
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0084761
– volume: 6
  start-page: 709
  year: 2011
  ident: 10.1016/j.soilbio.2015.04.009_bib28
  article-title: Microbes in thawing permafrost: the unknown variable in the climate change equation
  publication-title: The ISME Journal
  doi: 10.1038/ismej.2011.163
– volume: 72
  start-page: 251
  year: 2005
  ident: 10.1016/j.soilbio.2015.04.009_bib31
  article-title: Evidence and implications of recent climate change in northern Alaska and other Arctic regions
  publication-title: Climatic Change
  doi: 10.1007/s10584-005-5352-2
– volume: 62
  start-page: 142
  year: 2007
  ident: 10.1016/j.soilbio.2015.04.009_bib50
  article-title: Multivariate analyses in microbial ecology
  publication-title: FEMS Microbiology Ecology
  doi: 10.1111/j.1574-6941.2007.00375.x
– volume: 33
  start-page: 1215
  year: 2004
  ident: 10.1016/j.soilbio.2015.04.009_bib52
  article-title: Microbial life in permafrost
  publication-title: Advances in Space Research
  doi: 10.1016/j.asr.2003.06.024
– year: 2013
  ident: 10.1016/j.soilbio.2015.04.009_bib67
  article-title: Micro-scale determinants of bacterial diversity in soil
  publication-title: FEMS Microbiology Reviews
  doi: 10.1111/1574-6976.12023
– volume: 18
  start-page: 1998
  year: 2012
  ident: 10.1016/j.soilbio.2015.04.009_bib34
  article-title: A frozen feast: thawing permafrost increases plant-available nitrogen in subarctic peatlands
  publication-title: Global Change Biology
  doi: 10.1111/j.1365-2486.2012.02663.x
– volume: 480
  start-page: 368
  year: 2011
  ident: 10.1016/j.soilbio.2015.04.009_bib41
  article-title: Metagenomic analysis of a permafrost microbial community reveals a rapid response to thaw
  publication-title: Nature
  doi: 10.1038/nature10576
– volume: 108
  start-page: 14769
  year: 2011
  ident: 10.1016/j.soilbio.2015.04.009_bib36
  article-title: Permafrost carbon-climate feedbacks accelerate global warming
  publication-title: Proceedings of the National Academy of Sciences
  doi: 10.1073/pnas.1103910108
– volume: 42
  start-page: 129
  year: 2010
  ident: 10.1016/j.soilbio.2015.04.009_bib32
  article-title: Is the decline of soil microbial biomass in late winter coupled to changes in the physical state of cold soils?
  publication-title: Soil Biology and Biochemistry
  doi: 10.1016/j.soilbio.2009.10.008
– year: 2013
  ident: 10.1016/j.soilbio.2015.04.009_bib54
– volume: 358
  start-page: 1296
  year: 2006
  ident: 10.1016/j.soilbio.2015.04.009_bib13
  article-title: Kinetics and energetics of ligand binding determined by Microcalorimetry: insights into active site mobility in a psychrophilic α-Amylase
  publication-title: Journal of Molecular Biology
  doi: 10.1016/j.jmb.2006.03.004
– volume: 10
  start-page: 10615
  year: 2013
  ident: 10.1016/j.soilbio.2015.04.009_bib62
  article-title: A total quasi-steady-state formulation of substrate uptake kinetics in complex networks and an example application to microbial litter decomposition
  publication-title: Biogeosciences Discussion
– volume: 23
  start-page: 65
  year: 1993
  ident: 10.1016/j.soilbio.2015.04.009_bib26
  article-title: Cryoprotective properties of water in the Earth cryolithosphere and its role in exobiology
  publication-title: Origins of Life and Evolution of the Biosphere
  doi: 10.1007/BF01581991
– volume: 31
  start-page: 1677
  year: 1999
  ident: 10.1016/j.soilbio.2015.04.009_bib39
  article-title: Long-term effects on microbial communities after a subarctic oil spill
  publication-title: Soil Biology and Biochemistry
  doi: 10.1016/S0038-0717(99)00081-4
– volume: 2
  start-page: 77
  year: 2002
  ident: 10.1016/j.soilbio.2015.04.009_bib9
  article-title: Aspartic acid racemization and age-depth relationships for organic carbon in Siberian permafrost
  publication-title: Astrobiology
  doi: 10.1089/153110702753621358
– volume: 20
  start-page: 641
  year: 2014
  ident: 10.1016/j.soilbio.2015.04.009_bib57
  article-title: Circumpolar assessment of permafrost C quality and its vulnerability over time using long-term incubation data
  publication-title: Global Change Biology
  doi: 10.1111/gcb.12417
– volume: 315
  start-page: 1843
  year: 2007
  ident: 10.1016/j.soilbio.2015.04.009_bib23
  article-title: Emergent biogeography of microbial communities in a model ocean
  publication-title: Science
  doi: 10.1126/science.1138544
– volume: 43
  start-page: 287
  year: 2011
  ident: 10.1016/j.soilbio.2015.04.009_bib42
  article-title: A cross-seasonal comparison of active and total bacterial community composition in Arctic tundra soil using bromodeoxyuridine labeling
  publication-title: Soil Biology and Biochemistry
  doi: 10.1016/j.soilbio.2010.10.013
– volume: 63
  start-page: 165
  year: 2011
  ident: 10.1016/j.soilbio.2015.04.009_bib56
  article-title: Amount and timing of permafrost carbon release in response to climate warming
  publication-title: Tellus B
  doi: 10.1111/j.1600-0889.2011.00527.x
– year: 1997
  ident: 10.1016/j.soilbio.2015.04.009_bib43
– volume: 35
  start-page: 103
  year: 1998
  ident: 10.1016/j.soilbio.2015.04.009_bib35
  article-title: The use of carbon substrate utilization patterns in environmental and ecological microbiology
  publication-title: Microbial Ecology
  doi: 10.1007/s002489900065
– volume: 32
  start-page: 189
  year: 2000
  ident: 10.1016/j.soilbio.2015.04.009_bib16
  article-title: Decreases in organic C reserves in soils can reduce the catabolic diversity of soil microbial communities
  publication-title: Soil Biology and Biochemistry
  doi: 10.1016/S0038-0717(99)00141-8
– volume: 66
  start-page: 3230
  year: 2000
  ident: 10.1016/j.soilbio.2015.04.009_bib53
  article-title: Metabolic activity of permafrost bacteria below the freezing point
  publication-title: Applied and Environmental Microbiology
  doi: 10.1128/AEM.66.8.3230-3233.2000
– volume: 91
  start-page: 756
  year: 1999
  ident: 10.1016/j.soilbio.2015.04.009_bib17
  article-title: Microtiter plate procedure for evaluating fungal functional diversity
  publication-title: Mycologia
  doi: 10.1080/00275514.1999.12061081
– volume: 2
  start-page: 1
  year: 2011
  ident: 10.1016/j.soilbio.2015.04.009_bib27
  article-title: Differential growth responses of soil bacterial taxa to carbon substrates of varying chemical recalcitrance
  publication-title: Frontiers in Microbiology
  doi: 10.3389/fmicb.2011.00094
– volume: 104
  start-page: 14401
  year: 2007
  ident: 10.1016/j.soilbio.2015.04.009_bib33
  article-title: Ancient bacteria show evidence of DNA repair
  publication-title: Proceedings of the National Academy of Sciences
  doi: 10.1073/pnas.0706787104
– year: 2013
  ident: 10.1016/j.soilbio.2015.04.009_bib49
– volume: 44
  start-page: 469
  year: 2012
  ident: 10.1016/j.soilbio.2015.04.009_bib40
  article-title: Temperature sensitivity of methane production in the permafrost active layer at Stordalen, Sweden: a comparison with non-permafrost northern wetlands
  publication-title: Arctic, Antarctic, and Alpine Research
  doi: 10.1657/1938-4246-44.4.469
– volume: 42
  start-page: 1
  year: 2002
  ident: 10.1016/j.soilbio.2015.04.009_bib47
  article-title: Analysis of microbial community functional diversity using sole-carbon-source utilisation profiles – a critique
  publication-title: FEMS Microbiology Ecology
– year: 2014
  ident: 10.1016/j.soilbio.2015.04.009_bib64
  article-title: Controls on CH4 and CO2 production from permafrost soil carbon under saturated conditions
  publication-title: Global Change Biology
– volume: 58
  start-page: 827
  year: 2009
  ident: 10.1016/j.soilbio.2015.04.009_bib6
  article-title: Linking microbial community structure and function to seasonal differences in soil moisture and temperature in a Chihuahuan desert grassland
  publication-title: Microbial Ecology
  doi: 10.1007/s00248-009-9529-5
– volume: 18
  start-page: 371
  year: 2011
  ident: 10.1016/j.soilbio.2015.04.009_bib15
  article-title: The dual Arrhenius and Michaelis-Menten kinetics model for decomposition of soil organic matter at hourly to seasonal time scales
  publication-title: Global Change Biology
  doi: 10.1111/j.1365-2486.2011.02546.x
– volume: 30
  start-page: 101
  issue: 2
  year: 1999
  ident: 10.1016/j.soilbio.2015.04.009_bib75
  article-title: Effect of low temperature on microbial growth: lowered affinity for substrates limits growth at low temperature
  publication-title: FEMS Microbiology Ecology
  doi: 10.1111/j.1574-6941.1999.tb00639.x
– volume: 73
  start-page: 1327
  year: 2009
  ident: 10.1016/j.soilbio.2015.04.009_bib12
  article-title: Shifts in microbial community composition and physiological profiles across a gradient of induced soil degradation
  publication-title: Soil Science Society of America Journal
  doi: 10.2136/sssaj2008.0276
– volume: 58
  start-page: 701
  year: 2008
  ident: 10.1016/j.soilbio.2015.04.009_bib60
  article-title: Vulnerability of permafrost carbon to climate change: implications for the global carbon cycle
  publication-title: BioScience
  doi: 10.1641/B580807
– volume: 10
  start-page: 259
  year: 2006
  ident: 10.1016/j.soilbio.2015.04.009_bib61
  article-title: Microbial ecology and biodiversity in permafrost
  publication-title: Extremophiles
  doi: 10.1007/s00792-006-0506-3
– year: 2013
  ident: 10.1016/j.soilbio.2015.04.009_bib44
– year: 2014
  ident: 10.1016/j.soilbio.2015.04.009_bib20
– volume: 259
  start-page: 1
  year: 2004
  ident: 10.1016/j.soilbio.2015.04.009_bib59
  article-title: Microbial growth under the snow: implications for nutrient and allelochemical availability in temperate soils
  publication-title: Plant and Soil
  doi: 10.1023/B:PLSO.0000020933.32473.7e
– volume: 9
  start-page: 1106
  year: 2003
  ident: 10.1016/j.soilbio.2015.04.009_bib55
  article-title: Microbial characteristics of soils on a latitudinal transect in Siberia
  publication-title: Global Change Biology
  doi: 10.1046/j.1365-2486.2003.00596.x
– volume: 15
  start-page: 2935
  year: 2009
  ident: 10.1016/j.soilbio.2015.04.009_bib5
  article-title: Investigating biological control over soil carbon temperature sensitivity
  publication-title: Global Change Biology
  doi: 10.1111/j.1365-2486.2009.01946.x
– volume: 30
  start-page: 231
  year: 1998
  ident: 10.1016/j.soilbio.2015.04.009_bib38
  article-title: Microbial community analysis: a kinetic approach to constructing potential C source utilization patterns
  publication-title: Soil Biology and Biochemistry
  doi: 10.1016/S0038-0717(97)00113-2
– volume: 8
  start-page: 139
  year: 2014
  ident: 10.1016/j.soilbio.2015.04.009_bib65
  article-title: Bacterial genome replication at subzero temperatures in permafrost
  publication-title: The ISME Journal
  doi: 10.1038/ismej.2013.140
– volume: 39
  start-page: L15704
  year: 2012
  ident: 10.1016/j.soilbio.2015.04.009_bib30
  article-title: Field information links permafrost carbon to physical vulnerabilities of thawing
  publication-title: Geophysical Research Letters
  doi: 10.1029/2012GL051958
– volume: 128
  start-page: 167
  year: 2005
  ident: 10.1016/j.soilbio.2015.04.009_bib19
  article-title: Strategies used by soil biota to overcome soil organic matter stability — why is dead organic matter left over in the soil?
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2004.12.024
– volume: 66
  start-page: 519
  year: 2002
  ident: 10.1016/j.soilbio.2015.04.009_bib4
  article-title: Methodological variability in microbial community level physiological profiles
  publication-title: Soil Science Society of America Journal
  doi: 10.2136/sssaj2002.5190
– volume: 17
  start-page: 155
  year: 2014
  ident: 10.1016/j.soilbio.2015.04.009_bib22
  article-title: Climate change alters ecological strategies of soil bacteria
  publication-title: Ecology Letters
  doi: 10.1111/ele.12206
– volume: 65
  start-page: 338
  year: 2013
  ident: 10.1016/j.soilbio.2015.04.009_bib10
  article-title: The seasonal pattern of soil microbial community structure in mesic low Arctic tundra
  publication-title: Soil Biology and Biochemistry
  doi: 10.1016/j.soilbio.2013.06.012
– volume: 15
  start-page: 187
  year: 1998
  ident: 10.1016/j.soilbio.2015.04.009_bib51
  article-title: Biogeochemical activity of anaerobic microorganisms from buried permafrost sediments
  publication-title: Geomicrobiology Journal
  doi: 10.1080/01490459809378075
– volume: 61
  start-page: 109
  year: 2013
  ident: 10.1016/j.soilbio.2015.04.009_bib70
  article-title: Temperature sensitivity of peatland C and N cycling: does substrate supply play a role?
  publication-title: Soil Biology and Biochemistry
  doi: 10.1016/j.soilbio.2013.02.019
SSID ssj0002513
Score 2.3331778
Snippet Previously-frozen stores of organic carbon (C) are now subject to decomposition due to a warming Arctic climate and associated permafrost thaw; however,...
SourceID osti
proquest
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 78
SubjectTerms Arctic region
Biolog
carbon
climate
CLPP
cold
community structure
EcoPlate
ecosystems
functional diversity
greenhouse gases
Kinetic approach
metabolism
microbial communities
microorganisms
Modified logistic growth model
permafrost
specific growth rate
substrate specificity
temperature
Title Permafrost microbial community traits and functional diversity indicate low activity at in situ thaw temperatures
URI https://dx.doi.org/10.1016/j.soilbio.2015.04.009
https://www.proquest.com/docview/1836634314
https://www.osti.gov/biblio/1251968
Volume 87
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3PS8MwFH7oPKgH0ak4fxHBa92ypm16HEOZiuLBgbeQNqlOZje3juHFv9331lQRBcFjfzza5qXvfUne9wXgVBAKRajrGd2SntBt6SWx0R43om01Dn-spqmBm9uw1xdXD8HDEnQrLgyVVbrYX8b0RbR2Z5quNZvjwYA4viSWziOENJjTiGa10vbjMKjBSufyunf7GZAxhTvtXUl8neiLyNN8JsncYTIgGiAPFqKnVJr4e4qqjfCv-xGzF4noYhM2HIJknfIlt2DJ5nVY7zxOnIqGrcNqt9rGbRte7yj2ZkTuYC-DhewSWqclL6R4Y7RHRDFlOjeMclw5NchMVa7BaE2bqqbYcDRnxIKgzSaYLvACwxtmrHjSc0YKV06eeboD_Yvz-27Pc_sseCnCscIzOBhNI55wGbaEnwptAikDm-GvnkhLinOC1usQqyQ4etI4js1IBJ-bTEZta31_F2r5KLd7wHggW9LKQMcyE5kN49QP4lRkUWTiLOF-A0TVtCp1IuT0nUNVVZs9K-cRRR5RLaHQIw04-zQblyocfxnIym_qW3dSmCn-Mj0gP5MZyeimVG-EdgQE41A24KRyv0JH0uqKzu1oNlUYGxG9IR4T-_9_-AGs0VFZYXgItWIys0eIeorkGJbP3vmx69sfrTAC2Q
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEB6kHtSD-MRaHyt4jW2aTbM5lmKpr-Khgrdlk91oS03UphQv_nZnko0iCoLXJEMek8x8m_2-bwFOOaFQhLqOVi3hcNUWThRq5biat43C4Y9R9GvgZtgZ3PHLe_9-CXqVFoZolbb2lzW9qNZ2S9M-zebzeEwaXzJLdwOENNjTSGa1zH0vIF7f2fsXzwMbuHXeFaTWCb5kPM0JGeZOozGJAF2_sDwlYuLvDaqW4Tf3o2IXbai_AesWP7JueYmbsGTSLVjrPrxaDw2zBSu9ahG3bXi5pcqbkLSDPY0L0yWMjktVSP7GaIWIfMZUqhl1uPLHINMVWYPRjDZxptg0WzDSQNBSE0zluIPhAXOWP6oFI38ra84824G7_vmoN3DsKgtOjGAsdzQORePAjVzRaXEv5kr7QvgmwQ89Eob85jjN1iFSiXDspHAUm5AFvqsTEbSN8bxdqKVZavaAub5oCSN8FYqEJ6YTxp4fxjwJAh0mkevVgVePVsbWgpzucyorrtlE2oxIyohscYkZqcPZZ9hz6cHxV4Co8ia_vUwS-8RfoQ3KM4WRiW5MbCOMIxgYdkQdTqr0S0wkza2o1GTzmcTKiNgN0Rjf___Jj2FlMLq5ltcXw6sGrNKekmt4ALX8dW4OEf_k0VHxfn8A4pkDpA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Permafrost+microbial+community+traits+and+functional+diversity+indicate+low+activity+at+in+situ+thaw+temperatures&rft.jtitle=Soil+biology+%26+biochemistry&rft.au=Ernakovich%2C+Jessica+G.&rft.au=Wallenstein%2C+Matthew+D.&rft.date=2015-08-01&rft.pub=Elsevier+Ltd&rft.issn=0038-0717&rft.eissn=1879-3428&rft.volume=87&rft.spage=78&rft.epage=89&rft_id=info:doi/10.1016%2Fj.soilbio.2015.04.009&rft.externalDocID=S0038071715001510
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0038-0717&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0038-0717&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0038-0717&client=summon