Coagulation–Fragmentation Equilibrium for Charged Dust: Abundance of Submicron Grains Increases Dramatically in Protoplanetary Disks

Dust coagulation in protoplanetary disks is not straightforward and is subject to several slowdown mechanisms, such as bouncing, fragmentation, and radial drift to the star. Furthermore, dust grains in UV-shielded disk regions are negatively charged due to collisions with the surrounding electrons a...

Full description

Saved in:
Bibliographic Details
Published inThe Astrophysical journal Vol. 953; no. 1; pp. 72 - 81
Main Authors Akimkin, Vitaly, Ivlev, Alexei V., Caselli, Paola, Gong, Munan, Silsbee, Kedron
Format Journal Article
LanguageEnglish
Published Philadelphia The American Astronomical Society 01.08.2023
IOP Publishing
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Dust coagulation in protoplanetary disks is not straightforward and is subject to several slowdown mechanisms, such as bouncing, fragmentation, and radial drift to the star. Furthermore, dust grains in UV-shielded disk regions are negatively charged due to collisions with the surrounding electrons and ions, which leads to their electrostatic repulsion. For typical disk conditions, the relative velocities between micron-sized grains are small, and their collisions are strongly affected by the repulsion. On the other hand, collisions between pebble-sized grains can be too energetic, leading to grain fragmentation. The aim of the present paper is to study the combined effect of the electrostatic and fragmentation barriers on dust evolution. We numerically solve the Smoluchowski coagulation–fragmentation equation for grains whose charging occurs under conditions typical for the inner disk regions, where thermal ionization operates. We find that dust fragmentation efficiently resupplies the population of small grains under the electrostatic barrier. As a result, the equilibrium abundance of submicron grains is enhanced by several orders of magnitude compared to the case of neutral dust. For some conditions with fragmentation velocities of ∼1 m s −1 , macroscopic grains are completely destroyed.
AbstractList Dust coagulation in protoplanetary disks is not straightforward and is subject to several slowdown mechanisms, such as bouncing, fragmentation, and radial drift to the star. Furthermore, dust grains in UV-shielded disk regions are negatively charged due to collisions with the surrounding electrons and ions, which leads to their electrostatic repulsion. For typical disk conditions, the relative velocities between micron-sized grains are small, and their collisions are strongly affected by the repulsion. On the other hand, collisions between pebble-sized grains can be too energetic, leading to grain fragmentation. The aim of the present paper is to study the combined effect of the electrostatic and fragmentation barriers on dust evolution. We numerically solve the Smoluchowski coagulation–fragmentation equation for grains whose charging occurs under conditions typical for the inner disk regions, where thermal ionization operates. We find that dust fragmentation efficiently resupplies the population of small grains under the electrostatic barrier. As a result, the equilibrium abundance of submicron grains is enhanced by several orders of magnitude compared to the case of neutral dust. For some conditions with fragmentation velocities of ∼1 m s −1 , macroscopic grains are completely destroyed.
Dust coagulation in protoplanetary disks is not straightforward and is subject to several slowdown mechanisms, such as bouncing, fragmentation, and radial drift to the star. Furthermore, dust grains in UV-shielded disk regions are negatively charged due to collisions with the surrounding electrons and ions, which leads to their electrostatic repulsion. For typical disk conditions, the relative velocities between micron-sized grains are small, and their collisions are strongly affected by the repulsion. On the other hand, collisions between pebble-sized grains can be too energetic, leading to grain fragmentation. The aim of the present paper is to study the combined effect of the electrostatic and fragmentation barriers on dust evolution. We numerically solve the Smoluchowski coagulation–fragmentation equation for grains whose charging occurs under conditions typical for the inner disk regions, where thermal ionization operates. We find that dust fragmentation efficiently resupplies the population of small grains under the electrostatic barrier. As a result, the equilibrium abundance of submicron grains is enhanced by several orders of magnitude compared to the case of neutral dust. For some conditions with fragmentation velocities of ∼1 m s−1, macroscopic grains are completely destroyed.
Dust coagulation in protoplanetary disks is not straightforward and is subject to several slowdown mechanisms, such as bouncing, fragmentation, and radial drift to the star. Furthermore, dust grains in UV-shielded disk regions are negatively charged due to collisions with the surrounding electrons and ions, which leads to their electrostatic repulsion. For typical disk conditions, the relative velocities between micron-sized grains are small, and their collisions are strongly affected by the repulsion. On the other hand, collisions between pebble-sized grains can be too energetic, leading to grain fragmentation. The aim of the present paper is to study the combined effect of the electrostatic and fragmentation barriers on dust evolution. We numerically solve the Smoluchowski coagulation–fragmentation equation for grains whose charging occurs under conditions typical for the inner disk regions, where thermal ionization operates. We find that dust fragmentation efficiently resupplies the population of small grains under the electrostatic barrier. As a result, the equilibrium abundance of submicron grains is enhanced by several orders of magnitude compared to the case of neutral dust. For some conditions with fragmentation velocities of ∼1 m s ^−1 , macroscopic grains are completely destroyed.
Author Gong, Munan
Akimkin, Vitaly
Silsbee, Kedron
Ivlev, Alexei V.
Caselli, Paola
Author_xml – sequence: 1
  givenname: Vitaly
  orcidid: 0000-0002-4324-3809
  surname: Akimkin
  fullname: Akimkin, Vitaly
  organization: Russian Academy of Sciences Institute of Astronomy, Pyatnitskaya str. 48, Moscow, 119017, Russia
– sequence: 2
  givenname: Alexei V.
  orcidid: 0000-0002-1590-1018
  surname: Ivlev
  fullname: Ivlev, Alexei V.
  organization: Max-Planck Institute for Extraterrestrial Physics , Garching by Munich, D-85748, Germany
– sequence: 3
  givenname: Paola
  orcidid: 0000-0003-1481-7911
  surname: Caselli
  fullname: Caselli, Paola
  organization: Max-Planck Institute for Extraterrestrial Physics , Garching by Munich, D-85748, Germany
– sequence: 4
  givenname: Munan
  orcidid: 0000-0003-1613-6263
  surname: Gong
  fullname: Gong, Munan
  organization: Max-Planck Institute for Extraterrestrial Physics , Garching by Munich, D-85748, Germany
– sequence: 5
  givenname: Kedron
  orcidid: 0000-0003-1572-0505
  surname: Silsbee
  fullname: Silsbee, Kedron
  organization: University of Texas at El Paso , El Paso, TX 79968, USA
BookMark eNp9UcFu1DAUtFCR2BbuHC1xJdRxbCfhVu22ZaVKIAESN-vFflm8JPbWTg699cQP8Id8Cd4GFQkJTk_vaWbeaOaUnPjgkZCXJXtTNaI-L2XVFKKS9TkY5EY-IavH0wlZMcZEoar6yzNymtL-uPK2XZHv6wC7eYDJBf_z_sdVhN2IfnrY6eXt7AbXRTePtA-Rrr9C3KGlmzlNb-lFN3sL3iANPf04d6MzMZOuIzif6NabiJAw0U2EMesZGIY76jz9EMMUDgN4nCDe0Y1L39Jz8rSHIeGL3_OMfL66_LR-V9y8v96uL24KI0o1FVaIrgVu0ICytWSNBCmtqBhTNTTClEZ0vKskr4RRFgANVz1wxLaUwMFWZ2S76NoAe32IbswWdACnHw4h7jTE7HVAXaPtGedgAPOH0rZdD4Y1qml5I1tVZ61Xi9YhhtsZ06T3YY4-29e8EVKJppQio9iCyuGkFLF__FoyfWxOH2vSx5r00lymqL8oxi2NTDnb4X_E1wvRhcMfM_-E_wIQgbH5
CitedBy_id crossref_primary_10_1093_mnras_stae2510
crossref_primary_10_1140_epjp_s13360_025_06005_9
crossref_primary_10_1051_0004_6361_202347737
crossref_primary_10_1051_0004_6361_202449454
crossref_primary_10_1051_0004_6361_202348268
crossref_primary_10_1051_0004_6361_202452068
Cites_doi 10.3847/0004-637X/818/2/200
10.1007/BF01418331
10.3847/1538-4357/ab96c2
10.1111/j.1745-3933.2010.00923.x
10.1038/s41567-019-0728-9
10.3847/1538-4357/abdd22
10.3847/2041-8213/ab1f8e
10.1086/344743
10.3847/1538-4357/ac0ce8
10.1051/0004-6361/201731690
10.1051/0004-6361/201527423
10.3847/2041-8213/ab65c6
10.3847/0004-637X/827/2/144
10.1088/0004-637X/731/2/95
10.1103/PhysRevLett.84.2064
10.1093/mnras/stz1046
10.1086/165596
10.1051/0004-6361/200912834
10.1093/mnras/stab2263
10.1093/mnras/stz2883
10.1146/annurev.astro.46.060407.145152
10.1093/mnras/stab2657
10.1134/S1063772915070021
10.3847/1538-4357/aaa0d2
10.3847/2041-8213/aca53a
10.1051/0004-6361/201526538
10.1093/mnras/stac1391
10.1007/s11214-016-0256-1
10.3847/1538-4357/ac7d58
10.1063/1.1761412
10.1051/0004-6361/201527069
10.1007/BF00199037
10.3847/1538-4357/ab744d
10.1051/0004-6361/201321566
10.1093/mnras/staa3134
10.1088/0004-637X/731/2/96
10.1088/0004-637X/698/2/1122
10.1126/Science.276.5320.1836
10.3847/1538-4357/833/1/92
10.3847/1538-4357/ab6299
10.1051/0004-6361:20077759
10.1093/mnras/staa2943
10.1093/mnras/stac3220
10.1088/0004-637X/740/2/77
10.48550/arXiv.2203.09759
10.1051/0004-6361/201015228
10.1093/mnras/staa3682
10.1088/0004-637X/811/2/156
10.1086/318233
ContentType Journal Article
Copyright 2023. The Author(s). Published by the American Astronomical Society.
2023. The Author(s). Published by the American Astronomical Society. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2023. The Author(s). Published by the American Astronomical Society.
– notice: 2023. The Author(s). Published by the American Astronomical Society. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID O3W
TSCCA
AAYXX
CITATION
7TG
8FD
H8D
KL.
L7M
DOA
DOI 10.3847/1538-4357/ace2c5
DatabaseName Institute of Physics Open Access Journal Titles
IOPscience (Open Access)
CrossRef
Meteorological & Geoastrophysical Abstracts
Technology Research Database
Aerospace Database
Meteorological & Geoastrophysical Abstracts - Academic
Advanced Technologies Database with Aerospace
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Aerospace Database
Meteorological & Geoastrophysical Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
Meteorological & Geoastrophysical Abstracts - Academic
DatabaseTitleList CrossRef
Aerospace Database

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: O3W
  name: Institute of Physics Open Access Journal Titles
  url: http://iopscience.iop.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Astronomy & Astrophysics
Physics
EISSN 1538-4357
ExternalDocumentID oai_doaj_org_article_7edf022acaed431d9bfac08689285967
10_3847_1538_4357_ace2c5
apjace2c5
GrantInformation_xml – fundername: Russian Science Foundation (RSF)
  grantid: 22-72-10029
  funderid: https://doi.org/10.13039/501100006769
GroupedDBID -DZ
-~X
123
1JI
23N
2FS
4.4
6J9
85S
AAFWJ
AAGCD
AAJIO
ABHWH
ACBEA
ACGFS
ACHIP
ACNCT
ADACN
AEFHF
AENEX
AFPKN
AKPSB
ALMA_UNASSIGNED_HOLDINGS
ASPBG
ATQHT
AVWKF
AZFZN
CJUJL
CRLBU
CS3
EBS
F5P
FRP
GROUPED_DOAJ
IJHAN
IOP
KOT
M~E
N5L
O3W
O43
OK1
PJBAE
RIN
RNS
ROL
SJN
SY9
T37
TN5
TR2
TSCCA
WH7
XSW
AAYXX
CITATION
2WC
7TG
8FD
AEINN
H8D
KL.
L7M
ID FETCH-LOGICAL-c416t-d44b9a2ceca6d75085a55d430067a84c1c4b2b35234c6daaec26fa2ee915a2ad3
IEDL.DBID DOA
ISSN 0004-637X
IngestDate Wed Aug 27 01:20:05 EDT 2025
Wed Aug 13 08:46:10 EDT 2025
Tue Jul 01 03:39:37 EDT 2025
Thu Apr 24 22:59:13 EDT 2025
Wed Aug 21 03:41:46 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License Original content from this work may be used under the terms of the Creative Commons Attribution 4.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c416t-d44b9a2ceca6d75085a55d430067a84c1c4b2b35234c6daaec26fa2ee915a2ad3
Notes AAS46940
Interstellar Matter and the Local Universe
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-4324-3809
0000-0003-1613-6263
0000-0003-1481-7911
0000-0003-1572-0505
0000-0002-1590-1018
OpenAccessLink https://doaj.org/article/7edf022acaed431d9bfac08689285967
PQID 2845648154
PQPubID 4562441
PageCount 10
ParticipantIDs crossref_primary_10_3847_1538_4357_ace2c5
iop_journals_10_3847_1538_4357_ace2c5
proquest_journals_2845648154
doaj_primary_oai_doaj_org_article_7edf022acaed431d9bfac08689285967
crossref_citationtrail_10_3847_1538_4357_ace2c5
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-08-01
PublicationDateYYYYMMDD 2023-08-01
PublicationDate_xml – month: 08
  year: 2023
  text: 2023-08-01
  day: 01
PublicationDecade 2020
PublicationPlace Philadelphia
PublicationPlace_xml – name: Philadelphia
PublicationTitle The Astrophysical journal
PublicationTitleAbbrev APJ
PublicationTitleAlternate Astrophys. J
PublicationYear 2023
Publisher The American Astronomical Society
IOP Publishing
Publisher_xml – name: The American Astronomical Society
– name: IOP Publishing
References Zamponi (apjace2c5bib56) 2021; 508
Akimkin (apjace2c5bib1) 2020a; 499
Dzyurkevich (apjace2c5bib18) 2010; 515
Lombart (apjace2c5bib33) 2021; 501
Maureira (apjace2c5bib35) 2022; 941
Okuzumi (apjace2c5bib38) 2011a; 731
Tazzari (apjace2c5bib49) 2016; 588
Akimkin (apjace2c5bib2) 2015; 59
Boss (apjace2c5bib10) 1997; 276
Torquato (apjace2c5bib50) 2000; 84
Stammler (apjace2c5bib47) 2022; 935
Kraichnan (apjace2c5bib27) 1965; 8
Liu (apjace2c5bib32) 2019; 877
Blum (apjace2c5bib9) 2008; 46
Birnstiel (apjace2c5bib6) 2011
Weingartner (apjace2c5bib53) 2004
Grete (apjace2c5bib23) 2021; 909
Ivlev (apjace2c5bib25) 2016; 833
Manger (apjace2c5bib34) 2020; 499
Drążkowska (apjace2c5bib17) 2013; 556
Flock (apjace2c5bib20) 2016; 827
Sato (apjace2c5bib44) 2016; 589
Gong (apjace2c5bib21) 2021; 917
Brauer (apjace2c5bib11) 2009
Pavlyuchenkov (apjace2c5bib40) 2019; 486
Bate (apjace2c5bib5) 2022; 514
Xiang (apjace2c5bib55) 2020; 897
Akimkin (apjace2c5bib3) 2020b; 889
Gong (apjace2c5bib22) 2020; 891
Press (apjace2c5bib43) 1992
Pedersen (apjace2c5bib41) 2011; 740
Desch (apjace2c5bib14) 2015; 811
Vericel (apjace2c5bib51) 2021; 507
Birnstiel (apjace2c5bib7) 2016; 205
Laune (apjace2c5bib30) 2020; 889
Steinpilz (apjace2c5bib48) 2020; 16
Drążkowska (apjace2c5bib16) 2023
Lebreuilly (apjace2c5bib31) 2023; 518
Draine (apjace2c5bib15) 1987; 320
Landau (apjace2c5bib29) 1969
Birnstiel (apjace2c5bib8) 2011; 525
Woitke (apjace2c5bib54) 2016; 586
Iroshnikov (apjace2c5bib24) 1964; 7
Shannon (apjace2c5bib46) 1991; 18
Pignatale (apjace2c5bib42) 2019; 490
Okuzumi (apjace2c5bib39) 2011b; 731
Cuzzi (apjace2c5bib13) 2001; 546
Landau (apjace2c5bib28) 1960
Nayakshin (apjace2c5bib36) 2010; 408
Bader (apjace2c5bib4) 1983; 41
Schräpler (apjace2c5bib45) 2018; 853
Vorobyov (apjace2c5bib52) 2018; 614
Brauer (apjace2c5bib12) 2008; 480
Klahr (apjace2c5bib26) 2003; 582
Estrada (apjace2c5bib19) 2016; 818
Okuzumi (apjace2c5bib37) 2009; 698
References_xml – volume: 818
  start-page: 200
  year: 2016
  ident: apjace2c5bib19
  publication-title: ApJ
  doi: 10.3847/0004-637X/818/2/200
– volume: 41
  start-page: 373
  year: 1983
  ident: apjace2c5bib4
  publication-title: NuMat
  doi: 10.1007/BF01418331
– volume: 897
  start-page: 182
  year: 2020
  ident: apjace2c5bib55
  publication-title: ApJ
  doi: 10.3847/1538-4357/ab96c2
– volume: 408
  start-page: L36
  year: 2010
  ident: apjace2c5bib36
  publication-title: MNRAS
  doi: 10.1111/j.1745-3933.2010.00923.x
– volume: 16
  start-page: 225
  year: 2020
  ident: apjace2c5bib48
  publication-title: NatPh
  doi: 10.1038/s41567-019-0728-9
– volume: 909
  start-page: 148
  year: 2021
  ident: apjace2c5bib23
  publication-title: ApJ
  doi: 10.3847/1538-4357/abdd22
– volume: 877
  start-page: L22
  year: 2019
  ident: apjace2c5bib32
  publication-title: ApJL
  doi: 10.3847/2041-8213/ab1f8e
– volume: 582
  start-page: 869
  year: 2003
  ident: apjace2c5bib26
  publication-title: ApJ
  doi: 10.1086/344743
– volume: 917
  start-page: 82
  year: 2021
  ident: apjace2c5bib21
  publication-title: ApJ
  doi: 10.3847/1538-4357/ac0ce8
– volume: 614
  start-page: A98
  year: 2018
  ident: apjace2c5bib52
  publication-title: A&A
  doi: 10.1051/0004-6361/201731690
– start-page: 453
  year: 2004
  ident: apjace2c5bib53
– year: 2009
  ident: apjace2c5bib11
– volume: 588
  start-page: A53
  year: 2016
  ident: apjace2c5bib49
  publication-title: A&A
  doi: 10.1051/0004-6361/201527423
– year: 1969
  ident: apjace2c5bib29
– volume: 889
  start-page: L8
  year: 2020
  ident: apjace2c5bib30
  publication-title: ApJL
  doi: 10.3847/2041-8213/ab65c6
– volume: 827
  start-page: 144
  year: 2016
  ident: apjace2c5bib20
  publication-title: ApJ
  doi: 10.3847/0004-637X/827/2/144
– volume: 731
  start-page: 95
  year: 2011b
  ident: apjace2c5bib39
  publication-title: ApJ
  doi: 10.1088/0004-637X/731/2/95
– volume: 84
  start-page: 2064
  year: 2000
  ident: apjace2c5bib50
  publication-title: PhRvL
  doi: 10.1103/PhysRevLett.84.2064
– volume: 486
  start-page: 3907
  year: 2019
  ident: apjace2c5bib40
  publication-title: MNRAS
  doi: 10.1093/mnras/stz1046
– volume: 320
  start-page: 803
  year: 1987
  ident: apjace2c5bib15
  publication-title: ApJ
  doi: 10.1086/165596
– volume: 515
  start-page: A70
  year: 2010
  ident: apjace2c5bib18
  publication-title: A&A
  doi: 10.1051/0004-6361/200912834
– volume: 507
  start-page: 2318
  year: 2021
  ident: apjace2c5bib51
  publication-title: MNRAS
  doi: 10.1093/mnras/stab2263
– volume: 490
  start-page: 4428
  year: 2019
  ident: apjace2c5bib42
  publication-title: MNRAS
  doi: 10.1093/mnras/stz2883
– volume: 46
  start-page: 21
  year: 2008
  ident: apjace2c5bib9
  publication-title: ARA&A
  doi: 10.1146/annurev.astro.46.060407.145152
– year: 2011
  ident: apjace2c5bib6
– volume: 508
  start-page: 2583
  year: 2021
  ident: apjace2c5bib56
  publication-title: MNRAS
  doi: 10.1093/mnras/stab2657
– volume: 59
  start-page: 747
  year: 2015
  ident: apjace2c5bib2
  publication-title: ARep
  doi: 10.1134/S1063772915070021
– volume: 853
  start-page: 74
  year: 2018
  ident: apjace2c5bib45
  publication-title: ApJ
  doi: 10.3847/1538-4357/aaa0d2
– volume: 941
  start-page: L23
  year: 2022
  ident: apjace2c5bib35
  publication-title: ApJL
  doi: 10.3847/2041-8213/aca53a
– volume: 586
  start-page: A103
  year: 2016
  ident: apjace2c5bib54
  publication-title: A&A
  doi: 10.1051/0004-6361/201526538
– volume: 514
  start-page: 2145
  year: 2022
  ident: apjace2c5bib5
  publication-title: MNRAS
  doi: 10.1093/mnras/stac1391
– volume: 205
  start-page: 41
  year: 2016
  ident: apjace2c5bib7
  publication-title: SSRv
  doi: 10.1007/s11214-016-0256-1
– year: 1992
  ident: apjace2c5bib43
– volume: 935
  start-page: 35
  year: 2022
  ident: apjace2c5bib47
  publication-title: ApJ
  doi: 10.3847/1538-4357/ac7d58
– volume: 8
  start-page: 1385
  year: 1965
  ident: apjace2c5bib27
  publication-title: PhFl
  doi: 10.1063/1.1761412
– volume: 589
  start-page: A15
  year: 2016
  ident: apjace2c5bib44
  publication-title: A&A
  doi: 10.1051/0004-6361/201527069
– volume: 18
  start-page: 1
  year: 1991
  ident: apjace2c5bib46
  publication-title: PCM
  doi: 10.1007/BF00199037
– volume: 891
  start-page: 172
  year: 2020
  ident: apjace2c5bib22
  publication-title: ApJ
  doi: 10.3847/1538-4357/ab744d
– volume: 556
  start-page: A37
  year: 2013
  ident: apjace2c5bib17
  publication-title: A&A
  doi: 10.1051/0004-6361/201321566
– volume: 499
  start-page: 5578
  year: 2020a
  ident: apjace2c5bib1
  publication-title: MNRAS
  doi: 10.1093/mnras/staa3134
– year: 1960
  ident: apjace2c5bib28
– volume: 731
  start-page: 96
  year: 2011a
  ident: apjace2c5bib38
  publication-title: ApJ
  doi: 10.1088/0004-637X/731/2/96
– volume: 698
  start-page: 1122
  year: 2009
  ident: apjace2c5bib37
  publication-title: ApJ
  doi: 10.1088/0004-637X/698/2/1122
– volume: 276
  start-page: 1836
  year: 1997
  ident: apjace2c5bib10
  publication-title: Sci
  doi: 10.1126/Science.276.5320.1836
– volume: 833
  start-page: 92
  year: 2016
  ident: apjace2c5bib25
  publication-title: ApJ
  doi: 10.3847/1538-4357/833/1/92
– volume: 889
  start-page: 64
  year: 2020b
  ident: apjace2c5bib3
  publication-title: ApJ
  doi: 10.3847/1538-4357/ab6299
– volume: 480
  start-page: 859
  year: 2008
  ident: apjace2c5bib12
  publication-title: A&A
  doi: 10.1051/0004-6361:20077759
– volume: 499
  start-page: 1841
  year: 2020
  ident: apjace2c5bib34
  publication-title: MNRAS
  doi: 10.1093/mnras/staa2943
– volume: 518
  start-page: 3326
  year: 2023
  ident: apjace2c5bib31
  publication-title: MNRAS
  doi: 10.1093/mnras/stac3220
– volume: 740
  start-page: 77
  year: 2011
  ident: apjace2c5bib41
  publication-title: ApJ
  doi: 10.1088/0004-637X/740/2/77
– year: 2023
  ident: apjace2c5bib16
  doi: 10.48550/arXiv.2203.09759
– volume: 525
  start-page: A11
  year: 2011
  ident: apjace2c5bib8
  publication-title: A&A
  doi: 10.1051/0004-6361/201015228
– volume: 501
  start-page: 4298
  year: 2021
  ident: apjace2c5bib33
  publication-title: MNRAS
  doi: 10.1093/mnras/staa3682
– volume: 811
  start-page: 156
  year: 2015
  ident: apjace2c5bib14
  publication-title: ApJ
  doi: 10.1088/0004-637X/811/2/156
– volume: 7
  start-page: 566
  year: 1964
  ident: apjace2c5bib24
  publication-title: SvA
– volume: 546
  start-page: 496
  year: 2001
  ident: apjace2c5bib13
  publication-title: ApJ
  doi: 10.1086/318233
SSID ssj0004299
Score 2.4650161
Snippet Dust coagulation in protoplanetary disks is not straightforward and is subject to several slowdown mechanisms, such as bouncing, fragmentation, and radial...
SourceID doaj
proquest
crossref
iop
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 72
SubjectTerms Abundance
Astrophysics
Circumstellar disks
Circumstellar dust
Coagulation
Collisions
Dust
Dust physics
Fragmentation
Interstellar dust
Ionization
Planet formation
Protoplanetary disks
Radial drift
Young stellar objects
SummonAdditionalLinks – databaseName: IOP Science Platform
  dbid: IOP
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwELaWRUhceCygLSzIB0DikHb9yAtOZbvLCgnogZV6QIomtlNV2yalSQ7ltKf9A_xDfgkzSdoVD60QNytxHHtsz3y2Zz4z9lwprYxP-25Ghp4W5tADoYUnolhAFGaRUxSc_OFjcHqm30_8yQ57s42FKZad6u9jsiUKbkVI81uhLh00cxStfDgA46Txb7CbKkLDSdF7n8ZXQZEy7rCv9gIVTtozyr-W8ItNaqj70dLg7__Qz43RObnLvmyq2_qanPfrKu2bb78xOf5ne-6xOx0Y5cM263224_I9tj8saXu8WKz5S96k292Pco_dGrepB-zyqIBpd_PXj4vvCH-niy6KKefHX-tZE0pQLzhiYk5H-lNn-aguq9d8mFLwCVaVFxlHvbUgl8Ccv6O7KkqO-orc5F3JRyto6GRhPl_zWc7Hq6IqluSbW8FqzUez8rx8yM5Ojj8fnXrdlQ6eQeRXeVbrNAZpnIHAIliJfPB9qxUZTYi0EUanMkVQqLQJLIAzMshAOhcLHyRY9Yjt5kXu9hnHN84PQmNB0eGfi10qQ3toEJAYISDtscGmUxPT8Z3TtRvzBNc9JPiEBJ-Q4JNW8D32avvFsuX6uCbvWxon23zE0t08wB5Ouh5OQmczxEhgwGEbhY3TDAyuIaOYaAODsMde4KBIOq1RXvOzg804vMqMuMIPiGpHP_7HYp6w2xIhWuu-eMB2q1XtniKkqtJnzdT5CdXNHLg
  priority: 102
  providerName: IOP Publishing
Title Coagulation–Fragmentation Equilibrium for Charged Dust: Abundance of Submicron Grains Increases Dramatically in Protoplanetary Disks
URI https://iopscience.iop.org/article/10.3847/1538-4357/ace2c5
https://www.proquest.com/docview/2845648154
https://doaj.org/article/7edf022acaed431d9bfac08689285967
Volume 953
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NbtQwELZQJSQuCAqoCwX5UJA4RFvHdn64Ld2WggTdAxW9RRPbWa26myyb7GFvnPoCfUOepDN2toCQyoVLZCWOYnkmM5_tmW8YO5BSSaNp383EaaSEOYxAKBGJLBeQpVXmJCUnf_6SnJ6rTxf64rdSXxQTFuiBw8QNU2cr9DNgwFl0djYvKzCIw7OcqNcSn0eOPm-7mNpmRKKVDYeSEs3v0P_WCAzSIRgXG_2HE_Jc_ehaZs3yL4PsvczJI_awh4d8FIb1mN1z9S7bG7W0Yd0sNvwN9-2wH9HusvuT0HrCro4amPa1uH7-uEZAOl30eUU1P_6-nvng_vWCI0rldMg-dZaP1233jo9KSgdB6fOm4mhJFhSkV_MPVD2i5WhBKHDdtXy8Ak_wCvP5hs9qPlk1XbOkaNkOVhs-nrWX7VN2fnL89eg06ossRAaxWBdZpcocYuMMJBbhQ6ZBa5xpcmOQKSOMKuMSYZpUJrEAzsRJBbFzudAQg5XP2E7d1G6PcXzidJIaC5KO41yOq_bUHhqECEYIKAdsuJ31wvQM5FQIY17gSoTkVJCcCpJTEeQ0YG9v31gG9o07-r4nQd72I95sfwO1qei1qfiXNg3Ya1SDov-P2zs-tr9VlF-d0dPrhMhv1PP_MZYX7AHVtg_Rhvtsp1ut3UtEQF35yis7Xj-eTfB6Jr_dALXAB8I
linkProvider Directory of Open Access Journals
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9NAEF5BEYhLgQJqSoE9ABIHJ_U-_OAWmobyKjlQKTcz3l1HURM7xM4hnDjxB_iH_BJmbKcVD1VI3Fb22l7P7s58uzvzDWNPpFTSaNp3MyL0lG8OPPCV7_lR7EMUZpGTFJz8_iQ4PlVvxnrc5jmtY2GKRav6u1hsiIIbEdL8lqhLe_UcRSsf9sA4YXRvYbOr7JqWaDspgu_D6CIwUsQt_lVeIMNxc07517f8Ypdq-n60NtiEP3R0bXiGt9inTZMbf5Oz7qpKu-bLb2yO__FPt9l2C0p5v6l-h11x-Q7b7Ze0TV7M1_wZr8vNLki5w66PmtJd9u2wgEmbAezH1-8IgyfzNpop50efV9M6pGA154iNOR3tT5zlg1VZveD9lIJQsLm8yDjqrzm5Bub8FeWsKDnqLXKXdyUfLKGmlYXZbM2nOR8ti6pYkI9uBcs1H0zLs_IeOx0efTw89trUDp5BBFh5Vqk0BmGcgcAiaIk0aG2VJOMJkTK-UalIERxKZQIL4IwIMhDOxb4GAVbeZ1t5kbtdxvGO00FoLEg6BHSxS0VoDwwCE-P7kHZYb9OxiWl5zyn9xizB9Q8JPyHhJyT8pBF-hz0_f2LRcH5cUvcljZXzesTWXV_AXk7aXk5CZzPESmDA4T_6Nk4zMLiWjGKiDwzCDnuKAyNptUd5ycf2N2PxojLiCx0Q5Y7a-8fXPGY3RoNh8u71ydsH7KZA1NZ4NO6zrWq5cg8RZVXpo3om_QRPcCIc
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Coagulation%E2%80%93Fragmentation+Equilibrium+for+Charged+Dust%3A+Abundance+of+Submicron+Grains+Increases+Dramatically+in+Protoplanetary+Disks&rft.jtitle=The+Astrophysical+journal&rft.au=Akimkin%2C+Vitaly&rft.au=Ivlev%2C+Alexei+V&rft.au=Caselli%2C+Paola&rft.au=Gong%2C+Munan&rft.date=2023-08-01&rft.pub=IOP+Publishing&rft.issn=0004-637X&rft.eissn=1538-4357&rft.volume=953&rft.issue=1&rft.spage=72&rft_id=info:doi/10.3847%2F1538-4357%2Face2c5&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0004-637X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0004-637X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0004-637X&client=summon