Coagulation–Fragmentation Equilibrium for Charged Dust: Abundance of Submicron Grains Increases Dramatically in Protoplanetary Disks
Dust coagulation in protoplanetary disks is not straightforward and is subject to several slowdown mechanisms, such as bouncing, fragmentation, and radial drift to the star. Furthermore, dust grains in UV-shielded disk regions are negatively charged due to collisions with the surrounding electrons a...
Saved in:
Published in | The Astrophysical journal Vol. 953; no. 1; pp. 72 - 81 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Philadelphia
The American Astronomical Society
01.08.2023
IOP Publishing |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Dust coagulation in protoplanetary disks is not straightforward and is subject to several slowdown mechanisms, such as bouncing, fragmentation, and radial drift to the star. Furthermore, dust grains in UV-shielded disk regions are negatively charged due to collisions with the surrounding electrons and ions, which leads to their electrostatic repulsion. For typical disk conditions, the relative velocities between micron-sized grains are small, and their collisions are strongly affected by the repulsion. On the other hand, collisions between pebble-sized grains can be too energetic, leading to grain fragmentation. The aim of the present paper is to study the combined effect of the electrostatic and fragmentation barriers on dust evolution. We numerically solve the Smoluchowski coagulation–fragmentation equation for grains whose charging occurs under conditions typical for the inner disk regions, where thermal ionization operates. We find that dust fragmentation efficiently resupplies the population of small grains under the electrostatic barrier. As a result, the equilibrium abundance of submicron grains is enhanced by several orders of magnitude compared to the case of neutral dust. For some conditions with fragmentation velocities of ∼1 m s
−1
, macroscopic grains are completely destroyed. |
---|---|
AbstractList | Dust coagulation in protoplanetary disks is not straightforward and is subject to several slowdown mechanisms, such as bouncing, fragmentation, and radial drift to the star. Furthermore, dust grains in UV-shielded disk regions are negatively charged due to collisions with the surrounding electrons and ions, which leads to their electrostatic repulsion. For typical disk conditions, the relative velocities between micron-sized grains are small, and their collisions are strongly affected by the repulsion. On the other hand, collisions between pebble-sized grains can be too energetic, leading to grain fragmentation. The aim of the present paper is to study the combined effect of the electrostatic and fragmentation barriers on dust evolution. We numerically solve the Smoluchowski coagulation–fragmentation equation for grains whose charging occurs under conditions typical for the inner disk regions, where thermal ionization operates. We find that dust fragmentation efficiently resupplies the population of small grains under the electrostatic barrier. As a result, the equilibrium abundance of submicron grains is enhanced by several orders of magnitude compared to the case of neutral dust. For some conditions with fragmentation velocities of ∼1 m s
−1
, macroscopic grains are completely destroyed. Dust coagulation in protoplanetary disks is not straightforward and is subject to several slowdown mechanisms, such as bouncing, fragmentation, and radial drift to the star. Furthermore, dust grains in UV-shielded disk regions are negatively charged due to collisions with the surrounding electrons and ions, which leads to their electrostatic repulsion. For typical disk conditions, the relative velocities between micron-sized grains are small, and their collisions are strongly affected by the repulsion. On the other hand, collisions between pebble-sized grains can be too energetic, leading to grain fragmentation. The aim of the present paper is to study the combined effect of the electrostatic and fragmentation barriers on dust evolution. We numerically solve the Smoluchowski coagulation–fragmentation equation for grains whose charging occurs under conditions typical for the inner disk regions, where thermal ionization operates. We find that dust fragmentation efficiently resupplies the population of small grains under the electrostatic barrier. As a result, the equilibrium abundance of submicron grains is enhanced by several orders of magnitude compared to the case of neutral dust. For some conditions with fragmentation velocities of ∼1 m s−1, macroscopic grains are completely destroyed. Dust coagulation in protoplanetary disks is not straightforward and is subject to several slowdown mechanisms, such as bouncing, fragmentation, and radial drift to the star. Furthermore, dust grains in UV-shielded disk regions are negatively charged due to collisions with the surrounding electrons and ions, which leads to their electrostatic repulsion. For typical disk conditions, the relative velocities between micron-sized grains are small, and their collisions are strongly affected by the repulsion. On the other hand, collisions between pebble-sized grains can be too energetic, leading to grain fragmentation. The aim of the present paper is to study the combined effect of the electrostatic and fragmentation barriers on dust evolution. We numerically solve the Smoluchowski coagulation–fragmentation equation for grains whose charging occurs under conditions typical for the inner disk regions, where thermal ionization operates. We find that dust fragmentation efficiently resupplies the population of small grains under the electrostatic barrier. As a result, the equilibrium abundance of submicron grains is enhanced by several orders of magnitude compared to the case of neutral dust. For some conditions with fragmentation velocities of ∼1 m s ^−1 , macroscopic grains are completely destroyed. |
Author | Gong, Munan Akimkin, Vitaly Silsbee, Kedron Ivlev, Alexei V. Caselli, Paola |
Author_xml | – sequence: 1 givenname: Vitaly orcidid: 0000-0002-4324-3809 surname: Akimkin fullname: Akimkin, Vitaly organization: Russian Academy of Sciences Institute of Astronomy, Pyatnitskaya str. 48, Moscow, 119017, Russia – sequence: 2 givenname: Alexei V. orcidid: 0000-0002-1590-1018 surname: Ivlev fullname: Ivlev, Alexei V. organization: Max-Planck Institute for Extraterrestrial Physics , Garching by Munich, D-85748, Germany – sequence: 3 givenname: Paola orcidid: 0000-0003-1481-7911 surname: Caselli fullname: Caselli, Paola organization: Max-Planck Institute for Extraterrestrial Physics , Garching by Munich, D-85748, Germany – sequence: 4 givenname: Munan orcidid: 0000-0003-1613-6263 surname: Gong fullname: Gong, Munan organization: Max-Planck Institute for Extraterrestrial Physics , Garching by Munich, D-85748, Germany – sequence: 5 givenname: Kedron orcidid: 0000-0003-1572-0505 surname: Silsbee fullname: Silsbee, Kedron organization: University of Texas at El Paso , El Paso, TX 79968, USA |
BookMark | eNp9UcFu1DAUtFCR2BbuHC1xJdRxbCfhVu22ZaVKIAESN-vFflm8JPbWTg699cQP8Id8Cd4GFQkJTk_vaWbeaOaUnPjgkZCXJXtTNaI-L2XVFKKS9TkY5EY-IavH0wlZMcZEoar6yzNymtL-uPK2XZHv6wC7eYDJBf_z_sdVhN2IfnrY6eXt7AbXRTePtA-Rrr9C3KGlmzlNb-lFN3sL3iANPf04d6MzMZOuIzif6NabiJAw0U2EMesZGIY76jz9EMMUDgN4nCDe0Y1L39Jz8rSHIeGL3_OMfL66_LR-V9y8v96uL24KI0o1FVaIrgVu0ICytWSNBCmtqBhTNTTClEZ0vKskr4RRFgANVz1wxLaUwMFWZ2S76NoAe32IbswWdACnHw4h7jTE7HVAXaPtGedgAPOH0rZdD4Y1qml5I1tVZ61Xi9YhhtsZ06T3YY4-29e8EVKJppQio9iCyuGkFLF__FoyfWxOH2vSx5r00lymqL8oxi2NTDnb4X_E1wvRhcMfM_-E_wIQgbH5 |
CitedBy_id | crossref_primary_10_1093_mnras_stae2510 crossref_primary_10_1140_epjp_s13360_025_06005_9 crossref_primary_10_1051_0004_6361_202347737 crossref_primary_10_1051_0004_6361_202449454 crossref_primary_10_1051_0004_6361_202348268 crossref_primary_10_1051_0004_6361_202452068 |
Cites_doi | 10.3847/0004-637X/818/2/200 10.1007/BF01418331 10.3847/1538-4357/ab96c2 10.1111/j.1745-3933.2010.00923.x 10.1038/s41567-019-0728-9 10.3847/1538-4357/abdd22 10.3847/2041-8213/ab1f8e 10.1086/344743 10.3847/1538-4357/ac0ce8 10.1051/0004-6361/201731690 10.1051/0004-6361/201527423 10.3847/2041-8213/ab65c6 10.3847/0004-637X/827/2/144 10.1088/0004-637X/731/2/95 10.1103/PhysRevLett.84.2064 10.1093/mnras/stz1046 10.1086/165596 10.1051/0004-6361/200912834 10.1093/mnras/stab2263 10.1093/mnras/stz2883 10.1146/annurev.astro.46.060407.145152 10.1093/mnras/stab2657 10.1134/S1063772915070021 10.3847/1538-4357/aaa0d2 10.3847/2041-8213/aca53a 10.1051/0004-6361/201526538 10.1093/mnras/stac1391 10.1007/s11214-016-0256-1 10.3847/1538-4357/ac7d58 10.1063/1.1761412 10.1051/0004-6361/201527069 10.1007/BF00199037 10.3847/1538-4357/ab744d 10.1051/0004-6361/201321566 10.1093/mnras/staa3134 10.1088/0004-637X/731/2/96 10.1088/0004-637X/698/2/1122 10.1126/Science.276.5320.1836 10.3847/1538-4357/833/1/92 10.3847/1538-4357/ab6299 10.1051/0004-6361:20077759 10.1093/mnras/staa2943 10.1093/mnras/stac3220 10.1088/0004-637X/740/2/77 10.48550/arXiv.2203.09759 10.1051/0004-6361/201015228 10.1093/mnras/staa3682 10.1088/0004-637X/811/2/156 10.1086/318233 |
ContentType | Journal Article |
Copyright | 2023. The Author(s). Published by the American Astronomical Society. 2023. The Author(s). Published by the American Astronomical Society. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2023. The Author(s). Published by the American Astronomical Society. – notice: 2023. The Author(s). Published by the American Astronomical Society. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | O3W TSCCA AAYXX CITATION 7TG 8FD H8D KL. L7M DOA |
DOI | 10.3847/1538-4357/ace2c5 |
DatabaseName | Institute of Physics Open Access Journal Titles IOPscience (Open Access) CrossRef Meteorological & Geoastrophysical Abstracts Technology Research Database Aerospace Database Meteorological & Geoastrophysical Abstracts - Academic Advanced Technologies Database with Aerospace DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Aerospace Database Meteorological & Geoastrophysical Abstracts Technology Research Database Advanced Technologies Database with Aerospace Meteorological & Geoastrophysical Abstracts - Academic |
DatabaseTitleList | CrossRef Aerospace Database |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: O3W name: Institute of Physics Open Access Journal Titles url: http://iopscience.iop.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Astronomy & Astrophysics Physics |
EISSN | 1538-4357 |
ExternalDocumentID | oai_doaj_org_article_7edf022acaed431d9bfac08689285967 10_3847_1538_4357_ace2c5 apjace2c5 |
GrantInformation_xml | – fundername: Russian Science Foundation (RSF) grantid: 22-72-10029 funderid: https://doi.org/10.13039/501100006769 |
GroupedDBID | -DZ -~X 123 1JI 23N 2FS 4.4 6J9 85S AAFWJ AAGCD AAJIO ABHWH ACBEA ACGFS ACHIP ACNCT ADACN AEFHF AENEX AFPKN AKPSB ALMA_UNASSIGNED_HOLDINGS ASPBG ATQHT AVWKF AZFZN CJUJL CRLBU CS3 EBS F5P FRP GROUPED_DOAJ IJHAN IOP KOT M~E N5L O3W O43 OK1 PJBAE RIN RNS ROL SJN SY9 T37 TN5 TR2 TSCCA WH7 XSW AAYXX CITATION 2WC 7TG 8FD AEINN H8D KL. L7M |
ID | FETCH-LOGICAL-c416t-d44b9a2ceca6d75085a55d430067a84c1c4b2b35234c6daaec26fa2ee915a2ad3 |
IEDL.DBID | DOA |
ISSN | 0004-637X |
IngestDate | Wed Aug 27 01:20:05 EDT 2025 Wed Aug 13 08:46:10 EDT 2025 Tue Jul 01 03:39:37 EDT 2025 Thu Apr 24 22:59:13 EDT 2025 Wed Aug 21 03:41:46 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | Original content from this work may be used under the terms of the Creative Commons Attribution 4.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c416t-d44b9a2ceca6d75085a55d430067a84c1c4b2b35234c6daaec26fa2ee915a2ad3 |
Notes | AAS46940 Interstellar Matter and the Local Universe ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-4324-3809 0000-0003-1613-6263 0000-0003-1481-7911 0000-0003-1572-0505 0000-0002-1590-1018 |
OpenAccessLink | https://doaj.org/article/7edf022acaed431d9bfac08689285967 |
PQID | 2845648154 |
PQPubID | 4562441 |
PageCount | 10 |
ParticipantIDs | crossref_primary_10_3847_1538_4357_ace2c5 iop_journals_10_3847_1538_4357_ace2c5 proquest_journals_2845648154 doaj_primary_oai_doaj_org_article_7edf022acaed431d9bfac08689285967 crossref_citationtrail_10_3847_1538_4357_ace2c5 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-08-01 |
PublicationDateYYYYMMDD | 2023-08-01 |
PublicationDate_xml | – month: 08 year: 2023 text: 2023-08-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Philadelphia |
PublicationPlace_xml | – name: Philadelphia |
PublicationTitle | The Astrophysical journal |
PublicationTitleAbbrev | APJ |
PublicationTitleAlternate | Astrophys. J |
PublicationYear | 2023 |
Publisher | The American Astronomical Society IOP Publishing |
Publisher_xml | – name: The American Astronomical Society – name: IOP Publishing |
References | Zamponi (apjace2c5bib56) 2021; 508 Akimkin (apjace2c5bib1) 2020a; 499 Dzyurkevich (apjace2c5bib18) 2010; 515 Lombart (apjace2c5bib33) 2021; 501 Maureira (apjace2c5bib35) 2022; 941 Okuzumi (apjace2c5bib38) 2011a; 731 Tazzari (apjace2c5bib49) 2016; 588 Akimkin (apjace2c5bib2) 2015; 59 Boss (apjace2c5bib10) 1997; 276 Torquato (apjace2c5bib50) 2000; 84 Stammler (apjace2c5bib47) 2022; 935 Kraichnan (apjace2c5bib27) 1965; 8 Liu (apjace2c5bib32) 2019; 877 Blum (apjace2c5bib9) 2008; 46 Birnstiel (apjace2c5bib6) 2011 Weingartner (apjace2c5bib53) 2004 Grete (apjace2c5bib23) 2021; 909 Ivlev (apjace2c5bib25) 2016; 833 Manger (apjace2c5bib34) 2020; 499 Drążkowska (apjace2c5bib17) 2013; 556 Flock (apjace2c5bib20) 2016; 827 Sato (apjace2c5bib44) 2016; 589 Gong (apjace2c5bib21) 2021; 917 Brauer (apjace2c5bib11) 2009 Pavlyuchenkov (apjace2c5bib40) 2019; 486 Bate (apjace2c5bib5) 2022; 514 Xiang (apjace2c5bib55) 2020; 897 Akimkin (apjace2c5bib3) 2020b; 889 Gong (apjace2c5bib22) 2020; 891 Press (apjace2c5bib43) 1992 Pedersen (apjace2c5bib41) 2011; 740 Desch (apjace2c5bib14) 2015; 811 Vericel (apjace2c5bib51) 2021; 507 Birnstiel (apjace2c5bib7) 2016; 205 Laune (apjace2c5bib30) 2020; 889 Steinpilz (apjace2c5bib48) 2020; 16 Drążkowska (apjace2c5bib16) 2023 Lebreuilly (apjace2c5bib31) 2023; 518 Draine (apjace2c5bib15) 1987; 320 Landau (apjace2c5bib29) 1969 Birnstiel (apjace2c5bib8) 2011; 525 Woitke (apjace2c5bib54) 2016; 586 Iroshnikov (apjace2c5bib24) 1964; 7 Shannon (apjace2c5bib46) 1991; 18 Pignatale (apjace2c5bib42) 2019; 490 Okuzumi (apjace2c5bib39) 2011b; 731 Cuzzi (apjace2c5bib13) 2001; 546 Landau (apjace2c5bib28) 1960 Nayakshin (apjace2c5bib36) 2010; 408 Bader (apjace2c5bib4) 1983; 41 Schräpler (apjace2c5bib45) 2018; 853 Vorobyov (apjace2c5bib52) 2018; 614 Brauer (apjace2c5bib12) 2008; 480 Klahr (apjace2c5bib26) 2003; 582 Estrada (apjace2c5bib19) 2016; 818 Okuzumi (apjace2c5bib37) 2009; 698 |
References_xml | – volume: 818 start-page: 200 year: 2016 ident: apjace2c5bib19 publication-title: ApJ doi: 10.3847/0004-637X/818/2/200 – volume: 41 start-page: 373 year: 1983 ident: apjace2c5bib4 publication-title: NuMat doi: 10.1007/BF01418331 – volume: 897 start-page: 182 year: 2020 ident: apjace2c5bib55 publication-title: ApJ doi: 10.3847/1538-4357/ab96c2 – volume: 408 start-page: L36 year: 2010 ident: apjace2c5bib36 publication-title: MNRAS doi: 10.1111/j.1745-3933.2010.00923.x – volume: 16 start-page: 225 year: 2020 ident: apjace2c5bib48 publication-title: NatPh doi: 10.1038/s41567-019-0728-9 – volume: 909 start-page: 148 year: 2021 ident: apjace2c5bib23 publication-title: ApJ doi: 10.3847/1538-4357/abdd22 – volume: 877 start-page: L22 year: 2019 ident: apjace2c5bib32 publication-title: ApJL doi: 10.3847/2041-8213/ab1f8e – volume: 582 start-page: 869 year: 2003 ident: apjace2c5bib26 publication-title: ApJ doi: 10.1086/344743 – volume: 917 start-page: 82 year: 2021 ident: apjace2c5bib21 publication-title: ApJ doi: 10.3847/1538-4357/ac0ce8 – volume: 614 start-page: A98 year: 2018 ident: apjace2c5bib52 publication-title: A&A doi: 10.1051/0004-6361/201731690 – start-page: 453 year: 2004 ident: apjace2c5bib53 – year: 2009 ident: apjace2c5bib11 – volume: 588 start-page: A53 year: 2016 ident: apjace2c5bib49 publication-title: A&A doi: 10.1051/0004-6361/201527423 – year: 1969 ident: apjace2c5bib29 – volume: 889 start-page: L8 year: 2020 ident: apjace2c5bib30 publication-title: ApJL doi: 10.3847/2041-8213/ab65c6 – volume: 827 start-page: 144 year: 2016 ident: apjace2c5bib20 publication-title: ApJ doi: 10.3847/0004-637X/827/2/144 – volume: 731 start-page: 95 year: 2011b ident: apjace2c5bib39 publication-title: ApJ doi: 10.1088/0004-637X/731/2/95 – volume: 84 start-page: 2064 year: 2000 ident: apjace2c5bib50 publication-title: PhRvL doi: 10.1103/PhysRevLett.84.2064 – volume: 486 start-page: 3907 year: 2019 ident: apjace2c5bib40 publication-title: MNRAS doi: 10.1093/mnras/stz1046 – volume: 320 start-page: 803 year: 1987 ident: apjace2c5bib15 publication-title: ApJ doi: 10.1086/165596 – volume: 515 start-page: A70 year: 2010 ident: apjace2c5bib18 publication-title: A&A doi: 10.1051/0004-6361/200912834 – volume: 507 start-page: 2318 year: 2021 ident: apjace2c5bib51 publication-title: MNRAS doi: 10.1093/mnras/stab2263 – volume: 490 start-page: 4428 year: 2019 ident: apjace2c5bib42 publication-title: MNRAS doi: 10.1093/mnras/stz2883 – volume: 46 start-page: 21 year: 2008 ident: apjace2c5bib9 publication-title: ARA&A doi: 10.1146/annurev.astro.46.060407.145152 – year: 2011 ident: apjace2c5bib6 – volume: 508 start-page: 2583 year: 2021 ident: apjace2c5bib56 publication-title: MNRAS doi: 10.1093/mnras/stab2657 – volume: 59 start-page: 747 year: 2015 ident: apjace2c5bib2 publication-title: ARep doi: 10.1134/S1063772915070021 – volume: 853 start-page: 74 year: 2018 ident: apjace2c5bib45 publication-title: ApJ doi: 10.3847/1538-4357/aaa0d2 – volume: 941 start-page: L23 year: 2022 ident: apjace2c5bib35 publication-title: ApJL doi: 10.3847/2041-8213/aca53a – volume: 586 start-page: A103 year: 2016 ident: apjace2c5bib54 publication-title: A&A doi: 10.1051/0004-6361/201526538 – volume: 514 start-page: 2145 year: 2022 ident: apjace2c5bib5 publication-title: MNRAS doi: 10.1093/mnras/stac1391 – volume: 205 start-page: 41 year: 2016 ident: apjace2c5bib7 publication-title: SSRv doi: 10.1007/s11214-016-0256-1 – year: 1992 ident: apjace2c5bib43 – volume: 935 start-page: 35 year: 2022 ident: apjace2c5bib47 publication-title: ApJ doi: 10.3847/1538-4357/ac7d58 – volume: 8 start-page: 1385 year: 1965 ident: apjace2c5bib27 publication-title: PhFl doi: 10.1063/1.1761412 – volume: 589 start-page: A15 year: 2016 ident: apjace2c5bib44 publication-title: A&A doi: 10.1051/0004-6361/201527069 – volume: 18 start-page: 1 year: 1991 ident: apjace2c5bib46 publication-title: PCM doi: 10.1007/BF00199037 – volume: 891 start-page: 172 year: 2020 ident: apjace2c5bib22 publication-title: ApJ doi: 10.3847/1538-4357/ab744d – volume: 556 start-page: A37 year: 2013 ident: apjace2c5bib17 publication-title: A&A doi: 10.1051/0004-6361/201321566 – volume: 499 start-page: 5578 year: 2020a ident: apjace2c5bib1 publication-title: MNRAS doi: 10.1093/mnras/staa3134 – year: 1960 ident: apjace2c5bib28 – volume: 731 start-page: 96 year: 2011a ident: apjace2c5bib38 publication-title: ApJ doi: 10.1088/0004-637X/731/2/96 – volume: 698 start-page: 1122 year: 2009 ident: apjace2c5bib37 publication-title: ApJ doi: 10.1088/0004-637X/698/2/1122 – volume: 276 start-page: 1836 year: 1997 ident: apjace2c5bib10 publication-title: Sci doi: 10.1126/Science.276.5320.1836 – volume: 833 start-page: 92 year: 2016 ident: apjace2c5bib25 publication-title: ApJ doi: 10.3847/1538-4357/833/1/92 – volume: 889 start-page: 64 year: 2020b ident: apjace2c5bib3 publication-title: ApJ doi: 10.3847/1538-4357/ab6299 – volume: 480 start-page: 859 year: 2008 ident: apjace2c5bib12 publication-title: A&A doi: 10.1051/0004-6361:20077759 – volume: 499 start-page: 1841 year: 2020 ident: apjace2c5bib34 publication-title: MNRAS doi: 10.1093/mnras/staa2943 – volume: 518 start-page: 3326 year: 2023 ident: apjace2c5bib31 publication-title: MNRAS doi: 10.1093/mnras/stac3220 – volume: 740 start-page: 77 year: 2011 ident: apjace2c5bib41 publication-title: ApJ doi: 10.1088/0004-637X/740/2/77 – year: 2023 ident: apjace2c5bib16 doi: 10.48550/arXiv.2203.09759 – volume: 525 start-page: A11 year: 2011 ident: apjace2c5bib8 publication-title: A&A doi: 10.1051/0004-6361/201015228 – volume: 501 start-page: 4298 year: 2021 ident: apjace2c5bib33 publication-title: MNRAS doi: 10.1093/mnras/staa3682 – volume: 811 start-page: 156 year: 2015 ident: apjace2c5bib14 publication-title: ApJ doi: 10.1088/0004-637X/811/2/156 – volume: 7 start-page: 566 year: 1964 ident: apjace2c5bib24 publication-title: SvA – volume: 546 start-page: 496 year: 2001 ident: apjace2c5bib13 publication-title: ApJ doi: 10.1086/318233 |
SSID | ssj0004299 |
Score | 2.4650161 |
Snippet | Dust coagulation in protoplanetary disks is not straightforward and is subject to several slowdown mechanisms, such as bouncing, fragmentation, and radial... |
SourceID | doaj proquest crossref iop |
SourceType | Open Website Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 72 |
SubjectTerms | Abundance Astrophysics Circumstellar disks Circumstellar dust Coagulation Collisions Dust Dust physics Fragmentation Interstellar dust Ionization Planet formation Protoplanetary disks Radial drift Young stellar objects |
SummonAdditionalLinks | – databaseName: IOP Science Platform dbid: IOP link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwELaWRUhceCygLSzIB0DikHb9yAtOZbvLCgnogZV6QIomtlNV2yalSQ7ltKf9A_xDfgkzSdoVD60QNytxHHtsz3y2Zz4z9lwprYxP-25Ghp4W5tADoYUnolhAFGaRUxSc_OFjcHqm30_8yQ57s42FKZad6u9jsiUKbkVI81uhLh00cxStfDgA46Txb7CbKkLDSdF7n8ZXQZEy7rCv9gIVTtozyr-W8ItNaqj70dLg7__Qz43RObnLvmyq2_qanPfrKu2bb78xOf5ne-6xOx0Y5cM263224_I9tj8saXu8WKz5S96k292Pco_dGrepB-zyqIBpd_PXj4vvCH-niy6KKefHX-tZE0pQLzhiYk5H-lNn-aguq9d8mFLwCVaVFxlHvbUgl8Ccv6O7KkqO-orc5F3JRyto6GRhPl_zWc7Hq6IqluSbW8FqzUez8rx8yM5Ojj8fnXrdlQ6eQeRXeVbrNAZpnIHAIliJfPB9qxUZTYi0EUanMkVQqLQJLIAzMshAOhcLHyRY9Yjt5kXu9hnHN84PQmNB0eGfi10qQ3toEJAYISDtscGmUxPT8Z3TtRvzBNc9JPiEBJ-Q4JNW8D32avvFsuX6uCbvWxon23zE0t08wB5Ouh5OQmczxEhgwGEbhY3TDAyuIaOYaAODsMde4KBIOq1RXvOzg804vMqMuMIPiGpHP_7HYp6w2xIhWuu-eMB2q1XtniKkqtJnzdT5CdXNHLg priority: 102 providerName: IOP Publishing |
Title | Coagulation–Fragmentation Equilibrium for Charged Dust: Abundance of Submicron Grains Increases Dramatically in Protoplanetary Disks |
URI | https://iopscience.iop.org/article/10.3847/1538-4357/ace2c5 https://www.proquest.com/docview/2845648154 https://doaj.org/article/7edf022acaed431d9bfac08689285967 |
Volume | 953 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NbtQwELZQJSQuCAqoCwX5UJA4RFvHdn64Ld2WggTdAxW9RRPbWa26myyb7GFvnPoCfUOepDN2toCQyoVLZCWOYnkmM5_tmW8YO5BSSaNp383EaaSEOYxAKBGJLBeQpVXmJCUnf_6SnJ6rTxf64rdSXxQTFuiBw8QNU2cr9DNgwFl0djYvKzCIw7OcqNcSn0eOPm-7mNpmRKKVDYeSEs3v0P_WCAzSIRgXG_2HE_Jc_ehaZs3yL4PsvczJI_awh4d8FIb1mN1z9S7bG7W0Yd0sNvwN9-2wH9HusvuT0HrCro4amPa1uH7-uEZAOl30eUU1P_6-nvng_vWCI0rldMg-dZaP1233jo9KSgdB6fOm4mhJFhSkV_MPVD2i5WhBKHDdtXy8Ak_wCvP5hs9qPlk1XbOkaNkOVhs-nrWX7VN2fnL89eg06ossRAaxWBdZpcocYuMMJBbhQ6ZBa5xpcmOQKSOMKuMSYZpUJrEAzsRJBbFzudAQg5XP2E7d1G6PcXzidJIaC5KO41yOq_bUHhqECEYIKAdsuJ31wvQM5FQIY17gSoTkVJCcCpJTEeQ0YG9v31gG9o07-r4nQd72I95sfwO1qei1qfiXNg3Ya1SDov-P2zs-tr9VlF-d0dPrhMhv1PP_MZYX7AHVtg_Rhvtsp1ut3UtEQF35yis7Xj-eTfB6Jr_dALXAB8I |
linkProvider | Directory of Open Access Journals |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9NAEF5BEYhLgQJqSoE9ABIHJ_U-_OAWmobyKjlQKTcz3l1HURM7xM4hnDjxB_iH_BJmbKcVD1VI3Fb22l7P7s58uzvzDWNPpFTSaNp3MyL0lG8OPPCV7_lR7EMUZpGTFJz8_iQ4PlVvxnrc5jmtY2GKRav6u1hsiIIbEdL8lqhLe_UcRSsf9sA4YXRvYbOr7JqWaDspgu_D6CIwUsQt_lVeIMNxc07517f8Ypdq-n60NtiEP3R0bXiGt9inTZMbf5Oz7qpKu-bLb2yO__FPt9l2C0p5v6l-h11x-Q7b7Ze0TV7M1_wZr8vNLki5w66PmtJd9u2wgEmbAezH1-8IgyfzNpop50efV9M6pGA154iNOR3tT5zlg1VZveD9lIJQsLm8yDjqrzm5Bub8FeWsKDnqLXKXdyUfLKGmlYXZbM2nOR8ti6pYkI9uBcs1H0zLs_IeOx0efTw89trUDp5BBFh5Vqk0BmGcgcAiaIk0aG2VJOMJkTK-UalIERxKZQIL4IwIMhDOxb4GAVbeZ1t5kbtdxvGO00FoLEg6BHSxS0VoDwwCE-P7kHZYb9OxiWl5zyn9xizB9Q8JPyHhJyT8pBF-hz0_f2LRcH5cUvcljZXzesTWXV_AXk7aXk5CZzPESmDA4T_6Nk4zMLiWjGKiDwzCDnuKAyNptUd5ycf2N2PxojLiCx0Q5Y7a-8fXPGY3RoNh8u71ydsH7KZA1NZ4NO6zrWq5cg8RZVXpo3om_QRPcCIc |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Coagulation%E2%80%93Fragmentation+Equilibrium+for+Charged+Dust%3A+Abundance+of+Submicron+Grains+Increases+Dramatically+in+Protoplanetary+Disks&rft.jtitle=The+Astrophysical+journal&rft.au=Akimkin%2C+Vitaly&rft.au=Ivlev%2C+Alexei+V&rft.au=Caselli%2C+Paola&rft.au=Gong%2C+Munan&rft.date=2023-08-01&rft.pub=IOP+Publishing&rft.issn=0004-637X&rft.eissn=1538-4357&rft.volume=953&rft.issue=1&rft.spage=72&rft_id=info:doi/10.3847%2F1538-4357%2Face2c5&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0004-637X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0004-637X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0004-637X&client=summon |