Flexible decision-making is related to strategy learning, vicarious trial and error, and medial prefrontal rhythms during spatial set-shifting

Flexible decision-making requires a balance between exploring features of an environment and exploiting prior knowledge. Behavioral flexibility is typically measured by how long it takes subjects to consistently make accurate choices after reward contingencies switch or task rules change. This measu...

Full description

Saved in:
Bibliographic Details
Published inLearning & memory (Cold Spring Harbor, N.Y.) Vol. 31; no. 7; p. a053911
Main Authors Miles, Jesse T., Mullins, Ginger L., Mizumori, Sheri J. Y.
Format Journal Article
LanguageEnglish
Published United States Cold Spring Harbor Laboratory Press 01.07.2024
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Flexible decision-making requires a balance between exploring features of an environment and exploiting prior knowledge. Behavioral flexibility is typically measured by how long it takes subjects to consistently make accurate choices after reward contingencies switch or task rules change. This measure, however, only allows for tracking flexibility across multiple trials, and does not assess the degree of flexibility. Plus, although increases in decision-making accuracy are strong indicators of learning, other decision-making behaviors have also been suggested as markers of flexibility, such as the on-the-fly decision reversals known as vicarious trial and error (VTE) or switches to a different, but incorrect, strategy. We sought to relate flexibility, learning, and neural activity by comparing choice history-derived evaluation of strategy use with changes in decision-making accuracy and VTE behavior while recording from the medial prefrontal cortex (mPFC) in rats. Using a set-shifting task that required rats to repeatedly switch between spatial decision-making strategies, we show that a previously developed strategy likelihood estimation procedure could identify putative learning points based on decision history. We confirm the efficacy of learning point estimation by showing increases in decision-making accuracy aligned to the learning point. Additionally, we show increases in the rate of VTE behavior surrounding identified learning points. By calculating changes in strategy likelihoods across trials, we tracked flexibility on a trial-by-trial basis and show that flexibility scores also increased around learning points. Further, we demonstrate that VTE behaviors could be separated into indecisive and deliberative subtypes depending on whether they occurred during periods of high or low flexibility and whether they led to correct or incorrect choice outcomes. Field potential recordings from the mPFC during decisions exhibited increased beta band activity on trials with VTE compared to non-VTE trials, as well as increased gamma during periods when learned strategies could be exploited compared to prelearning, exploratory periods. This study demonstrates that increased behavioral flexibility and VTE rates are often aligned to task learning. These relationships can break down, however, suggesting that VTE is not always an indicator of deliberative decision-making. Additionally, we further implicate the mPFC in decision-making and learning by showing increased beta-based activity on VTE trials and increased gamma after learning.
AbstractList Flexible decision-making requires a balance between exploring features of an environment and exploiting prior knowledge. Behavioral flexibility is typically measured by how long it takes subjects to consistently make accurate choices after reward contingencies switch or task rules change. This measure, however, only allows for tracking flexibility across multiple trials, and does not assess the degree of flexibility. Plus, although increases in decision-making accuracy are strong indicators of learning, other decision-making behaviors have also been suggested as markers of flexibility, such as the on-the-fly decision reversals known as vicarious trial and error (VTE) or switches to a different, but incorrect, strategy. We sought to relate flexibility, learning, and neural activity by comparing choice history-derived evaluation of strategy use with changes in decision-making accuracy and VTE behavior while recording from the medial prefrontal cortex (mPFC) in rats. Using a set-shifting task that required rats to repeatedly switch between spatial decision-making strategies, we show that a previously developed strategy likelihood estimation procedure could identify putative learning points based on decision history. We confirm the efficacy of learning point estimation by showing increases in decision-making accuracy aligned to the learning point. Additionally, we show increases in the rate of VTE behavior surrounding identified learning points. By calculating changes in strategy likelihoods across trials, we tracked flexibility on a trial-by-trial basis and show that flexibility scores also increased around learning points. Further, we demonstrate that VTE behaviors could be separated into indecisive and deliberative subtypes depending on whether they occurred during periods of high or low flexibility and whether they led to correct or incorrect choice outcomes. Field potential recordings from the mPFC during decisions exhibited increased beta band activity on trials with VTE compared to non-VTE trials, as well as increased gamma during periods when learned strategies could be exploited compared to prelearning, exploratory periods. This study demonstrates that increased behavioral flexibility and VTE rates are often aligned to task learning. These relationships can break down, however, suggesting that VTE is not always an indicator of deliberative decision-making. Additionally, we further implicate the mPFC in decision-making and learning by showing increased beta-based activity on VTE trials and increased gamma after learning.
Flexible decision-making requires a balance between exploring features of an environment and exploiting prior knowledge. Behavioral flexibility is typically measured by how long it takes subjects to consistently make accurate choices after reward contingencies switch or task rules change. This measure, however, only allows for tracking flexibility across multiple trials, and does not assess the degree of flexibility. Plus, although increases in decision-making accuracy are strong indicators of learning, other decision-making behaviors have also been suggested as markers of flexibility, such as the on-the-fly decision reversals known as vicarious trial and error (VTE) or switches to a different, but incorrect, strategy. We sought to relate flexibility, learning, and neural activity by comparing choice history-derived evaluation of strategy use with changes in decision-making accuracy and VTE behavior while recording from the medial prefrontal cortex (mPFC) in rats. Using a set-shifting task that required rats to repeatedly switch between spatial decision-making strategies, we show that a previously developed strategy likelihood estimation procedure could identify putative learning points based on decision history. We confirm the efficacy of learning point estimation by showing increases in decision-making accuracy aligned to the learning point. Additionally, we show increases in the rate of VTE behavior surrounding identified learning points. By calculating changes in strategy likelihoods across trials, we tracked flexibility on a trial-by-trial basis and show that flexibility scores also increased around learning points. Further, we demonstrate that VTE behaviors could be separated into indecisive and deliberative subtypes depending on whether they occurred during periods of high or low flexibility and whether they led to correct or incorrect choice outcomes. Field potential recordings from the mPFC during decisions exhibited increased beta band activity on trials with VTE compared to non-VTE trials, as well as increased gamma during periods when learned strategies could be exploited compared to prelearning, exploratory periods. This study demonstrates that increased behavioral flexibility and VTE rates are often aligned to task learning. These relationships can break down, however, suggesting that VTE is not always an indicator of deliberative decision-making. Additionally, we further implicate the mPFC in decision-making and learning by showing increased beta-based activity on VTE trials and increased gamma after learning.Flexible decision-making requires a balance between exploring features of an environment and exploiting prior knowledge. Behavioral flexibility is typically measured by how long it takes subjects to consistently make accurate choices after reward contingencies switch or task rules change. This measure, however, only allows for tracking flexibility across multiple trials, and does not assess the degree of flexibility. Plus, although increases in decision-making accuracy are strong indicators of learning, other decision-making behaviors have also been suggested as markers of flexibility, such as the on-the-fly decision reversals known as vicarious trial and error (VTE) or switches to a different, but incorrect, strategy. We sought to relate flexibility, learning, and neural activity by comparing choice history-derived evaluation of strategy use with changes in decision-making accuracy and VTE behavior while recording from the medial prefrontal cortex (mPFC) in rats. Using a set-shifting task that required rats to repeatedly switch between spatial decision-making strategies, we show that a previously developed strategy likelihood estimation procedure could identify putative learning points based on decision history. We confirm the efficacy of learning point estimation by showing increases in decision-making accuracy aligned to the learning point. Additionally, we show increases in the rate of VTE behavior surrounding identified learning points. By calculating changes in strategy likelihoods across trials, we tracked flexibility on a trial-by-trial basis and show that flexibility scores also increased around learning points. Further, we demonstrate that VTE behaviors could be separated into indecisive and deliberative subtypes depending on whether they occurred during periods of high or low flexibility and whether they led to correct or incorrect choice outcomes. Field potential recordings from the mPFC during decisions exhibited increased beta band activity on trials with VTE compared to non-VTE trials, as well as increased gamma during periods when learned strategies could be exploited compared to prelearning, exploratory periods. This study demonstrates that increased behavioral flexibility and VTE rates are often aligned to task learning. These relationships can break down, however, suggesting that VTE is not always an indicator of deliberative decision-making. Additionally, we further implicate the mPFC in decision-making and learning by showing increased beta-based activity on VTE trials and increased gamma after learning.
Author Mullins, Ginger L.
Mizumori, Sheri J. Y.
Miles, Jesse T.
AuthorAffiliation 1 Neuroscience Graduate Program, University of Washington, Seattle, Washington 98195, USA
2 Psychology Department, University of Washington, Seattle, Washington 98195, USA
AuthorAffiliation_xml – name: 1 Neuroscience Graduate Program, University of Washington, Seattle, Washington 98195, USA
– name: 2 Psychology Department, University of Washington, Seattle, Washington 98195, USA
Author_xml – sequence: 1
  givenname: Jesse T.
  orcidid: 0000-0002-4241-4733
  surname: Miles
  fullname: Miles, Jesse T.
– sequence: 2
  givenname: Ginger L.
  surname: Mullins
  fullname: Mullins, Ginger L.
– sequence: 3
  givenname: Sheri J. Y.
  orcidid: 0000-0003-0240-2188
  surname: Mizumori
  fullname: Mizumori, Sheri J. Y.
BackLink https://www.ncbi.nlm.nih.gov/pubmed/39038921$$D View this record in MEDLINE/PubMed
BookMark eNp1kk1v3CAQhlGVqvloj71WSL3kEG8YgzE-VVWUtJUi9ZKeETZ4lxTDFnDU_RP5zcHdNEoj9cSrmYdh5mWO0YEP3iD0HsgKgMC5m1akoR3ACmr6Ch1Bw7qqYaI5eKYP0XFKt4SQtmXwBh3SjlDR1XCE7q-c-W17Z7A2g002-GpSP61fY5twNE5lo3EOOOVY5HqHnVHRl_wZvrODijbMCedolcPKa2xiDPHsj5yMXqLbaMYYfC4ybnZ5MyWs57g8kLYqL0QyuUobO-YSfItej8ol8-7xPEE_ri5vLr5W19-_fLv4fF0NDHiuNO254K2qOVGE1xREzRutR8GFaEdV94xw02pRDz2Drm8IrQXnA2PFAUEJoSfo077udu5Lo4PxZT4nt9FOKu5kUFb-m_F2I9fhTgJQ3nHalAqnjxVi-DWblOVk02CcU94UTyQlgvIWRMcK-vEFehvm6Mt8kgJhQBvgXaE-PG_pqZe_f1WAag8MMaRUbH1CgMhlF6Sb5H4XZNmFwtMX_GBzsTwsE1n3n1sP5Jm45A
CitedBy_id crossref_primary_10_1523_JNEUROSCI_1241_24_2025
crossref_primary_10_1002_hipo_23675
Cites_doi 10.1016/j.neuron.2010.05.013
10.1093/cercor/8.5.437
10.1016/j.cell.2020.01.014
10.1016/j.bbr.2023.114410
10.1016/0028-3932(70)90003-5
10.7554/eLife.66227
10.7554/eLife.04677
10.1037/h0059831
10.1523/JNEUROSCI.20-11-04320.2000
10.1016/j.nlm.2023.107734
10.1037/h0045108
10.1038/nrn.2015.30
10.3389/fnbeh.2018.00237
10.1016/0166-4328(81)90025-5
10.1038/nature08275
10.1038/s41598-021-04080-3
10.7554/eLife.79545
10.1007/s00213-011-2579-7
10.1523/JNEUROSCI.19-11-04585.1999
10.1002/hipo.23306
10.1371/journal.pbio.0030402
10.1016/j.neuroscience.2016.03.021
10.1016/j.neuron.2012.12.002
10.1002/hipo.22719
10.1093/cercor/bhu062
10.1016/j.nlm.2020.107215
10.1073/pnas.1720117115
10.1038/s41467-017-02764-x
10.1002/hipo.23594
10.1101/2022.08.30.505807
10.1002/hipo.23250
10.1037/h0058536
10.1037/h0061626
10.3389/neuro.07.002.2010
10.1093/cercor/bhac153
10.1101/lm.028753.112
10.1523/JNEUROSCI.0106-19.2019
10.1523/JNEUROSCI.3761-07.2007
10.1016/j.isci.2023.107532
10.1126/science.abb0184
10.1038/s41467-022-35677-5
10.1016/j.nlm.2019.05.002
10.1037/h0028875
10.1006/cogp.1999.0734
10.1523/JNEUROSCI.6068-08.2009
10.1038/s41583-021-00428-w
10.1016/S0166-4328(01)00204-2
10.1101/819334
10.1073/pnas.1114415109
10.1038/s41467-018-02974-x
10.1016/j.bbr.2020.112622
10.1016/j.jneumeth.2005.02.005
10.3389/fnbeh.2012.00070
10.1080/14640748808402328
10.1016/j.neubiorev.2004.09.006
10.1038/ncomms11388
10.1002/hipo.22400
10.1523/JNEUROSCI.1412-21.2022
10.3758/s13415-012-0097-7
10.3389/fnbeh.2022.852235
10.1523/JNEUROSCI.0991-16.2016
10.1038/s42003-023-05522-6
10.1196/annals.1401.013
10.1016/j.celrep.2018.02.091
10.1016/j.nlm.2011.01.011
10.1038/s41593-018-0209-y
10.1002/hipo.23394
10.1016/j.jneumeth.2010.06.020
10.1101/2023.01.10.523416
10.1037/h0072238
10.1037/0735-7044.117.5.1054
10.1152/jn.00793.2018
10.1037/h0070532
10.1016/0028-3932(71)90005-4
10.1016/j.neuron.2010.03.029
10.1101/2023.04.02.535279
10.1016/0031-9384(69)90075-4
10.1037/h0036970
10.3389/fnins.2021.676779
10.1073/pnas.92.12.5506
10.1016/j.bbr.2016.03.007
10.1523/JNEUROSCI.3803-06.2006
10.1080/08856559.1938.10533799
10.1016/j.neuron.2016.10.028
10.1038/s41596-019-0176-0
10.1016/j.neuron.2017.03.011
ContentType Journal Article
Copyright 2024 Miles et al.; Published by Cold Spring Harbor Laboratory Press.
Copyright Cold Spring Harbor Laboratory Press Jul 2024
2024
Copyright_xml – notice: 2024 Miles et al.; Published by Cold Spring Harbor Laboratory Press.
– notice: Copyright Cold Spring Harbor Laboratory Press Jul 2024
– notice: 2024
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QG
7QR
7SS
7TK
8FD
FR3
P64
7X8
5PM
DOI 10.1101/lm.053911.123
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Animal Behavior Abstracts
Chemoreception Abstracts
Entomology Abstracts (Full archive)
Neurosciences Abstracts
Technology Research Database
Engineering Research Database
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Entomology Abstracts
Technology Research Database
Animal Behavior Abstracts
Chemoreception Abstracts
Engineering Research Database
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitleList Entomology Abstracts
CrossRef
MEDLINE - Academic
MEDLINE

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Anatomy & Physiology
DocumentTitleAlternate Flexible decision-making in spatial set-shifting
EISSN 1549-5485
ExternalDocumentID PMC11369635
39038921
10_1101_lm_053911_123
Genre Journal Article
GrantInformation_xml – fundername: NIMH NIH HHS
  grantid: R21 MH119391
GroupedDBID ---
-DZ
.GJ
18M
29L
2WC
4.4
53G
5GY
5VS
AAFWJ
AAYXX
ABDIX
ABIVO
ACLKE
ADBBV
AENEX
AHPUY
ALMA_UNASSIGNED_HOLDINGS
BAWUL
BTFSW
C1A
CITATION
CS3
DIK
DU5
E3Z
EBS
EJD
F5P
GX1
H13
KQ8
MV1
OK1
P2P
P6G
RCX
RHI
RPM
SJN
TR2
W8F
WOQ
WOW
CGR
CUY
CVF
ECM
EIF
NPM
7QG
7QR
7SS
7TK
8FD
FR3
P64
7X8
5PM
ID FETCH-LOGICAL-c416t-d3b6867a260a062318265ddf86887fa2b406e7d82cb419b5032866c4400783003
ISSN 1549-5485
1072-0502
IngestDate Thu Aug 21 18:33:18 EDT 2025
Fri Jul 11 09:58:38 EDT 2025
Sat Jul 26 02:04:47 EDT 2025
Thu Jul 03 03:56:17 EDT 2025
Thu Apr 24 23:01:19 EDT 2025
Tue Jul 01 02:05:33 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 7
Language English
License 2024 Miles et al.; Published by Cold Spring Harbor Laboratory Press.
This article is distributed exclusively by Cold Spring Harbor Laboratory Press for the first 12 months after the full-issue publication date (see http://learnmem.cshlp.org/site/misc/terms.xhtml). After 12 months, it is available under a Creative Commons License (Attribution-NonCommercial 4.0 International), as described at http://creativecommons.org/licenses/by-nc/4.0/.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c416t-d3b6867a260a062318265ddf86887fa2b406e7d82cb419b5032866c4400783003
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-0240-2188
0000-0002-4241-4733
OpenAccessLink https://pubmed.ncbi.nlm.nih.gov/PMC11369635
PMID 39038921
PQID 3104135169
PQPubID 2049520
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_11369635
proquest_miscellaneous_3083671894
proquest_journals_3104135169
pubmed_primary_39038921
crossref_primary_10_1101_lm_053911_123
crossref_citationtrail_10_1101_lm_053911_123
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-07-00
2024-Jul
20240701
PublicationDateYYYYMMDD 2024-07-01
PublicationDate_xml – month: 07
  year: 2024
  text: 2024-07-00
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Cold Spring Harbor
PublicationTitle Learning & memory (Cold Spring Harbor, N.Y.)
PublicationTitleAlternate Learn Mem
PublicationYear 2024
Publisher Cold Spring Harbor Laboratory Press
Publisher_xml – name: Cold Spring Harbor Laboratory Press
References 2024072210101862000_31.7.a053911.71
2024072210101862000_31.7.a053911.72
2024072210101862000_31.7.a053911.73
2024072210101862000_31.7.a053911.30
2024072210101862000_31.7.a053911.74
2024072210101862000_31.7.a053911.70
2024072210101862000_31.7.a053911.35
2024072210101862000_31.7.a053911.79
2024072210101862000_31.7.a053911.36
2024072210101862000_31.7.a053911.37
2024072210101862000_31.7.a053911.38
2024072210101862000_31.7.a053911.31
2024072210101862000_31.7.a053911.75
2024072210101862000_31.7.a053911.32
2024072210101862000_31.7.a053911.76
2024072210101862000_31.7.a053911.33
2024072210101862000_31.7.a053911.77
2024072210101862000_31.7.a053911.34
2024072210101862000_31.7.a053911.78
2024072210101862000_31.7.a053911.39
2024072210101862000_31.7.a053911.1
2024072210101862000_31.7.a053911.82
2024072210101862000_31.7.a053911.83
2024072210101862000_31.7.a053911.40
2024072210101862000_31.7.a053911.84
2024072210101862000_31.7.a053911.41
2024072210101862000_31.7.a053911.85
2024072210101862000_31.7.a053911.80
2024072210101862000_31.7.a053911.81
2024072210101862000_31.7.a053911.46
2024072210101862000_31.7.a053911.47
2024072210101862000_31.7.a053911.48
2024072210101862000_31.7.a053911.49
2024072210101862000_31.7.a053911.42
2024072210101862000_31.7.a053911.86
2024072210101862000_31.7.a053911.43
2024072210101862000_31.7.a053911.87
2024072210101862000_31.7.a053911.44
2024072210101862000_31.7.a053911.88
2024072210101862000_31.7.a053911.45
2024072210101862000_31.7.a053911.50
2024072210101862000_31.7.a053911.51
2024072210101862000_31.7.a053911.52
2024072210101862000_31.7.a053911.13
2024072210101862000_31.7.a053911.57
2024072210101862000_31.7.a053911.14
2024072210101862000_31.7.a053911.58
2024072210101862000_31.7.a053911.15
2024072210101862000_31.7.a053911.59
2024072210101862000_31.7.a053911.16
2024072210101862000_31.7.a053911.53
2024072210101862000_31.7.a053911.10
2024072210101862000_31.7.a053911.54
2024072210101862000_31.7.a053911.11
2024072210101862000_31.7.a053911.55
2024072210101862000_31.7.a053911.12
2024072210101862000_31.7.a053911.56
2024072210101862000_31.7.a053911.2
2024072210101862000_31.7.a053911.3
2024072210101862000_31.7.a053911.4
2024072210101862000_31.7.a053911.5
2024072210101862000_31.7.a053911.6
2024072210101862000_31.7.a053911.17
2024072210101862000_31.7.a053911.7
2024072210101862000_31.7.a053911.18
2024072210101862000_31.7.a053911.8
2024072210101862000_31.7.a053911.19
2024072210101862000_31.7.a053911.9
2024072210101862000_31.7.a053911.60
2024072210101862000_31.7.a053911.61
2024072210101862000_31.7.a053911.62
2024072210101862000_31.7.a053911.63
2024072210101862000_31.7.a053911.24
2024072210101862000_31.7.a053911.68
2024072210101862000_31.7.a053911.25
2024072210101862000_31.7.a053911.69
2024072210101862000_31.7.a053911.26
2024072210101862000_31.7.a053911.27
2024072210101862000_31.7.a053911.20
2024072210101862000_31.7.a053911.64
2024072210101862000_31.7.a053911.21
2024072210101862000_31.7.a053911.65
2024072210101862000_31.7.a053911.22
2024072210101862000_31.7.a053911.66
2024072210101862000_31.7.a053911.23
2024072210101862000_31.7.a053911.67
2024072210101862000_31.7.a053911.28
2024072210101862000_31.7.a053911.29
References_xml – ident: 2024072210101862000_31.7.a053911.3
  doi: 10.1016/j.neuron.2010.05.013
– ident: 2024072210101862000_31.7.a053911.18
– ident: 2024072210101862000_31.7.a053911.39
  doi: 10.1093/cercor/8.5.437
– ident: 2024072210101862000_31.7.a053911.41
  doi: 10.1016/j.cell.2020.01.014
– ident: 2024072210101862000_31.7.a053911.19
  doi: 10.1016/j.bbr.2023.114410
– ident: 2024072210101862000_31.7.a053911.42
  doi: 10.1016/0028-3932(70)90003-5
– ident: 2024072210101862000_31.7.a053911.82
  doi: 10.7554/eLife.66227
– ident: 2024072210101862000_31.7.a053911.40
  doi: 10.7554/eLife.04677
– ident: 2024072210101862000_31.7.a053911.22
  doi: 10.1037/h0059831
– ident: 2024072210101862000_31.7.a053911.6
  doi: 10.1523/JNEUROSCI.20-11-04320.2000
– ident: 2024072210101862000_31.7.a053911.54
  doi: 10.1016/j.nlm.2023.107734
– ident: 2024072210101862000_31.7.a053911.20
  doi: 10.1037/h0045108
– ident: 2024072210101862000_31.7.a053911.71
  doi: 10.1038/nrn.2015.30
– ident: 2024072210101862000_31.7.a053911.75
  doi: 10.3389/fnbeh.2018.00237
– ident: 2024072210101862000_31.7.a053911.2
  doi: 10.1016/0166-4328(81)90025-5
– ident: 2024072210101862000_31.7.a053911.72
  doi: 10.1038/nature08275
– ident: 2024072210101862000_31.7.a053911.79
  doi: 10.1038/s41598-021-04080-3
– ident: 2024072210101862000_31.7.a053911.81
  doi: 10.7554/eLife.79545
– ident: 2024072210101862000_31.7.a053911.33
  doi: 10.1007/s00213-011-2579-7
– ident: 2024072210101862000_31.7.a053911.69
  doi: 10.1523/JNEUROSCI.19-11-04585.1999
– ident: 2024072210101862000_31.7.a053911.43
  doi: 10.1002/hipo.23306
– ident: 2024072210101862000_31.7.a053911.38
  doi: 10.1371/journal.pbio.0030402
– ident: 2024072210101862000_31.7.a053911.34
  doi: 10.1016/j.neuroscience.2016.03.021
– ident: 2024072210101862000_31.7.a053911.17
  doi: 10.1016/j.neuron.2012.12.002
– ident: 2024072210101862000_31.7.a053911.87
  doi: 10.1002/hipo.22719
– ident: 2024072210101862000_31.7.a053911.32
  doi: 10.1093/cercor/bhu062
– ident: 2024072210101862000_31.7.a053911.25
  doi: 10.1016/j.nlm.2020.107215
– ident: 2024072210101862000_31.7.a053911.63
  doi: 10.1073/pnas.1720117115
– ident: 2024072210101862000_31.7.a053911.52
  doi: 10.1038/s41467-017-02764-x
– ident: 2024072210101862000_31.7.a053911.44
  doi: 10.1002/hipo.23594
– ident: 2024072210101862000_31.7.a053911.50
  doi: 10.1101/2022.08.30.505807
– ident: 2024072210101862000_31.7.a053911.26
  doi: 10.1002/hipo.23250
– ident: 2024072210101862000_31.7.a053911.35
  doi: 10.1037/h0058536
– ident: 2024072210101862000_31.7.a053911.85
  doi: 10.1037/h0061626
– ident: 2024072210101862000_31.7.a053911.29
  doi: 10.3389/neuro.07.002.2010
– ident: 2024072210101862000_31.7.a053911.11
  doi: 10.1093/cercor/bhac153
– ident: 2024072210101862000_31.7.a053911.77
  doi: 10.1101/lm.028753.112
– ident: 2024072210101862000_31.7.a053911.88
  doi: 10.1523/JNEUROSCI.0106-19.2019
– ident: 2024072210101862000_31.7.a053911.37
  doi: 10.1523/JNEUROSCI.3761-07.2007
– ident: 2024072210101862000_31.7.a053911.13
  doi: 10.1016/j.isci.2023.107532
– ident: 2024072210101862000_31.7.a053911.14
  doi: 10.1126/science.abb0184
– ident: 2024072210101862000_31.7.a053911.36
  doi: 10.1038/s41467-022-35677-5
– ident: 2024072210101862000_31.7.a053911.46
  doi: 10.1016/j.nlm.2019.05.002
– ident: 2024072210101862000_31.7.a053911.55
  doi: 10.1037/h0028875
– ident: 2024072210101862000_31.7.a053911.58
  doi: 10.1006/cogp.1999.0734
– ident: 2024072210101862000_31.7.a053911.73
  doi: 10.1523/JNEUROSCI.6068-08.2009
– ident: 2024072210101862000_31.7.a053911.86
  doi: 10.1038/s41583-021-00428-w
– ident: 2024072210101862000_31.7.a053911.67
  doi: 10.1016/S0166-4328(01)00204-2
– ident: 2024072210101862000_31.7.a053911.76
  doi: 10.1101/819334
– ident: 2024072210101862000_31.7.a053911.30
  doi: 10.1073/pnas.1114415109
– ident: 2024072210101862000_31.7.a053911.49
  doi: 10.1038/s41467-018-02974-x
– ident: 2024072210101862000_31.7.a053911.56
  doi: 10.1016/j.bbr.2020.112622
– ident: 2024072210101862000_31.7.a053911.59
  doi: 10.1016/j.jneumeth.2005.02.005
– ident: 2024072210101862000_31.7.a053911.4
  doi: 10.3389/fnbeh.2012.00070
– ident: 2024072210101862000_31.7.a053911.74
  doi: 10.1080/14640748808402328
– ident: 2024072210101862000_31.7.a053911.12
  doi: 10.1016/j.neubiorev.2004.09.006
– ident: 2024072210101862000_31.7.a053911.66
  doi: 10.1038/ncomms11388
– ident: 2024072210101862000_31.7.a053911.5
  doi: 10.1002/hipo.22400
– ident: 2024072210101862000_31.7.a053911.48
  doi: 10.1523/JNEUROSCI.1412-21.2022
– ident: 2024072210101862000_31.7.a053911.64
  doi: 10.3758/s13415-012-0097-7
– ident: 2024072210101862000_31.7.a053911.27
  doi: 10.3389/fnbeh.2022.852235
– ident: 2024072210101862000_31.7.a053911.24
  doi: 10.1523/JNEUROSCI.0991-16.2016
– ident: 2024072210101862000_31.7.a053911.31
  doi: 10.1038/s42003-023-05522-6
– ident: 2024072210101862000_31.7.a053911.68
  doi: 10.1196/annals.1401.013
– ident: 2024072210101862000_31.7.a053911.1
  doi: 10.1016/j.celrep.2018.02.091
– ident: 2024072210101862000_31.7.a053911.7
  doi: 10.1016/j.nlm.2011.01.011
– ident: 2024072210101862000_31.7.a053911.9
– ident: 2024072210101862000_31.7.a053911.53
  doi: 10.1038/s41593-018-0209-y
– ident: 2024072210101862000_31.7.a053911.83
  doi: 10.1002/hipo.23394
– ident: 2024072210101862000_31.7.a053911.8
  doi: 10.1016/j.jneumeth.2010.06.020
– ident: 2024072210101862000_31.7.a053911.21
  doi: 10.1101/2023.01.10.523416
– ident: 2024072210101862000_31.7.a053911.61
  doi: 10.1037/h0072238
– ident: 2024072210101862000_31.7.a053911.70
  doi: 10.1037/0735-7044.117.5.1054
– ident: 2024072210101862000_31.7.a053911.78
  doi: 10.1152/jn.00793.2018
– ident: 2024072210101862000_31.7.a053911.84
  doi: 10.1037/h0070532
– ident: 2024072210101862000_31.7.a053911.51
  doi: 10.1016/0028-3932(71)90005-4
– ident: 2024072210101862000_31.7.a053911.15
  doi: 10.1016/j.neuron.2010.03.029
– ident: 2024072210101862000_31.7.a053911.80
  doi: 10.1101/2023.04.02.535279
– ident: 2024072210101862000_31.7.a053911.10
  doi: 10.1016/0031-9384(69)90075-4
– ident: 2024072210101862000_31.7.a053911.45
  doi: 10.1037/h0036970
– ident: 2024072210101862000_31.7.a053911.57
  doi: 10.3389/fnins.2021.676779
– ident: 2024072210101862000_31.7.a053911.28
  doi: 10.1073/pnas.92.12.5506
– ident: 2024072210101862000_31.7.a053911.47
  doi: 10.1016/j.bbr.2016.03.007
– ident: 2024072210101862000_31.7.a053911.16
  doi: 10.1523/JNEUROSCI.3803-06.2006
– ident: 2024072210101862000_31.7.a053911.60
  doi: 10.1080/08856559.1938.10533799
– ident: 2024072210101862000_31.7.a053911.65
  doi: 10.1016/j.neuron.2016.10.028
– ident: 2024072210101862000_31.7.a053911.62
  doi: 10.1038/s41596-019-0176-0
– ident: 2024072210101862000_31.7.a053911.23
  doi: 10.1016/j.neuron.2017.03.011
SSID ssj0007741
Score 2.4389806
Snippet Flexible decision-making requires a balance between exploring features of an environment and exploiting prior knowledge. Behavioral flexibility is typically...
SourceID pubmedcentral
proquest
pubmed
crossref
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage a053911
SubjectTerms Accuracy
Animals
Behavior
Choice Behavior - physiology
Choice learning
Decision making
Decision Making - physiology
Exploratory behavior
Flexibility
Learning - physiology
Male
Mental task performance
Prefrontal cortex
Prefrontal Cortex - physiology
Rats
Rats, Long-Evans
Research Paper
Reward
Spatial discrimination learning
Title Flexible decision-making is related to strategy learning, vicarious trial and error, and medial prefrontal rhythms during spatial set-shifting
URI https://www.ncbi.nlm.nih.gov/pubmed/39038921
https://www.proquest.com/docview/3104135169
https://www.proquest.com/docview/3083671894
https://pubmed.ncbi.nlm.nih.gov/PMC11369635
Volume 31
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9tAEF7cFEIupU36cJuWLZRcarleeSVLxxCahrQuFBLITUirFTZYkrHkQ_IjesoPzsy-ZKcJtL0IIa20xvPtPFbzzRDySY5yyaSfemEhco-HAtacnwovDTLwLwqwMQy5w9Of4dklP78Krnq9242spXWbDcXNg7yS_5EqXAO5Ikv2HyTrXgoX4BzkC0eQMBz_SsanWM1SU590pxyvVM2lsEu5IqmANwm-ZaMr0LoWEWp1g4aAMBkTYHXjDtxAl6tV7fI5DadkCSYUixxgA4DZdTsrG0ttbDAZG-kmsvWa2bxorRW09Gq764LoKjGjV2UWnNQL8HHVfiJSiDI9o2N8FZaiKA3TrGlkl8k9xW9X2vX_pkso_ugeuVnDHCo7AQtOzj-fG-NiNjV87hJgwSYZRcxjD6KpYFNTG3uhETl52ACoxgOLcgjKBfT4kGk28wYYlqVCwzjG0oI-6-ygy060t56Qpz4EH9gX4_uvrgY9OMzMVWtlX7bm2iO79ultR-eP6OV-Eu6GV3PxnDwz4Qg91th6QXqy2icHx1Xa1uU1PaIqQVh9edknu1OTh3FAflvk0XvIo_OGGuTRtqYWedQib0Ad7qjCHQWoUYW7gTrVqKMd6qhBHdWoowZ1dBN1L8nl6deLkzPPdPbwBAQArZePszAKJykE0-kIHHAMcoM8L6IQbF6R-hm4mXKSR77IOIuzAIs-hqHgHD3aMRiiV2Snqiv5hlCW-1xEArRMxnjO81hAkJIpgja8W_A-GVgxJMKUvcfuK4tEhb8jlizKRAswAQH2yZEbvtT1Xh4beGhlmhiV0CQQK3FseRnGffLR3QaFjV_h0krCn5uMsR48eIQx_LTXGgJuJoudPom2wOEGYDH47TvVfKaKwmNvJjCmwdtHX_qO7HVL7ZDstKu1fA8edZt9UAC_A75Jzuk
linkProvider Colorado Alliance of Research Libraries
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Flexible+decision-making+is+related+to+strategy+learning%2C+vicarious+trial+and+error%2C+and+medial+prefrontal+rhythms+during+spatial+set-shifting&rft.jtitle=Learning+%26+memory+%28Cold+Spring+Harbor%2C+N.Y.%29&rft.au=Miles%2C+Jesse+T&rft.au=Mullins%2C+Ginger+L&rft.au=Mizumori%2C+Sheri+J+Y&rft.date=2024-07-01&rft.eissn=1549-5485&rft.volume=31&rft.issue=7&rft_id=info:doi/10.1101%2Flm.053911.123&rft_id=info%3Apmid%2F39038921&rft.externalDocID=39038921
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1549-5485&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1549-5485&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1549-5485&client=summon