Flexible decision-making is related to strategy learning, vicarious trial and error, and medial prefrontal rhythms during spatial set-shifting
Flexible decision-making requires a balance between exploring features of an environment and exploiting prior knowledge. Behavioral flexibility is typically measured by how long it takes subjects to consistently make accurate choices after reward contingencies switch or task rules change. This measu...
Saved in:
Published in | Learning & memory (Cold Spring Harbor, N.Y.) Vol. 31; no. 7; p. a053911 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
United States
Cold Spring Harbor Laboratory Press
01.07.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Flexible decision-making requires a balance between exploring features of an environment and exploiting prior knowledge. Behavioral flexibility is typically measured by how long it takes subjects to consistently make accurate choices after reward contingencies switch or task rules change. This measure, however, only allows for tracking flexibility across multiple trials, and does not assess the degree of flexibility. Plus, although increases in decision-making accuracy are strong indicators of learning, other decision-making behaviors have also been suggested as markers of flexibility, such as the on-the-fly decision reversals known as vicarious trial and error (VTE) or switches to a different, but incorrect, strategy. We sought to relate flexibility, learning, and neural activity by comparing choice history-derived evaluation of strategy use with changes in decision-making accuracy and VTE behavior while recording from the medial prefrontal cortex (mPFC) in rats. Using a set-shifting task that required rats to repeatedly switch between spatial decision-making strategies, we show that a previously developed strategy likelihood estimation procedure could identify putative learning points based on decision history. We confirm the efficacy of learning point estimation by showing increases in decision-making accuracy aligned to the learning point. Additionally, we show increases in the rate of VTE behavior surrounding identified learning points. By calculating changes in strategy likelihoods across trials, we tracked flexibility on a trial-by-trial basis and show that flexibility scores also increased around learning points. Further, we demonstrate that VTE behaviors could be separated into indecisive and deliberative subtypes depending on whether they occurred during periods of high or low flexibility and whether they led to correct or incorrect choice outcomes. Field potential recordings from the mPFC during decisions exhibited increased beta band activity on trials with VTE compared to non-VTE trials, as well as increased gamma during periods when learned strategies could be exploited compared to prelearning, exploratory periods. This study demonstrates that increased behavioral flexibility and VTE rates are often aligned to task learning. These relationships can break down, however, suggesting that VTE is not always an indicator of deliberative decision-making. Additionally, we further implicate the mPFC in decision-making and learning by showing increased beta-based activity on VTE trials and increased gamma after learning. |
---|---|
AbstractList | Flexible decision-making requires a balance between exploring features of an environment and exploiting prior knowledge. Behavioral flexibility is typically measured by how long it takes subjects to consistently make accurate choices after reward contingencies switch or task rules change. This measure, however, only allows for tracking flexibility across multiple trials, and does not assess the degree of flexibility. Plus, although increases in decision-making accuracy are strong indicators of learning, other decision-making behaviors have also been suggested as markers of flexibility, such as the on-the-fly decision reversals known as vicarious trial and error (VTE) or switches to a different, but incorrect, strategy. We sought to relate flexibility, learning, and neural activity by comparing choice history-derived evaluation of strategy use with changes in decision-making accuracy and VTE behavior while recording from the medial prefrontal cortex (mPFC) in rats. Using a set-shifting task that required rats to repeatedly switch between spatial decision-making strategies, we show that a previously developed strategy likelihood estimation procedure could identify putative learning points based on decision history. We confirm the efficacy of learning point estimation by showing increases in decision-making accuracy aligned to the learning point. Additionally, we show increases in the rate of VTE behavior surrounding identified learning points. By calculating changes in strategy likelihoods across trials, we tracked flexibility on a trial-by-trial basis and show that flexibility scores also increased around learning points. Further, we demonstrate that VTE behaviors could be separated into indecisive and deliberative subtypes depending on whether they occurred during periods of high or low flexibility and whether they led to correct or incorrect choice outcomes. Field potential recordings from the mPFC during decisions exhibited increased beta band activity on trials with VTE compared to non-VTE trials, as well as increased gamma during periods when learned strategies could be exploited compared to prelearning, exploratory periods. This study demonstrates that increased behavioral flexibility and VTE rates are often aligned to task learning. These relationships can break down, however, suggesting that VTE is not always an indicator of deliberative decision-making. Additionally, we further implicate the mPFC in decision-making and learning by showing increased beta-based activity on VTE trials and increased gamma after learning. Flexible decision-making requires a balance between exploring features of an environment and exploiting prior knowledge. Behavioral flexibility is typically measured by how long it takes subjects to consistently make accurate choices after reward contingencies switch or task rules change. This measure, however, only allows for tracking flexibility across multiple trials, and does not assess the degree of flexibility. Plus, although increases in decision-making accuracy are strong indicators of learning, other decision-making behaviors have also been suggested as markers of flexibility, such as the on-the-fly decision reversals known as vicarious trial and error (VTE) or switches to a different, but incorrect, strategy. We sought to relate flexibility, learning, and neural activity by comparing choice history-derived evaluation of strategy use with changes in decision-making accuracy and VTE behavior while recording from the medial prefrontal cortex (mPFC) in rats. Using a set-shifting task that required rats to repeatedly switch between spatial decision-making strategies, we show that a previously developed strategy likelihood estimation procedure could identify putative learning points based on decision history. We confirm the efficacy of learning point estimation by showing increases in decision-making accuracy aligned to the learning point. Additionally, we show increases in the rate of VTE behavior surrounding identified learning points. By calculating changes in strategy likelihoods across trials, we tracked flexibility on a trial-by-trial basis and show that flexibility scores also increased around learning points. Further, we demonstrate that VTE behaviors could be separated into indecisive and deliberative subtypes depending on whether they occurred during periods of high or low flexibility and whether they led to correct or incorrect choice outcomes. Field potential recordings from the mPFC during decisions exhibited increased beta band activity on trials with VTE compared to non-VTE trials, as well as increased gamma during periods when learned strategies could be exploited compared to prelearning, exploratory periods. This study demonstrates that increased behavioral flexibility and VTE rates are often aligned to task learning. These relationships can break down, however, suggesting that VTE is not always an indicator of deliberative decision-making. Additionally, we further implicate the mPFC in decision-making and learning by showing increased beta-based activity on VTE trials and increased gamma after learning.Flexible decision-making requires a balance between exploring features of an environment and exploiting prior knowledge. Behavioral flexibility is typically measured by how long it takes subjects to consistently make accurate choices after reward contingencies switch or task rules change. This measure, however, only allows for tracking flexibility across multiple trials, and does not assess the degree of flexibility. Plus, although increases in decision-making accuracy are strong indicators of learning, other decision-making behaviors have also been suggested as markers of flexibility, such as the on-the-fly decision reversals known as vicarious trial and error (VTE) or switches to a different, but incorrect, strategy. We sought to relate flexibility, learning, and neural activity by comparing choice history-derived evaluation of strategy use with changes in decision-making accuracy and VTE behavior while recording from the medial prefrontal cortex (mPFC) in rats. Using a set-shifting task that required rats to repeatedly switch between spatial decision-making strategies, we show that a previously developed strategy likelihood estimation procedure could identify putative learning points based on decision history. We confirm the efficacy of learning point estimation by showing increases in decision-making accuracy aligned to the learning point. Additionally, we show increases in the rate of VTE behavior surrounding identified learning points. By calculating changes in strategy likelihoods across trials, we tracked flexibility on a trial-by-trial basis and show that flexibility scores also increased around learning points. Further, we demonstrate that VTE behaviors could be separated into indecisive and deliberative subtypes depending on whether they occurred during periods of high or low flexibility and whether they led to correct or incorrect choice outcomes. Field potential recordings from the mPFC during decisions exhibited increased beta band activity on trials with VTE compared to non-VTE trials, as well as increased gamma during periods when learned strategies could be exploited compared to prelearning, exploratory periods. This study demonstrates that increased behavioral flexibility and VTE rates are often aligned to task learning. These relationships can break down, however, suggesting that VTE is not always an indicator of deliberative decision-making. Additionally, we further implicate the mPFC in decision-making and learning by showing increased beta-based activity on VTE trials and increased gamma after learning. |
Author | Mullins, Ginger L. Mizumori, Sheri J. Y. Miles, Jesse T. |
AuthorAffiliation | 1 Neuroscience Graduate Program, University of Washington, Seattle, Washington 98195, USA 2 Psychology Department, University of Washington, Seattle, Washington 98195, USA |
AuthorAffiliation_xml | – name: 1 Neuroscience Graduate Program, University of Washington, Seattle, Washington 98195, USA – name: 2 Psychology Department, University of Washington, Seattle, Washington 98195, USA |
Author_xml | – sequence: 1 givenname: Jesse T. orcidid: 0000-0002-4241-4733 surname: Miles fullname: Miles, Jesse T. – sequence: 2 givenname: Ginger L. surname: Mullins fullname: Mullins, Ginger L. – sequence: 3 givenname: Sheri J. Y. orcidid: 0000-0003-0240-2188 surname: Mizumori fullname: Mizumori, Sheri J. Y. |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/39038921$$D View this record in MEDLINE/PubMed |
BookMark | eNp1kk1v3CAQhlGVqvloj71WSL3kEG8YgzE-VVWUtJUi9ZKeETZ4lxTDFnDU_RP5zcHdNEoj9cSrmYdh5mWO0YEP3iD0HsgKgMC5m1akoR3ACmr6Ch1Bw7qqYaI5eKYP0XFKt4SQtmXwBh3SjlDR1XCE7q-c-W17Z7A2g002-GpSP61fY5twNE5lo3EOOOVY5HqHnVHRl_wZvrODijbMCedolcPKa2xiDPHsj5yMXqLbaMYYfC4ybnZ5MyWs57g8kLYqL0QyuUobO-YSfItej8ol8-7xPEE_ri5vLr5W19-_fLv4fF0NDHiuNO254K2qOVGE1xREzRutR8GFaEdV94xw02pRDz2Drm8IrQXnA2PFAUEJoSfo077udu5Lo4PxZT4nt9FOKu5kUFb-m_F2I9fhTgJQ3nHalAqnjxVi-DWblOVk02CcU94UTyQlgvIWRMcK-vEFehvm6Mt8kgJhQBvgXaE-PG_pqZe_f1WAag8MMaRUbH1CgMhlF6Sb5H4XZNmFwtMX_GBzsTwsE1n3n1sP5Jm45A |
CitedBy_id | crossref_primary_10_1523_JNEUROSCI_1241_24_2025 crossref_primary_10_1002_hipo_23675 |
Cites_doi | 10.1016/j.neuron.2010.05.013 10.1093/cercor/8.5.437 10.1016/j.cell.2020.01.014 10.1016/j.bbr.2023.114410 10.1016/0028-3932(70)90003-5 10.7554/eLife.66227 10.7554/eLife.04677 10.1037/h0059831 10.1523/JNEUROSCI.20-11-04320.2000 10.1016/j.nlm.2023.107734 10.1037/h0045108 10.1038/nrn.2015.30 10.3389/fnbeh.2018.00237 10.1016/0166-4328(81)90025-5 10.1038/nature08275 10.1038/s41598-021-04080-3 10.7554/eLife.79545 10.1007/s00213-011-2579-7 10.1523/JNEUROSCI.19-11-04585.1999 10.1002/hipo.23306 10.1371/journal.pbio.0030402 10.1016/j.neuroscience.2016.03.021 10.1016/j.neuron.2012.12.002 10.1002/hipo.22719 10.1093/cercor/bhu062 10.1016/j.nlm.2020.107215 10.1073/pnas.1720117115 10.1038/s41467-017-02764-x 10.1002/hipo.23594 10.1101/2022.08.30.505807 10.1002/hipo.23250 10.1037/h0058536 10.1037/h0061626 10.3389/neuro.07.002.2010 10.1093/cercor/bhac153 10.1101/lm.028753.112 10.1523/JNEUROSCI.0106-19.2019 10.1523/JNEUROSCI.3761-07.2007 10.1016/j.isci.2023.107532 10.1126/science.abb0184 10.1038/s41467-022-35677-5 10.1016/j.nlm.2019.05.002 10.1037/h0028875 10.1006/cogp.1999.0734 10.1523/JNEUROSCI.6068-08.2009 10.1038/s41583-021-00428-w 10.1016/S0166-4328(01)00204-2 10.1101/819334 10.1073/pnas.1114415109 10.1038/s41467-018-02974-x 10.1016/j.bbr.2020.112622 10.1016/j.jneumeth.2005.02.005 10.3389/fnbeh.2012.00070 10.1080/14640748808402328 10.1016/j.neubiorev.2004.09.006 10.1038/ncomms11388 10.1002/hipo.22400 10.1523/JNEUROSCI.1412-21.2022 10.3758/s13415-012-0097-7 10.3389/fnbeh.2022.852235 10.1523/JNEUROSCI.0991-16.2016 10.1038/s42003-023-05522-6 10.1196/annals.1401.013 10.1016/j.celrep.2018.02.091 10.1016/j.nlm.2011.01.011 10.1038/s41593-018-0209-y 10.1002/hipo.23394 10.1016/j.jneumeth.2010.06.020 10.1101/2023.01.10.523416 10.1037/h0072238 10.1037/0735-7044.117.5.1054 10.1152/jn.00793.2018 10.1037/h0070532 10.1016/0028-3932(71)90005-4 10.1016/j.neuron.2010.03.029 10.1101/2023.04.02.535279 10.1016/0031-9384(69)90075-4 10.1037/h0036970 10.3389/fnins.2021.676779 10.1073/pnas.92.12.5506 10.1016/j.bbr.2016.03.007 10.1523/JNEUROSCI.3803-06.2006 10.1080/08856559.1938.10533799 10.1016/j.neuron.2016.10.028 10.1038/s41596-019-0176-0 10.1016/j.neuron.2017.03.011 |
ContentType | Journal Article |
Copyright | 2024 Miles et al.; Published by Cold Spring Harbor Laboratory Press. Copyright Cold Spring Harbor Laboratory Press Jul 2024 2024 |
Copyright_xml | – notice: 2024 Miles et al.; Published by Cold Spring Harbor Laboratory Press. – notice: Copyright Cold Spring Harbor Laboratory Press Jul 2024 – notice: 2024 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QG 7QR 7SS 7TK 8FD FR3 P64 7X8 5PM |
DOI | 10.1101/lm.053911.123 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Animal Behavior Abstracts Chemoreception Abstracts Entomology Abstracts (Full archive) Neurosciences Abstracts Technology Research Database Engineering Research Database Biotechnology and BioEngineering Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Entomology Abstracts Technology Research Database Animal Behavior Abstracts Chemoreception Abstracts Engineering Research Database Neurosciences Abstracts Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitleList | Entomology Abstracts CrossRef MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Anatomy & Physiology |
DocumentTitleAlternate | Flexible decision-making in spatial set-shifting |
EISSN | 1549-5485 |
ExternalDocumentID | PMC11369635 39038921 10_1101_lm_053911_123 |
Genre | Journal Article |
GrantInformation_xml | – fundername: NIMH NIH HHS grantid: R21 MH119391 |
GroupedDBID | --- -DZ .GJ 18M 29L 2WC 4.4 53G 5GY 5VS AAFWJ AAYXX ABDIX ABIVO ACLKE ADBBV AENEX AHPUY ALMA_UNASSIGNED_HOLDINGS BAWUL BTFSW C1A CITATION CS3 DIK DU5 E3Z EBS EJD F5P GX1 H13 KQ8 MV1 OK1 P2P P6G RCX RHI RPM SJN TR2 W8F WOQ WOW CGR CUY CVF ECM EIF NPM 7QG 7QR 7SS 7TK 8FD FR3 P64 7X8 5PM |
ID | FETCH-LOGICAL-c416t-d3b6867a260a062318265ddf86887fa2b406e7d82cb419b5032866c4400783003 |
ISSN | 1549-5485 1072-0502 |
IngestDate | Thu Aug 21 18:33:18 EDT 2025 Fri Jul 11 09:58:38 EDT 2025 Sat Jul 26 02:04:47 EDT 2025 Thu Jul 03 03:56:17 EDT 2025 Thu Apr 24 23:01:19 EDT 2025 Tue Jul 01 02:05:33 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 7 |
Language | English |
License | 2024 Miles et al.; Published by Cold Spring Harbor Laboratory Press. This article is distributed exclusively by Cold Spring Harbor Laboratory Press for the first 12 months after the full-issue publication date (see http://learnmem.cshlp.org/site/misc/terms.xhtml). After 12 months, it is available under a Creative Commons License (Attribution-NonCommercial 4.0 International), as described at http://creativecommons.org/licenses/by-nc/4.0/. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c416t-d3b6867a260a062318265ddf86887fa2b406e7d82cb419b5032866c4400783003 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0003-0240-2188 0000-0002-4241-4733 |
OpenAccessLink | https://pubmed.ncbi.nlm.nih.gov/PMC11369635 |
PMID | 39038921 |
PQID | 3104135169 |
PQPubID | 2049520 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_11369635 proquest_miscellaneous_3083671894 proquest_journals_3104135169 pubmed_primary_39038921 crossref_primary_10_1101_lm_053911_123 crossref_citationtrail_10_1101_lm_053911_123 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-07-00 2024-Jul 20240701 |
PublicationDateYYYYMMDD | 2024-07-01 |
PublicationDate_xml | – month: 07 year: 2024 text: 2024-07-00 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Cold Spring Harbor |
PublicationTitle | Learning & memory (Cold Spring Harbor, N.Y.) |
PublicationTitleAlternate | Learn Mem |
PublicationYear | 2024 |
Publisher | Cold Spring Harbor Laboratory Press |
Publisher_xml | – name: Cold Spring Harbor Laboratory Press |
References | 2024072210101862000_31.7.a053911.71 2024072210101862000_31.7.a053911.72 2024072210101862000_31.7.a053911.73 2024072210101862000_31.7.a053911.30 2024072210101862000_31.7.a053911.74 2024072210101862000_31.7.a053911.70 2024072210101862000_31.7.a053911.35 2024072210101862000_31.7.a053911.79 2024072210101862000_31.7.a053911.36 2024072210101862000_31.7.a053911.37 2024072210101862000_31.7.a053911.38 2024072210101862000_31.7.a053911.31 2024072210101862000_31.7.a053911.75 2024072210101862000_31.7.a053911.32 2024072210101862000_31.7.a053911.76 2024072210101862000_31.7.a053911.33 2024072210101862000_31.7.a053911.77 2024072210101862000_31.7.a053911.34 2024072210101862000_31.7.a053911.78 2024072210101862000_31.7.a053911.39 2024072210101862000_31.7.a053911.1 2024072210101862000_31.7.a053911.82 2024072210101862000_31.7.a053911.83 2024072210101862000_31.7.a053911.40 2024072210101862000_31.7.a053911.84 2024072210101862000_31.7.a053911.41 2024072210101862000_31.7.a053911.85 2024072210101862000_31.7.a053911.80 2024072210101862000_31.7.a053911.81 2024072210101862000_31.7.a053911.46 2024072210101862000_31.7.a053911.47 2024072210101862000_31.7.a053911.48 2024072210101862000_31.7.a053911.49 2024072210101862000_31.7.a053911.42 2024072210101862000_31.7.a053911.86 2024072210101862000_31.7.a053911.43 2024072210101862000_31.7.a053911.87 2024072210101862000_31.7.a053911.44 2024072210101862000_31.7.a053911.88 2024072210101862000_31.7.a053911.45 2024072210101862000_31.7.a053911.50 2024072210101862000_31.7.a053911.51 2024072210101862000_31.7.a053911.52 2024072210101862000_31.7.a053911.13 2024072210101862000_31.7.a053911.57 2024072210101862000_31.7.a053911.14 2024072210101862000_31.7.a053911.58 2024072210101862000_31.7.a053911.15 2024072210101862000_31.7.a053911.59 2024072210101862000_31.7.a053911.16 2024072210101862000_31.7.a053911.53 2024072210101862000_31.7.a053911.10 2024072210101862000_31.7.a053911.54 2024072210101862000_31.7.a053911.11 2024072210101862000_31.7.a053911.55 2024072210101862000_31.7.a053911.12 2024072210101862000_31.7.a053911.56 2024072210101862000_31.7.a053911.2 2024072210101862000_31.7.a053911.3 2024072210101862000_31.7.a053911.4 2024072210101862000_31.7.a053911.5 2024072210101862000_31.7.a053911.6 2024072210101862000_31.7.a053911.17 2024072210101862000_31.7.a053911.7 2024072210101862000_31.7.a053911.18 2024072210101862000_31.7.a053911.8 2024072210101862000_31.7.a053911.19 2024072210101862000_31.7.a053911.9 2024072210101862000_31.7.a053911.60 2024072210101862000_31.7.a053911.61 2024072210101862000_31.7.a053911.62 2024072210101862000_31.7.a053911.63 2024072210101862000_31.7.a053911.24 2024072210101862000_31.7.a053911.68 2024072210101862000_31.7.a053911.25 2024072210101862000_31.7.a053911.69 2024072210101862000_31.7.a053911.26 2024072210101862000_31.7.a053911.27 2024072210101862000_31.7.a053911.20 2024072210101862000_31.7.a053911.64 2024072210101862000_31.7.a053911.21 2024072210101862000_31.7.a053911.65 2024072210101862000_31.7.a053911.22 2024072210101862000_31.7.a053911.66 2024072210101862000_31.7.a053911.23 2024072210101862000_31.7.a053911.67 2024072210101862000_31.7.a053911.28 2024072210101862000_31.7.a053911.29 |
References_xml | – ident: 2024072210101862000_31.7.a053911.3 doi: 10.1016/j.neuron.2010.05.013 – ident: 2024072210101862000_31.7.a053911.18 – ident: 2024072210101862000_31.7.a053911.39 doi: 10.1093/cercor/8.5.437 – ident: 2024072210101862000_31.7.a053911.41 doi: 10.1016/j.cell.2020.01.014 – ident: 2024072210101862000_31.7.a053911.19 doi: 10.1016/j.bbr.2023.114410 – ident: 2024072210101862000_31.7.a053911.42 doi: 10.1016/0028-3932(70)90003-5 – ident: 2024072210101862000_31.7.a053911.82 doi: 10.7554/eLife.66227 – ident: 2024072210101862000_31.7.a053911.40 doi: 10.7554/eLife.04677 – ident: 2024072210101862000_31.7.a053911.22 doi: 10.1037/h0059831 – ident: 2024072210101862000_31.7.a053911.6 doi: 10.1523/JNEUROSCI.20-11-04320.2000 – ident: 2024072210101862000_31.7.a053911.54 doi: 10.1016/j.nlm.2023.107734 – ident: 2024072210101862000_31.7.a053911.20 doi: 10.1037/h0045108 – ident: 2024072210101862000_31.7.a053911.71 doi: 10.1038/nrn.2015.30 – ident: 2024072210101862000_31.7.a053911.75 doi: 10.3389/fnbeh.2018.00237 – ident: 2024072210101862000_31.7.a053911.2 doi: 10.1016/0166-4328(81)90025-5 – ident: 2024072210101862000_31.7.a053911.72 doi: 10.1038/nature08275 – ident: 2024072210101862000_31.7.a053911.79 doi: 10.1038/s41598-021-04080-3 – ident: 2024072210101862000_31.7.a053911.81 doi: 10.7554/eLife.79545 – ident: 2024072210101862000_31.7.a053911.33 doi: 10.1007/s00213-011-2579-7 – ident: 2024072210101862000_31.7.a053911.69 doi: 10.1523/JNEUROSCI.19-11-04585.1999 – ident: 2024072210101862000_31.7.a053911.43 doi: 10.1002/hipo.23306 – ident: 2024072210101862000_31.7.a053911.38 doi: 10.1371/journal.pbio.0030402 – ident: 2024072210101862000_31.7.a053911.34 doi: 10.1016/j.neuroscience.2016.03.021 – ident: 2024072210101862000_31.7.a053911.17 doi: 10.1016/j.neuron.2012.12.002 – ident: 2024072210101862000_31.7.a053911.87 doi: 10.1002/hipo.22719 – ident: 2024072210101862000_31.7.a053911.32 doi: 10.1093/cercor/bhu062 – ident: 2024072210101862000_31.7.a053911.25 doi: 10.1016/j.nlm.2020.107215 – ident: 2024072210101862000_31.7.a053911.63 doi: 10.1073/pnas.1720117115 – ident: 2024072210101862000_31.7.a053911.52 doi: 10.1038/s41467-017-02764-x – ident: 2024072210101862000_31.7.a053911.44 doi: 10.1002/hipo.23594 – ident: 2024072210101862000_31.7.a053911.50 doi: 10.1101/2022.08.30.505807 – ident: 2024072210101862000_31.7.a053911.26 doi: 10.1002/hipo.23250 – ident: 2024072210101862000_31.7.a053911.35 doi: 10.1037/h0058536 – ident: 2024072210101862000_31.7.a053911.85 doi: 10.1037/h0061626 – ident: 2024072210101862000_31.7.a053911.29 doi: 10.3389/neuro.07.002.2010 – ident: 2024072210101862000_31.7.a053911.11 doi: 10.1093/cercor/bhac153 – ident: 2024072210101862000_31.7.a053911.77 doi: 10.1101/lm.028753.112 – ident: 2024072210101862000_31.7.a053911.88 doi: 10.1523/JNEUROSCI.0106-19.2019 – ident: 2024072210101862000_31.7.a053911.37 doi: 10.1523/JNEUROSCI.3761-07.2007 – ident: 2024072210101862000_31.7.a053911.13 doi: 10.1016/j.isci.2023.107532 – ident: 2024072210101862000_31.7.a053911.14 doi: 10.1126/science.abb0184 – ident: 2024072210101862000_31.7.a053911.36 doi: 10.1038/s41467-022-35677-5 – ident: 2024072210101862000_31.7.a053911.46 doi: 10.1016/j.nlm.2019.05.002 – ident: 2024072210101862000_31.7.a053911.55 doi: 10.1037/h0028875 – ident: 2024072210101862000_31.7.a053911.58 doi: 10.1006/cogp.1999.0734 – ident: 2024072210101862000_31.7.a053911.73 doi: 10.1523/JNEUROSCI.6068-08.2009 – ident: 2024072210101862000_31.7.a053911.86 doi: 10.1038/s41583-021-00428-w – ident: 2024072210101862000_31.7.a053911.67 doi: 10.1016/S0166-4328(01)00204-2 – ident: 2024072210101862000_31.7.a053911.76 doi: 10.1101/819334 – ident: 2024072210101862000_31.7.a053911.30 doi: 10.1073/pnas.1114415109 – ident: 2024072210101862000_31.7.a053911.49 doi: 10.1038/s41467-018-02974-x – ident: 2024072210101862000_31.7.a053911.56 doi: 10.1016/j.bbr.2020.112622 – ident: 2024072210101862000_31.7.a053911.59 doi: 10.1016/j.jneumeth.2005.02.005 – ident: 2024072210101862000_31.7.a053911.4 doi: 10.3389/fnbeh.2012.00070 – ident: 2024072210101862000_31.7.a053911.74 doi: 10.1080/14640748808402328 – ident: 2024072210101862000_31.7.a053911.12 doi: 10.1016/j.neubiorev.2004.09.006 – ident: 2024072210101862000_31.7.a053911.66 doi: 10.1038/ncomms11388 – ident: 2024072210101862000_31.7.a053911.5 doi: 10.1002/hipo.22400 – ident: 2024072210101862000_31.7.a053911.48 doi: 10.1523/JNEUROSCI.1412-21.2022 – ident: 2024072210101862000_31.7.a053911.64 doi: 10.3758/s13415-012-0097-7 – ident: 2024072210101862000_31.7.a053911.27 doi: 10.3389/fnbeh.2022.852235 – ident: 2024072210101862000_31.7.a053911.24 doi: 10.1523/JNEUROSCI.0991-16.2016 – ident: 2024072210101862000_31.7.a053911.31 doi: 10.1038/s42003-023-05522-6 – ident: 2024072210101862000_31.7.a053911.68 doi: 10.1196/annals.1401.013 – ident: 2024072210101862000_31.7.a053911.1 doi: 10.1016/j.celrep.2018.02.091 – ident: 2024072210101862000_31.7.a053911.7 doi: 10.1016/j.nlm.2011.01.011 – ident: 2024072210101862000_31.7.a053911.9 – ident: 2024072210101862000_31.7.a053911.53 doi: 10.1038/s41593-018-0209-y – ident: 2024072210101862000_31.7.a053911.83 doi: 10.1002/hipo.23394 – ident: 2024072210101862000_31.7.a053911.8 doi: 10.1016/j.jneumeth.2010.06.020 – ident: 2024072210101862000_31.7.a053911.21 doi: 10.1101/2023.01.10.523416 – ident: 2024072210101862000_31.7.a053911.61 doi: 10.1037/h0072238 – ident: 2024072210101862000_31.7.a053911.70 doi: 10.1037/0735-7044.117.5.1054 – ident: 2024072210101862000_31.7.a053911.78 doi: 10.1152/jn.00793.2018 – ident: 2024072210101862000_31.7.a053911.84 doi: 10.1037/h0070532 – ident: 2024072210101862000_31.7.a053911.51 doi: 10.1016/0028-3932(71)90005-4 – ident: 2024072210101862000_31.7.a053911.15 doi: 10.1016/j.neuron.2010.03.029 – ident: 2024072210101862000_31.7.a053911.80 doi: 10.1101/2023.04.02.535279 – ident: 2024072210101862000_31.7.a053911.10 doi: 10.1016/0031-9384(69)90075-4 – ident: 2024072210101862000_31.7.a053911.45 doi: 10.1037/h0036970 – ident: 2024072210101862000_31.7.a053911.57 doi: 10.3389/fnins.2021.676779 – ident: 2024072210101862000_31.7.a053911.28 doi: 10.1073/pnas.92.12.5506 – ident: 2024072210101862000_31.7.a053911.47 doi: 10.1016/j.bbr.2016.03.007 – ident: 2024072210101862000_31.7.a053911.16 doi: 10.1523/JNEUROSCI.3803-06.2006 – ident: 2024072210101862000_31.7.a053911.60 doi: 10.1080/08856559.1938.10533799 – ident: 2024072210101862000_31.7.a053911.65 doi: 10.1016/j.neuron.2016.10.028 – ident: 2024072210101862000_31.7.a053911.62 doi: 10.1038/s41596-019-0176-0 – ident: 2024072210101862000_31.7.a053911.23 doi: 10.1016/j.neuron.2017.03.011 |
SSID | ssj0007741 |
Score | 2.4389806 |
Snippet | Flexible decision-making requires a balance between exploring features of an environment and exploiting prior knowledge. Behavioral flexibility is typically... |
SourceID | pubmedcentral proquest pubmed crossref |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | a053911 |
SubjectTerms | Accuracy Animals Behavior Choice Behavior - physiology Choice learning Decision making Decision Making - physiology Exploratory behavior Flexibility Learning - physiology Male Mental task performance Prefrontal cortex Prefrontal Cortex - physiology Rats Rats, Long-Evans Research Paper Reward Spatial discrimination learning |
Title | Flexible decision-making is related to strategy learning, vicarious trial and error, and medial prefrontal rhythms during spatial set-shifting |
URI | https://www.ncbi.nlm.nih.gov/pubmed/39038921 https://www.proquest.com/docview/3104135169 https://www.proquest.com/docview/3083671894 https://pubmed.ncbi.nlm.nih.gov/PMC11369635 |
Volume | 31 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9tAEF7cFEIupU36cJuWLZRcarleeSVLxxCahrQuFBLITUirFTZYkrHkQ_IjesoPzsy-ZKcJtL0IIa20xvPtPFbzzRDySY5yyaSfemEhco-HAtacnwovDTLwLwqwMQy5w9Of4dklP78Krnq9242spXWbDcXNg7yS_5EqXAO5Ikv2HyTrXgoX4BzkC0eQMBz_SsanWM1SU590pxyvVM2lsEu5IqmANwm-ZaMr0LoWEWp1g4aAMBkTYHXjDtxAl6tV7fI5DadkCSYUixxgA4DZdTsrG0ttbDAZG-kmsvWa2bxorRW09Gq764LoKjGjV2UWnNQL8HHVfiJSiDI9o2N8FZaiKA3TrGlkl8k9xW9X2vX_pkso_ugeuVnDHCo7AQtOzj-fG-NiNjV87hJgwSYZRcxjD6KpYFNTG3uhETl52ACoxgOLcgjKBfT4kGk28wYYlqVCwzjG0oI-6-ygy060t56Qpz4EH9gX4_uvrgY9OMzMVWtlX7bm2iO79ultR-eP6OV-Eu6GV3PxnDwz4Qg91th6QXqy2icHx1Xa1uU1PaIqQVh9edknu1OTh3FAflvk0XvIo_OGGuTRtqYWedQib0Ad7qjCHQWoUYW7gTrVqKMd6qhBHdWoowZ1dBN1L8nl6deLkzPPdPbwBAQArZePszAKJykE0-kIHHAMcoM8L6IQbF6R-hm4mXKSR77IOIuzAIs-hqHgHD3aMRiiV2Snqiv5hlCW-1xEArRMxnjO81hAkJIpgja8W_A-GVgxJMKUvcfuK4tEhb8jlizKRAswAQH2yZEbvtT1Xh4beGhlmhiV0CQQK3FseRnGffLR3QaFjV_h0krCn5uMsR48eIQx_LTXGgJuJoudPom2wOEGYDH47TvVfKaKwmNvJjCmwdtHX_qO7HVL7ZDstKu1fA8edZt9UAC_A75Jzuk |
linkProvider | Colorado Alliance of Research Libraries |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Flexible+decision-making+is+related+to+strategy+learning%2C+vicarious+trial+and+error%2C+and+medial+prefrontal+rhythms+during+spatial+set-shifting&rft.jtitle=Learning+%26+memory+%28Cold+Spring+Harbor%2C+N.Y.%29&rft.au=Miles%2C+Jesse+T&rft.au=Mullins%2C+Ginger+L&rft.au=Mizumori%2C+Sheri+J+Y&rft.date=2024-07-01&rft.eissn=1549-5485&rft.volume=31&rft.issue=7&rft_id=info:doi/10.1101%2Flm.053911.123&rft_id=info%3Apmid%2F39038921&rft.externalDocID=39038921 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1549-5485&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1549-5485&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1549-5485&client=summon |