Gravitationally Decoupled Strange Star Model beyond the Standard Maximum Mass Limit in Einstein–Gauss–Bonnet Gravity

The recent theoretical advance known as the minimal geometric deformation (MGD) method has initiated renewed interest in investigating higher-curvature gravitational effects in relativistic astrophysics. In this work, we model a strange star within the context of Einstein–Gauss–Bonnet gravity with t...

Full description

Saved in:
Bibliographic Details
Published inThe Astrophysical journal Vol. 925; no. 2; pp. 208 - 225
Main Authors Maurya, S. K., Newton Singh, Ksh, Govender, M., Hansraj, Sudan
Format Journal Article
LanguageEnglish
Published Philadelphia The American Astronomical Society 01.02.2022
IOP Publishing
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The recent theoretical advance known as the minimal geometric deformation (MGD) method has initiated renewed interest in investigating higher-curvature gravitational effects in relativistic astrophysics. In this work, we model a strange star within the context of Einstein–Gauss–Bonnet gravity with the help of the MGD technique. Starting off with the Tolman metric ansatz, together with the MIT bag model equation of state applicable to hadronic matter, anisotropy is introduced via the superposition of the seed source and the decoupled energy-momentum tensor. The solution of the governing systems of equations bifurcates into two distinct models, namely, the mimicking of the θ sector to the seed radial pressure and energy density and a regular fluid model. Each of these models can be interpreted as self-gravitating static, compact objects with the exterior described by the vacuum Boulware–Deser solution. Utilizing observational data for three stellar candidates, namely PSR J1614–2230, PSR J1903+317, and LMC X-4, we subject our solutions to rigorous viability tests based on regularity and stability. We find that the Einstein–Gauss–Bonnet parameter and the decoupling constant compete against each other for ensuring physically realizable stellar structures. The novel feature of the work is the demonstration of stable compact objects with stellar masses in excess of M = 2 M ⊙ without appealing to exotic matter. The analysis contributes new insights and physical consequences concerning the development of ultracompact astrophysical entities.
AbstractList The recent theoretical advance known as the minimal geometric deformation (MGD) method has initiated renewed interest in investigating higher-curvature gravitational effects in relativistic astrophysics. In this work, we model a strange star within the context of Einstein–Gauss–Bonnet gravity with the help of the MGD technique. Starting off with the Tolman metric ansatz, together with the MIT bag model equation of state applicable to hadronic matter, anisotropy is introduced via the superposition of the seed source and the decoupled energy-momentum tensor. The solution of the governing systems of equations bifurcates into two distinct models, namely, the mimicking of the θ sector to the seed radial pressure and energy density and a regular fluid model. Each of these models can be interpreted as self-gravitating static, compact objects with the exterior described by the vacuum Boulware–Deser solution. Utilizing observational data for three stellar candidates, namely PSR J1614–2230, PSR J1903+317, and LMC X-4, we subject our solutions to rigorous viability tests based on regularity and stability. We find that the Einstein–Gauss–Bonnet parameter and the decoupling constant compete against each other for ensuring physically realizable stellar structures. The novel feature of the work is the demonstration of stable compact objects with stellar masses in excess of M = 2 M⊙ without appealing to exotic matter. The analysis contributes new insights and physical consequences concerning the development of ultracompact astrophysical entities.
The recent theoretical advance known as the minimal geometric deformation (MGD) method has initiated renewed interest in investigating higher-curvature gravitational effects in relativistic astrophysics. In this work, we model a strange star within the context of Einstein–Gauss–Bonnet gravity with the help of the MGD technique. Starting off with the Tolman metric ansatz, together with the MIT bag model equation of state applicable to hadronic matter, anisotropy is introduced via the superposition of the seed source and the decoupled energy-momentum tensor. The solution of the governing systems of equations bifurcates into two distinct models, namely, the mimicking of the θ sector to the seed radial pressure and energy density and a regular fluid model. Each of these models can be interpreted as self-gravitating static, compact objects with the exterior described by the vacuum Boulware–Deser solution. Utilizing observational data for three stellar candidates, namely PSR J1614–2230, PSR J1903+317, and LMC X-4, we subject our solutions to rigorous viability tests based on regularity and stability. We find that the Einstein–Gauss–Bonnet parameter and the decoupling constant compete against each other for ensuring physically realizable stellar structures. The novel feature of the work is the demonstration of stable compact objects with stellar masses in excess of M = 2 M ⊙ without appealing to exotic matter. The analysis contributes new insights and physical consequences concerning the development of ultracompact astrophysical entities.
Author Govender, M.
Hansraj, Sudan
Maurya, S. K.
Newton Singh, Ksh
Author_xml – sequence: 1
  givenname: S. K.
  orcidid: 0000-0003-4089-3651
  surname: Maurya
  fullname: Maurya, S. K.
  organization: University of Nizwa Department of Mathematics and Physical Sciences, College of Arts and Sciences, Nizwa, Oman
– sequence: 2
  givenname: Ksh
  orcidid: 0000-0001-9778-4101
  surname: Newton Singh
  fullname: Newton Singh, Ksh
  organization: National Defence Academy Department of Physics, Khadakwasla, Pune 411023, India
– sequence: 3
  givenname: M.
  orcidid: 0000-0001-6110-9526
  surname: Govender
  fullname: Govender, M.
  organization: Durban University of Technology Department of Mathematics, Durban 4000, South Africa
– sequence: 4
  givenname: Sudan
  orcidid: 0000-0002-8305-7015
  surname: Hansraj
  fullname: Hansraj, Sudan
  organization: University of KwaZulu-Natal Astrophysics and Cosmology Research Unit, Private Bag X54001, Durban 4000, South Africa
BookMark eNp9kLtOwzAYhS1UJNrCzmiJlVDnYicZoZSC1IqBDmyR4zjgKrGD7aBm4x14Q54Eh1QgIYH-4eg_OseXbwJGUkkOwKmPLsIkimc-DhMvCnE8oywKMD4A429rBMYIocgjYfx4BCbGbPs1SNMx2C01fRWWWqEkraoOXnOm2qbiBXywmson7pRquFYFr2DOOyULaJ-_XFlQXcA13Ym6rZ0aA1eiFhYKCRdCGsuF_Hh7X9LWGKdXSkpu4XBhdwwOS1oZfrLXKdjcLDbzW291v7ybX648FvnEeoWfszJANMGUJJSFPsNl6pcRC_wA5xjhlCRlHhMSc5JHOY3LmFEXxHmE47AMp-BsOLbR6qXlxmZb1Wr3VZMFxE2aoiBwKTKkmFbGaF5mbM_EMRBV5qOsh5z1RLOeaDZAdkX0q9hoUVPd_Vc5HypCNT-P-TP-CXPmkjM
CitedBy_id crossref_primary_10_1140_epjc_s10052_022_10935_4
crossref_primary_10_3847_1538_4357_ad5cf1
crossref_primary_10_1002_prop_202200041
crossref_primary_10_1139_cjp_2022_0069
crossref_primary_10_1016_j_dark_2023_101284
crossref_primary_10_1142_S0219887824500919
crossref_primary_10_1140_epjc_s10052_023_12212_4
crossref_primary_10_1140_epjc_s10052_024_13057_1
crossref_primary_10_1016_j_newast_2024_102216
crossref_primary_10_1103_PhysRevD_105_044030
crossref_primary_10_1140_epjc_s10052_023_11507_w
crossref_primary_10_3390_universe9050208
crossref_primary_10_1140_epjc_s10052_023_12256_6
crossref_primary_10_1140_epjc_s10052_024_13131_8
crossref_primary_10_1002_prop_202200171
crossref_primary_10_1140_epjc_s10052_023_12127_0
crossref_primary_10_1140_epjc_s10052_022_10585_6
crossref_primary_10_1016_j_dark_2022_101094
crossref_primary_10_1140_epjc_s10052_024_12716_7
crossref_primary_10_1140_epjc_s10052_025_13750_9
crossref_primary_10_1016_j_dark_2023_101391
crossref_primary_10_1016_j_cjph_2023_08_008
crossref_primary_10_1002_prop_202300023
crossref_primary_10_1007_s10509_023_04255_6
crossref_primary_10_1007_s12043_022_02486_w
crossref_primary_10_1016_j_jheap_2024_04_008
crossref_primary_10_1140_epjc_s10052_023_11695_5
crossref_primary_10_1142_S0217732322501826
crossref_primary_10_1016_j_newast_2023_102067
crossref_primary_10_1140_epjc_s10052_022_10350_9
crossref_primary_10_1007_s10773_024_05872_9
crossref_primary_10_1093_mnras_stae2302
crossref_primary_10_1140_epjc_s10052_022_10684_4
crossref_primary_10_1140_epjc_s10052_024_13436_8
crossref_primary_10_1016_j_dark_2024_101705
crossref_primary_10_2139_ssrn_4153146
crossref_primary_10_1016_j_astropartphys_2024_103073
crossref_primary_10_1002_prop_202200061
crossref_primary_10_1016_j_cjph_2025_02_006
crossref_primary_10_3847_1538_4365_ad0154
crossref_primary_10_1007_s12648_022_02521_x
crossref_primary_10_1016_j_dark_2024_101665
crossref_primary_10_1016_j_jheap_2024_09_012
crossref_primary_10_3390_universe9010047
crossref_primary_10_1016_j_aop_2022_169070
crossref_primary_10_1093_mnras_stad2861
crossref_primary_10_1016_j_cjph_2024_04_012
crossref_primary_10_1016_j_newast_2023_102115
crossref_primary_10_1016_j_newast_2024_102314
crossref_primary_10_1016_j_cjph_2024_08_035
crossref_primary_10_1007_s12648_024_03252_x
crossref_primary_10_1016_j_cjph_2023_12_018
crossref_primary_10_1088_1361_6382_ad51c4
crossref_primary_10_1007_s12648_024_03297_y
crossref_primary_10_1088_1475_7516_2022_10_003
crossref_primary_10_1142_S0219887824500993
crossref_primary_10_1093_mnras_stac3611
crossref_primary_10_1093_mnras_stad3562
crossref_primary_10_1088_1361_6382_acd29c
crossref_primary_10_1088_1402_4896_acbfeb
crossref_primary_10_1016_j_jheap_2024_09_002
crossref_primary_10_1140_epjc_s10052_024_13661_1
crossref_primary_10_1007_s12648_022_02445_6
crossref_primary_10_1140_epjc_s10052_022_10168_5
crossref_primary_10_1140_epjc_s10052_022_11139_6
Cites_doi 10.1140/epjc/s10052-019-7458-0
10.1103/PhysRevLett.124.081301
10.1016/j.aop.2020.168248
10.1140/epjc/s10052-019-7397-9
10.1088/0264-9381/32/21/215020
10.1140/epjc/s10052-020-08491-w
10.1140/epjc/s10052-018-6048-x
10.1111/j.1365-2966.2010.18109.x
10.1007/s10714-017-2232-9
10.1140/epjc/s10052-017-5502-5
10.1103/PhysRevD.70.064009
10.1103/PhysRevD.95.124017
10.1016/S0920-5632(99)00208-X
10.1016/S0370-2693(03)00555-0
10.1140/epjp/s13360-021-01081-z
10.1103/PhysRevD.10.2599
10.1140/epjc/s10052-017-4926-2
10.1063/1.1666069
10.1142/S0218271818700017
10.1088/0264-9381/28/22/225007
10.1140/epjc/s10052-018-5606-6
10.1103/PhysRevD.102.024011
10.1103/PhysRevD.9.3471
10.1103/PhysRevD.84.024020
10.1007/BF02710419
10.1142/S2010194516601320
10.1103/PhysRevD.88.104026
10.1038/s41567-020-0914-9
10.1038/nature09466
10.1103/PhysRevD.84.104035
10.1007/s10509-020-03754-0
10.1103/PhysRevD.67.024030
10.1016/j.aop.2020.168122
10.1016/j.physletb.2021.136423
10.1016/j.dark.2020.100744
10.1103/PhysRevD.103.044020
10.1063/1.1665613
10.1088/1361-6382/ab9c6d
10.1103/PhysRevD.30.2379
10.1088/0264-9381/32/4/045015
10.1016/j.dark.2020.100577
10.1088/1674-1056/21/2/020301
10.1139/p76-008
10.1142/S0218271815500510
10.1088/1475-7516/2021/05/024
10.3847/1538-4357/abc87f
10.1140/epjc/s10052-018-6194-1
10.1016/j.dark.2020.100610
10.1140/epjc/s10052-015-3504-8
10.1140/epjc/s10052-020-8200-7
10.1103/PhysRevD.100.124029
10.1016/j.dark.2020.100737
10.3847/1538-4357/abd094
10.1086/340368
10.1016/j.physletb.2016.10.072
10.1007/BF01397481
10.1103/PhysRevLett.83.3370
10.1016/j.dark.2019.100442
10.1103/PhysRevD.6.3357
10.1103/PhysRevLett.12.114
10.1140/epjc/s10052-021-09493-y
10.1103/PhysRevD.102.084028
10.1088/1475-7516/2007/10/004
10.1140/epjc/s10052-020-8071-y
10.1140/epjp/s13360-020-00589-0
10.1103/PhysRevD.4.1601
10.1103/PhysRevD.30.272
10.1103/PhysRevLett.125.149001
10.1016/j.physletb.2016.10.010
10.1023/A:1001982402392
10.1016/j.physletb.2018.05.028
10.1088/0264-9381/33/21/215007
10.1209/0295-5075/110/40003
10.1155/2018/7420546
10.1103/PhysRevD.96.044016
10.1103/PhysRevLett.83.4690
10.1088/0004-637X/730/1/25
10.1140/epjp/i2019-12853-1
10.1140/epjc/s10052-020-7993-8
10.12942/lrr-2010-5
10.1007/s10714-013-1619-5
10.1016/j.physletb.2018.11.029
10.1007/s10714-016-2091-9
10.1103/PhysRevD.91.084049
10.1103/PhysRevLett.55.2656
10.1007/s10509-019-3675-0
10.1103/PhysRevD.38.2445
10.1086/147938
10.1088/1361-6382/ab47e2
10.1016/0370-2693(80)90670-X
10.1103/PhysRevC.61.045203
10.1142/S0217732320501059
10.1140/epjp/s13360-021-01252-y
10.1140/epjc/s10052-020-7882-1
ContentType Journal Article
Copyright 2022. The Author(s). Published by the American Astronomical Society.
2022. The Author(s). Published by the American Astronomical Society. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2022. The Author(s). Published by the American Astronomical Society.
– notice: 2022. The Author(s). Published by the American Astronomical Society. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID O3W
TSCCA
AAYXX
CITATION
7TG
8FD
H8D
KL.
L7M
DOI 10.3847/1538-4357/ac4255
DatabaseName Institute of Physics Open Access Journal Titles
IOPscience (Open Access)
CrossRef
Meteorological & Geoastrophysical Abstracts
Technology Research Database
Aerospace Database
Meteorological & Geoastrophysical Abstracts - Academic
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Aerospace Database
Meteorological & Geoastrophysical Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
Meteorological & Geoastrophysical Abstracts - Academic
DatabaseTitleList Aerospace Database
CrossRef
Database_xml – sequence: 1
  dbid: O3W
  name: Institute of Physics Open Access Journal Titles
  url: http://iopscience.iop.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Astronomy & Astrophysics
Physics
EISSN 1538-4357
ExternalDocumentID 10_3847_1538_4357_ac4255
apjac4255
GrantInformation_xml – fundername: Sultanate of Oman
  grantid: BFP/RGP/CBS-/19/099
GroupedDBID -DZ
-~X
123
1JI
23N
2FS
2WC
4.4
6J9
85S
AAFWJ
AAGCD
AAJIO
ABHWH
ACBEA
ACGFS
ACHIP
ACNCT
ADACN
AEFHF
AENEX
AFPKN
AKPSB
ALMA_UNASSIGNED_HOLDINGS
ASPBG
ATQHT
AVWKF
AZFZN
CJUJL
CRLBU
CS3
EBS
F5P
FRP
GROUPED_DOAJ
IJHAN
IOP
KOT
M~E
N5L
O3W
O43
OK1
PJBAE
RIN
RNS
ROL
SJN
SY9
T37
TN5
TR2
TSCCA
WH7
XSW
AAYXX
CITATION
7TG
8FD
AEINN
H8D
KL.
L7M
ID FETCH-LOGICAL-c416t-d1bcf20a85a68ac31c5f91f4c2125b505968fb7667e6b4ba7f7ca8ac5b4573f3
IEDL.DBID IOP
ISSN 0004-637X
IngestDate Wed Aug 13 09:45:56 EDT 2025
Thu Apr 24 23:03:23 EDT 2025
Tue Jul 01 03:24:50 EDT 2025
Wed Aug 21 03:32:34 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
License Original content from this work may be used under the terms of the Creative Commons Attribution 4.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c416t-d1bcf20a85a68ac31c5f91f4c2125b505968fb7667e6b4ba7f7ca8ac5b4573f3
Notes High-Energy Phenomena and Fundamental Physics
AAS34767
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-9778-4101
0000-0003-4089-3651
0000-0002-8305-7015
0000-0001-6110-9526
OpenAccessLink https://proxy.k.utb.cz/login?url=https://iopscience.iop.org/article/10.3847/1538-4357/ac4255
PQID 2626299022
PQPubID 4562441
PageCount 18
ParticipantIDs crossref_citationtrail_10_3847_1538_4357_ac4255
proquest_journals_2626299022
crossref_primary_10_3847_1538_4357_ac4255
iop_journals_10_3847_1538_4357_ac4255
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-02-01
PublicationDateYYYYMMDD 2022-02-01
PublicationDate_xml – month: 02
  year: 2022
  text: 2022-02-01
  day: 01
PublicationDecade 2020
PublicationPlace Philadelphia
PublicationPlace_xml – name: Philadelphia
PublicationTitle The Astrophysical journal
PublicationTitleAbbrev APJ
PublicationTitleAlternate Astrophys. J
PublicationYear 2022
Publisher The American Astronomical Society
IOP Publishing
Publisher_xml – name: The American Astronomical Society
– name: IOP Publishing
References Casadio (apjac4255bib14) 2016; 763
da Rocha (apjac4255bib30) 2017b; 77
Peshier (apjac4255bib77) 2000; 61
Freire (apjac4255bib37) 2011; 412
Harrison (apjac4255bib52) 1965
Contreras (apjac4255bib23) 2019; 36
Sharif (apjac4255bib89) 2020; 30
Randall (apjac4255bib82) 1999a; 83
Zeldovich (apjac4255bib102) 1971
Sharif (apjac4255bib90) 2020a; 365
Tello-Ortiz (apjac4255bib94) 2020; 80
Maurya (apjac4255bib63) 2020; 80
Maartens (apjac4255bib59) 2010; 13
Klein (apjac4255bib55) 1926; 37
Gurses (apjac4255bib42) 2020b; 125
Zubair (apjac4255bib103) 2020; 420
Hansraj (apjac4255bib47) 2017; 96
Chandrasekhar (apjac4255bib17) 1964b; 12
Choudhury (apjac4255bib15) 2016; 763
Rincón (apjac4255bib85) 2020; 80
Contreras (apjac4255bib24) 2020; 37
Moustakidis (apjac4255bib65) 2020; 49
Bodmer (apjac4255bib9) 1971; 4
Contreras (apjac4255bib22) 2018; 78
Wright (apjac4255bib101) 2016; 48
Pani (apjac4255bib78) 2011; 84
Tangphati (apjac4255bib93) 2021; 819
Hansraj (apjac4255bib48) 2015; 27
Kang (apjac4255bib56) 2012; 21
Ovalle (apjac4255bib74) 2013; 88
Azmat (apjac4255bib5) 2021; 136
Lovelock (apjac4255bib58) 1972; 13
Hansraj (apjac4255bib50) 2019; 12
Maurya (apjac4255bib69) 2021; 136
Rincón (apjac4255bib86) 2019; 79
Israel (apjac4255bib53) 1966; 44
Lovelock (apjac4255bib57) 1971; 12
Doneva (apjac4255bib33) 2021; 2021
Darabi (apjac4255bib26) 2018; 78
Amendola (apjac4255bib3) 2007; 2007
Drake (apjac4255bib34) 2002; 572
Rastall (apjac4255bib81) 1976; 54
Witten (apjac4255bib99) 1984; 30
Gravanis (apjac4255bib43) 2003; 562
Chodos (apjac4255bib18) 1974a; 9
Chodos (apjac4255bib19) 1974b; 10
Randall (apjac4255bib83) 1999b; 83
Abellán (apjac4255bib2) 2020; 135
Farhi (apjac4255bib38) 1984; 30
Maurya (apjac4255bib67) 2020a; 27
Boulware (apjac4255bib10) 1985; 55
Ellis (apjac4255bib36) 2014; 46
Casadio (apjac4255bib12) 2015b; 110
Rawls (apjac4255bib84) 2011; 730
Hansraj (apjac4255bib44) 2020; 35
Maurya (apjac4255bib61) 2019; 79
Ovalle (apjac4255bib73) 2018; 78
Maurya (apjac4255bib64) 2021; 81
Wiltshire (apjac4255bib100) 1988; 38
Ovalle (apjac4255bib75) 2021; 31
Hansraj (apjac4255bib46) 2018; 78
Kaluza (apjac4255bib54) 2018; 27
Sharif (apjac4255bib91) 2020; 415
Rocha (apjac4255bib87) 2020; 102
Abbas (apjac4255bib1) 2018; 2018
Tomozawa (apjac4255bib96) 2012
Gurses (apjac4255bib41) 2020a; 80
Visser (apjac4255bib98) 2018; 782
Chandrasekhar (apjac4255bib16) 1964a; 140
Cavalcanti (apjac4255bib13) 2016; 33
Starobinsky (apjac4255bib88) 1980; 91
Casadio (apjac4255bib11) 2015a; 32
Merafina (apjac4255bib66) 1989; 221
Rastall (apjac4255bib80) 1972; 6
Gross (apjac4255bib39) 1999; 74
Bhar (apjac4255bib8) 2019; 364
Ovalle (apjac4255bib72) 2019; 788
Dehghani (apjac4255bib31) 2004; 70
Annala (apjac4255bib4) 2020; 16
Banerjee (apjac4255bib7) 2021; 909
Maurya (apjac4255bib62) 2020; 80
Chodos (apjac4255bib20) 1974c; 9
Ellis (apjac4255bib35) 2011; 28
Davis (apjac4255bib28) 2003; 67
Glavan (apjac4255bib40) 2020; 124
Harko (apjac4255bib45) 2011; 84
Ponce de Leon (apjac4255bib76) 2000; 32
Maurya (apjac4255bib68) 2020b; 29
Contreras (apjac4255bib25) 2021; 103
Darmois (apjac4255bib27) 1927; 25
Maharaj (apjac4255bib60) 2015; 91
Panotopoulos (apjac4255bib79) 2019; 134
Chilambwe (apjac4255bib21) 2015; 24
Ovalle (apjac4255bib71) 2015; 32
Heintzmann (apjac4255bib51) 1975; 38
da Rocha (apjac4255bib29) 2017a; 95
Sharif (apjac4255bib92) 2020b; 30
Hansraj (apjac4255bib49) 2020; 8
Demorest (apjac4255bib32) 2010; 467
Banerjee (apjac4255bib6) 2021; 906
Ovalle (apjac4255bib70) 2016; 41
References_xml – volume: 79
  start-page: 958
  year: 2019
  ident: apjac4255bib61
  publication-title: EPJC
  doi: 10.1140/epjc/s10052-019-7458-0
– volume: 124
  start-page: 081301
  year: 2020
  ident: apjac4255bib40
  publication-title: PhRvL
  doi: 10.1103/PhysRevLett.124.081301
– volume: 420
  start-page: 168248
  year: 2020
  ident: apjac4255bib103
  publication-title: AnPhy
  doi: 10.1016/j.aop.2020.168248
– volume: 79
  start-page: 873
  year: 2019
  ident: apjac4255bib86
  publication-title: EPJC
  doi: 10.1140/epjc/s10052-019-7397-9
– volume: 32
  year: 2015a
  ident: apjac4255bib11
  publication-title: CQGra
  doi: 10.1088/0264-9381/32/21/215020
– volume: 80
  start-page: 918
  year: 2020
  ident: apjac4255bib63
  publication-title: EPJC
  doi: 10.1140/epjc/s10052-020-08491-w
– volume: 78
  start-page: 558
  year: 2018
  ident: apjac4255bib22
  publication-title: EPJC
  doi: 10.1140/epjc/s10052-018-6048-x
– volume: 412
  start-page: 2763
  year: 2011
  ident: apjac4255bib37
  publication-title: MNRAS
  doi: 10.1111/j.1365-2966.2010.18109.x
– volume: 49
  start-page: 68
  year: 2020
  ident: apjac4255bib65
  publication-title: GReGr
  doi: 10.1007/s10714-017-2232-9
– volume: 78
  start-page: 25
  year: 2018
  ident: apjac4255bib26
  publication-title: EPJC
  doi: 10.1140/epjc/s10052-017-5502-5
– volume: 70
  start-page: 064009
  year: 2004
  ident: apjac4255bib31
  publication-title: PhRvD
  doi: 10.1103/PhysRevD.70.064009
– volume: 95
  year: 2017a
  ident: apjac4255bib29
  publication-title: PhRvD
  doi: 10.1103/PhysRevD.95.124017
– volume: 74
  start-page: 426
  year: 1999
  ident: apjac4255bib39
  publication-title: NuPhS
  doi: 10.1016/S0920-5632(99)00208-X
– volume: 562
  start-page: 118
  year: 2003
  ident: apjac4255bib43
  publication-title: PhLB
  doi: 10.1016/S0370-2693(03)00555-0
– volume: 136
  start-page: 112
  year: 2021
  ident: apjac4255bib5
  publication-title: EPJP
  doi: 10.1140/epjp/s13360-021-01081-z
– volume: 10
  start-page: 2599
  year: 1974b
  ident: apjac4255bib19
  publication-title: PhRvD
  doi: 10.1103/PhysRevD.10.2599
– volume: 77
  start-page: 355
  year: 2017b
  ident: apjac4255bib30
  publication-title: EPJC
  doi: 10.1140/epjc/s10052-017-4926-2
– volume: 13
  start-page: 874
  year: 1972
  ident: apjac4255bib58
  publication-title: JMP
  doi: 10.1063/1.1666069
– volume: 27
  start-page: 1870001
  year: 2018
  ident: apjac4255bib54
  publication-title: IJMPD
  doi: 10.1142/S0218271818700017
– volume: 38
  start-page: 51
  year: 1975
  ident: apjac4255bib51
  publication-title: A&A
– volume: 28
  year: 2011
  ident: apjac4255bib35
  publication-title: CQGra
  doi: 10.1088/0264-9381/28/22/225007
– volume: 78
  start-page: 122
  year: 2018
  ident: apjac4255bib73
  publication-title: EPJC
  doi: 10.1140/epjc/s10052-018-5606-6
– volume: 102
  year: 2020
  ident: apjac4255bib87
  publication-title: PhRvD
  doi: 10.1103/PhysRevD.102.024011
– volume: 9
  start-page: 3471
  year: 1974c
  ident: apjac4255bib20
  publication-title: PhRvD
  doi: 10.1103/PhysRevD.9.3471
– volume: 84
  start-page: 024020
  year: 2011
  ident: apjac4255bib45
  publication-title: PhRvD
  doi: 10.1103/PhysRevD.84.024020
– volume: 44
  start-page: 1
  year: 1966
  ident: apjac4255bib53
  publication-title: NCimB
  doi: 10.1007/BF02710419
– volume: 41
  start-page: 1660132
  year: 2016
  ident: apjac4255bib70
  publication-title: IJMPS
  doi: 10.1142/S2010194516601320
– volume: 88
  year: 2013
  ident: apjac4255bib74
  publication-title: PhRvD
  doi: 10.1103/PhysRevD.88.104026
– volume: 16
  start-page: 907
  year: 2020
  ident: apjac4255bib4
  publication-title: NatPh
  doi: 10.1038/s41567-020-0914-9
– volume: 467
  start-page: 1081
  year: 2010
  ident: apjac4255bib32
  publication-title: Natur
  doi: 10.1038/nature09466
– volume: 84
  start-page: 104035
  year: 2011
  ident: apjac4255bib78
  publication-title: PhRvD
  doi: 10.1103/PhysRevD.84.104035
– volume: 365
  start-page: 42
  year: 2020a
  ident: apjac4255bib90
  publication-title: Ap&SS
  doi: 10.1007/s10509-020-03754-0
– volume: 67
  start-page: 024030
  year: 2003
  ident: apjac4255bib28
  publication-title: PhRvD
  doi: 10.1103/PhysRevD.67.024030
– volume: 415
  year: 2020
  ident: apjac4255bib91
  publication-title: AnPhy
  doi: 10.1016/j.aop.2020.168122
– volume: 25
  start-page: 58
  year: 1927
  ident: apjac4255bib27
  publication-title: Memorial des Sciences Mathématiques
– volume: 819
  start-page: 136423
  year: 2021
  ident: apjac4255bib93
  publication-title: PhLB
  doi: 10.1016/j.physletb.2021.136423
– volume: 31
  year: 2021
  ident: apjac4255bib75
  publication-title: PDU
  doi: 10.1016/j.dark.2020.100744
– volume: 103
  year: 2021
  ident: apjac4255bib25
  publication-title: PhRvD
  doi: 10.1103/PhysRevD.103.044020
– volume: 12
  start-page: 498
  year: 1971
  ident: apjac4255bib57
  publication-title: JMP
  doi: 10.1063/1.1665613
– volume: 37
  year: 2020
  ident: apjac4255bib24
  publication-title: CQGra
  doi: 10.1088/1361-6382/ab9c6d
– volume: 30
  start-page: 2379
  year: 1984
  ident: apjac4255bib38
  publication-title: PhRvD
  doi: 10.1103/PhysRevD.30.2379
– volume: 32
  start-page: 045015
  year: 2015
  ident: apjac4255bib71
  publication-title: CQGra
  doi: 10.1088/0264-9381/32/4/045015
– volume: 29
  year: 2020b
  ident: apjac4255bib68
  publication-title: PDU
  doi: 10.1016/j.dark.2020.100577
– volume: 21
  year: 2012
  ident: apjac4255bib56
  publication-title: ChPhB
  doi: 10.1088/1674-1056/21/2/020301
– volume: 54
  start-page: 66
  year: 1976
  ident: apjac4255bib81
  publication-title: CaJPh
  doi: 10.1139/p76-008
– volume: 24
  start-page: 1550051
  year: 2015
  ident: apjac4255bib21
  publication-title: IJMPD
  doi: 10.1142/S0218271815500510
– volume: 2021
  start-page: 024
  year: 2021
  ident: apjac4255bib33
  publication-title: JCAP
  doi: 10.1088/1475-7516/2021/05/024
– volume: 906
  start-page: 114
  year: 2021
  ident: apjac4255bib6
  publication-title: ApJ
  doi: 10.3847/1538-4357/abc87f
– volume: 78
  start-page: 700
  year: 2018
  ident: apjac4255bib46
  publication-title: EPJC
  doi: 10.1140/epjc/s10052-018-6194-1
– volume: 30
  year: 2020b
  ident: apjac4255bib92
  publication-title: PDU
  doi: 10.1016/j.dark.2020.100610
– volume: 27
  start-page: 277
  year: 2015
  ident: apjac4255bib48
  publication-title: EPJC
  doi: 10.1140/epjc/s10052-015-3504-8
– volume: 80
  start-page: 647
  year: 2020a
  ident: apjac4255bib41
  publication-title: EPJC
  doi: 10.1140/epjc/s10052-020-8200-7
– volume: 12
  start-page: 124029
  year: 2019
  ident: apjac4255bib50
  publication-title: PhRvD
  doi: 10.1103/PhysRevD.100.124029
– volume: 30
  start-page: 100737
  year: 2020
  ident: apjac4255bib89
  publication-title: PDU
  doi: 10.1016/j.dark.2020.100737
– volume: 909
  start-page: 14
  year: 2021
  ident: apjac4255bib7
  publication-title: ApJ
  doi: 10.3847/1538-4357/abd094
– volume: 572
  start-page: 996
  year: 2002
  ident: apjac4255bib34
  publication-title: ApJ
  doi: 10.1086/340368
– volume: 763
  start-page: 434
  year: 2016
  ident: apjac4255bib14
  publication-title: PhLB
  doi: 10.1016/j.physletb.2016.10.072
– volume: 37
  start-page: 895
  year: 1926
  ident: apjac4255bib55
  publication-title: ZPhy
  doi: 10.1007/BF01397481
– volume: 83
  start-page: 3370
  year: 1999a
  ident: apjac4255bib82
  publication-title: PhRvL
  doi: 10.1103/PhysRevLett.83.3370
– volume: 27
  year: 2020a
  ident: apjac4255bib67
  publication-title: PDU
  doi: 10.1016/j.dark.2019.100442
– volume: 6
  start-page: 3357
  year: 1972
  ident: apjac4255bib80
  publication-title: PhRvD
  doi: 10.1103/PhysRevD.6.3357
– volume: 12
  start-page: 114
  year: 1964b
  ident: apjac4255bib17
  publication-title: PhRvL
  doi: 10.1103/PhysRevLett.12.114
– year: 2012
  ident: apjac4255bib96
– volume: 81
  start-page: 701
  year: 2021
  ident: apjac4255bib64
  publication-title: EPJC
  doi: 10.1140/epjc/s10052-021-09493-y
– volume: 8
  start-page: 084028
  year: 2020
  ident: apjac4255bib49
  publication-title: PhRvD
  doi: 10.1103/PhysRevD.102.084028
– year: 1965
  ident: apjac4255bib52
– volume: 2007
  start-page: 004
  year: 2007
  ident: apjac4255bib3
  publication-title: JCAP
  doi: 10.1088/1475-7516/2007/10/004
– volume: 80
  start-page: 490
  year: 2020
  ident: apjac4255bib85
  publication-title: EPJC
  doi: 10.1140/epjc/s10052-020-8071-y
– volume: 135
  start-page: 606
  year: 2020
  ident: apjac4255bib2
  publication-title: EPJP
  doi: 10.1140/epjp/s13360-020-00589-0
– volume: 4
  start-page: 1601
  year: 1971
  ident: apjac4255bib9
  publication-title: PhRvD
  doi: 10.1103/PhysRevD.4.1601
– year: 1971
  ident: apjac4255bib102
– volume: 30
  start-page: 272
  year: 1984
  ident: apjac4255bib99
  publication-title: PhRvD
  doi: 10.1103/PhysRevD.30.272
– volume: 221
  start-page: 4
  year: 1989
  ident: apjac4255bib66
  publication-title: A&A
– volume: 125
  start-page: 149001
  year: 2020b
  ident: apjac4255bib42
  publication-title: PhRvL
  doi: 10.1103/PhysRevLett.125.149001
– volume: 763
  start-page: 155
  year: 2016
  ident: apjac4255bib15
  publication-title: PhLB
  doi: 10.1016/j.physletb.2016.10.010
– volume: 32
  start-page: 1207
  year: 2000
  ident: apjac4255bib76
  publication-title: GReGr
  doi: 10.1023/A:1001982402392
– volume: 782
  start-page: 83
  year: 2018
  ident: apjac4255bib98
  publication-title: PhLB
  doi: 10.1016/j.physletb.2018.05.028
– volume: 33
  year: 2016
  ident: apjac4255bib13
  publication-title: CQGra
  doi: 10.1088/0264-9381/33/21/215007
– volume: 110
  start-page: 40003
  year: 2015b
  ident: apjac4255bib12
  publication-title: EPL
  doi: 10.1209/0295-5075/110/40003
– volume: 2018
  start-page: 7420546
  year: 2018
  ident: apjac4255bib1
  publication-title: AdHEP
  doi: 10.1155/2018/7420546
– volume: 96
  start-page: 044016
  year: 2017
  ident: apjac4255bib47
  publication-title: PhRvD
  doi: 10.1103/PhysRevD.96.044016
– volume: 83
  start-page: 4690
  year: 1999b
  ident: apjac4255bib83
  publication-title: PhRvL
  doi: 10.1103/PhysRevLett.83.4690
– volume: 730
  start-page: 25
  year: 2011
  ident: apjac4255bib84
  publication-title: ApJ
  doi: 10.1088/0004-637X/730/1/25
– volume: 134
  start-page: 472
  year: 2019
  ident: apjac4255bib79
  publication-title: EPJP
  doi: 10.1140/epjp/i2019-12853-1
– volume: 80
  start-page: 429
  year: 2020
  ident: apjac4255bib62
  publication-title: EPJC
  doi: 10.1140/epjc/s10052-020-7993-8
– volume: 13
  start-page: 10
  year: 2010
  ident: apjac4255bib59
  publication-title: LRR
  doi: 10.12942/lrr-2010-5
– volume: 46
  start-page: 1619
  year: 2014
  ident: apjac4255bib36
  publication-title: GReGr
  doi: 10.1007/s10714-013-1619-5
– volume: 788
  start-page: 213
  year: 2019
  ident: apjac4255bib72
  publication-title: PhLB
  doi: 10.1016/j.physletb.2018.11.029
– volume: 9
  start-page: 3471
  year: 1974a
  ident: apjac4255bib18
  publication-title: PhRvD
  doi: 10.1103/PhysRevD.9.3471
– volume: 48
  start-page: 93
  year: 2016
  ident: apjac4255bib101
  publication-title: GReGr
  doi: 10.1007/s10714-016-2091-9
– volume: 91
  start-page: 084049
  year: 2015
  ident: apjac4255bib60
  publication-title: PhRvD
  doi: 10.1103/PhysRevD.91.084049
– volume: 55
  start-page: 2656
  year: 1985
  ident: apjac4255bib10
  publication-title: PhRvL
  doi: 10.1103/PhysRevLett.55.2656
– volume: 364
  start-page: 186
  year: 2019
  ident: apjac4255bib8
  publication-title: Ap&SS
  doi: 10.1007/s10509-019-3675-0
– volume: 38
  start-page: 2445
  year: 1988
  ident: apjac4255bib100
  publication-title: PhRvD
  doi: 10.1103/PhysRevD.38.2445
– volume: 140
  start-page: 417
  year: 1964a
  ident: apjac4255bib16
  publication-title: ApJ
  doi: 10.1086/147938
– volume: 36
  year: 2019
  ident: apjac4255bib23
  publication-title: CQGra
  doi: 10.1088/1361-6382/ab47e2
– volume: 91
  start-page: 99
  year: 1980
  ident: apjac4255bib88
  publication-title: PhLB
  doi: 10.1016/0370-2693(80)90670-X
– volume: 61
  start-page: 045203
  year: 2000
  ident: apjac4255bib77
  publication-title: PhRvC
  doi: 10.1103/PhysRevC.61.045203
– volume: 35
  start-page: 2050105
  year: 2020
  ident: apjac4255bib44
  publication-title: MPLA
  doi: 10.1142/S0217732320501059
– volume: 136
  start-page: 317
  year: 2021
  ident: apjac4255bib69
  publication-title: EPJP
  doi: 10.1140/epjp/s13360-021-01252-y
– volume: 80
  start-page: 324
  year: 2020
  ident: apjac4255bib94
  publication-title: EPJC
  doi: 10.1140/epjc/s10052-020-7882-1
SSID ssj0004299
Score 2.6178067
Snippet The recent theoretical advance known as the minimal geometric deformation (MGD) method has initiated renewed interest in investigating higher-curvature...
SourceID proquest
crossref
iop
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 208
SubjectTerms Anisotropy
Astrophysics
Compact objects
Decoupling
Equations of state
Flux density
Gravitation
Gravitational effects
Gravity effects
Modelling
Neutron stars
Stars & galaxies
Tensors
Theoretical models
Title Gravitationally Decoupled Strange Star Model beyond the Standard Maximum Mass Limit in Einstein–Gauss–Bonnet Gravity
URI https://iopscience.iop.org/article/10.3847/1538-4357/ac4255
https://www.proquest.com/docview/2626299022
Volume 925
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1JT9wwFH5iEVIvUKAVW5EPgMQhM5PF9ow40ZZFSCwHEHOoFNmOg0ZkMqNJghhO_Af-YX9Jn-0MqIBQ1UtsWS9x8ry8zy9vAdjCVqUTzTzGBPUiBPweonDldQLNtG6plApr5XvGjq-iky7tTsHesy_MYFhv_Q2sukDBjoVmfYe4lzbtGkUpz5tC4Yyj0zAbtlFwGu-984sXp8igU2PfyGMh77p_lO8-4S-ZNI39vtmYrbQ5XIBfk_d0Ria3jaqUDfXwKoTjf37IZ5ivUSjZd6SLMKXzJVjZL4xefNAfkx1i607tUSzB3IWrLcP90Ujc1XG9RZaNyU88v1bDTCfEBLrNbzSWYkRMjrWMSOsfQxBkmlarsyCn4r7Xr_pYFgWx_lWkl5ODHuJU3ct_Pz4diaoosPxubHBK4jocf4HLw4PLH8denb3BUwjySi_xpUqDlmhTwdpChb6iacdPI4XCkkpq0v60U8kZ45rJSAqeciWQkMqI8jANv8JMPsj1ChCJQ2li6nT8BPFGyxc8oYFk1IRC4yJRq9CcDF-sag6YBBtZjCccw-nYcDo2nI4dp1dh9_mOoYvq8QHtNg5gXC_t4gO6jcmceSEO8LxoBH4QrP3jY9bhU2A8LKxh-AbMlKNKf0PcU8pNqy_YtLMcr-fh9R844_45
linkProvider IOP Publishing
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB4VKlAv0NJWvFp8ACQO2d08bO8eaWGhvLoHKu0ttR2nWjWbXW0SxPbU_8A_7C_p2M4WQRFC4mTLmtjJ-DHfOPMA2MZWpRPNPMYE9SIE_B6icOV1As20bqmUCmvle8GOv0Unfdqv85xaX5jRuD76G1h1gYIdC83-DvEsbdo9ilKeN4XCFUeb4ySdg5c0RNlpPPi-9m4dI4NOjX8jj4W87_5TPtjLHbk0h2P_dzhbidNdhu-zd3WGJj8bVSkb6te9MI7P-JjXsFSjUbLvyN_AC52vwOp-Ye7HR8Mp2SW27q4_ihVY6LnaW7g-moirOr63yLIpOUA9thpnOiEm4G3-Q2MpJsTkWsuItH4yBMGmabV3F-RcXA-G1RDLoiDWz4oMcnI4QLyqB_mf3zdHoioKLD8ZW5ySuAGn7-Cye3j5-dirszh4CsFe6SW-VGnQEm0qWFuo0Fc07fhppFBoUklN-p92KjljXDMZScFTrgQSUhlRHqbhe5jPR7leBSJxOk1snY6fIO5o-YInNJCMmpBoXCRqDZqzKYxVzQGTaCOLUdMx3I4Nt2PD7dhxew32_j0xdtE9HqHdwUmM6y1ePEK3OVs3t8QB6o1G8AfB-hO72YLF3kE3PvtycboBrwLjdGFtxTdhvpxU-gNCoVJ-tMv9L3aXAb0
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Gravitationally+Decoupled+Strange+Star+Model+beyond+the+Standard+Maximum+Mass+Limit+in+Einstein%E2%80%93Gauss%E2%80%93Bonnet+Gravity&rft.jtitle=The+Astrophysical+journal&rft.au=Maurya%2C+S.+K.&rft.au=Newton+Singh%2C+Ksh&rft.au=Govender%2C+M.&rft.au=Hansraj%2C+Sudan&rft.date=2022-02-01&rft.issn=0004-637X&rft.eissn=1538-4357&rft.volume=925&rft.issue=2&rft.spage=208&rft_id=info:doi/10.3847%2F1538-4357%2Fac4255&rft.externalDBID=n%2Fa&rft.externalDocID=10_3847_1538_4357_ac4255
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0004-637X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0004-637X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0004-637X&client=summon