Quadratic optimization for simultaneous matrix diagonalization

Simultaneous diagonalization of a set of matrices is a technique that has numerous applications in statistical signal processing and multivariate statistics. Although objective functions in a least-squares sense can be easily formulated, their minimization is not trivial, because constraints and fou...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on signal processing Vol. 54; no. 9; pp. 3270 - 3278
Main Authors Vollgraf, R., Obermayer, K.
Format Journal Article
LanguageEnglish
Published New York, NY IEEE 01.09.2006
Institute of Electrical and Electronics Engineers
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Simultaneous diagonalization of a set of matrices is a technique that has numerous applications in statistical signal processing and multivariate statistics. Although objective functions in a least-squares sense can be easily formulated, their minimization is not trivial, because constraints and fourth-order terms are usually involved. Most known optimization algorithms are, therefore, subject to certain restrictions on the class of problems: orthogonal transformations, sets of symmetric, Hermitian or positive definite matrices, to name a few. In this paper, we present a new algorithm called QDIAG that splits the overall optimization problem into a sequence of simpler second order subproblems. There are no restrictions imposed on the transformation matrix, which may be nonorthogonal, indefinite, or even rectangular, and there are no restrictions regarding the symmetry and definiteness of the matrices to be diagonalized, except for one of them. We apply the new method to second-order blind source separation and show that the algorithm converges fast and reliably. It allows for an implementation with a complexity independent of the number of matrices and, therefore, is particularly suitable for problems dealing with large sets of matrices
AbstractList Simultaneous diagonalization of a set of matrices is a technique that has numerous applications in statistical signal processing and multivariate statistics. Although objective functions in a least-squares sense can be easily formulated, their minimization is not trivial, because constraints and fourth-order terms are usually involved. Most known optimization algorithms are, therefore, subject to certain restrictions on the class of problems: orthogonal transformations, sets of symmetric, Hermitian or positive definite matrices, to name a few. In this paper, we present a new algorithm called QDIAG that splits the overall optimization problem into a sequence of simpler second order subproblems. There are no restrictions imposed on the transformation matrix, which may be nonorthogonal, indefinite, or even rectangular, and there are no restrictions regarding the symmetry and definiteness of the matrices to be diagonalized, except for one of them. We apply the new method to second-order blind source separation and show that the algorithm converges fast and reliably. It allows for an implementation with a complexity independent of the number of matrices and, therefore, is particularly suitable for problems dealing with large sets of matrices
Most known optimization algorithms are, therefore, subject to certain restrictions on the class of problems: orthogonal transformations, sets of symmetric, Hermitian or positive definite matrices, to name a few.
Simultaneous diagonalization of a set of matrices is a technique that has numerous applications in statistical signal processing and multivariate statistics. Although objective functions in a least-squares sense can be easily formulated, their minimization is not trivial, because constraints and fourth-order terms are usually involved. Most known optimization algorithms are, therefore, subject to certain restrictions on the class of problems: orthogonal transformations, sets of symmetric, Hermitian or positive definite matrices, to name a few. In this paper, we present a new algorithm called QDIAG that splits the overall optimization problem into a sequence of simpler second order subproblems. There are no restrictions imposed on the transformation matrix, which may be nonorthogonal, indefinite, or even rectangular, and there are no restrictions regarding the symmetry and definiteness of the matrices to be diagonalized, except for one of them. We apply the new method to second-order blind source separation and show that the algorithm converges fast and reliably. It allows for an implementation with a complexity independent of the number of matrices and, therefore, is particularly suitable for problems dealing with large sets of matrices.
Author Vollgraf, R.
Obermayer, K.
Author_xml – sequence: 1
  givenname: R.
  surname: Vollgraf
  fullname: Vollgraf, R.
  organization: Bernstein Center for Computational Neurosci. & Neural Inf. Process. Group, Berlin Univ. of Technol
– sequence: 2
  givenname: K.
  surname: Obermayer
  fullname: Obermayer, K.
  organization: Bernstein Center for Computational Neurosci. & Neural Inf. Process. Group, Berlin Univ. of Technol
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=18042864$$DView record in Pascal Francis
BookMark eNp1kEtLxDAURoOM4Di6duGmCOKqY9I8uxFEfMGAiiO4C2maSIa2GZMW1F9vtIOC4Orexfk-7j27YNL5zgBwgOAcIVieLh_v5wWEbC44ZxxvgSkqCcoh4WySdkhxTgV_3gG7Ma4gRISUbArOHgZVB9U7nfl171r3kXbfZdaHLLp2aHrVGT_ErFV9cG9Z7dSL71Sz4fbAtlVNNPubOQNPV5fLi5t8cXd9e3G-yDVBrM81Z0ZXyhhjdVWxSkBeUiuwhgxVVui6tpWGFcS0sqTACDGksFY1JZDZmlA8Aydj7zr418HEXrYuatM043VSlKwoCKJFIo_-kCs_hHRxghhjJcYQJ-h4A6moVWOD6rSLch1cq8K7RAKSQjCSODpyOvgYg7FSu_778T4o10gE5Zd7mdzLL_dydJ9yp39yP9X_Jg7HhEuSfmnGuSgp_gQQ6JIb
CODEN ITPRED
CitedBy_id crossref_primary_10_1007_s11004_012_9384_7
crossref_primary_10_1137_22M1541265
crossref_primary_10_1016_j_dsp_2012_05_003
crossref_primary_10_1109_MSP_2014_2298533
crossref_primary_10_1109_LSP_2013_2267797
crossref_primary_10_1109_TSP_2010_2053362
crossref_primary_10_1162_neco_2009_10_08_890
crossref_primary_10_1109_TSP_2009_2034935
crossref_primary_10_1109_TSP_2011_2171682
crossref_primary_10_1109_TSP_2007_893974
crossref_primary_10_1007_s10092_022_00484_3
crossref_primary_10_1016_j_medengphy_2012_07_017
crossref_primary_10_1109_TSP_2007_908929
crossref_primary_10_1137_130935264
crossref_primary_10_1109_TSP_2006_889983
crossref_primary_10_1109_MSP_2014_2298045
crossref_primary_10_1016_j_sigpro_2012_06_020
crossref_primary_10_14495_jsiaml_3_9
crossref_primary_10_1186_1687_6180_2014_150
crossref_primary_10_1109_TSP_2010_2087018
crossref_primary_10_1016_j_laa_2014_02_001
crossref_primary_10_3390_math8081349
crossref_primary_10_1109_TSP_2009_2016997
crossref_primary_10_1016_j_pnsc_2008_01_019
crossref_primary_10_1109_TSIPN_2020_2984131
crossref_primary_10_1109_TSP_2010_2101065
crossref_primary_10_1049_iet_spr_2019_0175
crossref_primary_10_1137_060659880
crossref_primary_10_1109_TSP_2011_2150217
crossref_primary_10_1109_TNN_2011_2146275
crossref_primary_10_1016_j_dsp_2007_12_003
crossref_primary_10_1016_S1874_1029_14_60011_2
crossref_primary_10_1109_TSP_2012_2190728
crossref_primary_10_3724_SP_J_1004_2010_00829
crossref_primary_10_1007_s10107_024_02120_0
crossref_primary_10_1109_TSP_2007_908934
crossref_primary_10_1016_j_sigpro_2013_03_037
crossref_primary_10_1002_sat_1510
crossref_primary_10_1016_j_clinph_2008_09_007
crossref_primary_10_1016_j_sigpro_2008_03_017
crossref_primary_10_1109_TSP_2007_899378
crossref_primary_10_1109_TSP_2018_2791980
crossref_primary_10_1061__ASCE_EM_1943_7889_0001897
crossref_primary_10_1007_s11045_009_0094_3
crossref_primary_10_1109_TSP_2010_2051428
crossref_primary_10_1152_jn_00993_2014
crossref_primary_10_1016_j_laa_2015_06_022
crossref_primary_10_1371_journal_pcbi_1005435
crossref_primary_10_1016_j_inffus_2018_09_009
crossref_primary_10_1109_TNN_2009_2030586
crossref_primary_10_1109_TSP_2014_2303947
crossref_primary_10_1137_22M1507656
crossref_primary_10_1109_LSP_2006_881519
crossref_primary_10_1109_TSP_2008_2009271
crossref_primary_10_1109_TASLP_2015_2485663
Cites_doi 10.1109/97.554471
10.1109/NNSP.2000.889432
10.1109/SAM.2002.1191070
10.1109/78.599941
10.1137/S089547980035689X
10.1049/ip-f-2.1993.0054
10.1137/S0895479893259546
10.1109/78.554307
10.1103/PhysRevLett.72.3634
10.1109/TSP.2002.1011195
10.1007/978-1-4757-1904-8
10.1109/5.720250
10.1016/0893-6080(94)00083-X
ContentType Journal Article
Copyright 2006 INIST-CNRS
Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2006
Copyright_xml – notice: 2006 INIST-CNRS
– notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2006
DBID 97E
RIA
RIE
AAYXX
CITATION
IQODW
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
F28
FR3
DOI 10.1109/TSP.2006.877673
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Xplore
CrossRef
Pascal-Francis
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
Engineering Research Database
ANTE: Abstracts in New Technology & Engineering
DatabaseTitleList
Technology Research Database
Technology Research Database
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Xplore Digital Libary (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Statistics
Applied Sciences
EISSN 1941-0476
EndPage 3278
ExternalDocumentID 2348425871
18042864
10_1109_TSP_2006_877673
1677895
Genre orig-research
GroupedDBID -~X
.DC
0R~
29I
3EH
4.4
53G
5GY
5VS
6IK
85S
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABFSI
ABQJQ
ABVLG
ACGFO
ACIWK
ACKIV
ACNCT
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AJQPL
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
E.L
EBS
EJD
F5P
HZ~
H~9
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
MS~
O9-
OCL
P2P
RIA
RIE
RNS
TAE
TN5
VH1
AAYOK
AAYXX
CITATION
RIG
IQODW
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
F28
FR3
ID FETCH-LOGICAL-c416t-c76ecbaeeefcbb6b80795f83c061bf8cddfbc0b035bf4231161a3cad5406fd453
IEDL.DBID RIE
ISSN 1053-587X
IngestDate Fri Jul 11 11:46:18 EDT 2025
Mon Jun 30 10:29:37 EDT 2025
Mon Jul 21 09:15:25 EDT 2025
Tue Jul 01 01:15:16 EDT 2025
Thu Apr 24 23:00:37 EDT 2025
Tue Aug 26 16:36:49 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 9
Keywords Matrix diagonalization
Second order
Hermite interpolation
Blind source separation
Blind source separation (BSS)
quadratic optimization
Implementation
Optimization
Orthogonal transformation
Least squares method
Signal processing
joint diagonalization
Objective function
Fast algorithm
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c416t-c76ecbaeeefcbb6b80795f83c061bf8cddfbc0b035bf4231161a3cad5406fd453
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Article-2
ObjectType-Feature-1
content type line 23
PQID 866693303
PQPubID 85478
PageCount 9
ParticipantIDs proquest_miscellaneous_896224152
ieee_primary_1677895
proquest_journals_866693303
crossref_citationtrail_10_1109_TSP_2006_877673
crossref_primary_10_1109_TSP_2006_877673
pascalfrancis_primary_18042864
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2006-09-01
PublicationDateYYYYMMDD 2006-09-01
PublicationDate_xml – month: 09
  year: 2006
  text: 2006-09-01
  day: 01
PublicationDecade 2000
PublicationPlace New York, NY
PublicationPlace_xml – name: New York, NY
– name: New York
PublicationTitle IEEE transactions on signal processing
PublicationTitleAbbrev TSP
PublicationYear 2006
Publisher IEEE
Institute of Electrical and Electronics Engineers
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: Institute of Electrical and Electronics Engineers
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
vollgraf (ref5) 2000
ref15
jolliffe (ref1) 1986
ref11
ref10
ref2
ref16
ref8
ziehe (ref6) 2000
ref7
ref9
van der veen (ref14) 2001
ref4
ref3
ziehe (ref18) 2003
ziehe (ref17) 2004; 5
mccullagh (ref19) 1987
References_xml – ident: ref11
  doi: 10.1109/97.554471
– ident: ref8
  doi: 10.1109/NNSP.2000.889432
– ident: ref15
  doi: 10.1109/SAM.2002.1191070
– ident: ref3
  doi: 10.1109/78.599941
– ident: ref13
  doi: 10.1137/S089547980035689X
– ident: ref9
  doi: 10.1049/ip-f-2.1993.0054
– start-page: 127
  year: 2000
  ident: ref6
  article-title: ofi: optimal filtering algorithms for source separation
  publication-title: Proc 2nd Int Workshop Independent Component Analysis (ICA)
– ident: ref12
  doi: 10.1137/S0895479893259546
– year: 1987
  ident: ref19
  publication-title: Tensor Method in Statistics
– ident: ref4
  doi: 10.1109/78.554307
– year: 2001
  ident: ref14
  article-title: joint diagonalization via subspace fitting techniques
  publication-title: IEEE Int Conf Acoustics Speech Signal Processing (ICASSP)
– ident: ref2
  doi: 10.1103/PhysRevLett.72.3634
– ident: ref16
  doi: 10.1109/TSP.2002.1011195
– start-page: 469
  year: 2003
  ident: ref18
  article-title: a linear least-squares algorithm for joint diagonalization
  publication-title: Proc Int Workshop Independent Component Analysis Blind Signal Separation
– year: 1986
  ident: ref1
  publication-title: Principal Component Analysis
  doi: 10.1007/978-1-4757-1904-8
– start-page: 515
  year: 2000
  ident: ref5
  article-title: convolutive decorrelation procedures for blind source separation
  publication-title: Proc 2nd Int Workshop Independent Component Analysis (ICA)
– ident: ref10
  doi: 10.1109/5.720250
– volume: 5
  start-page: 777
  year: 2004
  ident: ref17
  article-title: a fast algorithm for joint diagonalization with non-orthogonal transformations and its application to blind source separation
  publication-title: J Mach Learn Res
– ident: ref7
  doi: 10.1016/0893-6080(94)00083-X
SSID ssj0014496
Score 2.2082803
Snippet Simultaneous diagonalization of a set of matrices is a technique that has numerous applications in statistical signal processing and multivariate statistics....
Most known optimization algorithms are, therefore, subject to certain restrictions on the class of problems: orthogonal transformations, sets of symmetric,...
SourceID proquest
pascalfrancis
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 3270
SubjectTerms Algorithms
Applied sciences
Blind source separation
Blind source separation (BSS)
Constrictions
Coordinate measuring machines
Detection, estimation, filtering, equalization, prediction
Eigenvalues and eigenfunctions
Exact sciences and technology
Information, signal and communications theory
Jacobian matrices
joint diagonalization
Mathematical analysis
Matrices
Matrix methods
Miscellaneous
Optimization
Optimization algorithms
Principal component analysis
quadratic optimization
Signal and communications theory
Signal processing
Signal processing algorithms
Signal, noise
Source separation
Statistics
Studies
Symmetric matrices
Telecommunications and information theory
Tensile stress
Transformations
Title Quadratic optimization for simultaneous matrix diagonalization
URI https://ieeexplore.ieee.org/document/1677895
https://www.proquest.com/docview/866693303
https://www.proquest.com/docview/896224152
Volume 54
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8QwEB7Ukx58rIrrix48eLBra9s0vQgiiggrigp7K8k0EVF3xd2C-OudSbrrG7yUQtI2nUySb5KZbwB2pFGRwcKEOYo0TNHIUMWaLnmWKsu-bC6Qtnshzm7T817Wm4K9SSyMMcY5n5kO37qz_GqANW-V7cfMdlZk0zBNhpuP1ZqcGKSpy8VFcCEJM5n3GhqfOCr2b64v_amDZOqa5MsK5FKqsEOkGpJMrE9m8WNedovN6QJ0x830PiYPnXqkO_j2jcHxv_-xCPMN6gyOvJoswZTpt2DuExdhC2YZdnrW5mU4vKpVxbqBwYDmlKcmWDMghBsM79kJUfXNoB4GT8zw_xqQkt05SO_rrcDt6cnN8VnYZFoIkQDZKMRcGNSKGmpRa6FllBeZlQnSaq-txKqyGiMdJZm2hL9igokqQVUR3BO2SrNkFWb6g75ZgyBXHPyDVpsYaT6oioPKFJYUIUMRS9Rt6IylX2JDQ87ZMB5LZ45ERUndxckxRem7qw27kweePQPH31WXWdgf1byc27D9pXs_yiVbjCJtw8a4v8tmCA9LSYYd7_bQW4NJKY09PlDxMi5lITwCWv_9wxsw63ds2CVtE2ZGL7XZIgwz0ttOed8BjxbwzA
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NT9wwEB0BPRQOtOVDbCk0hx44kCUhseNckKoKtG1ZBOoi7S2yJzZCwG7V3UgVv54ZO7sU2kpcokh2EmdmbD_bM28APimrE4uljQuUeZyjVbFODV0KkWvHvmw-kLZ_JnuX-behGC7A_jwWxlrrnc9sl2_9WX49xoa3yg5SZjsrxSK8onlfHIZorfmZQZ77bFwEGLJYqGLYEvmkSXkw-HEezh0Uk9dkT-Ygn1SFXSL1hKTiQjqLv0ZmP92cvIH-rKHBy-Sm20xNF--fcTi-9E_ewmqLO6PPwVDewYIdrcHKH2yEa7DMwDPwNq_D0UWja7YOjMY0qty14ZoRYdxocs1uiHpkx80kumOO_98RmdmVB_Wh3gZcnhwPvvTiNtdCjATJpjEW0qLR1FCHxkijkqIUTmVI871xCuvaGUxMkgnjCIGlBBR1hromwCddnYtsE5ZG45HdgqjQHP6DztgUaUSoy8Palo5MQaBMFZoOdGfSr7AlIud8GLeVX5AkZUXq4vSYsgrq6sDe_IGfgYPj_1XXWdiP1YKcO7D7RL2P5YrXjDLvwPZM31XbiSeVoqUd7_fQW6N5KfU-PlIJMq5UKQMGev_vD3-E171B_7Q6_Xr2fRuWw_4NO6h9gKXpr8buEKKZml1vyA9B_vQW
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Quadratic+optimization+for+simultaneous+matrix+diagonalization&rft.jtitle=IEEE+transactions+on+signal+processing&rft.au=Vollgraf%2C+R.&rft.au=Obermayer%2C+K.&rft.date=2006-09-01&rft.pub=IEEE&rft.issn=1053-587X&rft.volume=54&rft.issue=9&rft.spage=3270&rft.epage=3278&rft_id=info:doi/10.1109%2FTSP.2006.877673&rft.externalDocID=1677895
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1053-587X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1053-587X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1053-587X&client=summon