Quadratic optimization for simultaneous matrix diagonalization
Simultaneous diagonalization of a set of matrices is a technique that has numerous applications in statistical signal processing and multivariate statistics. Although objective functions in a least-squares sense can be easily formulated, their minimization is not trivial, because constraints and fou...
Saved in:
Published in | IEEE transactions on signal processing Vol. 54; no. 9; pp. 3270 - 3278 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
New York, NY
IEEE
01.09.2006
Institute of Electrical and Electronics Engineers The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Simultaneous diagonalization of a set of matrices is a technique that has numerous applications in statistical signal processing and multivariate statistics. Although objective functions in a least-squares sense can be easily formulated, their minimization is not trivial, because constraints and fourth-order terms are usually involved. Most known optimization algorithms are, therefore, subject to certain restrictions on the class of problems: orthogonal transformations, sets of symmetric, Hermitian or positive definite matrices, to name a few. In this paper, we present a new algorithm called QDIAG that splits the overall optimization problem into a sequence of simpler second order subproblems. There are no restrictions imposed on the transformation matrix, which may be nonorthogonal, indefinite, or even rectangular, and there are no restrictions regarding the symmetry and definiteness of the matrices to be diagonalized, except for one of them. We apply the new method to second-order blind source separation and show that the algorithm converges fast and reliably. It allows for an implementation with a complexity independent of the number of matrices and, therefore, is particularly suitable for problems dealing with large sets of matrices |
---|---|
AbstractList | Simultaneous diagonalization of a set of matrices is a technique that has numerous applications in statistical signal processing and multivariate statistics. Although objective functions in a least-squares sense can be easily formulated, their minimization is not trivial, because constraints and fourth-order terms are usually involved. Most known optimization algorithms are, therefore, subject to certain restrictions on the class of problems: orthogonal transformations, sets of symmetric, Hermitian or positive definite matrices, to name a few. In this paper, we present a new algorithm called QDIAG that splits the overall optimization problem into a sequence of simpler second order subproblems. There are no restrictions imposed on the transformation matrix, which may be nonorthogonal, indefinite, or even rectangular, and there are no restrictions regarding the symmetry and definiteness of the matrices to be diagonalized, except for one of them. We apply the new method to second-order blind source separation and show that the algorithm converges fast and reliably. It allows for an implementation with a complexity independent of the number of matrices and, therefore, is particularly suitable for problems dealing with large sets of matrices Most known optimization algorithms are, therefore, subject to certain restrictions on the class of problems: orthogonal transformations, sets of symmetric, Hermitian or positive definite matrices, to name a few. Simultaneous diagonalization of a set of matrices is a technique that has numerous applications in statistical signal processing and multivariate statistics. Although objective functions in a least-squares sense can be easily formulated, their minimization is not trivial, because constraints and fourth-order terms are usually involved. Most known optimization algorithms are, therefore, subject to certain restrictions on the class of problems: orthogonal transformations, sets of symmetric, Hermitian or positive definite matrices, to name a few. In this paper, we present a new algorithm called QDIAG that splits the overall optimization problem into a sequence of simpler second order subproblems. There are no restrictions imposed on the transformation matrix, which may be nonorthogonal, indefinite, or even rectangular, and there are no restrictions regarding the symmetry and definiteness of the matrices to be diagonalized, except for one of them. We apply the new method to second-order blind source separation and show that the algorithm converges fast and reliably. It allows for an implementation with a complexity independent of the number of matrices and, therefore, is particularly suitable for problems dealing with large sets of matrices. |
Author | Vollgraf, R. Obermayer, K. |
Author_xml | – sequence: 1 givenname: R. surname: Vollgraf fullname: Vollgraf, R. organization: Bernstein Center for Computational Neurosci. & Neural Inf. Process. Group, Berlin Univ. of Technol – sequence: 2 givenname: K. surname: Obermayer fullname: Obermayer, K. organization: Bernstein Center for Computational Neurosci. & Neural Inf. Process. Group, Berlin Univ. of Technol |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=18042864$$DView record in Pascal Francis |
BookMark | eNp1kEtLxDAURoOM4Di6duGmCOKqY9I8uxFEfMGAiiO4C2maSIa2GZMW1F9vtIOC4Orexfk-7j27YNL5zgBwgOAcIVieLh_v5wWEbC44ZxxvgSkqCcoh4WySdkhxTgV_3gG7Ma4gRISUbArOHgZVB9U7nfl171r3kXbfZdaHLLp2aHrVGT_ErFV9cG9Z7dSL71Sz4fbAtlVNNPubOQNPV5fLi5t8cXd9e3G-yDVBrM81Z0ZXyhhjdVWxSkBeUiuwhgxVVui6tpWGFcS0sqTACDGksFY1JZDZmlA8Aydj7zr418HEXrYuatM043VSlKwoCKJFIo_-kCs_hHRxghhjJcYQJ-h4A6moVWOD6rSLch1cq8K7RAKSQjCSODpyOvgYg7FSu_778T4o10gE5Zd7mdzLL_dydJ9yp39yP9X_Jg7HhEuSfmnGuSgp_gQQ6JIb |
CODEN | ITPRED |
CitedBy_id | crossref_primary_10_1007_s11004_012_9384_7 crossref_primary_10_1137_22M1541265 crossref_primary_10_1016_j_dsp_2012_05_003 crossref_primary_10_1109_MSP_2014_2298533 crossref_primary_10_1109_LSP_2013_2267797 crossref_primary_10_1109_TSP_2010_2053362 crossref_primary_10_1162_neco_2009_10_08_890 crossref_primary_10_1109_TSP_2009_2034935 crossref_primary_10_1109_TSP_2011_2171682 crossref_primary_10_1109_TSP_2007_893974 crossref_primary_10_1007_s10092_022_00484_3 crossref_primary_10_1016_j_medengphy_2012_07_017 crossref_primary_10_1109_TSP_2007_908929 crossref_primary_10_1137_130935264 crossref_primary_10_1109_TSP_2006_889983 crossref_primary_10_1109_MSP_2014_2298045 crossref_primary_10_1016_j_sigpro_2012_06_020 crossref_primary_10_14495_jsiaml_3_9 crossref_primary_10_1186_1687_6180_2014_150 crossref_primary_10_1109_TSP_2010_2087018 crossref_primary_10_1016_j_laa_2014_02_001 crossref_primary_10_3390_math8081349 crossref_primary_10_1109_TSP_2009_2016997 crossref_primary_10_1016_j_pnsc_2008_01_019 crossref_primary_10_1109_TSIPN_2020_2984131 crossref_primary_10_1109_TSP_2010_2101065 crossref_primary_10_1049_iet_spr_2019_0175 crossref_primary_10_1137_060659880 crossref_primary_10_1109_TSP_2011_2150217 crossref_primary_10_1109_TNN_2011_2146275 crossref_primary_10_1016_j_dsp_2007_12_003 crossref_primary_10_1016_S1874_1029_14_60011_2 crossref_primary_10_1109_TSP_2012_2190728 crossref_primary_10_3724_SP_J_1004_2010_00829 crossref_primary_10_1007_s10107_024_02120_0 crossref_primary_10_1109_TSP_2007_908934 crossref_primary_10_1016_j_sigpro_2013_03_037 crossref_primary_10_1002_sat_1510 crossref_primary_10_1016_j_clinph_2008_09_007 crossref_primary_10_1016_j_sigpro_2008_03_017 crossref_primary_10_1109_TSP_2007_899378 crossref_primary_10_1109_TSP_2018_2791980 crossref_primary_10_1061__ASCE_EM_1943_7889_0001897 crossref_primary_10_1007_s11045_009_0094_3 crossref_primary_10_1109_TSP_2010_2051428 crossref_primary_10_1152_jn_00993_2014 crossref_primary_10_1016_j_laa_2015_06_022 crossref_primary_10_1371_journal_pcbi_1005435 crossref_primary_10_1016_j_inffus_2018_09_009 crossref_primary_10_1109_TNN_2009_2030586 crossref_primary_10_1109_TSP_2014_2303947 crossref_primary_10_1137_22M1507656 crossref_primary_10_1109_LSP_2006_881519 crossref_primary_10_1109_TSP_2008_2009271 crossref_primary_10_1109_TASLP_2015_2485663 |
Cites_doi | 10.1109/97.554471 10.1109/NNSP.2000.889432 10.1109/SAM.2002.1191070 10.1109/78.599941 10.1137/S089547980035689X 10.1049/ip-f-2.1993.0054 10.1137/S0895479893259546 10.1109/78.554307 10.1103/PhysRevLett.72.3634 10.1109/TSP.2002.1011195 10.1007/978-1-4757-1904-8 10.1109/5.720250 10.1016/0893-6080(94)00083-X |
ContentType | Journal Article |
Copyright | 2006 INIST-CNRS Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2006 |
Copyright_xml | – notice: 2006 INIST-CNRS – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2006 |
DBID | 97E RIA RIE AAYXX CITATION IQODW 7SC 7SP 8FD JQ2 L7M L~C L~D F28 FR3 |
DOI | 10.1109/TSP.2006.877673 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Xplore CrossRef Pascal-Francis Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional ANTE: Abstracts in New Technology & Engineering Engineering Research Database |
DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional Engineering Research Database ANTE: Abstracts in New Technology & Engineering |
DatabaseTitleList | Technology Research Database Technology Research Database |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Xplore Digital Libary (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Statistics Applied Sciences |
EISSN | 1941-0476 |
EndPage | 3278 |
ExternalDocumentID | 2348425871 18042864 10_1109_TSP_2006_877673 1677895 |
Genre | orig-research |
GroupedDBID | -~X .DC 0R~ 29I 3EH 4.4 53G 5GY 5VS 6IK 85S 97E AAJGR AARMG AASAJ AAWTH ABAZT ABFSI ABQJQ ABVLG ACGFO ACIWK ACKIV ACNCT AENEX AETIX AGQYO AGSQL AHBIQ AI. AIBXA AJQPL AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 E.L EBS EJD F5P HZ~ H~9 ICLAB IFIPE IFJZH IPLJI JAVBF LAI MS~ O9- OCL P2P RIA RIE RNS TAE TN5 VH1 AAYOK AAYXX CITATION RIG IQODW 7SC 7SP 8FD JQ2 L7M L~C L~D F28 FR3 |
ID | FETCH-LOGICAL-c416t-c76ecbaeeefcbb6b80795f83c061bf8cddfbc0b035bf4231161a3cad5406fd453 |
IEDL.DBID | RIE |
ISSN | 1053-587X |
IngestDate | Fri Jul 11 11:46:18 EDT 2025 Mon Jun 30 10:29:37 EDT 2025 Mon Jul 21 09:15:25 EDT 2025 Tue Jul 01 01:15:16 EDT 2025 Thu Apr 24 23:00:37 EDT 2025 Tue Aug 26 16:36:49 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 9 |
Keywords | Matrix diagonalization Second order Hermite interpolation Blind source separation Blind source separation (BSS) quadratic optimization Implementation Optimization Orthogonal transformation Least squares method Signal processing joint diagonalization Objective function Fast algorithm |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html CC BY 4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c416t-c76ecbaeeefcbb6b80795f83c061bf8cddfbc0b035bf4231161a3cad5406fd453 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Article-2 ObjectType-Feature-1 content type line 23 |
PQID | 866693303 |
PQPubID | 85478 |
PageCount | 9 |
ParticipantIDs | proquest_miscellaneous_896224152 ieee_primary_1677895 proquest_journals_866693303 crossref_citationtrail_10_1109_TSP_2006_877673 crossref_primary_10_1109_TSP_2006_877673 pascalfrancis_primary_18042864 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2006-09-01 |
PublicationDateYYYYMMDD | 2006-09-01 |
PublicationDate_xml | – month: 09 year: 2006 text: 2006-09-01 day: 01 |
PublicationDecade | 2000 |
PublicationPlace | New York, NY |
PublicationPlace_xml | – name: New York, NY – name: New York |
PublicationTitle | IEEE transactions on signal processing |
PublicationTitleAbbrev | TSP |
PublicationYear | 2006 |
Publisher | IEEE Institute of Electrical and Electronics Engineers The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: Institute of Electrical and Electronics Engineers – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 ref12 vollgraf (ref5) 2000 ref15 jolliffe (ref1) 1986 ref11 ref10 ref2 ref16 ref8 ziehe (ref6) 2000 ref7 ref9 van der veen (ref14) 2001 ref4 ref3 ziehe (ref18) 2003 ziehe (ref17) 2004; 5 mccullagh (ref19) 1987 |
References_xml | – ident: ref11 doi: 10.1109/97.554471 – ident: ref8 doi: 10.1109/NNSP.2000.889432 – ident: ref15 doi: 10.1109/SAM.2002.1191070 – ident: ref3 doi: 10.1109/78.599941 – ident: ref13 doi: 10.1137/S089547980035689X – ident: ref9 doi: 10.1049/ip-f-2.1993.0054 – start-page: 127 year: 2000 ident: ref6 article-title: ofi: optimal filtering algorithms for source separation publication-title: Proc 2nd Int Workshop Independent Component Analysis (ICA) – ident: ref12 doi: 10.1137/S0895479893259546 – year: 1987 ident: ref19 publication-title: Tensor Method in Statistics – ident: ref4 doi: 10.1109/78.554307 – year: 2001 ident: ref14 article-title: joint diagonalization via subspace fitting techniques publication-title: IEEE Int Conf Acoustics Speech Signal Processing (ICASSP) – ident: ref2 doi: 10.1103/PhysRevLett.72.3634 – ident: ref16 doi: 10.1109/TSP.2002.1011195 – start-page: 469 year: 2003 ident: ref18 article-title: a linear least-squares algorithm for joint diagonalization publication-title: Proc Int Workshop Independent Component Analysis Blind Signal Separation – year: 1986 ident: ref1 publication-title: Principal Component Analysis doi: 10.1007/978-1-4757-1904-8 – start-page: 515 year: 2000 ident: ref5 article-title: convolutive decorrelation procedures for blind source separation publication-title: Proc 2nd Int Workshop Independent Component Analysis (ICA) – ident: ref10 doi: 10.1109/5.720250 – volume: 5 start-page: 777 year: 2004 ident: ref17 article-title: a fast algorithm for joint diagonalization with non-orthogonal transformations and its application to blind source separation publication-title: J Mach Learn Res – ident: ref7 doi: 10.1016/0893-6080(94)00083-X |
SSID | ssj0014496 |
Score | 2.2082803 |
Snippet | Simultaneous diagonalization of a set of matrices is a technique that has numerous applications in statistical signal processing and multivariate statistics.... Most known optimization algorithms are, therefore, subject to certain restrictions on the class of problems: orthogonal transformations, sets of symmetric,... |
SourceID | proquest pascalfrancis crossref ieee |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 3270 |
SubjectTerms | Algorithms Applied sciences Blind source separation Blind source separation (BSS) Constrictions Coordinate measuring machines Detection, estimation, filtering, equalization, prediction Eigenvalues and eigenfunctions Exact sciences and technology Information, signal and communications theory Jacobian matrices joint diagonalization Mathematical analysis Matrices Matrix methods Miscellaneous Optimization Optimization algorithms Principal component analysis quadratic optimization Signal and communications theory Signal processing Signal processing algorithms Signal, noise Source separation Statistics Studies Symmetric matrices Telecommunications and information theory Tensile stress Transformations |
Title | Quadratic optimization for simultaneous matrix diagonalization |
URI | https://ieeexplore.ieee.org/document/1677895 https://www.proquest.com/docview/866693303 https://www.proquest.com/docview/896224152 |
Volume | 54 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8QwEB7Ukx58rIrrix48eLBra9s0vQgiiggrigp7K8k0EVF3xd2C-OudSbrrG7yUQtI2nUySb5KZbwB2pFGRwcKEOYo0TNHIUMWaLnmWKsu-bC6Qtnshzm7T817Wm4K9SSyMMcY5n5kO37qz_GqANW-V7cfMdlZk0zBNhpuP1ZqcGKSpy8VFcCEJM5n3GhqfOCr2b64v_amDZOqa5MsK5FKqsEOkGpJMrE9m8WNedovN6QJ0x830PiYPnXqkO_j2jcHxv_-xCPMN6gyOvJoswZTpt2DuExdhC2YZdnrW5mU4vKpVxbqBwYDmlKcmWDMghBsM79kJUfXNoB4GT8zw_xqQkt05SO_rrcDt6cnN8VnYZFoIkQDZKMRcGNSKGmpRa6FllBeZlQnSaq-txKqyGiMdJZm2hL9igokqQVUR3BO2SrNkFWb6g75ZgyBXHPyDVpsYaT6oioPKFJYUIUMRS9Rt6IylX2JDQ87ZMB5LZ45ERUndxckxRem7qw27kweePQPH31WXWdgf1byc27D9pXs_yiVbjCJtw8a4v8tmCA9LSYYd7_bQW4NJKY09PlDxMi5lITwCWv_9wxsw63ds2CVtE2ZGL7XZIgwz0ttOed8BjxbwzA |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NT9wwEB0BPRQOtOVDbCk0hx44kCUhseNckKoKtG1ZBOoi7S2yJzZCwG7V3UgVv54ZO7sU2kpcokh2EmdmbD_bM28APimrE4uljQuUeZyjVbFODV0KkWvHvmw-kLZ_JnuX-behGC7A_jwWxlrrnc9sl2_9WX49xoa3yg5SZjsrxSK8onlfHIZorfmZQZ77bFwEGLJYqGLYEvmkSXkw-HEezh0Uk9dkT-Ygn1SFXSL1hKTiQjqLv0ZmP92cvIH-rKHBy-Sm20xNF--fcTi-9E_ewmqLO6PPwVDewYIdrcHKH2yEa7DMwDPwNq_D0UWja7YOjMY0qty14ZoRYdxocs1uiHpkx80kumOO_98RmdmVB_Wh3gZcnhwPvvTiNtdCjATJpjEW0qLR1FCHxkijkqIUTmVI871xCuvaGUxMkgnjCIGlBBR1hromwCddnYtsE5ZG45HdgqjQHP6DztgUaUSoy8Palo5MQaBMFZoOdGfSr7AlIud8GLeVX5AkZUXq4vSYsgrq6sDe_IGfgYPj_1XXWdiP1YKcO7D7RL2P5YrXjDLvwPZM31XbiSeVoqUd7_fQW6N5KfU-PlIJMq5UKQMGev_vD3-E171B_7Q6_Xr2fRuWw_4NO6h9gKXpr8buEKKZml1vyA9B_vQW |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Quadratic+optimization+for+simultaneous+matrix+diagonalization&rft.jtitle=IEEE+transactions+on+signal+processing&rft.au=Vollgraf%2C+R.&rft.au=Obermayer%2C+K.&rft.date=2006-09-01&rft.pub=IEEE&rft.issn=1053-587X&rft.volume=54&rft.issue=9&rft.spage=3270&rft.epage=3278&rft_id=info:doi/10.1109%2FTSP.2006.877673&rft.externalDocID=1677895 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1053-587X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1053-587X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1053-587X&client=summon |