Quadratic optimization for simultaneous matrix diagonalization

Simultaneous diagonalization of a set of matrices is a technique that has numerous applications in statistical signal processing and multivariate statistics. Although objective functions in a least-squares sense can be easily formulated, their minimization is not trivial, because constraints and fou...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on signal processing Vol. 54; no. 9; pp. 3270 - 3278
Main Authors Vollgraf, R., Obermayer, K.
Format Journal Article
LanguageEnglish
Published New York, NY IEEE 01.09.2006
Institute of Electrical and Electronics Engineers
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Simultaneous diagonalization of a set of matrices is a technique that has numerous applications in statistical signal processing and multivariate statistics. Although objective functions in a least-squares sense can be easily formulated, their minimization is not trivial, because constraints and fourth-order terms are usually involved. Most known optimization algorithms are, therefore, subject to certain restrictions on the class of problems: orthogonal transformations, sets of symmetric, Hermitian or positive definite matrices, to name a few. In this paper, we present a new algorithm called QDIAG that splits the overall optimization problem into a sequence of simpler second order subproblems. There are no restrictions imposed on the transformation matrix, which may be nonorthogonal, indefinite, or even rectangular, and there are no restrictions regarding the symmetry and definiteness of the matrices to be diagonalized, except for one of them. We apply the new method to second-order blind source separation and show that the algorithm converges fast and reliably. It allows for an implementation with a complexity independent of the number of matrices and, therefore, is particularly suitable for problems dealing with large sets of matrices
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Article-2
ObjectType-Feature-1
content type line 23
ISSN:1053-587X
1941-0476
DOI:10.1109/TSP.2006.877673