A review of the importance of mineral nitrogen cycling in the plant-soil-microbe system of permafrost-affected soils—changing the paradigm
The paradigm that permafrost-affected soils show restricted mineral nitrogen (N) cycling in favor of organic N compounds is based on the observation that net N mineralization rates in these cold climates are negligible. However, we find here that this perception is wrong. By synthesizing published d...
Saved in:
Published in | Environmental research letters Vol. 17; no. 1; pp. 13004 - 13037 |
---|---|
Main Authors | , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Bristol
IOP Publishing
01.01.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The paradigm that permafrost-affected soils show restricted mineral nitrogen (N) cycling in favor of organic N compounds is based on the observation that net N mineralization rates in these cold climates are negligible. However, we find here that this perception is wrong. By synthesizing published data on N cycling in the plant-soil-microbe system of permafrost ecosystems we show that gross ammonification and nitrification rates in active layers were of similar magnitude and showed a similar dependence on soil organic carbon (C) and total N concentrations as observed in temperate and tropical systems. Moreover, high protein depolymerization rates and only marginal effects of C:N stoichiometry on gross N turnover provided little evidence for N limitation. Instead, the rather short period when soils are not frozen is the single main factor limiting N turnover. High gross rates of mineral N cycling are thus facilitated by released protection of organic matter in active layers with nitrification gaining particular importance in N-rich soils, such as organic soils without vegetation. Our finding that permafrost-affected soils show vigorous N cycling activity is confirmed by the rich functional microbial community which can be found both in active and permafrost layers. The high rates of N cycling and soil N availability are supported by biological N fixation, while atmospheric N deposition in the Arctic still is marginal except for fire-affected areas. In line with high soil mineral N production, recent plant physiological research indicates a higher importance of mineral plant N nutrition than previously thought. Our synthesis shows that mineral N production and turnover rates in active layers of permafrost-affected soils do not generally differ from those observed in temperate or tropical soils. We therefore suggest to adjust the permafrost N cycle paradigm, assigning a generally important role to mineral N cycling. This new paradigm suggests larger permafrost N climate feedbacks than assumed previously. |
---|---|
AbstractList | The paradigm that permafrost-affected soils show restricted mineral nitrogen (N) cycling in favor of organic N compounds is based on the observation that net N mineralization rates in these cold climates are negligible. However, we find here that this perception is wrong. By synthesizing published data on N cycling in the plant-soil-microbe system of permafrost ecosystems we show that gross ammonification and nitrification rates in active layers were of similar magnitude and showed a similar dependence on soil organic carbon (C) and total N concentrations as observed in temperate and tropical systems. Moreover, high protein depolymerization rates and only marginal effects of C:N stoichiometry on gross N turnover provided little evidence for N limitation. Instead, the rather short period when soils are not frozen is the single main factor limiting N turnover. High gross rates of mineral N cycling are thus facilitated by released protection of organic matter in active layers with nitrification gaining particular importance in N-rich soils, such as organic soils without vegetation. Our finding that permafrost-affected soils show vigorous N cycling activity is confirmed by the rich functional microbial community which can be found both in active and permafrost layers. The high rates of N cycling and soil N availability are supported by biological N fixation, while atmospheric N deposition in the Arctic still is marginal except for fire-affected areas. In line with high soil mineral N production, recent plant physiological research indicates a higher importance of mineral plant N nutrition than previously thought. Our synthesis shows that mineral N production and turnover rates in active layers of permafrost-affected soils do not generally differ from those observed in temperate or tropical soils. We therefore suggest to adjust the permafrost N cycle paradigm, assigning a generally important role to mineral N cycling. This new paradigm suggests larger permafrost N climate feedbacks than assumed previously. |
Author | Biasi, Christina Hu, Bin Schloter, Michael Rennenberg, Heinz Dannenmann, Michael Voigt, Carolina Butterbach-Bahl, Klaus Martikainen, Pertti J Ramm, Elisabeth Marushchak, Maija E Werner, Christian Ambus, Per Mueller, Carsten W Liu, Chunyan Siljanen, Henri M P |
Author_xml | – sequence: 1 givenname: Elisabeth orcidid: 0000-0001-5294-487X surname: Ramm fullname: Ramm, Elisabeth organization: Institute of Meteorology and Climate Research, Atmospheric Environmental Research (IMK-IFU), Karlsruhe Institute of Technology (KIT) , Garmisch-Partenkirchen 82467, Germany – sequence: 2 givenname: Chunyan orcidid: 0000-0001-6932-8520 surname: Liu fullname: Liu, Chunyan organization: State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry (LAPC), Institute of Atmospheric Physics (IAP), Chinese Academy of Sciences (CAS) , Beijing 100029, People’s Republic of China – sequence: 3 givenname: Per orcidid: 0000-0001-7580-524X surname: Ambus fullname: Ambus, Per organization: Center for Permafrost (Cenperm), University of Copenhagen Department of Geosciences and Natural Resource Management, Copenhagen DK-1350, Denmark – sequence: 4 givenname: Klaus orcidid: 0000-0001-9499-6598 surname: Butterbach-Bahl fullname: Butterbach-Bahl, Klaus organization: Institute of Meteorology and Climate Research, Atmospheric Environmental Research (IMK-IFU), Karlsruhe Institute of Technology (KIT) , Garmisch-Partenkirchen 82467, Germany – sequence: 5 givenname: Bin surname: Hu fullname: Hu, Bin organization: Center of Molecular Ecophysiology (CMEP), College of Resources and Environment, Southwest University , Chongqing 400715, People’s Republic of China – sequence: 6 givenname: Pertti J surname: Martikainen fullname: Martikainen, Pertti J organization: University of Eastern Finland Department of Environmental and Biological Sciences, Kuopio 70210, Finland – sequence: 7 givenname: Maija E orcidid: 0000-0002-2308-5049 surname: Marushchak fullname: Marushchak, Maija E organization: University of Jyväskylä Department of Biological and Environmental Science, Jyväskylä FI-40014, Finland – sequence: 8 givenname: Carsten W orcidid: 0000-0003-4119-0544 surname: Mueller fullname: Mueller, Carsten W organization: Center for Permafrost (Cenperm), University of Copenhagen Department of Geosciences and Natural Resource Management, Copenhagen DK-1350, Denmark – sequence: 9 givenname: Heinz surname: Rennenberg fullname: Rennenberg, Heinz organization: Center of Molecular Ecophysiology (CMEP), College of Resources and Environment, Southwest University , Chongqing 400715, People’s Republic of China – sequence: 10 givenname: Michael orcidid: 0000-0003-1671-1125 surname: Schloter fullname: Schloter, Michael organization: Research Unit for Comparative Microbiome Analyses , Helmholtz Zentrum München, Oberschleissheim 85764, Germany – sequence: 11 givenname: Henri M P orcidid: 0000-0002-3197-1438 surname: Siljanen fullname: Siljanen, Henri M P organization: University of Eastern Finland Department of Environmental and Biological Sciences, Kuopio 70210, Finland – sequence: 12 givenname: Carolina orcidid: 0000-0001-8589-1428 surname: Voigt fullname: Voigt, Carolina organization: University of Montreal Department of Geography, Montreal, QC H2V 0B3, Canada – sequence: 13 givenname: Christian surname: Werner fullname: Werner, Christian organization: Institute of Meteorology and Climate Research, Atmospheric Environmental Research (IMK-IFU), Karlsruhe Institute of Technology (KIT) , Garmisch-Partenkirchen 82467, Germany – sequence: 14 givenname: Christina surname: Biasi fullname: Biasi, Christina organization: University of Eastern Finland Department of Environmental and Biological Sciences, Kuopio 70210, Finland – sequence: 15 givenname: Michael orcidid: 0000-0001-5924-7612 surname: Dannenmann fullname: Dannenmann, Michael organization: Institute of Meteorology and Climate Research, Atmospheric Environmental Research (IMK-IFU), Karlsruhe Institute of Technology (KIT) , Garmisch-Partenkirchen 82467, Germany |
BookMark | eNp9kc1u1TAQhS1UJNrCnqUltoTaTuLYy6rip1Klbrq3Jr7j1FeJHWwXdHc8AEuekCchuakKQoKVraPzHc_4nJGTEAMS8pqzd5wpdcG7RlW6FvICbMM7fEZOn6STP-4vyFnOe8bapu3UKfl-SRN-8fiVRkfLPVI_zTEVCBZXZfIBE4w0-JLigIHagx19GKgPR_c8QihVjn6sJm9T7JHmQy44rfCMaQKXYi4VOIe24I6u1vzz2w97D2FYg44pkGDnh-klee5gzPjq8Twndx_e3119qm5uP15fXd5Uy2ayVL20otbacdULqxohJUhknWOgLDSMCw2i47pzsm-h3QEDKbDVUnHJEZr6nFxvsbsIezMnP0E6mAjeHIWYBgOpeDuiEZItsb3SrFZNy7SSrlZY96zXEnXHlqw3W9ac4ucHzMXs40MKy_QLW7eqE6qtFxfbXMsX5ZzQPb3KmVnrM2s_Zu3HbPUtiPwLsb5A8TGUBH78H_h2A32cfw_zT_sv3HOxCg |
CODEN | ERLNAL |
CitedBy_id | crossref_primary_10_1016_j_scitotenv_2024_176218 crossref_primary_10_1016_j_geoderma_2024_117108 crossref_primary_10_5194_bg_20_3873_2023 crossref_primary_10_1111_nph_20178 crossref_primary_10_2166_wrd_2024_148 crossref_primary_10_1007_s42729_022_00873_1 crossref_primary_10_1016_j_soilbio_2022_108757 crossref_primary_10_5194_bg_19_2683_2022 crossref_primary_10_1021_acs_analchem_3c05311 crossref_primary_10_1038_s41564_022_01303_9 crossref_primary_10_1038_s43247_024_01583_5 crossref_primary_10_3390_nitrogen3030031 crossref_primary_10_1128_mra_01266_22 crossref_primary_10_3390_nitrogen3020021 crossref_primary_10_1016_j_envres_2024_119150 crossref_primary_10_1016_j_soilbio_2025_109766 crossref_primary_10_1007_s11104_025_07361_2 crossref_primary_10_1038_s43247_023_01098_5 crossref_primary_10_1016_j_cogsc_2024_100897 crossref_primary_10_1111_nph_18264 crossref_primary_10_1007_s10533_024_01176_6 crossref_primary_10_1038_s41467_023_44022_3 crossref_primary_10_1002_ppp_2264 crossref_primary_10_1088_1748_9326_ad3167 crossref_primary_10_1016_j_jenvman_2024_120917 crossref_primary_10_1038_s41467_022_33794_9 crossref_primary_10_1128_msystems_01238_22 crossref_primary_10_1007_s11368_023_03431_z crossref_primary_10_1029_2022GB007589 crossref_primary_10_3389_fmicb_2023_1132016 crossref_primary_10_1016_j_oneear_2024_10_007 crossref_primary_10_1029_2022JG007322 crossref_primary_10_1029_2023GB007840 crossref_primary_10_1007_s11356_023_25216_0 crossref_primary_10_1016_j_catena_2022_106811 crossref_primary_10_1016_j_geoderma_2023_116627 crossref_primary_10_1128_aem_02016_23 crossref_primary_10_3390_f14102060 crossref_primary_10_3390_nitrogen3040040 crossref_primary_10_1016_j_catena_2025_108830 crossref_primary_10_1186_s40793_023_00509_6 |
Cites_doi | 10.1890/03-8002 10.3389/fmicb.2021.628269 10.1016/j.ecoleng.2011.01.016 10.1007/s13280-010-0022-7 10.1038/ismej.2013.35 10.2307/3242187 10.1073/pnas.1714597115 10.1371/journal.pone.0077342 10.1111/j.1365-2486.2012.02731.x 10.5194/bg-18-5053-2021 10.1007/s11104-018-3845-9 10.2307/1551127 10.3368/er.37.2.101 10.1029/2008GB003327 10.2136/sssaj1966.03615995003000010022x 10.1371/journal.pone.0207606 10.1111/ejss.12269 10.1016/j.geomorph.2015.10.023 10.1111/j.1365-2486.2012.02663.x 10.1128/AEM.02646-18 10.1038/nature14238 10.1038/ngeo434 10.1639/05 10.11821/xb200105003 10.1111/gcb.13372 10.3389/fmicb.2016.01894 10.5194/acp-19-4257-2019 10.1073/pnas.1516017113 10.1002/ppp.1958 10.1038/s41467-020-15250-8 10.1111/j.1365-2486.2011.02431.x 10.1111/j.1365-2745.2010.01792.x 10.5194/acp-11-5305-2011 10.1128/AEM.00409-16 10.1038/ismej.2011.172 10.1093/femsec/fiw018 10.1111/j.1462-2920.2004.00649.x 10.1029/2018JG004518 10.1111/nph.15903 10.1111/gcb.12406 10.1093/treephys/tpq076 10.1007/s10980-015-0266-5 10.5194/tc-2021-166 10.1111/j.1365-2486.2010.02234.x 10.1073/pnas.1715382115 10.1657/1938-4246-43.2.267 10.3389/fmicb.2017.00976 10.1016/j.polar.2019.01.003 10.1016/S0038-0717(01)00175-4 10.1016/j.soilbio.2016.12.013 10.1111/j.2006.0030-1299.14382.x 10.1016/j.soilbio.2013.08.004 10.1002/jpln.200421354 10.1264/jsme2.ME19126 10.1155/2011/406508 10.1007/s00442-006-0626-6 10.1073/pnas.1415123112 10.1029/2005GB002672 10.1073/pnas.0810193105 10.1002/2015JG003061 10.1029/2004GL021734 10.1073/pnas.1209793110 10.1890/04-0461 10.5194/bg-12-7129-2015 10.1046/j.1469-8137.2001.00053.x 10.1029/2007JG000508 10.1890/1051-0761(2006)016[2091:MFMDDA]2.0.CO;2 10.1038/ncomms13630 10.1038/s41467-020-18331-w 10.1657/1523-0430(2006)38[263:NFDAEN]2.0.CO;2 10.1038/ngeo2907 10.1007/s40333-016-0012-0 10.1002/mbo3.556 10.1038/s41467-019-10944-0 10.1007/s00248-017-1032-9 10.2307/1940891 10.2307/3243946 10.3852/09-224 10.1046/j.1469-8137.1997.00755.x 10.1111/gcb.13804 10.1038/s41467-018-08240-4 10.1641/B580807 10.1023/A:1015798428743 10.1038/ismej.2010.41 10.1007/s10533-004-0362-0 10.1007/s00300-006-0213-7 10.1007/s11104-018-3851-y 10.1016/j.cosust.2020.07.005 10.1016/j.soilbio.2012.06.010 10.1007/s10533-017-0391-0 10.1111/gcb.13296 10.1007/s10533-004-0363-z 10.1002/2015GB005351 10.1016/j.tim.2016.05.004 10.1007/BF03160645 10.1007/s00374-009-0378-7 10.1007/s10021-009-9237-5 10.5194/bg-15-953-2018 10.1111/gcb.12175 10.1890/12-0782.1 10.1002/ecy.2938 10.1111/gcb.15205 10.5194/bg-11-6573-2014 10.1111/gcb.13563 10.3390/microorganisms7110526 10.1088/1748-9326/aaa4fa 10.1002/2015GL065034 10.1073/pnas.1702902114 10.5194/bg-17-361-2020 10.1023/A:1013076609950 10.1099/ijs.0.63384-0 10.1007/s12038-013-9369-9 10.1111/j.1469-8137.1996.tb01150.x 10.1021/acs.est.8b02271 10.1890/0012-9658(2002)083[0088:LTSNFI]2.0.CO;2 10.1038/s41467-020-20102-6 10.1371/journal.pone.0084761 10.1111/gcb.15507 10.1038/s41396-018-0176-z 10.5194/bg-12-3725-2015 10.1016/j.soilbio.2015.08.026 10.1016/j.soilbio.2019.107539 10.1038/nature07464 10.1111/j.1365-2486.2011.02548.x 10.1007/BF00303174 10.1657/1938-4246-41.2.164 10.1016/j.geoderma.2019.113974 10.1038/nature16069 10.1007/s10584-013-0730-7 10.1007/s11104-011-0750-x 10.1890/04-0988 10.3389/fpls.2019.01099 10.1111/gcb.15306 10.1657/1523-0430(2006)38[363:NFISSA]2.0.CO;2 10.1016/0048-9697(95)04402-M 10.1657/AAAR0014-064 10.1007/BF02348611 10.1128/AEM.06132-11 10.1111/gcb.15851 10.1016/j.ecolind.2021.107589 10.1007/s10533-011-9609-8 10.1657/1523-0430(2005)037[0372:NFITHA]2.0.CO;2 10.1126/science.1176985 10.1007/BF02183033 10.1890/0012-9658(1999)080[2139:WSNCIA]2.0.CO;2 10.1111/j.1365-2745.2010.01675.x 10.1038/s41467-020-17169-6 10.1038/35079180 10.1038/ismej.2017.93 10.1093/treephys/tpt112 10.1007/s00248-014-0534-y 10.1111/gcb.12417 10.3390/f6082820 10.1007/s13157-012-0335-3 10.1038/ngeo803 10.1371/journal.pone.0123123 10.1038/s41467-018-06232-y 10.1175/JAS-D-15-0278.1 10.1016/j.earscirev.2020.103250 10.1038/NCLIMATE3240 10.1007/s11707-015-0556-x 10.1007/s10533-013-9862-0 10.1016/S0038-0717(02)00121-9 10.1007/BF02388733 10.1111/j.1365-2435.2007.01331.x 10.1038/nature10576 10.1080/15230430.2000.12003337 10.1007/s11104-012-1282-8 10.3389/fmicb.2019.01571 10.1016/j.soilbio.2018.12.005 10.1038/s41561-020-00645-5 10.1088/1748-9326/aac4ad 10.1111/gcb.14009 10.1111/j.1365-2486.2011.02442.x 10.1126/science.1242266 10.1038/nature08931 10.1007/s10533-004-0370-0 10.1029/2005JD005825 10.1029/2020WR027463 10.5194/bg-12-2227-2015 10.1038/sj.embor.7400662 10.1038/d41586-019-01313-4 10.1038/nature14338 10.1371/journal.pone.0230157 10.2307/2265676 10.1111/gcb.13204 10.1111/j.1365-2699.2010.02317.x 10.1007/s10021-016-0018-7 10.1007/s00376-020-0027-5 10.1371/journal.pone.0238004 10.2307/1311862 10.1126/science.1207687 10.1007/s10533-017-0393-y 10.1093/treephys/tpn033 10.7522/j.issn.1000-0240.2014.0025 10.1007/s11104-009-0214-8 10.1016/j.geoderma.2013.03.013 10.1128/AEM.72.3.2148-2154.2006 10.1111/1365-3040.ep11616228 10.1111/1365-2745.13062 10.1038/35023137 10.2307/2265708 10.1016/j.agee.2015.09.012 10.1890/ES11-00188.1 10.1007/s10533-006-9039-1 10.1098/rstb.2013.0122 10.1088/1748-9326/11/6/064013 10.1111/gcb.14388 10.1002/ppp.2048 10.2307/1941992 10.1016/j.soilbio.2020.107841 10.1016/j.atmosenv.2016.03.053 10.1038/s43017-020-0063-9 10.1111/gcb.13353 10.1007/s10533-009-9332-x 10.1016/j.soilbio.2013.12.005 10.1002/2015GB005084 10.1029/2007JG000470 10.1111/j.1365-2486.2006.01128.x 10.1098/rstb.2013.0126 10.1016/j.soilbio.2010.04.001 10.1111/gcb.12876 10.1111/nph.13265 10.1002/2015GB005370 10.1016/j.micres.2004.09.006 10.1111/gcb.14557 10.1007/BF00000940 10.1111/j.1438-8677.2009.00241.x 10.1029/2010JG001629 10.1007/s10533-014-0019-6 10.14430/arctic2907 10.3389/fmicb.2014.00022 10.1093/aob/mcf036 10.1089/ast.2006.6.400 10.3390/microorganisms7120699 10.1038/s41586-020-2780-0 10.1111/gcb.15883 10.1029/2012GL051958 10.1029/2018GB005990 10.1007/s00374-020-01476-7 10.1002/ecs2.2117 10.5194/bg-10-4297-2013 10.1016/j.scitotenv.2021.148847 10.1111/1365-2745.12639 |
ContentType | Journal Article |
Copyright | 2022 The Author(s). Published by IOP Publishing Ltd 2022 The Author(s). Published by IOP Publishing Ltd. This work is published under http://creativecommons.org/licenses/by/4.0 (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2022 The Author(s). Published by IOP Publishing Ltd – notice: 2022 The Author(s). Published by IOP Publishing Ltd. This work is published under http://creativecommons.org/licenses/by/4.0 (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | O3W TSCCA AAYXX CITATION 8FE 8FG ABJCF ABUWG AEUYN AFKRA ATCPS AZQEC BENPR BGLVJ BHPHI CCPQU DWQXO GNUQQ HCIFZ L6V M7S PATMY PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS PYCSY DOA |
DOI | 10.1088/1748-9326/ac417e |
DatabaseName | Institute of Physics Open Access Journal Titles IOPscience (Open Access) CrossRef ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Agricultural & Environmental Science Collection ProQuest Central Essentials ProQuest Central Technology Collection Natural Science Collection ProQuest One ProQuest Central Korea ProQuest Central Student SciTech Collection (ProQuest) ProQuest Engineering Collection Engineering Database Environmental Science Database ProQuest Central Premium ProQuest One Academic (New) ProQuest Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering collection Environmental Science Collection DOAJ: Directory of Open Access Journal (DOAJ) |
DatabaseTitle | CrossRef Publicly Available Content Database ProQuest Central Student Technology Collection ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Sustainability ProQuest Engineering Collection Natural Science Collection ProQuest Central Korea Agricultural & Environmental Science Collection ProQuest Central (New) Engineering Collection Engineering Database ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection Environmental Science Collection ProQuest One Academic UKI Edition Materials Science & Engineering Collection Environmental Science Database ProQuest One Academic ProQuest One Academic (New) |
DatabaseTitleList | Publicly Available Content Database CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: O3W name: Institute of Physics Open Access Journal Titles url: http://iopscience.iop.org/ sourceTypes: Publisher – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Environmental Sciences |
EISSN | 1748-9326 |
ExternalDocumentID | oai_doaj_org_article_260f0ab89038450986f38e3b0b96e970 10_1088_1748_9326_ac417e erlac417e |
GrantInformation_xml | – fundername: Deutsche Forschungsgemeinschaft grantid: DA1217/4-1 funderid: http://dx.doi.org/10.13039/501100001659 – fundername: National Natural Science Foundation of China grantid: 41861134029 funderid: http://dx.doi.org/10.13039/501100001809 |
GroupedDBID | 1JI 29G 2WC 5B3 5GY 5PX 5VS 7.Q AAFWJ AAHBH AAJKP ABHWH ABJCF ACAFW ACGFO ACHIP ADBBV AEFHF AEJGL AENEX AFKRA AFPKN AFYNE AIYBF AKPSB ALMA_UNASSIGNED_HOLDINGS ASPBG ATCPS ATQHT AVWKF AZFZN BCNDV BENPR BGLVJ BHPHI CBCFC CCPQU CEBXE CJUJL CRLBU CS3 DU5 E3Z EBS EDWGO EQZZN GROUPED_DOAJ GX1 HCIFZ HH5 IJHAN IOP IZVLO KNG KQ8 LAP M45 M48 M7S M~E N5L N9A O3W OK1 P2P PATMY PIMPY PJBAE PTHSS PYCSY RIN RNS RO9 SY9 T37 TR2 TSCCA W28 ~02 AAYXX AEUYN CITATION OVT PHGZM PHGZT 8FE 8FG ABUWG AEINN AZQEC DWQXO GNUQQ L6V PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PUEGO |
ID | FETCH-LOGICAL-c416t-b6c2399f18b2c84266a6e07f0a8ca40129a27197f6b5a5da0a62e5968161ea43 |
IEDL.DBID | M48 |
ISSN | 1748-9326 |
IngestDate | Wed Aug 27 01:31:06 EDT 2025 Wed Aug 13 04:49:05 EDT 2025 Thu Apr 24 22:59:51 EDT 2025 Tue Jul 01 04:05:34 EDT 2025 Wed Aug 21 03:36:11 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | Original content from this work may be used under the terms of the Creative Commons Attribution 4.0 license. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c416t-b6c2399f18b2c84266a6e07f0a8ca40129a27197f6b5a5da0a62e5968161ea43 |
Notes | ERL-111989.R2 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-2308-5049 0000-0001-5294-487X 0000-0003-1671-1125 0000-0002-3197-1438 0000-0001-9499-6598 0000-0001-8589-1428 0000-0003-4119-0544 0000-0001-6932-8520 0000-0001-7580-524X 0000-0001-5924-7612 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1088/1748-9326/ac417e |
PQID | 2635872853 |
PQPubID | 4998671 |
PageCount | 34 |
ParticipantIDs | proquest_journals_2635872853 crossref_citationtrail_10_1088_1748_9326_ac417e doaj_primary_oai_doaj_org_article_260f0ab89038450986f38e3b0b96e970 iop_journals_10_1088_1748_9326_ac417e crossref_primary_10_1088_1748_9326_ac417e |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20220101 2022-01-01 |
PublicationDateYYYYMMDD | 2022-01-01 |
PublicationDate_xml | – month: 1 year: 2022 text: 20220101 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Bristol |
PublicationPlace_xml | – name: Bristol |
PublicationTitle | Environmental research letters |
PublicationTitleAbbrev | ERL |
PublicationTitleAlternate | Environ. Res. Lett |
PublicationYear | 2022 |
Publisher | IOP Publishing |
Publisher_xml | – name: IOP Publishing |
References | Salmon (erlac417ebib187) 2016; 22 Daebeler (erlac417ebib36) 2017; 107 McCarty (erlac417ebib137) 2021; 18 Henry (erlac417ebib75) 1986; 18 Finger (erlac417ebib52) 2016; 104 Wild (erlac417ebib249) 2017; 136 Stewart (erlac417ebib211) 2013; 362 Oswald (erlac417ebib155) 2013; 341 Cui (erlac417ebib34) 2016; 135 Grömping (erlac417ebib68) 2021 Zona (erlac417ebib264) 2016; 113 Koven (erlac417ebib111) 2015; 112 Qi (erlac417ebib168) 2017; 8 Fouché (erlac417ebib55) 2020; 11 Connolly (erlac417ebib32) 2020; 11 Daims (erlac417ebib37) 2016; 24 Gordon (erlac417ebib66) 2001; 1499 Yoon (erlac417ebib260) 2016; 82 Mukhtar (erlac417ebib147) 2019; 7 Salmon (erlac417ebib186) 2018; 123 Wild (erlac417ebib247) 2015; 29 Beermann (erlac417ebib12) 2017; 28 Mao (erlac417ebib133) 2020; 26 Johansson (erlac417ebib94) 1999; 80 Strauss (erlac417ebib215) 2015; 12 Banerjee (erlac417ebib10) 2012; 78 Rousk (erlac417ebib177) 2016a; 22 Chapin (erlac417ebib27) 1992 Hobara (erlac417ebib80) 2006; 38 DeLuca (erlac417ebib42) 2007; 152 Stewart (erlac417ebib212) 2014; 70 Rousk (erlac417ebib180) 2017; 136 Dannenmann (erlac417ebib38) 2018; 24 Elberling (erlac417ebib48) 2010; 3 Walker (erlac417ebib239) 2010; 102 Wu (erlac417ebib254) 2020; 56 Gunther (erlac417ebib69) 1989; 92 Peters (erlac417ebib162) 2011; 11 Mueller (erlac417ebib146) 2015; 21 Song (erlac417ebib207) 2021; 126 Yang (erlac417ebib256) 2018; 52 Arndal (erlac417ebib9) 2009; 41 Lamarque (erlac417ebib117) 2005; 110 (erlac417ebib90) 2014 Wanek (erlac417ebib240) 2010; 42 Elrys (erlac417ebib50) 2021b; 27 Palmer (erlac417ebib156) 2012; 6 Schuur (erlac417ebib198) 2015; 520 Moore (erlac417ebib144) 2018; 433 Bridgham (erlac417ebib20) 1996; 16 Jiang (erlac417ebib93) 2016; 31 Tian (erlac417ebib222) 2020; 586 Pfautsch (erlac417ebib163) 2009; 29 Frey (erlac417ebib57) 2016; 92 Wu (erlac417ebib253) 2012; 3 Burkert (erlac417ebib22) 2019; 85 Keuper (erlac417ebib103) 2012; 18 Bowden (erlac417ebib19) 2008; 113 Wild (erlac417ebib246) 2013; 67 Schädel (erlac417ebib189) 2014; 20 Yang (erlac417ebib257) 2016; 8 Ramm (erlac417ebib170) 2020; 37 Turetsky (erlac417ebib228) 2019; 569 Mitchell (erlac417ebib142) 2009; 95 Andert (erlac417ebib6) 2012; 32 Chen (erlac417ebib30) 2015; 91 Günther (erlac417ebib70) 2013; 10 Lantz (erlac417ebib119) 2010; 37 Fuchs (erlac417ebib59) 2018; 15 Surey (erlac417ebib219) 2020; 147 Sharma (erlac417ebib199) 2002; 89 Hewitt (erlac417ebib78) 2019; 107 Street (erlac417ebib216) 2015; 206 Butterbach-Bahl (erlac417ebib23) 2013; 368 Holst (erlac417ebib83) 2009; 45 Kanakidou (erlac417ebib100) 2016; 73 Lehmann (erlac417ebib121) 2015; 528 Pirk (erlac417ebib166) 2015; 42 Gao (erlac417ebib61) 2003; 22 Laanbroek (erlac417ebib115) 2018; 75 Salmon (erlac417ebib185) 2019; 10 Tsutsumi (erlac417ebib226) 1993; 8 Jones (erlac417ebib96) 2002; 34 Lavoie (erlac417ebib120) 2011; 116 DeLuca (erlac417ebib41) 2013; 8 Kopittke (erlac417ebib109) 2018; 24 Rennenberg (erlac417ebib173) 2015; 6 Harms (erlac417ebib72) 2014; 117 (erlac417ebib63) 2013 Harms (erlac417ebib73) 2012; 18 Noll (erlac417ebib149) 2019; 130 Buckeridge (erlac417ebib21) 2010; 330 Treat (erlac417ebib224) 2016a; 121 Harden (erlac417ebib71) 2012; 39 (erlac417ebib91) 2019 Wilkerson (erlac417ebib250) 2019; 19 Hultman (erlac417ebib86) 2015; 521 Uri (erlac417ebib230) 2011; 37 Davey (erlac417ebib39) 1983; 2 (erlac417ebib210) 1998 Sorensen (erlac417ebib208) 2006; 38 Solheim (erlac417ebib206) 1996; 16 Pilegaard (erlac417ebib165) 2013; 368 Butterbach-Bahl (erlac417ebib24) 2012 Gil (erlac417ebib65) 2017; 31 Hetz (erlac417ebib77) 2021; 12 Mooshammer (erlac417ebib145) 2014; 5 Regina (erlac417ebib172) 1996; 35 Vishnivetskaya (erlac417ebib232) 2006; 6 Wolf (erlac417ebib251) 2010; 464 (erlac417ebib89) 2006 Calderoli (erlac417ebib25) 2018; 13 Mackelprang (erlac417ebib131) 2011; 480 Huss-Danell (erlac417ebib87) 1990 (erlac417ebib153) 2016 Simon (erlac417ebib203) 2014; 34 Mackelprang (erlac417ebib130) 2017; 11 Kielland (erlac417ebib105) 1994; 75 Siljanen (erlac417ebib202) 2019; 137 Fitzhugh (erlac417ebib53) 2001; 56 Voigt (erlac417ebib234) 2017a; 114 Mayland (erlac417ebib136) 1966; 30 Repo (erlac417ebib176) 2009; 2 Sorensen (erlac417ebib209) 2011; 17 Nossov (erlac417ebib150) 2011; 99 Wild (erlac417ebib248) 2018; 13 Pedersen (erlac417ebib160) 2020; 26 Sjöberg (erlac417ebib205) 2020; 57 Kuhry (erlac417ebib114) 1996; 77 Zhao (erlac417ebib262) 2018; 7 Kallenbach (erlac417ebib99) 2016; 7 Chen (erlac417ebib28) 2018; 9 Pikuta (erlac417ebib164) 2005; 55 Frost (erlac417ebib58) 2014; 20 Wagner-Riddle (erlac417ebib238) 2017; 10 Patzner (erlac417ebib158) 2020; 11 Mastepanov (erlac417ebib135) 2008; 456 Rennenberg (erlac417ebib175) 2010; 30 Biskaborn (erlac417ebib15) 2019; 10 Evans (erlac417ebib51) 2001 Dickson (erlac417ebib45) 2000; 32 Wang (erlac417ebib241) 2001; 56 Giesler (erlac417ebib64) 2012; 108 Stewart (erlac417ebib213) 2011a; 43 Huss-Danell (erlac417ebib88) 1997; 136 Hodson (erlac417ebib81) 2005; 72 Tarnocai (erlac417ebib221) 2009; 23 Dentener (erlac417ebib43) 2006; 20 Kicklighter (erlac417ebib104) 2019; 10 Alves (erlac417ebib5) 2013; 7 Chen (erlac417ebib29) 2019; 434 Johnson (erlac417ebib95) 2005; 7 Treat (erlac417ebib225) 2016b; 11 Schuur (erlac417ebib196) 2008; 58 Voigt (erlac417ebib236) 2020; 1 Kielland (erlac417ebib106) 1995; 31 Vonk (erlac417ebib237) 2015; 12 Bauters (erlac417ebib11) 2018; 115 Palmer (erlac417ebib157) 2015; 10 Li (erlac417ebib125) 2019; 25 Diochon (erlac417ebib46) 2013; 202 Nicholson (erlac417ebib148) 2013; 110 Pommerening-Röser (erlac417ebib167) 2005; 160 Abbott (erlac417ebib1) 2021; 27 Crittenden (erlac417ebib33) 1978; 81 Lindo (erlac417ebib126) 2013; 19 (erlac417ebib169) 2019 Chang (erlac417ebib26) 2014; 36 Uliassi (erlac417ebib229) 2002; 83 Liu (erlac417ebib128) 2016; 215 Elrys (erlac417ebib49) 2021a; 27 Schimel (erlac417ebib193) 2004; 85 Yergeau (erlac417ebib258) 2010; 4 Yonemura (erlac417ebib259) 2019; 19 Ravishankara (erlac417ebib171) 2009; 326 Groffman (erlac417ebib67) 2006; 16 Shaver (erlac417ebib201) 1992; 42 Li (erlac417ebib123) 2005; 27 Schlesinger (erlac417ebib194) 2009; 106 Schneider (erlac417ebib195) 1996; 134 Ruess (erlac417ebib183) 2009; 12 Gentsch (erlac417ebib62) 2015; 66 Li (erlac417ebib124) 2020; 207 Meyer (erlac417ebib141) 2006; 81 Galloway (erlac417ebib60) 2004; 70 Marushchak (erlac417ebib134) 2011; 17 Pawlowski (erlac417ebib159) 2008 Oechel (erlac417ebib151) 1995; 5 Belnap (erlac417ebib13) 2001; vol 150 Sturm (erlac417ebib217) 2001; 411 Forsius (erlac417ebib54) 2010; 39 Lagerström (erlac417ebib116) 2007; 21 Arens (erlac417ebib8) 2008; 113 McCaully (erlac417ebib139) 2021 Rousk (erlac417ebib178) 2015; 69 Turetsky (erlac417ebib227) 2003; 106 Zackrisson (erlac417ebib261) 2004; 85 Diáková (erlac417ebib44) 2016; 48 Xu (erlac417ebib255) 2021; 795 Ackerman (erlac417ebib3) 2019; 33 Andrews (erlac417ebib7) 1986; 9 Rennenberg (erlac417ebib174) 2009; 11 Oechel (erlac417ebib152) 2000; 406 Tobita (erlac417ebib223) 2013; 38 Ciais (erlac417ebib31) 2013 Edwards (erlac417ebib47) 2010; 98 Letendre (erlac417ebib122) 2019; 37 Rousk (erlac417ebib179) 2016b; 19 Ruess (erlac417ebib182) 2013; 83 Kuhry (erlac417ebib113) 2020; 17 Zielke (erlac417ebib263) 2005; 37 Schimel (erlac417ebib192) 1996; 77 Voigt (erlac417ebib235) 2017b; 23 Weintraub (erlac417ebib244) 2005; 73 Holloway (erlac417ebib82) 2020; 31 Weedon (erlac417ebib243) 2012; 18 Blume-Werry (erlac417ebib16) 2019; 223 Hibbs (erlac417ebib79) 1990 Jones (erlac417ebib97) 2005; 32 Monteux (erlac417ebib143) 2018; 12 Keuper (erlac417ebib102) 2017; 23 Osborne (erlac417ebib154) 2016; 10 Schuur (erlac417ebib197) 2013; 119 Hayashi (erlac417ebib74) 2020; 35 Su (erlac417ebib218) 2011; 333 Woodin (erlac417ebib252) 1997 Penton (erlac417ebib161) 2016; 7 Kühnel (erlac417ebib112) 2011; 2011 Booth (erlac417ebib17) 2005; 75 Houseman (erlac417ebib84) 2020; 15 Vile (erlac417ebib231) 2014; 121 Alves (erlac417ebib4) 2019; 10 McCarty (erlac417ebib138) 2020; 13 Wickland (erlac417ebib245) 2018; 13 McClelland (erlac417ebib140) 2016; 30 Sistla (erlac417ebib204) 2012; 55 Lamb (erlac417ebib118) 2011; 17 Knowles (erlac417ebib107) 2006; 114 Kou (erlac417ebib110) 2020; 11 Liu (erlac417ebib129) 2017; 23 Bintanja (erlac417ebib14) 2017; 7 Abbott (erlac417ebib2) 2015; 12 Liu (erlac417ebib127) 2018; 115 Kopittke (erlac417ebib108) 2020; 357 Kanevskiy (erlac417ebib101) 2016; 253 Dawson (erlac417ebib40) 2008 Hugelius (erlac417ebib85) 2014; 11 Herrmann (erlac417ebib76) 2002; 34 Ivanova (erlac417ebib92) 2020; 15 Tape (erlac417ebib220) 2006; 12 Rousk (erlac417ebib181) 2018; 9 D’Amico (erlac417ebib35) 2006; 7 Sharma (erlac417ebib200) 2006; 72 Vitousek (erlac417ebib233) 2002; 57/58 Stewart (erlac417ebib214) 2011b; 344 Borken (erlac417ebib18) 2004; 167 Madan (erlac417ebib132) 2007; 30 Scheer (erlac417ebib190) 2020; 47 Frank-Fahle (erlac417ebib56) 2014; 9 Sanders (erlac417ebib188) 2019; 7 Wang (erlac417ebib242) 2016; 22 Jónsdóttir (erlac417ebib98) 1995; 160/161 Salazar (erlac417ebib184) 2020; 101 Schell (erlac417ebib191) 1973; 26 |
References_xml | – volume: 85 start-page: 591 year: 2004 ident: erlac417ebib193 article-title: Nitrogen mineralization: challenges of a changing paradigm publication-title: Ecology doi: 10.1890/03-8002 – volume: 12 year: 2021 ident: erlac417ebib77 article-title: Burkholderiaceae are key acetate assimilators during complete denitrification in acidic cryoturbated peat circles of the arctic tundra publication-title: Front. Microbiol. doi: 10.3389/fmicb.2021.628269 – volume: 37 start-page: 920 year: 2011 ident: erlac417ebib230 article-title: Long-term effects on the nitrogen budget of a short-rotation grey alder Alnus incana (L.) Moench) forest on abandoned agricultural land publication-title: Ecol. Eng. doi: 10.1016/j.ecoleng.2011.01.016 – volume: 39 start-page: 136 year: 2010 ident: erlac417ebib54 article-title: Assessing the impacts of long-range sulfur and nitrogen deposition on arctic and sub-arctic ecosystems publication-title: AMBIO doi: 10.1007/s13280-010-0022-7 – volume: 7 start-page: 1620 year: 2013 ident: erlac417ebib5 article-title: Nitrification rates in Arctic soils are associated with functionally distinct populations of ammonia-oxidizing archaea publication-title: ISME J. doi: 10.1038/ismej.2013.35 – volume: 81 start-page: 258 year: 1978 ident: erlac417ebib33 article-title: Discovering the role of lichens in the nitrogen cycle in the boreal-arctic ecosystems publication-title: Bryologist doi: 10.2307/3242187 – volume: 115 start-page: 549 year: 2018 ident: erlac417ebib11 article-title: High fire-derived nitrogen deposition on central African forests publication-title: PNAS doi: 10.1073/pnas.1714597115 – volume: 8 year: 2013 ident: erlac417ebib41 article-title: Diazotrophy in alluvial meadows of subarctic river systems publication-title: PLoS One doi: 10.1371/journal.pone.0077342 – volume: 18 start-page: 2958 year: 2012 ident: erlac417ebib73 article-title: Thaw depth determines reaction and transport of inorganic nitrogen in valley bottom permafrost soils publication-title: Glob. Change Biol. doi: 10.1111/j.1365-2486.2012.02731.x – volume: 18 start-page: 5053 year: 2021 ident: erlac417ebib137 article-title: Reviews & syntheses: arctic fire regimes and emissions in the 21st century publication-title: Biogeosciences doi: 10.5194/bg-18-5053-2021 – volume: 434 start-page: 453 year: 2019 ident: erlac417ebib29 article-title: Linkage of plant and abiotic properties to the abundance and activity of N-cycling microbial communities in Tibetan permafrost-affected regions publication-title: Plant Soil doi: 10.1007/s11104-018-3845-9 – volume: 18 start-page: 181 year: 1986 ident: erlac417ebib75 article-title: Dinitrogen fixation (acetylene reduction) in high arctic sedge meadow communities publication-title: Arct. Antarct. Alp. Res. doi: 10.2307/1551127 – volume: 37 start-page: 101 year: 2019 ident: erlac417ebib122 article-title: Restoration of ecosystem function by soil surface inoculation with biocrust in mesic and xeric alpine ecosystems publication-title: Ecol. Res. doi: 10.3368/er.37.2.101 – volume: 23 start-page: GB2023 year: 2009 ident: erlac417ebib221 article-title: Soil organic carbon pools in the northern circumpolar permafrost region publication-title: Glob. Biogeochem. Cycles doi: 10.1029/2008GB003327 – volume: 30 start-page: 56 year: 1966 ident: erlac417ebib136 article-title: Fixation of isotopic nitrogen on a semiarid soil by algal crust organisms publication-title: Soil Sci. Soc. Amer. J. doi: 10.2136/sssaj1966.03615995003000010022x – volume: 13 year: 2018 ident: erlac417ebib25 article-title: Predominance and high diversity of genes associated to denitrification in metagenomes of subantarctic coastal sediments exposed to urban pollution publication-title: PLoS One doi: 10.1371/journal.pone.0207606 – volume: 66 start-page: 722 year: 2015 ident: erlac417ebib62 article-title: Properties and bioavailability of particulate and mineral-associated organic matter in arctic permafrost soils, Lower Kolyma Region, Russia publication-title: Eur. J. Soil Sci. doi: 10.1111/ejss.12269 – volume: 253 start-page: 370 year: 2016 ident: erlac417ebib101 article-title: Patterns and rates of riverbank erosion involving ice-rich permafrost (Yedoma) in northern Alaska publication-title: Geomorphology doi: 10.1016/j.geomorph.2015.10.023 – volume: 18 start-page: 1998 year: 2012 ident: erlac417ebib103 article-title: A frozen feast: thawing permafrost increases plant-available nitrogen in subarctic peatlands publication-title: Glob. Change Biol. doi: 10.1111/j.1365-2486.2012.02663.x – volume: 85 start-page: e02646 year: 2019 ident: erlac417ebib22 article-title: Changes in the active, dead, and dormant microbial community structure across a Pleistocene permafrost chronosequence publication-title: Appl. Environ. Microbiol. doi: 10.1128/AEM.02646-18 – volume: 521 start-page: 208 year: 2015 ident: erlac417ebib86 article-title: Multi-omics of permafrost, active layer and thermokarst bog soil microbiomes publication-title: Nature doi: 10.1038/nature14238 – year: 2014 ident: erlac417ebib90 – volume: 2 start-page: 189 year: 2009 ident: erlac417ebib176 article-title: Large N2O emissions from cryoturbated peat soil in tundra publication-title: Nat. Geosci. doi: 10.1038/ngeo434 – volume: 106 start-page: 395 year: 2003 ident: erlac417ebib227 article-title: New frontiers in bryology and lichenology. The role of bryophytes in carbon and nitrogen cycling publication-title: Bryologist doi: 10.1639/05 – volume: 56 start-page: 523 year: 2001 ident: erlac417ebib241 article-title: The feature of seasonal frozen soil in Qinghai-Tibet Plateau publication-title: Acta Geogr. Sin. doi: 10.11821/xb200105003 – volume: 23 start-page: 455 year: 2017 ident: erlac417ebib129 article-title: A global synthesis of the rate and temperature sensitivity of soil nitrogen mineralization: latitudinal patterns and mechanisms publication-title: Glob. Change Biol. doi: 10.1111/gcb.13372 – volume: 7 start-page: 1894 year: 2016 ident: erlac417ebib161 article-title: NifH-harboring bacterial community composition across an Alaskan permafrost thaw gradient publication-title: Front. Microbiol. doi: 10.3389/fmicb.2016.01894 – volume: 19 start-page: 4257 year: 2019 ident: erlac417ebib250 article-title: Permafrost nitrous oxide emissions observed on a landscape scale using the airborne eddy-covariance method publication-title: Atmos. Chem. Phys. doi: 10.5194/acp-19-4257-2019 – volume: 113 start-page: 40 year: 2016 ident: erlac417ebib264 article-title: Cold season emissions dominate the arctic tundra methane budget publication-title: PNAS doi: 10.1073/pnas.1516017113 – volume: 28 start-page: 605 year: 2017 ident: erlac417ebib12 article-title: Permafrost thaw and liberation of inorganic nitrogen in eastern Siberia publication-title: Permafr. Periglac. Process. doi: 10.1002/ppp.1958 – volume: 11 start-page: 1479 year: 2020 ident: erlac417ebib32 article-title: Groundwater as a major source of dissolved organic matter to Arctic coastal waters publication-title: Nat. Commun. doi: 10.1038/s41467-020-15250-8 – volume: 17 start-page: 3187 year: 2011 ident: erlac417ebib118 article-title: A high arctic soil ecosystem resists long-term environmental manipulations publication-title: Glob. Change Biol. doi: 10.1111/j.1365-2486.2011.02431.x – volume: 99 start-page: 621 year: 2011 ident: erlac417ebib150 article-title: Development of Alnus tenuifolia stands on an Alaskan floodplain: patterns of recruitment, disease and succession publication-title: J. Ecol. doi: 10.1111/j.1365-2745.2010.01792.x – volume: 11 start-page: 5305 year: 2011 ident: erlac417ebib162 article-title: Future emissions from shipping and petroleum activities in the Arctic publication-title: Atmos. Chem. Phys. doi: 10.5194/acp-11-5305-2011 – volume: 82 start-page: 3793 year: 2016 ident: erlac417ebib260 article-title: Clade I nosZ from those harboring clade II nosZ publication-title: Appl. Envioron. Microbiol. doi: 10.1128/AEM.00409-16 – volume: 6 start-page: 1058 year: 2012 ident: erlac417ebib156 article-title: Contrasting denitrifier communities relate to contrasting N2O emission patterns from acidic peat soils in arctic tundra publication-title: ISME J. doi: 10.1038/ismej.2011.172 – volume: 92 start-page: fiw018 year: 2016 ident: erlac417ebib57 article-title: Microbial diversity in European alpine permafrost and active layers publication-title: FEMS Microbiol. Ecol. doi: 10.1093/femsec/fiw018 – volume: 7 start-page: 1 year: 2005 ident: erlac417ebib95 article-title: Relevance of ammonium oxidation within biological soil crust communities publication-title: Environ. Microbiol. doi: 10.1111/j.1462-2920.2004.00649.x – volume: 123 start-page: 2497 year: 2018 ident: erlac417ebib186 article-title: Adding depth to our understanding of nitrogen dynamics in permafrost soils publication-title: J. Geophys. Res. Biogeosci. doi: 10.1029/2018JG004518 – volume: 223 start-page: 1328 year: 2019 ident: erlac417ebib16 article-title: Dwelling in the deep—strongly increased root growth and rooting depth enhance plant interactions with thawing permafrost soil publication-title: New Phytol. doi: 10.1111/nph.15903 – volume: 20 start-page: 1264 year: 2014 ident: erlac417ebib58 article-title: Tall shrub and tree expansion in Siberian tundra ecotones since the 1960s publication-title: Glob. Change Biol. doi: 10.1111/gcb.12406 – volume: 30 start-page: 1047 year: 2010 ident: erlac417ebib175 article-title: Perennial lifestyle—an adaptation to nutrient limitation? publication-title: Tree Physiol. doi: 10.1093/treephys/tpq076 – volume: 31 start-page: 195 year: 2016 ident: erlac417ebib93 article-title: C-N-P interactions control climate driven changes in regional patterns of C storage on the North Slope of Alaska publication-title: Landscape Ecol. doi: 10.1007/s10980-015-0266-5 – year: 2021 ident: erlac417ebib139 article-title: High temporal and spatial nitrate variability on an Alaskan hillslope dominated by alder shrubs publication-title: Cryosphere Discuss. doi: 10.5194/tc-2021-166 – volume: 17 start-page: 528 year: 2011 ident: erlac417ebib209 article-title: Long-term warming and litter addition affects nitrogen fixation in a subarctic heath publication-title: Glob. Change Biol. doi: 10.1111/j.1365-2486.2010.02234.x – volume: 115 start-page: 3398 year: 2018 ident: erlac417ebib127 article-title: Nitrate is an important nitrogen source for arctic tundra plants publication-title: PNAS doi: 10.1073/pnas.1715382115 – volume: 43 start-page: 267 year: 2011a ident: erlac417ebib213 article-title: Nitrogen inputs by associative cyanobacteria across a low arctic tundra landscape publication-title: Arct. Antarct. Alp. Res. doi: 10.1657/1938-4246-43.2.267 – volume: 8 start-page: 976 year: 2017 ident: erlac417ebib168 article-title: The biogeographic pattern of microbial functional genes along an altitudinal gradient of the Tibetan pasture publication-title: Front. Microbiol. doi: 10.3389/fmicb.2017.00976 – volume: 19 start-page: 137 year: 2019 ident: erlac417ebib259 article-title: Technical advances in measuring greenhouse gas emissions from thawing permafrost soils in the laboratory publication-title: Pol. Sci. doi: 10.1016/j.polar.2019.01.003 – volume: 34 start-page: 209 year: 2002 ident: erlac417ebib96 article-title: Soil amino acid turnover dominates the nitrogen flux in permafrost-dominated taiga forest soils publication-title: Soil Biol. Biochem. doi: 10.1016/S0038-0717(01)00175-4 – year: 2008 ident: erlac417ebib159 – volume: 107 start-page: 114 year: 2017 ident: erlac417ebib36 article-title: Soil warming and fertilization altered rates of nitrogen transformation processes and selected for adapted ammonia-oxidizing archaea in sub-arctic grassland soil publication-title: Soil Biol. Biochem. doi: 10.1016/j.soilbio.2016.12.013 – volume: 114 start-page: 37 year: 2006 ident: erlac417ebib107 article-title: Increased soil nitrogen associated with dinitrogen-fixing, terricolous lichens of the genus Peltigera in northern Minnesota publication-title: Oikos doi: 10.1111/j.2006.0030-1299.14382.x – volume: 67 start-page: 85 year: 2013 ident: erlac417ebib246 article-title: Nitrogen dynamics in turbic cryosols from Siberia and Greenland publication-title: Soil Biol. Biochem. doi: 10.1016/j.soilbio.2013.08.004 – volume: 167 start-page: 277 year: 2004 ident: erlac417ebib18 article-title: Nitrate leaching in forest soils: an analysis of long-term monitoring sites in Germany publication-title: J. Plant Nutr. Soil Sci. doi: 10.1002/jpln.200421354 – volume: 35 start-page: 2 year: 2020 ident: erlac417ebib74 article-title: Ammonia oxidation potentials and ammonia oxidizers of lichen-moss vegetated soils at two ice-free areas in East Antarctica publication-title: Microbes Environ. doi: 10.1264/jsme2.ME19126 – volume: 2011 year: 2011 ident: erlac417ebib112 article-title: 20-year climatology of NO3 − and NH4 + wet deposition at Ny-Ålesund, Svalbard publication-title: Adv. Meteorol. doi: 10.1155/2011/406508 – volume: 152 start-page: 121 year: 2007 ident: erlac417ebib42 article-title: Ecosystem controls on nitrogen fixation in boreal feather moss communities publication-title: Oecologia doi: 10.1007/s00442-006-0626-6 – volume: 112 start-page: 3752 year: 2015 ident: erlac417ebib111 article-title: Permafrost carbon-climate feedback is sensitive to deep soil carbon decomposability but not deep soil nitrogen dynamics publication-title: PNAS doi: 10.1073/pnas.1415123112 – volume: 20 start-page: GB4003 year: 2006 ident: erlac417ebib43 article-title: Nitrogen and sulfur deposition on regional and global scales: a multimodel evaluation publication-title: Glob. Biogeochem. Cycles doi: 10.1029/2005GB002672 – volume: 106 start-page: 203 year: 2009 ident: erlac417ebib194 article-title: On the fate of anthropogenic nitrogen publication-title: PNAS doi: 10.1073/pnas.0810193105 – volume: 121 start-page: 78 year: 2016a ident: erlac417ebib224 article-title: Effects of permafrost aggradation on peat properties as determined from a pan-arctic synthesis of plant macrofossils publication-title: J. Geophys. Res. Biogeosci. doi: 10.1002/2015JG003061 – volume: 32 year: 2005 ident: erlac417ebib97 article-title: Nitrogen loss from watersheds of interior Alaska underlain with discontinuous permafrost publication-title: Geophys. Res. Lett. doi: 10.1029/2004GL021734 – volume: 110 start-page: 666 year: 2013 ident: erlac417ebib148 article-title: Growth of Carnobacterium spp. from permafrost under low pressure, temperature, and anoxic atmosphere has implications for Earth microbes on Mars publication-title: PNAS doi: 10.1073/pnas.1209793110 – volume: 85 start-page: 3327 year: 2004 ident: erlac417ebib261 article-title: Nitrogen fixation increases with successional age in boreal forests publication-title: Ecology doi: 10.1890/04-0461 – volume: 12 start-page: 7129 year: 2015 ident: erlac417ebib237 article-title: Reviews and syntheses: effects of permafrost thaw on arctic aquatic ecosystems publication-title: Biogeosciences doi: 10.5194/bg-12-7129-2015 – volume: 1499 start-page: 461 year: 2001 ident: erlac417ebib66 article-title: Impacts of increased nitrogen supply on high arctic heath: the importance of bryophytes and phosphorus availability publication-title: New Phytol. doi: 10.1046/j.1469-8137.2001.00053.x – volume: 113 start-page: G03S09 year: 2008 ident: erlac417ebib8 article-title: Nonlinear responses to nitrogen and strong interactions with nitrogen and phosphorus additions drastically alter the structure and function of a high arctic ecosystem publication-title: J. Geophys. Res. Biogeosci. doi: 10.1029/2007JG000508 – volume: 16 start-page: 2091 year: 2006 ident: erlac417ebib67 article-title: Methods for measuring denitrification: diverse approaches to a difficult problem publication-title: Ecol. Appl. doi: 10.1890/1051-0761(2006)016[2091:MFMDDA]2.0.CO;2 – volume: 7 year: 2016 ident: erlac417ebib99 article-title: Direct evidence for microbial-derived soil organic matter formation and its ecophysiological controls publication-title: Nat. Commun. doi: 10.1038/ncomms13630 – volume: 11 start-page: 4500 year: 2020 ident: erlac417ebib55 article-title: Canadian permafrost stores large pools of ammonium and optically distinct dissolved organic matter publication-title: Nat. Commun. doi: 10.1038/s41467-020-18331-w – volume: 38 start-page: 263 year: 2006 ident: erlac417ebib208 article-title: Nitrogen fixation, denitrification, and ecosystem nitrogen pools in relation to vegetation development in the subarctic publication-title: Arct. Antarct. Alp. Res. doi: 10.1657/1523-0430(2006)38[263:NFDAEN]2.0.CO;2 – volume: 10 start-page: 279 year: 2017 ident: erlac417ebib238 article-title: Globally important nitrous oxide emissions from croplands induced by freeze–thaw cycles publication-title: Nat. Geosci. doi: 10.1038/ngeo2907 – volume: 8 start-page: 749 year: 2016 ident: erlac417ebib257 article-title: Effects of freezing intensity on soil solution nitrogen and microbial biomass nitrogen in an alpine grassland ecosystem on the Tibetan Plateau, China publication-title: J. Arid Land doi: 10.1007/s40333-016-0012-0 – volume: 7 start-page: e556 year: 2018 ident: erlac417ebib262 article-title: High-throughput analysis of anammox bacteria in wetland and dryland soils along the altitudinal gradient in Qinghai-Tibet Plateau publication-title: Microbiol. Open doi: 10.1002/mbo3.556 – volume: 10 start-page: 3024 year: 2019 ident: erlac417ebib104 article-title: Future nitrogen availability and its effect on carbon sequestration in northern Eurasia publication-title: Nat. Commun. doi: 10.1038/s41467-019-10944-0 – volume: 75 start-page: 204 year: 2018 ident: erlac417ebib115 article-title: Numerical relationships between archaeal and bacterial amoA genes vary by Icelandic andosol classes publication-title: Microb. Ecol. doi: 10.1007/s00248-017-1032-9 – volume: 75 start-page: 2373 year: 1994 ident: erlac417ebib105 article-title: Amino acid absorption by arctic plants: implications for plant nutrition and nitrogen cycling publication-title: Ecology doi: 10.2307/1940891 – start-page: 119 year: 2008 ident: erlac417ebib40 – volume: 92 start-page: 202 year: 1989 ident: erlac417ebib69 article-title: Nitrogen fixation by lichens in a subarctic Alaskan watershed publication-title: Am. Bryol. Lichenol. Soc. doi: 10.2307/3243946 – volume: 102 start-page: 822 year: 2010 ident: erlac417ebib239 article-title: Application of fungistatics in soil reduces N uptake by an arctic ericoid shrub Vaccinium vitis-idaca publication-title: Mycologia doi: 10.3852/09-224 – volume: 136 start-page: 375 year: 1997 ident: erlac417ebib88 article-title: Actinorhizal symbioses and their N2 fixation publication-title: New Phytol. doi: 10.1046/j.1469-8137.1997.00755.x – volume: 23 start-page: 4257 year: 2017 ident: erlac417ebib102 article-title: Experimentally increased nutrient availability at the permafrost thaw front selectively enhances biomass production of deep-rooting subarctic peatland species publication-title: Glob. Change Biol. doi: 10.1111/gcb.13804 – volume: 22 start-page: 191 year: 2003 ident: erlac417ebib61 article-title: Variation of the snow and frozen soil over Qinghai-Tibet Plateau in the late twentieth century and their relation to climatic change publication-title: Plateau Meteorol. – volume: 10 start-page: 264 year: 2019 ident: erlac417ebib15 article-title: Permafrost is warming at a global scale publication-title: Nat. Commun. doi: 10.1038/s41467-018-08240-4 – volume: 58 start-page: 701 year: 2008 ident: erlac417ebib196 article-title: Vulnerability of permafrost carbon to climate change: implications for the global carbon cycle publication-title: Bioscience doi: 10.1641/B580807 – volume: 57/58 start-page: 1 year: 2002 ident: erlac417ebib233 article-title: Toward an ecological understanding of biological nitrogen fixation publication-title: Biogechemistry doi: 10.1023/A:1015798428743 – volume: 4 start-page: 1206 year: 2010 ident: erlac417ebib258 article-title: The functional potential of high arctic permafrost revealed by metagenomic sequencing, qPCR and microarray analyses publication-title: ISME J. doi: 10.1038/ismej.2010.41 – start-page: 343 year: 1990 ident: erlac417ebib79 – volume: 72 start-page: 233 year: 2005 ident: erlac417ebib81 article-title: The high arctic glacial ecosystem: new insights from nutrient budgets publication-title: Biogeochemistry doi: 10.1007/s10533-004-0362-0 – volume: 30 start-page: 559 year: 2007 ident: erlac417ebib132 article-title: Greater nitrogen and/or phosphorus availability increase plant species’ cover and diversity at a high arctic polar semidesert publication-title: Pol. Biol. doi: 10.1007/s00300-006-0213-7 – volume: 433 start-page: 391 year: 2018 ident: erlac417ebib144 article-title: Plant uptake of organic nitrogen in two peatlands publication-title: Plant Soil doi: 10.1007/s11104-018-3851-y – volume: 47 start-page: 72 year: 2020 ident: erlac417ebib190 article-title: Estimating global terrestrial denitrification from measured N2O:(N2O+N2 product ratios publication-title: Curr. Opin. Environ. Sustain. doi: 10.1016/j.cosust.2020.07.005 – volume: 55 start-page: 78 year: 2012 ident: erlac417ebib204 article-title: Detecting microbial N-limitation in tussock tundra soil: implications for arctic soil organic carbon cycling publication-title: Soil Biol. Biochem. doi: 10.1016/j.soilbio.2012.06.010 – volume: 136 start-page: 261 year: 2017 ident: erlac417ebib249 article-title: Short-term carbon input increases microbial nitrogen demand, but not microbial nitrogen mining, in a set of boreal forest soils publication-title: Biogeochemistry doi: 10.1007/s10533-017-0391-0 – volume: 22 start-page: 4150 year: 2016a ident: erlac417ebib177 article-title: Microbial control of soil organic matter mineralization responses to labile carbon in subarctic climate change treatments publication-title: Glob. Change Biol. doi: 10.1111/gcb.13296 – volume: 73 start-page: 359 year: 2005 ident: erlac417ebib244 article-title: The seasonal dynamics of amino acids and other nutrients in Alaskan Arctic tundra soils publication-title: Biogeochemistry doi: 10.1007/s10533-004-0363-z – volume: 30 start-page: 629 year: 2016 ident: erlac417ebib140 article-title: Particulate organic carbon and nitrogen export from major Arctic rivers publication-title: Glob. Biogeochem. Cycles doi: 10.1002/2015GB005351 – volume: 24 start-page: 699 year: 2016 ident: erlac417ebib37 article-title: A new perspective on microbes formerly known as nitrite-oxidizing bacteria publication-title: Trends Microbiol. doi: 10.1016/j.tim.2016.05.004 – volume: 16 start-page: 45 year: 1996 ident: erlac417ebib20 article-title: Multiple limiting gradients in peatlands: a call for a new paradigm publication-title: Wetlands doi: 10.1007/BF03160645 – volume: 45 start-page: 679 year: 2009 ident: erlac417ebib83 article-title: Dinitrogen fixation by biological soil crusts in an Inner Mongolian steppe publication-title: Biol. Fertil. Soils doi: 10.1007/s00374-009-0378-7 – volume: 12 start-page: 489 year: 2009 ident: erlac417ebib183 article-title: Disease-mediated declines in N-fixation inputs by Alnus tenuifolia to early-successional floodplains in interior and south-central Alaska publication-title: Ecosystems doi: 10.1007/s10021-009-9237-5 – volume: 15 start-page: 953 year: 2018 ident: erlac417ebib59 article-title: Carbon and nitrogen pools in thermokarst-affected permafrost landscapes in Arctic Siberia publication-title: Biogeosciences doi: 10.5194/bg-15-953-2018 – volume: 19 start-page: 2022 year: 2013 ident: erlac417ebib126 article-title: Bryophyte-cyanobacteria associations as regulators of the northern latitude carbon balance in response to global change publication-title: Glob. Change Biol. doi: 10.1111/gcb.12175 – volume: 83 start-page: 177 year: 2013 ident: erlac417ebib182 article-title: Ecosystem-level consequences of symbiont partnerships in an N-fixing shrub from interior Alaskan floodplains publication-title: Ecol. Monogr. doi: 10.1890/12-0782.1 – volume: 101 year: 2020 ident: erlac417ebib184 article-title: Faster nitrogen cycling and more fungal and root biomass in cold ecosystems under experimental warming: a meta-analysis publication-title: Ecology doi: 10.1002/ecy.2938 – volume: 26 start-page: 5290 year: 2020 ident: erlac417ebib133 article-title: Permafrost nitrogen status and its determinants on the Tibetan Plateau publication-title: Glob. Change Biol. doi: 10.1111/gcb.15205 – volume: 11 start-page: 6573 year: 2014 ident: erlac417ebib85 article-title: Estimated stocks of circumpolar permafrost carbon with quantified uncertainty ranges and identified data gaps publication-title: Biogeosciences doi: 10.5194/bg-11-6573-2014 – year: 1998 ident: erlac417ebib210 – volume: 23 start-page: 3121 year: 2017b ident: erlac417ebib235 article-title: Warming of subarctic tundra increases emissions of all three important greenhouse gases—carbon dioxide, methane, and nitrous oxide publication-title: Glob. Change Biol. doi: 10.1111/gcb.13563 – volume: 7 start-page: 526 year: 2019 ident: erlac417ebib147 article-title: Relative abundance of ammonia oxidizing archaea and bacteria influences soil nitrification responses to temperature publication-title: Microorganisms doi: 10.3390/microorganisms7110526 – volume: 13 year: 2018 ident: erlac417ebib248 article-title: Amino acid production exceeds plant nitrogen demand in Siberian tundra publication-title: Environ. Res. Lett. doi: 10.1088/1748-9326/aaa4fa – volume: 42 start-page: 6732 year: 2015 ident: erlac417ebib166 article-title: Methane emission bursts from permafrost environments during autumn freeze-in: new insights from ground-penetrating radar publication-title: Geophys. Res. Lett. doi: 10.1002/2015GL065034 – volume: 114 start-page: 6238 year: 2017a ident: erlac417ebib234 article-title: Increased nitrous oxide emissions from arctic peatlands after permafrost thaw publication-title: PNAS doi: 10.1073/pnas.1702902114 – volume: 17 start-page: 361 year: 2020 ident: erlac417ebib113 article-title: Lability classification of soil organic matter in the northern permafrost region publication-title: Biogeosciences doi: 10.5194/bg-17-361-2020 – volume: 56 start-page: 215 year: 2001 ident: erlac417ebib53 article-title: Effects of soil freezing disturbance on soil solution nitrogen, phosphorus, and carbon chemistry in a northern hardwood ecosystem publication-title: Biogeochemistry doi: 10.1023/A:1013076609950 – volume: 55 start-page: 473 year: 2005 ident: erlac417ebib164 article-title: Carnobacterium pleistocenium sp. nov., a novel psychrotolerant, facultative anaerobe isolated from permafrost of the Fox Tunnel in Alaska publication-title: Int. J. Syst. Evol. Microbiol. doi: 10.1099/ijs.0.63384-0 – volume: 38 start-page: 761 year: 2013 ident: erlac417ebib223 article-title: Growth and N2 fixation in an Alnus hirsuta Turcz. var. sibirica stand in Japan publication-title: J. Biosci. doi: 10.1007/s12038-013-9369-9 – volume: 134 start-page: 103 year: 1996 ident: erlac417ebib195 article-title: Soluble N compounds in trees exposed to high loads of N: a comparison of spruce Picea abies and beech Fagus sylvatica grown under field conditions publication-title: New Phytol. doi: 10.1111/j.1469-8137.1996.tb01150.x – volume: 52 start-page: 9162 year: 2018 ident: erlac417ebib256 article-title: Magnitude and pathways of increased nitrous oxide emissions from uplands following permafrost thaw publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.8b02271 – volume: 83 start-page: 88 year: 2002 ident: erlac417ebib229 article-title: Limitations to symbiotic nitrogen fixation in primary succession on the Tanana river floodplain publication-title: Ecology doi: 10.1890/0012-9658(2002)083[0088:LTSNFI]2.0.CO;2 – volume: 11 start-page: 6329 year: 2020 ident: erlac417ebib158 article-title: Iron mineral dissolution releases iron and associated organic carbon during permafrost thaw publication-title: Nat. Commun. doi: 10.1038/s41467-020-20102-6 – volume: 9 year: 2014 ident: erlac417ebib56 article-title: Microbial functional potential and community composition in permafrost-affected soils of the NW Canadian Arctic publication-title: PLoS One doi: 10.1371/journal.pone.0084761 – volume: 27 start-page: 1408 year: 2021 ident: erlac417ebib1 article-title: Tundra wildfire triggers sustained lateral nutrient loss in Alaskan Arctic publication-title: Glob. Change Biol. doi: 10.1111/gcb.15507 – volume: 12 start-page: 2129 year: 2018 ident: erlac417ebib143 article-title: Long-term in situ permafrost thaw effects on bacterial communities and potential aerobic respiration publication-title: ISME J. doi: 10.1038/s41396-018-0176-z – volume: 12 start-page: 3725 year: 2015 ident: erlac417ebib2 article-title: Patterns and persistence of hydrologic carbon and nutrient export from collapsing upland permafrost publication-title: Biogeosciences doi: 10.5194/bg-12-3725-2015 – volume: 91 start-page: 65 year: 2015 ident: erlac417ebib30 article-title: Importance of heterotrophic nitrification and dissimilatory nitrate reduction to ammonium in a cropland soil: evidences from a 15N tracing study to literature synthesis publication-title: Soil Biol. Biochem. doi: 10.1016/j.soilbio.2015.08.026 – volume: 137 year: 2019 ident: erlac417ebib202 article-title: Archaeal nitrification is a key driver of high nitrous oxide emissions from arctic peatlands publication-title: Soil Biol. Biochem. doi: 10.1016/j.soilbio.2019.107539 – volume: 456 start-page: 628 year: 2008 ident: erlac417ebib135 article-title: Large tundra methane burst during onset of freezing publication-title: Nature doi: 10.1038/nature07464 – volume: 18 start-page: 138 year: 2012 ident: erlac417ebib243 article-title: Summer warming accelerates sub-arctic peatland nitrogen cycling without changing enzyme pools or microbial community structure publication-title: Glob. Change Biol. doi: 10.1111/j.1365-2486.2011.02548.x – volume: 2 start-page: 95 year: 1983 ident: erlac417ebib39 article-title: Effects of abiotic factors on nitrogen fixation by blue-green algae in Antarctica publication-title: Pol. Biol. doi: 10.1007/BF00303174 – year: 2021 ident: erlac417ebib68 article-title: The relaimpo package: relative importance of regressors in linear models v2.2–5 – volume: 41 start-page: 164 year: 2009 ident: erlac417ebib9 article-title: Seasonal variation in gross ecosystem production, plant biomass, and carbon and nitrogen pools in five high arctic vegetation types publication-title: Arct. Antarct. Alp. Res. doi: 10.1657/1938-4246-41.2.164 – volume: vol 150 year: 2001 ident: erlac417ebib13 – volume: 357 year: 2020 ident: erlac417ebib108 article-title: Soil organic matter is stabilized by organo-mineral associations through two key processes: the role of the carbon to nitrogen ratio publication-title: Geoderma doi: 10.1016/j.geoderma.2019.113974 – volume: 528 start-page: 60 year: 2015 ident: erlac417ebib121 article-title: The contentious nature of soil organic matter publication-title: Nature doi: 10.1038/nature16069 – volume: 119 start-page: 359 year: 2013 ident: erlac417ebib197 article-title: Expert assessment of vulnerability of permafrost carbon to climate change publication-title: Clim. Change doi: 10.1007/s10584-013-0730-7 – volume: 344 start-page: 335 year: 2011b ident: erlac417ebib214 article-title: Bryophyte-cyanobacterial associations as a key factor in N2-fixation across the Canadian Arctic publication-title: Plant Soil doi: 10.1007/s11104-011-0750-x – volume: 75 start-page: 139 year: 2005 ident: erlac417ebib17 article-title: Controls on nitrogen cycling in terrestrial ecosystems: a synthetic analysis of literature data publication-title: Ecol. Monogr. doi: 10.1890/04-0988 – volume: 10 start-page: 1099 year: 2019 ident: erlac417ebib185 article-title: Alder distribution and expansion across a tundra hillslope: implications for local N cycling publication-title: Front. Plant Sci. doi: 10.3389/fpls.2019.01099 – start-page: 465 year: 2013 ident: erlac417ebib31 – volume: 26 start-page: 6523 year: 2020 ident: erlac417ebib160 article-title: Foraging deeply: depth-specific plant nitrogen uptake in response to climate-induced N-release and permafrost thaw in the high arctic publication-title: Glob. Change Biol. doi: 10.1111/gcb.15306 – year: 2016 ident: erlac417ebib153 – volume: 38 start-page: 363 year: 2006 ident: erlac417ebib80 article-title: Nitrogen fixation in surface soils and vegetation in an arctic tundra watershed: a key source of atmospheric nitrogen publication-title: Arct. Antarct. Alp. Res. doi: 10.1657/1523-0430(2006)38[363:NFISSA]2.0.CO;2 – volume: 160/161 start-page: 677 year: 1995 ident: erlac417ebib98 article-title: Fate of added nitrogen in a moss-sedge arctic community and effects of increased nitrogen deposition publication-title: Sci. Total Environ. doi: 10.1016/0048-9697(95)04402-M – volume: 48 start-page: 111 year: 2016 ident: erlac417ebib44 article-title: Variation in N2 fixation in subarctic tundra in relation to landscape position and nitrogen pools and fluxes publication-title: Arct. Antarct. Alp. Res. doi: 10.1657/AAAR0014-064 – volume: 8 start-page: 85 year: 1993 ident: erlac417ebib226 article-title: Field measurements of nitrogen-fixing activity of intact saplings of Alnus maximowiczii in the subalpine zone of Mt Fuji publication-title: Ecol. Res. doi: 10.1007/BF02348611 – volume: 78 start-page: 346 year: 2012 ident: erlac417ebib10 article-title: Factors driving potential ammonia oxidation in Canadian arctic ecosystems: does spatial scale matter? publication-title: Appl. Environ. Microbiol. doi: 10.1128/AEM.06132-11 – volume: 27 start-page: 5950 year: 2021a ident: erlac417ebib49 article-title: Patterns and drivers of global gross nitrogen mineralization in soils publication-title: Glob. Change Biol. doi: 10.1111/gcb.15851 – volume: 126 year: 2021 ident: erlac417ebib207 article-title: Microbial abundance and enzymatic activity from tussock and shrub soil in permafrost peatland after 6-year warming publication-title: Ecol. Indic. doi: 10.1016/j.ecolind.2021.107589 – volume: 108 start-page: 429 year: 2012 ident: erlac417ebib64 article-title: Phosphorus availability and microbial respiration across different tundra vegetation types publication-title: Biogeochemistry doi: 10.1007/s10533-011-9609-8 – volume: 37 start-page: 372 year: 2005 ident: erlac417ebib263 article-title: Nitrogen fixation in the high arctic: role of vegetation and environmental conditions publication-title: Arct. Antarct. Alp. Res. doi: 10.1657/1523-0430(2005)037[0372:NFITHA]2.0.CO;2 – volume: 326 start-page: 123 year: 2009 ident: erlac417ebib171 article-title: Nitrous oxide (N2O): the dominant ozone-depleting substance emitted in the 21st century publication-title: Science doi: 10.1126/science.1176985 – volume: 35 start-page: 401 year: 1996 ident: erlac417ebib172 article-title: Fluxes of nitrous oxide from boreal peatlands as affected by peatland type, water table level and nitrification capacity publication-title: Biogeochemistry doi: 10.1007/BF02183033 – volume: 80 start-page: 2139 year: 1999 ident: erlac417ebib94 article-title: Within-stand nutrient cycling in arctic and boreal wetlands publication-title: Ecology doi: 10.1890/0012-9658(1999)080[2139:WSNCIA]2.0.CO;2 – volume: 98 start-page: 737 year: 2010 ident: erlac417ebib47 article-title: Nitrogen uptake of Carex aquatilis during the winter-spring transition in a low arctic wet meadow publication-title: J. Ecol. doi: 10.1111/j.1365-2745.2010.01675.x – volume: 11 start-page: 3331 year: 2020 ident: erlac417ebib110 article-title: Progressive nitrogen limitation across the Tibetan alpine permafrost region publication-title: Nat. Commun. doi: 10.1038/s41467-020-17169-6 – volume: 411 start-page: 546 year: 2001 ident: erlac417ebib217 article-title: Climate change: increasing shrub abundance in the Arctic publication-title: Nature doi: 10.1038/35079180 – volume: 11 start-page: 2305 year: 2017 ident: erlac417ebib130 article-title: Microbial survival strategies in ancient permafrost: insights from metagenomics publication-title: ISME J. doi: 10.1038/ismej.2017.93 – volume: 34 start-page: 49 year: 2014 ident: erlac417ebib203 article-title: Competition for nitrogen between European beech and sycamore maple shifts in favour of beech with decreasing light availability publication-title: Tree Physiol. doi: 10.1093/treephys/tpt112 – volume: 69 start-page: 778 year: 2015 ident: erlac417ebib178 article-title: Across-habitat comparison of diazotroph activity in the subarctic publication-title: Microb. Ecol. doi: 10.1007/s00248-014-0534-y – volume: 20 start-page: 641 year: 2014 ident: erlac417ebib189 article-title: Circumpolar assessment of permafrost C quality and its vulnerability over time using long-term incubation data publication-title: Glob. Change Biol. doi: 10.1111/gcb.12417 – volume: 6 start-page: 2820 year: 2015 ident: erlac417ebib173 article-title: Nitrogen nutrition of trees and temperate forests—the significance of nitrogen availability in pedosphere and atmosphere publication-title: Forests doi: 10.3390/f6082820 – volume: 32 start-page: 1047 year: 2012 ident: erlac417ebib6 article-title: Temporal changes in methane oxidizing and denitrifying communities and their activities in a drained peat soil publication-title: Wetlands doi: 10.1007/s13157-012-0335-3 – volume: 3 start-page: 332 year: 2010 ident: erlac417ebib48 article-title: High nitrous oxide production from thawing permafrost publication-title: Nat. Geosci. doi: 10.1038/ngeo803 – volume: 10 year: 2015 ident: erlac417ebib157 article-title: Denitrification activity of a remarkably diverse fen denitrifier community in Finnish Lapland is N-oxide limited publication-title: PLoS One doi: 10.1371/journal.pone.0123123 – volume: 9 start-page: 3951 year: 2018 ident: erlac417ebib28 article-title: Nitrogen availability regulates topsoil carbon dynamics after permafrost thaw by altering microbial metabolic efficiency publication-title: Nat. Commun. doi: 10.1038/s41467-018-06232-y – volume: 73 start-page: 2039 year: 2016 ident: erlac417ebib100 article-title: Past, present and future atmospheric nitrogen deposition publication-title: J. Atmos. Sci. doi: 10.1175/JAS-D-15-0278.1 – volume: 207 year: 2020 ident: erlac417ebib124 article-title: Global variations and controlling factors of soil nitrogen turnover rate publication-title: Earth Sci. Rev. doi: 10.1016/j.earscirev.2020.103250 – volume: 7 start-page: 263 year: 2017 ident: erlac417ebib14 article-title: Towards a rain-dominated Arctic publication-title: Nat. Clim. Change doi: 10.1038/NCLIMATE3240 – volume: 10 start-page: 1 year: 2016 ident: erlac417ebib154 article-title: Moisture and temperature controls on nitrification differ among ammonia oxidizer communities from three alpine soil habitats publication-title: Front. Earth Sci. doi: 10.1007/s11707-015-0556-x – start-page: 429 year: 2012 ident: erlac417ebib24 – volume: 117 start-page: 299 year: 2014 ident: erlac417ebib72 article-title: Thermo-erosion gullies increase nitrogen available for hydrologic export publication-title: Biogeochemistry doi: 10.1007/s10533-013-9862-0 – volume: 34 start-page: 1495 year: 2002 ident: erlac417ebib76 article-title: Sources of C and N contributing to the flush in mineralization upon freeze-thaw cycles in soils publication-title: Soil Biol. Biochem. doi: 10.1016/S0038-0717(02)00121-9 – volume: 16 start-page: 35 year: 1996 ident: erlac417ebib206 article-title: Nitrogen fixation in arctic vegetation and soils from Svalbard, Norway publication-title: Pol. Biol. doi: 10.1007/BF02388733 – volume: 21 start-page: 1027 year: 2007 ident: erlac417ebib116 article-title: Ecosystem input of nitrogen through biological fixation in feather mosses during ecosystem retrogression publication-title: Funct. Ecol. doi: 10.1111/j.1365-2435.2007.01331.x – volume: 480 start-page: 368 year: 2011 ident: erlac417ebib131 article-title: Metagenomic analysis of a permafrost microbial community reveals a rapid response to thaw publication-title: Nature doi: 10.1038/nature10576 – volume: 32 start-page: 40 year: 2000 ident: erlac417ebib45 article-title: Constraints to nitrogen fixation by cryptogamic crusts in a polar desert ecosystem, Devon Island, N.W.T., Canada publication-title: Arct. Antarct. Alp. Res. doi: 10.1080/15230430.2000.12003337 – volume: 362 start-page: 215 year: 2013 ident: erlac417ebib211 article-title: How is nitrogen fixation in the high arctic linked to greenhouse gas emissions? publication-title: Plant Soil doi: 10.1007/s11104-012-1282-8 – volume: 10 start-page: 1571 year: 2019 ident: erlac417ebib4 article-title: Ammonia oxidation by the arctic terrestrial thaumarchaeote Candidatus Nitrosocosmicus arcticus is stimulated by increasing temperatures publication-title: Front. Microbiol. doi: 10.3389/fmicb.2019.01571 – volume: 130 start-page: 73 year: 2019 ident: erlac417ebib149 article-title: Novel high-throughput approach to determine key processes of soil organic nitrogen cycling: gross protein depolymerization and microbial amino acid uptake publication-title: Soil Biol. Biochem. doi: 10.1016/j.soilbio.2018.12.005 – volume: 13 start-page: 656 year: 2020 ident: erlac417ebib138 article-title: Arctic fires re-emerging publication-title: Nat. Geosci. doi: 10.1038/s41561-020-00645-5 – volume: 13 year: 2018 ident: erlac417ebib245 article-title: Dissolved organic carbon and nitrogen release from boreal holocene permafrost and seasonally frozen soils of Alaska publication-title: Environ. Res. Lett. doi: 10.1088/1748-9326/aac4ad – volume: 24 start-page: 1762 year: 2018 ident: erlac417ebib109 article-title: Nitrogen-rich microbial products provide new organo-mineral associations for the stabilization of soil organic matter publication-title: Glob. Change Biol. doi: 10.1111/gcb.14009 – start-page: 219 year: 1997 ident: erlac417ebib252 – volume: 17 start-page: 2601 year: 2011 ident: erlac417ebib134 article-title: Hot spots for nitrous oxide emissions found in different types of permafrost peatlands publication-title: Glob. Change Biol. doi: 10.1111/j.1365-2486.2011.02442.x – volume: 341 start-page: 1233 year: 2013 ident: erlac417ebib155 article-title: HONO emissions from soil bacteria as a major source of atmospheric reactive nitrogen publication-title: Science doi: 10.1126/science.1242266 – volume: 464 start-page: 881 year: 2010 ident: erlac417ebib251 article-title: Grazing-induced reduction of natural nitrous oxide release from continental steppe publication-title: Nature doi: 10.1038/nature08931 – volume: 70 start-page: 153 year: 2004 ident: erlac417ebib60 article-title: Nitrogen cycles: past, present and future publication-title: Biogeochemistry doi: 10.1007/s10533-004-0370-0 – volume: 110 year: 2005 ident: erlac417ebib117 article-title: Assessing future nitrogen deposition and carbon cycle feedback using a multimodel approach: analysis of nitrogen deposition publication-title: J. Geophys. Res. Atmos. doi: 10.1029/2005JD005825 – volume: 57 year: 2020 ident: erlac417ebib205 article-title: Permafrost promotes shallow groundwater flow and warmer headwater streams publication-title: Water Resour. Res. doi: 10.1029/2020WR027463 – year: 2013 ident: erlac417ebib63 – volume: 12 start-page: 2227 year: 2015 ident: erlac417ebib215 article-title: Organic-matter quality of deep permafrost carbon—a study from Arctic Siberia publication-title: Biogeosciences doi: 10.5194/bg-12-2227-2015 – volume: 7 start-page: 385 year: 2006 ident: erlac417ebib35 article-title: Psychrophilic microorganisms: challenges for life publication-title: EMBO Rep. doi: 10.1038/sj.embor.7400662 – volume: 569 start-page: 32 year: 2019 ident: erlac417ebib228 article-title: Permafrost collapse is accelerating carbon release publication-title: Nature doi: 10.1038/d41586-019-01313-4 – volume: 520 start-page: 171 year: 2015 ident: erlac417ebib198 article-title: Climate change and the permafrost carbon feedback publication-title: Nature doi: 10.1038/nature14338 – volume: 15 year: 2020 ident: erlac417ebib92 article-title: Linking ecology and systematics of acidobacteria: distinct habitat preferences of the Acidobacteriia Blastocatellia in tundra soils publication-title: PLoS One doi: 10.1371/journal.pone.0230157 – volume: 77 start-page: 271 year: 1996 ident: erlac417ebib114 article-title: Fossil carbon/nitrogen ratios as a measure of peat decomposition publication-title: Ecology doi: 10.2307/2265676 – year: 2019 ident: erlac417ebib169 – volume: 22 start-page: 1927 year: 2016 ident: erlac417ebib187 article-title: Nitrogen availability increases in a tundra ecosystem during five years of experimental permafrost thaw publication-title: Glob. Change Biol. doi: 10.1111/gcb.13204 – volume: 37 start-page: 1597 year: 2010 ident: erlac417ebib119 article-title: Response of green alder Alnus viridis subsp. fruticosa patch dynamics and plant community composition to fire and regional temperature in north-western Canada publication-title: J. Biogeogr. doi: 10.1111/j.1365-2699.2010.02317.x – volume: 19 start-page: 1491 year: 2016b ident: erlac417ebib179 article-title: Nitrogen transfer from four nitrogen fixer associations to plants and soils publication-title: Ecosystems doi: 10.1007/s10021-016-0018-7 – year: 2019 ident: erlac417ebib91 – volume: 37 start-page: 793 year: 2020 ident: erlac417ebib170 article-title: The forgotten nutrient—the role of nitrogen in permafrost soils of northern China publication-title: Adv. Atmos. Sci. doi: 10.1007/s00376-020-0027-5 – volume: 15 year: 2020 ident: erlac417ebib84 article-title: Can Siberian alder N-fixation offset N-loss after severe fire? Quantifying post-fire Siberian alder distribution, growth, and N-fixation in boreal Alaska publication-title: PLoS One doi: 10.1371/journal.pone.0238004 – volume: 42 start-page: 433 year: 1992 ident: erlac417ebib201 article-title: Global change and the carbon balance of arctic ecosystems publication-title: Bioscience doi: 10.2307/1311862 – volume: 333 start-page: 1616 year: 2011 ident: erlac417ebib218 article-title: Soil nitrite as a source of atmospheric HONO and OH radicals publication-title: Science doi: 10.1126/science.1207687 – volume: 136 start-page: 213 year: 2017 ident: erlac417ebib180 article-title: Nitrogen fixation in the high arctic: a source of ‘new’ nitrogen? publication-title: Biogeochemistry doi: 10.1007/s10533-017-0393-y – volume: 29 start-page: 389 year: 2009 ident: erlac417ebib163 article-title: Nitrogen uptake by Eucalyptus regnans Acacia spp.—preferences, resource overlap and energetic costs publication-title: Tree Physiol. doi: 10.1093/treephys/tpn033 – volume: 36 start-page: 200 year: 2014 ident: erlac417ebib26 article-title: Effect of soil freezing and thawing on the carbon and nitrogen in forest soil in the Qilian Mountains publication-title: J. Glaciol. Geocryol. doi: 10.7522/j.issn.1000-0240.2014.0025 – volume: 330 start-page: 407 year: 2010 ident: erlac417ebib21 article-title: Soil nitrogen cycling rates in low arctic shrub tundra are enhanced by litter feedbacks publication-title: Plant Soil doi: 10.1007/s11104-009-0214-8 – volume: 202 start-page: 82 year: 2013 ident: erlac417ebib46 article-title: Evaluating the quantity and biodegradability of soil organic matter in some Canadian Turbic Cryosols publication-title: Geoderma doi: 10.1016/j.geoderma.2013.03.013 – volume: 72 start-page: 2148 year: 2006 ident: erlac417ebib200 article-title: Influence of freeze-thaw stress on the structure and function of microbial communities and denitrifying populations in soil publication-title: Appl. Environ. Microbiol. doi: 10.1128/AEM.72.3.2148-2154.2006 – volume: 9 start-page: 511 year: 1986 ident: erlac417ebib7 article-title: The partitioning of nitrate assimilation between root and shoot of higher plants publication-title: Plant Cell Environ. doi: 10.1111/1365-3040.ep11616228 – volume: 107 start-page: 950 year: 2019 ident: erlac417ebib78 article-title: Below-ground plant traits influence tundra plant acquisition of newly thawed permafrost nitrogen publication-title: J. Ecol. doi: 10.1111/1365-2745.13062 – volume: 406 start-page: 978 year: 2000 ident: erlac417ebib152 article-title: Acclimation of ecosystem CO2 exchange in the Alaskan Arctic in response to decadal climate warming publication-title: Nature doi: 10.1038/35023137 – volume: 77 start-page: 2142 year: 1996 ident: erlac417ebib192 article-title: Tundra plant uptake of amino acid and NH4 + nitrogen in situ: plants compete well for amino acid N publication-title: Ecology doi: 10.2307/2265708 – volume: 215 start-page: 40 year: 2016 ident: erlac417ebib128 article-title: Patterns and regulating mechanisms of soil nitrogen mineralization and temperature sensitivity in Chinese terrestrial ecosystems publication-title: Agric. Ecosyst. Environ. doi: 10.1016/j.agee.2015.09.012 – volume: 3 start-page: 34 year: 2012 ident: erlac417ebib253 article-title: Seasonality of soil microbial nitrogen turnover in continental steppe soils of Inner Mongolia publication-title: Ecosphere doi: 10.1890/ES11-00188.1 – volume: 81 start-page: 239 year: 2006 ident: erlac417ebib141 article-title: Soil carbon and nitrogen dynamics along a latitudinal transect in western Siberia, Russia publication-title: Biogeochemistry doi: 10.1007/s10533-006-9039-1 – volume: 368 year: 2013 ident: erlac417ebib23 article-title: Nitrous oxide emissions from soils: how well do we understand the processes and their controls? publication-title: Phil. Trans. R. Soc. B doi: 10.1098/rstb.2013.0122 – volume: 11 year: 2016b ident: erlac417ebib225 article-title: Longer thaw seasons increase nitrogen availability for leaching during fall in tundra soils publication-title: Environ. Res. Lett. doi: 10.1088/1748-9326/11/6/064013 – volume: 24 start-page: 4505 year: 2018 ident: erlac417ebib38 article-title: Postfire nitrogen balance of Mediterranean shrublands: direct combustion losses versus gaseous and leaching losses from the postfire soil mineral nitrogen flush publication-title: Glob. Change Biol. doi: 10.1111/gcb.14388 – volume: 31 start-page: 371 year: 2020 ident: erlac417ebib82 article-title: Impact of wildfire on permafrost landscapes: a review of recent advances and future prospects publication-title: Permafrost Periglacial Process. doi: 10.1002/ppp.2048 – volume: 5 start-page: 846 year: 1995 ident: erlac417ebib151 article-title: Change in arctic CO2 flux over 2 decades—effects of climate-change at Barrow, Alaska publication-title: Ecol. Appl. doi: 10.2307/1941992 – volume: 147 year: 2020 ident: erlac417ebib219 article-title: Potential denitrification stimulated by water-soluble organic carbon from plant residues during initial decomposition publication-title: Soil Biol. Biochem. doi: 10.1016/j.soilbio.2020.107841 – start-page: 301 year: 1992 ident: erlac417ebib27 – volume: 135 start-page: 1 year: 2016 ident: erlac417ebib34 article-title: Rapid N2O fluxes at high level of nitrate nitrogen addition during freeze-thaw events in boreal peatlands of Northeast China publication-title: Atmos. Environ. doi: 10.1016/j.atmosenv.2016.03.053 – volume: 1 start-page: 420 year: 2020 ident: erlac417ebib236 article-title: Nitrous oxide emissions from permafrost- affected soils publication-title: Nat. Rev. Earth Environ. doi: 10.1038/s43017-020-0063-9 – volume: 22 start-page: 2963 year: 2016 ident: erlac417ebib242 article-title: Climate change amplifies gross nitrogen turnover in montane grasslands of central Europe in both summer and winter seasons publication-title: Glob. Change Biol. doi: 10.1111/gcb.13353 – volume: 95 start-page: 215 year: 2009 ident: erlac417ebib142 article-title: N2 fixing alder Alnus viridis spp. fruticosa effects on soil properties across a secondary successional chronosequence in interior Alaska publication-title: Biogeochemistry doi: 10.1007/s10533-009-9332-x – volume: 70 start-page: 96 year: 2014 ident: erlac417ebib212 article-title: Topography as a key factor driving atmospheric nitrogen exchanges in arctic terrestrial ecosystems publication-title: Soil Biol. Biochem. doi: 10.1016/j.soilbio.2013.12.005 – volume: 29 start-page: 567 year: 2015 ident: erlac417ebib247 article-title: Microbial nitrogen dynamics in organic and mineral soil horizons along a latitudinal transect in western Siberia publication-title: Glob. Biogeochem. Cycles doi: 10.1002/2015GB005084 – volume: 113 year: 2008 ident: erlac417ebib19 article-title: Sediment and nutrient delivery from thermokarst features in the foothills of the North Slope, Alaska: potential impacts on headwater stream ecosystems publication-title: J. Geophys. Res. Biogeosci. doi: 10.1029/2007JG000470 – volume: 12 start-page: 686 year: 2006 ident: erlac417ebib220 article-title: The evidence for shrub expansion in northern Alaska and the pan-Arctic publication-title: Glob. Change Biol. doi: 10.1111/j.1365-2486.2006.01128.x – volume: 368 year: 2013 ident: erlac417ebib165 article-title: Processes regulating nitric oxide emissions from soils publication-title: Phil. Trans. R. Soc. B doi: 10.1098/rstb.2013.0126 – volume: 42 start-page: 1293e1302 year: 2010 ident: erlac417ebib240 article-title: Determination of gross rates of amino acid production and immobilization in decomposing leaf litter by a novel 15N isotope pool dilution technique publication-title: Soil Biol. Biochem. doi: 10.1016/j.soilbio.2010.04.001 – volume: 21 start-page: 2804 year: 2015 ident: erlac417ebib146 article-title: Large amounts of labile organic carbon in permafrost soils of northern Alaska publication-title: Glob. Change Biol. doi: 10.1111/gcb.12876 – volume: 206 start-page: 682 year: 2015 ident: erlac417ebib216 article-title: Slow recovery of high arctic heath communities from nitrogen enrichment publication-title: New Phytol. doi: 10.1111/nph.13265 – volume: 31 start-page: 172 year: 2017 ident: erlac417ebib65 article-title: Mechanisms responsible for high N2O emissions from subarctic permafrost peatlands studied via stable isotope techniques publication-title: Glob. Biogeochem. Cycles doi: 10.1002/2015GB005370 – volume: 160 start-page: 27 year: 2005 ident: erlac417ebib167 article-title: Environmental pH as an important factor for the distribution of urease positive ammonia-oxidizing bacteria publication-title: Microbiol. Res. doi: 10.1016/j.micres.2004.09.006 – volume: 25 start-page: 1078 year: 2019 ident: erlac417ebib125 article-title: Microbes drive global soil nitrogen mineralization and availability publication-title: Glob. Change Biol. doi: 10.1111/gcb.14557 – volume: 31 start-page: 85 year: 1995 ident: erlac417ebib106 article-title: Landscape patterns of free amino acids in arctic tundra soils publication-title: Biogeochemistry doi: 10.1007/BF00000940 – start-page: 263 year: 2001 ident: erlac417ebib51 – volume: 11 start-page: 4 year: 2009 ident: erlac417ebib174 article-title: Nitrogen balance in forests: nutritional limitation of plants under climate change stresses publication-title: Plant Biol. doi: 10.1111/j.1438-8677.2009.00241.x – start-page: 129 year: 1990 ident: erlac417ebib87 – year: 2006 ident: erlac417ebib89 – volume: 116 year: 2011 ident: erlac417ebib120 article-title: Effects of elevated nitrogen and temperature on carbon and nitrogen dynamics in Alaskan arctic and boreal soils publication-title: J. Geophys. Res. Biogeosci. doi: 10.1029/2010JG001629 – volume: 121 start-page: 317 year: 2014 ident: erlac417ebib231 article-title: N2-fixation by methanotrophs sustains carbon and nitrogen accumulation in pristine peatlands publication-title: Biogeochemistry doi: 10.1007/s10533-014-0019-6 – volume: 26 start-page: 130 year: 1973 ident: erlac417ebib191 article-title: Nitrogen fixation in arctic coastal tundra in relation to vegetation and micro-relief publication-title: Arctic doi: 10.14430/arctic2907 – volume: 5 start-page: 22 year: 2014 ident: erlac417ebib145 article-title: Stoichiometric imbalances between terrestrial decomposer communities and their resources: mechanisms and implications of microbial adaptations to their resources publication-title: Front. Microbiol. doi: 10.3389/fmicb.2014.00022 – volume: 89 start-page: 273 year: 2002 ident: erlac417ebib199 article-title: Performance of age series of Alnus cardamom plantation in the Sikkim Himalaya: nutrient dynamics publication-title: Ann. Bot. doi: 10.1093/aob/mcf036 – volume: 6 start-page: 400 year: 2006 ident: erlac417ebib232 article-title: Bacterial community in ancient Siberian permafrost as characterized by culture and culture-independent methods publication-title: Astrobiology doi: 10.1089/ast.2006.6.400 – volume: 7 start-page: 699 year: 2019 ident: erlac417ebib188 article-title: Cold adapted Nitrosospira sp.: a potential crucial contributor of ammonia oxidation in cryosols of permafrost-affected landscapes in northeast Siberia publication-title: Microorganisms doi: 10.3390/microorganisms7120699 – volume: 586 start-page: 248 year: 2020 ident: erlac417ebib222 article-title: A comprehensive quantification of global nitrous oxide sources and sinks publication-title: Nature doi: 10.1038/s41586-020-2780-0 – volume: 27 start-page: 6512 year: 2021b ident: erlac417ebib50 article-title: Global gross nitrification rates are dominantly driven by soil carbon-to-nitrogen stoichiometry and total nitrogen publication-title: Glob. Change Biol. doi: 10.1111/gcb.15883 – volume: 27 start-page: 320 year: 2005 ident: erlac417ebib123 article-title: Mapping and analyses of permafrost change in the Qinghai Plateau using GIS publication-title: J. Glaciol. Geocryol. doi: 10.7522/j.issn.1000-0240.2014.0025 – volume: 39 year: 2012 ident: erlac417ebib71 article-title: Field information links permafrost carbon to physical vulnerabilities of thawing publication-title: Geophys. Res. Lett. doi: 10.1029/2012GL051958 – volume: 33 start-page: 100 year: 2019 ident: erlac417ebib3 article-title: Global estimates of inorganic nitrogen deposition across four decades publication-title: Glob. Biogeochem. Cycles doi: 10.1029/2018GB005990 – volume: 56 start-page: 959 year: 2020 ident: erlac417ebib254 article-title: Dinitrogen (N2 pulse emissions during freeze-thaw cycles from montane grassland soil publication-title: Biol. Fertility Soils doi: 10.1007/s00374-020-01476-7 – volume: 9 year: 2018 ident: erlac417ebib181 article-title: What drives biological nitrogen fixation in high arctic tundra: moisture or temperature? publication-title: Ecosphere doi: 10.1002/ecs2.2117 – volume: 10 start-page: 4297 year: 2013 ident: erlac417ebib70 article-title: Short- and long-term thermo-erosion of ice-rich permafrost coasts in the Laptev Sea region publication-title: Biogeosciences doi: 10.5194/bg-10-4297-2013 – volume: 795 year: 2021 ident: erlac417ebib255 article-title: Effects of experimental fire in combination with climate warming on greenhouse gas fluxes in arctic tundra soils publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2021.148847 – volume: 104 start-page: 1542 year: 2016 ident: erlac417ebib52 article-title: Effects of permafrost thaw on nitrogen availability and plant-soil interactions in a boreal Alaskan lowland publication-title: J. Ecol. doi: 10.1111/1365-2745.12639 |
SSID | ssj0054578 |
Score | 2.517458 |
SecondaryResourceType | review_article |
Snippet | The paradigm that permafrost-affected soils show restricted mineral nitrogen (N) cycling in favor of organic N compounds is based on the observation that net N... |
SourceID | doaj proquest crossref iop |
SourceType | Open Website Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 13004 |
SubjectTerms | Ammonification Cold weather Cycles Depolymerization global change gross N turnover Meta-analysis Microorganisms Mineralization Nitrification Nitrogen Nitrogen cycle Nutrition Organic carbon Organic matter Organic soils Permafrost Plant nutrition plant-soil-microbe system Soil layers Stoichiometry Tropical environments Tropical soils Turnover rate |
SummonAdditionalLinks | – databaseName: DOAJ: Directory of Open Access Journal (DOAJ) dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELZQJxbEUxQK8gADg5U0cR17BESFkGACiS2yHRtFapuoLQMbP4CRX8gv4c5JKQipLKzx2bHu4fv8uDtCTpThhdDeMm1NxriWmqmUK2Y9AlgDK2Io33Z7J64f-M3j4PFbqS98E9akB24YFwHe9rE2UsWp5ODdpPCpdKmJjRJOZWG3Dj5vsZlq1mCABZlsLyXBjCKA3WDWgFQibXk_cz-cUMjVD66lrOpfC3LwMsNNstHCQ3reTGuLrLnJNtm7WkajQWNrjrMd8nZOm9ATWnkKSI6W4wCnoRW_jMuQUpqC1U4rUBRqXzAQ8omWk0Bdj4CtbFaVIzbGd3nG0SaxM3auccn2GBPCdHjz4QqKpLOP1_cQLYwDhVH0VBfl03iX3A-v7i-vWVtegQEPxJwZYTGw1felSaxET62FizPgtrSa4wGVTrK-yrwwAz0odKxF4gZKSACJTvN0j3Qm1cTtE6qSwpg0Vd76gsfcG4A9VsbGFAU0KNkl0YLduW1Tj2MFjFEersClzFFAOQoobwTUJWdfPeom7cYK2guU4BcdJswOH0CN8laN8r_UqEtOQf55a8CzFT_rLTRkSYwJfWSWAPI5-I-5HJL1BIMswkFPj3Tm02d3BNBnbo6Dln8CA94BOQ priority: 102 providerName: Directory of Open Access Journals – databaseName: IOP Science Platform dbid: IOP link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV09b9swECXSZOnS76BukoJDO3SgLUs0dUSnNEgQBGjaIQUyFBBIigyE2pZhO0Mz9Qd07C_sL-kdRTtIUgRFN4E8UuLX3ZPE98jYG21lrUxwwjhbCmnACF1ILVwgAGvRI8bj2z6equMv8uR8dL7B3q-5MO0suf4-XnZCwV0Xpg1xMEAMjWsUYcfAODks_QO2VQAGTmLvffq8csOIDEpI_yX_VupGHIpy_Rhd8JZ3fHIMNEeP2dfVI3b7S771L5e2765uqTf-ZxuesEcJgPL9zvQp2_DTZ2z78JrvhplpwS-es5_7vCO38DZwxIq8mUTAjrmUMmmiaDVHvzBvcSpy952olhe8mUbr2RgHTizaZiwmtPPPet5JR1PhGQWFQKwTYeKuEl9zMl38_vEr8pGpoliLmZu6uZi8YGdHh2cHxyId4CCwUWoprHJEnQ1DsLkDwgJG-awMmQFnJH0CM3k51GVQdmRGtcmMyv1IK0AY6o0sttnmtJ36l4zrvLa2KHRwoZaZDBaBlYPM2rrGDA09NliNZuWSuDmdsTGu4k92gIp6vKIer7oe77F36xKzTtjjHtsPNEHWdiTJHRNwaKs0tBW-GGLDLOisAIkwDFQowBc2s1p5XWY99hZnQ5VcxOKem-2uJuC1MUkGQZkjtnr1j9XssIc5MTXi16JdtrmcX_o9xE9L-zqukz9WRheL priority: 102 providerName: IOP Publishing – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV07b9swECZaZ8lS9JEgbt2AQzt0ICxLNEVORRI4CAo0KIoEyCbwaQiwLdVyh275ARn7C_tLekfRMYIAXsUjBfFen468O0I-KcOd0MEybU3JuJaaqYIrZgMCWAMWMbZv-34trm75t7vpXQq4dela5dYmRkPtGosx8jEWTZFlDt7la_uLYdcoPF1NLTRekgMwwVIOyMH57PrHz60tBnhQynQ4Ceo0BvgN6g2IZawtn5T-iTOKNfvBxdRN-8wwR29z-Zq8SjCRnvV8fUNe-NVbcjzbZaXBYFLL7h15OKN9CgptAgVER-tlhNUwik-WdSwtTUF71w0IDLV_MCFyTutVpG4XsL2sa-oFW-L9PONpX-AZJ7dougPmhjAd7354R5G0-3f_N2YN40JxFb3Wrp4vj8jN5ezm4oqlNgsM9kBsmBEWE1zDRJrcSvTYWvisDJmWVnMMVOm8nKgyCDPVU6czLXI_VUICWPSaF8dksGpW_oRQlTtjikIFGxzPeDAAf6zMjHEOBpQckvF2uyubSpBjJ4xFFY_CpayQQRUyqOoZNCRfHme0ffmNPbTnyMFHOiycHR8063mV9LCC3zf4MCNVVkgOYEmKUEhfmMwo4VWZDcln4H-VFLnb87LRVkJ2xDsZfb9_-AM5zDGNIoZyRmSwWf_2HwHcbMxpkuD_zML7bg priority: 102 providerName: ProQuest |
Title | A review of the importance of mineral nitrogen cycling in the plant-soil-microbe system of permafrost-affected soils—changing the paradigm |
URI | https://iopscience.iop.org/article/10.1088/1748-9326/ac417e https://www.proquest.com/docview/2635872853 https://doaj.org/article/260f0ab89038450986f38e3b0b96e970 |
Volume | 17 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LbxMxELZoe-GCKFCR0kY-lAMHk82u48cBoRYlLUh9CLWit5XttaOVkmzYBIne-AEc-YX8Ema8m0SIqicuPthj79rj8Xx-zAwhR9ryQpjgmHFWMm6UYTrjmrmAANbCihjDt51fiLMb_ul2cLsxj24HcHHv1g7jSd3Uk7ffv969B4F_17yQUz0A1SC0gEN6xvG-9FtkB_SSxHgG53x9pwBQQar2ovK-Wn8ppui_H9RNWc3_WaSj5hk9JU9ayEiPGx7vkkd-9ozsDTcWalDYiujiOfl5TBtzFFoFCuiOltPYOyjFnGkZ3UxTkOS6gslD3R0aR45pOYvU8wkMNVtU5YRN8a2e9bRx9oyV57iMB7QTYSa-A_EFRdLF7x-_ogUxNhRbMbUpyvH0BbkeDa8_nLE25AKDMRBLZoVDY9fQVzZ1CrW3ET6RITHKGY6HViaVfS2DsAMzKExiROoHWigAjt7wbI9sz6qZf0moTgtrs0wHFwqe8GABCjmVWFsUUKBVh_RWw5271h05RsWY5PFaXKkcGZQjg_KGQR3yZl1j3rjieID2BDm4pkMn2jGjqsd5K5M5bOWgY1bpJFMcgJMSIVM-s4nVwmuZdMhr4H--mpMPfOxgNUM2xOjkR8kU0ND-__iXV-RxioYX8fDngGwv62_-EODQ0nbJlhqddsnOyfDi6nM3HipA-vHyqhvnP6SX2Zc_rzYPBw |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtQwELZKOcAF8VexpYAP9MDB2jTxJvYBoQJdtvTntEi9Wf5dRdrdhM0i1BsPwJHX4KV4EmacpCuEtLde47GjeMYzX2x_M4S8loa7XAfLtDUF41poJjMumQ0IYA14xFi-7eIyn3zhn69GVzvkd8-FwWuVvU-MjtpVFvfIh5g0RRQpRJd39VeGVaPwdLUvodGaxZm__g6_bM3b04-g38M0HZ9MP0xYV1WAWQAfa2Zyi3zOcCRMagUGKJ37pAiJFlZz3JfRaXEki5CbkR45neg89SOZC8BGXvMMhr1D7vIMAjkS08efescPWKQQ3UkorN0hYH3wJQCPhhreXPh_Il8sEADxrKzq_6JADG3jh-RBh0npcWtEj8iOXz4meycbChw0dj6geUJ-HtOW70KrQAE-0nIRMTy04pNFGfNYU3AVqwqsk9prZF_OaLmM0vUcdMmaqpyzBV4GNJ622aSxc41xIiARhel40cQ7iqLNnx-_IkUZB4qj6JV25WzxlExvY_b3yO6yWvpnhMrUGQNaCDY4nvBgAGtZkRjjHDRIMSDDfrqV7fKdY9mNuYrn7kIoVJBCBalWQQPy5qZH3eb62CL7HjV4I4dZuuODajVT3aJX8K8IH2aETDLBAZmJPGTCZyYxMveySAbkEPSvOq_RbHnZQW8hG-HNgtjf3vyK3JtML87V-enl2XNyP0X-RtxDOiC769U3_wJQ1dq8jLZMibrltfMXkWg1Lw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtQwELZKkRAX_qtuKeADPXDwbjZxHPvAodCuWgqlhyL1ZtmOXUXsbqLNVlU58QAceQ5ehXfgSRg73q34UcWlB26RPXFiezzzOZlvjNBzoWnJlDNEGV0QqrgiIqOCGOcBrAaLGI5ve3fI9j7QNyf5yQr6tuTC1E00_X247BIFd0MYA-L4ADA0rFGAHQNl6LCwg6Z0MarywF6cw56tfbm_AxO8laaj3ePXeyQeK0BAnM2JZsYTOt2Q69Rw76EUs0nhEsWNov7DjEqLoSgc07nKS5UoltpcMA7gyCqaQbM30M08A1ftCYPvjxaWH8BIweOv0L-96C-uL5wQAA4NevmHGwi-bXQXfV-MShfS8rF_Ntd98-m3hJH_z7DdQ3cizMbb3dvdRyt2-gCt7V6y-qAymrX2IfqyjTsKD64dBkSMq0nYlkCtL5lUITU3Bus3q2HBYXPhCaWnuJoG6WYM6knauhqTiY9v1BZ3CbL9zY13fc5za4gKsTO2xF60_fH5a2Bd-4ZCK2qmyup08ggdX8fArKHVaT216wiLtNQ6y4QzrqQJdRrgo-GJ1mUJFYL30GChQNLEFO7-JJGxDKEEnEs_ydJPsuwmuYdeLO9ouvQlV8i-8jq5lPOJx0MBaJOM2iRh-wsd01wkGacANjlzGbeZTrRgVhRJD22BAspoCNsrHra50PlLYZ8YiRcpIMiNf2zmGbp1tDOSb_cPDx6j26mnpoTPY5todT47s08AMM7107BKMZLXrN4_AWEBdHI |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+review+of+the+importance+of+mineral+nitrogen+cycling+in+the+plant-soil-microbe+system+of+permafrost-affected+soils%E2%80%94changing+the+paradigm&rft.jtitle=Environmental+research+letters&rft.au=Elisabeth+Ramm&rft.au=Chunyan+Liu&rft.au=Per+Ambus&rft.au=Klaus+Butterbach-Bahl&rft.date=2022-01-01&rft.pub=IOP+Publishing&rft.eissn=1748-9326&rft.volume=17&rft.issue=1&rft.spage=013004&rft_id=info:doi/10.1088%2F1748-9326%2Fac417e&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_260f0ab89038450986f38e3b0b96e970 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1748-9326&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1748-9326&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1748-9326&client=summon |