Mind Over Magnets – How Magnetic Particle Imaging is Changing the Way We Think About the Future of Neuroscience

•MPI is highly sensitive, providing the tools to detect disease at early onset or information in minute regions of the brain.•MPI has been utilized to image neurological conditions including cancer, inflammation, vasculature and cell therapies.•Preclinical findings highlight the potential for future...

Full description

Saved in:
Bibliographic Details
Published inNeuroscience Vol. 474; pp. 100 - 109
Main Authors Makela, Ashley V., Gaudet, Jeffrey M., Murrell, Donna H., Mansfield, James R., Wintermark, Max, Contag, Christopher H.
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 15.10.2021
Subjects
Online AccessGet full text
ISSN0306-4522
1873-7544
1873-7544
DOI10.1016/j.neuroscience.2020.10.036

Cover

Abstract •MPI is highly sensitive, providing the tools to detect disease at early onset or information in minute regions of the brain.•MPI has been utilized to image neurological conditions including cancer, inflammation, vasculature and cell therapies.•Preclinical findings highlight the potential for future clinical applications to understand and treat neurological disease. Magnetic particle imaging (MPI) is an emerging imaging technique, which has the potential to provide the sensitivity, specificity and temporal resolution necessary for novel imaging advances in neurological applications. MPI relies on the detection of superparamagnetic iron-oxide nanoparticles, which allows for visualization and quantification of iron or iron-labeled cells throughout a subject. The combination of these qualities can be used to image many neurological conditions including cancer, inflammatory processes, vascular-related issues and could even focus on cell therapies and theranostics to treat these problems. This review will provide a basic introduction to MPI, discuss the current use of this technology to image neurological conditions, and touch on future applications including the potential for clinical translation.
AbstractList •MPI is highly sensitive, providing the tools to detect disease at early onset or information in minute regions of the brain.•MPI has been utilized to image neurological conditions including cancer, inflammation, vasculature and cell therapies.•Preclinical findings highlight the potential for future clinical applications to understand and treat neurological disease. Magnetic particle imaging (MPI) is an emerging imaging technique, which has the potential to provide the sensitivity, specificity and temporal resolution necessary for novel imaging advances in neurological applications. MPI relies on the detection of superparamagnetic iron-oxide nanoparticles, which allows for visualization and quantification of iron or iron-labeled cells throughout a subject. The combination of these qualities can be used to image many neurological conditions including cancer, inflammatory processes, vascular-related issues and could even focus on cell therapies and theranostics to treat these problems. This review will provide a basic introduction to MPI, discuss the current use of this technology to image neurological conditions, and touch on future applications including the potential for clinical translation.
Magnetic particle imaging (MPI) is an emerging imaging technique, which has the potential to provide the sensitivity, specificity and temporal resolution necessary for novel imaging advances in neurological applications. MPI relies on the detection of superparamagnetic iron-oxide nanoparticles, which allows for visualization and quantification of iron or iron-labeled cells throughout a subject. The combination of these qualities can be used to image many neurological conditions including cancer, inflammatory processes, vascular-related issues and could even focus on cell therapies and theranostics to treat these problems. This review will provide a basic introduction to MPI, discuss the current use of this technology to image neurological conditions, and touch on future applications including the potential for clinical translation.Magnetic particle imaging (MPI) is an emerging imaging technique, which has the potential to provide the sensitivity, specificity and temporal resolution necessary for novel imaging advances in neurological applications. MPI relies on the detection of superparamagnetic iron-oxide nanoparticles, which allows for visualization and quantification of iron or iron-labeled cells throughout a subject. The combination of these qualities can be used to image many neurological conditions including cancer, inflammatory processes, vascular-related issues and could even focus on cell therapies and theranostics to treat these problems. This review will provide a basic introduction to MPI, discuss the current use of this technology to image neurological conditions, and touch on future applications including the potential for clinical translation.
Author Makela, Ashley V.
Mansfield, James R.
Murrell, Donna H.
Gaudet, Jeffrey M.
Contag, Christopher H.
Wintermark, Max
Author_xml – sequence: 1
  givenname: Ashley V.
  surname: Makela
  fullname: Makela, Ashley V.
  email: makelaas@msu.edu
  organization: Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, USA
– sequence: 2
  givenname: Jeffrey M.
  surname: Gaudet
  fullname: Gaudet, Jeffrey M.
  organization: Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, USA
– sequence: 3
  givenname: Donna H.
  surname: Murrell
  fullname: Murrell, Donna H.
  organization: London Regional Cancer Program, Western University, London, ON, Canada
– sequence: 4
  givenname: James R.
  surname: Mansfield
  fullname: Mansfield, James R.
  organization: Magnetic Insight Inc, Alameda, CA, USA
– sequence: 5
  givenname: Max
  surname: Wintermark
  fullname: Wintermark, Max
  organization: Department of Radiology, Stanford University, Stanford, CA, USA
– sequence: 6
  givenname: Christopher H.
  surname: Contag
  fullname: Contag, Christopher H.
  organization: Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, USA
BookMark eNqNkMtOGzEUhi0EEoH2HSxW3UywPfbMpKumaSlIXLoAsbQ89pnEycQG2xOUXd-hb9gn6YRkEbHK2Zzbfz4d_Wfo2HkHCF1QMqSEFpfzoYMu-KgtOA1DRthmMSR5cYQGtCrzrBScH6MByUmRccHYKTqLcU76EDwfoNc76wx-WEHAd2rqIEX8789ffO3fdr3V-LcKfWoB3yzV1LopthFPZsq912kG-Fmt8TPgx5l1CzyufZfex1dd6gJg3-D7vSc_oZNGtRE-7_I5err6-Ti5zm4fft1MxreZ5rRIWc1rMKoxdFRqqhRpcq6FYSWpWVmMKqgZg1qUI00ENVTQyuT9QNe0ErRUhcnP0Zct9yX41w5ikksbNbStcuC7KBkvaD7irBK99OtWqvsvY4BGvgS7VGEtKZEbn-Vc7vssNz5vdr3P_fG3D8faJpWsdyko2x6G-LFFQO_HykKQO5WxAXSSxtvDMN8_YHRrndWqXcD6UMh_evK9uw
CitedBy_id crossref_primary_10_1002_jmri_29294
crossref_primary_10_1002_smll_202301997
crossref_primary_10_1016_j_neuroscience_2021_08_017
crossref_primary_10_1002_adma_202306450
crossref_primary_10_1021_acs_nanolett_1c05042
Cites_doi 10.1002/mrm.26541
10.1002/jmri.24200
10.1021/acs.nanolett.6b04865
10.1593/tlo.13121
10.1039/C6NR08468K
10.1007/s11307-018-1276-x
10.1016/j.jmr.2012.11.029
10.1109/TMI.2010.2052284
10.1126/sciadv.aay1601
10.1080/17425247.2019.1562443
10.1021/acs.nanolett.9b00630
10.1088/0031-9155/61/16/N415
10.1016/j.addr.2019.01.005
10.1118/1.4810962
10.1016/B978-0-12-816662-8.00013-8
10.1063/1.5004506
10.3390/ijms140918682
10.1016/j.nbd.2009.07.030
10.1016/S0140-6736(18)32487-5
10.1038/s41598-020-64280-1
10.1109/TMAG.2019.2924198
10.1088/0031-9155/54/5/L01
10.1002/mrm.22917
10.1038/s41551-019-0506-0
10.1016/j.addr.2018.12.007
10.1016/j.biomaterials.2013.01.087
10.1039/C5NR02831K
10.1016/j.coph.2014.08.002
10.3174/ajnr.A5896
10.1088/1361-6560/ab95dd
10.1371/journal.pone.0193546
10.1109/TMI.2017.2679099
10.1002/cmmi.1526
10.1021/acs.nanolett.7b03829
10.1016/j.mri.2004.10.001
10.1088/1468-6996/16/2/023501
10.7150/thno.13728
10.1088/1361-6560/aa52ad
10.1007/s11307-020-01473-0
10.18383/j.tom.2019.00020
10.1200/JCO.2020.38.15_suppl.e21567
10.1039/C9CC08972A
10.1002/mrm.21029
10.1002/jmri.22593
10.1038/s41467-019-09704-x
10.1038/nature03808
10.1002/nbm.1698
10.1593/neo.07937
10.1158/0008-5472.CAN-09-1496
10.1109/TMI.2014.2375065
10.1371/journal.pone.0160097
10.1080/02656736.2018.1430867
10.1088/0031-9155/61/9/3279
10.1063/1.4950779
10.1101/2020.02.17.953232
10.1593/neo.09356
10.1080/0265673031000119006
10.1039/C7NR05502A
10.1007/s11060-010-0389-0
10.1016/j.addr.2008.03.018
10.1088/1361-6560/aa616c
10.1002/mrm.22210
10.1021/acsnano.7b05784
10.1039/C9NH00514E
10.1016/B978-0-12-813928-8.00010-7
10.1016/j.wneu.2019.01.180
10.1158/1078-0432.CCR-10-3420
10.1002/mrm.20747
10.1016/j.mattod.2019.06.003
10.1002/pssa.201800544
10.1021/acsnano.9b08660
10.1016/j.bbmt.2005.01.005
10.3390/ma12040617
10.1038/s41598-017-06888-4
10.1101/2020.06.02.128587
10.1109/TMAG.2014.2335255
10.1021/acsnano.7b04844
ContentType Journal Article
Copyright 2020 IBRO
Copyright © 2020 IBRO. Published by Elsevier Ltd. All rights reserved.
Copyright_xml – notice: 2020 IBRO
– notice: Copyright © 2020 IBRO. Published by Elsevier Ltd. All rights reserved.
DBID AAYXX
CITATION
7X8
DOI 10.1016/j.neuroscience.2020.10.036
DatabaseName CrossRef
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE - Academic
DatabaseTitleList

MEDLINE - Academic
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
EISSN 1873-7544
EndPage 109
ExternalDocumentID 10_1016_j_neuroscience_2020_10_036
S0306452220307132
GroupedDBID ---
--K
--M
-DZ
-~X
.1-
.FO
.~1
0R~
123
1B1
1P~
1RT
1~.
1~5
4.4
457
4G.
5RE
7-5
71M
8P~
9JM
AABNK
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AATTM
AAXKI
AAXLA
AAXUO
AAYWO
ABCQJ
ABFNM
ABFRF
ABJNI
ABLJU
ABMAC
ABTEW
ACDAQ
ACGFO
ACGFS
ACIUM
ACRLP
ACVFH
ADBBV
ADCNI
ADEZE
AEBSH
AEFWE
AEIPS
AEKER
AENEX
AEUPX
AEVXI
AFPUW
AFRHN
AFTJW
AFXIZ
AGCQF
AGUBO
AGWIK
AGYEJ
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AJUYK
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
APXCP
AXJTR
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFKBS
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
HMQ
IHE
J1W
KOM
L7B
M2V
M41
MO0
MOBAO
N9A
O-L
O9-
OAUVE
OP~
OZT
P-8
P-9
P2P
PC.
Q38
ROL
RPZ
SCC
SDF
SDG
SDP
SES
SPCBC
SSN
SSZ
T5K
UNMZH
Z5R
~G-
AACTN
AADPK
AAIAV
ABYKQ
AFCTW
AFKWA
AJOXV
AMFUW
EFLBG
.55
.GJ
29N
53G
5VS
AAQXK
AAYXX
ABWVN
ABXDB
ACRPL
ADMUD
ADNMO
AFJKZ
AGHFR
AGQPQ
AGRNS
AHHHB
ASPBG
AVWKF
AZFZN
BNPGV
CITATION
EJD
FEDTE
FGOYB
G-2
HVGLF
HZ~
R2-
RIG
SEW
SNS
SSH
WUQ
X7M
YYP
ZGI
ZXP
7X8
ID FETCH-LOGICAL-c416t-b4bedafd197c1aa0f34c5d270b27698eb22eb579c051d1518d32ebcb18517a6d3
IEDL.DBID AIKHN
ISSN 0306-4522
1873-7544
IngestDate Fri Sep 05 09:16:08 EDT 2025
Thu Apr 24 23:10:36 EDT 2025
Tue Jul 01 02:21:50 EDT 2025
Fri Feb 23 02:44:10 EST 2024
Tue Aug 26 17:32:00 EDT 2025
IsPeerReviewed true
IsScholarly true
Keywords BBB
MRI
iron oxide nanoparticles
EPR
MPI
DOX
neuroimaging
CT
MSCs
DSA
FFR
APC
SPION
PET
magnetic particle imaging
Language English
License https://www.elsevier.com/tdm/userlicense/1.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c416t-b4bedafd197c1aa0f34c5d270b27698eb22eb579c051d1518d32ebcb18517a6d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
ObjectType-Review-3
content type line 23
PQID 2461394285
PQPubID 23479
PageCount 10
ParticipantIDs proquest_miscellaneous_2461394285
crossref_primary_10_1016_j_neuroscience_2020_10_036
crossref_citationtrail_10_1016_j_neuroscience_2020_10_036
elsevier_sciencedirect_doi_10_1016_j_neuroscience_2020_10_036
elsevier_clinicalkey_doi_10_1016_j_neuroscience_2020_10_036
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-10-15
PublicationDateYYYYMMDD 2021-10-15
PublicationDate_xml – month: 10
  year: 2021
  text: 2021-10-15
  day: 15
PublicationDecade 2020
PublicationTitle Neuroscience
PublicationYear 2021
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Townson, Ramadan, Simedrea, Rutt, MacDonald, Foster, Chambers (b0355) 2009; 69
Rivera-Rodriguez A, Hoang-Minh LB, Chiu-Lam A, Sarna N, Marrero-Morales L, Mitchell DA, Rinaldi C. (2020). Tracking adoptive T cell therapy using magnetic particle imaging. BioRxiv, 2020.06.02.128587. https://doi.org/10.1101/2020.06.02.128587.
Vogel, Rückert, Klauer, Kullmann, Jakob, Behr (b0365) 2015; 51
Tay, Goodwill, Hensley, Taylor, Zheng, Conolly (b0330) 2016; 6
Ribot, Martinez-Santiesteban, Simedrea, Steeg, Chambers, Rutt, Foster (b0255) 2011; 34
Khandhar, Ferguson, Arami, Krishnan (b0165) 2013; 34
Bulte, Modo (b0040) 2016
Salamon J, Dieckho J, Kaul MG, Jung C, Adam G, Möddel M, Knopp T, Draack S, Ludwig F, Ittrich H. (2020). Visualization of spatial and temporal temperature distributions with magnetic particle imaging for liver tumor ablation therapy. 1–11. https://doi.org/10.1038/s41598-020-64280-1.
Song, Kenney, Chen, Zheng, Deng, Chen, Wang, Gambhir, Dai, Rao (b0320) 2020; 4
Murrell, Zarghami, Jensen, Dickson, Chambers, Wong, Foster (b0220) 2017; 78
Wells J, Paysen H, Kosch O, Trahms L, Wiekhorst F. (2018). Temperature dependence in magnetic particle imaging. AIP Adv, 056703(October 2017). https://doi.org/10.1063/1.5004506.
Abbott, Patabendige, Dolman, Yusof, Begley (b0005) 2010; 37
Heyn, Ronald, Mackenzie, MacDonald, Chambers, Rutt, Foster (b0140) 2006; 55
Makela, Gaudet, Foster (b0200) 2017; 7
Shih, Hsu, Duong, Lin, Chow, Chang (b0310) 2011; 24
Ludewig, Gdaniec, Sedlacik, Forkert, Szwargulski, Graeser, Adam, Kaul, Krishnan, Ferguson, Khandhar, Walczak, Fiehler, Thomalla, Gerloff, Knopp, Magnus (b0185) 2017; 11
Economopoulos, Chen, McFadden, Foster (b0085) 2013; 6
Saritas, Goodwill, Croft, Konkle, Lu, Zheng, Conolly (b0270) 2013; 229
Mahmoudi K, Bouras A, Bozec D, Ivkov R, Hadjipanayis C. (2018). Magnetic hyperthermia therapy for the treatment of glioblastoma : a review of the therapy’ s history, efficacy and application in humans. 34(8), 1316–1328.
Tay ZW, Hensley DW, Savliwala S, Chandrasekharan P, Zhou XY, Soo Hyun Shin, Fellows, BD, Lu Y, Rinaldi C, Conolly S. (2019). Order-of-magnitude resolution and SNR improvement using positive feedback MNP chains in magnetic particle imaging. World Molecular Imaging Congress.
Magnitsky, Roesch, Herlyn, Glickson (b0190) 2011; 66
Leimgruber, Berger, Cortez-Retamozo, Etzrodt, Newton, Waterman, Figueiredo, Kohler, Elpek, Mempel, Swirski, Nahrendorf, Weissleder, Pittet (b0180) 2009; 11
Zheng, Von See, Yu, Gunel, Lu, Vazin, Schaffer, Goodwill, Conolly (b0420) 2016; 6
Blanc, K. Le, Ringdén, O. (2005). Immunobiology of human mesenchymal stem cells and future use in hematopoietic stem cell. 334, 321–334. https://doi.org/10.1016/j.bbmt.2005.01.005.
Dhavalikar R, Bohorquez AC, Rinaldi C. (2019). Image-guided thermal therapy using magnetic particle imaging and magnetic fluid hyperthermia. 265–286. https://doi.org/10.1016/B978-0-12-813928-8.00010-7.
Ferguson, Khandhar, Kemp, Arami, Saritas, Croft, Konkle, Goodwill, Halkola, Rahmer, Borgert, Conolly, Krishnan (b0090) 2015; 34
Zhou, Jeffris, Yu, Zheng, Goodwill, Nahid, Conolly (b0425) 2017; 62
Haacke EM, Cheng NYC, House MJ, Liu Q, Neelavalli J, Ogg RJ, Khan A, Ayaz M, Kirsch W, Obenaus A. (2005). Imaging iron stores in the brain using magnetic resonance imaging. Magnetic Resonance Imaging, 23(1), 1–25. https://doi.org/https://doi.org/10.1016/j.mri.2004.10.001.
Zhu, Li, Peng, Hosseini-nassab, Smith (b0430) 2019
Hufschmid, Landers, Shasha, Salamon, Wende, Krishnan (b0150) 2019; 216
Zhao, Rinaldi (b0410) 2020
Meola, Rao, Chaudhary, Song, Zheng, Chang (b0215) 2019; 125
Savliwala S, Chiu-Lam A, Unni M, Rivera-Rodriguez A, Fuller E, Sen K, Threadcraft M, Rinaldi C. (2020). Magnetic nanoparticles. In Nanoparticles for Biomedical Applications (pp. 195–221). Elsevier. https://doi.org/10.1016/B978-0-12-816662-8.00013-8.
Nejadnik, Pandit, Lenkov, Lahiji, Yerneni, Daldrup-Link (b0225) 2019; 21
Khandhar, Keselman, Kemp, Ferguson, Goodwill, Conolly, Krishnan (b0160) 2017; 9
Vogel, Rückert, Kemp, Khandhar, Ferguson, Herz, Vilter, Klauer, Bley, Krishnan, Behr (b0360) 2019; 55
Du, Lai, Leung, Pong (b0075) 2013; 14
Dewhirst MW, Viglianti BL, Hanson M, Hoopes PJ. (2003). Basic principles of thermal dosimetry and thermal thresholds for tissue damage from hyperthermia. 3(June), 267–294. https://doi.org/10.1080/0265673031000119006.
Dadfar, Roemhild, Drude, von Stillfried, Knüchel, Kiessling, Lammers (b0050) 2019; 138
Korangath P, Barnett JD, Sharma A, Henderson ET, Stewart J, Yu S, Kandala SK, Yang C, Caserto JS, Hedayati M, Armstrong TD, Jaffee E, Gruettner C, Zhou XC, Fu W, Hu C, Sukumar S, Simons BW, Ivkov R. (2020). Nanoparticle interactions with immune cells dominate tumor retention and induce T cell – mediated tumor suppression in models of breast cancer. March, 1–18.
Tomitaka, Arami, Gandhi, Krishnan (b0345) 2015; 7
Rahmer, Stehning, Gleich (b0250) 2018; 13
Rahmer, Wirtz, Bontus, Borgert, Gleich (b0245) 2017; 36
Melo, Makela, Hamilton, Foster (b0210) 2020
Goodwill, Conolly (b0115) 2010; 29
Du, Liu, Liang, Liang, Tian (b0070) 2019; 19
Frank KM, Dirk U. (2011). Efficacy and safety of intratumoral thermotherapy using magnetic iron-oxide nanoparticles combined with external beam radiotherapy on patients with recurrent glioblastoma multiforme. 317–324. https://doi.org/10.1007/s11060-010-0389-0.
Yu, Chandrasekharan, Berzon, Tay, Zhou, Khandhar, Ferguson, Kemp, Zheng, Goodwill, Wendland, Krishnan, Behr, Carter, Conolly (b0405) 2017; 11
J. Sedlacik A, Frölich J, Spallek ND, Forkert TD, Faizy F, Werner T, Knopp D, Krause J, Fiehler J-H. Buhk magnetic particle imaging for high temporal resolution assessment of aneurysm hemodynamics. PloS One, 11(8), e0160097–e0160097. https://doi.org/10.1371/journal.pone.0160097.
Parkins KM, Melo KP, Ronald JA, Foster PJ. (2020). Visualizing tumour self-homing with magnetic particle imaging. BioRxiv, 2020.02.17.953232. https://doi.org/10.1101/2020.02.17.953232.
Yu, Bishop, Zheng, Ferguson, Khandhar, Kemp, Krishnan, Goodwill, Conolly (b0400) 2017; 17
Hamilton, Parkins, Murrell, Ronald, Foster (b0135) 2016; 2
Sehl OC, Makela AV, Hamilton AM, Foster PJ. (2019). Trimodal cell tracking in vivo : combining iron- and fluorine-based magnetic resonance imaging with magnetic particle imaging to monitor the delivery of mesenchymal stem cells and the ensuing inflammation. 5(4), 367–376.
Zheng, Vazin, Goodwill, Conway, Verma, Ulku Saritas, Schaffer, Conolly (b0415) 2015; 5
Jin, Lin, Li, Ai (b0155) 2014; 18
Kumari, Ahsan, Kumar, Kondapi, Rao (b0175) 2017; 7
Wu W, Wu Z, Yu T, Jiang C, Kim WS (2015). Recent progress on magnetic iron oxide nanoparticles: Synthesis, surface functional strategies and biomedical applications. In Science and Technology of Advanced Materials (Vol. 16, Issue 2). Sci Technol Adv Mater. https://doi.org/10.1088/1468-6996/16/2/023501.
Orendorff, Peck, Zheng, Shirazi, Matthew Ferguson, Khandhar, Kemp, Goodwill, Krishnan, Brooks, Kaufer, Conolly (b0230) 2017; 62
Shi, Pisani, Lee, Messing, Ansari, Bhaumik, Lowery, Lee, Meyer, Daldrup-Link (b0305) 2013; 8
Bauer, Hensley, Zheng, Tay, Goodwill, Griswold, Conolly (b0020) 2016; 87
Arami, Ferguson, Khandhar, Krishnan (b0010) 2013; 40
Bulte (b0035) 2019; 138
Shasha C, Eric T, Krishnan KM, Szwargulski P, Knopp T, Möddel M. (2019). Discriminating nanoparticle core size using multi-contrast MPI. Phys Eng Med. https://doi.org/10.1088.ab0fc9.
Sharma, Dube, Chibh, Kour, Mishra, Panda (b0295) 2019; 16
Dulińska-Litewka, Łazarczyk, Hałubiec, Szafrański, Karnas, Karewicz (b0080) 2019; 12
Wang, Kim, Harada, Contag, Huang, Smith (b0370) 2020; 5
Gloag, Mehdipour, Ulanova, Mariandry, Nichol, Hernández-Castillo, Gaudet, Qiao, Zhang, Nelson, Thierry, Alvarez-Lemus, Tan, Gooding, Braidy, Sachdev, Tilley (b0110) 2020; 56
Seyfer, Pagenstecher, Mandic, Klose, Heverhagen (b0290) 2014; 39
Sun, Lee, Zhang (b0325) 2008; 60
Graeser, Thieben, Szwargulski, Werner, Gdaniec, Boberg, Griese, Möddel, Ludewig, van de Ven, Weber, Woywode, Gleich, Knopp (b0120) 2019; 10
Tong S, Zhu H, Bao G. (2019). Magnetic iron oxide nanoparticles for disease detection and therapy. In Materials Today (Vol. 31, pp. 86–99). Elsevier B.V. https://doi.org/10.1016/j.mattod.2019.06.003.
Corkum MT, Fakir H, Palma DA, Nguyen TK, Bauman G. (2020). Can polymetastatic disease be arrested using SABR? A dosimetric analysis to inform development of a phase I trial. J Clin Oncol, 38(15_suppl), e21567–e21567. https://doi.org/10.1200/JCO.2020.38.15_suppl.e21567.
Heyn, Ronald, Ramadan, Snir, Barry, MacKenzie, Mikulis, Palmieri, Bronder, Steeg, Yoneda, MacDonald, Chambers, Rutt, Foster (b0145) 2006; 56
Makela, Gaudet, Schott, Sehl, Contag, Foster (b0205) 2020
Arami, Teeman, Troksa, Bradshaw, Saatchi, Tomitaka, Gambhir, Häfeli, Liggitt, Krishnan (b0015) 2017; 9
Haegele, Vaalma, Panagiotopoulos, Barkhausen, Vogt, Borgert, Rahmer (b0130) 2016; 61
Them, Salamon, Szwargulski, Sequeira, Kaul, Lange, Ittrich, Knopp (b0340) 2016; 61
Bernas, Foster, Rutt (b0025) 2010; 64
Daldrup-Link, Golovko, Ruffell, Denardo, Castaneda, Ansari, Rao, Tikhomirov, Wendland, Corot, Coussens (b0055) 2011; 17
Weizenecker, Gleich, Rahmer, Dahnke, Borgert (b0380) 2009; 54
Song, Chen, Zhang, Cui, Qu, Zheng, Wintermark, Liu, Rao (b0315) 2018; 18
Foster, Dunn, Karl, Snir, Nycz, Harvey, Pettis (b0095) 2008; 10
Palma, Olson, Harrow, Gaede, Louie, Haasbeek, Mulroy, Lock, Rodrigues, Yaremko, Schellenberg, Ahmad, Griffioen, Senthi, Swaminath, Kopek, Liu, Moore, Currie, Senan (b0235) 2019; 393
Wu, Zhang, Steinberg, Qu, Huang, Cheng, Bliss, Du, Rao, Song, Pisani, Doyle, Conolly, Krishnan, Grant, Wintermark (b0395) 2019; 40
Gleich, Weizenecker (b0105) 2005; 435
Wang, Ma, Liao, Liang, Li, Tian, Ling (b0375) 2020; 14
Sun (10.1016/j.neuroscience.2020.10.036_b0325) 2008; 60
Du (10.1016/j.neuroscience.2020.10.036_b0075) 2013; 14
Meola (10.1016/j.neuroscience.2020.10.036_b0215) 2019; 125
10.1016/j.neuroscience.2020.10.036_b0125
Ribot (10.1016/j.neuroscience.2020.10.036_b0255) 2011; 34
10.1016/j.neuroscience.2020.10.036_b0045
10.1016/j.neuroscience.2020.10.036_b0285
10.1016/j.neuroscience.2020.10.036_b0240
Shi (10.1016/j.neuroscience.2020.10.036_b0305) 2013; 8
Khandhar (10.1016/j.neuroscience.2020.10.036_b0160) 2017; 9
Saritas (10.1016/j.neuroscience.2020.10.036_b0270) 2013; 229
10.1016/j.neuroscience.2020.10.036_b0280
Townson (10.1016/j.neuroscience.2020.10.036_b0355) 2009; 69
Tay (10.1016/j.neuroscience.2020.10.036_b0330) 2016; 6
Tomitaka (10.1016/j.neuroscience.2020.10.036_b0345) 2015; 7
Zhou (10.1016/j.neuroscience.2020.10.036_b0425) 2017; 62
Heyn (10.1016/j.neuroscience.2020.10.036_b0145) 2006; 56
Wang (10.1016/j.neuroscience.2020.10.036_b0370) 2020; 5
Vogel (10.1016/j.neuroscience.2020.10.036_b0365) 2015; 51
Bernas (10.1016/j.neuroscience.2020.10.036_b0025) 2010; 64
Jin (10.1016/j.neuroscience.2020.10.036_b0155) 2014; 18
Murrell (10.1016/j.neuroscience.2020.10.036_b0220) 2017; 78
Zhao (10.1016/j.neuroscience.2020.10.036_b0410) 2020
Ludewig (10.1016/j.neuroscience.2020.10.036_b0185) 2017; 11
Abbott (10.1016/j.neuroscience.2020.10.036_b0005) 2010; 37
Kumari (10.1016/j.neuroscience.2020.10.036_b0175) 2017; 7
Zhu (10.1016/j.neuroscience.2020.10.036_b0430) 2019
Palma (10.1016/j.neuroscience.2020.10.036_b0235) 2019; 393
10.1016/j.neuroscience.2020.10.036_b0275
Makela (10.1016/j.neuroscience.2020.10.036_b0200) 2017; 7
10.1016/j.neuroscience.2020.10.036_b0350
10.1016/j.neuroscience.2020.10.036_b0030
10.1016/j.neuroscience.2020.10.036_b0195
Haegele (10.1016/j.neuroscience.2020.10.036_b0130) 2016; 61
Leimgruber (10.1016/j.neuroscience.2020.10.036_b0180) 2009; 11
10.1016/j.neuroscience.2020.10.036_b0390
Khandhar (10.1016/j.neuroscience.2020.10.036_b0165) 2013; 34
Song (10.1016/j.neuroscience.2020.10.036_b0320) 2020; 4
Seyfer (10.1016/j.neuroscience.2020.10.036_b0290) 2014; 39
Graeser (10.1016/j.neuroscience.2020.10.036_b0120) 2019; 10
Yu (10.1016/j.neuroscience.2020.10.036_b0400) 2017; 17
Shih (10.1016/j.neuroscience.2020.10.036_b0310) 2011; 24
Makela (10.1016/j.neuroscience.2020.10.036_b0205) 2020
Vogel (10.1016/j.neuroscience.2020.10.036_b0360) 2019; 55
Melo (10.1016/j.neuroscience.2020.10.036_b0210) 2020
Gloag (10.1016/j.neuroscience.2020.10.036_b0110) 2020; 56
Bulte (10.1016/j.neuroscience.2020.10.036_b0035) 2019; 138
Rahmer (10.1016/j.neuroscience.2020.10.036_b0250) 2018; 13
Bulte (10.1016/j.neuroscience.2020.10.036_b0040) 2016
10.1016/j.neuroscience.2020.10.036_b0300
Song (10.1016/j.neuroscience.2020.10.036_b0315) 2018; 18
10.1016/j.neuroscience.2020.10.036_b0100
Hamilton (10.1016/j.neuroscience.2020.10.036_b0135) 2016; 2
10.1016/j.neuroscience.2020.10.036_b0265
Dadfar (10.1016/j.neuroscience.2020.10.036_b0050) 2019; 138
Foster (10.1016/j.neuroscience.2020.10.036_b0095) 2008; 10
10.1016/j.neuroscience.2020.10.036_b0385
10.1016/j.neuroscience.2020.10.036_b0065
Magnitsky (10.1016/j.neuroscience.2020.10.036_b0190) 2011; 66
10.1016/j.neuroscience.2020.10.036_b0260
Wang (10.1016/j.neuroscience.2020.10.036_b0375) 2020; 14
10.1016/j.neuroscience.2020.10.036_b0060
Bauer (10.1016/j.neuroscience.2020.10.036_b0020) 2016; 87
Ferguson (10.1016/j.neuroscience.2020.10.036_b0090) 2015; 34
Heyn (10.1016/j.neuroscience.2020.10.036_b0140) 2006; 55
Rahmer (10.1016/j.neuroscience.2020.10.036_b0245) 2017; 36
Orendorff (10.1016/j.neuroscience.2020.10.036_b0230) 2017; 62
Wu (10.1016/j.neuroscience.2020.10.036_b0395) 2019; 40
Daldrup-Link (10.1016/j.neuroscience.2020.10.036_b0055) 2011; 17
Economopoulos (10.1016/j.neuroscience.2020.10.036_b0085) 2013; 6
Sharma (10.1016/j.neuroscience.2020.10.036_b0295) 2019; 16
10.1016/j.neuroscience.2020.10.036_b0335
Them (10.1016/j.neuroscience.2020.10.036_b0340) 2016; 61
Dulińska-Litewka (10.1016/j.neuroscience.2020.10.036_b0080) 2019; 12
Nejadnik (10.1016/j.neuroscience.2020.10.036_b0225) 2019; 21
10.1016/j.neuroscience.2020.10.036_b0170
Yu (10.1016/j.neuroscience.2020.10.036_b0405) 2017; 11
Weizenecker (10.1016/j.neuroscience.2020.10.036_b0380) 2009; 54
Du (10.1016/j.neuroscience.2020.10.036_b0070) 2019; 19
Hufschmid (10.1016/j.neuroscience.2020.10.036_b0150) 2019; 216
Arami (10.1016/j.neuroscience.2020.10.036_b0010) 2013; 40
Gleich (10.1016/j.neuroscience.2020.10.036_b0105) 2005; 435
Arami (10.1016/j.neuroscience.2020.10.036_b0015) 2017; 9
Zheng (10.1016/j.neuroscience.2020.10.036_b0415) 2015; 5
Zheng (10.1016/j.neuroscience.2020.10.036_b0420) 2016; 6
Goodwill (10.1016/j.neuroscience.2020.10.036_b0115) 2010; 29
References_xml – reference: Tong S, Zhu H, Bao G. (2019). Magnetic iron oxide nanoparticles for disease detection and therapy. In Materials Today (Vol. 31, pp. 86–99). Elsevier B.V. https://doi.org/10.1016/j.mattod.2019.06.003.
– volume: 12
  year: 2019
  ident: b0080
  article-title: Superparamagnetic iron oxide nanoparticles-current and prospective medical applications
  publication-title: Materials
– volume: 5
  start-page: 628
  year: 2020
  end-page: 653
  ident: b0370
  article-title: Nano-immunoimaging
  publication-title: Nanoscale Horizons
– volume: 14
  start-page: 2053
  year: 2020
  end-page: 2062
  ident: b0375
  article-title: Artificially engineered cubic iron oxide nanoparticle as a high-performance magnetic particle imaging tracer for stem cell tracking
  publication-title: ACS Nano
– volume: 40
  year: 2013
  ident: b0010
  article-title: Size-dependent ferrohydrodynamic relaxometry of magnetic particle imaging tracers in different environments
  publication-title: Med Phys
– volume: 7
  year: 2017
  ident: b0200
  article-title: Quantifying tumor associated macrophages in breast cancer: a comparison of iron and fluorine-based MRI cell tracking
  publication-title: Sci Rep
– volume: 62
  start-page: 3501
  year: 2017
  end-page: 3509
  ident: b0230
  article-title: First in vivo traumatic brain injury imaging via magnetic particle imaging
  publication-title: Phys Med Biol
– volume: 54
  start-page: 1
  year: 2009
  end-page: 10
  ident: b0380
  article-title: Three-dimensional real-time in vivo magnetic particle imaging
  publication-title: Phys Med Biol
– volume: 61
  start-page: 3279
  year: 2016
  end-page: 3290
  ident: b0340
  article-title: Increasing the sensitivity for stem cell monitoring in system-function based magnetic particle imaging
  publication-title: Phys Med Biol
– volume: 6
  start-page: 291
  year: 2016
  end-page: 301
  ident: b0420
  article-title: Quantitative magnetic particle imaging monitors the transplantation, biodistribution, and clearance of stem cells in vivo
  publication-title: Theranostics
– reference: Wells J, Paysen H, Kosch O, Trahms L, Wiekhorst F. (2018). Temperature dependence in magnetic particle imaging. AIP Adv, 056703(October 2017). https://doi.org/10.1063/1.5004506.
– reference: Mahmoudi K, Bouras A, Bozec D, Ivkov R, Hadjipanayis C. (2018). Magnetic hyperthermia therapy for the treatment of glioblastoma : a review of the therapy’ s history, efficacy and application in humans. 34(8), 1316–1328.
– year: 2020
  ident: b0210
  article-title: Superparamagnetic microspheres can be used for magnetic particle imaging (MPI) of cancer cells arrested in the mouse brain
  publication-title: Magn Reson Med, In Press
– reference: J. Sedlacik A, Frölich J, Spallek ND, Forkert TD, Faizy F, Werner T, Knopp D, Krause J, Fiehler J-H. Buhk magnetic particle imaging for high temporal resolution assessment of aneurysm hemodynamics. PloS One, 11(8), e0160097–e0160097. https://doi.org/10.1371/journal.pone.0160097.
– reference: Sehl OC, Makela AV, Hamilton AM, Foster PJ. (2019). Trimodal cell tracking in vivo : combining iron- and fluorine-based magnetic resonance imaging with magnetic particle imaging to monitor the delivery of mesenchymal stem cells and the ensuing inflammation. 5(4), 367–376.
– volume: 11
  start-page: 10480
  year: 2017
  end-page: 10488
  ident: b0185
  article-title: Magnetic particle imaging for real-time perfusion imaging in acute stroke
  publication-title: ACS Nano
– volume: 9
  start-page: 18723
  year: 2017
  end-page: 18730
  ident: b0015
  article-title: Tomographic magnetic particle imaging of cancer targeted nanoparticles
  publication-title: Nanoscale
– reference: Korangath P, Barnett JD, Sharma A, Henderson ET, Stewart J, Yu S, Kandala SK, Yang C, Caserto JS, Hedayati M, Armstrong TD, Jaffee E, Gruettner C, Zhou XC, Fu W, Hu C, Sukumar S, Simons BW, Ivkov R. (2020). Nanoparticle interactions with immune cells dominate tumor retention and induce T cell – mediated tumor suppression in models of breast cancer. March, 1–18.
– volume: 6
  start-page: 347
  year: 2013
  end-page: 354
  ident: b0085
  article-title: MRI detection of nonproliferative tumor cells in lymph node metastases using iron oxide particles in a mouse model of breast cancer
  publication-title: Transl Oncol
– volume: 51
  start-page: 1
  year: 2015
  end-page: 3
  ident: b0365
  article-title: Superspeed traveling wave magnetic particle
  publication-title: IEEE Trans Magn
– volume: 56
  start-page: 1001
  year: 2006
  end-page: 1010
  ident: b0145
  article-title: In vivo MRI of cancer cell fate at the single-cell level in a mouse model of breast cancer metastasis to the brain
  publication-title: Magn Reson Med
– reference: Shasha C, Eric T, Krishnan KM, Szwargulski P, Knopp T, Möddel M. (2019). Discriminating nanoparticle core size using multi-contrast MPI. Phys Eng Med. https://doi.org/10.1088.ab0fc9.
– reference: Corkum MT, Fakir H, Palma DA, Nguyen TK, Bauman G. (2020). Can polymetastatic disease be arrested using SABR? A dosimetric analysis to inform development of a phase I trial. J Clin Oncol, 38(15_suppl), e21567–e21567. https://doi.org/10.1200/JCO.2020.38.15_suppl.e21567.
– volume: 56
  start-page: 3504
  year: 2020
  end-page: 3507
  ident: b0110
  article-title: Zero valent iron core-iron oxide shell nanoparticles as small magnetic particle imaging tracers
  publication-title: Chem Commun
– reference: Haacke EM, Cheng NYC, House MJ, Liu Q, Neelavalli J, Ogg RJ, Khan A, Ayaz M, Kirsch W, Obenaus A. (2005). Imaging iron stores in the brain using magnetic resonance imaging. Magnetic Resonance Imaging, 23(1), 1–25. https://doi.org/https://doi.org/10.1016/j.mri.2004.10.001.
– volume: 16
  start-page: 113
  year: 2019
  end-page: 128
  ident: b0295
  article-title: Expert opinion on drug delivery nanotheranostics, a future remedy of neurological disorders
  publication-title: Expert Opin Drug Delivery
– volume: 138
  start-page: 302
  year: 2019
  end-page: 325
  ident: b0050
  article-title: Iron oxide nanoparticles: diagnostic, therapeutic and theranostic applications
  publication-title: Adv Drug Deliv Rev
– volume: 39
  start-page: 665
  year: 2014
  end-page: 672
  ident: b0290
  article-title: Cancer and inflammation: differentiation by USPIO-enhanced MR imaging
  publication-title: J Magn Reson Imaging
– reference: Tay ZW, Hensley DW, Savliwala S, Chandrasekharan P, Zhou XY, Soo Hyun Shin, Fellows, BD, Lu Y, Rinaldi C, Conolly S. (2019). Order-of-magnitude resolution and SNR improvement using positive feedback MNP chains in magnetic particle imaging. World Molecular Imaging Congress.
– volume: 24
  start-page: 1353
  year: 2011
  end-page: 1360
  ident: b0310
  article-title: Longitudinal study of tumor-associated macrophages during tumor expansion using MRI
  publication-title: NMR Biomed
– reference: Dhavalikar R, Bohorquez AC, Rinaldi C. (2019). Image-guided thermal therapy using magnetic particle imaging and magnetic fluid hyperthermia. 265–286. https://doi.org/10.1016/B978-0-12-813928-8.00010-7.
– volume: 66
  start-page: 1362
  year: 2011
  end-page: 1373
  ident: b0190
  article-title: In vivo and Ex vivo MR imaging of slowly cycling melanoma cells
  publication-title: Magn Reson Med
– reference: Salamon J, Dieckho J, Kaul MG, Jung C, Adam G, Möddel M, Knopp T, Draack S, Ludwig F, Ittrich H. (2020). Visualization of spatial and temporal temperature distributions with magnetic particle imaging for liver tumor ablation therapy. 1–11. https://doi.org/10.1038/s41598-020-64280-1.
– volume: 2
  start-page: 79
  year: 2016
  end-page: 84
  ident: b0135
  article-title: Investigating the impact of a primary tumor on metastasis and dormancy using MRI: new insights into the mechanism of concomitant tumor resistance
  publication-title: Tomography (Ann Arbor, Mich.)
– volume: 10
  year: 2019
  ident: b0120
  article-title: Human-sized magnetic particle imaging for brain applications
  publication-title: Nat Commun
– volume: 8
  start-page: 281
  year: 2013
  end-page: 288
  ident: b0305
  article-title: Evaluation of the novel USPIO GEH121333 for MR imaging of cancer immune responses
  publication-title: Contrast Media Mol Imaging
– volume: 393
  start-page: 2051
  year: 2019
  end-page: 2058
  ident: b0235
  article-title: Stereotactic ablative radiotherapy versus standard of care palliative treatment in patients with oligometastatic cancers (SABR-COMET): a randomised, phase 2, open-label trial
  publication-title: Lancet
– volume: 18
  start-page: 182
  year: 2018
  end-page: 189
  ident: b0315
  article-title: Janus iron oxides @ semiconducting polymer nanoparticle tracer for cell tracking by magnetic particle imaging
  publication-title: Nano Lett
– volume: 61
  start-page: N415
  year: 2016
  end-page: N426
  ident: b0130
  article-title: Multi-color magnetic particle imaging for cardiovascular interventions
  publication-title: Phys Med Biol
– volume: 36
  start-page: 1449
  year: 2017
  end-page: 1456
  ident: b0245
  article-title: Interactive magnetic catheter steering with 3-D real-time feedback using multi-color magnetic particle imaging
  publication-title: IEEE Trans Med Imaging
– volume: 5
  start-page: 1
  year: 2015
  end-page: 9
  ident: b0415
  article-title: Magnetic particle imaging tracks the long-term fate of in vivo neural cell implants with high image contrast
  publication-title: Sci Rep
– volume: 11
  start-page: 459-IN4
  year: 2009
  ident: b0180
  article-title: Behavior of endogenous tumor-associated macrophages assessed in vivo using a functionalized nanoparticle
  publication-title: Neoplasia
– volume: 34
  start-page: 1077
  year: 2015
  end-page: 1084
  ident: b0090
  article-title: Magnetic particle imaging with tailored iron oxide nanoparticle tracers
  publication-title: IEEE Trans Med Imaging
– volume: 10
  start-page: 207
  year: 2008
  end-page: 216
  ident: b0095
  article-title: Cellular magnetic resonance imaging. In vivo imaging of melanoma cells in lymph nodes of mice 1
  publication-title: Neoplasia
– volume: 435
  start-page: 1214+
  year: 2005
  ident: b0105
  article-title: Tomographic imaging using the nonlinear response of magnetic particles
  publication-title: Nature
– year: 2020
  ident: b0205
  article-title: Magnetic particle imaging of macrophages associated with cancer: filling the voids left by iron-based magnetic resonance imaging
  publication-title: Mol Imag Biol
– volume: 125
  start-page: 261
  year: 2019
  end-page: 270
  ident: b0215
  article-title: Magnetic particle imaging in neurosurgery
  publication-title: World Neurosurg
– volume: 11
  start-page: 12067
  year: 2017
  end-page: 12076
  ident: b0405
  article-title: Magnetic particle imaging for highly sensitive, quantitative, and safe in vivo gut bleed detection in a murine model
  publication-title: ACS Nano
– volume: 9
  start-page: 1299
  year: 2017
  end-page: 1306
  ident: b0160
  article-title: Evaluation of PEG-coated iron oxide nanoparticles as blood pool tracers for preclinical magnetic particle imaging
  publication-title: Nanoscale
– reference: Parkins KM, Melo KP, Ronald JA, Foster PJ. (2020). Visualizing tumour self-homing with magnetic particle imaging. BioRxiv, 2020.02.17.953232. https://doi.org/10.1101/2020.02.17.953232.
– volume: 60
  start-page: 1252
  year: 2008
  end-page: 1265
  ident: b0325
  article-title: Magnetic nanoparticles in MR imaging and drug delivery
  publication-title: Adv Drug Deliv Rev
– volume: 17
  start-page: 5695
  year: 2011
  end-page: 5704
  ident: b0055
  article-title: MRI of tumor-associated macrophages with clinically applicable iron oxide nanoparticles
  publication-title: Clin Cancer Res
– volume: 78
  start-page: 1506
  year: 2017
  end-page: 1512
  ident: b0220
  article-title: MRI surveillance of cancer cell fate in a brain metastasis model after early radiotherapy
  publication-title: Magn Reson Med
– volume: 4
  start-page: 325
  year: 2020
  end-page: 334
  ident: b0320
  article-title: Carbon-coated FeCo nanoparticles as sensitive magnetic-particle-imaging tracers with photothermal and magnetothermal properties
  publication-title: Nat Biomed Eng
– year: 2020
  ident: b0410
  article-title: Computational predictions of enhanced magnetic particle imaging performance by magnetic nanoparticle chains
  publication-title: Phys Med Biol
– volume: 34
  start-page: 3837
  year: 2013
  end-page: 3845
  ident: b0165
  article-title: Monodisperse magnetite nanoparticle tracers for in vivo magnetic particle imaging
  publication-title: Biomaterials
– volume: 69
  start-page: 8326
  year: 2009
  end-page: 8331
  ident: b0355
  article-title: Three-dimensional imaging and quantification of both solitary cells and metastases in whole mouse liver by magnetic resonance imaging
  publication-title: Cancer Res
– reference: Blanc, K. Le, Ringdén, O. (2005). Immunobiology of human mesenchymal stem cells and future use in hematopoietic stem cell. 334, 321–334. https://doi.org/10.1016/j.bbmt.2005.01.005.
– volume: 7
  start-page: 6602
  year: 2017
  ident: b0175
  article-title: Overcoming blood brain barrier with a dual purpose Temozolomide loaded Lactoferrin nanoparticles for combating glioma (SERP-17-12433)
  publication-title: Sci Rep
– volume: 64
  start-page: 23
  year: 2010
  end-page: 31
  ident: b0025
  article-title: Imaging iron-loaded mouse glioma tumors with bSSFP at 3 T
  publication-title: Magn Reson Med
– volume: 17
  start-page: 1648
  year: 2017
  end-page: 1654
  ident: b0400
  article-title: Magnetic particle imaging: a novel in vivo imaging platform for cancer detection
  publication-title: Nano Lett
– volume: 37
  start-page: 13
  year: 2010
  end-page: 25
  ident: b0005
  article-title: Structure and function of the blood-brain barrier
  publication-title: Neurobiol Dis
– volume: 21
  start-page: 465
  year: 2019
  end-page: 472
  ident: b0225
  article-title: Ferumoxytol can be used for quantitative magnetic particle imaging of transplanted stem cells
  publication-title: Mol Imag Biol
– volume: 34
  start-page: 231
  year: 2011
  end-page: 238
  ident: b0255
  article-title: In vivo single scan detection of both iron-labeled cells and breast cancer metastases in the mouse brain using balanced steady-state free precession imaging at 1.5 T
  publication-title: J o Magn Reson Imaging: JMRI
– volume: 13
  year: 2018
  ident: b0250
  article-title: Remote magnetic actuation using a clinical scale system
  publication-title: PLoS ONE
– volume: 216
  start-page: 1800544
  year: 2019
  ident: b0150
  article-title: Nanoscale physical and chemical structure of iron oxide nanoparticles for magnetic particle imaging
  publication-title: Phys Status Solidi (A)
– volume: 6
  start-page: 1
  year: 2016
  end-page: 12
  ident: b0330
  article-title: A high-throughput, arbitrary-waveform, mpi spectrometer and relaxometer for comprehensive magnetic particle optimization and characterization
  publication-title: Sci Rep
– reference: Wu W, Wu Z, Yu T, Jiang C, Kim WS (2015). Recent progress on magnetic iron oxide nanoparticles: Synthesis, surface functional strategies and biomedical applications. In Science and Technology of Advanced Materials (Vol. 16, Issue 2). Sci Technol Adv Mater. https://doi.org/10.1088/1468-6996/16/2/023501.
– volume: 55
  year: 2019
  ident: b0360
  article-title: Micro-traveling wave magnetic particle imaging - sub-millimeter resolution with optimized tracer LS-008
  publication-title: IEEE Trans Magn
– volume: 40
  start-page: 206
  year: 2019
  end-page: 212
  ident: b0395
  article-title: A review of magnetic particle imaging and perspectives on neuroimaging
  publication-title: Am J Neuroradiol
– reference: Frank KM, Dirk U. (2011). Efficacy and safety of intratumoral thermotherapy using magnetic iron-oxide nanoparticles combined with external beam radiotherapy on patients with recurrent glioblastoma multiforme. 317–324. https://doi.org/10.1007/s11060-010-0389-0.
– volume: 19
  start-page: 3618
  year: 2019
  end-page: 3626
  ident: b0070
  article-title: Optimization and design of magnetic ferrite nanoparticles with uniform tumor distribution for highly sensitive MRI/MPI performance and improved magnetic hyperthermia therapy
  publication-title: Nano Lett
– year: 2016
  ident: b0040
  article-title: Design and applications of nanoparticles in biomedical imaging
  publication-title: Design and Applications of Nanoparticles in Biomedical Imaging
– volume: 14
  start-page: 18682
  year: 2013
  end-page: 18710
  ident: b0075
  article-title: Design of superparamagnetic nanoparticles for magnetic particle imaging (MPI)
  publication-title: Int J Mol Sci
– volume: 55
  start-page: 23
  year: 2006
  end-page: 29
  ident: b0140
  article-title: In vivo magnetic resonance imaging of single cells in mouse brain with optical validation
  publication-title: Magn Reson Med
– reference: Savliwala S, Chiu-Lam A, Unni M, Rivera-Rodriguez A, Fuller E, Sen K, Threadcraft M, Rinaldi C. (2020). Magnetic nanoparticles. In Nanoparticles for Biomedical Applications (pp. 195–221). Elsevier. https://doi.org/10.1016/B978-0-12-816662-8.00013-8.
– volume: 87
  year: 2016
  ident: b0020
  article-title: Eddy current-shielded x-space relaxometer for sensitive magnetic nanoparticle characterization
  publication-title: Rev Sci Instrum
– reference: Dewhirst MW, Viglianti BL, Hanson M, Hoopes PJ. (2003). Basic principles of thermal dosimetry and thermal thresholds for tissue damage from hyperthermia. 3(June), 267–294. https://doi.org/10.1080/0265673031000119006.
– reference: Rivera-Rodriguez A, Hoang-Minh LB, Chiu-Lam A, Sarna N, Marrero-Morales L, Mitchell DA, Rinaldi C. (2020). Tracking adoptive T cell therapy using magnetic particle imaging. BioRxiv, 2020.06.02.128587. https://doi.org/10.1101/2020.06.02.128587.
– volume: 7
  start-page: 16890
  year: 2015
  end-page: 16898
  ident: b0345
  article-title: Lactoferrin conjugated iron oxide nanoparticles for targeting brain glioma cells in magnetic particle imaging
  publication-title: Nanoscale
– volume: 18
  start-page: 18
  year: 2014
  end-page: 27
  ident: b0155
  article-title: ScienceDirect Superparamagnetic iron oxide nanoparticles for MR imaging and therapy: design considerations and clinical applications
  publication-title: Curr Opin Pharmacol
– volume: 29
  start-page: 1851
  year: 2010
  end-page: 1859
  ident: b0115
  article-title: The X-space formulation of the magnetic particle imaging process: 1-D signal, resolution, bandwidth, SNR, SAR, and magnetostimulation
  publication-title: IEEE Trans Med Imaging
– volume: 138
  start-page: 293
  year: 2019
  end-page: 301
  ident: b0035
  article-title: Superparamagnetic iron oxides as MPI tracers: a primer and review of early applications
  publication-title: Adv Drug Deliv Rev
– volume: 229
  start-page: 116
  year: 2013
  end-page: 126
  ident: b0270
  article-title: Magnetic particle imaging (MPI) for NMR and MRI researchers
  publication-title: J Magn Reson
– year: 2019
  ident: b0430
  article-title: Quantitative drug release monitoring in tumors of living subjects by magnetic particle imaging nanocomposite Quantitative drug release monitoring in tumors of living subjects by magnetic particle imaging nanocomposite
  publication-title: Nano Lett
– volume: 62
  start-page: 3510
  year: 2017
  end-page: 3522
  ident: b0425
  article-title: First in vivo magnetic particle imaging of lung perfusion in rats
  publication-title: Phys Med Biol
– volume: 78
  start-page: 1506
  issue: 4
  year: 2017
  ident: 10.1016/j.neuroscience.2020.10.036_b0220
  article-title: MRI surveillance of cancer cell fate in a brain metastasis model after early radiotherapy
  publication-title: Magn Reson Med
  doi: 10.1002/mrm.26541
– volume: 39
  start-page: 665
  issue: 3
  year: 2014
  ident: 10.1016/j.neuroscience.2020.10.036_b0290
  article-title: Cancer and inflammation: differentiation by USPIO-enhanced MR imaging
  publication-title: J Magn Reson Imaging
  doi: 10.1002/jmri.24200
– volume: 17
  start-page: 1648
  issue: 3
  year: 2017
  ident: 10.1016/j.neuroscience.2020.10.036_b0400
  article-title: Magnetic particle imaging: a novel in vivo imaging platform for cancer detection
  publication-title: Nano Lett
  doi: 10.1021/acs.nanolett.6b04865
– volume: 6
  start-page: 347
  issue: 3
  year: 2013
  ident: 10.1016/j.neuroscience.2020.10.036_b0085
  article-title: MRI detection of nonproliferative tumor cells in lymph node metastases using iron oxide particles in a mouse model of breast cancer
  publication-title: Transl Oncol
  doi: 10.1593/tlo.13121
– volume: 9
  start-page: 1299
  issue: 3
  year: 2017
  ident: 10.1016/j.neuroscience.2020.10.036_b0160
  article-title: Evaluation of PEG-coated iron oxide nanoparticles as blood pool tracers for preclinical magnetic particle imaging
  publication-title: Nanoscale
  doi: 10.1039/C6NR08468K
– volume: 21
  start-page: 465
  issue: 3
  year: 2019
  ident: 10.1016/j.neuroscience.2020.10.036_b0225
  article-title: Ferumoxytol can be used for quantitative magnetic particle imaging of transplanted stem cells
  publication-title: Mol Imag Biol
  doi: 10.1007/s11307-018-1276-x
– volume: 229
  start-page: 116
  year: 2013
  ident: 10.1016/j.neuroscience.2020.10.036_b0270
  article-title: Magnetic particle imaging (MPI) for NMR and MRI researchers
  publication-title: J Magn Reson
  doi: 10.1016/j.jmr.2012.11.029
– volume: 29
  start-page: 1851
  issue: 11
  year: 2010
  ident: 10.1016/j.neuroscience.2020.10.036_b0115
  article-title: The X-space formulation of the magnetic particle imaging process: 1-D signal, resolution, bandwidth, SNR, SAR, and magnetostimulation
  publication-title: IEEE Trans Med Imaging
  doi: 10.1109/TMI.2010.2052284
– ident: 10.1016/j.neuroscience.2020.10.036_b0170
  doi: 10.1126/sciadv.aay1601
– ident: 10.1016/j.neuroscience.2020.10.036_b0300
– volume: 16
  start-page: 113
  issue: 2
  year: 2019
  ident: 10.1016/j.neuroscience.2020.10.036_b0295
  article-title: Expert opinion on drug delivery nanotheranostics, a future remedy of neurological disorders
  publication-title: Expert Opin Drug Delivery
  doi: 10.1080/17425247.2019.1562443
– volume: 19
  start-page: 3618
  issue: 6
  year: 2019
  ident: 10.1016/j.neuroscience.2020.10.036_b0070
  article-title: Optimization and design of magnetic ferrite nanoparticles with uniform tumor distribution for highly sensitive MRI/MPI performance and improved magnetic hyperthermia therapy
  publication-title: Nano Lett
  doi: 10.1021/acs.nanolett.9b00630
– volume: 61
  start-page: N415
  issue: 16
  year: 2016
  ident: 10.1016/j.neuroscience.2020.10.036_b0130
  article-title: Multi-color magnetic particle imaging for cardiovascular interventions
  publication-title: Phys Med Biol
  doi: 10.1088/0031-9155/61/16/N415
– volume: 138
  start-page: 302
  year: 2019
  ident: 10.1016/j.neuroscience.2020.10.036_b0050
  article-title: Iron oxide nanoparticles: diagnostic, therapeutic and theranostic applications
  publication-title: Adv Drug Deliv Rev
  doi: 10.1016/j.addr.2019.01.005
– volume: 40
  issue: 7
  year: 2013
  ident: 10.1016/j.neuroscience.2020.10.036_b0010
  article-title: Size-dependent ferrohydrodynamic relaxometry of magnetic particle imaging tracers in different environments
  publication-title: Med Phys
  doi: 10.1118/1.4810962
– ident: 10.1016/j.neuroscience.2020.10.036_b0275
  doi: 10.1016/B978-0-12-816662-8.00013-8
– year: 2016
  ident: 10.1016/j.neuroscience.2020.10.036_b0040
  article-title: Design and applications of nanoparticles in biomedical imaging
– ident: 10.1016/j.neuroscience.2020.10.036_b0385
  doi: 10.1063/1.5004506
– volume: 14
  start-page: 18682
  issue: 9
  year: 2013
  ident: 10.1016/j.neuroscience.2020.10.036_b0075
  article-title: Design of superparamagnetic nanoparticles for magnetic particle imaging (MPI)
  publication-title: Int J Mol Sci
  doi: 10.3390/ijms140918682
– volume: 37
  start-page: 13
  issue: 1
  year: 2010
  ident: 10.1016/j.neuroscience.2020.10.036_b0005
  article-title: Structure and function of the blood-brain barrier
  publication-title: Neurobiol Dis
  doi: 10.1016/j.nbd.2009.07.030
– year: 2020
  ident: 10.1016/j.neuroscience.2020.10.036_b0210
  article-title: Superparamagnetic microspheres can be used for magnetic particle imaging (MPI) of cancer cells arrested in the mouse brain
  publication-title: Magn Reson Med, In Press
– volume: 393
  start-page: 2051
  issue: 10185
  year: 2019
  ident: 10.1016/j.neuroscience.2020.10.036_b0235
  article-title: Stereotactic ablative radiotherapy versus standard of care palliative treatment in patients with oligometastatic cancers (SABR-COMET): a randomised, phase 2, open-label trial
  publication-title: Lancet
  doi: 10.1016/S0140-6736(18)32487-5
– ident: 10.1016/j.neuroscience.2020.10.036_b0265
  doi: 10.1038/s41598-020-64280-1
– volume: 5
  start-page: 1
  issue: August
  year: 2015
  ident: 10.1016/j.neuroscience.2020.10.036_b0415
  article-title: Magnetic particle imaging tracks the long-term fate of in vivo neural cell implants with high image contrast
  publication-title: Sci Rep
– volume: 55
  issue: 10
  year: 2019
  ident: 10.1016/j.neuroscience.2020.10.036_b0360
  article-title: Micro-traveling wave magnetic particle imaging - sub-millimeter resolution with optimized tracer LS-008
  publication-title: IEEE Trans Magn
  doi: 10.1109/TMAG.2019.2924198
– volume: 54
  start-page: 1
  issue: 5
  year: 2009
  ident: 10.1016/j.neuroscience.2020.10.036_b0380
  article-title: Three-dimensional real-time in vivo magnetic particle imaging
  publication-title: Phys Med Biol
  doi: 10.1088/0031-9155/54/5/L01
– volume: 66
  start-page: 1362
  issue: 5
  year: 2011
  ident: 10.1016/j.neuroscience.2020.10.036_b0190
  article-title: In vivo and Ex vivo MR imaging of slowly cycling melanoma cells
  publication-title: Magn Reson Med
  doi: 10.1002/mrm.22917
– volume: 4
  start-page: 325
  year: 2020
  ident: 10.1016/j.neuroscience.2020.10.036_b0320
  article-title: Carbon-coated FeCo nanoparticles as sensitive magnetic-particle-imaging tracers with photothermal and magnetothermal properties
  publication-title: Nat Biomed Eng
  doi: 10.1038/s41551-019-0506-0
– volume: 138
  start-page: 293
  year: 2019
  ident: 10.1016/j.neuroscience.2020.10.036_b0035
  article-title: Superparamagnetic iron oxides as MPI tracers: a primer and review of early applications
  publication-title: Adv Drug Deliv Rev
  doi: 10.1016/j.addr.2018.12.007
– volume: 6
  start-page: 1
  issue: September
  year: 2016
  ident: 10.1016/j.neuroscience.2020.10.036_b0330
  article-title: A high-throughput, arbitrary-waveform, mpi spectrometer and relaxometer for comprehensive magnetic particle optimization and characterization
  publication-title: Sci Rep
– ident: 10.1016/j.neuroscience.2020.10.036_b0335
– volume: 34
  start-page: 3837
  issue: 15
  year: 2013
  ident: 10.1016/j.neuroscience.2020.10.036_b0165
  article-title: Monodisperse magnetite nanoparticle tracers for in vivo magnetic particle imaging
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2013.01.087
– year: 2019
  ident: 10.1016/j.neuroscience.2020.10.036_b0430
  article-title: Quantitative drug release monitoring in tumors of living subjects by magnetic particle imaging nanocomposite Quantitative drug release monitoring in tumors of living subjects by magnetic particle imaging nanocomposite
  publication-title: Nano Lett
– volume: 7
  start-page: 16890
  issue: 40
  year: 2015
  ident: 10.1016/j.neuroscience.2020.10.036_b0345
  article-title: Lactoferrin conjugated iron oxide nanoparticles for targeting brain glioma cells in magnetic particle imaging
  publication-title: Nanoscale
  doi: 10.1039/C5NR02831K
– volume: 18
  start-page: 18
  year: 2014
  ident: 10.1016/j.neuroscience.2020.10.036_b0155
  article-title: ScienceDirect Superparamagnetic iron oxide nanoparticles for MR imaging and therapy: design considerations and clinical applications
  publication-title: Curr Opin Pharmacol
  doi: 10.1016/j.coph.2014.08.002
– volume: 40
  start-page: 206
  issue: 2
  year: 2019
  ident: 10.1016/j.neuroscience.2020.10.036_b0395
  article-title: A review of magnetic particle imaging and perspectives on neuroimaging
  publication-title: Am J Neuroradiol
  doi: 10.3174/ajnr.A5896
– year: 2020
  ident: 10.1016/j.neuroscience.2020.10.036_b0410
  article-title: Computational predictions of enhanced magnetic particle imaging performance by magnetic nanoparticle chains
  publication-title: Phys Med Biol
  doi: 10.1088/1361-6560/ab95dd
– volume: 13
  issue: 3
  year: 2018
  ident: 10.1016/j.neuroscience.2020.10.036_b0250
  article-title: Remote magnetic actuation using a clinical scale system
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0193546
– volume: 36
  start-page: 1449
  issue: 7
  year: 2017
  ident: 10.1016/j.neuroscience.2020.10.036_b0245
  article-title: Interactive magnetic catheter steering with 3-D real-time feedback using multi-color magnetic particle imaging
  publication-title: IEEE Trans Med Imaging
  doi: 10.1109/TMI.2017.2679099
– volume: 8
  start-page: 281
  issue: 3
  year: 2013
  ident: 10.1016/j.neuroscience.2020.10.036_b0305
  article-title: Evaluation of the novel USPIO GEH121333 for MR imaging of cancer immune responses
  publication-title: Contrast Media Mol Imaging
  doi: 10.1002/cmmi.1526
– volume: 18
  start-page: 182
  issue: 1
  year: 2018
  ident: 10.1016/j.neuroscience.2020.10.036_b0315
  article-title: Janus iron oxides @ semiconducting polymer nanoparticle tracer for cell tracking by magnetic particle imaging
  publication-title: Nano Lett
  doi: 10.1021/acs.nanolett.7b03829
– ident: 10.1016/j.neuroscience.2020.10.036_b0125
  doi: 10.1016/j.mri.2004.10.001
– ident: 10.1016/j.neuroscience.2020.10.036_b0390
  doi: 10.1088/1468-6996/16/2/023501
– volume: 6
  start-page: 291
  issue: 3
  year: 2016
  ident: 10.1016/j.neuroscience.2020.10.036_b0420
  article-title: Quantitative magnetic particle imaging monitors the transplantation, biodistribution, and clearance of stem cells in vivo
  publication-title: Theranostics
  doi: 10.7150/thno.13728
– volume: 62
  start-page: 3501
  issue: 9
  year: 2017
  ident: 10.1016/j.neuroscience.2020.10.036_b0230
  article-title: First in vivo traumatic brain injury imaging via magnetic particle imaging
  publication-title: Phys Med Biol
  doi: 10.1088/1361-6560/aa52ad
– year: 2020
  ident: 10.1016/j.neuroscience.2020.10.036_b0205
  article-title: Magnetic particle imaging of macrophages associated with cancer: filling the voids left by iron-based magnetic resonance imaging
  publication-title: Mol Imag Biol
  doi: 10.1007/s11307-020-01473-0
– volume: 2
  start-page: 79
  issue: 2
  year: 2016
  ident: 10.1016/j.neuroscience.2020.10.036_b0135
  article-title: Investigating the impact of a primary tumor on metastasis and dormancy using MRI: new insights into the mechanism of concomitant tumor resistance
  publication-title: Tomography (Ann Arbor, Mich.)
– ident: 10.1016/j.neuroscience.2020.10.036_b0285
  doi: 10.18383/j.tom.2019.00020
– ident: 10.1016/j.neuroscience.2020.10.036_b0045
  doi: 10.1200/JCO.2020.38.15_suppl.e21567
– volume: 56
  start-page: 3504
  issue: 24
  year: 2020
  ident: 10.1016/j.neuroscience.2020.10.036_b0110
  article-title: Zero valent iron core-iron oxide shell nanoparticles as small magnetic particle imaging tracers
  publication-title: Chem Commun
  doi: 10.1039/C9CC08972A
– volume: 56
  start-page: 1001
  issue: 5
  year: 2006
  ident: 10.1016/j.neuroscience.2020.10.036_b0145
  article-title: In vivo MRI of cancer cell fate at the single-cell level in a mouse model of breast cancer metastasis to the brain
  publication-title: Magn Reson Med
  doi: 10.1002/mrm.21029
– volume: 34
  start-page: 231
  issue: 1
  year: 2011
  ident: 10.1016/j.neuroscience.2020.10.036_b0255
  article-title: In vivo single scan detection of both iron-labeled cells and breast cancer metastases in the mouse brain using balanced steady-state free precession imaging at 1.5 T
  publication-title: J o Magn Reson Imaging: JMRI
  doi: 10.1002/jmri.22593
– volume: 10
  issue: 1
  year: 2019
  ident: 10.1016/j.neuroscience.2020.10.036_b0120
  article-title: Human-sized magnetic particle imaging for brain applications
  publication-title: Nat Commun
  doi: 10.1038/s41467-019-09704-x
– volume: 435
  start-page: 1214+
  year: 2005
  ident: 10.1016/j.neuroscience.2020.10.036_b0105
  article-title: Tomographic imaging using the nonlinear response of magnetic particles
  publication-title: Nature
  doi: 10.1038/nature03808
– volume: 24
  start-page: 1353
  issue: 10
  year: 2011
  ident: 10.1016/j.neuroscience.2020.10.036_b0310
  article-title: Longitudinal study of tumor-associated macrophages during tumor expansion using MRI
  publication-title: NMR Biomed
  doi: 10.1002/nbm.1698
– volume: 10
  start-page: 207
  issue: 3
  year: 2008
  ident: 10.1016/j.neuroscience.2020.10.036_b0095
  article-title: Cellular magnetic resonance imaging. In vivo imaging of melanoma cells in lymph nodes of mice 1
  publication-title: Neoplasia
  doi: 10.1593/neo.07937
– volume: 7
  issue: 42109
  year: 2017
  ident: 10.1016/j.neuroscience.2020.10.036_b0200
  article-title: Quantifying tumor associated macrophages in breast cancer: a comparison of iron and fluorine-based MRI cell tracking
  publication-title: Sci Rep
– volume: 69
  start-page: 8326
  issue: 21
  year: 2009
  ident: 10.1016/j.neuroscience.2020.10.036_b0355
  article-title: Three-dimensional imaging and quantification of both solitary cells and metastases in whole mouse liver by magnetic resonance imaging
  publication-title: Cancer Res
  doi: 10.1158/0008-5472.CAN-09-1496
– volume: 34
  start-page: 1077
  issue: 5
  year: 2015
  ident: 10.1016/j.neuroscience.2020.10.036_b0090
  article-title: Magnetic particle imaging with tailored iron oxide nanoparticle tracers
  publication-title: IEEE Trans Med Imaging
  doi: 10.1109/TMI.2014.2375065
– ident: 10.1016/j.neuroscience.2020.10.036_b0280
  doi: 10.1371/journal.pone.0160097
– ident: 10.1016/j.neuroscience.2020.10.036_b0195
  doi: 10.1080/02656736.2018.1430867
– volume: 61
  start-page: 3279
  issue: 9
  year: 2016
  ident: 10.1016/j.neuroscience.2020.10.036_b0340
  article-title: Increasing the sensitivity for stem cell monitoring in system-function based magnetic particle imaging
  publication-title: Phys Med Biol
  doi: 10.1088/0031-9155/61/9/3279
– volume: 87
  issue: 5
  year: 2016
  ident: 10.1016/j.neuroscience.2020.10.036_b0020
  article-title: Eddy current-shielded x-space relaxometer for sensitive magnetic nanoparticle characterization
  publication-title: Rev Sci Instrum
  doi: 10.1063/1.4950779
– ident: 10.1016/j.neuroscience.2020.10.036_b0240
  doi: 10.1101/2020.02.17.953232
– volume: 11
  start-page: 459-IN4
  issue: 5
  year: 2009
  ident: 10.1016/j.neuroscience.2020.10.036_b0180
  article-title: Behavior of endogenous tumor-associated macrophages assessed in vivo using a functionalized nanoparticle
  publication-title: Neoplasia
  doi: 10.1593/neo.09356
– ident: 10.1016/j.neuroscience.2020.10.036_b0060
  doi: 10.1080/0265673031000119006
– volume: 9
  start-page: 18723
  issue: 47
  year: 2017
  ident: 10.1016/j.neuroscience.2020.10.036_b0015
  article-title: Tomographic magnetic particle imaging of cancer targeted nanoparticles
  publication-title: Nanoscale
  doi: 10.1039/C7NR05502A
– ident: 10.1016/j.neuroscience.2020.10.036_b0100
  doi: 10.1007/s11060-010-0389-0
– volume: 60
  start-page: 1252
  issue: 11
  year: 2008
  ident: 10.1016/j.neuroscience.2020.10.036_b0325
  article-title: Magnetic nanoparticles in MR imaging and drug delivery
  publication-title: Adv Drug Deliv Rev
  doi: 10.1016/j.addr.2008.03.018
– volume: 62
  start-page: 3510
  issue: 9
  year: 2017
  ident: 10.1016/j.neuroscience.2020.10.036_b0425
  article-title: First in vivo magnetic particle imaging of lung perfusion in rats
  publication-title: Phys Med Biol
  doi: 10.1088/1361-6560/aa616c
– volume: 64
  start-page: 23
  issue: 1
  year: 2010
  ident: 10.1016/j.neuroscience.2020.10.036_b0025
  article-title: Imaging iron-loaded mouse glioma tumors with bSSFP at 3 T
  publication-title: Magn Reson Med
  doi: 10.1002/mrm.22210
– volume: 11
  start-page: 10480
  issue: 10
  year: 2017
  ident: 10.1016/j.neuroscience.2020.10.036_b0185
  article-title: Magnetic particle imaging for real-time perfusion imaging in acute stroke
  publication-title: ACS Nano
  doi: 10.1021/acsnano.7b05784
– volume: 5
  start-page: 628
  issue: 4
  year: 2020
  ident: 10.1016/j.neuroscience.2020.10.036_b0370
  article-title: Nano-immunoimaging
  publication-title: Nanoscale Horizons
  doi: 10.1039/C9NH00514E
– ident: 10.1016/j.neuroscience.2020.10.036_b0065
  doi: 10.1016/B978-0-12-813928-8.00010-7
– volume: 125
  start-page: 261
  year: 2019
  ident: 10.1016/j.neuroscience.2020.10.036_b0215
  article-title: Magnetic particle imaging in neurosurgery
  publication-title: World Neurosurg
  doi: 10.1016/j.wneu.2019.01.180
– volume: 17
  start-page: 5695
  issue: 17
  year: 2011
  ident: 10.1016/j.neuroscience.2020.10.036_b0055
  article-title: MRI of tumor-associated macrophages with clinically applicable iron oxide nanoparticles
  publication-title: Clin Cancer Res
  doi: 10.1158/1078-0432.CCR-10-3420
– volume: 55
  start-page: 23
  issue: 1
  year: 2006
  ident: 10.1016/j.neuroscience.2020.10.036_b0140
  article-title: In vivo magnetic resonance imaging of single cells in mouse brain with optical validation
  publication-title: Magn Reson Med
  doi: 10.1002/mrm.20747
– ident: 10.1016/j.neuroscience.2020.10.036_b0350
  doi: 10.1016/j.mattod.2019.06.003
– volume: 216
  start-page: 1800544
  issue: 2
  year: 2019
  ident: 10.1016/j.neuroscience.2020.10.036_b0150
  article-title: Nanoscale physical and chemical structure of iron oxide nanoparticles for magnetic particle imaging
  publication-title: Phys Status Solidi (A)
  doi: 10.1002/pssa.201800544
– volume: 14
  start-page: 2053
  issue: 2
  year: 2020
  ident: 10.1016/j.neuroscience.2020.10.036_b0375
  article-title: Artificially engineered cubic iron oxide nanoparticle as a high-performance magnetic particle imaging tracer for stem cell tracking
  publication-title: ACS Nano
  doi: 10.1021/acsnano.9b08660
– ident: 10.1016/j.neuroscience.2020.10.036_b0030
  doi: 10.1016/j.bbmt.2005.01.005
– volume: 12
  issue: 4
  year: 2019
  ident: 10.1016/j.neuroscience.2020.10.036_b0080
  article-title: Superparamagnetic iron oxide nanoparticles-current and prospective medical applications
  publication-title: Materials
  doi: 10.3390/ma12040617
– volume: 7
  start-page: 6602
  issue: 1
  year: 2017
  ident: 10.1016/j.neuroscience.2020.10.036_b0175
  article-title: Overcoming blood brain barrier with a dual purpose Temozolomide loaded Lactoferrin nanoparticles for combating glioma (SERP-17-12433)
  publication-title: Sci Rep
  doi: 10.1038/s41598-017-06888-4
– ident: 10.1016/j.neuroscience.2020.10.036_b0260
  doi: 10.1101/2020.06.02.128587
– volume: 51
  start-page: 1
  issue: 2
  year: 2015
  ident: 10.1016/j.neuroscience.2020.10.036_b0365
  article-title: Superspeed traveling wave magnetic particle
  publication-title: IEEE Trans Magn
  doi: 10.1109/TMAG.2014.2335255
– volume: 11
  start-page: 12067
  issue: 12
  year: 2017
  ident: 10.1016/j.neuroscience.2020.10.036_b0405
  article-title: Magnetic particle imaging for highly sensitive, quantitative, and safe in vivo gut bleed detection in a murine model
  publication-title: ACS Nano
  doi: 10.1021/acsnano.7b04844
SSID ssj0000543
Score 2.4071038
SecondaryResourceType review_article
Snippet •MPI is highly sensitive, providing the tools to detect disease at early onset or information in minute regions of the brain.•MPI has been utilized to image...
Magnetic particle imaging (MPI) is an emerging imaging technique, which has the potential to provide the sensitivity, specificity and temporal resolution...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 100
SubjectTerms iron oxide nanoparticles
magnetic particle imaging
neuroimaging
Title Mind Over Magnets – How Magnetic Particle Imaging is Changing the Way We Think About the Future of Neuroscience
URI https://www.clinicalkey.com/#!/content/1-s2.0-S0306452220307132
https://dx.doi.org/10.1016/j.neuroscience.2020.10.036
https://www.proquest.com/docview/2461394285
Volume 474
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9NAEB616YULAgqiPKpBqri5sb1-ZIU4RBVRSpWABFV7s_aVKi11CnGFekH8h_7D_hJmNusSUA-RerHstUf2vma-8c58C7ATW5ORF1BEmUxLOrgy0gS7yUvJhJFGEEjmBOfRuBgeZh-P8-M12GtzYTisMuj-hU732jqUdENrdi-m0-4XRrvMB57yOCWnah02UiGLvAMb_f2D4fivQs4XwXP0fMQCLfeoD_Naoo1k1syUb-zGnrH5Tjv1n8b2ZmjwCB4G_Ij9xSc-hjVXP4HNfk2-8_kVvkUf0el_lW_C9xE53PiJBiuO1Entmjne_L7G4exnuJ4a_Bwqi_vnfr8inM7RZxzwOYFDPFJXeOSQ9_c8Q14kanzxwHOR4GyC46WqPYXDwYeve8MobLEQGUJiTaQz7aya2ESWJlEqnojM5DYtY52WheyR2506nZfS0Ny1BA56VlCB0WTlk1IVVjyDTj2r3XNAw8Zf90olcpNlOlEyVj2pEwI0VtmJ3ALZNmhlAv84b4PxrWoDzU6r5c6ouDP4HnXGFohb2YsFC8dKUu_afqvaPFPSjBUZi5Wk399K_zMiV5Z_0w6ViqYsr8Oo2s0u5xVT-AlJfl_-4p7veAkPUo6x4Qib_BV0mh-X7jWBpEZvw_rur2Q7TIU_tv0UQQ
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1fT9RAEN8gPOiLQdCIoo6J4a1c293e3obwQIiXQ7mTRAi8bfbfkQPpoVdCeCF-B74hn8SZvRZP48MlvjTttpN2_838pjv7G8Y-pN4J9ALaiVC5xEOQiUXYjV6K4E45jiCZNjj3B-3ekfh0UpwssN1mLwyFVda6f6rTo7auS1p1a7YuR6PWV0K7xAee0zhFp-oRWxIFlxTXt3n7O84DMck0RzK6zvR4wzwag7xmSCOJMzOnG5tp5Gv-p5X6S19HI9RdZk9r9Ag70w98xhZCucJWd0r0nC9uYANiPGf8Ub7KvvfR3YYvOFShb07LUE3g_ucd9MbX9fXIwUFdVdi7iNmKYDSBuN-AzhEawrG5geMAlN3zHGiJqIrF3chEAuMhDGaq9pwddT8e7vaSOsFC4hCHVYkVNngz9JmSLjMmHXLhCp_L1OayrTrodOfBFlI5nLkeoUHHcyxwFm18Jk3b8xdssRyX4SUDR6bfdqThhRPCZkalpqNshnDGGz9Ua0w1DapdzT5OSTC-6SbM7EzPdoamzqB72BlrjD_IXk45OOaS2mr6TTe7TFEvajQVc0lvP0j_MR7nln_fDBWNE5ZWYUwZxlcTTQR-XKHXV7z6z3e8Y497h_19vb83-PyaPckp2oZibYp1tlj9uApvEC5V9m2cDr8AGOgVDA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Mind+Over+Magnets+-+How+Magnetic+Particle+Imaging+is+Changing+the+Way+We+Think+About+the+Future+of+Neuroscience&rft.jtitle=Neuroscience&rft.au=Makela%2C+Ashley+V&rft.au=Gaudet%2C+Jeffrey+M&rft.au=Murrell%2C+Donna+H&rft.au=Mansfield%2C+James+R&rft.date=2021-10-15&rft.issn=1873-7544&rft.eissn=1873-7544&rft.volume=474&rft.spage=100&rft_id=info:doi/10.1016%2Fj.neuroscience.2020.10.036&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0306-4522&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0306-4522&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0306-4522&client=summon