Mind Over Magnets – How Magnetic Particle Imaging is Changing the Way We Think About the Future of Neuroscience
•MPI is highly sensitive, providing the tools to detect disease at early onset or information in minute regions of the brain.•MPI has been utilized to image neurological conditions including cancer, inflammation, vasculature and cell therapies.•Preclinical findings highlight the potential for future...
Saved in:
Published in | Neuroscience Vol. 474; pp. 100 - 109 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
15.10.2021
|
Subjects | |
Online Access | Get full text |
ISSN | 0306-4522 1873-7544 1873-7544 |
DOI | 10.1016/j.neuroscience.2020.10.036 |
Cover
Abstract | •MPI is highly sensitive, providing the tools to detect disease at early onset or information in minute regions of the brain.•MPI has been utilized to image neurological conditions including cancer, inflammation, vasculature and cell therapies.•Preclinical findings highlight the potential for future clinical applications to understand and treat neurological disease.
Magnetic particle imaging (MPI) is an emerging imaging technique, which has the potential to provide the sensitivity, specificity and temporal resolution necessary for novel imaging advances in neurological applications. MPI relies on the detection of superparamagnetic iron-oxide nanoparticles, which allows for visualization and quantification of iron or iron-labeled cells throughout a subject. The combination of these qualities can be used to image many neurological conditions including cancer, inflammatory processes, vascular-related issues and could even focus on cell therapies and theranostics to treat these problems. This review will provide a basic introduction to MPI, discuss the current use of this technology to image neurological conditions, and touch on future applications including the potential for clinical translation. |
---|---|
AbstractList | •MPI is highly sensitive, providing the tools to detect disease at early onset or information in minute regions of the brain.•MPI has been utilized to image neurological conditions including cancer, inflammation, vasculature and cell therapies.•Preclinical findings highlight the potential for future clinical applications to understand and treat neurological disease.
Magnetic particle imaging (MPI) is an emerging imaging technique, which has the potential to provide the sensitivity, specificity and temporal resolution necessary for novel imaging advances in neurological applications. MPI relies on the detection of superparamagnetic iron-oxide nanoparticles, which allows for visualization and quantification of iron or iron-labeled cells throughout a subject. The combination of these qualities can be used to image many neurological conditions including cancer, inflammatory processes, vascular-related issues and could even focus on cell therapies and theranostics to treat these problems. This review will provide a basic introduction to MPI, discuss the current use of this technology to image neurological conditions, and touch on future applications including the potential for clinical translation. Magnetic particle imaging (MPI) is an emerging imaging technique, which has the potential to provide the sensitivity, specificity and temporal resolution necessary for novel imaging advances in neurological applications. MPI relies on the detection of superparamagnetic iron-oxide nanoparticles, which allows for visualization and quantification of iron or iron-labeled cells throughout a subject. The combination of these qualities can be used to image many neurological conditions including cancer, inflammatory processes, vascular-related issues and could even focus on cell therapies and theranostics to treat these problems. This review will provide a basic introduction to MPI, discuss the current use of this technology to image neurological conditions, and touch on future applications including the potential for clinical translation.Magnetic particle imaging (MPI) is an emerging imaging technique, which has the potential to provide the sensitivity, specificity and temporal resolution necessary for novel imaging advances in neurological applications. MPI relies on the detection of superparamagnetic iron-oxide nanoparticles, which allows for visualization and quantification of iron or iron-labeled cells throughout a subject. The combination of these qualities can be used to image many neurological conditions including cancer, inflammatory processes, vascular-related issues and could even focus on cell therapies and theranostics to treat these problems. This review will provide a basic introduction to MPI, discuss the current use of this technology to image neurological conditions, and touch on future applications including the potential for clinical translation. |
Author | Makela, Ashley V. Mansfield, James R. Murrell, Donna H. Gaudet, Jeffrey M. Contag, Christopher H. Wintermark, Max |
Author_xml | – sequence: 1 givenname: Ashley V. surname: Makela fullname: Makela, Ashley V. email: makelaas@msu.edu organization: Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, USA – sequence: 2 givenname: Jeffrey M. surname: Gaudet fullname: Gaudet, Jeffrey M. organization: Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, USA – sequence: 3 givenname: Donna H. surname: Murrell fullname: Murrell, Donna H. organization: London Regional Cancer Program, Western University, London, ON, Canada – sequence: 4 givenname: James R. surname: Mansfield fullname: Mansfield, James R. organization: Magnetic Insight Inc, Alameda, CA, USA – sequence: 5 givenname: Max surname: Wintermark fullname: Wintermark, Max organization: Department of Radiology, Stanford University, Stanford, CA, USA – sequence: 6 givenname: Christopher H. surname: Contag fullname: Contag, Christopher H. organization: Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, USA |
BookMark | eNqNkMtOGzEUhi0EEoH2HSxW3UywPfbMpKumaSlIXLoAsbQ89pnEycQG2xOUXd-hb9gn6YRkEbHK2Zzbfz4d_Wfo2HkHCF1QMqSEFpfzoYMu-KgtOA1DRthmMSR5cYQGtCrzrBScH6MByUmRccHYKTqLcU76EDwfoNc76wx-WEHAd2rqIEX8789ffO3fdr3V-LcKfWoB3yzV1LopthFPZsq912kG-Fmt8TPgx5l1CzyufZfex1dd6gJg3-D7vSc_oZNGtRE-7_I5err6-Ti5zm4fft1MxreZ5rRIWc1rMKoxdFRqqhRpcq6FYSWpWVmMKqgZg1qUI00ENVTQyuT9QNe0ErRUhcnP0Zct9yX41w5ikksbNbStcuC7KBkvaD7irBK99OtWqvsvY4BGvgS7VGEtKZEbn-Vc7vssNz5vdr3P_fG3D8faJpWsdyko2x6G-LFFQO_HykKQO5WxAXSSxtvDMN8_YHRrndWqXcD6UMh_evK9uw |
CitedBy_id | crossref_primary_10_1002_jmri_29294 crossref_primary_10_1002_smll_202301997 crossref_primary_10_1016_j_neuroscience_2021_08_017 crossref_primary_10_1002_adma_202306450 crossref_primary_10_1021_acs_nanolett_1c05042 |
Cites_doi | 10.1002/mrm.26541 10.1002/jmri.24200 10.1021/acs.nanolett.6b04865 10.1593/tlo.13121 10.1039/C6NR08468K 10.1007/s11307-018-1276-x 10.1016/j.jmr.2012.11.029 10.1109/TMI.2010.2052284 10.1126/sciadv.aay1601 10.1080/17425247.2019.1562443 10.1021/acs.nanolett.9b00630 10.1088/0031-9155/61/16/N415 10.1016/j.addr.2019.01.005 10.1118/1.4810962 10.1016/B978-0-12-816662-8.00013-8 10.1063/1.5004506 10.3390/ijms140918682 10.1016/j.nbd.2009.07.030 10.1016/S0140-6736(18)32487-5 10.1038/s41598-020-64280-1 10.1109/TMAG.2019.2924198 10.1088/0031-9155/54/5/L01 10.1002/mrm.22917 10.1038/s41551-019-0506-0 10.1016/j.addr.2018.12.007 10.1016/j.biomaterials.2013.01.087 10.1039/C5NR02831K 10.1016/j.coph.2014.08.002 10.3174/ajnr.A5896 10.1088/1361-6560/ab95dd 10.1371/journal.pone.0193546 10.1109/TMI.2017.2679099 10.1002/cmmi.1526 10.1021/acs.nanolett.7b03829 10.1016/j.mri.2004.10.001 10.1088/1468-6996/16/2/023501 10.7150/thno.13728 10.1088/1361-6560/aa52ad 10.1007/s11307-020-01473-0 10.18383/j.tom.2019.00020 10.1200/JCO.2020.38.15_suppl.e21567 10.1039/C9CC08972A 10.1002/mrm.21029 10.1002/jmri.22593 10.1038/s41467-019-09704-x 10.1038/nature03808 10.1002/nbm.1698 10.1593/neo.07937 10.1158/0008-5472.CAN-09-1496 10.1109/TMI.2014.2375065 10.1371/journal.pone.0160097 10.1080/02656736.2018.1430867 10.1088/0031-9155/61/9/3279 10.1063/1.4950779 10.1101/2020.02.17.953232 10.1593/neo.09356 10.1080/0265673031000119006 10.1039/C7NR05502A 10.1007/s11060-010-0389-0 10.1016/j.addr.2008.03.018 10.1088/1361-6560/aa616c 10.1002/mrm.22210 10.1021/acsnano.7b05784 10.1039/C9NH00514E 10.1016/B978-0-12-813928-8.00010-7 10.1016/j.wneu.2019.01.180 10.1158/1078-0432.CCR-10-3420 10.1002/mrm.20747 10.1016/j.mattod.2019.06.003 10.1002/pssa.201800544 10.1021/acsnano.9b08660 10.1016/j.bbmt.2005.01.005 10.3390/ma12040617 10.1038/s41598-017-06888-4 10.1101/2020.06.02.128587 10.1109/TMAG.2014.2335255 10.1021/acsnano.7b04844 |
ContentType | Journal Article |
Copyright | 2020 IBRO Copyright © 2020 IBRO. Published by Elsevier Ltd. All rights reserved. |
Copyright_xml | – notice: 2020 IBRO – notice: Copyright © 2020 IBRO. Published by Elsevier Ltd. All rights reserved. |
DBID | AAYXX CITATION 7X8 |
DOI | 10.1016/j.neuroscience.2020.10.036 |
DatabaseName | CrossRef MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology |
EISSN | 1873-7544 |
EndPage | 109 |
ExternalDocumentID | 10_1016_j_neuroscience_2020_10_036 S0306452220307132 |
GroupedDBID | --- --K --M -DZ -~X .1- .FO .~1 0R~ 123 1B1 1P~ 1RT 1~. 1~5 4.4 457 4G. 5RE 7-5 71M 8P~ 9JM AABNK AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AATTM AAXKI AAXLA AAXUO AAYWO ABCQJ ABFNM ABFRF ABJNI ABLJU ABMAC ABTEW ACDAQ ACGFO ACGFS ACIUM ACRLP ACVFH ADBBV ADCNI ADEZE AEBSH AEFWE AEIPS AEKER AENEX AEUPX AEVXI AFPUW AFRHN AFTJW AFXIZ AGCQF AGUBO AGWIK AGYEJ AIEXJ AIGII AIIUN AIKHN AITUG AJUYK AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU APXCP AXJTR BKOJK BLXMC CS3 DU5 EBS EFJIC EFKBS EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA HMQ IHE J1W KOM L7B M2V M41 MO0 MOBAO N9A O-L O9- OAUVE OP~ OZT P-8 P-9 P2P PC. Q38 ROL RPZ SCC SDF SDG SDP SES SPCBC SSN SSZ T5K UNMZH Z5R ~G- AACTN AADPK AAIAV ABYKQ AFCTW AFKWA AJOXV AMFUW EFLBG .55 .GJ 29N 53G 5VS AAQXK AAYXX ABWVN ABXDB ACRPL ADMUD ADNMO AFJKZ AGHFR AGQPQ AGRNS AHHHB ASPBG AVWKF AZFZN BNPGV CITATION EJD FEDTE FGOYB G-2 HVGLF HZ~ R2- RIG SEW SNS SSH WUQ X7M YYP ZGI ZXP 7X8 |
ID | FETCH-LOGICAL-c416t-b4bedafd197c1aa0f34c5d270b27698eb22eb579c051d1518d32ebcb18517a6d3 |
IEDL.DBID | AIKHN |
ISSN | 0306-4522 1873-7544 |
IngestDate | Fri Sep 05 09:16:08 EDT 2025 Thu Apr 24 23:10:36 EDT 2025 Tue Jul 01 02:21:50 EDT 2025 Fri Feb 23 02:44:10 EST 2024 Tue Aug 26 17:32:00 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | BBB MRI iron oxide nanoparticles EPR MPI DOX neuroimaging CT MSCs DSA FFR APC SPION PET magnetic particle imaging |
Language | English |
License | https://www.elsevier.com/tdm/userlicense/1.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c416t-b4bedafd197c1aa0f34c5d270b27698eb22eb579c051d1518d32ebcb18517a6d3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 ObjectType-Review-3 content type line 23 |
PQID | 2461394285 |
PQPubID | 23479 |
PageCount | 10 |
ParticipantIDs | proquest_miscellaneous_2461394285 crossref_primary_10_1016_j_neuroscience_2020_10_036 crossref_citationtrail_10_1016_j_neuroscience_2020_10_036 elsevier_sciencedirect_doi_10_1016_j_neuroscience_2020_10_036 elsevier_clinicalkey_doi_10_1016_j_neuroscience_2020_10_036 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-10-15 |
PublicationDateYYYYMMDD | 2021-10-15 |
PublicationDate_xml | – month: 10 year: 2021 text: 2021-10-15 day: 15 |
PublicationDecade | 2020 |
PublicationTitle | Neuroscience |
PublicationYear | 2021 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Townson, Ramadan, Simedrea, Rutt, MacDonald, Foster, Chambers (b0355) 2009; 69 Rivera-Rodriguez A, Hoang-Minh LB, Chiu-Lam A, Sarna N, Marrero-Morales L, Mitchell DA, Rinaldi C. (2020). Tracking adoptive T cell therapy using magnetic particle imaging. BioRxiv, 2020.06.02.128587. https://doi.org/10.1101/2020.06.02.128587. Vogel, Rückert, Klauer, Kullmann, Jakob, Behr (b0365) 2015; 51 Tay, Goodwill, Hensley, Taylor, Zheng, Conolly (b0330) 2016; 6 Ribot, Martinez-Santiesteban, Simedrea, Steeg, Chambers, Rutt, Foster (b0255) 2011; 34 Khandhar, Ferguson, Arami, Krishnan (b0165) 2013; 34 Bulte, Modo (b0040) 2016 Salamon J, Dieckho J, Kaul MG, Jung C, Adam G, Möddel M, Knopp T, Draack S, Ludwig F, Ittrich H. (2020). Visualization of spatial and temporal temperature distributions with magnetic particle imaging for liver tumor ablation therapy. 1–11. https://doi.org/10.1038/s41598-020-64280-1. Song, Kenney, Chen, Zheng, Deng, Chen, Wang, Gambhir, Dai, Rao (b0320) 2020; 4 Murrell, Zarghami, Jensen, Dickson, Chambers, Wong, Foster (b0220) 2017; 78 Wells J, Paysen H, Kosch O, Trahms L, Wiekhorst F. (2018). Temperature dependence in magnetic particle imaging. AIP Adv, 056703(October 2017). https://doi.org/10.1063/1.5004506. Abbott, Patabendige, Dolman, Yusof, Begley (b0005) 2010; 37 Heyn, Ronald, Mackenzie, MacDonald, Chambers, Rutt, Foster (b0140) 2006; 55 Makela, Gaudet, Foster (b0200) 2017; 7 Shih, Hsu, Duong, Lin, Chow, Chang (b0310) 2011; 24 Ludewig, Gdaniec, Sedlacik, Forkert, Szwargulski, Graeser, Adam, Kaul, Krishnan, Ferguson, Khandhar, Walczak, Fiehler, Thomalla, Gerloff, Knopp, Magnus (b0185) 2017; 11 Economopoulos, Chen, McFadden, Foster (b0085) 2013; 6 Saritas, Goodwill, Croft, Konkle, Lu, Zheng, Conolly (b0270) 2013; 229 Mahmoudi K, Bouras A, Bozec D, Ivkov R, Hadjipanayis C. (2018). Magnetic hyperthermia therapy for the treatment of glioblastoma : a review of the therapy’ s history, efficacy and application in humans. 34(8), 1316–1328. Tay ZW, Hensley DW, Savliwala S, Chandrasekharan P, Zhou XY, Soo Hyun Shin, Fellows, BD, Lu Y, Rinaldi C, Conolly S. (2019). Order-of-magnitude resolution and SNR improvement using positive feedback MNP chains in magnetic particle imaging. World Molecular Imaging Congress. Magnitsky, Roesch, Herlyn, Glickson (b0190) 2011; 66 Leimgruber, Berger, Cortez-Retamozo, Etzrodt, Newton, Waterman, Figueiredo, Kohler, Elpek, Mempel, Swirski, Nahrendorf, Weissleder, Pittet (b0180) 2009; 11 Zheng, Von See, Yu, Gunel, Lu, Vazin, Schaffer, Goodwill, Conolly (b0420) 2016; 6 Blanc, K. Le, Ringdén, O. (2005). Immunobiology of human mesenchymal stem cells and future use in hematopoietic stem cell. 334, 321–334. https://doi.org/10.1016/j.bbmt.2005.01.005. Dhavalikar R, Bohorquez AC, Rinaldi C. (2019). Image-guided thermal therapy using magnetic particle imaging and magnetic fluid hyperthermia. 265–286. https://doi.org/10.1016/B978-0-12-813928-8.00010-7. Ferguson, Khandhar, Kemp, Arami, Saritas, Croft, Konkle, Goodwill, Halkola, Rahmer, Borgert, Conolly, Krishnan (b0090) 2015; 34 Zhou, Jeffris, Yu, Zheng, Goodwill, Nahid, Conolly (b0425) 2017; 62 Haacke EM, Cheng NYC, House MJ, Liu Q, Neelavalli J, Ogg RJ, Khan A, Ayaz M, Kirsch W, Obenaus A. (2005). Imaging iron stores in the brain using magnetic resonance imaging. Magnetic Resonance Imaging, 23(1), 1–25. https://doi.org/https://doi.org/10.1016/j.mri.2004.10.001. Zhu, Li, Peng, Hosseini-nassab, Smith (b0430) 2019 Hufschmid, Landers, Shasha, Salamon, Wende, Krishnan (b0150) 2019; 216 Zhao, Rinaldi (b0410) 2020 Meola, Rao, Chaudhary, Song, Zheng, Chang (b0215) 2019; 125 Savliwala S, Chiu-Lam A, Unni M, Rivera-Rodriguez A, Fuller E, Sen K, Threadcraft M, Rinaldi C. (2020). Magnetic nanoparticles. In Nanoparticles for Biomedical Applications (pp. 195–221). Elsevier. https://doi.org/10.1016/B978-0-12-816662-8.00013-8. Nejadnik, Pandit, Lenkov, Lahiji, Yerneni, Daldrup-Link (b0225) 2019; 21 Khandhar, Keselman, Kemp, Ferguson, Goodwill, Conolly, Krishnan (b0160) 2017; 9 Vogel, Rückert, Kemp, Khandhar, Ferguson, Herz, Vilter, Klauer, Bley, Krishnan, Behr (b0360) 2019; 55 Du, Lai, Leung, Pong (b0075) 2013; 14 Dewhirst MW, Viglianti BL, Hanson M, Hoopes PJ. (2003). Basic principles of thermal dosimetry and thermal thresholds for tissue damage from hyperthermia. 3(June), 267–294. https://doi.org/10.1080/0265673031000119006. Dadfar, Roemhild, Drude, von Stillfried, Knüchel, Kiessling, Lammers (b0050) 2019; 138 Korangath P, Barnett JD, Sharma A, Henderson ET, Stewart J, Yu S, Kandala SK, Yang C, Caserto JS, Hedayati M, Armstrong TD, Jaffee E, Gruettner C, Zhou XC, Fu W, Hu C, Sukumar S, Simons BW, Ivkov R. (2020). Nanoparticle interactions with immune cells dominate tumor retention and induce T cell – mediated tumor suppression in models of breast cancer. March, 1–18. Tomitaka, Arami, Gandhi, Krishnan (b0345) 2015; 7 Rahmer, Stehning, Gleich (b0250) 2018; 13 Rahmer, Wirtz, Bontus, Borgert, Gleich (b0245) 2017; 36 Melo, Makela, Hamilton, Foster (b0210) 2020 Goodwill, Conolly (b0115) 2010; 29 Du, Liu, Liang, Liang, Tian (b0070) 2019; 19 Frank KM, Dirk U. (2011). Efficacy and safety of intratumoral thermotherapy using magnetic iron-oxide nanoparticles combined with external beam radiotherapy on patients with recurrent glioblastoma multiforme. 317–324. https://doi.org/10.1007/s11060-010-0389-0. Yu, Chandrasekharan, Berzon, Tay, Zhou, Khandhar, Ferguson, Kemp, Zheng, Goodwill, Wendland, Krishnan, Behr, Carter, Conolly (b0405) 2017; 11 J. Sedlacik A, Frölich J, Spallek ND, Forkert TD, Faizy F, Werner T, Knopp D, Krause J, Fiehler J-H. Buhk magnetic particle imaging for high temporal resolution assessment of aneurysm hemodynamics. PloS One, 11(8), e0160097–e0160097. https://doi.org/10.1371/journal.pone.0160097. Parkins KM, Melo KP, Ronald JA, Foster PJ. (2020). Visualizing tumour self-homing with magnetic particle imaging. BioRxiv, 2020.02.17.953232. https://doi.org/10.1101/2020.02.17.953232. Yu, Bishop, Zheng, Ferguson, Khandhar, Kemp, Krishnan, Goodwill, Conolly (b0400) 2017; 17 Hamilton, Parkins, Murrell, Ronald, Foster (b0135) 2016; 2 Sehl OC, Makela AV, Hamilton AM, Foster PJ. (2019). Trimodal cell tracking in vivo : combining iron- and fluorine-based magnetic resonance imaging with magnetic particle imaging to monitor the delivery of mesenchymal stem cells and the ensuing inflammation. 5(4), 367–376. Zheng, Vazin, Goodwill, Conway, Verma, Ulku Saritas, Schaffer, Conolly (b0415) 2015; 5 Jin, Lin, Li, Ai (b0155) 2014; 18 Kumari, Ahsan, Kumar, Kondapi, Rao (b0175) 2017; 7 Wu W, Wu Z, Yu T, Jiang C, Kim WS (2015). Recent progress on magnetic iron oxide nanoparticles: Synthesis, surface functional strategies and biomedical applications. In Science and Technology of Advanced Materials (Vol. 16, Issue 2). Sci Technol Adv Mater. https://doi.org/10.1088/1468-6996/16/2/023501. Orendorff, Peck, Zheng, Shirazi, Matthew Ferguson, Khandhar, Kemp, Goodwill, Krishnan, Brooks, Kaufer, Conolly (b0230) 2017; 62 Shi, Pisani, Lee, Messing, Ansari, Bhaumik, Lowery, Lee, Meyer, Daldrup-Link (b0305) 2013; 8 Bauer, Hensley, Zheng, Tay, Goodwill, Griswold, Conolly (b0020) 2016; 87 Arami, Ferguson, Khandhar, Krishnan (b0010) 2013; 40 Bulte (b0035) 2019; 138 Shasha C, Eric T, Krishnan KM, Szwargulski P, Knopp T, Möddel M. (2019). Discriminating nanoparticle core size using multi-contrast MPI. Phys Eng Med. https://doi.org/10.1088.ab0fc9. Sharma, Dube, Chibh, Kour, Mishra, Panda (b0295) 2019; 16 Dulińska-Litewka, Łazarczyk, Hałubiec, Szafrański, Karnas, Karewicz (b0080) 2019; 12 Wang, Kim, Harada, Contag, Huang, Smith (b0370) 2020; 5 Gloag, Mehdipour, Ulanova, Mariandry, Nichol, Hernández-Castillo, Gaudet, Qiao, Zhang, Nelson, Thierry, Alvarez-Lemus, Tan, Gooding, Braidy, Sachdev, Tilley (b0110) 2020; 56 Seyfer, Pagenstecher, Mandic, Klose, Heverhagen (b0290) 2014; 39 Sun, Lee, Zhang (b0325) 2008; 60 Graeser, Thieben, Szwargulski, Werner, Gdaniec, Boberg, Griese, Möddel, Ludewig, van de Ven, Weber, Woywode, Gleich, Knopp (b0120) 2019; 10 Tong S, Zhu H, Bao G. (2019). Magnetic iron oxide nanoparticles for disease detection and therapy. In Materials Today (Vol. 31, pp. 86–99). Elsevier B.V. https://doi.org/10.1016/j.mattod.2019.06.003. Corkum MT, Fakir H, Palma DA, Nguyen TK, Bauman G. (2020). Can polymetastatic disease be arrested using SABR? A dosimetric analysis to inform development of a phase I trial. J Clin Oncol, 38(15_suppl), e21567–e21567. https://doi.org/10.1200/JCO.2020.38.15_suppl.e21567. Heyn, Ronald, Ramadan, Snir, Barry, MacKenzie, Mikulis, Palmieri, Bronder, Steeg, Yoneda, MacDonald, Chambers, Rutt, Foster (b0145) 2006; 56 Makela, Gaudet, Schott, Sehl, Contag, Foster (b0205) 2020 Arami, Teeman, Troksa, Bradshaw, Saatchi, Tomitaka, Gambhir, Häfeli, Liggitt, Krishnan (b0015) 2017; 9 Haegele, Vaalma, Panagiotopoulos, Barkhausen, Vogt, Borgert, Rahmer (b0130) 2016; 61 Them, Salamon, Szwargulski, Sequeira, Kaul, Lange, Ittrich, Knopp (b0340) 2016; 61 Bernas, Foster, Rutt (b0025) 2010; 64 Daldrup-Link, Golovko, Ruffell, Denardo, Castaneda, Ansari, Rao, Tikhomirov, Wendland, Corot, Coussens (b0055) 2011; 17 Weizenecker, Gleich, Rahmer, Dahnke, Borgert (b0380) 2009; 54 Song, Chen, Zhang, Cui, Qu, Zheng, Wintermark, Liu, Rao (b0315) 2018; 18 Foster, Dunn, Karl, Snir, Nycz, Harvey, Pettis (b0095) 2008; 10 Palma, Olson, Harrow, Gaede, Louie, Haasbeek, Mulroy, Lock, Rodrigues, Yaremko, Schellenberg, Ahmad, Griffioen, Senthi, Swaminath, Kopek, Liu, Moore, Currie, Senan (b0235) 2019; 393 Wu, Zhang, Steinberg, Qu, Huang, Cheng, Bliss, Du, Rao, Song, Pisani, Doyle, Conolly, Krishnan, Grant, Wintermark (b0395) 2019; 40 Gleich, Weizenecker (b0105) 2005; 435 Wang, Ma, Liao, Liang, Li, Tian, Ling (b0375) 2020; 14 Sun (10.1016/j.neuroscience.2020.10.036_b0325) 2008; 60 Du (10.1016/j.neuroscience.2020.10.036_b0075) 2013; 14 Meola (10.1016/j.neuroscience.2020.10.036_b0215) 2019; 125 10.1016/j.neuroscience.2020.10.036_b0125 Ribot (10.1016/j.neuroscience.2020.10.036_b0255) 2011; 34 10.1016/j.neuroscience.2020.10.036_b0045 10.1016/j.neuroscience.2020.10.036_b0285 10.1016/j.neuroscience.2020.10.036_b0240 Shi (10.1016/j.neuroscience.2020.10.036_b0305) 2013; 8 Khandhar (10.1016/j.neuroscience.2020.10.036_b0160) 2017; 9 Saritas (10.1016/j.neuroscience.2020.10.036_b0270) 2013; 229 10.1016/j.neuroscience.2020.10.036_b0280 Townson (10.1016/j.neuroscience.2020.10.036_b0355) 2009; 69 Tay (10.1016/j.neuroscience.2020.10.036_b0330) 2016; 6 Tomitaka (10.1016/j.neuroscience.2020.10.036_b0345) 2015; 7 Zhou (10.1016/j.neuroscience.2020.10.036_b0425) 2017; 62 Heyn (10.1016/j.neuroscience.2020.10.036_b0145) 2006; 56 Wang (10.1016/j.neuroscience.2020.10.036_b0370) 2020; 5 Vogel (10.1016/j.neuroscience.2020.10.036_b0365) 2015; 51 Bernas (10.1016/j.neuroscience.2020.10.036_b0025) 2010; 64 Jin (10.1016/j.neuroscience.2020.10.036_b0155) 2014; 18 Murrell (10.1016/j.neuroscience.2020.10.036_b0220) 2017; 78 Zhao (10.1016/j.neuroscience.2020.10.036_b0410) 2020 Ludewig (10.1016/j.neuroscience.2020.10.036_b0185) 2017; 11 Abbott (10.1016/j.neuroscience.2020.10.036_b0005) 2010; 37 Kumari (10.1016/j.neuroscience.2020.10.036_b0175) 2017; 7 Zhu (10.1016/j.neuroscience.2020.10.036_b0430) 2019 Palma (10.1016/j.neuroscience.2020.10.036_b0235) 2019; 393 10.1016/j.neuroscience.2020.10.036_b0275 Makela (10.1016/j.neuroscience.2020.10.036_b0200) 2017; 7 10.1016/j.neuroscience.2020.10.036_b0350 10.1016/j.neuroscience.2020.10.036_b0030 10.1016/j.neuroscience.2020.10.036_b0195 Haegele (10.1016/j.neuroscience.2020.10.036_b0130) 2016; 61 Leimgruber (10.1016/j.neuroscience.2020.10.036_b0180) 2009; 11 10.1016/j.neuroscience.2020.10.036_b0390 Khandhar (10.1016/j.neuroscience.2020.10.036_b0165) 2013; 34 Song (10.1016/j.neuroscience.2020.10.036_b0320) 2020; 4 Seyfer (10.1016/j.neuroscience.2020.10.036_b0290) 2014; 39 Graeser (10.1016/j.neuroscience.2020.10.036_b0120) 2019; 10 Yu (10.1016/j.neuroscience.2020.10.036_b0400) 2017; 17 Shih (10.1016/j.neuroscience.2020.10.036_b0310) 2011; 24 Makela (10.1016/j.neuroscience.2020.10.036_b0205) 2020 Vogel (10.1016/j.neuroscience.2020.10.036_b0360) 2019; 55 Melo (10.1016/j.neuroscience.2020.10.036_b0210) 2020 Gloag (10.1016/j.neuroscience.2020.10.036_b0110) 2020; 56 Bulte (10.1016/j.neuroscience.2020.10.036_b0035) 2019; 138 Rahmer (10.1016/j.neuroscience.2020.10.036_b0250) 2018; 13 Bulte (10.1016/j.neuroscience.2020.10.036_b0040) 2016 10.1016/j.neuroscience.2020.10.036_b0300 Song (10.1016/j.neuroscience.2020.10.036_b0315) 2018; 18 10.1016/j.neuroscience.2020.10.036_b0100 Hamilton (10.1016/j.neuroscience.2020.10.036_b0135) 2016; 2 10.1016/j.neuroscience.2020.10.036_b0265 Dadfar (10.1016/j.neuroscience.2020.10.036_b0050) 2019; 138 Foster (10.1016/j.neuroscience.2020.10.036_b0095) 2008; 10 10.1016/j.neuroscience.2020.10.036_b0385 10.1016/j.neuroscience.2020.10.036_b0065 Magnitsky (10.1016/j.neuroscience.2020.10.036_b0190) 2011; 66 10.1016/j.neuroscience.2020.10.036_b0260 Wang (10.1016/j.neuroscience.2020.10.036_b0375) 2020; 14 10.1016/j.neuroscience.2020.10.036_b0060 Bauer (10.1016/j.neuroscience.2020.10.036_b0020) 2016; 87 Ferguson (10.1016/j.neuroscience.2020.10.036_b0090) 2015; 34 Heyn (10.1016/j.neuroscience.2020.10.036_b0140) 2006; 55 Rahmer (10.1016/j.neuroscience.2020.10.036_b0245) 2017; 36 Orendorff (10.1016/j.neuroscience.2020.10.036_b0230) 2017; 62 Wu (10.1016/j.neuroscience.2020.10.036_b0395) 2019; 40 Daldrup-Link (10.1016/j.neuroscience.2020.10.036_b0055) 2011; 17 Economopoulos (10.1016/j.neuroscience.2020.10.036_b0085) 2013; 6 Sharma (10.1016/j.neuroscience.2020.10.036_b0295) 2019; 16 10.1016/j.neuroscience.2020.10.036_b0335 Them (10.1016/j.neuroscience.2020.10.036_b0340) 2016; 61 Dulińska-Litewka (10.1016/j.neuroscience.2020.10.036_b0080) 2019; 12 Nejadnik (10.1016/j.neuroscience.2020.10.036_b0225) 2019; 21 10.1016/j.neuroscience.2020.10.036_b0170 Yu (10.1016/j.neuroscience.2020.10.036_b0405) 2017; 11 Weizenecker (10.1016/j.neuroscience.2020.10.036_b0380) 2009; 54 Du (10.1016/j.neuroscience.2020.10.036_b0070) 2019; 19 Hufschmid (10.1016/j.neuroscience.2020.10.036_b0150) 2019; 216 Arami (10.1016/j.neuroscience.2020.10.036_b0010) 2013; 40 Gleich (10.1016/j.neuroscience.2020.10.036_b0105) 2005; 435 Arami (10.1016/j.neuroscience.2020.10.036_b0015) 2017; 9 Zheng (10.1016/j.neuroscience.2020.10.036_b0415) 2015; 5 Zheng (10.1016/j.neuroscience.2020.10.036_b0420) 2016; 6 Goodwill (10.1016/j.neuroscience.2020.10.036_b0115) 2010; 29 |
References_xml | – reference: Tong S, Zhu H, Bao G. (2019). Magnetic iron oxide nanoparticles for disease detection and therapy. In Materials Today (Vol. 31, pp. 86–99). Elsevier B.V. https://doi.org/10.1016/j.mattod.2019.06.003. – volume: 12 year: 2019 ident: b0080 article-title: Superparamagnetic iron oxide nanoparticles-current and prospective medical applications publication-title: Materials – volume: 5 start-page: 628 year: 2020 end-page: 653 ident: b0370 article-title: Nano-immunoimaging publication-title: Nanoscale Horizons – volume: 14 start-page: 2053 year: 2020 end-page: 2062 ident: b0375 article-title: Artificially engineered cubic iron oxide nanoparticle as a high-performance magnetic particle imaging tracer for stem cell tracking publication-title: ACS Nano – volume: 40 year: 2013 ident: b0010 article-title: Size-dependent ferrohydrodynamic relaxometry of magnetic particle imaging tracers in different environments publication-title: Med Phys – volume: 7 year: 2017 ident: b0200 article-title: Quantifying tumor associated macrophages in breast cancer: a comparison of iron and fluorine-based MRI cell tracking publication-title: Sci Rep – volume: 62 start-page: 3501 year: 2017 end-page: 3509 ident: b0230 article-title: First in vivo traumatic brain injury imaging via magnetic particle imaging publication-title: Phys Med Biol – volume: 54 start-page: 1 year: 2009 end-page: 10 ident: b0380 article-title: Three-dimensional real-time in vivo magnetic particle imaging publication-title: Phys Med Biol – volume: 61 start-page: 3279 year: 2016 end-page: 3290 ident: b0340 article-title: Increasing the sensitivity for stem cell monitoring in system-function based magnetic particle imaging publication-title: Phys Med Biol – volume: 6 start-page: 291 year: 2016 end-page: 301 ident: b0420 article-title: Quantitative magnetic particle imaging monitors the transplantation, biodistribution, and clearance of stem cells in vivo publication-title: Theranostics – reference: Wells J, Paysen H, Kosch O, Trahms L, Wiekhorst F. (2018). Temperature dependence in magnetic particle imaging. AIP Adv, 056703(October 2017). https://doi.org/10.1063/1.5004506. – reference: Mahmoudi K, Bouras A, Bozec D, Ivkov R, Hadjipanayis C. (2018). Magnetic hyperthermia therapy for the treatment of glioblastoma : a review of the therapy’ s history, efficacy and application in humans. 34(8), 1316–1328. – year: 2020 ident: b0210 article-title: Superparamagnetic microspheres can be used for magnetic particle imaging (MPI) of cancer cells arrested in the mouse brain publication-title: Magn Reson Med, In Press – reference: J. Sedlacik A, Frölich J, Spallek ND, Forkert TD, Faizy F, Werner T, Knopp D, Krause J, Fiehler J-H. Buhk magnetic particle imaging for high temporal resolution assessment of aneurysm hemodynamics. PloS One, 11(8), e0160097–e0160097. https://doi.org/10.1371/journal.pone.0160097. – reference: Sehl OC, Makela AV, Hamilton AM, Foster PJ. (2019). Trimodal cell tracking in vivo : combining iron- and fluorine-based magnetic resonance imaging with magnetic particle imaging to monitor the delivery of mesenchymal stem cells and the ensuing inflammation. 5(4), 367–376. – volume: 11 start-page: 10480 year: 2017 end-page: 10488 ident: b0185 article-title: Magnetic particle imaging for real-time perfusion imaging in acute stroke publication-title: ACS Nano – volume: 9 start-page: 18723 year: 2017 end-page: 18730 ident: b0015 article-title: Tomographic magnetic particle imaging of cancer targeted nanoparticles publication-title: Nanoscale – reference: Korangath P, Barnett JD, Sharma A, Henderson ET, Stewart J, Yu S, Kandala SK, Yang C, Caserto JS, Hedayati M, Armstrong TD, Jaffee E, Gruettner C, Zhou XC, Fu W, Hu C, Sukumar S, Simons BW, Ivkov R. (2020). Nanoparticle interactions with immune cells dominate tumor retention and induce T cell – mediated tumor suppression in models of breast cancer. March, 1–18. – volume: 6 start-page: 347 year: 2013 end-page: 354 ident: b0085 article-title: MRI detection of nonproliferative tumor cells in lymph node metastases using iron oxide particles in a mouse model of breast cancer publication-title: Transl Oncol – volume: 51 start-page: 1 year: 2015 end-page: 3 ident: b0365 article-title: Superspeed traveling wave magnetic particle publication-title: IEEE Trans Magn – volume: 56 start-page: 1001 year: 2006 end-page: 1010 ident: b0145 article-title: In vivo MRI of cancer cell fate at the single-cell level in a mouse model of breast cancer metastasis to the brain publication-title: Magn Reson Med – reference: Shasha C, Eric T, Krishnan KM, Szwargulski P, Knopp T, Möddel M. (2019). Discriminating nanoparticle core size using multi-contrast MPI. Phys Eng Med. https://doi.org/10.1088.ab0fc9. – reference: Corkum MT, Fakir H, Palma DA, Nguyen TK, Bauman G. (2020). Can polymetastatic disease be arrested using SABR? A dosimetric analysis to inform development of a phase I trial. J Clin Oncol, 38(15_suppl), e21567–e21567. https://doi.org/10.1200/JCO.2020.38.15_suppl.e21567. – volume: 56 start-page: 3504 year: 2020 end-page: 3507 ident: b0110 article-title: Zero valent iron core-iron oxide shell nanoparticles as small magnetic particle imaging tracers publication-title: Chem Commun – reference: Haacke EM, Cheng NYC, House MJ, Liu Q, Neelavalli J, Ogg RJ, Khan A, Ayaz M, Kirsch W, Obenaus A. (2005). Imaging iron stores in the brain using magnetic resonance imaging. Magnetic Resonance Imaging, 23(1), 1–25. https://doi.org/https://doi.org/10.1016/j.mri.2004.10.001. – volume: 16 start-page: 113 year: 2019 end-page: 128 ident: b0295 article-title: Expert opinion on drug delivery nanotheranostics, a future remedy of neurological disorders publication-title: Expert Opin Drug Delivery – volume: 138 start-page: 302 year: 2019 end-page: 325 ident: b0050 article-title: Iron oxide nanoparticles: diagnostic, therapeutic and theranostic applications publication-title: Adv Drug Deliv Rev – volume: 39 start-page: 665 year: 2014 end-page: 672 ident: b0290 article-title: Cancer and inflammation: differentiation by USPIO-enhanced MR imaging publication-title: J Magn Reson Imaging – reference: Tay ZW, Hensley DW, Savliwala S, Chandrasekharan P, Zhou XY, Soo Hyun Shin, Fellows, BD, Lu Y, Rinaldi C, Conolly S. (2019). Order-of-magnitude resolution and SNR improvement using positive feedback MNP chains in magnetic particle imaging. World Molecular Imaging Congress. – volume: 24 start-page: 1353 year: 2011 end-page: 1360 ident: b0310 article-title: Longitudinal study of tumor-associated macrophages during tumor expansion using MRI publication-title: NMR Biomed – reference: Dhavalikar R, Bohorquez AC, Rinaldi C. (2019). Image-guided thermal therapy using magnetic particle imaging and magnetic fluid hyperthermia. 265–286. https://doi.org/10.1016/B978-0-12-813928-8.00010-7. – volume: 66 start-page: 1362 year: 2011 end-page: 1373 ident: b0190 article-title: In vivo and Ex vivo MR imaging of slowly cycling melanoma cells publication-title: Magn Reson Med – reference: Salamon J, Dieckho J, Kaul MG, Jung C, Adam G, Möddel M, Knopp T, Draack S, Ludwig F, Ittrich H. (2020). Visualization of spatial and temporal temperature distributions with magnetic particle imaging for liver tumor ablation therapy. 1–11. https://doi.org/10.1038/s41598-020-64280-1. – volume: 2 start-page: 79 year: 2016 end-page: 84 ident: b0135 article-title: Investigating the impact of a primary tumor on metastasis and dormancy using MRI: new insights into the mechanism of concomitant tumor resistance publication-title: Tomography (Ann Arbor, Mich.) – volume: 10 year: 2019 ident: b0120 article-title: Human-sized magnetic particle imaging for brain applications publication-title: Nat Commun – volume: 8 start-page: 281 year: 2013 end-page: 288 ident: b0305 article-title: Evaluation of the novel USPIO GEH121333 for MR imaging of cancer immune responses publication-title: Contrast Media Mol Imaging – volume: 393 start-page: 2051 year: 2019 end-page: 2058 ident: b0235 article-title: Stereotactic ablative radiotherapy versus standard of care palliative treatment in patients with oligometastatic cancers (SABR-COMET): a randomised, phase 2, open-label trial publication-title: Lancet – volume: 18 start-page: 182 year: 2018 end-page: 189 ident: b0315 article-title: Janus iron oxides @ semiconducting polymer nanoparticle tracer for cell tracking by magnetic particle imaging publication-title: Nano Lett – volume: 61 start-page: N415 year: 2016 end-page: N426 ident: b0130 article-title: Multi-color magnetic particle imaging for cardiovascular interventions publication-title: Phys Med Biol – volume: 36 start-page: 1449 year: 2017 end-page: 1456 ident: b0245 article-title: Interactive magnetic catheter steering with 3-D real-time feedback using multi-color magnetic particle imaging publication-title: IEEE Trans Med Imaging – volume: 5 start-page: 1 year: 2015 end-page: 9 ident: b0415 article-title: Magnetic particle imaging tracks the long-term fate of in vivo neural cell implants with high image contrast publication-title: Sci Rep – volume: 11 start-page: 459-IN4 year: 2009 ident: b0180 article-title: Behavior of endogenous tumor-associated macrophages assessed in vivo using a functionalized nanoparticle publication-title: Neoplasia – volume: 34 start-page: 1077 year: 2015 end-page: 1084 ident: b0090 article-title: Magnetic particle imaging with tailored iron oxide nanoparticle tracers publication-title: IEEE Trans Med Imaging – volume: 10 start-page: 207 year: 2008 end-page: 216 ident: b0095 article-title: Cellular magnetic resonance imaging. In vivo imaging of melanoma cells in lymph nodes of mice 1 publication-title: Neoplasia – volume: 435 start-page: 1214+ year: 2005 ident: b0105 article-title: Tomographic imaging using the nonlinear response of magnetic particles publication-title: Nature – year: 2020 ident: b0205 article-title: Magnetic particle imaging of macrophages associated with cancer: filling the voids left by iron-based magnetic resonance imaging publication-title: Mol Imag Biol – volume: 125 start-page: 261 year: 2019 end-page: 270 ident: b0215 article-title: Magnetic particle imaging in neurosurgery publication-title: World Neurosurg – volume: 11 start-page: 12067 year: 2017 end-page: 12076 ident: b0405 article-title: Magnetic particle imaging for highly sensitive, quantitative, and safe in vivo gut bleed detection in a murine model publication-title: ACS Nano – volume: 9 start-page: 1299 year: 2017 end-page: 1306 ident: b0160 article-title: Evaluation of PEG-coated iron oxide nanoparticles as blood pool tracers for preclinical magnetic particle imaging publication-title: Nanoscale – reference: Parkins KM, Melo KP, Ronald JA, Foster PJ. (2020). Visualizing tumour self-homing with magnetic particle imaging. BioRxiv, 2020.02.17.953232. https://doi.org/10.1101/2020.02.17.953232. – volume: 60 start-page: 1252 year: 2008 end-page: 1265 ident: b0325 article-title: Magnetic nanoparticles in MR imaging and drug delivery publication-title: Adv Drug Deliv Rev – volume: 17 start-page: 5695 year: 2011 end-page: 5704 ident: b0055 article-title: MRI of tumor-associated macrophages with clinically applicable iron oxide nanoparticles publication-title: Clin Cancer Res – volume: 78 start-page: 1506 year: 2017 end-page: 1512 ident: b0220 article-title: MRI surveillance of cancer cell fate in a brain metastasis model after early radiotherapy publication-title: Magn Reson Med – volume: 4 start-page: 325 year: 2020 end-page: 334 ident: b0320 article-title: Carbon-coated FeCo nanoparticles as sensitive magnetic-particle-imaging tracers with photothermal and magnetothermal properties publication-title: Nat Biomed Eng – year: 2020 ident: b0410 article-title: Computational predictions of enhanced magnetic particle imaging performance by magnetic nanoparticle chains publication-title: Phys Med Biol – volume: 34 start-page: 3837 year: 2013 end-page: 3845 ident: b0165 article-title: Monodisperse magnetite nanoparticle tracers for in vivo magnetic particle imaging publication-title: Biomaterials – volume: 69 start-page: 8326 year: 2009 end-page: 8331 ident: b0355 article-title: Three-dimensional imaging and quantification of both solitary cells and metastases in whole mouse liver by magnetic resonance imaging publication-title: Cancer Res – reference: Blanc, K. Le, Ringdén, O. (2005). Immunobiology of human mesenchymal stem cells and future use in hematopoietic stem cell. 334, 321–334. https://doi.org/10.1016/j.bbmt.2005.01.005. – volume: 7 start-page: 6602 year: 2017 ident: b0175 article-title: Overcoming blood brain barrier with a dual purpose Temozolomide loaded Lactoferrin nanoparticles for combating glioma (SERP-17-12433) publication-title: Sci Rep – volume: 64 start-page: 23 year: 2010 end-page: 31 ident: b0025 article-title: Imaging iron-loaded mouse glioma tumors with bSSFP at 3 T publication-title: Magn Reson Med – volume: 17 start-page: 1648 year: 2017 end-page: 1654 ident: b0400 article-title: Magnetic particle imaging: a novel in vivo imaging platform for cancer detection publication-title: Nano Lett – volume: 37 start-page: 13 year: 2010 end-page: 25 ident: b0005 article-title: Structure and function of the blood-brain barrier publication-title: Neurobiol Dis – volume: 21 start-page: 465 year: 2019 end-page: 472 ident: b0225 article-title: Ferumoxytol can be used for quantitative magnetic particle imaging of transplanted stem cells publication-title: Mol Imag Biol – volume: 34 start-page: 231 year: 2011 end-page: 238 ident: b0255 article-title: In vivo single scan detection of both iron-labeled cells and breast cancer metastases in the mouse brain using balanced steady-state free precession imaging at 1.5 T publication-title: J o Magn Reson Imaging: JMRI – volume: 13 year: 2018 ident: b0250 article-title: Remote magnetic actuation using a clinical scale system publication-title: PLoS ONE – volume: 216 start-page: 1800544 year: 2019 ident: b0150 article-title: Nanoscale physical and chemical structure of iron oxide nanoparticles for magnetic particle imaging publication-title: Phys Status Solidi (A) – volume: 6 start-page: 1 year: 2016 end-page: 12 ident: b0330 article-title: A high-throughput, arbitrary-waveform, mpi spectrometer and relaxometer for comprehensive magnetic particle optimization and characterization publication-title: Sci Rep – reference: Wu W, Wu Z, Yu T, Jiang C, Kim WS (2015). Recent progress on magnetic iron oxide nanoparticles: Synthesis, surface functional strategies and biomedical applications. In Science and Technology of Advanced Materials (Vol. 16, Issue 2). Sci Technol Adv Mater. https://doi.org/10.1088/1468-6996/16/2/023501. – volume: 55 year: 2019 ident: b0360 article-title: Micro-traveling wave magnetic particle imaging - sub-millimeter resolution with optimized tracer LS-008 publication-title: IEEE Trans Magn – volume: 40 start-page: 206 year: 2019 end-page: 212 ident: b0395 article-title: A review of magnetic particle imaging and perspectives on neuroimaging publication-title: Am J Neuroradiol – reference: Frank KM, Dirk U. (2011). Efficacy and safety of intratumoral thermotherapy using magnetic iron-oxide nanoparticles combined with external beam radiotherapy on patients with recurrent glioblastoma multiforme. 317–324. https://doi.org/10.1007/s11060-010-0389-0. – volume: 19 start-page: 3618 year: 2019 end-page: 3626 ident: b0070 article-title: Optimization and design of magnetic ferrite nanoparticles with uniform tumor distribution for highly sensitive MRI/MPI performance and improved magnetic hyperthermia therapy publication-title: Nano Lett – year: 2016 ident: b0040 article-title: Design and applications of nanoparticles in biomedical imaging publication-title: Design and Applications of Nanoparticles in Biomedical Imaging – volume: 14 start-page: 18682 year: 2013 end-page: 18710 ident: b0075 article-title: Design of superparamagnetic nanoparticles for magnetic particle imaging (MPI) publication-title: Int J Mol Sci – volume: 55 start-page: 23 year: 2006 end-page: 29 ident: b0140 article-title: In vivo magnetic resonance imaging of single cells in mouse brain with optical validation publication-title: Magn Reson Med – reference: Savliwala S, Chiu-Lam A, Unni M, Rivera-Rodriguez A, Fuller E, Sen K, Threadcraft M, Rinaldi C. (2020). Magnetic nanoparticles. In Nanoparticles for Biomedical Applications (pp. 195–221). Elsevier. https://doi.org/10.1016/B978-0-12-816662-8.00013-8. – volume: 87 year: 2016 ident: b0020 article-title: Eddy current-shielded x-space relaxometer for sensitive magnetic nanoparticle characterization publication-title: Rev Sci Instrum – reference: Dewhirst MW, Viglianti BL, Hanson M, Hoopes PJ. (2003). Basic principles of thermal dosimetry and thermal thresholds for tissue damage from hyperthermia. 3(June), 267–294. https://doi.org/10.1080/0265673031000119006. – reference: Rivera-Rodriguez A, Hoang-Minh LB, Chiu-Lam A, Sarna N, Marrero-Morales L, Mitchell DA, Rinaldi C. (2020). Tracking adoptive T cell therapy using magnetic particle imaging. BioRxiv, 2020.06.02.128587. https://doi.org/10.1101/2020.06.02.128587. – volume: 7 start-page: 16890 year: 2015 end-page: 16898 ident: b0345 article-title: Lactoferrin conjugated iron oxide nanoparticles for targeting brain glioma cells in magnetic particle imaging publication-title: Nanoscale – volume: 18 start-page: 18 year: 2014 end-page: 27 ident: b0155 article-title: ScienceDirect Superparamagnetic iron oxide nanoparticles for MR imaging and therapy: design considerations and clinical applications publication-title: Curr Opin Pharmacol – volume: 29 start-page: 1851 year: 2010 end-page: 1859 ident: b0115 article-title: The X-space formulation of the magnetic particle imaging process: 1-D signal, resolution, bandwidth, SNR, SAR, and magnetostimulation publication-title: IEEE Trans Med Imaging – volume: 138 start-page: 293 year: 2019 end-page: 301 ident: b0035 article-title: Superparamagnetic iron oxides as MPI tracers: a primer and review of early applications publication-title: Adv Drug Deliv Rev – volume: 229 start-page: 116 year: 2013 end-page: 126 ident: b0270 article-title: Magnetic particle imaging (MPI) for NMR and MRI researchers publication-title: J Magn Reson – year: 2019 ident: b0430 article-title: Quantitative drug release monitoring in tumors of living subjects by magnetic particle imaging nanocomposite Quantitative drug release monitoring in tumors of living subjects by magnetic particle imaging nanocomposite publication-title: Nano Lett – volume: 62 start-page: 3510 year: 2017 end-page: 3522 ident: b0425 article-title: First in vivo magnetic particle imaging of lung perfusion in rats publication-title: Phys Med Biol – volume: 78 start-page: 1506 issue: 4 year: 2017 ident: 10.1016/j.neuroscience.2020.10.036_b0220 article-title: MRI surveillance of cancer cell fate in a brain metastasis model after early radiotherapy publication-title: Magn Reson Med doi: 10.1002/mrm.26541 – volume: 39 start-page: 665 issue: 3 year: 2014 ident: 10.1016/j.neuroscience.2020.10.036_b0290 article-title: Cancer and inflammation: differentiation by USPIO-enhanced MR imaging publication-title: J Magn Reson Imaging doi: 10.1002/jmri.24200 – volume: 17 start-page: 1648 issue: 3 year: 2017 ident: 10.1016/j.neuroscience.2020.10.036_b0400 article-title: Magnetic particle imaging: a novel in vivo imaging platform for cancer detection publication-title: Nano Lett doi: 10.1021/acs.nanolett.6b04865 – volume: 6 start-page: 347 issue: 3 year: 2013 ident: 10.1016/j.neuroscience.2020.10.036_b0085 article-title: MRI detection of nonproliferative tumor cells in lymph node metastases using iron oxide particles in a mouse model of breast cancer publication-title: Transl Oncol doi: 10.1593/tlo.13121 – volume: 9 start-page: 1299 issue: 3 year: 2017 ident: 10.1016/j.neuroscience.2020.10.036_b0160 article-title: Evaluation of PEG-coated iron oxide nanoparticles as blood pool tracers for preclinical magnetic particle imaging publication-title: Nanoscale doi: 10.1039/C6NR08468K – volume: 21 start-page: 465 issue: 3 year: 2019 ident: 10.1016/j.neuroscience.2020.10.036_b0225 article-title: Ferumoxytol can be used for quantitative magnetic particle imaging of transplanted stem cells publication-title: Mol Imag Biol doi: 10.1007/s11307-018-1276-x – volume: 229 start-page: 116 year: 2013 ident: 10.1016/j.neuroscience.2020.10.036_b0270 article-title: Magnetic particle imaging (MPI) for NMR and MRI researchers publication-title: J Magn Reson doi: 10.1016/j.jmr.2012.11.029 – volume: 29 start-page: 1851 issue: 11 year: 2010 ident: 10.1016/j.neuroscience.2020.10.036_b0115 article-title: The X-space formulation of the magnetic particle imaging process: 1-D signal, resolution, bandwidth, SNR, SAR, and magnetostimulation publication-title: IEEE Trans Med Imaging doi: 10.1109/TMI.2010.2052284 – ident: 10.1016/j.neuroscience.2020.10.036_b0170 doi: 10.1126/sciadv.aay1601 – ident: 10.1016/j.neuroscience.2020.10.036_b0300 – volume: 16 start-page: 113 issue: 2 year: 2019 ident: 10.1016/j.neuroscience.2020.10.036_b0295 article-title: Expert opinion on drug delivery nanotheranostics, a future remedy of neurological disorders publication-title: Expert Opin Drug Delivery doi: 10.1080/17425247.2019.1562443 – volume: 19 start-page: 3618 issue: 6 year: 2019 ident: 10.1016/j.neuroscience.2020.10.036_b0070 article-title: Optimization and design of magnetic ferrite nanoparticles with uniform tumor distribution for highly sensitive MRI/MPI performance and improved magnetic hyperthermia therapy publication-title: Nano Lett doi: 10.1021/acs.nanolett.9b00630 – volume: 61 start-page: N415 issue: 16 year: 2016 ident: 10.1016/j.neuroscience.2020.10.036_b0130 article-title: Multi-color magnetic particle imaging for cardiovascular interventions publication-title: Phys Med Biol doi: 10.1088/0031-9155/61/16/N415 – volume: 138 start-page: 302 year: 2019 ident: 10.1016/j.neuroscience.2020.10.036_b0050 article-title: Iron oxide nanoparticles: diagnostic, therapeutic and theranostic applications publication-title: Adv Drug Deliv Rev doi: 10.1016/j.addr.2019.01.005 – volume: 40 issue: 7 year: 2013 ident: 10.1016/j.neuroscience.2020.10.036_b0010 article-title: Size-dependent ferrohydrodynamic relaxometry of magnetic particle imaging tracers in different environments publication-title: Med Phys doi: 10.1118/1.4810962 – ident: 10.1016/j.neuroscience.2020.10.036_b0275 doi: 10.1016/B978-0-12-816662-8.00013-8 – year: 2016 ident: 10.1016/j.neuroscience.2020.10.036_b0040 article-title: Design and applications of nanoparticles in biomedical imaging – ident: 10.1016/j.neuroscience.2020.10.036_b0385 doi: 10.1063/1.5004506 – volume: 14 start-page: 18682 issue: 9 year: 2013 ident: 10.1016/j.neuroscience.2020.10.036_b0075 article-title: Design of superparamagnetic nanoparticles for magnetic particle imaging (MPI) publication-title: Int J Mol Sci doi: 10.3390/ijms140918682 – volume: 37 start-page: 13 issue: 1 year: 2010 ident: 10.1016/j.neuroscience.2020.10.036_b0005 article-title: Structure and function of the blood-brain barrier publication-title: Neurobiol Dis doi: 10.1016/j.nbd.2009.07.030 – year: 2020 ident: 10.1016/j.neuroscience.2020.10.036_b0210 article-title: Superparamagnetic microspheres can be used for magnetic particle imaging (MPI) of cancer cells arrested in the mouse brain publication-title: Magn Reson Med, In Press – volume: 393 start-page: 2051 issue: 10185 year: 2019 ident: 10.1016/j.neuroscience.2020.10.036_b0235 article-title: Stereotactic ablative radiotherapy versus standard of care palliative treatment in patients with oligometastatic cancers (SABR-COMET): a randomised, phase 2, open-label trial publication-title: Lancet doi: 10.1016/S0140-6736(18)32487-5 – ident: 10.1016/j.neuroscience.2020.10.036_b0265 doi: 10.1038/s41598-020-64280-1 – volume: 5 start-page: 1 issue: August year: 2015 ident: 10.1016/j.neuroscience.2020.10.036_b0415 article-title: Magnetic particle imaging tracks the long-term fate of in vivo neural cell implants with high image contrast publication-title: Sci Rep – volume: 55 issue: 10 year: 2019 ident: 10.1016/j.neuroscience.2020.10.036_b0360 article-title: Micro-traveling wave magnetic particle imaging - sub-millimeter resolution with optimized tracer LS-008 publication-title: IEEE Trans Magn doi: 10.1109/TMAG.2019.2924198 – volume: 54 start-page: 1 issue: 5 year: 2009 ident: 10.1016/j.neuroscience.2020.10.036_b0380 article-title: Three-dimensional real-time in vivo magnetic particle imaging publication-title: Phys Med Biol doi: 10.1088/0031-9155/54/5/L01 – volume: 66 start-page: 1362 issue: 5 year: 2011 ident: 10.1016/j.neuroscience.2020.10.036_b0190 article-title: In vivo and Ex vivo MR imaging of slowly cycling melanoma cells publication-title: Magn Reson Med doi: 10.1002/mrm.22917 – volume: 4 start-page: 325 year: 2020 ident: 10.1016/j.neuroscience.2020.10.036_b0320 article-title: Carbon-coated FeCo nanoparticles as sensitive magnetic-particle-imaging tracers with photothermal and magnetothermal properties publication-title: Nat Biomed Eng doi: 10.1038/s41551-019-0506-0 – volume: 138 start-page: 293 year: 2019 ident: 10.1016/j.neuroscience.2020.10.036_b0035 article-title: Superparamagnetic iron oxides as MPI tracers: a primer and review of early applications publication-title: Adv Drug Deliv Rev doi: 10.1016/j.addr.2018.12.007 – volume: 6 start-page: 1 issue: September year: 2016 ident: 10.1016/j.neuroscience.2020.10.036_b0330 article-title: A high-throughput, arbitrary-waveform, mpi spectrometer and relaxometer for comprehensive magnetic particle optimization and characterization publication-title: Sci Rep – ident: 10.1016/j.neuroscience.2020.10.036_b0335 – volume: 34 start-page: 3837 issue: 15 year: 2013 ident: 10.1016/j.neuroscience.2020.10.036_b0165 article-title: Monodisperse magnetite nanoparticle tracers for in vivo magnetic particle imaging publication-title: Biomaterials doi: 10.1016/j.biomaterials.2013.01.087 – year: 2019 ident: 10.1016/j.neuroscience.2020.10.036_b0430 article-title: Quantitative drug release monitoring in tumors of living subjects by magnetic particle imaging nanocomposite Quantitative drug release monitoring in tumors of living subjects by magnetic particle imaging nanocomposite publication-title: Nano Lett – volume: 7 start-page: 16890 issue: 40 year: 2015 ident: 10.1016/j.neuroscience.2020.10.036_b0345 article-title: Lactoferrin conjugated iron oxide nanoparticles for targeting brain glioma cells in magnetic particle imaging publication-title: Nanoscale doi: 10.1039/C5NR02831K – volume: 18 start-page: 18 year: 2014 ident: 10.1016/j.neuroscience.2020.10.036_b0155 article-title: ScienceDirect Superparamagnetic iron oxide nanoparticles for MR imaging and therapy: design considerations and clinical applications publication-title: Curr Opin Pharmacol doi: 10.1016/j.coph.2014.08.002 – volume: 40 start-page: 206 issue: 2 year: 2019 ident: 10.1016/j.neuroscience.2020.10.036_b0395 article-title: A review of magnetic particle imaging and perspectives on neuroimaging publication-title: Am J Neuroradiol doi: 10.3174/ajnr.A5896 – year: 2020 ident: 10.1016/j.neuroscience.2020.10.036_b0410 article-title: Computational predictions of enhanced magnetic particle imaging performance by magnetic nanoparticle chains publication-title: Phys Med Biol doi: 10.1088/1361-6560/ab95dd – volume: 13 issue: 3 year: 2018 ident: 10.1016/j.neuroscience.2020.10.036_b0250 article-title: Remote magnetic actuation using a clinical scale system publication-title: PLoS ONE doi: 10.1371/journal.pone.0193546 – volume: 36 start-page: 1449 issue: 7 year: 2017 ident: 10.1016/j.neuroscience.2020.10.036_b0245 article-title: Interactive magnetic catheter steering with 3-D real-time feedback using multi-color magnetic particle imaging publication-title: IEEE Trans Med Imaging doi: 10.1109/TMI.2017.2679099 – volume: 8 start-page: 281 issue: 3 year: 2013 ident: 10.1016/j.neuroscience.2020.10.036_b0305 article-title: Evaluation of the novel USPIO GEH121333 for MR imaging of cancer immune responses publication-title: Contrast Media Mol Imaging doi: 10.1002/cmmi.1526 – volume: 18 start-page: 182 issue: 1 year: 2018 ident: 10.1016/j.neuroscience.2020.10.036_b0315 article-title: Janus iron oxides @ semiconducting polymer nanoparticle tracer for cell tracking by magnetic particle imaging publication-title: Nano Lett doi: 10.1021/acs.nanolett.7b03829 – ident: 10.1016/j.neuroscience.2020.10.036_b0125 doi: 10.1016/j.mri.2004.10.001 – ident: 10.1016/j.neuroscience.2020.10.036_b0390 doi: 10.1088/1468-6996/16/2/023501 – volume: 6 start-page: 291 issue: 3 year: 2016 ident: 10.1016/j.neuroscience.2020.10.036_b0420 article-title: Quantitative magnetic particle imaging monitors the transplantation, biodistribution, and clearance of stem cells in vivo publication-title: Theranostics doi: 10.7150/thno.13728 – volume: 62 start-page: 3501 issue: 9 year: 2017 ident: 10.1016/j.neuroscience.2020.10.036_b0230 article-title: First in vivo traumatic brain injury imaging via magnetic particle imaging publication-title: Phys Med Biol doi: 10.1088/1361-6560/aa52ad – year: 2020 ident: 10.1016/j.neuroscience.2020.10.036_b0205 article-title: Magnetic particle imaging of macrophages associated with cancer: filling the voids left by iron-based magnetic resonance imaging publication-title: Mol Imag Biol doi: 10.1007/s11307-020-01473-0 – volume: 2 start-page: 79 issue: 2 year: 2016 ident: 10.1016/j.neuroscience.2020.10.036_b0135 article-title: Investigating the impact of a primary tumor on metastasis and dormancy using MRI: new insights into the mechanism of concomitant tumor resistance publication-title: Tomography (Ann Arbor, Mich.) – ident: 10.1016/j.neuroscience.2020.10.036_b0285 doi: 10.18383/j.tom.2019.00020 – ident: 10.1016/j.neuroscience.2020.10.036_b0045 doi: 10.1200/JCO.2020.38.15_suppl.e21567 – volume: 56 start-page: 3504 issue: 24 year: 2020 ident: 10.1016/j.neuroscience.2020.10.036_b0110 article-title: Zero valent iron core-iron oxide shell nanoparticles as small magnetic particle imaging tracers publication-title: Chem Commun doi: 10.1039/C9CC08972A – volume: 56 start-page: 1001 issue: 5 year: 2006 ident: 10.1016/j.neuroscience.2020.10.036_b0145 article-title: In vivo MRI of cancer cell fate at the single-cell level in a mouse model of breast cancer metastasis to the brain publication-title: Magn Reson Med doi: 10.1002/mrm.21029 – volume: 34 start-page: 231 issue: 1 year: 2011 ident: 10.1016/j.neuroscience.2020.10.036_b0255 article-title: In vivo single scan detection of both iron-labeled cells and breast cancer metastases in the mouse brain using balanced steady-state free precession imaging at 1.5 T publication-title: J o Magn Reson Imaging: JMRI doi: 10.1002/jmri.22593 – volume: 10 issue: 1 year: 2019 ident: 10.1016/j.neuroscience.2020.10.036_b0120 article-title: Human-sized magnetic particle imaging for brain applications publication-title: Nat Commun doi: 10.1038/s41467-019-09704-x – volume: 435 start-page: 1214+ year: 2005 ident: 10.1016/j.neuroscience.2020.10.036_b0105 article-title: Tomographic imaging using the nonlinear response of magnetic particles publication-title: Nature doi: 10.1038/nature03808 – volume: 24 start-page: 1353 issue: 10 year: 2011 ident: 10.1016/j.neuroscience.2020.10.036_b0310 article-title: Longitudinal study of tumor-associated macrophages during tumor expansion using MRI publication-title: NMR Biomed doi: 10.1002/nbm.1698 – volume: 10 start-page: 207 issue: 3 year: 2008 ident: 10.1016/j.neuroscience.2020.10.036_b0095 article-title: Cellular magnetic resonance imaging. In vivo imaging of melanoma cells in lymph nodes of mice 1 publication-title: Neoplasia doi: 10.1593/neo.07937 – volume: 7 issue: 42109 year: 2017 ident: 10.1016/j.neuroscience.2020.10.036_b0200 article-title: Quantifying tumor associated macrophages in breast cancer: a comparison of iron and fluorine-based MRI cell tracking publication-title: Sci Rep – volume: 69 start-page: 8326 issue: 21 year: 2009 ident: 10.1016/j.neuroscience.2020.10.036_b0355 article-title: Three-dimensional imaging and quantification of both solitary cells and metastases in whole mouse liver by magnetic resonance imaging publication-title: Cancer Res doi: 10.1158/0008-5472.CAN-09-1496 – volume: 34 start-page: 1077 issue: 5 year: 2015 ident: 10.1016/j.neuroscience.2020.10.036_b0090 article-title: Magnetic particle imaging with tailored iron oxide nanoparticle tracers publication-title: IEEE Trans Med Imaging doi: 10.1109/TMI.2014.2375065 – ident: 10.1016/j.neuroscience.2020.10.036_b0280 doi: 10.1371/journal.pone.0160097 – ident: 10.1016/j.neuroscience.2020.10.036_b0195 doi: 10.1080/02656736.2018.1430867 – volume: 61 start-page: 3279 issue: 9 year: 2016 ident: 10.1016/j.neuroscience.2020.10.036_b0340 article-title: Increasing the sensitivity for stem cell monitoring in system-function based magnetic particle imaging publication-title: Phys Med Biol doi: 10.1088/0031-9155/61/9/3279 – volume: 87 issue: 5 year: 2016 ident: 10.1016/j.neuroscience.2020.10.036_b0020 article-title: Eddy current-shielded x-space relaxometer for sensitive magnetic nanoparticle characterization publication-title: Rev Sci Instrum doi: 10.1063/1.4950779 – ident: 10.1016/j.neuroscience.2020.10.036_b0240 doi: 10.1101/2020.02.17.953232 – volume: 11 start-page: 459-IN4 issue: 5 year: 2009 ident: 10.1016/j.neuroscience.2020.10.036_b0180 article-title: Behavior of endogenous tumor-associated macrophages assessed in vivo using a functionalized nanoparticle publication-title: Neoplasia doi: 10.1593/neo.09356 – ident: 10.1016/j.neuroscience.2020.10.036_b0060 doi: 10.1080/0265673031000119006 – volume: 9 start-page: 18723 issue: 47 year: 2017 ident: 10.1016/j.neuroscience.2020.10.036_b0015 article-title: Tomographic magnetic particle imaging of cancer targeted nanoparticles publication-title: Nanoscale doi: 10.1039/C7NR05502A – ident: 10.1016/j.neuroscience.2020.10.036_b0100 doi: 10.1007/s11060-010-0389-0 – volume: 60 start-page: 1252 issue: 11 year: 2008 ident: 10.1016/j.neuroscience.2020.10.036_b0325 article-title: Magnetic nanoparticles in MR imaging and drug delivery publication-title: Adv Drug Deliv Rev doi: 10.1016/j.addr.2008.03.018 – volume: 62 start-page: 3510 issue: 9 year: 2017 ident: 10.1016/j.neuroscience.2020.10.036_b0425 article-title: First in vivo magnetic particle imaging of lung perfusion in rats publication-title: Phys Med Biol doi: 10.1088/1361-6560/aa616c – volume: 64 start-page: 23 issue: 1 year: 2010 ident: 10.1016/j.neuroscience.2020.10.036_b0025 article-title: Imaging iron-loaded mouse glioma tumors with bSSFP at 3 T publication-title: Magn Reson Med doi: 10.1002/mrm.22210 – volume: 11 start-page: 10480 issue: 10 year: 2017 ident: 10.1016/j.neuroscience.2020.10.036_b0185 article-title: Magnetic particle imaging for real-time perfusion imaging in acute stroke publication-title: ACS Nano doi: 10.1021/acsnano.7b05784 – volume: 5 start-page: 628 issue: 4 year: 2020 ident: 10.1016/j.neuroscience.2020.10.036_b0370 article-title: Nano-immunoimaging publication-title: Nanoscale Horizons doi: 10.1039/C9NH00514E – ident: 10.1016/j.neuroscience.2020.10.036_b0065 doi: 10.1016/B978-0-12-813928-8.00010-7 – volume: 125 start-page: 261 year: 2019 ident: 10.1016/j.neuroscience.2020.10.036_b0215 article-title: Magnetic particle imaging in neurosurgery publication-title: World Neurosurg doi: 10.1016/j.wneu.2019.01.180 – volume: 17 start-page: 5695 issue: 17 year: 2011 ident: 10.1016/j.neuroscience.2020.10.036_b0055 article-title: MRI of tumor-associated macrophages with clinically applicable iron oxide nanoparticles publication-title: Clin Cancer Res doi: 10.1158/1078-0432.CCR-10-3420 – volume: 55 start-page: 23 issue: 1 year: 2006 ident: 10.1016/j.neuroscience.2020.10.036_b0140 article-title: In vivo magnetic resonance imaging of single cells in mouse brain with optical validation publication-title: Magn Reson Med doi: 10.1002/mrm.20747 – ident: 10.1016/j.neuroscience.2020.10.036_b0350 doi: 10.1016/j.mattod.2019.06.003 – volume: 216 start-page: 1800544 issue: 2 year: 2019 ident: 10.1016/j.neuroscience.2020.10.036_b0150 article-title: Nanoscale physical and chemical structure of iron oxide nanoparticles for magnetic particle imaging publication-title: Phys Status Solidi (A) doi: 10.1002/pssa.201800544 – volume: 14 start-page: 2053 issue: 2 year: 2020 ident: 10.1016/j.neuroscience.2020.10.036_b0375 article-title: Artificially engineered cubic iron oxide nanoparticle as a high-performance magnetic particle imaging tracer for stem cell tracking publication-title: ACS Nano doi: 10.1021/acsnano.9b08660 – ident: 10.1016/j.neuroscience.2020.10.036_b0030 doi: 10.1016/j.bbmt.2005.01.005 – volume: 12 issue: 4 year: 2019 ident: 10.1016/j.neuroscience.2020.10.036_b0080 article-title: Superparamagnetic iron oxide nanoparticles-current and prospective medical applications publication-title: Materials doi: 10.3390/ma12040617 – volume: 7 start-page: 6602 issue: 1 year: 2017 ident: 10.1016/j.neuroscience.2020.10.036_b0175 article-title: Overcoming blood brain barrier with a dual purpose Temozolomide loaded Lactoferrin nanoparticles for combating glioma (SERP-17-12433) publication-title: Sci Rep doi: 10.1038/s41598-017-06888-4 – ident: 10.1016/j.neuroscience.2020.10.036_b0260 doi: 10.1101/2020.06.02.128587 – volume: 51 start-page: 1 issue: 2 year: 2015 ident: 10.1016/j.neuroscience.2020.10.036_b0365 article-title: Superspeed traveling wave magnetic particle publication-title: IEEE Trans Magn doi: 10.1109/TMAG.2014.2335255 – volume: 11 start-page: 12067 issue: 12 year: 2017 ident: 10.1016/j.neuroscience.2020.10.036_b0405 article-title: Magnetic particle imaging for highly sensitive, quantitative, and safe in vivo gut bleed detection in a murine model publication-title: ACS Nano doi: 10.1021/acsnano.7b04844 |
SSID | ssj0000543 |
Score | 2.4071038 |
SecondaryResourceType | review_article |
Snippet | •MPI is highly sensitive, providing the tools to detect disease at early onset or information in minute regions of the brain.•MPI has been utilized to image... Magnetic particle imaging (MPI) is an emerging imaging technique, which has the potential to provide the sensitivity, specificity and temporal resolution... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 100 |
SubjectTerms | iron oxide nanoparticles magnetic particle imaging neuroimaging |
Title | Mind Over Magnets – How Magnetic Particle Imaging is Changing the Way We Think About the Future of Neuroscience |
URI | https://www.clinicalkey.com/#!/content/1-s2.0-S0306452220307132 https://dx.doi.org/10.1016/j.neuroscience.2020.10.036 https://www.proquest.com/docview/2461394285 |
Volume | 474 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9NAEB616YULAgqiPKpBqri5sb1-ZIU4RBVRSpWABFV7s_aVKi11CnGFekH8h_7D_hJmNusSUA-RerHstUf2vma-8c58C7ATW5ORF1BEmUxLOrgy0gS7yUvJhJFGEEjmBOfRuBgeZh-P8-M12GtzYTisMuj-hU732jqUdENrdi-m0-4XRrvMB57yOCWnah02UiGLvAMb_f2D4fivQs4XwXP0fMQCLfeoD_Naoo1k1syUb-zGnrH5Tjv1n8b2ZmjwCB4G_Ij9xSc-hjVXP4HNfk2-8_kVvkUf0el_lW_C9xE53PiJBiuO1Entmjne_L7G4exnuJ4a_Bwqi_vnfr8inM7RZxzwOYFDPFJXeOSQ9_c8Q14kanzxwHOR4GyC46WqPYXDwYeve8MobLEQGUJiTaQz7aya2ESWJlEqnojM5DYtY52WheyR2506nZfS0Ny1BA56VlCB0WTlk1IVVjyDTj2r3XNAw8Zf90olcpNlOlEyVj2pEwI0VtmJ3ALZNmhlAv84b4PxrWoDzU6r5c6ouDP4HnXGFohb2YsFC8dKUu_afqvaPFPSjBUZi5Wk399K_zMiV5Z_0w6ViqYsr8Oo2s0u5xVT-AlJfl_-4p7veAkPUo6x4Qib_BV0mh-X7jWBpEZvw_rur2Q7TIU_tv0UQQ |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1fT9RAEN8gPOiLQdCIoo6J4a1c293e3obwQIiXQ7mTRAi8bfbfkQPpoVdCeCF-B74hn8SZvRZP48MlvjTttpN2_838pjv7G8Y-pN4J9ALaiVC5xEOQiUXYjV6K4E45jiCZNjj3B-3ekfh0UpwssN1mLwyFVda6f6rTo7auS1p1a7YuR6PWV0K7xAee0zhFp-oRWxIFlxTXt3n7O84DMck0RzK6zvR4wzwag7xmSCOJMzOnG5tp5Gv-p5X6S19HI9RdZk9r9Ag70w98xhZCucJWd0r0nC9uYANiPGf8Ub7KvvfR3YYvOFShb07LUE3g_ucd9MbX9fXIwUFdVdi7iNmKYDSBuN-AzhEawrG5geMAlN3zHGiJqIrF3chEAuMhDGaq9pwddT8e7vaSOsFC4hCHVYkVNngz9JmSLjMmHXLhCp_L1OayrTrodOfBFlI5nLkeoUHHcyxwFm18Jk3b8xdssRyX4SUDR6bfdqThhRPCZkalpqNshnDGGz9Ua0w1DapdzT5OSTC-6SbM7EzPdoamzqB72BlrjD_IXk45OOaS2mr6TTe7TFEvajQVc0lvP0j_MR7nln_fDBWNE5ZWYUwZxlcTTQR-XKHXV7z6z3e8Y497h_19vb83-PyaPckp2oZibYp1tlj9uApvEC5V9m2cDr8AGOgVDA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Mind+Over+Magnets+-+How+Magnetic+Particle+Imaging+is+Changing+the+Way+We+Think+About+the+Future+of+Neuroscience&rft.jtitle=Neuroscience&rft.au=Makela%2C+Ashley+V&rft.au=Gaudet%2C+Jeffrey+M&rft.au=Murrell%2C+Donna+H&rft.au=Mansfield%2C+James+R&rft.date=2021-10-15&rft.issn=1873-7544&rft.eissn=1873-7544&rft.volume=474&rft.spage=100&rft_id=info:doi/10.1016%2Fj.neuroscience.2020.10.036&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0306-4522&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0306-4522&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0306-4522&client=summon |