Lifting heptagon symbols to functions

A bstract Seven-point amplitudes in planar N = 4 super-Yang-Mills theory have previously been constructed through four loops using the Steinmann cluster bootstrap, but only at the level of the symbol. We promote these symbols to actual functions, by specifying their first derivatives and boundary co...

Full description

Saved in:
Bibliographic Details
Published inThe journal of high energy physics Vol. 2020; no. 10; pp. 1 - 45
Main Authors Dixon, Lance J., Liu, Yu-Ting
Format Journal Article
LanguageEnglish
Published Berlin/Heidelberg Springer Berlin Heidelberg 06.10.2020
Springer Berlin
SpringerOpen
Subjects
Online AccessGet full text

Cover

Loading…
Abstract A bstract Seven-point amplitudes in planar N = 4 super-Yang-Mills theory have previously been constructed through four loops using the Steinmann cluster bootstrap, but only at the level of the symbol. We promote these symbols to actual functions, by specifying their first derivatives and boundary conditions on a particular two-dimensional surface. To do this, we impose branch-cut conditions and construct the entire heptagon function space through weight six. We plot the amplitudes on a few lines in the bulk Euclidean region, and explore the properties of the heptagon function space under the coaction associated with multiple polylogarithms.
AbstractList Seven-point amplitudes in planar $$ \mathcal{N} $$ N = 4 super-Yang-Mills theory have previously been constructed through four loops using the Steinmann cluster bootstrap, but only at the level of the symbol. We promote these symbols to actual functions, by specifying their first derivatives and boundary conditions on a particular two-dimensional surface. To do this, we impose branch-cut conditions and construct the entire heptagon function space through weight six. We plot the amplitudes on a few lines in the bulk Euclidean region, and explore the properties of the heptagon function space under the coaction associated with multiple polylogarithms.
Seven-point amplitudes in planar $ \mathcal{N} $ = 4 super-Yang-Mills theory have previously been constructed through four loops using the Steinmann cluster bootstrap, but only at the level of the symbol. In this work, we promote these symbols to actual functions, by specifying their first derivatives and boundary conditions on a particular two-dimensional surface. To do this, we impose branch-cut conditions and construct the entire heptagon function space through weight six. We plot the amplitudes on a few lines in the bulk Euclidean region, and explore the properties of the heptagon function space under the coaction associated with multiple polylogarithms.
A bstract Seven-point amplitudes in planar N = 4 super-Yang-Mills theory have previously been constructed through four loops using the Steinmann cluster bootstrap, but only at the level of the symbol. We promote these symbols to actual functions, by specifying their first derivatives and boundary conditions on a particular two-dimensional surface. To do this, we impose branch-cut conditions and construct the entire heptagon function space through weight six. We plot the amplitudes on a few lines in the bulk Euclidean region, and explore the properties of the heptagon function space under the coaction associated with multiple polylogarithms.
Abstract Seven-point amplitudes in planar N $$ \mathcal{N} $$ = 4 super-Yang-Mills theory have previously been constructed through four loops using the Steinmann cluster bootstrap, but only at the level of the symbol. We promote these symbols to actual functions, by specifying their first derivatives and boundary conditions on a particular two-dimensional surface. To do this, we impose branch-cut conditions and construct the entire heptagon function space through weight six. We plot the amplitudes on a few lines in the bulk Euclidean region, and explore the properties of the heptagon function space under the coaction associated with multiple polylogarithms.
ArticleNumber 31
Author Liu, Yu-Ting
Dixon, Lance J.
Author_xml – sequence: 1
  givenname: Lance J.
  orcidid: 0000-0003-4985-7518
  surname: Dixon
  fullname: Dixon, Lance J.
  organization: SLAC National Accelerator Laboratory, Stanford University
– sequence: 2
  givenname: Yu-Ting
  orcidid: 0000-0003-1978-9200
  surname: Liu
  fullname: Liu, Yu-Ting
  email: aytliu@stanford.edu
  organization: SLAC National Accelerator Laboratory, Stanford University
BackLink https://www.osti.gov/servlets/purl/1769109$$D View this record in Osti.gov
BookMark eNp1kEFLAzEQhYMoWKtnr0UQ9FCd2d1uNkeRaisFPXgPSXZSU2oiSTz4701dBRE8JSTvezPvHbF9HzwxdopwhQD8-mExf0K4qKCCS6hxj40QKjHtGi72f90P2VFKGwCcoYARO185m51fT17oLat18JP08arDNk1ymNh3b7ILPh2zA6u2iU6-zzF7vps_3y6mq8f75e3NamoabPNUaBTU2K6uZsK2FlTP-8YIrqCjprblU1ttVM0b3ZqOOLdatNhjXze6m3X1mC0H2z6ojXyL7lXFDxmUk18PIa6litmZLcla1ySIjFFADaLRxFFTyV0VMyWweJ0NXiFlJ5NxmcyLCd6TyRJ5KxBEEc0GkYkhpUhWFp3aRc5Rua1EkLtu5dCt3HUry4zCXf_hfpb9n4CBSEXp1xTlJrxHX8r8F_kEMt6Lhg
CitedBy_id crossref_primary_10_1007_JHEP02_2023_083
crossref_primary_10_1007_JHEP09_2021_007
crossref_primary_10_1007_JHEP01_2022_021
crossref_primary_10_1007_JHEP03_2025_009
crossref_primary_10_1007_JHEP09_2022_131
crossref_primary_10_1007_JHEP10_2021_084
crossref_primary_10_1103_PhysRevLett_127_151602
crossref_primary_10_1103_PhysRevLett_131_041601
crossref_primary_10_1103_PhysRevLett_130_111601
crossref_primary_10_1007_JHEP01_2025_197
crossref_primary_10_1007_JHEP01_2025_012
crossref_primary_10_1007_JHEP08_2022_168
crossref_primary_10_1103_PhysRevLett_130_111602
crossref_primary_10_1103_PhysRevLett_127_251603
crossref_primary_10_1007_JHEP01_2022_073
crossref_primary_10_1007_JHEP09_2023_121
crossref_primary_10_1007_JHEP07_2022_153
crossref_primary_10_1088_1572_9494_ada916
crossref_primary_10_1007_JHEP07_2024_024
crossref_primary_10_1007_JHEP03_2022_126
crossref_primary_10_1007_JHEP05_2023_236
crossref_primary_10_1007_s11433_023_2239_8
crossref_primary_10_1088_1751_8121_ac845c
crossref_primary_10_1007_JHEP01_2024_069
crossref_primary_10_1007_JHEP09_2022_161
crossref_primary_10_1007_JHEP12_2021_110
crossref_primary_10_1007_JHEP04_2021_276
crossref_primary_10_1007_JHEP06_2021_119
crossref_primary_10_1007_JHEP12_2021_218
crossref_primary_10_1088_1751_8121_ac7e8e
crossref_primary_10_1007_JHEP03_2021_278
crossref_primary_10_1007_JHEP06_2021_142
crossref_primary_10_1007_JHEP12_2022_158
crossref_primary_10_1103_PhysRevLett_126_231601
crossref_primary_10_1007_JHEP04_2021_222
crossref_primary_10_1103_PhysRevLett_126_091603
crossref_primary_10_1007_JHEP04_2021_147
crossref_primary_10_1007_JHEP12_2020_167
crossref_primary_10_1007_JHEP02_2023_065
crossref_primary_10_1007_JHEP10_2021_007
Cites_doi 10.1007/JHEP08(2014)154
10.1103/PhysRevLett.123.221602
10.1007/JHEP12(2011)066
10.1007/JHEP07(2012)174
10.1007/JHEP10(2012)075
10.1007/JHEP07(2018)170
10.1016/j.nuclphysb.2009.11.022
10.1103/PhysRevLett.117.241601
10.1142/S0217751X00000367
10.1007/JHEP11(2011)023
10.1007/JHEP02(2020)095
10.1088/1126-6708/2007/06/064
10.1103/PhysRevD.86.065026
10.1007/JHEP08(2012)043
10.1088/1126-6708/2009/11/045
10.1088/1126-6708/2007/11/068
10.1007/JHEP09(2019)061
10.1103/PhysRevLett.111.091602
10.1007/JHEP08(2020)005
10.1103/PhysRevLett.124.161602
10.1007/JHEP08(2014)085
10.1007/JHEP07(2011)064
10.1088/1126-6708/2007/01/064
10.1017/CBO9781316091548
10.4310/CNTP.2017.v11.n3.a1
10.1007/JHEP03(2015)072
10.1007/JHEP01(2014)091
10.1103/PhysRevD.78.045007
10.1016/j.nuclphysb.2009.02.015
10.1007/JHEP01(2012)024
10.1088/1742-5468/2007/01/P01021
10.1103/PhysRevD.72.085001
10.1007/JHEP06(2014)116
10.1007/JHEP04(2020)142
10.22323/1.211.0049
10.1007/JHEP08(2019)016
10.24033/asens.2099
10.1103/PhysRevLett.120.161601
10.1007/JHEP02(2017)137
10.1103/PhysRevLett.124.161603
10.1103/PhysRevD.80.045002
10.1007/JHEP01(2014)008
10.1016/j.nuclphysb.2009.10.013
10.1016/j.physletb.2008.03.032
10.1007/JHEP12(2011)011
10.1103/PhysRevD.75.085010
10.1007/JHEP08(2019)135
10.4310/CNTP.2018.v12.n2.a4
10.1007/JHEP11(2017)143
10.1007/JHEP08(2016)131
10.1103/PhysRevLett.105.151605
10.1007/JHEP03(2019)087
10.1007/s00220-009-0740-5
10.1103/PhysRevD.83.065018
10.1007/JHEP06(2018)116
10.1007/JHEP01(2015)027
10.1016/j.nuclphysb.2012.12.009
10.1007/JHEP12(2013)049
10.1103/PhysRevD.76.125020
10.1007/JHEP01(2019)017
10.4310/CNTP.2017.v11.n3.a3
10.4310/CNTP.2014.v8.n4.a1
10.1007/JHEP03(2019)195
10.1007/JHEP10(2014)065
10.1007/JHEP04(2020)146
10.1007/JHEP03(2019)086
10.1007/JHEP08(2016)152
10.1007/JHEP09(2011)032
10.1007/JHEP05(2013)135
10.1103/PhysRevD.101.045022
10.1016/0550-3213(94)90179-1
10.1007/JHEP01(2016)053
10.1016/j.nuclphysb.2016.12.016
ContentType Journal Article
Copyright The Author(s) 2020
Copyright_xml – notice: The Author(s) 2020
CorporateAuthor SLAC National Accelerator Laboratory (SLAC), Menlo Park, CA (United States)
CorporateAuthor_xml – name: SLAC National Accelerator Laboratory (SLAC), Menlo Park, CA (United States)
DBID C6C
AAYXX
CITATION
OIOZB
OTOTI
DOA
DOI 10.1007/JHEP10(2020)031
DatabaseName Springer Nature OA Free Journals
CrossRef
OSTI.GOV - Hybrid
OSTI.GOV
DOAJ: Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList CrossRef



Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 1029-8479
EndPage 45
ExternalDocumentID oai_doaj_org_article_3b3e9eecca0e411cbe71be0312d34a91
1769109
10_1007_JHEP10_2020_031
GroupedDBID -5F
-5G
-A0
-BR
0R~
0VY
199
1N0
30V
4.4
408
40D
5GY
5VS
8FE
8FG
8TC
8UJ
95.
AAFWJ
AAKKN
ABEEZ
ACACY
ACGFS
ACHIP
ACREN
ACULB
ADBBV
ADINQ
AEGXH
AENEX
AFGXO
AFKRA
AFPKN
AFWTZ
AHBYD
AHYZX
AIBLX
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMTXH
AOAED
ARAPS
ASPBG
ATQHT
AVWKF
AZFZN
BCNDV
BENPR
BGLVJ
C24
C6C
CCPQU
CS3
CSCUP
DU5
EBS
ER.
FEDTE
GQ6
GROUPED_DOAJ
HCIFZ
HF~
HLICF
HMJXF
HVGLF
HZ~
IHE
KOV
LAP
M~E
N5L
N9A
NB0
O93
OK1
P62
P9T
PIMPY
PROAC
R9I
RO9
RSV
S27
S3B
SOJ
SPH
T13
TUS
U2A
VC2
VSI
WK8
XPP
Z45
ZMT
02O
1JI
1WK
2VQ
5ZI
AAGCD
AAGCF
AAIAL
AAJIO
AALHV
AARHV
AATNI
AAYXX
AAYZH
ABFSG
ABTEG
ACAFW
ACARI
ACBXY
ACSTC
ADKPE
ADRFC
AEFHF
AEJGL
AERVB
AETNG
AEZWR
AFHIU
AFLOW
AGJBK
AGQPQ
AHSBF
AHSEE
AHWEU
AIXLP
AIYBF
AKPSB
AMVHM
ARNYC
BAPOH
BBWZM
BGNMA
CAG
CITATION
CJUJL
COF
CRLBU
EDWGO
EJD
EMSAF
EPQRW
EQZZN
H13
IJHAN
IOP
IZVLO
JCGBZ
KOT
M45
M4Y
NT-
NT.
NU0
O9-
PHGZM
PHGZT
PJBAE
Q02
R4D
RIN
RKQ
RNS
ROL
RPA
S1Z
S3P
SY9
T37
AAYZJ
AHBXF
OIOZB
OTOTI
PQGLB
PUEGO
ID FETCH-LOGICAL-c416t-9b19e4f83259f6f0ad7d4c97a08e43f19ebfbca374b6c8e77fb961d1d34b8583
IEDL.DBID DOA
ISSN 1029-8479
IngestDate Wed Aug 27 01:23:07 EDT 2025
Mon Jul 10 02:30:34 EDT 2023
Tue Jul 01 00:58:56 EDT 2025
Thu Apr 24 22:57:34 EDT 2025
Fri Feb 21 02:48:44 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 10
Keywords 1
Scattering Amplitudes
Expansion
Supersymmetric Gauge Theory
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c416t-9b19e4f83259f6f0ad7d4c97a08e43f19ebfbca374b6c8e77fb961d1d34b8583
Notes USDOE Office of Science (SC), Basic Energy Sciences (BES)
AC02-76SF00515
ORCID 0000-0003-4985-7518
0000-0003-1978-9200
0000000349857518
0000000319789200
OpenAccessLink https://doaj.org/article/3b3e9eecca0e411cbe71be0312d34a91
PageCount 45
ParticipantIDs doaj_primary_oai_doaj_org_article_3b3e9eecca0e411cbe71be0312d34a91
osti_scitechconnect_1769109
crossref_citationtrail_10_1007_JHEP10_2020_031
crossref_primary_10_1007_JHEP10_2020_031
springer_journals_10_1007_JHEP10_2020_031
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-10-06
PublicationDateYYYYMMDD 2020-10-06
PublicationDate_xml – month: 10
  year: 2020
  text: 2020-10-06
  day: 06
PublicationDecade 2020
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: United States
PublicationTitle The journal of high energy physics
PublicationTitleAbbrev J. High Energ. Phys
PublicationYear 2020
Publisher Springer Berlin Heidelberg
Springer Berlin
SpringerOpen
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer Berlin
– name: SpringerOpen
References F. Brown and C. Duhr, A double integral of dlog forms which is not polylogarithmic, 6, 2020 [arXiv:2006.09413] [INSPIRE].
N. Beisert, B. Eden and M. Staudacher, Transcendentality and Crossing, J. Stat. Mech.0701 (2007) P01021 [hep-th/0610251] [INSPIRE].
J. Bartels, Analytic structure of the 8-point scattering amplitude in multi-Regge kinematics in N = 4 SYM: conformal Regge pole and Regge cut contributions, arXiv:2005.08818 [INSPIRE].
M.F. Paulos, J. Penedones, J. Toledo, B.C. van Rees and P. Vieira, The S-matrix bootstrap II: two dimensional amplitudes, JHEP11 (2017) 143 [arXiv:1607.06110] [INSPIRE].
L.J. Dixon, J.M. Drummond, M. von Hippel and J. Pennington, Hexagon functions and the three-loop remainder function, JHEP12 (2013) 049 [arXiv:1308.2276] [INSPIRE].
A.B. Goncharov, M. Spradlin, C. Vergu and A. Volovich, Classical Polylogarithms for Amplitudes and Wilson Loops, Phys. Rev. Lett.105 (2010) 151605 [arXiv:1006.5703] [INSPIRE].
J. Drummond, J. Foster, O. Gürdogan and C. Kalousios, Algebraic singularities of scattering amplitudes from tropical geometry, arXiv:1912.08217 [INSPIRE].
S. Caron-Huot et al., The Steinmann Cluster Bootstrap for N = 4 Super Yang-Mills Amplitudes, PoSCORFU2019 (2020) 003 [arXiv:2005.06735] [INSPIRE].
N. Arkani-Hamed, T. Lam and M. Spradlin, Non-perturbative geometries for planarN\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{N} $$\end{document} = 4 SYM amplitudes, arXiv:1912.08222 [INSPIRE].
S. Fomin and A. Zelevinsky, Cluster algebras II: Finite type classification, math/0208229.
O. Steinmann, Über den Zusammenhang zwischen den Wightmanfunktionen und der retardierten Kommutatoren, Helv. Phys. Acta33 (1960) 257.
L.J. Dixon, J. Drummond, T. Harrington, A.J. McLeod, G. Papathanasiou and M. Spradlin, Heptagons from the Steinmann Cluster Bootstrap, JHEP02 (2017) 137 [arXiv:1612.08976] [INSPIRE].
S. Caron-Huot, L.J. Dixon, F. Dulat, M. Von Hippel, A.J. McLeod and G. Papathanasiou, The Cosmic Galois Group and Extended Steinmann Relations for PlanarN\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{N} $$\end{document} = 4 SYM Amplitudes, JHEP09 (2019) 061 [arXiv:1906.07116] [INSPIRE].
J. Golden, A.B. Goncharov, M. Spradlin, C. Vergu and A. Volovich, Motivic Amplitudes and Cluster Coordinates, JHEP01 (2014) 091 [arXiv:1305.1617] [INSPIRE].
J.M. Drummond, J. Henn, G.P. Korchemsky and E. Sokatchev, Conformal Ward identities for Wilson loops and a test of the duality with gluon amplitudes, Nucl. Phys. B826 (2010) 337 [arXiv:0712.1223] [INSPIRE].
N. Arkani-Hamed, J.L. Bourjaily, F. Cachazo, A.B. Goncharov, A. Postnikov and J. Trnka, Grassmannian Geometry of Scattering Amplitudes, Cambridge University Press (2016), [DOI] [arXiv:1212.5605] [INSPIRE].
J. Bartels, L.N. Lipatov and A. Sabio Vera, BFKL Pomeron, Reggeized gluons and Bern-Dixon-Smirnov amplitudes, Phys. Rev. D80 (2009) 045002 [arXiv:0802.2065] [INSPIRE].
B. Basso, A. Sever and P. Vieira, Spacetime and Flux Tube S-Matrices at Finite Coupling for N = 4 Supersymmetric Yang-Mills Theory, Phys. Rev. Lett.111 (2013) 091602 [arXiv:1303.1396] [INSPIRE].
Z. Bern, L.J. Dixon and V.A. Smirnov, Iteration of planar amplitudes in maximally supersymmetric Yang-Mills theory at three loops and beyond, Phys. Rev. D72 (2005) 085001 [hep-th/0505205] [INSPIRE].
L.J. Dixon and M. von Hippel, Bootstrapping an NMHV amplitude through three loops, JHEP10 (2014) 065 [arXiv:1408.1505] [INSPIRE].
V. Del Duca, C. Duhr and V.A. Smirnov, The One-Loop One-Mass Hexagon Integral in D = 6 Dimensions, JHEP07 (2011) 064 [arXiv:1105.1333] [INSPIRE].
J.M. Drummond, J. Henn, G.P. Korchemsky and E. Sokatchev, Generalized unitarity for N = 4 super-amplitudes, Nucl. Phys. B869 (2013) 452 [arXiv:0808.0491] [INSPIRE].
J.M. Drummond, J. Henn, G.P. Korchemsky and E. Sokatchev, Hexagon Wilson loop = six-gluon MHV amplitude, Nucl. Phys. B815 (2009) 142 [arXiv:0803.1466] [INSPIRE].
Z. Bern et al., The Two-Loop Six-Gluon MHV Amplitude in Maximally Supersymmetric Yang-Mills Theory, Phys. Rev. D78 (2008) 045007 [arXiv:0803.1465] [INSPIRE].
F.C.S. Brown, Multiple zeta values and periods of moduli spacesM¯0,nℝ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {\overline{\mathfrak{M}}}_{0,n}\left(\mathrm{\mathbb{R}}\right) $$\end{document}, Annales Sci. Ecole Norm. Sup.42 (2009) 371 [math/0606419] [INSPIRE].
L.F. Alday and J. Maldacena, Comments on gluon scattering amplitudes via AdS/CFT, JHEP11 (2007) 068 [arXiv:0710.1060] [INSPIRE].
D.A. Kosower, R. Roiban and C. Vergu, The Six-Point NMHV amplitude in Maximally Supersymmetric Yang-Mills Theory, Phys. Rev. D83 (2011) 065018 [arXiv:1009.1376] [INSPIRE].
S. Caron-Huot and S. He, Jumpstarting the All-Loop S-matrix of PlanarN\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{N} $$\end{document} = 4 Super Yang-Mills, JHEP07 (2012) 174 [arXiv:1112.1060] [INSPIRE].
V. Del Duca et al., The seven-gluon amplitude in multi-Regge kinematics beyond leading logarithmic accuracy, JHEP06 (2018) 116 [arXiv:1801.10605] [INSPIRE].
O. Steinmann, Wightman-Funktionen und retardierten Kommutatoren. II, Helv. Phys. Acta33 (1960) 347.
Z. Bern, M. Czakon, L.J. Dixon, D.A. Kosower and V.A. Smirnov, The Four-Loop Planar Amplitude and Cusp Anomalous Dimension in Maximally Supersymmetric Yang-Mills Theory, Phys. Rev. D75 (2007) 085010 [hep-th/0610248] [INSPIRE].
B. Basso, A. Sever and P. Vieira, Space-time S-matrix and Flux tube S-matrix II. Extracting and Matching Data, JHEP01 (2014) 008 [arXiv:1306.2058] [INSPIRE].
C. Bercini, M. Fabri, A. Homrich and P. Vieira, S-matrix bootstrap: Supersymmetry, Z2, and Z4symmetry, Phys. Rev. D101 (2020) 045022 [arXiv:1909.06453] [INSPIRE].
L.J. Dixon, M. von Hippel and A.J. McLeod, The four-loop six-gluon NMHV ratio function, JHEP01 (2016) 053 [arXiv:1509.08127] [INSPIRE].
L. Córdova, Y. He, M. Kruczenski and P. Vieira, The O(N ) S-matrix Monolith, JHEP04 (2020) 142 [arXiv:1909.06495] [INSPIRE].
E. Panzer and O. Schnetz, The Galois coaction on 𝜙4periods, Commun. Num. Theor. Phys.11 (2017) 657 [arXiv:1603.04289] [INSPIRE].
J. Drummond, J. Foster and O. Gürdoğan, Cluster Adjacency Properties of Scattering Amplitudes in N = 4 Supersymmetric Yang-Mills Theory, Phys. Rev. Lett.120 (2018) 161601 [arXiv:1710.10953] [INSPIRE].
J. Golden and A.J. Mcleod, Cluster Algebras and the Subalgebra Constructibility of the Seven-Particle Remainder Function, JHEP01 (2019) 017 [arXiv:1810.12181] [INSPIRE].
O. Schnetz, Graphical functions and single-valued multiple polylogarithms, Commun. Num. Theor. Phys.08 (2014) 589 [arXiv:1302.6445] [INSPIRE].
J.M. Drummond, J. Henn, V.A. Smirnov and E. Sokatchev, Magic identities for conformal four-point integrals, JHEP01 (2007) 064 [hep-th/0607160] [INSPIRE].
J.M. Drummond, J. Henn, G.P. Korchemsky and E. Sokatchev, The hexagon Wilson loop and the BDS ansatz for the six-gluon amplitude, Phys. Lett. B662 (2008) 456 [arXiv:0712.4138] [INSPIRE].
B. Basso, L.J. Dixon and G. Papathanasiou, Origin of the Six-Gluon Amplitude in PlanarN\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{N} $$\end{document} = 4 Supersymmetric Yang-Mills Theory, Phys. Rev. Lett.124 (2020) 161603 [arXiv:2001.05460] [INSPIRE].
C. Duhr, Hopf algebras, coproducts and symbols: an application to Higgs boson amplitudes, JHEP08 (2012) 043 [arXiv:1203.0454] [INSPIRE].
S. Caron-Huot, L.J. Dixon, A. McLeod and M. von Hippel, Bootstrapping a Five-Loop Amplitude Using Steinmann Relations, Phys. Rev. Lett.117 (2016) 241601 [arXiv:1609.00669] [INSPIRE].
Z. Bern, J.J.M. Carrasco, H. Johansson and D.A. Kosower, Maximally supersymmetric planar Yang-Mills amplitudes at five loops, Phys. Rev. D76 (2007) 125020 [arXiv:0705.1864] [INSPIRE].
L.J. Dixon, J.M. Drummond and J.M. Henn, Analytic result for the two-loop six-point NMHV amplitude inN\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{N} $$\end{document} = 4 super Yang-Mills theory, JHEP01 (2012) 024 [arXiv:1111.1704] [INSPIRE].
L.J. Dixon, J.M. Drummond, C. Duhr and J. Pennington, The four-loop remainder function and multi-Regge behavior at NNLLA in planarN\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{N} $$\end{document} = 4 super-Yang-Mills theory, JHEP06 (2014) 116 [arXiv:1402.3300] [INSPIRE].
J. Bartels, A. Kormilitzin, L.N. Lipatov and A. Prygarin, BFKL approach and 2 → 5 maximally helicity violating amplitude inN\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{N} $$\end{document} = 4 super-Yang-Mills theory, Phys. Rev. D86 (2012) 065026 [arXiv:1112.6366] [INSPIRE].
L.J. Dixon, J.M. Drummond and J.M. Henn, Bootstrapping the three-loop hexagon, JHEP11 (2011) 02
13933_CR51
13933_CR50
13933_CR92
13933_CR11
13933_CR55
13933_CR10
13933_CR54
13933_CR53
13933_CR52
13933_CR15
13933_CR59
13933_CR14
13933_CR58
13933_CR13
13933_CR57
13933_CR12
13933_CR56
13933_CR19
13933_CR18
13933_CR17
13933_CR16
13933_CR91
13933_CR90
13933_CR62
13933_CR61
13933_CR60
13933_CR22
13933_CR66
13933_CR21
13933_CR65
13933_CR20
13933_CR64
13933_CR63
13933_CR26
13933_CR25
13933_CR69
13933_CR24
13933_CR68
13933_CR23
13933_CR67
13933_CR29
13933_CR28
13933_CR27
13933_CR73
13933_CR72
13933_CR71
13933_CR70
13933_CR33
13933_CR77
13933_CR32
13933_CR76
13933_CR31
13933_CR75
13933_CR30
13933_CR74
13933_CR37
13933_CR36
13933_CR35
13933_CR79
13933_CR34
13933_CR78
13933_CR39
13933_CR38
13933_CR9
13933_CR7
13933_CR8
13933_CR1
13933_CR40
13933_CR84
13933_CR2
13933_CR83
13933_CR82
13933_CR81
13933_CR5
13933_CR44
13933_CR88
13933_CR6
13933_CR43
13933_CR87
13933_CR3
13933_CR42
13933_CR86
13933_CR4
13933_CR41
13933_CR85
13933_CR48
13933_CR47
13933_CR46
13933_CR45
13933_CR89
13933_CR49
13933_CR80
References_xml – reference: V. Del Duca, C. Duhr and V.A. Smirnov, The One-Loop One-Mass Hexagon Integral in D = 6 Dimensions, JHEP07 (2011) 064 [arXiv:1105.1333] [INSPIRE].
– reference: L.F. Alday and J. Maldacena, Comments on gluon scattering amplitudes via AdS/CFT, JHEP11 (2007) 068 [arXiv:0710.1060] [INSPIRE].
– reference: J. Golden, A.B. Goncharov, M. Spradlin, C. Vergu and A. Volovich, Motivic Amplitudes and Cluster Coordinates, JHEP01 (2014) 091 [arXiv:1305.1617] [INSPIRE].
– reference: R.J. Eden, P.V. Landshoff, D.I. Olive and J.C. Polkinghorne, The Analytic S-Matrix, Cambridge University Press (1966).
– reference: F. Brown and C. Duhr, A double integral of dlog forms which is not polylogarithmic, 6, 2020 [arXiv:2006.09413] [INSPIRE].
– reference: J.M. Drummond, J. Henn, G.P. Korchemsky and E. Sokatchev, Generalized unitarity for N = 4 super-amplitudes, Nucl. Phys. B869 (2013) 452 [arXiv:0808.0491] [INSPIRE].
– reference: S. Caron-Huot, L.J. Dixon, F. Dulat, M. Von Hippel, A.J. McLeod and G. Papathanasiou, The Cosmic Galois Group and Extended Steinmann Relations for PlanarN\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{N} $$\end{document} = 4 SYM Amplitudes, JHEP09 (2019) 061 [arXiv:1906.07116] [INSPIRE].
– reference: L.J. Dixon, J.M. Drummond and J.M. Henn, Analytic result for the two-loop six-point NMHV amplitude inN\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{N} $$\end{document} = 4 super Yang-Mills theory, JHEP01 (2012) 024 [arXiv:1111.1704] [INSPIRE].
– reference: J. Broedel, M. Sprenger and A. Torres Orjuela, Towards single-valued polylogarithms in two variables for the seven-point remainder function in multi-Regge-kinematics, Nucl. Phys. B915 (2017) 394 [arXiv:1606.08411] [INSPIRE].
– reference: M.F. Paulos, J. Penedones, J. Toledo, B.C. van Rees and P. Vieira, The S-matrix bootstrap II: two dimensional amplitudes, JHEP11 (2017) 143 [arXiv:1607.06110] [INSPIRE].
– reference: L.F. Alday and J.M. Maldacena, Gluon scattering amplitudes at strong coupling, JHEP06 (2007) 064 [arXiv:0705.0303] [INSPIRE].
– reference: D. Gaiotto, J. Maldacena, A. Sever and P. Vieira, Pulling the straps of polygons, JHEP12 (2011) 011 [arXiv:1102.0062] [INSPIRE].
– reference: J. Drummond, J. Foster and O. Gürdoğan, Cluster adjacency beyond MHV, JHEP03 (2019) 086 [arXiv:1810.08149] [INSPIRE].
– reference: E. Panzer and O. Schnetz, The Galois coaction on 𝜙4periods, Commun. Num. Theor. Phys.11 (2017) 657 [arXiv:1603.04289] [INSPIRE].
– reference: F.C.S. Brown, Multiple zeta values and periods of moduli spacesM¯0,nℝ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {\overline{\mathfrak{M}}}_{0,n}\left(\mathrm{\mathbb{R}}\right) $$\end{document}, Annales Sci. Ecole Norm. Sup.42 (2009) 371 [math/0606419] [INSPIRE].
– reference: L.J. Dixon, J.M. Drummond and J.M. Henn, Bootstrapping the three-loop hexagon, JHEP11 (2011) 023 [arXiv:1108.4461] [INSPIRE].
– reference: C. Duhr, Hopf algebras, coproducts and symbols: an application to Higgs boson amplitudes, JHEP08 (2012) 043 [arXiv:1203.0454] [INSPIRE].
– reference: V. Del Duca et al., Multi-Regge kinematics and the moduli space of Riemann spheres with marked points, JHEP08 (2016) 152 [arXiv:1606.08807] [INSPIRE].
– reference: L.J. Dixon, J.M. Drummond, C. Duhr and J. Pennington, The four-loop remainder function and multi-Regge behavior at NNLLA in planarN\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{N} $$\end{document} = 4 super-Yang-Mills theory, JHEP06 (2014) 116 [arXiv:1402.3300] [INSPIRE].
– reference: J. Drummond, J. Foster, O. Gürdogan and C. Kalousios, Tropical Grassmannians, cluster algebras and scattering amplitudes, JHEP04 (2020) 146 [arXiv:1907.01053] [INSPIRE].
– reference: Z. Bern, J.J.M. Carrasco, H. Johansson and D.A. Kosower, Maximally supersymmetric planar Yang-Mills amplitudes at five loops, Phys. Rev. D76 (2007) 125020 [arXiv:0705.1864] [INSPIRE].
– reference: J. Golden and M. Spradlin, An analytic result for the two-loop seven-point MHV amplitude inN\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{N} $$\end{document} = 4 SYM, JHEP08 (2014) 154 [arXiv:1406.2055] [INSPIRE].
– reference: Z. Bern, M. Czakon, L.J. Dixon, D.A. Kosower and V.A. Smirnov, The Four-Loop Planar Amplitude and Cusp Anomalous Dimension in Maximally Supersymmetric Yang-Mills Theory, Phys. Rev. D75 (2007) 085010 [hep-th/0610248] [INSPIRE].
– reference: O. Schnetz, Graphical functions and single-valued multiple polylogarithms, Commun. Num. Theor. Phys.08 (2014) 589 [arXiv:1302.6445] [INSPIRE].
– reference: C. Duhr and F. Dulat, PolyLogTools — polylogs for the masses, JHEP08 (2019) 135 [arXiv:1904.07279] [INSPIRE].
– reference: S. Caron-Huot, L.J. Dixon, F. Dulat, M. von Hippel, A.J. McLeod and G. Papathanasiou, Six-Gluon amplitudes in planarN\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{N} $$\end{document} = 4 super-Yang-Mills theory at six and seven loops, JHEP08 (2019) 016 [arXiv:1903.10890] [INSPIRE].
– reference: S. Caron-Huot, Superconformal symmetry and two-loop amplitudes in planar N = 4 super Yang-Mills, JHEP12 (2011) 066 [arXiv:1105.5606] [INSPIRE].
– reference: O. Schnetz, The Galois coaction on the electron anomalous magnetic moment, Commun. Num. Theor. Phys.12 (2018) 335 [arXiv:1711.05118] [INSPIRE].
– reference: J.M. Drummond, G. Papathanasiou and M. Spradlin, A Symbol of Uniqueness: The Cluster Bootstrap for the 3-Loop MHV Heptagon, JHEP03 (2015) 072 [arXiv:1412.3763] [INSPIRE].
– reference: L.J. Dixon and I. Esterlis, All orders results for self-crossing Wilson loops mimicking double parton scattering, JHEP07 (2016) 116 [Erratum ibid.08 (2016) 131] [arXiv:1602.02107] [INSPIRE].
– reference: E. Panzer, Feynman integrals and hyperlogarithms, Ph.D. Thesis, Humboldt U. (2015) [DOI] [arXiv:1506.07243] [INSPIRE].
– reference: O. Steinmann, Über den Zusammenhang zwischen den Wightmanfunktionen und der retardierten Kommutatoren, Helv. Phys. Acta33 (1960) 257.
– reference: V. Del Duca et al., All-order amplitudes at any multiplicity in the multi-Regge limit, Phys. Rev. Lett.124 (2020) 161602 [arXiv:1912.00188] [INSPIRE].
– reference: A.B. Goncharov, Multiple polylogarithms and mixed Tate motives, math/0103059 [INSPIRE].
– reference: N. Beisert, B. Eden and M. Staudacher, Transcendentality and Crossing, J. Stat. Mech.0701 (2007) P01021 [hep-th/0610251] [INSPIRE].
– reference: L. Dixon and F. Dulat, The Seven-Loop Six-Gluon NMHV Amplitude in PlanarN\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{N} $$\end{document} = 4 Super-Yang-Mills Theory, to appear.
– reference: J. Golden and A.J. Mcleod, Cluster Algebras and the Subalgebra Constructibility of the Seven-Particle Remainder Function, JHEP01 (2019) 017 [arXiv:1810.12181] [INSPIRE].
– reference: J. Drummond, J. Foster and O. Gürdoğan, Cluster Adjacency Properties of Scattering Amplitudes in N = 4 Supersymmetric Yang-Mills Theory, Phys. Rev. Lett.120 (2018) 161601 [arXiv:1710.10953] [INSPIRE].
– reference: S. Caron-Huot and S. He, Jumpstarting the All-Loop S-matrix of PlanarN\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{N} $$\end{document} = 4 Super Yang-Mills, JHEP07 (2012) 174 [arXiv:1112.1060] [INSPIRE].
– reference: S. Fomin and A. Zelevinsky, Cluster algebras I: Foundations, math/0104151.
– reference: L.F. Alday, D. Gaiotto and J. Maldacena, Thermodynamic Bubble Ansatz, JHEP09 (2011) 032 [arXiv:0911.4708] [INSPIRE].
– reference: Z. Bern, L.J. Dixon, D.C. Dunbar and D.A. Kosower, One loop n point gauge theory amplitudes, unitarity and collinear limits, Nucl. Phys. B425 (1994) 217 [hep-ph/9403226] [INSPIRE].
– reference: S. Caron-Huot, L.J. Dixon, M. von Hippel, A.J. McLeod and G. Papathanasiou, The Double Pentaladder Integral to All Orders, JHEP07 (2018) 170 [arXiv:1806.01361] [INSPIRE].
– reference: B. Basso, S. Caron-Huot and A. Sever, Adjoint BFKL at finite coupling: a short-cut from the collinear limit, JHEP01 (2015) 027 [arXiv:1407.3766] [INSPIRE].
– reference: B. Basso, private communication.
– reference: Z. Bern et al., The Two-Loop Six-Gluon MHV Amplitude in Maximally Supersymmetric Yang-Mills Theory, Phys. Rev. D78 (2008) 045007 [arXiv:0803.1465] [INSPIRE].
– reference: J. Drummond, J. Foster, O. Gürdogan and C. Kalousios, Algebraic singularities of scattering amplitudes from tropical geometry, arXiv:1912.08217 [INSPIRE].
– reference: S. Caron-Huot et al., The Steinmann Cluster Bootstrap for N = 4 Super Yang-Mills Amplitudes, PoSCORFU2019 (2020) 003 [arXiv:2005.06735] [INSPIRE].
– reference: L. Córdova, Y. He, M. Kruczenski and P. Vieira, The O(N ) S-matrix Monolith, JHEP04 (2020) 142 [arXiv:1909.06495] [INSPIRE].
– reference: N. Arkani-Hamed, J.L. Bourjaily, F. Cachazo, A.B. Goncharov, A. Postnikov and J. Trnka, Grassmannian Geometry of Scattering Amplitudes, Cambridge University Press (2016), [DOI] [arXiv:1212.5605] [INSPIRE].
– reference: L.J. Dixon and M. von Hippel, Bootstrapping an NMHV amplitude through three loops, JHEP10 (2014) 065 [arXiv:1408.1505] [INSPIRE].
– reference: J.M. Drummond, J. Henn, G.P. Korchemsky and E. Sokatchev, The hexagon Wilson loop and the BDS ansatz for the six-gluon amplitude, Phys. Lett. B662 (2008) 456 [arXiv:0712.4138] [INSPIRE].
– reference: S. Fomin and A. Zelevinsky, Cluster algebras II: Finite type classification, math/0208229.
– reference: B. Basso, A. Sever and P. Vieira, Spacetime and Flux Tube S-Matrices at Finite Coupling for N = 4 Supersymmetric Yang-Mills Theory, Phys. Rev. Lett.111 (2013) 091602 [arXiv:1303.1396] [INSPIRE].
– reference: A. Hodges, Eliminating spurious poles from gauge-theoretic amplitudes, JHEP05 (2013) 135 [arXiv:0905.1473] [INSPIRE].
– reference: J. Golden, A.J. McLeod, M. Spradlin and A. Volovich, The Sklyanin Bracket and Cluster Adjacency at All Multiplicity, JHEP03 (2019) 195 [arXiv:1902.11286] [INSPIRE].
– reference: L.J. Dixon, J.M. Drummond, M. von Hippel and J. Pennington, Hexagon functions and the three-loop remainder function, JHEP12 (2013) 049 [arXiv:1308.2276] [INSPIRE].
– reference: O. Steinmann, Wightman-Funktionen und retardierten Kommutatoren. II, Helv. Phys. Acta33 (1960) 347.
– reference: J. Bartels, A. Kormilitzin, L.N. Lipatov and A. Prygarin, BFKL approach and 2 → 5 maximally helicity violating amplitude inN\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{N} $$\end{document} = 4 super-Yang-Mills theory, Phys. Rev. D86 (2012) 065026 [arXiv:1112.6366] [INSPIRE].
– reference: H. Elvang and Y.-t. Huang, Scattering Amplitudes, arXiv:1308.1697 [INSPIRE].
– reference: N. Arkani-Hamed, T. Lam and M. Spradlin, Non-perturbative geometries for planarN\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{N} $$\end{document} = 4 SYM amplitudes, arXiv:1912.08222 [INSPIRE].
– reference: J. Elias Miró, A.L. Guerrieri, A. Hebbar, J. Penedones and P. Vieira, Flux Tube S-matrix Bootstrap, Phys. Rev. Lett.123 (2019) 221602 [arXiv:1906.08098] [INSPIRE].
– reference: C. Bercini, M. Fabri, A. Homrich and P. Vieira, S-matrix bootstrap: Supersymmetry, Z2, and Z4symmetry, Phys. Rev. D101 (2020) 045022 [arXiv:1909.06453] [INSPIRE].
– reference: Z. Bern, L.J. Dixon and V.A. Smirnov, Iteration of planar amplitudes in maximally supersymmetric Yang-Mills theory at three loops and beyond, Phys. Rev. D72 (2005) 085001 [hep-th/0505205] [INSPIRE].
– reference: J.M. Drummond, J. Henn, V.A. Smirnov and E. Sokatchev, Magic identities for conformal four-point integrals, JHEP01 (2007) 064 [hep-th/0607160] [INSPIRE].
– reference: B. Basso, L. Dixon, Y.-T. Liu and G. Papathanasiou, to appear.
– reference: F. Brown, Feynman amplitudes, coaction principle, and cosmic Galois group, Commun. Num. Theor. Phys.11 (2017) 453 [arXiv:1512.06409] [INSPIRE].
– reference: N. Henke and G. Papathanasiou, How tropical are seven- and eight-particle amplitudes?, JHEP08 (2020) 005 [arXiv:1912.08254] [INSPIRE].
– reference: L.J. Dixon, M. von Hippel and A.J. McLeod, The four-loop six-gluon NMHV ratio function, JHEP01 (2016) 053 [arXiv:1509.08127] [INSPIRE].
– reference: B. Basso, L.J. Dixon and G. Papathanasiou, Origin of the Six-Gluon Amplitude in PlanarN\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{N} $$\end{document} = 4 Supersymmetric Yang-Mills Theory, Phys. Rev. Lett.124 (2020) 161603 [arXiv:2001.05460] [INSPIRE].
– reference: J.M. Drummond, J. Henn, G.P. Korchemsky and E. Sokatchev, Conformal Ward identities for Wilson loops and a test of the duality with gluon amplitudes, Nucl. Phys. B826 (2010) 337 [arXiv:0712.1223] [INSPIRE].
– reference: V. Del Duca et al., The seven-gluon amplitude in multi-Regge kinematics beyond leading logarithmic accuracy, JHEP06 (2018) 116 [arXiv:1801.10605] [INSPIRE].
– reference: D.A. Kosower, R. Roiban and C. Vergu, The Six-Point NMHV amplitude in Maximally Supersymmetric Yang-Mills Theory, Phys. Rev. D83 (2011) 065018 [arXiv:1009.1376] [INSPIRE].
– reference: J. Bartels, L.N. Lipatov and A. Sabio Vera, BFKL Pomeron, Reggeized gluons and Bern-Dixon-Smirnov amplitudes, Phys. Rev. D80 (2009) 045002 [arXiv:0802.2065] [INSPIRE].
– reference: A.B. Goncharov, M. Spradlin, C. Vergu and A. Volovich, Classical Polylogarithms for Amplitudes and Wilson Loops, Phys. Rev. Lett.105 (2010) 151605 [arXiv:1006.5703] [INSPIRE].
– reference: J.M. Drummond, J. Henn, G.P. Korchemsky and E. Sokatchev, Hexagon Wilson loop = six-gluon MHV amplitude, Nucl. Phys. B815 (2009) 142 [arXiv:0803.1466] [INSPIRE].
– reference: J.L. Bourjaily, M. Volk and M. Von Hippel, Conformally Regulated Direct Integration of the Two-Loop Heptagon Remainder, JHEP02 (2020) 095 [arXiv:1912.05690] [INSPIRE].
– reference: E. Remiddi and J.A.M. Vermaseren, Harmonic polylogarithms, Int. J. Mod. Phys. A15 (2000) 725 [hep-ph/9905237] [INSPIRE].
– reference: L.J. Mason and D. Skinner, Dual Superconformal Invariance, Momentum Twistors and Grassmannians, JHEP11 (2009) 045 [arXiv:0909.0250] [INSPIRE].
– reference: B. Basso, A. Sever and P. Vieira, Space-time S-matrix and Flux-tube S-matrix III. The two-particle contributions, JHEP08 (2014) 085 [arXiv:1402.3307] [INSPIRE].
– reference: C. Duhr, H. Gangl and J.R. Rhodes, From polygons and symbols to polylogarithmic functions, JHEP10 (2012) 075 [arXiv:1110.0458] [INSPIRE].
– reference: J. Drummond, J. Foster, O. Gürdoğan and G. Papathanasiou, Cluster adjacency and the four-loop NMHV heptagon, JHEP03 (2019) 087 [arXiv:1812.04640] [INSPIRE].
– reference: M. Bullimore and D. Skinner, Descent Equations for Superamplitudes, arXiv:1112.1056 [INSPIRE].
– reference: J. Mago, A. Schreiber, M. Spradlin and A. Volovich, A Note on One-loop Cluster Adjacency in N = 4 SYM, arXiv:2005.07177 [INSPIRE].
– reference: L.J. Dixon, J. Drummond, T. Harrington, A.J. McLeod, G. Papathanasiou and M. Spradlin, Heptagons from the Steinmann Cluster Bootstrap, JHEP02 (2017) 137 [arXiv:1612.08976] [INSPIRE].
– reference: J. Drummond, J. Foster, O. Gürdoğan and C. Kalousios, Tropical fans, scattering equations and amplitudes, arXiv:2002.04624 [INSPIRE].
– reference: J.M. Drummond, J. Henn, G.P. Korchemsky and E. Sokatchev, Dual superconformal symmetry of scattering amplitudes in N = 4 super-Yang-Mills theory, Nucl. Phys. B828 (2010) 317 [arXiv:0807.1095] [INSPIRE].
– reference: S. Caron-Huot, L.J. Dixon, A. McLeod and M. von Hippel, Bootstrapping a Five-Loop Amplitude Using Steinmann Relations, Phys. Rev. Lett.117 (2016) 241601 [arXiv:1609.00669] [INSPIRE].
– reference: J. Bartels, Analytic structure of the 8-point scattering amplitude in multi-Regge kinematics in N = 4 SYM: conformal Regge pole and Regge cut contributions, arXiv:2005.08818 [INSPIRE].
– reference: B. Basso, A. Sever and P. Vieira, Space-time S-matrix and Flux tube S-matrix II. Extracting and Matching Data, JHEP01 (2014) 008 [arXiv:1306.2058] [INSPIRE].
– reference: O. Gürdoğan and M. Parisi, Cluster patterns in Landau and Leading Singularities via the Amplituhedron, arXiv:2005.07154 [INSPIRE].
– reference: F. Brown, The Massless higher-loop two-point function, Commun. Math. Phys.287 (2009) 925 [arXiv:0804.1660] [INSPIRE].
– ident: 13933_CR60
  doi: 10.1007/JHEP08(2014)154
– ident: 13933_CR3
  doi: 10.1103/PhysRevLett.123.221602
– ident: 13933_CR14
  doi: 10.1007/JHEP12(2011)066
– ident: 13933_CR58
  doi: 10.1007/JHEP07(2012)174
– ident: 13933_CR33
  doi: 10.1007/JHEP10(2012)075
– ident: 13933_CR43
  doi: 10.1007/JHEP07(2018)170
– ident: 13933_CR13
  doi: 10.1016/j.nuclphysb.2009.11.022
– ident: 13933_CR42
  doi: 10.1103/PhysRevLett.117.241601
– ident: 13933_CR74
  doi: 10.1142/S0217751X00000367
– ident: 13933_CR20
  doi: 10.1007/JHEP11(2011)023
– ident: 13933_CR62
  doi: 10.1007/JHEP02(2020)095
– ident: 13933_CR81
– ident: 13933_CR10
  doi: 10.1088/1126-6708/2007/06/064
– ident: 13933_CR89
  doi: 10.1103/PhysRevD.86.065026
– ident: 13933_CR34
  doi: 10.1007/JHEP08(2012)043
– ident: 13933_CR1
– ident: 13933_CR77
  doi: 10.1088/1126-6708/2009/11/045
– ident: 13933_CR11
  doi: 10.1088/1126-6708/2007/11/068
– ident: 13933_CR44
  doi: 10.1007/JHEP09(2019)061
– ident: 13933_CR75
– ident: 13933_CR86
  doi: 10.1103/PhysRevLett.111.091602
– ident: 13933_CR37
– ident: 13933_CR54
  doi: 10.1007/JHEP08(2020)005
– ident: 13933_CR66
  doi: 10.1103/PhysRevLett.124.161602
– ident: 13933_CR87
  doi: 10.1007/JHEP08(2014)085
– ident: 13933_CR52
– ident: 13933_CR80
  doi: 10.1007/JHEP07(2011)064
– ident: 13933_CR7
  doi: 10.1088/1126-6708/2007/01/064
– ident: 13933_CR29
  doi: 10.1017/CBO9781316091548
– ident: 13933_CR72
  doi: 10.4310/CNTP.2017.v11.n3.a1
– ident: 13933_CR22
  doi: 10.1007/JHEP03(2015)072
– ident: 13933_CR36
  doi: 10.1007/JHEP01(2014)091
– ident: 13933_CR18
  doi: 10.1103/PhysRevD.78.045007
– ident: 13933_CR19
  doi: 10.1016/j.nuclphysb.2009.02.015
– ident: 13933_CR40
– ident: 13933_CR25
  doi: 10.1007/JHEP01(2012)024
– ident: 13933_CR69
  doi: 10.1088/1742-5468/2007/01/P01021
– ident: 13933_CR15
  doi: 10.1103/PhysRevD.72.085001
– ident: 13933_CR30
– ident: 13933_CR55
– ident: 13933_CR63
  doi: 10.1007/JHEP06(2014)116
– ident: 13933_CR4
  doi: 10.1007/JHEP04(2020)142
– ident: 13933_CR76
– ident: 13933_CR84
  doi: 10.22323/1.211.0049
– ident: 13933_CR56
  doi: 10.1007/JHEP08(2019)016
– ident: 13933_CR32
  doi: 10.24033/asens.2099
– ident: 13933_CR38
– ident: 13933_CR45
  doi: 10.1103/PhysRevLett.120.161601
– ident: 13933_CR59
  doi: 10.1007/JHEP02(2017)137
– ident: 13933_CR68
  doi: 10.1103/PhysRevLett.124.161603
– ident: 13933_CR17
  doi: 10.1103/PhysRevD.80.045002
– ident: 13933_CR79
  doi: 10.1007/JHEP01(2014)008
– ident: 13933_CR12
  doi: 10.1016/j.nuclphysb.2009.10.013
– ident: 13933_CR16
  doi: 10.1016/j.physletb.2008.03.032
– ident: 13933_CR39
  doi: 10.1007/JHEP12(2011)011
– ident: 13933_CR8
  doi: 10.1103/PhysRevD.75.085010
– ident: 13933_CR85
  doi: 10.1007/JHEP08(2019)135
– ident: 13933_CR49
– ident: 13933_CR73
  doi: 10.4310/CNTP.2018.v12.n2.a4
– ident: 13933_CR2
  doi: 10.1007/JHEP11(2017)143
– ident: 13933_CR41
– ident: 13933_CR82
  doi: 10.1007/JHEP08(2016)131
– ident: 13933_CR31
– ident: 13933_CR35
  doi: 10.1103/PhysRevLett.105.151605
– ident: 13933_CR47
  doi: 10.1007/JHEP03(2019)087
– ident: 13933_CR83
  doi: 10.1007/s00220-009-0740-5
– ident: 13933_CR50
– ident: 13933_CR24
  doi: 10.1103/PhysRevD.83.065018
– ident: 13933_CR88
  doi: 10.1007/JHEP06(2018)116
– ident: 13933_CR65
  doi: 10.1007/JHEP01(2015)027
– ident: 13933_CR67
– ident: 13933_CR23
  doi: 10.1016/j.nuclphysb.2012.12.009
– ident: 13933_CR21
  doi: 10.1007/JHEP12(2013)049
– ident: 13933_CR9
  doi: 10.1103/PhysRevD.76.125020
– ident: 13933_CR61
  doi: 10.1007/JHEP01(2019)017
– ident: 13933_CR71
  doi: 10.4310/CNTP.2017.v11.n3.a3
– ident: 13933_CR70
  doi: 10.4310/CNTP.2014.v8.n4.a1
– ident: 13933_CR48
  doi: 10.1007/JHEP03(2019)195
– ident: 13933_CR78
– ident: 13933_CR26
  doi: 10.1007/JHEP10(2014)065
– ident: 13933_CR51
  doi: 10.1007/JHEP04(2020)146
– ident: 13933_CR46
  doi: 10.1007/JHEP03(2019)086
– ident: 13933_CR92
  doi: 10.1007/JHEP08(2016)152
– ident: 13933_CR64
  doi: 10.1007/JHEP09(2011)032
– ident: 13933_CR6
– ident: 13933_CR28
  doi: 10.1007/JHEP05(2013)135
– ident: 13933_CR5
  doi: 10.1103/PhysRevD.101.045022
– ident: 13933_CR91
  doi: 10.1016/0550-3213(94)90179-1
– ident: 13933_CR27
  doi: 10.1007/JHEP01(2016)053
– ident: 13933_CR90
  doi: 10.1016/j.nuclphysb.2016.12.016
– ident: 13933_CR57
– ident: 13933_CR53
SSID ssj0015190
Score 2.5614974
Snippet A bstract Seven-point amplitudes in planar N = 4 super-Yang-Mills theory have previously been constructed through four loops using the Steinmann cluster...
Seven-point amplitudes in planar $$ \mathcal{N} $$ N = 4 super-Yang-Mills theory have previously been constructed through four loops using the Steinmann...
Seven-point amplitudes in planar $ \mathcal{N} $ = 4 super-Yang-Mills theory have previously been constructed through four loops using the Steinmann cluster...
Abstract Seven-point amplitudes in planar N $$ \mathcal{N} $$ = 4 super-Yang-Mills theory have previously been constructed through four loops using the...
SourceID doaj
osti
crossref
springer
SourceType Open Website
Open Access Repository
Enrichment Source
Index Database
Publisher
StartPage 1
SubjectTerms 1/N Expansion
Classical and Quantum Gravitation
Elementary Particles
Physics
Physics and Astronomy
PHYSICS OF ELEMENTARY PARTICLES AND FIELDS
Quantum Field Theories
Quantum Field Theory
Quantum Physics
Regular Article - Theoretical Physics
Relativity Theory
Scattering Amplitudes
String Theory
Supersymmetric Gauge Theory
SummonAdditionalLinks – databaseName: Springer Nature OA Free Journals
  dbid: C24
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8QwEA6LIngRn7i-6EFh91BJmrRpjrq4LIuKhxX2Fpo0UUHbxa0H_70z2VYQ8eCpoZ0pzWSmM2FmvhBybr0REGaUsU1UEQvpWZxn1MRp4cFd4mEPHruR7-6zyaOYztN5j7CuFyZUu3cpyfCn7prdppObB0YHsFmnQ4qd0-spjFGpR9jg0CYOICChHYLPb6Yfzidg9MOlBlv6lQcN7mW8TbbauDC6Wi3kDum5apdshPpMu9wjF7cvHguUo2e3wDxSFS0_30z9uoyaOkLfFNRnn8zGN7PRJG5POIgtBEJNrAxTTniwqlT5zNOilKWwShY0d4J7eGi8sQWXwmQ2d1J6ozJWspILk6c5PyBrVV25QxJZkcJexCXcFFTYpDRZqZJSWg7bIW7ztE8uu5lr26J_4yEUr7rDLV6JSqOoNIiqTwbfDIsV8MXfpNcoym8yRKwON-r3J90agOaGO-VQYagTjFnjJDMOuBOYTKHgJce4EBocP6LXWizzsY1mMoOARvXJsFsf3RrZ8q_POfoH7THZxGGozstOyFrz_uFOIcpozFnQqy-k_cjo
  priority: 102
  providerName: Springer Nature
Title Lifting heptagon symbols to functions
URI https://link.springer.com/article/10.1007/JHEP10(2020)031
https://www.osti.gov/servlets/purl/1769109
https://doaj.org/article/3b3e9eecca0e411cbe71be0312d34a91
Volume 2020
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NS8MwFA86ELyInzin0oPCdqhLmjRpjnM4x1Dx4GC30KQJCtoNVw_-9770YygyvHhJoU2b1_fBe4-8_B5CF8ZpBmFGFppIpiETjoQJxzqMUwfu0jd7cP408v0DH0_ZZBbPvrX68jVhFTxwxbg-1dRK6xfClhFitBVEW1DFKKMsLc-tR-DzmmSq3j-AuAQ3QD5Y9Cfjm0eCu5Do4x6m5IcPKqH64TIHk_q1HVp6mdEu2qnDw2BQkbWHNmy-j7bKMk2zPECXdy_O1ykHz3bht5PyYPn5puevy6CYB95FlVp0iJ5GN0_DcVg3OggNxENFKDWRljkwrlg67nCaiYwZKVKcWEYdPNROm5QKprlJrBBOS04yAhzQSZzQI9TK57k9RoFhMaQkNqI6xcxEmeaZjDJhKGRF1CRxG101f65MDQLue1G8qga-uGKV8qxSwKo26q5eWFT4F-unXntWrqZ54OryBohT1eJUf4mzjTpeEAr8vwexNb7axxSKCA5xjWyjXiMfVdvach05J_9BTgdt---V1Xv8FLWK9w97BlFIoc_RZjK6hXEYMT_y4XmpgjBOo8EX1aXakA
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEA6iiF7EJ9b62INCPawmm2yyOWqx1FrFQwVvYZNNUNBW7Hrw3zuz3Ra09OBpITuzbObBzDCTL4ScumAFpBlF7BKdx0IFFmeS2jjNA4RLvOwh4Gnk-wfZfRK95_S5BknCszB_-veXve7NI6MtKNHpOcXz0isCymSc3WvL9qxdAGkIneL2zDP9CjkVMj88RuBBc93PKqh0NslGnQ1GVxP1bZElP9wmq9VUphvvkLP-a8Cx5OjFf2D3aBiNv9_t6G0claMII1JlNLtk0LkZtLtxfa9B7CD9KWNtmfYigC-lOshA80IVwmmV08wLHuClDdblXAkrXeaVClZLVrCCC5ulGd8jy8PR0O-TyIkUKhCfcJtT4ZLCykInhXIciiDusrRBLqY7N67G_MarJ97MFK14IiqDojIgqgZpzRg-JnAXi0mvUZQzMsSprhZAfaY2e8Mt99qjmVAvGHPWK2Y9cCewmVzDR5qoCAPhHjFrHQ73uNIwJSGN0Q1yPtWPqV1rvOh3Dv5Be0LWuoP7vunfPtw1yTouV_N58pAsl59f_gjyjNIeVzb2A20Cx_k
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8QwEA6iKF7EJ67PHhT0UE2aNGmOurqsTzwoeAvNS4W1XWw9-O-ddNsFEQ-eCmlSmnkw3zCTLwgdGK8ZwAwbm0TmMROexBnHOk5zD-EyXPbgw2nku3s-fGLXz-lz25tTdd3uXUlycqYhsDQV9enY-q6qf3o9vHwg-AgSd3yMwynqOUhTmiptn_enRQQAJ7hj8_m96Ecgavj64VGCX_2qiTahZrCMllqMGJ1NlLqCZlyxiuabXk1TraHD2zcfmpWjVzcONaUiqr7edTmqorqMQpxqTGkdPQ4uH_vDuL3tIDYAiupYaiId8-BhqfTc49wKy4wUOc4cox5eaq9NTgXT3GROCK8lJ5ZYynSWZnQDzRZl4TZRZFgKeYlLqM4xM4nV3MrECkMhNaImS3vopNu5Mi0TeLiQYqQ6DuOJqFQQlQJR9dDRdMF4QoLx99TzIMrptMBe3QyUHy-qdQZFNXXSBePBjhFitBNEO1idwGZyCR_ZDopQAAICk60JLT-mVkRwADeyh447_ajW4aq_fmfrH3P30cLDxUDdXt3fbKPFMNo07fEdNFt_fLpdAB-13mtM7Bt8SdBA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Lifting+heptagon+symbols+to+functions&rft.jtitle=The+journal+of+high+energy+physics&rft.au=Dixon%2C+Lance+J.&rft.au=Liu%2C+Yu-Ting&rft.date=2020-10-06&rft.issn=1029-8479&rft.eissn=1029-8479&rft.volume=2020&rft.issue=10&rft_id=info:doi/10.1007%2FJHEP10%282020%29031&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_JHEP10_2020_031
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1029-8479&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1029-8479&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1029-8479&client=summon