Lifting heptagon symbols to functions
A bstract Seven-point amplitudes in planar N = 4 super-Yang-Mills theory have previously been constructed through four loops using the Steinmann cluster bootstrap, but only at the level of the symbol. We promote these symbols to actual functions, by specifying their first derivatives and boundary co...
Saved in:
Published in | The journal of high energy physics Vol. 2020; no. 10; pp. 1 - 45 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Berlin/Heidelberg
Springer Berlin Heidelberg
06.10.2020
Springer Berlin SpringerOpen |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | A
bstract
Seven-point amplitudes in planar
N
= 4 super-Yang-Mills theory have previously been constructed through four loops using the Steinmann cluster bootstrap, but only at the level of the symbol. We promote these symbols to actual functions, by specifying their first derivatives and boundary conditions on a particular two-dimensional surface. To do this, we impose branch-cut conditions and construct the entire heptagon function space through weight six. We plot the amplitudes on a few lines in the bulk Euclidean region, and explore the properties of the heptagon function space under the coaction associated with multiple polylogarithms. |
---|---|
AbstractList | Seven-point amplitudes in planar
$$ \mathcal{N} $$
N
= 4 super-Yang-Mills theory have previously been constructed through four loops using the Steinmann cluster bootstrap, but only at the level of the symbol. We promote these symbols to actual functions, by specifying their first derivatives and boundary conditions on a particular two-dimensional surface. To do this, we impose branch-cut conditions and construct the entire heptagon function space through weight six. We plot the amplitudes on a few lines in the bulk Euclidean region, and explore the properties of the heptagon function space under the coaction associated with multiple polylogarithms. Seven-point amplitudes in planar $ \mathcal{N} $ = 4 super-Yang-Mills theory have previously been constructed through four loops using the Steinmann cluster bootstrap, but only at the level of the symbol. In this work, we promote these symbols to actual functions, by specifying their first derivatives and boundary conditions on a particular two-dimensional surface. To do this, we impose branch-cut conditions and construct the entire heptagon function space through weight six. We plot the amplitudes on a few lines in the bulk Euclidean region, and explore the properties of the heptagon function space under the coaction associated with multiple polylogarithms. A bstract Seven-point amplitudes in planar N = 4 super-Yang-Mills theory have previously been constructed through four loops using the Steinmann cluster bootstrap, but only at the level of the symbol. We promote these symbols to actual functions, by specifying their first derivatives and boundary conditions on a particular two-dimensional surface. To do this, we impose branch-cut conditions and construct the entire heptagon function space through weight six. We plot the amplitudes on a few lines in the bulk Euclidean region, and explore the properties of the heptagon function space under the coaction associated with multiple polylogarithms. Abstract Seven-point amplitudes in planar N $$ \mathcal{N} $$ = 4 super-Yang-Mills theory have previously been constructed through four loops using the Steinmann cluster bootstrap, but only at the level of the symbol. We promote these symbols to actual functions, by specifying their first derivatives and boundary conditions on a particular two-dimensional surface. To do this, we impose branch-cut conditions and construct the entire heptagon function space through weight six. We plot the amplitudes on a few lines in the bulk Euclidean region, and explore the properties of the heptagon function space under the coaction associated with multiple polylogarithms. |
ArticleNumber | 31 |
Author | Liu, Yu-Ting Dixon, Lance J. |
Author_xml | – sequence: 1 givenname: Lance J. orcidid: 0000-0003-4985-7518 surname: Dixon fullname: Dixon, Lance J. organization: SLAC National Accelerator Laboratory, Stanford University – sequence: 2 givenname: Yu-Ting orcidid: 0000-0003-1978-9200 surname: Liu fullname: Liu, Yu-Ting email: aytliu@stanford.edu organization: SLAC National Accelerator Laboratory, Stanford University |
BackLink | https://www.osti.gov/servlets/purl/1769109$$D View this record in Osti.gov |
BookMark | eNp1kEFLAzEQhYMoWKtnr0UQ9FCd2d1uNkeRaisFPXgPSXZSU2oiSTz4701dBRE8JSTvezPvHbF9HzwxdopwhQD8-mExf0K4qKCCS6hxj40QKjHtGi72f90P2VFKGwCcoYARO185m51fT17oLat18JP08arDNk1ymNh3b7ILPh2zA6u2iU6-zzF7vps_3y6mq8f75e3NamoabPNUaBTU2K6uZsK2FlTP-8YIrqCjprblU1ttVM0b3ZqOOLdatNhjXze6m3X1mC0H2z6ojXyL7lXFDxmUk18PIa6litmZLcla1ySIjFFADaLRxFFTyV0VMyWweJ0NXiFlJ5NxmcyLCd6TyRJ5KxBEEc0GkYkhpUhWFp3aRc5Rua1EkLtu5dCt3HUry4zCXf_hfpb9n4CBSEXp1xTlJrxHX8r8F_kEMt6Lhg |
CitedBy_id | crossref_primary_10_1007_JHEP02_2023_083 crossref_primary_10_1007_JHEP09_2021_007 crossref_primary_10_1007_JHEP01_2022_021 crossref_primary_10_1007_JHEP03_2025_009 crossref_primary_10_1007_JHEP09_2022_131 crossref_primary_10_1007_JHEP10_2021_084 crossref_primary_10_1103_PhysRevLett_127_151602 crossref_primary_10_1103_PhysRevLett_131_041601 crossref_primary_10_1103_PhysRevLett_130_111601 crossref_primary_10_1007_JHEP01_2025_197 crossref_primary_10_1007_JHEP01_2025_012 crossref_primary_10_1007_JHEP08_2022_168 crossref_primary_10_1103_PhysRevLett_130_111602 crossref_primary_10_1103_PhysRevLett_127_251603 crossref_primary_10_1007_JHEP01_2022_073 crossref_primary_10_1007_JHEP09_2023_121 crossref_primary_10_1007_JHEP07_2022_153 crossref_primary_10_1088_1572_9494_ada916 crossref_primary_10_1007_JHEP07_2024_024 crossref_primary_10_1007_JHEP03_2022_126 crossref_primary_10_1007_JHEP05_2023_236 crossref_primary_10_1007_s11433_023_2239_8 crossref_primary_10_1088_1751_8121_ac845c crossref_primary_10_1007_JHEP01_2024_069 crossref_primary_10_1007_JHEP09_2022_161 crossref_primary_10_1007_JHEP12_2021_110 crossref_primary_10_1007_JHEP04_2021_276 crossref_primary_10_1007_JHEP06_2021_119 crossref_primary_10_1007_JHEP12_2021_218 crossref_primary_10_1088_1751_8121_ac7e8e crossref_primary_10_1007_JHEP03_2021_278 crossref_primary_10_1007_JHEP06_2021_142 crossref_primary_10_1007_JHEP12_2022_158 crossref_primary_10_1103_PhysRevLett_126_231601 crossref_primary_10_1007_JHEP04_2021_222 crossref_primary_10_1103_PhysRevLett_126_091603 crossref_primary_10_1007_JHEP04_2021_147 crossref_primary_10_1007_JHEP12_2020_167 crossref_primary_10_1007_JHEP02_2023_065 crossref_primary_10_1007_JHEP10_2021_007 |
Cites_doi | 10.1007/JHEP08(2014)154 10.1103/PhysRevLett.123.221602 10.1007/JHEP12(2011)066 10.1007/JHEP07(2012)174 10.1007/JHEP10(2012)075 10.1007/JHEP07(2018)170 10.1016/j.nuclphysb.2009.11.022 10.1103/PhysRevLett.117.241601 10.1142/S0217751X00000367 10.1007/JHEP11(2011)023 10.1007/JHEP02(2020)095 10.1088/1126-6708/2007/06/064 10.1103/PhysRevD.86.065026 10.1007/JHEP08(2012)043 10.1088/1126-6708/2009/11/045 10.1088/1126-6708/2007/11/068 10.1007/JHEP09(2019)061 10.1103/PhysRevLett.111.091602 10.1007/JHEP08(2020)005 10.1103/PhysRevLett.124.161602 10.1007/JHEP08(2014)085 10.1007/JHEP07(2011)064 10.1088/1126-6708/2007/01/064 10.1017/CBO9781316091548 10.4310/CNTP.2017.v11.n3.a1 10.1007/JHEP03(2015)072 10.1007/JHEP01(2014)091 10.1103/PhysRevD.78.045007 10.1016/j.nuclphysb.2009.02.015 10.1007/JHEP01(2012)024 10.1088/1742-5468/2007/01/P01021 10.1103/PhysRevD.72.085001 10.1007/JHEP06(2014)116 10.1007/JHEP04(2020)142 10.22323/1.211.0049 10.1007/JHEP08(2019)016 10.24033/asens.2099 10.1103/PhysRevLett.120.161601 10.1007/JHEP02(2017)137 10.1103/PhysRevLett.124.161603 10.1103/PhysRevD.80.045002 10.1007/JHEP01(2014)008 10.1016/j.nuclphysb.2009.10.013 10.1016/j.physletb.2008.03.032 10.1007/JHEP12(2011)011 10.1103/PhysRevD.75.085010 10.1007/JHEP08(2019)135 10.4310/CNTP.2018.v12.n2.a4 10.1007/JHEP11(2017)143 10.1007/JHEP08(2016)131 10.1103/PhysRevLett.105.151605 10.1007/JHEP03(2019)087 10.1007/s00220-009-0740-5 10.1103/PhysRevD.83.065018 10.1007/JHEP06(2018)116 10.1007/JHEP01(2015)027 10.1016/j.nuclphysb.2012.12.009 10.1007/JHEP12(2013)049 10.1103/PhysRevD.76.125020 10.1007/JHEP01(2019)017 10.4310/CNTP.2017.v11.n3.a3 10.4310/CNTP.2014.v8.n4.a1 10.1007/JHEP03(2019)195 10.1007/JHEP10(2014)065 10.1007/JHEP04(2020)146 10.1007/JHEP03(2019)086 10.1007/JHEP08(2016)152 10.1007/JHEP09(2011)032 10.1007/JHEP05(2013)135 10.1103/PhysRevD.101.045022 10.1016/0550-3213(94)90179-1 10.1007/JHEP01(2016)053 10.1016/j.nuclphysb.2016.12.016 |
ContentType | Journal Article |
Copyright | The Author(s) 2020 |
Copyright_xml | – notice: The Author(s) 2020 |
CorporateAuthor | SLAC National Accelerator Laboratory (SLAC), Menlo Park, CA (United States) |
CorporateAuthor_xml | – name: SLAC National Accelerator Laboratory (SLAC), Menlo Park, CA (United States) |
DBID | C6C AAYXX CITATION OIOZB OTOTI DOA |
DOI | 10.1007/JHEP10(2020)031 |
DatabaseName | Springer Nature OA Free Journals CrossRef OSTI.GOV - Hybrid OSTI.GOV DOAJ: Directory of Open Access Journals |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics |
EISSN | 1029-8479 |
EndPage | 45 |
ExternalDocumentID | oai_doaj_org_article_3b3e9eecca0e411cbe71be0312d34a91 1769109 10_1007_JHEP10_2020_031 |
GroupedDBID | -5F -5G -A0 -BR 0R~ 0VY 199 1N0 30V 4.4 408 40D 5GY 5VS 8FE 8FG 8TC 8UJ 95. AAFWJ AAKKN ABEEZ ACACY ACGFS ACHIP ACREN ACULB ADBBV ADINQ AEGXH AENEX AFGXO AFKRA AFPKN AFWTZ AHBYD AHYZX AIBLX ALMA_UNASSIGNED_HOLDINGS AMKLP AMTXH AOAED ARAPS ASPBG ATQHT AVWKF AZFZN BCNDV BENPR BGLVJ C24 C6C CCPQU CS3 CSCUP DU5 EBS ER. FEDTE GQ6 GROUPED_DOAJ HCIFZ HF~ HLICF HMJXF HVGLF HZ~ IHE KOV LAP M~E N5L N9A NB0 O93 OK1 P62 P9T PIMPY PROAC R9I RO9 RSV S27 S3B SOJ SPH T13 TUS U2A VC2 VSI WK8 XPP Z45 ZMT 02O 1JI 1WK 2VQ 5ZI AAGCD AAGCF AAIAL AAJIO AALHV AARHV AATNI AAYXX AAYZH ABFSG ABTEG ACAFW ACARI ACBXY ACSTC ADKPE ADRFC AEFHF AEJGL AERVB AETNG AEZWR AFHIU AFLOW AGJBK AGQPQ AHSBF AHSEE AHWEU AIXLP AIYBF AKPSB AMVHM ARNYC BAPOH BBWZM BGNMA CAG CITATION CJUJL COF CRLBU EDWGO EJD EMSAF EPQRW EQZZN H13 IJHAN IOP IZVLO JCGBZ KOT M45 M4Y NT- NT. NU0 O9- PHGZM PHGZT PJBAE Q02 R4D RIN RKQ RNS ROL RPA S1Z S3P SY9 T37 AAYZJ AHBXF OIOZB OTOTI PQGLB PUEGO |
ID | FETCH-LOGICAL-c416t-9b19e4f83259f6f0ad7d4c97a08e43f19ebfbca374b6c8e77fb961d1d34b8583 |
IEDL.DBID | DOA |
ISSN | 1029-8479 |
IngestDate | Wed Aug 27 01:23:07 EDT 2025 Mon Jul 10 02:30:34 EDT 2023 Tue Jul 01 00:58:56 EDT 2025 Thu Apr 24 22:57:34 EDT 2025 Fri Feb 21 02:48:44 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 10 |
Keywords | 1 Scattering Amplitudes Expansion Supersymmetric Gauge Theory |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c416t-9b19e4f83259f6f0ad7d4c97a08e43f19ebfbca374b6c8e77fb961d1d34b8583 |
Notes | USDOE Office of Science (SC), Basic Energy Sciences (BES) AC02-76SF00515 |
ORCID | 0000-0003-4985-7518 0000-0003-1978-9200 0000000349857518 0000000319789200 |
OpenAccessLink | https://doaj.org/article/3b3e9eecca0e411cbe71be0312d34a91 |
PageCount | 45 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_3b3e9eecca0e411cbe71be0312d34a91 osti_scitechconnect_1769109 crossref_citationtrail_10_1007_JHEP10_2020_031 crossref_primary_10_1007_JHEP10_2020_031 springer_journals_10_1007_JHEP10_2020_031 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-10-06 |
PublicationDateYYYYMMDD | 2020-10-06 |
PublicationDate_xml | – month: 10 year: 2020 text: 2020-10-06 day: 06 |
PublicationDecade | 2020 |
PublicationPlace | Berlin/Heidelberg |
PublicationPlace_xml | – name: Berlin/Heidelberg – name: United States |
PublicationTitle | The journal of high energy physics |
PublicationTitleAbbrev | J. High Energ. Phys |
PublicationYear | 2020 |
Publisher | Springer Berlin Heidelberg Springer Berlin SpringerOpen |
Publisher_xml | – name: Springer Berlin Heidelberg – name: Springer Berlin – name: SpringerOpen |
References | F. Brown and C. Duhr, A double integral of dlog forms which is not polylogarithmic, 6, 2020 [arXiv:2006.09413] [INSPIRE]. N. Beisert, B. Eden and M. Staudacher, Transcendentality and Crossing, J. Stat. Mech.0701 (2007) P01021 [hep-th/0610251] [INSPIRE]. J. Bartels, Analytic structure of the 8-point scattering amplitude in multi-Regge kinematics in N = 4 SYM: conformal Regge pole and Regge cut contributions, arXiv:2005.08818 [INSPIRE]. M.F. Paulos, J. Penedones, J. Toledo, B.C. van Rees and P. Vieira, The S-matrix bootstrap II: two dimensional amplitudes, JHEP11 (2017) 143 [arXiv:1607.06110] [INSPIRE]. L.J. Dixon, J.M. Drummond, M. von Hippel and J. Pennington, Hexagon functions and the three-loop remainder function, JHEP12 (2013) 049 [arXiv:1308.2276] [INSPIRE]. A.B. Goncharov, M. Spradlin, C. Vergu and A. Volovich, Classical Polylogarithms for Amplitudes and Wilson Loops, Phys. Rev. Lett.105 (2010) 151605 [arXiv:1006.5703] [INSPIRE]. J. Drummond, J. Foster, O. Gürdogan and C. Kalousios, Algebraic singularities of scattering amplitudes from tropical geometry, arXiv:1912.08217 [INSPIRE]. S. Caron-Huot et al., The Steinmann Cluster Bootstrap for N = 4 Super Yang-Mills Amplitudes, PoSCORFU2019 (2020) 003 [arXiv:2005.06735] [INSPIRE]. N. Arkani-Hamed, T. Lam and M. Spradlin, Non-perturbative geometries for planarN\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{N} $$\end{document} = 4 SYM amplitudes, arXiv:1912.08222 [INSPIRE]. S. Fomin and A. Zelevinsky, Cluster algebras II: Finite type classification, math/0208229. O. Steinmann, Über den Zusammenhang zwischen den Wightmanfunktionen und der retardierten Kommutatoren, Helv. Phys. Acta33 (1960) 257. L.J. Dixon, J. Drummond, T. Harrington, A.J. McLeod, G. Papathanasiou and M. Spradlin, Heptagons from the Steinmann Cluster Bootstrap, JHEP02 (2017) 137 [arXiv:1612.08976] [INSPIRE]. S. Caron-Huot, L.J. Dixon, F. Dulat, M. Von Hippel, A.J. McLeod and G. Papathanasiou, The Cosmic Galois Group and Extended Steinmann Relations for PlanarN\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{N} $$\end{document} = 4 SYM Amplitudes, JHEP09 (2019) 061 [arXiv:1906.07116] [INSPIRE]. J. Golden, A.B. Goncharov, M. Spradlin, C. Vergu and A. Volovich, Motivic Amplitudes and Cluster Coordinates, JHEP01 (2014) 091 [arXiv:1305.1617] [INSPIRE]. J.M. Drummond, J. Henn, G.P. Korchemsky and E. Sokatchev, Conformal Ward identities for Wilson loops and a test of the duality with gluon amplitudes, Nucl. Phys. B826 (2010) 337 [arXiv:0712.1223] [INSPIRE]. N. Arkani-Hamed, J.L. Bourjaily, F. Cachazo, A.B. Goncharov, A. Postnikov and J. Trnka, Grassmannian Geometry of Scattering Amplitudes, Cambridge University Press (2016), [DOI] [arXiv:1212.5605] [INSPIRE]. J. Bartels, L.N. Lipatov and A. Sabio Vera, BFKL Pomeron, Reggeized gluons and Bern-Dixon-Smirnov amplitudes, Phys. Rev. D80 (2009) 045002 [arXiv:0802.2065] [INSPIRE]. B. Basso, A. Sever and P. Vieira, Spacetime and Flux Tube S-Matrices at Finite Coupling for N = 4 Supersymmetric Yang-Mills Theory, Phys. Rev. Lett.111 (2013) 091602 [arXiv:1303.1396] [INSPIRE]. Z. Bern, L.J. Dixon and V.A. Smirnov, Iteration of planar amplitudes in maximally supersymmetric Yang-Mills theory at three loops and beyond, Phys. Rev. D72 (2005) 085001 [hep-th/0505205] [INSPIRE]. L.J. Dixon and M. von Hippel, Bootstrapping an NMHV amplitude through three loops, JHEP10 (2014) 065 [arXiv:1408.1505] [INSPIRE]. V. Del Duca, C. Duhr and V.A. Smirnov, The One-Loop One-Mass Hexagon Integral in D = 6 Dimensions, JHEP07 (2011) 064 [arXiv:1105.1333] [INSPIRE]. J.M. Drummond, J. Henn, G.P. Korchemsky and E. Sokatchev, Generalized unitarity for N = 4 super-amplitudes, Nucl. Phys. B869 (2013) 452 [arXiv:0808.0491] [INSPIRE]. J.M. Drummond, J. Henn, G.P. Korchemsky and E. Sokatchev, Hexagon Wilson loop = six-gluon MHV amplitude, Nucl. Phys. B815 (2009) 142 [arXiv:0803.1466] [INSPIRE]. Z. Bern et al., The Two-Loop Six-Gluon MHV Amplitude in Maximally Supersymmetric Yang-Mills Theory, Phys. Rev. D78 (2008) 045007 [arXiv:0803.1465] [INSPIRE]. F.C.S. Brown, Multiple zeta values and periods of moduli spacesM¯0,nℝ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {\overline{\mathfrak{M}}}_{0,n}\left(\mathrm{\mathbb{R}}\right) $$\end{document}, Annales Sci. Ecole Norm. Sup.42 (2009) 371 [math/0606419] [INSPIRE]. L.F. Alday and J. Maldacena, Comments on gluon scattering amplitudes via AdS/CFT, JHEP11 (2007) 068 [arXiv:0710.1060] [INSPIRE]. D.A. Kosower, R. Roiban and C. Vergu, The Six-Point NMHV amplitude in Maximally Supersymmetric Yang-Mills Theory, Phys. Rev. D83 (2011) 065018 [arXiv:1009.1376] [INSPIRE]. S. Caron-Huot and S. He, Jumpstarting the All-Loop S-matrix of PlanarN\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{N} $$\end{document} = 4 Super Yang-Mills, JHEP07 (2012) 174 [arXiv:1112.1060] [INSPIRE]. V. Del Duca et al., The seven-gluon amplitude in multi-Regge kinematics beyond leading logarithmic accuracy, JHEP06 (2018) 116 [arXiv:1801.10605] [INSPIRE]. O. Steinmann, Wightman-Funktionen und retardierten Kommutatoren. II, Helv. Phys. Acta33 (1960) 347. Z. Bern, M. Czakon, L.J. Dixon, D.A. Kosower and V.A. Smirnov, The Four-Loop Planar Amplitude and Cusp Anomalous Dimension in Maximally Supersymmetric Yang-Mills Theory, Phys. Rev. D75 (2007) 085010 [hep-th/0610248] [INSPIRE]. B. Basso, A. Sever and P. Vieira, Space-time S-matrix and Flux tube S-matrix II. Extracting and Matching Data, JHEP01 (2014) 008 [arXiv:1306.2058] [INSPIRE]. C. Bercini, M. Fabri, A. Homrich and P. Vieira, S-matrix bootstrap: Supersymmetry, Z2, and Z4symmetry, Phys. Rev. D101 (2020) 045022 [arXiv:1909.06453] [INSPIRE]. L.J. Dixon, M. von Hippel and A.J. McLeod, The four-loop six-gluon NMHV ratio function, JHEP01 (2016) 053 [arXiv:1509.08127] [INSPIRE]. L. Córdova, Y. He, M. Kruczenski and P. Vieira, The O(N ) S-matrix Monolith, JHEP04 (2020) 142 [arXiv:1909.06495] [INSPIRE]. E. Panzer and O. Schnetz, The Galois coaction on 𝜙4periods, Commun. Num. Theor. Phys.11 (2017) 657 [arXiv:1603.04289] [INSPIRE]. J. Drummond, J. Foster and O. Gürdoğan, Cluster Adjacency Properties of Scattering Amplitudes in N = 4 Supersymmetric Yang-Mills Theory, Phys. Rev. Lett.120 (2018) 161601 [arXiv:1710.10953] [INSPIRE]. J. Golden and A.J. Mcleod, Cluster Algebras and the Subalgebra Constructibility of the Seven-Particle Remainder Function, JHEP01 (2019) 017 [arXiv:1810.12181] [INSPIRE]. O. Schnetz, Graphical functions and single-valued multiple polylogarithms, Commun. Num. Theor. Phys.08 (2014) 589 [arXiv:1302.6445] [INSPIRE]. J.M. Drummond, J. Henn, V.A. Smirnov and E. Sokatchev, Magic identities for conformal four-point integrals, JHEP01 (2007) 064 [hep-th/0607160] [INSPIRE]. J.M. Drummond, J. Henn, G.P. Korchemsky and E. Sokatchev, The hexagon Wilson loop and the BDS ansatz for the six-gluon amplitude, Phys. Lett. B662 (2008) 456 [arXiv:0712.4138] [INSPIRE]. B. Basso, L.J. Dixon and G. Papathanasiou, Origin of the Six-Gluon Amplitude in PlanarN\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{N} $$\end{document} = 4 Supersymmetric Yang-Mills Theory, Phys. Rev. Lett.124 (2020) 161603 [arXiv:2001.05460] [INSPIRE]. C. Duhr, Hopf algebras, coproducts and symbols: an application to Higgs boson amplitudes, JHEP08 (2012) 043 [arXiv:1203.0454] [INSPIRE]. S. Caron-Huot, L.J. Dixon, A. McLeod and M. von Hippel, Bootstrapping a Five-Loop Amplitude Using Steinmann Relations, Phys. Rev. Lett.117 (2016) 241601 [arXiv:1609.00669] [INSPIRE]. Z. Bern, J.J.M. Carrasco, H. Johansson and D.A. Kosower, Maximally supersymmetric planar Yang-Mills amplitudes at five loops, Phys. Rev. D76 (2007) 125020 [arXiv:0705.1864] [INSPIRE]. L.J. Dixon, J.M. Drummond and J.M. Henn, Analytic result for the two-loop six-point NMHV amplitude inN\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{N} $$\end{document} = 4 super Yang-Mills theory, JHEP01 (2012) 024 [arXiv:1111.1704] [INSPIRE]. L.J. Dixon, J.M. Drummond, C. Duhr and J. Pennington, The four-loop remainder function and multi-Regge behavior at NNLLA in planarN\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{N} $$\end{document} = 4 super-Yang-Mills theory, JHEP06 (2014) 116 [arXiv:1402.3300] [INSPIRE]. J. Bartels, A. Kormilitzin, L.N. Lipatov and A. Prygarin, BFKL approach and 2 → 5 maximally helicity violating amplitude inN\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{N} $$\end{document} = 4 super-Yang-Mills theory, Phys. Rev. D86 (2012) 065026 [arXiv:1112.6366] [INSPIRE]. L.J. Dixon, J.M. Drummond and J.M. Henn, Bootstrapping the three-loop hexagon, JHEP11 (2011) 02 13933_CR51 13933_CR50 13933_CR92 13933_CR11 13933_CR55 13933_CR10 13933_CR54 13933_CR53 13933_CR52 13933_CR15 13933_CR59 13933_CR14 13933_CR58 13933_CR13 13933_CR57 13933_CR12 13933_CR56 13933_CR19 13933_CR18 13933_CR17 13933_CR16 13933_CR91 13933_CR90 13933_CR62 13933_CR61 13933_CR60 13933_CR22 13933_CR66 13933_CR21 13933_CR65 13933_CR20 13933_CR64 13933_CR63 13933_CR26 13933_CR25 13933_CR69 13933_CR24 13933_CR68 13933_CR23 13933_CR67 13933_CR29 13933_CR28 13933_CR27 13933_CR73 13933_CR72 13933_CR71 13933_CR70 13933_CR33 13933_CR77 13933_CR32 13933_CR76 13933_CR31 13933_CR75 13933_CR30 13933_CR74 13933_CR37 13933_CR36 13933_CR35 13933_CR79 13933_CR34 13933_CR78 13933_CR39 13933_CR38 13933_CR9 13933_CR7 13933_CR8 13933_CR1 13933_CR40 13933_CR84 13933_CR2 13933_CR83 13933_CR82 13933_CR81 13933_CR5 13933_CR44 13933_CR88 13933_CR6 13933_CR43 13933_CR87 13933_CR3 13933_CR42 13933_CR86 13933_CR4 13933_CR41 13933_CR85 13933_CR48 13933_CR47 13933_CR46 13933_CR45 13933_CR89 13933_CR49 13933_CR80 |
References_xml | – reference: V. Del Duca, C. Duhr and V.A. Smirnov, The One-Loop One-Mass Hexagon Integral in D = 6 Dimensions, JHEP07 (2011) 064 [arXiv:1105.1333] [INSPIRE]. – reference: L.F. Alday and J. Maldacena, Comments on gluon scattering amplitudes via AdS/CFT, JHEP11 (2007) 068 [arXiv:0710.1060] [INSPIRE]. – reference: J. Golden, A.B. Goncharov, M. Spradlin, C. Vergu and A. Volovich, Motivic Amplitudes and Cluster Coordinates, JHEP01 (2014) 091 [arXiv:1305.1617] [INSPIRE]. – reference: R.J. Eden, P.V. Landshoff, D.I. Olive and J.C. Polkinghorne, The Analytic S-Matrix, Cambridge University Press (1966). – reference: F. Brown and C. Duhr, A double integral of dlog forms which is not polylogarithmic, 6, 2020 [arXiv:2006.09413] [INSPIRE]. – reference: J.M. Drummond, J. Henn, G.P. Korchemsky and E. Sokatchev, Generalized unitarity for N = 4 super-amplitudes, Nucl. Phys. B869 (2013) 452 [arXiv:0808.0491] [INSPIRE]. – reference: S. Caron-Huot, L.J. Dixon, F. Dulat, M. Von Hippel, A.J. McLeod and G. Papathanasiou, The Cosmic Galois Group and Extended Steinmann Relations for PlanarN\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{N} $$\end{document} = 4 SYM Amplitudes, JHEP09 (2019) 061 [arXiv:1906.07116] [INSPIRE]. – reference: L.J. Dixon, J.M. Drummond and J.M. Henn, Analytic result for the two-loop six-point NMHV amplitude inN\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{N} $$\end{document} = 4 super Yang-Mills theory, JHEP01 (2012) 024 [arXiv:1111.1704] [INSPIRE]. – reference: J. Broedel, M. Sprenger and A. Torres Orjuela, Towards single-valued polylogarithms in two variables for the seven-point remainder function in multi-Regge-kinematics, Nucl. Phys. B915 (2017) 394 [arXiv:1606.08411] [INSPIRE]. – reference: M.F. Paulos, J. Penedones, J. Toledo, B.C. van Rees and P. Vieira, The S-matrix bootstrap II: two dimensional amplitudes, JHEP11 (2017) 143 [arXiv:1607.06110] [INSPIRE]. – reference: L.F. Alday and J.M. Maldacena, Gluon scattering amplitudes at strong coupling, JHEP06 (2007) 064 [arXiv:0705.0303] [INSPIRE]. – reference: D. Gaiotto, J. Maldacena, A. Sever and P. Vieira, Pulling the straps of polygons, JHEP12 (2011) 011 [arXiv:1102.0062] [INSPIRE]. – reference: J. Drummond, J. Foster and O. Gürdoğan, Cluster adjacency beyond MHV, JHEP03 (2019) 086 [arXiv:1810.08149] [INSPIRE]. – reference: E. Panzer and O. Schnetz, The Galois coaction on 𝜙4periods, Commun. Num. Theor. Phys.11 (2017) 657 [arXiv:1603.04289] [INSPIRE]. – reference: F.C.S. Brown, Multiple zeta values and periods of moduli spacesM¯0,nℝ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {\overline{\mathfrak{M}}}_{0,n}\left(\mathrm{\mathbb{R}}\right) $$\end{document}, Annales Sci. Ecole Norm. Sup.42 (2009) 371 [math/0606419] [INSPIRE]. – reference: L.J. Dixon, J.M. Drummond and J.M. Henn, Bootstrapping the three-loop hexagon, JHEP11 (2011) 023 [arXiv:1108.4461] [INSPIRE]. – reference: C. Duhr, Hopf algebras, coproducts and symbols: an application to Higgs boson amplitudes, JHEP08 (2012) 043 [arXiv:1203.0454] [INSPIRE]. – reference: V. Del Duca et al., Multi-Regge kinematics and the moduli space of Riemann spheres with marked points, JHEP08 (2016) 152 [arXiv:1606.08807] [INSPIRE]. – reference: L.J. Dixon, J.M. Drummond, C. Duhr and J. Pennington, The four-loop remainder function and multi-Regge behavior at NNLLA in planarN\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{N} $$\end{document} = 4 super-Yang-Mills theory, JHEP06 (2014) 116 [arXiv:1402.3300] [INSPIRE]. – reference: J. Drummond, J. Foster, O. Gürdogan and C. Kalousios, Tropical Grassmannians, cluster algebras and scattering amplitudes, JHEP04 (2020) 146 [arXiv:1907.01053] [INSPIRE]. – reference: Z. Bern, J.J.M. Carrasco, H. Johansson and D.A. Kosower, Maximally supersymmetric planar Yang-Mills amplitudes at five loops, Phys. Rev. D76 (2007) 125020 [arXiv:0705.1864] [INSPIRE]. – reference: J. Golden and M. Spradlin, An analytic result for the two-loop seven-point MHV amplitude inN\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{N} $$\end{document} = 4 SYM, JHEP08 (2014) 154 [arXiv:1406.2055] [INSPIRE]. – reference: Z. Bern, M. Czakon, L.J. Dixon, D.A. Kosower and V.A. Smirnov, The Four-Loop Planar Amplitude and Cusp Anomalous Dimension in Maximally Supersymmetric Yang-Mills Theory, Phys. Rev. D75 (2007) 085010 [hep-th/0610248] [INSPIRE]. – reference: O. Schnetz, Graphical functions and single-valued multiple polylogarithms, Commun. Num. Theor. Phys.08 (2014) 589 [arXiv:1302.6445] [INSPIRE]. – reference: C. Duhr and F. Dulat, PolyLogTools — polylogs for the masses, JHEP08 (2019) 135 [arXiv:1904.07279] [INSPIRE]. – reference: S. Caron-Huot, L.J. Dixon, F. Dulat, M. von Hippel, A.J. McLeod and G. Papathanasiou, Six-Gluon amplitudes in planarN\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{N} $$\end{document} = 4 super-Yang-Mills theory at six and seven loops, JHEP08 (2019) 016 [arXiv:1903.10890] [INSPIRE]. – reference: S. Caron-Huot, Superconformal symmetry and two-loop amplitudes in planar N = 4 super Yang-Mills, JHEP12 (2011) 066 [arXiv:1105.5606] [INSPIRE]. – reference: O. Schnetz, The Galois coaction on the electron anomalous magnetic moment, Commun. Num. Theor. Phys.12 (2018) 335 [arXiv:1711.05118] [INSPIRE]. – reference: J.M. Drummond, G. Papathanasiou and M. Spradlin, A Symbol of Uniqueness: The Cluster Bootstrap for the 3-Loop MHV Heptagon, JHEP03 (2015) 072 [arXiv:1412.3763] [INSPIRE]. – reference: L.J. Dixon and I. Esterlis, All orders results for self-crossing Wilson loops mimicking double parton scattering, JHEP07 (2016) 116 [Erratum ibid.08 (2016) 131] [arXiv:1602.02107] [INSPIRE]. – reference: E. Panzer, Feynman integrals and hyperlogarithms, Ph.D. Thesis, Humboldt U. (2015) [DOI] [arXiv:1506.07243] [INSPIRE]. – reference: O. Steinmann, Über den Zusammenhang zwischen den Wightmanfunktionen und der retardierten Kommutatoren, Helv. Phys. Acta33 (1960) 257. – reference: V. Del Duca et al., All-order amplitudes at any multiplicity in the multi-Regge limit, Phys. Rev. Lett.124 (2020) 161602 [arXiv:1912.00188] [INSPIRE]. – reference: A.B. Goncharov, Multiple polylogarithms and mixed Tate motives, math/0103059 [INSPIRE]. – reference: N. Beisert, B. Eden and M. Staudacher, Transcendentality and Crossing, J. Stat. Mech.0701 (2007) P01021 [hep-th/0610251] [INSPIRE]. – reference: L. Dixon and F. Dulat, The Seven-Loop Six-Gluon NMHV Amplitude in PlanarN\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{N} $$\end{document} = 4 Super-Yang-Mills Theory, to appear. – reference: J. Golden and A.J. Mcleod, Cluster Algebras and the Subalgebra Constructibility of the Seven-Particle Remainder Function, JHEP01 (2019) 017 [arXiv:1810.12181] [INSPIRE]. – reference: J. Drummond, J. Foster and O. Gürdoğan, Cluster Adjacency Properties of Scattering Amplitudes in N = 4 Supersymmetric Yang-Mills Theory, Phys. Rev. Lett.120 (2018) 161601 [arXiv:1710.10953] [INSPIRE]. – reference: S. Caron-Huot and S. He, Jumpstarting the All-Loop S-matrix of PlanarN\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{N} $$\end{document} = 4 Super Yang-Mills, JHEP07 (2012) 174 [arXiv:1112.1060] [INSPIRE]. – reference: S. Fomin and A. Zelevinsky, Cluster algebras I: Foundations, math/0104151. – reference: L.F. Alday, D. Gaiotto and J. Maldacena, Thermodynamic Bubble Ansatz, JHEP09 (2011) 032 [arXiv:0911.4708] [INSPIRE]. – reference: Z. Bern, L.J. Dixon, D.C. Dunbar and D.A. Kosower, One loop n point gauge theory amplitudes, unitarity and collinear limits, Nucl. Phys. B425 (1994) 217 [hep-ph/9403226] [INSPIRE]. – reference: S. Caron-Huot, L.J. Dixon, M. von Hippel, A.J. McLeod and G. Papathanasiou, The Double Pentaladder Integral to All Orders, JHEP07 (2018) 170 [arXiv:1806.01361] [INSPIRE]. – reference: B. Basso, S. Caron-Huot and A. Sever, Adjoint BFKL at finite coupling: a short-cut from the collinear limit, JHEP01 (2015) 027 [arXiv:1407.3766] [INSPIRE]. – reference: B. Basso, private communication. – reference: Z. Bern et al., The Two-Loop Six-Gluon MHV Amplitude in Maximally Supersymmetric Yang-Mills Theory, Phys. Rev. D78 (2008) 045007 [arXiv:0803.1465] [INSPIRE]. – reference: J. Drummond, J. Foster, O. Gürdogan and C. Kalousios, Algebraic singularities of scattering amplitudes from tropical geometry, arXiv:1912.08217 [INSPIRE]. – reference: S. Caron-Huot et al., The Steinmann Cluster Bootstrap for N = 4 Super Yang-Mills Amplitudes, PoSCORFU2019 (2020) 003 [arXiv:2005.06735] [INSPIRE]. – reference: L. Córdova, Y. He, M. Kruczenski and P. Vieira, The O(N ) S-matrix Monolith, JHEP04 (2020) 142 [arXiv:1909.06495] [INSPIRE]. – reference: N. Arkani-Hamed, J.L. Bourjaily, F. Cachazo, A.B. Goncharov, A. Postnikov and J. Trnka, Grassmannian Geometry of Scattering Amplitudes, Cambridge University Press (2016), [DOI] [arXiv:1212.5605] [INSPIRE]. – reference: L.J. Dixon and M. von Hippel, Bootstrapping an NMHV amplitude through three loops, JHEP10 (2014) 065 [arXiv:1408.1505] [INSPIRE]. – reference: J.M. Drummond, J. Henn, G.P. Korchemsky and E. Sokatchev, The hexagon Wilson loop and the BDS ansatz for the six-gluon amplitude, Phys. Lett. B662 (2008) 456 [arXiv:0712.4138] [INSPIRE]. – reference: S. Fomin and A. Zelevinsky, Cluster algebras II: Finite type classification, math/0208229. – reference: B. Basso, A. Sever and P. Vieira, Spacetime and Flux Tube S-Matrices at Finite Coupling for N = 4 Supersymmetric Yang-Mills Theory, Phys. Rev. Lett.111 (2013) 091602 [arXiv:1303.1396] [INSPIRE]. – reference: A. Hodges, Eliminating spurious poles from gauge-theoretic amplitudes, JHEP05 (2013) 135 [arXiv:0905.1473] [INSPIRE]. – reference: J. Golden, A.J. McLeod, M. Spradlin and A. Volovich, The Sklyanin Bracket and Cluster Adjacency at All Multiplicity, JHEP03 (2019) 195 [arXiv:1902.11286] [INSPIRE]. – reference: L.J. Dixon, J.M. Drummond, M. von Hippel and J. Pennington, Hexagon functions and the three-loop remainder function, JHEP12 (2013) 049 [arXiv:1308.2276] [INSPIRE]. – reference: O. Steinmann, Wightman-Funktionen und retardierten Kommutatoren. II, Helv. Phys. Acta33 (1960) 347. – reference: J. Bartels, A. Kormilitzin, L.N. Lipatov and A. Prygarin, BFKL approach and 2 → 5 maximally helicity violating amplitude inN\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{N} $$\end{document} = 4 super-Yang-Mills theory, Phys. Rev. D86 (2012) 065026 [arXiv:1112.6366] [INSPIRE]. – reference: H. Elvang and Y.-t. Huang, Scattering Amplitudes, arXiv:1308.1697 [INSPIRE]. – reference: N. Arkani-Hamed, T. Lam and M. Spradlin, Non-perturbative geometries for planarN\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{N} $$\end{document} = 4 SYM amplitudes, arXiv:1912.08222 [INSPIRE]. – reference: J. Elias Miró, A.L. Guerrieri, A. Hebbar, J. Penedones and P. Vieira, Flux Tube S-matrix Bootstrap, Phys. Rev. Lett.123 (2019) 221602 [arXiv:1906.08098] [INSPIRE]. – reference: C. Bercini, M. Fabri, A. Homrich and P. Vieira, S-matrix bootstrap: Supersymmetry, Z2, and Z4symmetry, Phys. Rev. D101 (2020) 045022 [arXiv:1909.06453] [INSPIRE]. – reference: Z. Bern, L.J. Dixon and V.A. Smirnov, Iteration of planar amplitudes in maximally supersymmetric Yang-Mills theory at three loops and beyond, Phys. Rev. D72 (2005) 085001 [hep-th/0505205] [INSPIRE]. – reference: J.M. Drummond, J. Henn, V.A. Smirnov and E. Sokatchev, Magic identities for conformal four-point integrals, JHEP01 (2007) 064 [hep-th/0607160] [INSPIRE]. – reference: B. Basso, L. Dixon, Y.-T. Liu and G. Papathanasiou, to appear. – reference: F. Brown, Feynman amplitudes, coaction principle, and cosmic Galois group, Commun. Num. Theor. Phys.11 (2017) 453 [arXiv:1512.06409] [INSPIRE]. – reference: N. Henke and G. Papathanasiou, How tropical are seven- and eight-particle amplitudes?, JHEP08 (2020) 005 [arXiv:1912.08254] [INSPIRE]. – reference: L.J. Dixon, M. von Hippel and A.J. McLeod, The four-loop six-gluon NMHV ratio function, JHEP01 (2016) 053 [arXiv:1509.08127] [INSPIRE]. – reference: B. Basso, L.J. Dixon and G. Papathanasiou, Origin of the Six-Gluon Amplitude in PlanarN\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{N} $$\end{document} = 4 Supersymmetric Yang-Mills Theory, Phys. Rev. Lett.124 (2020) 161603 [arXiv:2001.05460] [INSPIRE]. – reference: J.M. Drummond, J. Henn, G.P. Korchemsky and E. Sokatchev, Conformal Ward identities for Wilson loops and a test of the duality with gluon amplitudes, Nucl. Phys. B826 (2010) 337 [arXiv:0712.1223] [INSPIRE]. – reference: V. Del Duca et al., The seven-gluon amplitude in multi-Regge kinematics beyond leading logarithmic accuracy, JHEP06 (2018) 116 [arXiv:1801.10605] [INSPIRE]. – reference: D.A. Kosower, R. Roiban and C. Vergu, The Six-Point NMHV amplitude in Maximally Supersymmetric Yang-Mills Theory, Phys. Rev. D83 (2011) 065018 [arXiv:1009.1376] [INSPIRE]. – reference: J. Bartels, L.N. Lipatov and A. Sabio Vera, BFKL Pomeron, Reggeized gluons and Bern-Dixon-Smirnov amplitudes, Phys. Rev. D80 (2009) 045002 [arXiv:0802.2065] [INSPIRE]. – reference: A.B. Goncharov, M. Spradlin, C. Vergu and A. Volovich, Classical Polylogarithms for Amplitudes and Wilson Loops, Phys. Rev. Lett.105 (2010) 151605 [arXiv:1006.5703] [INSPIRE]. – reference: J.M. Drummond, J. Henn, G.P. Korchemsky and E. Sokatchev, Hexagon Wilson loop = six-gluon MHV amplitude, Nucl. Phys. B815 (2009) 142 [arXiv:0803.1466] [INSPIRE]. – reference: J.L. Bourjaily, M. Volk and M. Von Hippel, Conformally Regulated Direct Integration of the Two-Loop Heptagon Remainder, JHEP02 (2020) 095 [arXiv:1912.05690] [INSPIRE]. – reference: E. Remiddi and J.A.M. Vermaseren, Harmonic polylogarithms, Int. J. Mod. Phys. A15 (2000) 725 [hep-ph/9905237] [INSPIRE]. – reference: L.J. Mason and D. Skinner, Dual Superconformal Invariance, Momentum Twistors and Grassmannians, JHEP11 (2009) 045 [arXiv:0909.0250] [INSPIRE]. – reference: B. Basso, A. Sever and P. Vieira, Space-time S-matrix and Flux-tube S-matrix III. The two-particle contributions, JHEP08 (2014) 085 [arXiv:1402.3307] [INSPIRE]. – reference: C. Duhr, H. Gangl and J.R. Rhodes, From polygons and symbols to polylogarithmic functions, JHEP10 (2012) 075 [arXiv:1110.0458] [INSPIRE]. – reference: J. Drummond, J. Foster, O. Gürdoğan and G. Papathanasiou, Cluster adjacency and the four-loop NMHV heptagon, JHEP03 (2019) 087 [arXiv:1812.04640] [INSPIRE]. – reference: M. Bullimore and D. Skinner, Descent Equations for Superamplitudes, arXiv:1112.1056 [INSPIRE]. – reference: J. Mago, A. Schreiber, M. Spradlin and A. Volovich, A Note on One-loop Cluster Adjacency in N = 4 SYM, arXiv:2005.07177 [INSPIRE]. – reference: L.J. Dixon, J. Drummond, T. Harrington, A.J. McLeod, G. Papathanasiou and M. Spradlin, Heptagons from the Steinmann Cluster Bootstrap, JHEP02 (2017) 137 [arXiv:1612.08976] [INSPIRE]. – reference: J. Drummond, J. Foster, O. Gürdoğan and C. Kalousios, Tropical fans, scattering equations and amplitudes, arXiv:2002.04624 [INSPIRE]. – reference: J.M. Drummond, J. Henn, G.P. Korchemsky and E. Sokatchev, Dual superconformal symmetry of scattering amplitudes in N = 4 super-Yang-Mills theory, Nucl. Phys. B828 (2010) 317 [arXiv:0807.1095] [INSPIRE]. – reference: S. Caron-Huot, L.J. Dixon, A. McLeod and M. von Hippel, Bootstrapping a Five-Loop Amplitude Using Steinmann Relations, Phys. Rev. Lett.117 (2016) 241601 [arXiv:1609.00669] [INSPIRE]. – reference: J. Bartels, Analytic structure of the 8-point scattering amplitude in multi-Regge kinematics in N = 4 SYM: conformal Regge pole and Regge cut contributions, arXiv:2005.08818 [INSPIRE]. – reference: B. Basso, A. Sever and P. Vieira, Space-time S-matrix and Flux tube S-matrix II. Extracting and Matching Data, JHEP01 (2014) 008 [arXiv:1306.2058] [INSPIRE]. – reference: O. Gürdoğan and M. Parisi, Cluster patterns in Landau and Leading Singularities via the Amplituhedron, arXiv:2005.07154 [INSPIRE]. – reference: F. Brown, The Massless higher-loop two-point function, Commun. Math. Phys.287 (2009) 925 [arXiv:0804.1660] [INSPIRE]. – ident: 13933_CR60 doi: 10.1007/JHEP08(2014)154 – ident: 13933_CR3 doi: 10.1103/PhysRevLett.123.221602 – ident: 13933_CR14 doi: 10.1007/JHEP12(2011)066 – ident: 13933_CR58 doi: 10.1007/JHEP07(2012)174 – ident: 13933_CR33 doi: 10.1007/JHEP10(2012)075 – ident: 13933_CR43 doi: 10.1007/JHEP07(2018)170 – ident: 13933_CR13 doi: 10.1016/j.nuclphysb.2009.11.022 – ident: 13933_CR42 doi: 10.1103/PhysRevLett.117.241601 – ident: 13933_CR74 doi: 10.1142/S0217751X00000367 – ident: 13933_CR20 doi: 10.1007/JHEP11(2011)023 – ident: 13933_CR62 doi: 10.1007/JHEP02(2020)095 – ident: 13933_CR81 – ident: 13933_CR10 doi: 10.1088/1126-6708/2007/06/064 – ident: 13933_CR89 doi: 10.1103/PhysRevD.86.065026 – ident: 13933_CR34 doi: 10.1007/JHEP08(2012)043 – ident: 13933_CR1 – ident: 13933_CR77 doi: 10.1088/1126-6708/2009/11/045 – ident: 13933_CR11 doi: 10.1088/1126-6708/2007/11/068 – ident: 13933_CR44 doi: 10.1007/JHEP09(2019)061 – ident: 13933_CR75 – ident: 13933_CR86 doi: 10.1103/PhysRevLett.111.091602 – ident: 13933_CR37 – ident: 13933_CR54 doi: 10.1007/JHEP08(2020)005 – ident: 13933_CR66 doi: 10.1103/PhysRevLett.124.161602 – ident: 13933_CR87 doi: 10.1007/JHEP08(2014)085 – ident: 13933_CR52 – ident: 13933_CR80 doi: 10.1007/JHEP07(2011)064 – ident: 13933_CR7 doi: 10.1088/1126-6708/2007/01/064 – ident: 13933_CR29 doi: 10.1017/CBO9781316091548 – ident: 13933_CR72 doi: 10.4310/CNTP.2017.v11.n3.a1 – ident: 13933_CR22 doi: 10.1007/JHEP03(2015)072 – ident: 13933_CR36 doi: 10.1007/JHEP01(2014)091 – ident: 13933_CR18 doi: 10.1103/PhysRevD.78.045007 – ident: 13933_CR19 doi: 10.1016/j.nuclphysb.2009.02.015 – ident: 13933_CR40 – ident: 13933_CR25 doi: 10.1007/JHEP01(2012)024 – ident: 13933_CR69 doi: 10.1088/1742-5468/2007/01/P01021 – ident: 13933_CR15 doi: 10.1103/PhysRevD.72.085001 – ident: 13933_CR30 – ident: 13933_CR55 – ident: 13933_CR63 doi: 10.1007/JHEP06(2014)116 – ident: 13933_CR4 doi: 10.1007/JHEP04(2020)142 – ident: 13933_CR76 – ident: 13933_CR84 doi: 10.22323/1.211.0049 – ident: 13933_CR56 doi: 10.1007/JHEP08(2019)016 – ident: 13933_CR32 doi: 10.24033/asens.2099 – ident: 13933_CR38 – ident: 13933_CR45 doi: 10.1103/PhysRevLett.120.161601 – ident: 13933_CR59 doi: 10.1007/JHEP02(2017)137 – ident: 13933_CR68 doi: 10.1103/PhysRevLett.124.161603 – ident: 13933_CR17 doi: 10.1103/PhysRevD.80.045002 – ident: 13933_CR79 doi: 10.1007/JHEP01(2014)008 – ident: 13933_CR12 doi: 10.1016/j.nuclphysb.2009.10.013 – ident: 13933_CR16 doi: 10.1016/j.physletb.2008.03.032 – ident: 13933_CR39 doi: 10.1007/JHEP12(2011)011 – ident: 13933_CR8 doi: 10.1103/PhysRevD.75.085010 – ident: 13933_CR85 doi: 10.1007/JHEP08(2019)135 – ident: 13933_CR49 – ident: 13933_CR73 doi: 10.4310/CNTP.2018.v12.n2.a4 – ident: 13933_CR2 doi: 10.1007/JHEP11(2017)143 – ident: 13933_CR41 – ident: 13933_CR82 doi: 10.1007/JHEP08(2016)131 – ident: 13933_CR31 – ident: 13933_CR35 doi: 10.1103/PhysRevLett.105.151605 – ident: 13933_CR47 doi: 10.1007/JHEP03(2019)087 – ident: 13933_CR83 doi: 10.1007/s00220-009-0740-5 – ident: 13933_CR50 – ident: 13933_CR24 doi: 10.1103/PhysRevD.83.065018 – ident: 13933_CR88 doi: 10.1007/JHEP06(2018)116 – ident: 13933_CR65 doi: 10.1007/JHEP01(2015)027 – ident: 13933_CR67 – ident: 13933_CR23 doi: 10.1016/j.nuclphysb.2012.12.009 – ident: 13933_CR21 doi: 10.1007/JHEP12(2013)049 – ident: 13933_CR9 doi: 10.1103/PhysRevD.76.125020 – ident: 13933_CR61 doi: 10.1007/JHEP01(2019)017 – ident: 13933_CR71 doi: 10.4310/CNTP.2017.v11.n3.a3 – ident: 13933_CR70 doi: 10.4310/CNTP.2014.v8.n4.a1 – ident: 13933_CR48 doi: 10.1007/JHEP03(2019)195 – ident: 13933_CR78 – ident: 13933_CR26 doi: 10.1007/JHEP10(2014)065 – ident: 13933_CR51 doi: 10.1007/JHEP04(2020)146 – ident: 13933_CR46 doi: 10.1007/JHEP03(2019)086 – ident: 13933_CR92 doi: 10.1007/JHEP08(2016)152 – ident: 13933_CR64 doi: 10.1007/JHEP09(2011)032 – ident: 13933_CR6 – ident: 13933_CR28 doi: 10.1007/JHEP05(2013)135 – ident: 13933_CR5 doi: 10.1103/PhysRevD.101.045022 – ident: 13933_CR91 doi: 10.1016/0550-3213(94)90179-1 – ident: 13933_CR27 doi: 10.1007/JHEP01(2016)053 – ident: 13933_CR90 doi: 10.1016/j.nuclphysb.2016.12.016 – ident: 13933_CR57 – ident: 13933_CR53 |
SSID | ssj0015190 |
Score | 2.5614974 |
Snippet | A
bstract
Seven-point amplitudes in planar
N
= 4 super-Yang-Mills theory have previously been constructed through four loops using the Steinmann cluster... Seven-point amplitudes in planar $$ \mathcal{N} $$ N = 4 super-Yang-Mills theory have previously been constructed through four loops using the Steinmann... Seven-point amplitudes in planar $ \mathcal{N} $ = 4 super-Yang-Mills theory have previously been constructed through four loops using the Steinmann cluster... Abstract Seven-point amplitudes in planar N $$ \mathcal{N} $$ = 4 super-Yang-Mills theory have previously been constructed through four loops using the... |
SourceID | doaj osti crossref springer |
SourceType | Open Website Open Access Repository Enrichment Source Index Database Publisher |
StartPage | 1 |
SubjectTerms | 1/N Expansion Classical and Quantum Gravitation Elementary Particles Physics Physics and Astronomy PHYSICS OF ELEMENTARY PARTICLES AND FIELDS Quantum Field Theories Quantum Field Theory Quantum Physics Regular Article - Theoretical Physics Relativity Theory Scattering Amplitudes String Theory Supersymmetric Gauge Theory |
SummonAdditionalLinks | – databaseName: Springer Nature OA Free Journals dbid: C24 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8QwEA6LIngRn7i-6EFh91BJmrRpjrq4LIuKhxX2Fpo0UUHbxa0H_70z2VYQ8eCpoZ0pzWSmM2FmvhBybr0REGaUsU1UEQvpWZxn1MRp4cFd4mEPHruR7-6zyaOYztN5j7CuFyZUu3cpyfCn7prdppObB0YHsFmnQ4qd0-spjFGpR9jg0CYOICChHYLPb6Yfzidg9MOlBlv6lQcN7mW8TbbauDC6Wi3kDum5apdshPpMu9wjF7cvHguUo2e3wDxSFS0_30z9uoyaOkLfFNRnn8zGN7PRJG5POIgtBEJNrAxTTniwqlT5zNOilKWwShY0d4J7eGi8sQWXwmQ2d1J6ozJWspILk6c5PyBrVV25QxJZkcJexCXcFFTYpDRZqZJSWg7bIW7ztE8uu5lr26J_4yEUr7rDLV6JSqOoNIiqTwbfDIsV8MXfpNcoym8yRKwON-r3J90agOaGO-VQYagTjFnjJDMOuBOYTKHgJce4EBocP6LXWizzsY1mMoOARvXJsFsf3RrZ8q_POfoH7THZxGGozstOyFrz_uFOIcpozFnQqy-k_cjo priority: 102 providerName: Springer Nature |
Title | Lifting heptagon symbols to functions |
URI | https://link.springer.com/article/10.1007/JHEP10(2020)031 https://www.osti.gov/servlets/purl/1769109 https://doaj.org/article/3b3e9eecca0e411cbe71be0312d34a91 |
Volume | 2020 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NS8MwFA86ELyInzin0oPCdqhLmjRpjnM4x1Dx4GC30KQJCtoNVw_-9770YygyvHhJoU2b1_fBe4-8_B5CF8ZpBmFGFppIpiETjoQJxzqMUwfu0jd7cP408v0DH0_ZZBbPvrX68jVhFTxwxbg-1dRK6xfClhFitBVEW1DFKKMsLc-tR-DzmmSq3j-AuAQ3QD5Y9Cfjm0eCu5Do4x6m5IcPKqH64TIHk_q1HVp6mdEu2qnDw2BQkbWHNmy-j7bKMk2zPECXdy_O1ykHz3bht5PyYPn5puevy6CYB95FlVp0iJ5GN0_DcVg3OggNxENFKDWRljkwrlg67nCaiYwZKVKcWEYdPNROm5QKprlJrBBOS04yAhzQSZzQI9TK57k9RoFhMaQkNqI6xcxEmeaZjDJhKGRF1CRxG101f65MDQLue1G8qga-uGKV8qxSwKo26q5eWFT4F-unXntWrqZ54OryBohT1eJUf4mzjTpeEAr8vwexNb7axxSKCA5xjWyjXiMfVdvach05J_9BTgdt---V1Xv8FLWK9w97BlFIoc_RZjK6hXEYMT_y4XmpgjBOo8EX1aXakA |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEA6iiF7EJ9b62INCPawmm2yyOWqx1FrFQwVvYZNNUNBW7Hrw3zuz3Ra09OBpITuzbObBzDCTL4ScumAFpBlF7BKdx0IFFmeS2jjNA4RLvOwh4Gnk-wfZfRK95_S5BknCszB_-veXve7NI6MtKNHpOcXz0isCymSc3WvL9qxdAGkIneL2zDP9CjkVMj88RuBBc93PKqh0NslGnQ1GVxP1bZElP9wmq9VUphvvkLP-a8Cx5OjFf2D3aBiNv9_t6G0claMII1JlNLtk0LkZtLtxfa9B7CD9KWNtmfYigC-lOshA80IVwmmV08wLHuClDdblXAkrXeaVClZLVrCCC5ulGd8jy8PR0O-TyIkUKhCfcJtT4ZLCykInhXIciiDusrRBLqY7N67G_MarJ97MFK14IiqDojIgqgZpzRg-JnAXi0mvUZQzMsSprhZAfaY2e8Mt99qjmVAvGHPWK2Y9cCewmVzDR5qoCAPhHjFrHQ73uNIwJSGN0Q1yPtWPqV1rvOh3Dv5Be0LWuoP7vunfPtw1yTouV_N58pAsl59f_gjyjNIeVzb2A20Cx_k |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8QwEA6iKF7EJ67PHhT0UE2aNGmOurqsTzwoeAvNS4W1XWw9-O-ddNsFEQ-eCmlSmnkw3zCTLwgdGK8ZwAwbm0TmMROexBnHOk5zD-EyXPbgw2nku3s-fGLXz-lz25tTdd3uXUlycqYhsDQV9enY-q6qf3o9vHwg-AgSd3yMwynqOUhTmiptn_enRQQAJ7hj8_m96Ecgavj64VGCX_2qiTahZrCMllqMGJ1NlLqCZlyxiuabXk1TraHD2zcfmpWjVzcONaUiqr7edTmqorqMQpxqTGkdPQ4uH_vDuL3tIDYAiupYaiId8-BhqfTc49wKy4wUOc4cox5eaq9NTgXT3GROCK8lJ5ZYynSWZnQDzRZl4TZRZFgKeYlLqM4xM4nV3MrECkMhNaImS3vopNu5Mi0TeLiQYqQ6DuOJqFQQlQJR9dDRdMF4QoLx99TzIMrptMBe3QyUHy-qdQZFNXXSBePBjhFitBNEO1idwGZyCR_ZDopQAAICk60JLT-mVkRwADeyh447_ajW4aq_fmfrH3P30cLDxUDdXt3fbKPFMNo07fEdNFt_fLpdAB-13mtM7Bt8SdBA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Lifting+heptagon+symbols+to+functions&rft.jtitle=The+journal+of+high+energy+physics&rft.au=Dixon%2C+Lance+J.&rft.au=Liu%2C+Yu-Ting&rft.date=2020-10-06&rft.issn=1029-8479&rft.eissn=1029-8479&rft.volume=2020&rft.issue=10&rft_id=info:doi/10.1007%2FJHEP10%282020%29031&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_JHEP10_2020_031 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1029-8479&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1029-8479&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1029-8479&client=summon |