The combined status of ATM and p53 link tumor development with therapeutic response
While the contribution of specific tumor suppressor networks to cancer development has been the subject of considerable recent study, it remains unclear how alterations in these networks are integrated to influence the response of tumors to anti-cancer treatments. Here, we show that mechanisms commo...
Saved in:
Published in | Genes & development Vol. 23; no. 16; pp. 1895 - 1909 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Cold Spring Harbor Laboratory Press
15.08.2009
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | While the contribution of specific tumor suppressor networks to cancer development has been the subject of considerable recent study, it remains unclear how alterations in these networks are integrated to influence the response of tumors to anti-cancer treatments. Here, we show that mechanisms commonly used by tumors to bypass early neoplastic checkpoints ultimately determine chemotherapeutic response and generate tumor-specific vulnerabilities that can be exploited with targeted therapies. Specifically, evaluation of the combined status of
ATM
and
p53
, two commonly mutated tumor suppressor genes, can help to predict the clinical response to genotoxic chemotherapies. We show that in
p53
-deficient settings, suppression of ATM dramatically sensitizes tumors to DNA-damaging chemotherapy, whereas, conversely, in the presence of functional p53, suppression of ATM or its downstream target Chk2 actually protects tumors from being killed by genotoxic agents. Furthermore,
ATM
-deficient cancer cells display strong nononcogene addiction to DNA-PKcs for survival after DNA damage, such that suppression of DNA-PKcs in vivo resensitizes inherently chemoresistant
ATM
-deficient tumors to genotoxic chemotherapy. Thus, the specific set of alterations induced during tumor development plays a dominant role in determining both the tumor response to conventional chemotherapy and specific susceptibilities to targeted therapies in a given malignancy. |
---|---|
AbstractList | While the contribution of specific tumor suppressor networks to cancer development has been the subject of considerable recent study, it remains unclear how alterations in these networks are integrated to influence the response of tumors to anti-cancer treatments. Here, we show that mechanisms commonly used by tumors to bypass early neoplastic checkpoints ultimately determine chemotherapeutic response and generate tumor-specific vulnerabilities that can be exploited with targeted therapies. Specifically, evaluation of the combined status of
ATM
and
p53
, two commonly mutated tumor suppressor genes, can help to predict the clinical response to genotoxic chemotherapies. We show that in
p53
-deficient settings, suppression of ATM dramatically sensitizes tumors to DNA-damaging chemotherapy, whereas, conversely, in the presence of functional p53, suppression of ATM or its downstream target Chk2 actually protects tumors from being killed by genotoxic agents. Furthermore,
ATM
-deficient cancer cells display strong nononcogene addiction to DNA-PKcs for survival after DNA damage, such that suppression of DNA-PKcs in vivo resensitizes inherently chemoresistant
ATM
-deficient tumors to genotoxic chemotherapy. Thus, the specific set of alterations induced during tumor development plays a dominant role in determining both the tumor response to conventional chemotherapy and specific susceptibilities to targeted therapies in a given malignancy. While the contribution of specific tumor suppressor networks to cancer development has been the subject of considerable recent study, it remains unclear how alterations in these networks are integrated to influence the response of tumors to anti-cancer treatments. Here, we show that mechanisms commonly used by tumors to bypass early neoplastic checkpoints ultimately determine chemotherapeutic response and generate tumor-specific vulnerabilities that can be exploited with targeted therapies. Specifically, evaluation of the combined status of ATM and p53, two commonly mutated tumor suppressor genes, can help to predict the clinical response to genotoxic chemotherapies. We show that in p53-deficient settings, suppression of ATM dramatically sensitizes tumors to DNA-damaging chemotherapy, whereas, conversely, in the presence of functional p53, suppression of ATM or its downstream target Chk2 actually protects tumors from being killed by genotoxic agents. Furthermore, ATM-deficient cancer cells display strong nononcogene addiction to DNA-PKcs for survival after DNA damage, such that suppression of DNA-PKcs in vivo resensitizes inherently chemoresistant ATM-deficient tumors to genotoxic chemotherapy. Thus, the specific set of alterations induced during tumor development plays a dominant role in determining both the tumor response to conventional chemotherapy and specific susceptibilities to targeted therapies in a given malignancy. While the contribution of specific tumor suppressor networks to cancer development has been the subject of considerable recent study, it remains unclear how alterations in these networks are integrated to influence the response of tumors to anti-cancer treatments. Here, we show that mechanisms commonly used by tumors to bypass early neoplastic checkpoints ultimately determine chemotherapeutic response and generate tumor-specific vulnerabilities that can be exploited with targeted therapies. Specifically, evaluation of the combined status of ATM and p53, two commonly mutated tumor suppressor genes, can help to predict the clinical response to genotoxic chemotherapies. We show that in p53-deficient settings, suppression of ATM dramatically sensitizes tumors to DNA-damaging chemotherapy, whereas, conversely, in the presence of functional p53, suppression of ATM or its downstream target Chk2 actually protects tumors from being killed by genotoxic agents. Furthermore, ATM-deficient cancer cells display strong nononcogene addiction to DNA-PKcs for survival after DNA damage, such that suppression of DNA-PKcs in vivo resensitizes inherently chemoresistant ATM-deficient tumors to genotoxic chemotherapy. Thus, the specific set of alterations induced during tumor development plays a dominant role in determining both the tumor response to conventional chemotherapy and specific susceptibilities to targeted therapies in a given malignancy.While the contribution of specific tumor suppressor networks to cancer development has been the subject of considerable recent study, it remains unclear how alterations in these networks are integrated to influence the response of tumors to anti-cancer treatments. Here, we show that mechanisms commonly used by tumors to bypass early neoplastic checkpoints ultimately determine chemotherapeutic response and generate tumor-specific vulnerabilities that can be exploited with targeted therapies. Specifically, evaluation of the combined status of ATM and p53, two commonly mutated tumor suppressor genes, can help to predict the clinical response to genotoxic chemotherapies. We show that in p53-deficient settings, suppression of ATM dramatically sensitizes tumors to DNA-damaging chemotherapy, whereas, conversely, in the presence of functional p53, suppression of ATM or its downstream target Chk2 actually protects tumors from being killed by genotoxic agents. Furthermore, ATM-deficient cancer cells display strong nononcogene addiction to DNA-PKcs for survival after DNA damage, such that suppression of DNA-PKcs in vivo resensitizes inherently chemoresistant ATM-deficient tumors to genotoxic chemotherapy. Thus, the specific set of alterations induced during tumor development plays a dominant role in determining both the tumor response to conventional chemotherapy and specific susceptibilities to targeted therapies in a given malignancy. |
Author | Reinhardt, H. Christian Nevanlinna, Heli Bartek, Jiri Tommiska, Johanna Hemann, Michael T. Jiang, Hai Bartkova, Jirina Yaffe, Michael B. Blomqvist, Carl |
AuthorAffiliation | 4 Department of Oncology, Uppsala University Hospital, SE-751 86 Uppsala, Sweden 3 Department of Obstetrics and Gynecology, Helsinki University Central Hospital, FIN-00290 Helsinki, Finland 1 The Koch Institute for Integrative Cancer Research at Massachusetts Institute of Technology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA 5 Laboratory of Genome Integrity, Palacky University, 771 47 Olomouc, Czech Republic 2 Centre for Genotoxic Stress Research, Danish Cancer Society, DK-2100 Copenhagen, Denmark |
AuthorAffiliation_xml | – name: 4 Department of Oncology, Uppsala University Hospital, SE-751 86 Uppsala, Sweden – name: 5 Laboratory of Genome Integrity, Palacky University, 771 47 Olomouc, Czech Republic – name: 1 The Koch Institute for Integrative Cancer Research at Massachusetts Institute of Technology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA – name: 2 Centre for Genotoxic Stress Research, Danish Cancer Society, DK-2100 Copenhagen, Denmark – name: 3 Department of Obstetrics and Gynecology, Helsinki University Central Hospital, FIN-00290 Helsinki, Finland |
Author_xml | – sequence: 1 givenname: Hai surname: Jiang fullname: Jiang, Hai – sequence: 2 givenname: H. Christian surname: Reinhardt fullname: Reinhardt, H. Christian – sequence: 3 givenname: Jirina surname: Bartkova fullname: Bartkova, Jirina – sequence: 4 givenname: Johanna surname: Tommiska fullname: Tommiska, Johanna – sequence: 5 givenname: Carl surname: Blomqvist fullname: Blomqvist, Carl – sequence: 6 givenname: Heli surname: Nevanlinna fullname: Nevanlinna, Heli – sequence: 7 givenname: Jiri surname: Bartek fullname: Bartek, Jiri – sequence: 8 givenname: Michael B. surname: Yaffe fullname: Yaffe, Michael B. – sequence: 9 givenname: Michael T. surname: Hemann fullname: Hemann, Michael T. |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/19608766$$D View this record in MEDLINE/PubMed https://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-152106$$DView record from Swedish Publication Index |
BookMark | eNptkc1v1DAQxS1URLeFE3fkExdI6-_EF6RV-arUigMLV8uxJ7uGJA6204r_nlS7VC3iNIf5vfc0807Q0RhHQOglJWeUEnq-tf6MNlRyop-gFZVCV1LU9RFakUaTSnOlj9FJzj8IIYoo9QwdU61IUyu1Ql83O8AuDm0YweNcbJkzjh1eb66xHT2eJMd9GH_iMg8xYQ830MdpgLHg21B2uOwg2QnmEhxOkKc4ZniOnna2z_DiME_Rt48fNhefq6svny4v1leVE1SVSuuW17ZTDETrGVedE40VTMpOeEu5B90SoRrqGVU1BcaY561jQnPWgq9bfore7n3zLUxza6YUBpt-m2iDeR--r01MWzPPhkpGiVrwd3t8YQfwbrkh2f6R6vFmDDuzjTeG1UxqIRaD1weDFH_NkIsZQnbQ93aEOGejatkwqfgCvnqYdB_x9-0LQPeASzHnBJ1xYXl9iHfBoTeUmLtqzVKtOVS7aN78o7m3_Q_9BwO2pa8 |
CitedBy_id | crossref_primary_10_3389_fimmu_2021_643282 crossref_primary_10_1016_j_jdsr_2019_08_001 crossref_primary_10_1038_onc_2011_451 crossref_primary_10_7554_eLife_104718_2 crossref_primary_10_1016_j_molcel_2016_06_017 crossref_primary_10_1016_j_bcp_2011_12_026 crossref_primary_10_1093_neuonc_noad064 crossref_primary_10_3390_cells11203221 crossref_primary_10_1073_pnas_1011412107 crossref_primary_10_1371_journal_pone_0031087 crossref_primary_10_1007_s00439_010_0900_x crossref_primary_10_1371_journal_pone_0019198 crossref_primary_10_1016_j_mrfmmm_2020_111725 crossref_primary_10_1021_acsomega_2c07356 crossref_primary_10_1158_2159_8290_CD_13_0907 crossref_primary_10_1111_his_13986 crossref_primary_10_1186_1756_9966_32_95 crossref_primary_10_1111_bjh_14561 crossref_primary_10_1007_s00044_013_0665_6 crossref_primary_10_1038_nrc_2016_15 crossref_primary_10_1158_0008_5472_CAN_11_4035 crossref_primary_10_1016_j_pharmthera_2012_10_009 crossref_primary_10_1186_1476_4598_13_36 crossref_primary_10_4103_0366_6999_168065 crossref_primary_10_1634_theoncologist_2019_0851 crossref_primary_10_1139_G10_067 crossref_primary_10_1038_nchembio_573 crossref_primary_10_1038_onc_2010_624 crossref_primary_10_1007_s12064_012_0168_x crossref_primary_10_1038_cddis_2013_534 crossref_primary_10_1038_nature08467 crossref_primary_10_1016_j_critrevonc_2013_10_001 crossref_primary_10_1126_scisignal_2000758 crossref_primary_10_1111_jcmm_17512 crossref_primary_10_1038_onc_2013_275 crossref_primary_10_7554_eLife_104718 crossref_primary_10_1016_j_neo_2014_09_009 crossref_primary_10_1002_cncr_30179 crossref_primary_10_1038_onc_2015_360 crossref_primary_10_1038_s41467_024_49316_8 crossref_primary_10_1038_onc_2014_443 crossref_primary_10_1158_1078_0432_CCR_23_1122 crossref_primary_10_1158_0008_5472_CAN_16_3398 crossref_primary_10_1158_0008_5472_CAN_10_1252 crossref_primary_10_1111_j_1365_2184_2010_00685_x crossref_primary_10_1101_pdb_prot078014 crossref_primary_10_1158_0008_5472_CAN_19_1807 crossref_primary_10_1038_onc_2011_303 crossref_primary_10_1016_j_ctrv_2020_102090 crossref_primary_10_1038_nrc2877 crossref_primary_10_1093_annonc_mdt421 crossref_primary_10_1159_000446361 crossref_primary_10_1038_s41419_017_0069_5 crossref_primary_10_1016_j_semcancer_2016_01_001 crossref_primary_10_1016_j_bbcan_2013_12_002 crossref_primary_10_1126_scitranslmed_3005814 crossref_primary_10_1007_s11523_025_01136_6 crossref_primary_10_1182_blood_2011_01_313734 crossref_primary_10_1186_1471_2407_11_156 crossref_primary_10_1158_1535_7163_MCT_19_0208 crossref_primary_10_1371_journal_pone_0057036 crossref_primary_10_1016_j_biocel_2015_08_002 crossref_primary_10_1016_j_clbc_2022_10_012 crossref_primary_10_1016_j_dnarep_2010_09_003 crossref_primary_10_18632_oncotarget_9616 crossref_primary_10_18632_oncotarget_20342 crossref_primary_10_3390_genes12050727 crossref_primary_10_2217_fon_13_26 crossref_primary_10_1007_s00018_015_1901_7 crossref_primary_10_4161_cc_21997 crossref_primary_10_1007_s10549_010_1230_3 crossref_primary_10_1016_j_bbamcr_2010_06_002 crossref_primary_10_3389_fgene_2015_00207 crossref_primary_10_1016_j_beha_2009_12_003 crossref_primary_10_18632_oncotarget_14228 crossref_primary_10_1111_j_1582_4934_2010_01145_x crossref_primary_10_4161_mco_29905 crossref_primary_10_1056_NEJMra1407390 crossref_primary_10_1089_ars_2013_5597 crossref_primary_10_1016_j_canlet_2020_10_003 crossref_primary_10_1016_j_ccr_2014_01_005 crossref_primary_10_1667_RR13515_1 crossref_primary_10_1038_nrd4003 crossref_primary_10_1111_j_1464_410X_2012_11564_x crossref_primary_10_1158_0008_5472_CAN_21_1756 crossref_primary_10_1016_j_mrfmmm_2020_111692 crossref_primary_10_1039_c2mb25468a crossref_primary_10_1158_1078_0432_CCR_13_1239 crossref_primary_10_1007_s10875_025_01857_3 crossref_primary_10_1016_j_mrfmmm_2020_111695 crossref_primary_10_1002_smll_201201510 crossref_primary_10_1016_j_bcp_2012_07_022 crossref_primary_10_1016_j_celrep_2018_09_079 crossref_primary_10_1001_jamanetworkopen_2019_11895 crossref_primary_10_3390_ijms15045388 crossref_primary_10_3390_cancers12041050 crossref_primary_10_4161_cc_24127 crossref_primary_10_1158_2159_8290_CD_14_0316 crossref_primary_10_1186_1752_0509_6_125 crossref_primary_10_1158_0008_5472_CAN_20_1439 crossref_primary_10_1016_j_mrfmmm_2012_04_005 crossref_primary_10_1159_000493401 crossref_primary_10_1200_JCO_2012_45_9867 crossref_primary_10_1016_j_neo_2014_08_008 crossref_primary_10_4161_cc_9_20_13471 crossref_primary_10_1021_jm500415t crossref_primary_10_18632_oncotarget_4875 crossref_primary_10_1002_lary_28641 crossref_primary_10_4161_cc_10_1_14351 crossref_primary_10_1038_cr_2015_8 crossref_primary_10_1016_j_canlet_2019_02_015 crossref_primary_10_1158_1535_7163_MCT_12_0448 crossref_primary_10_1016_j_molonc_2011_07_006 crossref_primary_10_1038_nchembio_503 crossref_primary_10_1186_1741_7007_11_114 crossref_primary_10_1002_hon_1020 crossref_primary_10_1016_j_chemosphere_2020_125967 crossref_primary_10_1016_j_mam_2023_101205 crossref_primary_10_18632_oncotarget_13063 crossref_primary_10_3390_ijms17010102 crossref_primary_10_1007_s42764_022_00062_5 crossref_primary_10_1038_s41388_017_0054_6 crossref_primary_10_1016_j_pharmthera_2019_06_010 crossref_primary_10_1038_ncomms14370 crossref_primary_10_1074_jbc_M111_292664 crossref_primary_10_5567_pharmacologia_2012_352_361 crossref_primary_10_1101_cshperspect_a026310 crossref_primary_10_1002_jso_24114 crossref_primary_10_1172_JCI43836 crossref_primary_10_1038_onc_2014_399 crossref_primary_10_1186_gm99 crossref_primary_10_1038_srep29020 crossref_primary_10_15252_emmm_201404580 crossref_primary_10_1016_j_fct_2019_110834 crossref_primary_10_1038_onc_2010_371 crossref_primary_10_3892_or_2017_5448 crossref_primary_10_1111_vco_12195 crossref_primary_10_1158_1078_0432_CCR_12_3408 crossref_primary_10_1038_nrc3342 crossref_primary_10_1002_emmm_201200229 crossref_primary_10_1016_j_cub_2013_03_043 crossref_primary_10_3892_or_2013_2614 crossref_primary_10_1093_bioinformatics_btaa495 crossref_primary_10_4161_15384101_2014_960729 crossref_primary_10_3389_fonc_2019_01468 crossref_primary_10_1172_JCI73932 crossref_primary_10_1093_bib_bbaa217 crossref_primary_10_1016_j_lungcan_2017_10_006 crossref_primary_10_1021_acs_jmedchem_4c00454 crossref_primary_10_1016_j_bmcl_2020_127517 crossref_primary_10_1158_1541_7786_MCR_17_0511 crossref_primary_10_1016_j_crphar_2021_100017 crossref_primary_10_1186_bcr2788 crossref_primary_10_1021_jm501026z crossref_primary_10_1038_bjc_2012_265 crossref_primary_10_1093_carcin_bgp261 crossref_primary_10_1093_jmcb_mju045 crossref_primary_10_3390_cells9102287 crossref_primary_10_3390_cancers11091289 crossref_primary_10_1200_PO_20_00112 crossref_primary_10_1016_j_celrep_2015_12_032 crossref_primary_10_1159_000443820 crossref_primary_10_3390_cancers14071821 crossref_primary_10_1002_bies_201500093 crossref_primary_10_1016_j_drudis_2014_05_002 crossref_primary_10_1016_j_stem_2012_05_013 crossref_primary_10_1186_s12964_020_00653_3 crossref_primary_10_1667_RR2478_1 crossref_primary_10_1016_j_ctrv_2013_03_002 crossref_primary_10_1038_ncb2795 crossref_primary_10_3390_cancers15030735 crossref_primary_10_1101_pdb_top069872 crossref_primary_10_1158_1535_7163_MCT_09_0872 crossref_primary_10_1517_14728222_2011_640322 crossref_primary_10_1016_j_tranon_2020_100960 crossref_primary_10_1016_j_hoc_2015_07_003 crossref_primary_10_1016_j_jpba_2017_08_037 crossref_primary_10_1126_scitranslmed_abd5750 crossref_primary_10_1158_0008_5472_CAN_11_1014 crossref_primary_10_1038_nature10760 crossref_primary_10_3109_09553002_2013_767993 crossref_primary_10_3390_cancers4020354 crossref_primary_10_1038_msb_2012_1 crossref_primary_10_1016_j_bcp_2018_12_002 crossref_primary_10_1097_MOH_0000000000000433 crossref_primary_10_3390_pr9122223 crossref_primary_10_1182_blood_2021012081 crossref_primary_10_1158_0008_5472_CAN_11_1245 crossref_primary_10_3390_genes8060158 crossref_primary_10_1016_j_biocel_2022_106230 crossref_primary_10_1158_0008_5472_CAN_11_0277 crossref_primary_10_1158_0008_5472_CAN_17_0634 crossref_primary_10_1038_s41598_019_39525_3 crossref_primary_10_1126_scitranslmed_adj5962 crossref_primary_10_1038_jid_2015_198 crossref_primary_10_18632_oncotarget_2158 crossref_primary_10_1002_cncr_29140 crossref_primary_10_1038_ncomms8677 crossref_primary_10_1038_s41598_018_36475_0 crossref_primary_10_1080_23723556_2015_1012976 crossref_primary_10_1158_1078_0432_CCR_14_1165 crossref_primary_10_1016_j_breast_2015_07_026 crossref_primary_10_1016_j_pharmthera_2016_01_014 crossref_primary_10_2217_fon_2018_0339 crossref_primary_10_1007_s10577_022_09700_w crossref_primary_10_3390_cancers12030687 crossref_primary_10_1042_BSR20110125 crossref_primary_10_5496_wjmg_v1_i1_14 crossref_primary_10_1016_j_bbrc_2020_05_005 crossref_primary_10_1038_nchembio_965 crossref_primary_10_3892_ol_2018_8133 crossref_primary_10_1016_j_semcancer_2011_04_001 crossref_primary_10_1016_j_neubiorev_2017_07_017 crossref_primary_10_1016_j_ygeno_2012_05_001 crossref_primary_10_1021_jm101488z crossref_primary_10_1080_15384101_2017_1312236 crossref_primary_10_1016_j_tcb_2015_04_001 crossref_primary_10_1093_jmcb_mjz012 crossref_primary_10_1038_nm_4291 crossref_primary_10_4161_cbt_27823 crossref_primary_10_1371_journal_pone_0031627 crossref_primary_10_3892_ol_2017_7637 crossref_primary_10_1038_s41416_019_0565_8 crossref_primary_10_1016_j_molcel_2010_09_019 crossref_primary_10_1038_emboj_2012_236 crossref_primary_10_1158_1541_7786_MCR_14_0201 crossref_primary_10_1007_s13402_018_0411_7 crossref_primary_10_1002_ijc_35170 crossref_primary_10_1093_nar_gkad792 crossref_primary_10_1007_s10495_009_0417_8 crossref_primary_10_1016_j_canlet_2013_09_010 crossref_primary_10_1186_bcr3147 |
Cites_doi | 10.1073/pnas.0803513105 10.1158/0008-5472.CAN-08-2634 10.1016/j.ccr.2006.11.024 10.1093/emboj/17.17.5001 10.1038/35042675 10.1016/j.ccr.2004.06.015 10.1038/nature03485 10.1038/10061 10.1126/science.1140321 10.1158/0008-5472.CAN-04-2502 10.1128/MCB.25.9.3553-3562.2005 10.1101/gad.970602 10.1016/0140-6736(90)90801-B 10.1126/science.287.5459.1824 10.1128/MCB.22.18.6521-6532.2002 10.1038/nature01445 10.1038/nature05268 10.1038/sj.onc.1210885 10.1101/gad.10.19.2401 10.1073/pnas.96.26.14973 10.1086/341943 10.1074/jbc.C100466200 10.1038/sj.onc.1203124 10.1016/S1074-7613(00)80619-6 10.1002/humu.20495 10.1016/j.molcel.2005.09.024 10.1146/annurev.genet.40.051206.105231 10.1016/S0960-9822(01)00048-3 10.1038/nature07423 10.1093/carcin/4.10.1317 10.1038/35074129 10.1126/science.282.5395.1893 10.1038/nature03482 10.1158/0008-5472.CAN-04-2727 10.1016/S0360-3016(01)01489-4 10.1200/JCO.2007.11.2649 10.1038/nature02082 10.1172/JCI31245 10.1016/S0959-8049(02)00499-9 10.1101/gad.14.12.1439 10.1126/science.1140735 10.1146/annurev.biochem.73.011303.073723 10.1002/(SICI)1097-0142(20000301)88:5<1057::AID-CNCR16>3.0.CO;2-6 10.1016/j.cancergencyto.2006.07.006 10.1038/35007091 10.1016/j.molcel.2004.10.029 10.1101/gad.14.4.397 10.1038/nrc2342 10.1093/emboj/19.3.463 10.1016/S0027-5107(03)00009-5 10.1158/0008-5472.CAN-05-2193 10.1016/j.dnarep.2004.04.010 10.1101/gad.14.12.1448 10.1016/S0092-8674(00)80086-0 10.1038/nrm1493 10.1371/journal.pmed.0040090 10.1083/jcb.151.7.1381 10.1002/humu.20805 |
ContentType | Journal Article |
Copyright | Copyright © 2009 by Cold Spring Harbor Laboratory Press |
Copyright_xml | – notice: Copyright © 2009 by Cold Spring Harbor Laboratory Press |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM ADTPV AOWAS DF2 |
DOI | 10.1101/gad.1815309 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic PubMed Central (Full Participant titles) SwePub SwePub Articles SWEPUB Uppsala universitet |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic CrossRef |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology Medicine |
DocumentTitleAlternate | Jiang et al |
EISSN | 1549-5477 |
EndPage | 1909 |
ExternalDocumentID | oai_DiVA_org_uu_152106 PMC2725944 19608766 10_1101_gad_1815309 |
Genre | Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NIEHS NIH HHS grantid: R01 ES015339 – fundername: NCI NIH HHS grantid: R01 CA128803 – fundername: NCI NIH HHS grantid: 1 R01 CA128803-01 – fundername: NCI NIH HHS grantid: U54 CA112967 – fundername: NIEHS NIH HHS grantid: R01 ES15339 |
GroupedDBID | --- -DZ -~X .55 .GJ 0VX 18M 29H 2WC 39C 4.4 53G 5RE 5VS 85S AAYXX ABCQX ABDIX ACGFO ACLKE ACNCT ADBBV ADIYS ADXHL AECCQ AENEX AETEA AFFNX AFOSN AHPUY AI. ALMA_UNASSIGNED_HOLDINGS BAWUL BTFSW C1A CITATION CS3 DIK DU5 E3Z EBS EJD F5P FRP GX1 H13 HYE H~9 IH2 KQ8 L7B MV1 MVM N9A OK1 P2P R.V RCX RHI RPM SJN TAE TN5 TR2 UHB VH1 W8F WH7 WOQ X7M XJT XSW YBU YHG YKV YSK ZXP ZY4 CGR CUY CVF ECM EIF NPM 7X8 5PM .-4 ADTPV AOWAS DF2 YYP ZGI |
ID | FETCH-LOGICAL-c416t-99b37af62e4bd236fc48a4255f4da13de9b04681d21671e222d3bc24932bed7b3 |
ISSN | 0890-9369 1549-5477 |
IngestDate | Thu Aug 21 06:28:44 EDT 2025 Thu Aug 21 14:10:29 EDT 2025 Thu Jul 10 22:52:47 EDT 2025 Mon Jul 21 05:34:25 EDT 2025 Tue Jul 01 04:23:35 EDT 2025 Thu Apr 24 23:09:20 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 16 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c416t-99b37af62e4bd236fc48a4255f4da13de9b04681d21671e222d3bc24932bed7b3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 These authors contributed equally to this work. |
OpenAccessLink | http://genesdev.cshlp.org/content/23/16/1895.full.pdf |
PMID | 19608766 |
PQID | 67582563 |
PQPubID | 23479 |
PageCount | 15 |
ParticipantIDs | swepub_primary_oai_DiVA_org_uu_152106 pubmedcentral_primary_oai_pubmedcentral_nih_gov_2725944 proquest_miscellaneous_67582563 pubmed_primary_19608766 crossref_citationtrail_10_1101_gad_1815309 crossref_primary_10_1101_gad_1815309 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2009-08-15 |
PublicationDateYYYYMMDD | 2009-08-15 |
PublicationDate_xml | – month: 08 year: 2009 text: 2009-08-15 day: 15 |
PublicationDecade | 2000 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Genes & development |
PublicationTitleAlternate | Genes Dev |
PublicationYear | 2009 |
Publisher | Cold Spring Harbor Laboratory Press |
Publisher_xml | – name: Cold Spring Harbor Laboratory Press |
References | 2021111608160871000_23.16.1895.25 2021111608160871000_23.16.1895.26 2021111608160871000_23.16.1895.23 2021111608160871000_23.16.1895.24 2021111608160871000_23.16.1895.29 2021111608160871000_23.16.1895.27 2021111608160871000_23.16.1895.28 2021111608160871000_23.16.1895.21 2021111608160871000_23.16.1895.22 2021111608160871000_23.16.1895.20 Bartek (2021111608160871000_23.16.1895.3) 1990; 5 2021111608160871000_23.16.1895.37 2021111608160871000_23.16.1895.34 2021111608160871000_23.16.1895.35 2021111608160871000_23.16.1895.38 2021111608160871000_23.16.1895.39 2021111608160871000_23.16.1895.32 2021111608160871000_23.16.1895.33 2021111608160871000_23.16.1895.30 2021111608160871000_23.16.1895.31 2021111608160871000_23.16.1895.9 2021111608160871000_23.16.1895.7 Lukas (2021111608160871000_23.16.1895.36) 2001; 61 2021111608160871000_23.16.1895.2 2021111608160871000_23.16.1895.47 2021111608160871000_23.16.1895.1 2021111608160871000_23.16.1895.48 2021111608160871000_23.16.1895.45 2021111608160871000_23.16.1895.46 2021111608160871000_23.16.1895.6 2021111608160871000_23.16.1895.5 2021111608160871000_23.16.1895.4 2021111608160871000_23.16.1895.49 Takai (2021111608160871000_23.16.1895.53) 2000; 14 2021111608160871000_23.16.1895.40 2021111608160871000_23.16.1895.43 2021111608160871000_23.16.1895.44 2021111608160871000_23.16.1895.41 2021111608160871000_23.16.1895.42 Brown (2021111608160871000_23.16.1895.8) 2000; 14 Yuan (2021111608160871000_23.16.1895.60) 2003; 525 2021111608160871000_23.16.1895.14 2021111608160871000_23.16.1895.58 2021111608160871000_23.16.1895.15 2021111608160871000_23.16.1895.59 2021111608160871000_23.16.1895.12 2021111608160871000_23.16.1895.56 2021111608160871000_23.16.1895.13 2021111608160871000_23.16.1895.57 2021111608160871000_23.16.1895.18 2021111608160871000_23.16.1895.19 2021111608160871000_23.16.1895.16 2021111608160871000_23.16.1895.17 2021111608160871000_23.16.1895.50 2021111608160871000_23.16.1895.51 2021111608160871000_23.16.1895.10 2021111608160871000_23.16.1895.54 2021111608160871000_23.16.1895.11 2021111608160871000_23.16.1895.55 2021111608160871000_23.16.1895.52 11134068 - J Cell Biol. 2000 Dec 25;151(7):1381-90 15604286 - Cancer Res. 2004 Dec 15;64(24):9152-9 10559880 - Nat Cell Biol. 1999 Jun;1(2):94-7 16288016 - Cancer Res. 2005 Nov 15;65(22):10280-8 16805667 - Annu Rev Genet. 2006;40:209-35 10691732 - Genes Dev. 2000 Feb 15;14(4):397-402 18323444 - Science. 2008 Mar 7;319(5868):1352-5 16307919 - Mol Cell. 2005 Nov 23;20(4):551-61 10557105 - Oncogene. 1999 Nov 1;18(45):6135-44 11431331 - Cancer Res. 2001 Jul 1;61(13):4990-3 1694291 - Oncogene. 1990 Jun;5(6):893-9 10710310 - Science. 2000 Mar 10;287(5459):1824-7 11099028 - Nature. 2000 Nov 16;408(6810):307-10 10699895 - Cancer. 2000 Mar 1;88(5):1057-62 18256616 - Nat Rev Cancer. 2008 Mar;8(3):193-204 18948947 - Nature. 2008 Oct 23;455(7216):1069-75 15261141 - Cancer Cell. 2004 Jul;6(1):45-59 18574145 - Proc Natl Acad Sci U S A. 2008 Jul 1;105(26):9053-8 15829956 - Nature. 2005 Apr 14;434(7035):864-70 15574327 - Mol Cell. 2004 Dec 3;16(5):715-24 11571274 - J Biol Chem. 2001 Nov 9;276(45):42462-7 12650908 - Mutat Res. 2003 Apr 9;525(1-2):85-92 17074592 - Cancer Genet Cytogenet. 2006 Nov;171(1):57-64 15831461 - Mol Cell Biol. 2005 May;25(9):3553-62 11231155 - Curr Biol. 2001 Feb 6;11(3):191-4 12607003 - Nature. 2003 Feb 27;421(6926):952-6 19010921 - Cancer Res. 2008 Nov 15;68(22):9459-68 12192050 - Mol Cell Biol. 2002 Sep;22(18):6521-32 17525332 - Science. 2007 May 25;316(5828):1160-6 11380241 - Int J Radiat Oncol Biol Phys. 2001 Jun 1;50(2):511-23 17292828 - Cancer Cell. 2007 Feb;11(2):175-89 9768756 - Immunity. 1998 Sep;9(3):367-76 15805289 - Cancer Res. 2005 Apr 1;65(7):2872-81 17136093 - Nature. 2006 Nov 30;444(7119):633-7 8689683 - Cell. 1996 Jul 12;86(1):159-71 11877376 - Genes Dev. 2002 Mar 1;16(5):560-70 14603323 - Nature. 2003 Nov 6;426(6962):87-91 12751374 - Eur J Cancer. 2003 Mar;39(4):447-53 10654944 - EMBO J. 2000 Feb 1;19(3):463-71 10859164 - Genes Dev. 2000 Jun 15;14(12):1448-59 15189136 - Annu Rev Biochem. 2004;73:39-85 17982490 - Oncogene. 2008 Apr 10;27(17):2501-6 8843193 - Genes Dev. 1996 Oct 1;10(19):2401-10 10611322 - Proc Natl Acad Sci U S A. 1999 Dec 21;96(26):14973-7 9836640 - Science. 1998 Dec 4;282(5395):1893-7 15829965 - Nature. 2005 Apr 14;434(7035):907-13 18634022 - Hum Mutat. 2009 Jan;30(1):12-21 17431503 - J Clin Invest. 2007 May;117(5):1440-9 10766245 - Nature. 2000 Apr 6;404(6778):613-7 10859163 - Genes Dev. 2000 Jun 15;14(12):1439-47 11323676 - Nature. 2001 Apr 26;410(6832):1111-6 6616760 - Carcinogenesis. 1983 Oct;4(10):1317-22 17968022 - J Clin Oncol. 2007 Dec 1;25(34):5448-57 15279807 - DNA Repair (Amst). 2004 Aug-Sep;3(8-9):1187-96 1969059 - Lancet. 1990 Mar 24;335(8691):675-9 17388661 - PLoS Med. 2007 Mar;4(3):e90 15459660 - Nat Rev Mol Cell Biol. 2004 Oct;5(10):792-804 17311302 - Hum Mutat. 2007 Jun;28(6):622-9 9724636 - EMBO J. 1998 Sep 1;17(17):5001-14 12094328 - Am J Hum Genet. 2002 Aug;71(2):432-8 |
References_xml | – ident: 2021111608160871000_23.16.1895.9 doi: 10.1073/pnas.0803513105 – ident: 2021111608160871000_23.16.1895.12 doi: 10.1158/0008-5472.CAN-08-2634 – ident: 2021111608160871000_23.16.1895.44 doi: 10.1016/j.ccr.2006.11.024 – ident: 2021111608160871000_23.16.1895.51 doi: 10.1093/emboj/17.17.5001 – ident: 2021111608160871000_23.16.1895.58 doi: 10.1038/35042675 – ident: 2021111608160871000_23.16.1895.33 doi: 10.1016/j.ccr.2004.06.015 – ident: 2021111608160871000_23.16.1895.17 doi: 10.1038/nature03485 – ident: 2021111608160871000_23.16.1895.32 doi: 10.1038/10061 – ident: 2021111608160871000_23.16.1895.38 doi: 10.1126/science.1140321 – ident: 2021111608160871000_23.16.1895.41 doi: 10.1158/0008-5472.CAN-04-2502 – ident: 2021111608160871000_23.16.1895.52 doi: 10.1128/MCB.25.9.3553-3562.2005 – ident: 2021111608160871000_23.16.1895.31 doi: 10.1101/gad.970602 – ident: 2021111608160871000_23.16.1895.26 doi: 10.1016/0140-6736(90)90801-B – ident: 2021111608160871000_23.16.1895.24 doi: 10.1126/science.287.5459.1824 – ident: 2021111608160871000_23.16.1895.25 doi: 10.1128/MCB.22.18.6521-6532.2002 – ident: 2021111608160871000_23.16.1895.16 doi: 10.1038/nature01445 – ident: 2021111608160871000_23.16.1895.6 doi: 10.1038/nature05268 – ident: 2021111608160871000_23.16.1895.54 doi: 10.1038/sj.onc.1210885 – ident: 2021111608160871000_23.16.1895.59 doi: 10.1101/gad.10.19.2401 – ident: 2021111608160871000_23.16.1895.30 doi: 10.1073/pnas.96.26.14973 – ident: 2021111608160871000_23.16.1895.56 doi: 10.1086/341943 – ident: 2021111608160871000_23.16.1895.10 doi: 10.1074/jbc.C100466200 – ident: 2021111608160871000_23.16.1895.47 doi: 10.1038/sj.onc.1203124 – ident: 2021111608160871000_23.16.1895.15 doi: 10.1016/S1074-7613(00)80619-6 – ident: 2021111608160871000_23.16.1895.42 doi: 10.1002/humu.20495 – ident: 2021111608160871000_23.16.1895.57 doi: 10.1016/j.molcel.2005.09.024 – ident: 2021111608160871000_23.16.1895.21 doi: 10.1146/annurev.genet.40.051206.105231 – ident: 2021111608160871000_23.16.1895.18 doi: 10.1016/S0960-9822(01)00048-3 – ident: 2021111608160871000_23.16.1895.14 doi: 10.1038/nature07423 – ident: 2021111608160871000_23.16.1895.50 doi: 10.1093/carcin/4.10.1317 – ident: 2021111608160871000_23.16.1895.28 doi: 10.1038/35074129 – ident: 2021111608160871000_23.16.1895.37 doi: 10.1126/science.282.5395.1893 – ident: 2021111608160871000_23.16.1895.5 doi: 10.1038/nature03482 – ident: 2021111608160871000_23.16.1895.23 doi: 10.1158/0008-5472.CAN-04-2727 – ident: 2021111608160871000_23.16.1895.55 doi: 10.1016/S0360-3016(01)01489-4 – ident: 2021111608160871000_23.16.1895.1 doi: 10.1200/JCO.2007.11.2649 – ident: 2021111608160871000_23.16.1895.11 doi: 10.1038/nature02082 – ident: 2021111608160871000_23.16.1895.29 doi: 10.1172/JCI31245 – ident: 2021111608160871000_23.16.1895.43 doi: 10.1016/S0959-8049(02)00499-9 – volume: 14 start-page: 1439 year: 2000 ident: 2021111608160871000_23.16.1895.53 article-title: Aberrant cell cycle checkpoint function and early embryonic death in Chk1−/− mice publication-title: Genes & Dev doi: 10.1101/gad.14.12.1439 – volume: 5 start-page: 893 year: 1990 ident: 2021111608160871000_23.16.1895.3 article-title: Genetic and immunochemical analysis of mutant p53 in human breast cancer cell lines publication-title: Oncogene – ident: 2021111608160871000_23.16.1895.20 doi: 10.1126/science.1140735 – ident: 2021111608160871000_23.16.1895.48 doi: 10.1146/annurev.biochem.73.011303.073723 – ident: 2021111608160871000_23.16.1895.19 doi: 10.1002/(SICI)1097-0142(20000301)88:5<1057::AID-CNCR16>3.0.CO;2-6 – volume: 61 start-page: 4990 year: 2001 ident: 2021111608160871000_23.16.1895.36 article-title: DNA damage-activated kinase Chk2 is independent of proliferation or differentiation yet correlates with tissue biology publication-title: Cancer Res – ident: 2021111608160871000_23.16.1895.46 doi: 10.1016/j.cancergencyto.2006.07.006 – ident: 2021111608160871000_23.16.1895.34 doi: 10.1038/35007091 – ident: 2021111608160871000_23.16.1895.45 doi: 10.1016/j.molcel.2004.10.029 – volume: 14 start-page: 397 year: 2000 ident: 2021111608160871000_23.16.1895.8 article-title: ATR disruption leads to chromosomal fragmentation and early embryonic lethality publication-title: Genes & Dev doi: 10.1101/gad.14.4.397 – ident: 2021111608160871000_23.16.1895.22 doi: 10.1038/nrc2342 – ident: 2021111608160871000_23.16.1895.40 doi: 10.1093/emboj/19.3.463 – volume: 525 start-page: 85 year: 2003 ident: 2021111608160871000_23.16.1895.60 article-title: Ionizing radiation-induced Rad51 nuclear focus formation is cell cycle-regulated and defective in both ATM−/− and c-Abl−/− cells publication-title: Mutat Res doi: 10.1016/S0027-5107(03)00009-5 – ident: 2021111608160871000_23.16.1895.27 doi: 10.1158/0008-5472.CAN-05-2193 – ident: 2021111608160871000_23.16.1895.13 doi: 10.1016/j.dnarep.2004.04.010 – ident: 2021111608160871000_23.16.1895.35 doi: 10.1101/gad.14.12.1448 – ident: 2021111608160871000_23.16.1895.2 doi: 10.1016/S0092-8674(00)80086-0 – ident: 2021111608160871000_23.16.1895.4 doi: 10.1038/nrm1493 – ident: 2021111608160871000_23.16.1895.7 doi: 10.1371/journal.pmed.0040090 – ident: 2021111608160871000_23.16.1895.49 doi: 10.1083/jcb.151.7.1381 – ident: 2021111608160871000_23.16.1895.39 doi: 10.1002/humu.20805 – reference: 14603323 - Nature. 2003 Nov 6;426(6962):87-91 – reference: 15279807 - DNA Repair (Amst). 2004 Aug-Sep;3(8-9):1187-96 – reference: 15829956 - Nature. 2005 Apr 14;434(7035):864-70 – reference: 9724636 - EMBO J. 1998 Sep 1;17(17):5001-14 – reference: 11099028 - Nature. 2000 Nov 16;408(6810):307-10 – reference: 10559880 - Nat Cell Biol. 1999 Jun;1(2):94-7 – reference: 10766245 - Nature. 2000 Apr 6;404(6778):613-7 – reference: 18256616 - Nat Rev Cancer. 2008 Mar;8(3):193-204 – reference: 10557105 - Oncogene. 1999 Nov 1;18(45):6135-44 – reference: 17074592 - Cancer Genet Cytogenet. 2006 Nov;171(1):57-64 – reference: 10859164 - Genes Dev. 2000 Jun 15;14(12):1448-59 – reference: 17982490 - Oncogene. 2008 Apr 10;27(17):2501-6 – reference: 15574327 - Mol Cell. 2004 Dec 3;16(5):715-24 – reference: 17136093 - Nature. 2006 Nov 30;444(7119):633-7 – reference: 12192050 - Mol Cell Biol. 2002 Sep;22(18):6521-32 – reference: 12094328 - Am J Hum Genet. 2002 Aug;71(2):432-8 – reference: 8843193 - Genes Dev. 1996 Oct 1;10(19):2401-10 – reference: 11380241 - Int J Radiat Oncol Biol Phys. 2001 Jun 1;50(2):511-23 – reference: 17311302 - Hum Mutat. 2007 Jun;28(6):622-9 – reference: 11877376 - Genes Dev. 2002 Mar 1;16(5):560-70 – reference: 11571274 - J Biol Chem. 2001 Nov 9;276(45):42462-7 – reference: 15459660 - Nat Rev Mol Cell Biol. 2004 Oct;5(10):792-804 – reference: 10691732 - Genes Dev. 2000 Feb 15;14(4):397-402 – reference: 15805289 - Cancer Res. 2005 Apr 1;65(7):2872-81 – reference: 11134068 - J Cell Biol. 2000 Dec 25;151(7):1381-90 – reference: 11431331 - Cancer Res. 2001 Jul 1;61(13):4990-3 – reference: 9836640 - Science. 1998 Dec 4;282(5395):1893-7 – reference: 15829965 - Nature. 2005 Apr 14;434(7035):907-13 – reference: 16288016 - Cancer Res. 2005 Nov 15;65(22):10280-8 – reference: 10859163 - Genes Dev. 2000 Jun 15;14(12):1439-47 – reference: 17431503 - J Clin Invest. 2007 May;117(5):1440-9 – reference: 18948947 - Nature. 2008 Oct 23;455(7216):1069-75 – reference: 16307919 - Mol Cell. 2005 Nov 23;20(4):551-61 – reference: 10710310 - Science. 2000 Mar 10;287(5459):1824-7 – reference: 18323444 - Science. 2008 Mar 7;319(5868):1352-5 – reference: 15831461 - Mol Cell Biol. 2005 May;25(9):3553-62 – reference: 11323676 - Nature. 2001 Apr 26;410(6832):1111-6 – reference: 10654944 - EMBO J. 2000 Feb 1;19(3):463-71 – reference: 15261141 - Cancer Cell. 2004 Jul;6(1):45-59 – reference: 15189136 - Annu Rev Biochem. 2004;73:39-85 – reference: 15604286 - Cancer Res. 2004 Dec 15;64(24):9152-9 – reference: 12650908 - Mutat Res. 2003 Apr 9;525(1-2):85-92 – reference: 10611322 - Proc Natl Acad Sci U S A. 1999 Dec 21;96(26):14973-7 – reference: 18574145 - Proc Natl Acad Sci U S A. 2008 Jul 1;105(26):9053-8 – reference: 1969059 - Lancet. 1990 Mar 24;335(8691):675-9 – reference: 10699895 - Cancer. 2000 Mar 1;88(5):1057-62 – reference: 1694291 - Oncogene. 1990 Jun;5(6):893-9 – reference: 9768756 - Immunity. 1998 Sep;9(3):367-76 – reference: 6616760 - Carcinogenesis. 1983 Oct;4(10):1317-22 – reference: 17525332 - Science. 2007 May 25;316(5828):1160-6 – reference: 12751374 - Eur J Cancer. 2003 Mar;39(4):447-53 – reference: 17388661 - PLoS Med. 2007 Mar;4(3):e90 – reference: 11231155 - Curr Biol. 2001 Feb 6;11(3):191-4 – reference: 17292828 - Cancer Cell. 2007 Feb;11(2):175-89 – reference: 19010921 - Cancer Res. 2008 Nov 15;68(22):9459-68 – reference: 16805667 - Annu Rev Genet. 2006;40:209-35 – reference: 8689683 - Cell. 1996 Jul 12;86(1):159-71 – reference: 17968022 - J Clin Oncol. 2007 Dec 1;25(34):5448-57 – reference: 18634022 - Hum Mutat. 2009 Jan;30(1):12-21 – reference: 12607003 - Nature. 2003 Feb 27;421(6926):952-6 |
SSID | ssj0006066 |
Score | 2.4454103 |
Snippet | While the contribution of specific tumor suppressor networks to cancer development has been the subject of considerable recent study, it remains unclear how... |
SourceID | swepub pubmedcentral proquest pubmed crossref |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 1895 |
SubjectTerms | Animals Antineoplastic Agents - pharmacology Antineoplastic Agents - therapeutic use Apoptosis - drug effects Ataxia Telangiectasia Mutated Proteins ATM Breast Neoplasms - drug therapy Breast Neoplasms - physiopathology Cancer Cell Cycle Proteins - metabolism Cell Line, Tumor Checkpoint Kinase 2 chemotherapy DNA-Binding Proteins - deficiency DNA-Binding Proteins - metabolism DNA-PK Drug Resistance, Neoplasm Female Humans MEDICIN MEDICINE Mice Mice, Nude mouse models Neoplasms - drug therapy Neoplasms - physiopathology NIH 3T3 Cells p53 Protein-Serine-Threonine Kinases - deficiency Protein-Serine-Threonine Kinases - metabolism Research Paper Signal Transduction Survival Analysis Tumor Suppressor Protein p53 - metabolism Tumor Suppressor Proteins - deficiency Tumor Suppressor Proteins - metabolism |
Title | The combined status of ATM and p53 link tumor development with therapeutic response |
URI | https://www.ncbi.nlm.nih.gov/pubmed/19608766 https://www.proquest.com/docview/67582563 https://pubmed.ncbi.nlm.nih.gov/PMC2725944 https://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-152106 |
Volume | 23 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwELbKIiQuiPeWpw_LhSolD8epj2UBVUARiC7aW2QnzhLtNll1GyT4UfxGZmynTdgeYC9RlDix4u_LeMaeByEHvuKFSuBHkiz2PZb4uTcROfeKQGS-ltqXOUYjzz_x2RF7fxwfDwa_O15LzVqNs18740qugipcA1wxSvY_kN28FC7AOeALR0AYjv-MMbwXjFtQGzE0qDGOGdPF3Mb_x9EIN2hH62ZZr9r4KLP7b5dft7FXo5X1le05BmFK6gvDjc6jG5eb0q00z2S52bXRZYVRXEawz8Yuc0GHgK_hI07rH9Y_t1y50t12lXsJjDuVzj1YVu5WuyAhcIXVhmRav6D6DDRlsyqJgUjA5NFHy2d0Gug6lhgZJ3wPawra6cjJYCa8mLnqLk5I26DkloxdkRtMbJVON32DgiN2Tw2mJMGJzMeg1MRRvxXger40LAGJhFn6_krPbSb8z_PDMAFzkbFr5HoIZgnK1Q9fttnp0Rg0Vov7KBcPCj2_6vRr8tTaTvrK0CUL57Kjbi-drVGBFrfJLWe70Kkl4h0y0NVdcsNWM_15j3wFOtKWjtTSkdYFBTpSoCMFOlKkIzV0pB1OUaQj7dCRtnS8T47evV0czjxXs8PLQLVfe0KoKJEFDzVTeRjxImMTCfNCXLBcBlGuhfIZByMpDHgSaNBO80hlIQMzQuk8UdEDslfVld4nNORaB1LxCZ8UTOtEFIUABT1QeYxFH-SQvGwHL81cQnusq3KWGsPWD1IY9NQN-pAcbBqf2zwuu5s9b1FIgfW4eSYrXTcXKRrW0Hs0JA8tJtvXODCHJOmhtWmAGdz7d6ryu8nk7ug0JC8srr1H3pTfpmm9OkmbJkUt2-ePrtzDY3Jz-6s-IXvrVaOfgja9Vs8Mhf8AuGvOwQ |
linkProvider | Colorado Alliance of Research Libraries |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+combined+status+of+ATM+and+p53+link+tumor+development+with+therapeutic+response&rft.jtitle=Genes+%26+development&rft.au=Jiang%2C+Hai&rft.au=Reinhardt%2C+H.+Christian&rft.au=Bartkova%2C+Jirina&rft.au=Tommiska%2C+Johanna&rft.date=2009-08-15&rft.pub=Cold+Spring+Harbor+Laboratory+Press&rft.issn=0890-9369&rft.eissn=1549-5477&rft.volume=23&rft.issue=16&rft.spage=1895&rft.epage=1909&rft_id=info:doi/10.1101%2Fgad.1815309&rft_id=info%3Apmid%2F19608766&rft.externalDocID=PMC2725944 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0890-9369&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0890-9369&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0890-9369&client=summon |