The combined status of ATM and p53 link tumor development with therapeutic response

While the contribution of specific tumor suppressor networks to cancer development has been the subject of considerable recent study, it remains unclear how alterations in these networks are integrated to influence the response of tumors to anti-cancer treatments. Here, we show that mechanisms commo...

Full description

Saved in:
Bibliographic Details
Published inGenes & development Vol. 23; no. 16; pp. 1895 - 1909
Main Authors Jiang, Hai, Reinhardt, H. Christian, Bartkova, Jirina, Tommiska, Johanna, Blomqvist, Carl, Nevanlinna, Heli, Bartek, Jiri, Yaffe, Michael B., Hemann, Michael T.
Format Journal Article
LanguageEnglish
Published United States Cold Spring Harbor Laboratory Press 15.08.2009
Subjects
Online AccessGet full text

Cover

Loading…
Abstract While the contribution of specific tumor suppressor networks to cancer development has been the subject of considerable recent study, it remains unclear how alterations in these networks are integrated to influence the response of tumors to anti-cancer treatments. Here, we show that mechanisms commonly used by tumors to bypass early neoplastic checkpoints ultimately determine chemotherapeutic response and generate tumor-specific vulnerabilities that can be exploited with targeted therapies. Specifically, evaluation of the combined status of ATM and p53 , two commonly mutated tumor suppressor genes, can help to predict the clinical response to genotoxic chemotherapies. We show that in p53 -deficient settings, suppression of ATM dramatically sensitizes tumors to DNA-damaging chemotherapy, whereas, conversely, in the presence of functional p53, suppression of ATM or its downstream target Chk2 actually protects tumors from being killed by genotoxic agents. Furthermore, ATM -deficient cancer cells display strong nononcogene addiction to DNA-PKcs for survival after DNA damage, such that suppression of DNA-PKcs in vivo resensitizes inherently chemoresistant ATM -deficient tumors to genotoxic chemotherapy. Thus, the specific set of alterations induced during tumor development plays a dominant role in determining both the tumor response to conventional chemotherapy and specific susceptibilities to targeted therapies in a given malignancy.
AbstractList While the contribution of specific tumor suppressor networks to cancer development has been the subject of considerable recent study, it remains unclear how alterations in these networks are integrated to influence the response of tumors to anti-cancer treatments. Here, we show that mechanisms commonly used by tumors to bypass early neoplastic checkpoints ultimately determine chemotherapeutic response and generate tumor-specific vulnerabilities that can be exploited with targeted therapies. Specifically, evaluation of the combined status of ATM and p53 , two commonly mutated tumor suppressor genes, can help to predict the clinical response to genotoxic chemotherapies. We show that in p53 -deficient settings, suppression of ATM dramatically sensitizes tumors to DNA-damaging chemotherapy, whereas, conversely, in the presence of functional p53, suppression of ATM or its downstream target Chk2 actually protects tumors from being killed by genotoxic agents. Furthermore, ATM -deficient cancer cells display strong nononcogene addiction to DNA-PKcs for survival after DNA damage, such that suppression of DNA-PKcs in vivo resensitizes inherently chemoresistant ATM -deficient tumors to genotoxic chemotherapy. Thus, the specific set of alterations induced during tumor development plays a dominant role in determining both the tumor response to conventional chemotherapy and specific susceptibilities to targeted therapies in a given malignancy.
While the contribution of specific tumor suppressor networks to cancer development has been the subject of considerable recent study, it remains unclear how alterations in these networks are integrated to influence the response of tumors to anti-cancer treatments. Here, we show that mechanisms commonly used by tumors to bypass early neoplastic checkpoints ultimately determine chemotherapeutic response and generate tumor-specific vulnerabilities that can be exploited with targeted therapies. Specifically, evaluation of the combined status of ATM and p53, two commonly mutated tumor suppressor genes, can help to predict the clinical response to genotoxic chemotherapies. We show that in p53-deficient settings, suppression of ATM dramatically sensitizes tumors to DNA-damaging chemotherapy, whereas, conversely, in the presence of functional p53, suppression of ATM or its downstream target Chk2 actually protects tumors from being killed by genotoxic agents. Furthermore, ATM-deficient cancer cells display strong nononcogene addiction to DNA-PKcs for survival after DNA damage, such that suppression of DNA-PKcs in vivo resensitizes inherently chemoresistant ATM-deficient tumors to genotoxic chemotherapy. Thus, the specific set of alterations induced during tumor development plays a dominant role in determining both the tumor response to conventional chemotherapy and specific susceptibilities to targeted therapies in a given malignancy.
While the contribution of specific tumor suppressor networks to cancer development has been the subject of considerable recent study, it remains unclear how alterations in these networks are integrated to influence the response of tumors to anti-cancer treatments. Here, we show that mechanisms commonly used by tumors to bypass early neoplastic checkpoints ultimately determine chemotherapeutic response and generate tumor-specific vulnerabilities that can be exploited with targeted therapies. Specifically, evaluation of the combined status of ATM and p53, two commonly mutated tumor suppressor genes, can help to predict the clinical response to genotoxic chemotherapies. We show that in p53-deficient settings, suppression of ATM dramatically sensitizes tumors to DNA-damaging chemotherapy, whereas, conversely, in the presence of functional p53, suppression of ATM or its downstream target Chk2 actually protects tumors from being killed by genotoxic agents. Furthermore, ATM-deficient cancer cells display strong nononcogene addiction to DNA-PKcs for survival after DNA damage, such that suppression of DNA-PKcs in vivo resensitizes inherently chemoresistant ATM-deficient tumors to genotoxic chemotherapy. Thus, the specific set of alterations induced during tumor development plays a dominant role in determining both the tumor response to conventional chemotherapy and specific susceptibilities to targeted therapies in a given malignancy.While the contribution of specific tumor suppressor networks to cancer development has been the subject of considerable recent study, it remains unclear how alterations in these networks are integrated to influence the response of tumors to anti-cancer treatments. Here, we show that mechanisms commonly used by tumors to bypass early neoplastic checkpoints ultimately determine chemotherapeutic response and generate tumor-specific vulnerabilities that can be exploited with targeted therapies. Specifically, evaluation of the combined status of ATM and p53, two commonly mutated tumor suppressor genes, can help to predict the clinical response to genotoxic chemotherapies. We show that in p53-deficient settings, suppression of ATM dramatically sensitizes tumors to DNA-damaging chemotherapy, whereas, conversely, in the presence of functional p53, suppression of ATM or its downstream target Chk2 actually protects tumors from being killed by genotoxic agents. Furthermore, ATM-deficient cancer cells display strong nononcogene addiction to DNA-PKcs for survival after DNA damage, such that suppression of DNA-PKcs in vivo resensitizes inherently chemoresistant ATM-deficient tumors to genotoxic chemotherapy. Thus, the specific set of alterations induced during tumor development plays a dominant role in determining both the tumor response to conventional chemotherapy and specific susceptibilities to targeted therapies in a given malignancy.
Author Reinhardt, H. Christian
Nevanlinna, Heli
Bartek, Jiri
Tommiska, Johanna
Hemann, Michael T.
Jiang, Hai
Bartkova, Jirina
Yaffe, Michael B.
Blomqvist, Carl
AuthorAffiliation 4 Department of Oncology, Uppsala University Hospital, SE-751 86 Uppsala, Sweden
3 Department of Obstetrics and Gynecology, Helsinki University Central Hospital, FIN-00290 Helsinki, Finland
1 The Koch Institute for Integrative Cancer Research at Massachusetts Institute of Technology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
5 Laboratory of Genome Integrity, Palacky University, 771 47 Olomouc, Czech Republic
2 Centre for Genotoxic Stress Research, Danish Cancer Society, DK-2100 Copenhagen, Denmark
AuthorAffiliation_xml – name: 4 Department of Oncology, Uppsala University Hospital, SE-751 86 Uppsala, Sweden
– name: 5 Laboratory of Genome Integrity, Palacky University, 771 47 Olomouc, Czech Republic
– name: 1 The Koch Institute for Integrative Cancer Research at Massachusetts Institute of Technology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
– name: 2 Centre for Genotoxic Stress Research, Danish Cancer Society, DK-2100 Copenhagen, Denmark
– name: 3 Department of Obstetrics and Gynecology, Helsinki University Central Hospital, FIN-00290 Helsinki, Finland
Author_xml – sequence: 1
  givenname: Hai
  surname: Jiang
  fullname: Jiang, Hai
– sequence: 2
  givenname: H. Christian
  surname: Reinhardt
  fullname: Reinhardt, H. Christian
– sequence: 3
  givenname: Jirina
  surname: Bartkova
  fullname: Bartkova, Jirina
– sequence: 4
  givenname: Johanna
  surname: Tommiska
  fullname: Tommiska, Johanna
– sequence: 5
  givenname: Carl
  surname: Blomqvist
  fullname: Blomqvist, Carl
– sequence: 6
  givenname: Heli
  surname: Nevanlinna
  fullname: Nevanlinna, Heli
– sequence: 7
  givenname: Jiri
  surname: Bartek
  fullname: Bartek, Jiri
– sequence: 8
  givenname: Michael B.
  surname: Yaffe
  fullname: Yaffe, Michael B.
– sequence: 9
  givenname: Michael T.
  surname: Hemann
  fullname: Hemann, Michael T.
BackLink https://www.ncbi.nlm.nih.gov/pubmed/19608766$$D View this record in MEDLINE/PubMed
https://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-152106$$DView record from Swedish Publication Index
BookMark eNptkc1v1DAQxS1URLeFE3fkExdI6-_EF6RV-arUigMLV8uxJ7uGJA6204r_nlS7VC3iNIf5vfc0807Q0RhHQOglJWeUEnq-tf6MNlRyop-gFZVCV1LU9RFakUaTSnOlj9FJzj8IIYoo9QwdU61IUyu1Ql83O8AuDm0YweNcbJkzjh1eb66xHT2eJMd9GH_iMg8xYQ830MdpgLHg21B2uOwg2QnmEhxOkKc4ZniOnna2z_DiME_Rt48fNhefq6svny4v1leVE1SVSuuW17ZTDETrGVedE40VTMpOeEu5B90SoRrqGVU1BcaY561jQnPWgq9bfore7n3zLUxza6YUBpt-m2iDeR--r01MWzPPhkpGiVrwd3t8YQfwbrkh2f6R6vFmDDuzjTeG1UxqIRaD1weDFH_NkIsZQnbQ93aEOGejatkwqfgCvnqYdB_x9-0LQPeASzHnBJ1xYXl9iHfBoTeUmLtqzVKtOVS7aN78o7m3_Q_9BwO2pa8
CitedBy_id crossref_primary_10_3389_fimmu_2021_643282
crossref_primary_10_1016_j_jdsr_2019_08_001
crossref_primary_10_1038_onc_2011_451
crossref_primary_10_7554_eLife_104718_2
crossref_primary_10_1016_j_molcel_2016_06_017
crossref_primary_10_1016_j_bcp_2011_12_026
crossref_primary_10_1093_neuonc_noad064
crossref_primary_10_3390_cells11203221
crossref_primary_10_1073_pnas_1011412107
crossref_primary_10_1371_journal_pone_0031087
crossref_primary_10_1007_s00439_010_0900_x
crossref_primary_10_1371_journal_pone_0019198
crossref_primary_10_1016_j_mrfmmm_2020_111725
crossref_primary_10_1021_acsomega_2c07356
crossref_primary_10_1158_2159_8290_CD_13_0907
crossref_primary_10_1111_his_13986
crossref_primary_10_1186_1756_9966_32_95
crossref_primary_10_1111_bjh_14561
crossref_primary_10_1007_s00044_013_0665_6
crossref_primary_10_1038_nrc_2016_15
crossref_primary_10_1158_0008_5472_CAN_11_4035
crossref_primary_10_1016_j_pharmthera_2012_10_009
crossref_primary_10_1186_1476_4598_13_36
crossref_primary_10_4103_0366_6999_168065
crossref_primary_10_1634_theoncologist_2019_0851
crossref_primary_10_1139_G10_067
crossref_primary_10_1038_nchembio_573
crossref_primary_10_1038_onc_2010_624
crossref_primary_10_1007_s12064_012_0168_x
crossref_primary_10_1038_cddis_2013_534
crossref_primary_10_1038_nature08467
crossref_primary_10_1016_j_critrevonc_2013_10_001
crossref_primary_10_1126_scisignal_2000758
crossref_primary_10_1111_jcmm_17512
crossref_primary_10_1038_onc_2013_275
crossref_primary_10_7554_eLife_104718
crossref_primary_10_1016_j_neo_2014_09_009
crossref_primary_10_1002_cncr_30179
crossref_primary_10_1038_onc_2015_360
crossref_primary_10_1038_s41467_024_49316_8
crossref_primary_10_1038_onc_2014_443
crossref_primary_10_1158_1078_0432_CCR_23_1122
crossref_primary_10_1158_0008_5472_CAN_16_3398
crossref_primary_10_1158_0008_5472_CAN_10_1252
crossref_primary_10_1111_j_1365_2184_2010_00685_x
crossref_primary_10_1101_pdb_prot078014
crossref_primary_10_1158_0008_5472_CAN_19_1807
crossref_primary_10_1038_onc_2011_303
crossref_primary_10_1016_j_ctrv_2020_102090
crossref_primary_10_1038_nrc2877
crossref_primary_10_1093_annonc_mdt421
crossref_primary_10_1159_000446361
crossref_primary_10_1038_s41419_017_0069_5
crossref_primary_10_1016_j_semcancer_2016_01_001
crossref_primary_10_1016_j_bbcan_2013_12_002
crossref_primary_10_1126_scitranslmed_3005814
crossref_primary_10_1007_s11523_025_01136_6
crossref_primary_10_1182_blood_2011_01_313734
crossref_primary_10_1186_1471_2407_11_156
crossref_primary_10_1158_1535_7163_MCT_19_0208
crossref_primary_10_1371_journal_pone_0057036
crossref_primary_10_1016_j_biocel_2015_08_002
crossref_primary_10_1016_j_clbc_2022_10_012
crossref_primary_10_1016_j_dnarep_2010_09_003
crossref_primary_10_18632_oncotarget_9616
crossref_primary_10_18632_oncotarget_20342
crossref_primary_10_3390_genes12050727
crossref_primary_10_2217_fon_13_26
crossref_primary_10_1007_s00018_015_1901_7
crossref_primary_10_4161_cc_21997
crossref_primary_10_1007_s10549_010_1230_3
crossref_primary_10_1016_j_bbamcr_2010_06_002
crossref_primary_10_3389_fgene_2015_00207
crossref_primary_10_1016_j_beha_2009_12_003
crossref_primary_10_18632_oncotarget_14228
crossref_primary_10_1111_j_1582_4934_2010_01145_x
crossref_primary_10_4161_mco_29905
crossref_primary_10_1056_NEJMra1407390
crossref_primary_10_1089_ars_2013_5597
crossref_primary_10_1016_j_canlet_2020_10_003
crossref_primary_10_1016_j_ccr_2014_01_005
crossref_primary_10_1667_RR13515_1
crossref_primary_10_1038_nrd4003
crossref_primary_10_1111_j_1464_410X_2012_11564_x
crossref_primary_10_1158_0008_5472_CAN_21_1756
crossref_primary_10_1016_j_mrfmmm_2020_111692
crossref_primary_10_1039_c2mb25468a
crossref_primary_10_1158_1078_0432_CCR_13_1239
crossref_primary_10_1007_s10875_025_01857_3
crossref_primary_10_1016_j_mrfmmm_2020_111695
crossref_primary_10_1002_smll_201201510
crossref_primary_10_1016_j_bcp_2012_07_022
crossref_primary_10_1016_j_celrep_2018_09_079
crossref_primary_10_1001_jamanetworkopen_2019_11895
crossref_primary_10_3390_ijms15045388
crossref_primary_10_3390_cancers12041050
crossref_primary_10_4161_cc_24127
crossref_primary_10_1158_2159_8290_CD_14_0316
crossref_primary_10_1186_1752_0509_6_125
crossref_primary_10_1158_0008_5472_CAN_20_1439
crossref_primary_10_1016_j_mrfmmm_2012_04_005
crossref_primary_10_1159_000493401
crossref_primary_10_1200_JCO_2012_45_9867
crossref_primary_10_1016_j_neo_2014_08_008
crossref_primary_10_4161_cc_9_20_13471
crossref_primary_10_1021_jm500415t
crossref_primary_10_18632_oncotarget_4875
crossref_primary_10_1002_lary_28641
crossref_primary_10_4161_cc_10_1_14351
crossref_primary_10_1038_cr_2015_8
crossref_primary_10_1016_j_canlet_2019_02_015
crossref_primary_10_1158_1535_7163_MCT_12_0448
crossref_primary_10_1016_j_molonc_2011_07_006
crossref_primary_10_1038_nchembio_503
crossref_primary_10_1186_1741_7007_11_114
crossref_primary_10_1002_hon_1020
crossref_primary_10_1016_j_chemosphere_2020_125967
crossref_primary_10_1016_j_mam_2023_101205
crossref_primary_10_18632_oncotarget_13063
crossref_primary_10_3390_ijms17010102
crossref_primary_10_1007_s42764_022_00062_5
crossref_primary_10_1038_s41388_017_0054_6
crossref_primary_10_1016_j_pharmthera_2019_06_010
crossref_primary_10_1038_ncomms14370
crossref_primary_10_1074_jbc_M111_292664
crossref_primary_10_5567_pharmacologia_2012_352_361
crossref_primary_10_1101_cshperspect_a026310
crossref_primary_10_1002_jso_24114
crossref_primary_10_1172_JCI43836
crossref_primary_10_1038_onc_2014_399
crossref_primary_10_1186_gm99
crossref_primary_10_1038_srep29020
crossref_primary_10_15252_emmm_201404580
crossref_primary_10_1016_j_fct_2019_110834
crossref_primary_10_1038_onc_2010_371
crossref_primary_10_3892_or_2017_5448
crossref_primary_10_1111_vco_12195
crossref_primary_10_1158_1078_0432_CCR_12_3408
crossref_primary_10_1038_nrc3342
crossref_primary_10_1002_emmm_201200229
crossref_primary_10_1016_j_cub_2013_03_043
crossref_primary_10_3892_or_2013_2614
crossref_primary_10_1093_bioinformatics_btaa495
crossref_primary_10_4161_15384101_2014_960729
crossref_primary_10_3389_fonc_2019_01468
crossref_primary_10_1172_JCI73932
crossref_primary_10_1093_bib_bbaa217
crossref_primary_10_1016_j_lungcan_2017_10_006
crossref_primary_10_1021_acs_jmedchem_4c00454
crossref_primary_10_1016_j_bmcl_2020_127517
crossref_primary_10_1158_1541_7786_MCR_17_0511
crossref_primary_10_1016_j_crphar_2021_100017
crossref_primary_10_1186_bcr2788
crossref_primary_10_1021_jm501026z
crossref_primary_10_1038_bjc_2012_265
crossref_primary_10_1093_carcin_bgp261
crossref_primary_10_1093_jmcb_mju045
crossref_primary_10_3390_cells9102287
crossref_primary_10_3390_cancers11091289
crossref_primary_10_1200_PO_20_00112
crossref_primary_10_1016_j_celrep_2015_12_032
crossref_primary_10_1159_000443820
crossref_primary_10_3390_cancers14071821
crossref_primary_10_1002_bies_201500093
crossref_primary_10_1016_j_drudis_2014_05_002
crossref_primary_10_1016_j_stem_2012_05_013
crossref_primary_10_1186_s12964_020_00653_3
crossref_primary_10_1667_RR2478_1
crossref_primary_10_1016_j_ctrv_2013_03_002
crossref_primary_10_1038_ncb2795
crossref_primary_10_3390_cancers15030735
crossref_primary_10_1101_pdb_top069872
crossref_primary_10_1158_1535_7163_MCT_09_0872
crossref_primary_10_1517_14728222_2011_640322
crossref_primary_10_1016_j_tranon_2020_100960
crossref_primary_10_1016_j_hoc_2015_07_003
crossref_primary_10_1016_j_jpba_2017_08_037
crossref_primary_10_1126_scitranslmed_abd5750
crossref_primary_10_1158_0008_5472_CAN_11_1014
crossref_primary_10_1038_nature10760
crossref_primary_10_3109_09553002_2013_767993
crossref_primary_10_3390_cancers4020354
crossref_primary_10_1038_msb_2012_1
crossref_primary_10_1016_j_bcp_2018_12_002
crossref_primary_10_1097_MOH_0000000000000433
crossref_primary_10_3390_pr9122223
crossref_primary_10_1182_blood_2021012081
crossref_primary_10_1158_0008_5472_CAN_11_1245
crossref_primary_10_3390_genes8060158
crossref_primary_10_1016_j_biocel_2022_106230
crossref_primary_10_1158_0008_5472_CAN_11_0277
crossref_primary_10_1158_0008_5472_CAN_17_0634
crossref_primary_10_1038_s41598_019_39525_3
crossref_primary_10_1126_scitranslmed_adj5962
crossref_primary_10_1038_jid_2015_198
crossref_primary_10_18632_oncotarget_2158
crossref_primary_10_1002_cncr_29140
crossref_primary_10_1038_ncomms8677
crossref_primary_10_1038_s41598_018_36475_0
crossref_primary_10_1080_23723556_2015_1012976
crossref_primary_10_1158_1078_0432_CCR_14_1165
crossref_primary_10_1016_j_breast_2015_07_026
crossref_primary_10_1016_j_pharmthera_2016_01_014
crossref_primary_10_2217_fon_2018_0339
crossref_primary_10_1007_s10577_022_09700_w
crossref_primary_10_3390_cancers12030687
crossref_primary_10_1042_BSR20110125
crossref_primary_10_5496_wjmg_v1_i1_14
crossref_primary_10_1016_j_bbrc_2020_05_005
crossref_primary_10_1038_nchembio_965
crossref_primary_10_3892_ol_2018_8133
crossref_primary_10_1016_j_semcancer_2011_04_001
crossref_primary_10_1016_j_neubiorev_2017_07_017
crossref_primary_10_1016_j_ygeno_2012_05_001
crossref_primary_10_1021_jm101488z
crossref_primary_10_1080_15384101_2017_1312236
crossref_primary_10_1016_j_tcb_2015_04_001
crossref_primary_10_1093_jmcb_mjz012
crossref_primary_10_1038_nm_4291
crossref_primary_10_4161_cbt_27823
crossref_primary_10_1371_journal_pone_0031627
crossref_primary_10_3892_ol_2017_7637
crossref_primary_10_1038_s41416_019_0565_8
crossref_primary_10_1016_j_molcel_2010_09_019
crossref_primary_10_1038_emboj_2012_236
crossref_primary_10_1158_1541_7786_MCR_14_0201
crossref_primary_10_1007_s13402_018_0411_7
crossref_primary_10_1002_ijc_35170
crossref_primary_10_1093_nar_gkad792
crossref_primary_10_1007_s10495_009_0417_8
crossref_primary_10_1016_j_canlet_2013_09_010
crossref_primary_10_1186_bcr3147
Cites_doi 10.1073/pnas.0803513105
10.1158/0008-5472.CAN-08-2634
10.1016/j.ccr.2006.11.024
10.1093/emboj/17.17.5001
10.1038/35042675
10.1016/j.ccr.2004.06.015
10.1038/nature03485
10.1038/10061
10.1126/science.1140321
10.1158/0008-5472.CAN-04-2502
10.1128/MCB.25.9.3553-3562.2005
10.1101/gad.970602
10.1016/0140-6736(90)90801-B
10.1126/science.287.5459.1824
10.1128/MCB.22.18.6521-6532.2002
10.1038/nature01445
10.1038/nature05268
10.1038/sj.onc.1210885
10.1101/gad.10.19.2401
10.1073/pnas.96.26.14973
10.1086/341943
10.1074/jbc.C100466200
10.1038/sj.onc.1203124
10.1016/S1074-7613(00)80619-6
10.1002/humu.20495
10.1016/j.molcel.2005.09.024
10.1146/annurev.genet.40.051206.105231
10.1016/S0960-9822(01)00048-3
10.1038/nature07423
10.1093/carcin/4.10.1317
10.1038/35074129
10.1126/science.282.5395.1893
10.1038/nature03482
10.1158/0008-5472.CAN-04-2727
10.1016/S0360-3016(01)01489-4
10.1200/JCO.2007.11.2649
10.1038/nature02082
10.1172/JCI31245
10.1016/S0959-8049(02)00499-9
10.1101/gad.14.12.1439
10.1126/science.1140735
10.1146/annurev.biochem.73.011303.073723
10.1002/(SICI)1097-0142(20000301)88:5<1057::AID-CNCR16>3.0.CO;2-6
10.1016/j.cancergencyto.2006.07.006
10.1038/35007091
10.1016/j.molcel.2004.10.029
10.1101/gad.14.4.397
10.1038/nrc2342
10.1093/emboj/19.3.463
10.1016/S0027-5107(03)00009-5
10.1158/0008-5472.CAN-05-2193
10.1016/j.dnarep.2004.04.010
10.1101/gad.14.12.1448
10.1016/S0092-8674(00)80086-0
10.1038/nrm1493
10.1371/journal.pmed.0040090
10.1083/jcb.151.7.1381
10.1002/humu.20805
ContentType Journal Article
Copyright Copyright © 2009 by Cold Spring Harbor Laboratory Press
Copyright_xml – notice: Copyright © 2009 by Cold Spring Harbor Laboratory Press
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
ADTPV
AOWAS
DF2
DOI 10.1101/gad.1815309
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
SwePub
SwePub Articles
SWEPUB Uppsala universitet
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList
MEDLINE
MEDLINE - Academic

CrossRef
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
Medicine
DocumentTitleAlternate Jiang et al
EISSN 1549-5477
EndPage 1909
ExternalDocumentID oai_DiVA_org_uu_152106
PMC2725944
19608766
10_1101_gad_1815309
Genre Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NIEHS NIH HHS
  grantid: R01 ES015339
– fundername: NCI NIH HHS
  grantid: R01 CA128803
– fundername: NCI NIH HHS
  grantid: 1 R01 CA128803-01
– fundername: NCI NIH HHS
  grantid: U54 CA112967
– fundername: NIEHS NIH HHS
  grantid: R01 ES15339
GroupedDBID ---
-DZ
-~X
.55
.GJ
0VX
18M
29H
2WC
39C
4.4
53G
5RE
5VS
85S
AAYXX
ABCQX
ABDIX
ACGFO
ACLKE
ACNCT
ADBBV
ADIYS
ADXHL
AECCQ
AENEX
AETEA
AFFNX
AFOSN
AHPUY
AI.
ALMA_UNASSIGNED_HOLDINGS
BAWUL
BTFSW
C1A
CITATION
CS3
DIK
DU5
E3Z
EBS
EJD
F5P
FRP
GX1
H13
HYE
H~9
IH2
KQ8
L7B
MV1
MVM
N9A
OK1
P2P
R.V
RCX
RHI
RPM
SJN
TAE
TN5
TR2
UHB
VH1
W8F
WH7
WOQ
X7M
XJT
XSW
YBU
YHG
YKV
YSK
ZXP
ZY4
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
.-4
ADTPV
AOWAS
DF2
YYP
ZGI
ID FETCH-LOGICAL-c416t-99b37af62e4bd236fc48a4255f4da13de9b04681d21671e222d3bc24932bed7b3
ISSN 0890-9369
1549-5477
IngestDate Thu Aug 21 06:28:44 EDT 2025
Thu Aug 21 14:10:29 EDT 2025
Thu Jul 10 22:52:47 EDT 2025
Mon Jul 21 05:34:25 EDT 2025
Tue Jul 01 04:23:35 EDT 2025
Thu Apr 24 23:09:20 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 16
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c416t-99b37af62e4bd236fc48a4255f4da13de9b04681d21671e222d3bc24932bed7b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
These authors contributed equally to this work.
OpenAccessLink http://genesdev.cshlp.org/content/23/16/1895.full.pdf
PMID 19608766
PQID 67582563
PQPubID 23479
PageCount 15
ParticipantIDs swepub_primary_oai_DiVA_org_uu_152106
pubmedcentral_primary_oai_pubmedcentral_nih_gov_2725944
proquest_miscellaneous_67582563
pubmed_primary_19608766
crossref_citationtrail_10_1101_gad_1815309
crossref_primary_10_1101_gad_1815309
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2009-08-15
PublicationDateYYYYMMDD 2009-08-15
PublicationDate_xml – month: 08
  year: 2009
  text: 2009-08-15
  day: 15
PublicationDecade 2000
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Genes & development
PublicationTitleAlternate Genes Dev
PublicationYear 2009
Publisher Cold Spring Harbor Laboratory Press
Publisher_xml – name: Cold Spring Harbor Laboratory Press
References 2021111608160871000_23.16.1895.25
2021111608160871000_23.16.1895.26
2021111608160871000_23.16.1895.23
2021111608160871000_23.16.1895.24
2021111608160871000_23.16.1895.29
2021111608160871000_23.16.1895.27
2021111608160871000_23.16.1895.28
2021111608160871000_23.16.1895.21
2021111608160871000_23.16.1895.22
2021111608160871000_23.16.1895.20
Bartek (2021111608160871000_23.16.1895.3) 1990; 5
2021111608160871000_23.16.1895.37
2021111608160871000_23.16.1895.34
2021111608160871000_23.16.1895.35
2021111608160871000_23.16.1895.38
2021111608160871000_23.16.1895.39
2021111608160871000_23.16.1895.32
2021111608160871000_23.16.1895.33
2021111608160871000_23.16.1895.30
2021111608160871000_23.16.1895.31
2021111608160871000_23.16.1895.9
2021111608160871000_23.16.1895.7
Lukas (2021111608160871000_23.16.1895.36) 2001; 61
2021111608160871000_23.16.1895.2
2021111608160871000_23.16.1895.47
2021111608160871000_23.16.1895.1
2021111608160871000_23.16.1895.48
2021111608160871000_23.16.1895.45
2021111608160871000_23.16.1895.46
2021111608160871000_23.16.1895.6
2021111608160871000_23.16.1895.5
2021111608160871000_23.16.1895.4
2021111608160871000_23.16.1895.49
Takai (2021111608160871000_23.16.1895.53) 2000; 14
2021111608160871000_23.16.1895.40
2021111608160871000_23.16.1895.43
2021111608160871000_23.16.1895.44
2021111608160871000_23.16.1895.41
2021111608160871000_23.16.1895.42
Brown (2021111608160871000_23.16.1895.8) 2000; 14
Yuan (2021111608160871000_23.16.1895.60) 2003; 525
2021111608160871000_23.16.1895.14
2021111608160871000_23.16.1895.58
2021111608160871000_23.16.1895.15
2021111608160871000_23.16.1895.59
2021111608160871000_23.16.1895.12
2021111608160871000_23.16.1895.56
2021111608160871000_23.16.1895.13
2021111608160871000_23.16.1895.57
2021111608160871000_23.16.1895.18
2021111608160871000_23.16.1895.19
2021111608160871000_23.16.1895.16
2021111608160871000_23.16.1895.17
2021111608160871000_23.16.1895.50
2021111608160871000_23.16.1895.51
2021111608160871000_23.16.1895.10
2021111608160871000_23.16.1895.54
2021111608160871000_23.16.1895.11
2021111608160871000_23.16.1895.55
2021111608160871000_23.16.1895.52
11134068 - J Cell Biol. 2000 Dec 25;151(7):1381-90
15604286 - Cancer Res. 2004 Dec 15;64(24):9152-9
10559880 - Nat Cell Biol. 1999 Jun;1(2):94-7
16288016 - Cancer Res. 2005 Nov 15;65(22):10280-8
16805667 - Annu Rev Genet. 2006;40:209-35
10691732 - Genes Dev. 2000 Feb 15;14(4):397-402
18323444 - Science. 2008 Mar 7;319(5868):1352-5
16307919 - Mol Cell. 2005 Nov 23;20(4):551-61
10557105 - Oncogene. 1999 Nov 1;18(45):6135-44
11431331 - Cancer Res. 2001 Jul 1;61(13):4990-3
1694291 - Oncogene. 1990 Jun;5(6):893-9
10710310 - Science. 2000 Mar 10;287(5459):1824-7
11099028 - Nature. 2000 Nov 16;408(6810):307-10
10699895 - Cancer. 2000 Mar 1;88(5):1057-62
18256616 - Nat Rev Cancer. 2008 Mar;8(3):193-204
18948947 - Nature. 2008 Oct 23;455(7216):1069-75
15261141 - Cancer Cell. 2004 Jul;6(1):45-59
18574145 - Proc Natl Acad Sci U S A. 2008 Jul 1;105(26):9053-8
15829956 - Nature. 2005 Apr 14;434(7035):864-70
15574327 - Mol Cell. 2004 Dec 3;16(5):715-24
11571274 - J Biol Chem. 2001 Nov 9;276(45):42462-7
12650908 - Mutat Res. 2003 Apr 9;525(1-2):85-92
17074592 - Cancer Genet Cytogenet. 2006 Nov;171(1):57-64
15831461 - Mol Cell Biol. 2005 May;25(9):3553-62
11231155 - Curr Biol. 2001 Feb 6;11(3):191-4
12607003 - Nature. 2003 Feb 27;421(6926):952-6
19010921 - Cancer Res. 2008 Nov 15;68(22):9459-68
12192050 - Mol Cell Biol. 2002 Sep;22(18):6521-32
17525332 - Science. 2007 May 25;316(5828):1160-6
11380241 - Int J Radiat Oncol Biol Phys. 2001 Jun 1;50(2):511-23
17292828 - Cancer Cell. 2007 Feb;11(2):175-89
9768756 - Immunity. 1998 Sep;9(3):367-76
15805289 - Cancer Res. 2005 Apr 1;65(7):2872-81
17136093 - Nature. 2006 Nov 30;444(7119):633-7
8689683 - Cell. 1996 Jul 12;86(1):159-71
11877376 - Genes Dev. 2002 Mar 1;16(5):560-70
14603323 - Nature. 2003 Nov 6;426(6962):87-91
12751374 - Eur J Cancer. 2003 Mar;39(4):447-53
10654944 - EMBO J. 2000 Feb 1;19(3):463-71
10859164 - Genes Dev. 2000 Jun 15;14(12):1448-59
15189136 - Annu Rev Biochem. 2004;73:39-85
17982490 - Oncogene. 2008 Apr 10;27(17):2501-6
8843193 - Genes Dev. 1996 Oct 1;10(19):2401-10
10611322 - Proc Natl Acad Sci U S A. 1999 Dec 21;96(26):14973-7
9836640 - Science. 1998 Dec 4;282(5395):1893-7
15829965 - Nature. 2005 Apr 14;434(7035):907-13
18634022 - Hum Mutat. 2009 Jan;30(1):12-21
17431503 - J Clin Invest. 2007 May;117(5):1440-9
10766245 - Nature. 2000 Apr 6;404(6778):613-7
10859163 - Genes Dev. 2000 Jun 15;14(12):1439-47
11323676 - Nature. 2001 Apr 26;410(6832):1111-6
6616760 - Carcinogenesis. 1983 Oct;4(10):1317-22
17968022 - J Clin Oncol. 2007 Dec 1;25(34):5448-57
15279807 - DNA Repair (Amst). 2004 Aug-Sep;3(8-9):1187-96
1969059 - Lancet. 1990 Mar 24;335(8691):675-9
17388661 - PLoS Med. 2007 Mar;4(3):e90
15459660 - Nat Rev Mol Cell Biol. 2004 Oct;5(10):792-804
17311302 - Hum Mutat. 2007 Jun;28(6):622-9
9724636 - EMBO J. 1998 Sep 1;17(17):5001-14
12094328 - Am J Hum Genet. 2002 Aug;71(2):432-8
References_xml – ident: 2021111608160871000_23.16.1895.9
  doi: 10.1073/pnas.0803513105
– ident: 2021111608160871000_23.16.1895.12
  doi: 10.1158/0008-5472.CAN-08-2634
– ident: 2021111608160871000_23.16.1895.44
  doi: 10.1016/j.ccr.2006.11.024
– ident: 2021111608160871000_23.16.1895.51
  doi: 10.1093/emboj/17.17.5001
– ident: 2021111608160871000_23.16.1895.58
  doi: 10.1038/35042675
– ident: 2021111608160871000_23.16.1895.33
  doi: 10.1016/j.ccr.2004.06.015
– ident: 2021111608160871000_23.16.1895.17
  doi: 10.1038/nature03485
– ident: 2021111608160871000_23.16.1895.32
  doi: 10.1038/10061
– ident: 2021111608160871000_23.16.1895.38
  doi: 10.1126/science.1140321
– ident: 2021111608160871000_23.16.1895.41
  doi: 10.1158/0008-5472.CAN-04-2502
– ident: 2021111608160871000_23.16.1895.52
  doi: 10.1128/MCB.25.9.3553-3562.2005
– ident: 2021111608160871000_23.16.1895.31
  doi: 10.1101/gad.970602
– ident: 2021111608160871000_23.16.1895.26
  doi: 10.1016/0140-6736(90)90801-B
– ident: 2021111608160871000_23.16.1895.24
  doi: 10.1126/science.287.5459.1824
– ident: 2021111608160871000_23.16.1895.25
  doi: 10.1128/MCB.22.18.6521-6532.2002
– ident: 2021111608160871000_23.16.1895.16
  doi: 10.1038/nature01445
– ident: 2021111608160871000_23.16.1895.6
  doi: 10.1038/nature05268
– ident: 2021111608160871000_23.16.1895.54
  doi: 10.1038/sj.onc.1210885
– ident: 2021111608160871000_23.16.1895.59
  doi: 10.1101/gad.10.19.2401
– ident: 2021111608160871000_23.16.1895.30
  doi: 10.1073/pnas.96.26.14973
– ident: 2021111608160871000_23.16.1895.56
  doi: 10.1086/341943
– ident: 2021111608160871000_23.16.1895.10
  doi: 10.1074/jbc.C100466200
– ident: 2021111608160871000_23.16.1895.47
  doi: 10.1038/sj.onc.1203124
– ident: 2021111608160871000_23.16.1895.15
  doi: 10.1016/S1074-7613(00)80619-6
– ident: 2021111608160871000_23.16.1895.42
  doi: 10.1002/humu.20495
– ident: 2021111608160871000_23.16.1895.57
  doi: 10.1016/j.molcel.2005.09.024
– ident: 2021111608160871000_23.16.1895.21
  doi: 10.1146/annurev.genet.40.051206.105231
– ident: 2021111608160871000_23.16.1895.18
  doi: 10.1016/S0960-9822(01)00048-3
– ident: 2021111608160871000_23.16.1895.14
  doi: 10.1038/nature07423
– ident: 2021111608160871000_23.16.1895.50
  doi: 10.1093/carcin/4.10.1317
– ident: 2021111608160871000_23.16.1895.28
  doi: 10.1038/35074129
– ident: 2021111608160871000_23.16.1895.37
  doi: 10.1126/science.282.5395.1893
– ident: 2021111608160871000_23.16.1895.5
  doi: 10.1038/nature03482
– ident: 2021111608160871000_23.16.1895.23
  doi: 10.1158/0008-5472.CAN-04-2727
– ident: 2021111608160871000_23.16.1895.55
  doi: 10.1016/S0360-3016(01)01489-4
– ident: 2021111608160871000_23.16.1895.1
  doi: 10.1200/JCO.2007.11.2649
– ident: 2021111608160871000_23.16.1895.11
  doi: 10.1038/nature02082
– ident: 2021111608160871000_23.16.1895.29
  doi: 10.1172/JCI31245
– ident: 2021111608160871000_23.16.1895.43
  doi: 10.1016/S0959-8049(02)00499-9
– volume: 14
  start-page: 1439
  year: 2000
  ident: 2021111608160871000_23.16.1895.53
  article-title: Aberrant cell cycle checkpoint function and early embryonic death in Chk1−/− mice
  publication-title: Genes & Dev
  doi: 10.1101/gad.14.12.1439
– volume: 5
  start-page: 893
  year: 1990
  ident: 2021111608160871000_23.16.1895.3
  article-title: Genetic and immunochemical analysis of mutant p53 in human breast cancer cell lines
  publication-title: Oncogene
– ident: 2021111608160871000_23.16.1895.20
  doi: 10.1126/science.1140735
– ident: 2021111608160871000_23.16.1895.48
  doi: 10.1146/annurev.biochem.73.011303.073723
– ident: 2021111608160871000_23.16.1895.19
  doi: 10.1002/(SICI)1097-0142(20000301)88:5<1057::AID-CNCR16>3.0.CO;2-6
– volume: 61
  start-page: 4990
  year: 2001
  ident: 2021111608160871000_23.16.1895.36
  article-title: DNA damage-activated kinase Chk2 is independent of proliferation or differentiation yet correlates with tissue biology
  publication-title: Cancer Res
– ident: 2021111608160871000_23.16.1895.46
  doi: 10.1016/j.cancergencyto.2006.07.006
– ident: 2021111608160871000_23.16.1895.34
  doi: 10.1038/35007091
– ident: 2021111608160871000_23.16.1895.45
  doi: 10.1016/j.molcel.2004.10.029
– volume: 14
  start-page: 397
  year: 2000
  ident: 2021111608160871000_23.16.1895.8
  article-title: ATR disruption leads to chromosomal fragmentation and early embryonic lethality
  publication-title: Genes & Dev
  doi: 10.1101/gad.14.4.397
– ident: 2021111608160871000_23.16.1895.22
  doi: 10.1038/nrc2342
– ident: 2021111608160871000_23.16.1895.40
  doi: 10.1093/emboj/19.3.463
– volume: 525
  start-page: 85
  year: 2003
  ident: 2021111608160871000_23.16.1895.60
  article-title: Ionizing radiation-induced Rad51 nuclear focus formation is cell cycle-regulated and defective in both ATM−/− and c-Abl−/− cells
  publication-title: Mutat Res
  doi: 10.1016/S0027-5107(03)00009-5
– ident: 2021111608160871000_23.16.1895.27
  doi: 10.1158/0008-5472.CAN-05-2193
– ident: 2021111608160871000_23.16.1895.13
  doi: 10.1016/j.dnarep.2004.04.010
– ident: 2021111608160871000_23.16.1895.35
  doi: 10.1101/gad.14.12.1448
– ident: 2021111608160871000_23.16.1895.2
  doi: 10.1016/S0092-8674(00)80086-0
– ident: 2021111608160871000_23.16.1895.4
  doi: 10.1038/nrm1493
– ident: 2021111608160871000_23.16.1895.7
  doi: 10.1371/journal.pmed.0040090
– ident: 2021111608160871000_23.16.1895.49
  doi: 10.1083/jcb.151.7.1381
– ident: 2021111608160871000_23.16.1895.39
  doi: 10.1002/humu.20805
– reference: 14603323 - Nature. 2003 Nov 6;426(6962):87-91
– reference: 15279807 - DNA Repair (Amst). 2004 Aug-Sep;3(8-9):1187-96
– reference: 15829956 - Nature. 2005 Apr 14;434(7035):864-70
– reference: 9724636 - EMBO J. 1998 Sep 1;17(17):5001-14
– reference: 11099028 - Nature. 2000 Nov 16;408(6810):307-10
– reference: 10559880 - Nat Cell Biol. 1999 Jun;1(2):94-7
– reference: 10766245 - Nature. 2000 Apr 6;404(6778):613-7
– reference: 18256616 - Nat Rev Cancer. 2008 Mar;8(3):193-204
– reference: 10557105 - Oncogene. 1999 Nov 1;18(45):6135-44
– reference: 17074592 - Cancer Genet Cytogenet. 2006 Nov;171(1):57-64
– reference: 10859164 - Genes Dev. 2000 Jun 15;14(12):1448-59
– reference: 17982490 - Oncogene. 2008 Apr 10;27(17):2501-6
– reference: 15574327 - Mol Cell. 2004 Dec 3;16(5):715-24
– reference: 17136093 - Nature. 2006 Nov 30;444(7119):633-7
– reference: 12192050 - Mol Cell Biol. 2002 Sep;22(18):6521-32
– reference: 12094328 - Am J Hum Genet. 2002 Aug;71(2):432-8
– reference: 8843193 - Genes Dev. 1996 Oct 1;10(19):2401-10
– reference: 11380241 - Int J Radiat Oncol Biol Phys. 2001 Jun 1;50(2):511-23
– reference: 17311302 - Hum Mutat. 2007 Jun;28(6):622-9
– reference: 11877376 - Genes Dev. 2002 Mar 1;16(5):560-70
– reference: 11571274 - J Biol Chem. 2001 Nov 9;276(45):42462-7
– reference: 15459660 - Nat Rev Mol Cell Biol. 2004 Oct;5(10):792-804
– reference: 10691732 - Genes Dev. 2000 Feb 15;14(4):397-402
– reference: 15805289 - Cancer Res. 2005 Apr 1;65(7):2872-81
– reference: 11134068 - J Cell Biol. 2000 Dec 25;151(7):1381-90
– reference: 11431331 - Cancer Res. 2001 Jul 1;61(13):4990-3
– reference: 9836640 - Science. 1998 Dec 4;282(5395):1893-7
– reference: 15829965 - Nature. 2005 Apr 14;434(7035):907-13
– reference: 16288016 - Cancer Res. 2005 Nov 15;65(22):10280-8
– reference: 10859163 - Genes Dev. 2000 Jun 15;14(12):1439-47
– reference: 17431503 - J Clin Invest. 2007 May;117(5):1440-9
– reference: 18948947 - Nature. 2008 Oct 23;455(7216):1069-75
– reference: 16307919 - Mol Cell. 2005 Nov 23;20(4):551-61
– reference: 10710310 - Science. 2000 Mar 10;287(5459):1824-7
– reference: 18323444 - Science. 2008 Mar 7;319(5868):1352-5
– reference: 15831461 - Mol Cell Biol. 2005 May;25(9):3553-62
– reference: 11323676 - Nature. 2001 Apr 26;410(6832):1111-6
– reference: 10654944 - EMBO J. 2000 Feb 1;19(3):463-71
– reference: 15261141 - Cancer Cell. 2004 Jul;6(1):45-59
– reference: 15189136 - Annu Rev Biochem. 2004;73:39-85
– reference: 15604286 - Cancer Res. 2004 Dec 15;64(24):9152-9
– reference: 12650908 - Mutat Res. 2003 Apr 9;525(1-2):85-92
– reference: 10611322 - Proc Natl Acad Sci U S A. 1999 Dec 21;96(26):14973-7
– reference: 18574145 - Proc Natl Acad Sci U S A. 2008 Jul 1;105(26):9053-8
– reference: 1969059 - Lancet. 1990 Mar 24;335(8691):675-9
– reference: 10699895 - Cancer. 2000 Mar 1;88(5):1057-62
– reference: 1694291 - Oncogene. 1990 Jun;5(6):893-9
– reference: 9768756 - Immunity. 1998 Sep;9(3):367-76
– reference: 6616760 - Carcinogenesis. 1983 Oct;4(10):1317-22
– reference: 17525332 - Science. 2007 May 25;316(5828):1160-6
– reference: 12751374 - Eur J Cancer. 2003 Mar;39(4):447-53
– reference: 17388661 - PLoS Med. 2007 Mar;4(3):e90
– reference: 11231155 - Curr Biol. 2001 Feb 6;11(3):191-4
– reference: 17292828 - Cancer Cell. 2007 Feb;11(2):175-89
– reference: 19010921 - Cancer Res. 2008 Nov 15;68(22):9459-68
– reference: 16805667 - Annu Rev Genet. 2006;40:209-35
– reference: 8689683 - Cell. 1996 Jul 12;86(1):159-71
– reference: 17968022 - J Clin Oncol. 2007 Dec 1;25(34):5448-57
– reference: 18634022 - Hum Mutat. 2009 Jan;30(1):12-21
– reference: 12607003 - Nature. 2003 Feb 27;421(6926):952-6
SSID ssj0006066
Score 2.4454103
Snippet While the contribution of specific tumor suppressor networks to cancer development has been the subject of considerable recent study, it remains unclear how...
SourceID swepub
pubmedcentral
proquest
pubmed
crossref
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 1895
SubjectTerms Animals
Antineoplastic Agents - pharmacology
Antineoplastic Agents - therapeutic use
Apoptosis - drug effects
Ataxia Telangiectasia Mutated Proteins
ATM
Breast Neoplasms - drug therapy
Breast Neoplasms - physiopathology
Cancer
Cell Cycle Proteins - metabolism
Cell Line, Tumor
Checkpoint Kinase 2
chemotherapy
DNA-Binding Proteins - deficiency
DNA-Binding Proteins - metabolism
DNA-PK
Drug Resistance, Neoplasm
Female
Humans
MEDICIN
MEDICINE
Mice
Mice, Nude
mouse models
Neoplasms - drug therapy
Neoplasms - physiopathology
NIH 3T3 Cells
p53
Protein-Serine-Threonine Kinases - deficiency
Protein-Serine-Threonine Kinases - metabolism
Research Paper
Signal Transduction
Survival Analysis
Tumor Suppressor Protein p53 - metabolism
Tumor Suppressor Proteins - deficiency
Tumor Suppressor Proteins - metabolism
Title The combined status of ATM and p53 link tumor development with therapeutic response
URI https://www.ncbi.nlm.nih.gov/pubmed/19608766
https://www.proquest.com/docview/67582563
https://pubmed.ncbi.nlm.nih.gov/PMC2725944
https://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-152106
Volume 23
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwELbKIiQuiPeWpw_LhSolD8epj2UBVUARiC7aW2QnzhLtNll1GyT4UfxGZmynTdgeYC9RlDix4u_LeMaeByEHvuKFSuBHkiz2PZb4uTcROfeKQGS-ltqXOUYjzz_x2RF7fxwfDwa_O15LzVqNs18740qugipcA1wxSvY_kN28FC7AOeALR0AYjv-MMbwXjFtQGzE0qDGOGdPF3Mb_x9EIN2hH62ZZr9r4KLP7b5dft7FXo5X1le05BmFK6gvDjc6jG5eb0q00z2S52bXRZYVRXEawz8Yuc0GHgK_hI07rH9Y_t1y50t12lXsJjDuVzj1YVu5WuyAhcIXVhmRav6D6DDRlsyqJgUjA5NFHy2d0Gug6lhgZJ3wPawra6cjJYCa8mLnqLk5I26DkloxdkRtMbJVON32DgiN2Tw2mJMGJzMeg1MRRvxXger40LAGJhFn6_krPbSb8z_PDMAFzkbFr5HoIZgnK1Q9fttnp0Rg0Vov7KBcPCj2_6vRr8tTaTvrK0CUL57Kjbi-drVGBFrfJLWe70Kkl4h0y0NVdcsNWM_15j3wFOtKWjtTSkdYFBTpSoCMFOlKkIzV0pB1OUaQj7dCRtnS8T47evV0czjxXs8PLQLVfe0KoKJEFDzVTeRjxImMTCfNCXLBcBlGuhfIZByMpDHgSaNBO80hlIQMzQuk8UdEDslfVld4nNORaB1LxCZ8UTOtEFIUABT1QeYxFH-SQvGwHL81cQnusq3KWGsPWD1IY9NQN-pAcbBqf2zwuu5s9b1FIgfW4eSYrXTcXKRrW0Hs0JA8tJtvXODCHJOmhtWmAGdz7d6ryu8nk7ug0JC8srr1H3pTfpmm9OkmbJkUt2-ePrtzDY3Jz-6s-IXvrVaOfgja9Vs8Mhf8AuGvOwQ
linkProvider Colorado Alliance of Research Libraries
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+combined+status+of+ATM+and+p53+link+tumor+development+with+therapeutic+response&rft.jtitle=Genes+%26+development&rft.au=Jiang%2C+Hai&rft.au=Reinhardt%2C+H.+Christian&rft.au=Bartkova%2C+Jirina&rft.au=Tommiska%2C+Johanna&rft.date=2009-08-15&rft.pub=Cold+Spring+Harbor+Laboratory+Press&rft.issn=0890-9369&rft.eissn=1549-5477&rft.volume=23&rft.issue=16&rft.spage=1895&rft.epage=1909&rft_id=info:doi/10.1101%2Fgad.1815309&rft_id=info%3Apmid%2F19608766&rft.externalDocID=PMC2725944
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0890-9369&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0890-9369&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0890-9369&client=summon