Cavity magnomechanics: from classical to quantum
Hybrid quantum systems based on magnons in magnetic materials have made significant progress in the past decade. They are built based on the couplings of magnons with microwave photons, optical photons, vibration phonons, and superconducting qubits. In particular, the interactions among magnons, mic...
Saved in:
Published in | New journal of physics Vol. 26; no. 3; pp. 31201 - 31230 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Bristol
IOP Publishing
01.03.2024
|
Subjects | |
Online Access | Get full text |
ISSN | 1367-2630 1367-2630 |
DOI | 10.1088/1367-2630/ad327c |
Cover
Loading…
Abstract | Hybrid quantum systems based on magnons in magnetic materials have made significant progress in the past decade. They are built based on the couplings of magnons with microwave photons, optical photons, vibration phonons, and superconducting qubits. In particular, the interactions among magnons, microwave cavity photons, and vibration phonons form the system of cavity magnomechanics (CMM), which lies in the interdisciplinary field of cavity QED, magnonics, quantum optics, and quantum information. Here, we review the experimental and theoretical progress of this emerging field. We first introduce the underlying theories of the magnomechanical coupling, and then some representative classical phenomena that have been experimentally observed, including magnomechanically induced transparency, magnomechanical dynamical backaction, magnon-phonon cross-Kerr nonlinearity, etc. We also discuss a number of theoretical proposals, which show the potential of the CMM system for preparing different kinds of quantum states of magnons, phonons, and photons, and hybrid systems combining magnomechanics and optomechanics and relevant quantum protocols based on them. Finally, we summarize this review and provide an outlook for the future research directions in this field. |
---|---|
AbstractList | Hybrid quantum systems based on magnons in magnetic materials have made significant progress in the past decade. They are built based on the couplings of magnons with microwave photons, optical photons, vibration phonons, and superconducting qubits. In particular, the interactions among magnons, microwave cavity photons, and vibration phonons form the system of cavity magnomechanics (CMM), which lies in the interdisciplinary field of cavity QED, magnonics, quantum optics, and quantum information. Here, we review the experimental and theoretical progress of this emerging field. We first introduce the underlying theories of the magnomechanical coupling, and then some representative classical phenomena that have been experimentally observed, including magnomechanically induced transparency, magnomechanical dynamical backaction, magnon-phonon cross-Kerr nonlinearity, etc. We also discuss a number of theoretical proposals, which show the potential of the CMM system for preparing different kinds of quantum states of magnons, phonons, and photons, and hybrid systems combining magnomechanics and optomechanics and relevant quantum protocols based on them. Finally, we summarize this review and provide an outlook for the future research directions in this field. |
Author | Qian, Hang Xiong, Hao Li, Jie Fan, Zhi-Yuan Tan, Huatang Zuo, Xuan Ding, Ming-Song |
Author_xml | – sequence: 1 givenname: Xuan surname: Zuo fullname: Zuo, Xuan organization: School of Physics, Zhejiang University , Hangzhou 310027, People’s Republic of China – sequence: 2 givenname: Zhi-Yuan surname: Fan fullname: Fan, Zhi-Yuan organization: School of Physics, Zhejiang University , Hangzhou 310027, People’s Republic of China – sequence: 3 givenname: Hang surname: Qian fullname: Qian, Hang organization: School of Physics, Zhejiang University , Hangzhou 310027, People’s Republic of China – sequence: 4 givenname: Ming-Song surname: Ding fullname: Ding, Ming-Song organization: Dalian polytechnic University Basic Education Department, Dalian 116034, People’s Republic of China – sequence: 5 givenname: Huatang surname: Tan fullname: Tan, Huatang organization: Huazhong Normal University Department of Physics, Wuhan 430079, People’s Republic of China – sequence: 6 givenname: Hao surname: Xiong fullname: Xiong, Hao organization: School of Physics, Huazhong University of Science and Technology , Wuhan 430074, People’s Republic of China – sequence: 7 givenname: Jie surname: Li fullname: Li, Jie organization: Zhejiang Province Key Laboratory of Quantum Technology and Device, School of Physics, and State Key Laboratory for Extreme Photonics and Instrumentation, Zhejiang University , Hangzhou 310027, People’s Republic of China |
BookMark | eNp9kM1LJDEQxYO44Oh632ODV2etfEw67U0GdQXBi3sO1fkYM3R3xiQj-N_bs-2qCHqpKor3Hj_eIdkf4uAI-UXhNwWlziiX9ZxJDmdoOavNHpm9vfY_3AfkMOc1AKWKsRmBJT6F8lz1uBpi78wDDsHk88qn2Femw5yDwa4qsXrc4lC2_U_yw2OX3fHrPiJ_ry7vl3_mt3fXN8uL27kRVJa5Uq2oZQPcKs8ZUNVy50GA44a5ulkoS8chhRphUTEhQdG2YdbLBUKLDT8iN1OujbjWmxR6TM86YtD_HjGtNKYSTOd0S8FScAuqqBVYe6Ry4RuOsqXWW2Bj1smUtUnxcety0eu4TcOIr1lTcyGAczGq5KQyKeacnNcmFCwhDiVh6DQFvWta76rUuyr11PRohE_G_7jfWE4nS4ibd5gv5S-rJ422 |
CODEN | NJOPFM |
CitedBy_id | crossref_primary_10_1002_lpor_202401348 crossref_primary_10_1364_JOSAB_525408 crossref_primary_10_1016_j_ijleo_2025_172275 crossref_primary_10_1038_s41598_025_91813_3 crossref_primary_10_1088_1361_6455_ad8a0c crossref_primary_10_1103_PhysRevApplied_22_064001 crossref_primary_10_1016_j_cjph_2024_05_043 crossref_primary_10_1088_1402_4896_adb8ab crossref_primary_10_1103_PhysRevA_110_053502 crossref_primary_10_1002_qute_202400200 crossref_primary_10_1007_s11433_024_2606_4 crossref_primary_10_1103_PhysRevA_111_013713 crossref_primary_10_1364_OE_551766 crossref_primary_10_1007_s11433_024_2432_9 crossref_primary_10_1103_PhysRevA_110_053704 crossref_primary_10_1109_LMAG_2025_3536936 crossref_primary_10_1364_OE_539468 crossref_primary_10_1103_PhysRevA_111_013708 crossref_primary_10_1103_PhysRevA_111_013709 crossref_primary_10_1016_j_fmre_2025_02_012 crossref_primary_10_1016_j_optlastec_2025_112663 crossref_primary_10_1364_OL_520039 crossref_primary_10_1088_1361_6455_ad5896 crossref_primary_10_1103_PhysRevA_109_043512 crossref_primary_10_1016_j_chaos_2024_115436 crossref_primary_10_1063_5_0250178 crossref_primary_10_1364_OE_546225 crossref_primary_10_1364_OE_550848 crossref_primary_10_1063_5_0229979 crossref_primary_10_1016_j_rinp_2024_108023 crossref_primary_10_1088_1361_648X_ad6828 crossref_primary_10_1002_qute_202400275 crossref_primary_10_1103_PhysRevResearch_6_023089 crossref_primary_10_1103_PhysRevA_110_053710 crossref_primary_10_1140_epjp_s13360_024_05954_x crossref_primary_10_1063_5_0228364 crossref_primary_10_1103_PhysRevA_110_033702 crossref_primary_10_1364_OE_558988 crossref_primary_10_1002_qute_202400350 crossref_primary_10_1063_5_0230373 crossref_primary_10_1016_j_optcom_2024_130956 crossref_primary_10_1103_PhysRevA_111_013519 crossref_primary_10_1016_j_rinp_2024_107915 crossref_primary_10_1103_PhysRevA_110_043706 crossref_primary_10_1103_PhysRevA_110_043721 |
Cites_doi | 10.1088/1367-2630/ab3508 10.1038/nature10787 10.1103/PhysRevA.87.033829 10.1088/1367-2630/8/1/015 10.1103/RevModPhys.91.045001 10.1063/5.0090033 10.1063/5.0047054 10.1103/PhysRevApplied.2.054002 10.1103/PhysRevLett.98.030405 10.1080/00018732.2021.1876991 10.1103/PhysRevB.82.104413 10.1103/PhysRevLett.96.173901 10.1103/PhysRevLett.99.093902 10.1103/PhysRevA.99.043803 10.1103/PhysRevLett.108.176601 10.1063/1.5027122 10.1103/RevModPhys.86.1391 10.1364/JOSAB.380755 10.1016/j.physrep.2022.03.002 10.1007/s11433-023-2180-x 10.1002/lpor.202200935 10.1103/PhysRevX.5.041002 10.1103/PhysRevA.49.1337 10.1103/PhysRevA.95.043819 10.1126/science.282.5389.706 10.1016/j.fmre.2022.07.006 10.1103/PhysRevA.109.013719 10.1103/PhysRevB.107.L140405 10.1103/PhysRevA.107.053708 10.1038/nature08171 10.1103/RevModPhys.77.513 10.1103/PhysRevLett.116.223601 10.1515/nanoph-2018-0195 10.1103/RevModPhys.21.541 10.1103/PhysRevResearch.5.043197 10.1063/5.0020277 10.1103/PhysRevLett.124.171801 10.1103/PhysRevLett.129.243601 10.1103/PhysRevLett.117.123605 10.1103/PhysRevLett.114.227201 10.1126/science.adg3812 10.1126/science.1195596 10.1103/PhysRevLett.130.193603 10.1103/PhysRevLett.129.123601 10.1103/PhysRevApplied.17.034024 10.1126/science.aaz9236 10.1103/PhysRevLett.113.156401 10.1364/OE.27.005544 10.1103/PhysRevA.108.023501 10.1063/5.0028395 10.1103/PhysRevA.103.053501 10.1103/PhysRevLett.115.243601 10.1103/PhysRevLett.105.053901 10.1103/PhysRevA.88.063833 10.3390/photonics10101081 10.1103/PhysRev.100.1788 10.1103/PhysRevB.105.064405 10.1103/PhysRevB.100.094415 10.1103/PhysRevApplied.18.044059 10.1038/s41598-023-30693-x 10.1038/s41598-019-52050-7 10.1103/PhysRevA.108.033517 10.1103/PhysRev.58.1098 10.1103/PhysRevResearch.1.033161 10.1103/PhysRevA.103.043704 10.1038/nphys4323 10.1364/OE.418531 10.1103/RevModPhys.85.623 10.1103/PhysRevB.102.144438 10.1364/OE.495656 10.1103/PhysRevB.94.224410 10.1103/PhysRevA.105.063704 10.1103/PhysRevResearch.3.013192 10.1063/5.0189017 10.1038/nphoton.2012.346 10.1103/PhysRevX.11.031053 10.1103/PhysRevLett.130.073602 10.1103/PhysRevLett.113.083603 10.1088/2058-9565/acab7b 10.1038/s41567-020-0877-x 10.1103/PhysRevLett.127.037202 10.1103/PhysRevLett.121.137203 10.1088/0953-4075/46/10/104001 10.1038/npjqi.2015.14 10.1103/PhysRevA.81.041803 10.1088/1367-2630/acd717 10.1103/PhysRevB.86.134415 10.1103/PhysRevLett.125.147202 10.1103/PhysRevLett.128.013602 10.1002/lpor.202000471 10.1103/PhysRevLett.117.133602 10.1038/nphoton.2011.35 10.1038/s41467-017-01634-w 10.1038/nature09898 10.1103/PhysRevLett.131.243601 10.1103/PhysRevApplied.13.014053 10.1109/JPHOT.2019.2911963 10.1103/PhysRevA.103.053712 10.1126/science.aag1407 10.1126/sciadv.1603150 10.1016/j.fmre.2022.08.017 10.1103/PhysRevA.103.063708 10.1103/PhysRevLett.111.127003 10.1103/PhysRevApplied.12.054031 10.1103/PhysRevX.3.031012 10.1103/PhysRevB.104.214416 10.1103/RevModPhys.52.341 10.1088/2058-9565/aca3cf 10.1103/PhysRevA.40.6741 10.1103/PhysRevApplied.20.034043 10.1103/PhysRevA.107.063714 10.1103/PhysRevA.102.033721 10.1103/PhysRevLett.124.093602 10.1126/sciadv.1501286 10.1103/PhysRevA.104.033511 10.1038/s41578-021-00332-w 10.1364/OE.453787 10.1093/nsr/nwac247 10.1088/2058-9565/abd982 10.1109/TQE.2021.3057799 10.1103/RevModPhys.93.015005 10.1103/PhysRevApplied.19.054071 10.1073/pnas.1419326112 10.1103/PRXQuantum.3.030102 10.1063/5.0152543 10.1038/s41567-020-0797-9 10.1103/PhysRevX.5.041037 10.1063/1.2711181 10.1016/j.physrep.2022.06.001 10.1103/PhysRevLett.112.075505 10.1103/PhysRevA.105.033507 10.1126/science.1200735 10.1126/science.aac5138 10.1103/PhysRevLett.106.117601 10.1103/PhysRevLett.104.077202 10.1016/j.dark.2019.100306 10.1103/PhysRevA.97.063832 10.1103/PhysRevLett.99.093901 10.1103/PhysRevApplied.16.024009 10.1364/JOSAB.465554 10.1103/PhysRevD.23.1693 10.1088/1361-6455/ab68b5 10.1126/science.abj1028 10.1088/1751-8113/40/28/S01 10.3390/photonics10080886 10.1088/0953-8984/14/15/201 10.1126/science.1104149 10.1103/PhysRevA.108.033518 10.1103/RevModPhys.85.471 10.1038/nature12307 10.1103/RevModPhys.90.025004 10.1103/PhysRevA.49.4055 10.1126/science.aaa3693 10.1038/s41566-023-01178-0 10.1103/PhysRev.110.836 10.1038/natrevmats.2017.64 10.1103/PRXQuantum.2.040344 10.1103/PhysRevLett.108.186805 10.1364/OE.480554 10.1103/PhysRevA.99.021801 10.1103/PhysRevLett.120.057202 10.7567/1882-0786/ab248d 10.1063/1.1664991 10.1103/PhysRevLett.95.090503 10.1103/PhysRevA.65.032314 10.1103/PhysRevLett.98.150802 10.1002/andp.202000028 10.1103/PhysRevA.105.053710 10.1103/PhysRevB.101.060407 10.1103/PhysRevA.77.033804 10.1088/1367-2630/abf535 10.1016/j.mtelec.2023.100044 10.1103/PhysRevLett.120.133602 10.1103/PhysRevE.103.L050203 10.1103/PhysRevA.108.063704 10.1103/PhysRevA.109.013704 10.1364/OPTICA.446434 10.1103/PhysRevLett.124.213604 10.1103/PhysRevLett.121.203601 10.1103/PhysRevLett.98.140402 10.1109/TMAG.2022.3149664 10.1038/nature11325 10.1103/PhysRevLett.113.053604 10.1103/PhysRevB.101.125404 10.1088/1367-2630/acf068 10.1103/PhysRevApplied.13.064001 10.1002/lpor.202200866 10.1103/PhysRevLett.126.180401 |
ContentType | Journal Article |
Copyright | 2024 The Author(s). Published by IOP Publishing Ltd on behalf of the Institute of Physics and Deutsche Physikalische Gesellschaft 2024 The Author(s). Published by IOP Publishing Ltd on behalf of the Institute of Physics and Deutsche Physikalische Gesellschaft. This work is published under http://creativecommons.org/licenses/by/4.0 (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2024 The Author(s). Published by IOP Publishing Ltd on behalf of the Institute of Physics and Deutsche Physikalische Gesellschaft – notice: 2024 The Author(s). Published by IOP Publishing Ltd on behalf of the Institute of Physics and Deutsche Physikalische Gesellschaft. This work is published under http://creativecommons.org/licenses/by/4.0 (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | O3W TSCCA AAYXX CITATION 8FD ABUWG AFKRA AZQEC BENPR CCPQU DWQXO H8D L7M PHGZM PHGZT PIMPY PKEHL PQEST PQQKQ PQUKI DOA |
DOI | 10.1088/1367-2630/ad327c |
DatabaseName | Institute of Physics Open Access Journal Titles IOPscience (Open Access) CrossRef Technology Research Database ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One ProQuest Central Korea Aerospace Database Advanced Technologies Database with Aerospace ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest Central Aerospace Database ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic Advanced Technologies Database with Aerospace ProQuest One Academic (New) |
DatabaseTitleList | Publicly Available Content Database CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: O3W name: Institute of Physics Open Access Journal Titles url: http://iopscience.iop.org/ sourceTypes: Publisher – sequence: 3 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics |
EISSN | 1367-2630 |
ExternalDocumentID | oai_doaj_org_article_b10d10e5181d4a7fa165f93a6b1dfd02 10_1088_1367_2630_ad327c njpad327c |
GrantInformation_xml | – fundername: National Key Research and Development Program of China grantid: 2022YFA1405200 funderid: http://dx.doi.org/10.13039/501100012166 – fundername: Scientific Research Foundation for the PhD (Dalian Polytechnic University) grantid: 7230010115 – fundername: National Natural Science Foundation of China grantid: 12022507; 12174140; 92265202 funderid: http://dx.doi.org/10.13039/501100001809 |
GroupedDBID | 123 1JI 1PV 29N 2WC 5PX 5VS 7.M AAFWJ AAJIO AAJKP ABHWH ACAFW ACGFO ACHIP ADBBV AEFHF AEJGL AENEX AFKRA AFPKN AFYNE AHSEE AIYBF AKPSB ALMA_UNASSIGNED_HOLDINGS ASPBG ATQHT AVWKF AZFZN BCNDV BENPR CBCFC CCPQU CEBXE CJUJL CRLBU CS3 DU5 E3Z EBS EDWGO EQZZN F5P GROUPED_DOAJ GX1 HH5 IJHAN IOP IZVLO J9A KNG KQ8 LAP M~E N5L N9A O3W OK1 P2P PIMPY PJBAE RIN RNS RO9 ROL SY9 T37 TR2 TSCCA UCJ W28 XPP XSB ZMT AAYXX CITATION OVT PHGZM PHGZT 8FD ABUWG AZQEC DWQXO H8D L7M PKEHL PQEST PQQKQ PQUKI PUEGO |
ID | FETCH-LOGICAL-c416t-88b476903d8f32018b3ef040e3c2e7958d1958648d32a8246081b92df65a0ba93 |
IEDL.DBID | IOP |
ISSN | 1367-2630 |
IngestDate | Wed Aug 27 01:31:49 EDT 2025 Mon Jun 30 14:23:34 EDT 2025 Tue Jul 01 01:30:37 EDT 2025 Thu Apr 24 22:53:48 EDT 2025 Sun Aug 18 16:10:26 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Language | English |
License | Original content from this work may be used under the terms of the Creative Commons Attribution 4.0 license. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c416t-88b476903d8f32018b3ef040e3c2e7958d1958648d32a8246081b92df65a0ba93 |
Notes | NJP-116869.R1 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
OpenAccessLink | https://proxy.k.utb.cz/login?url=https://iopscience.iop.org/article/10.1088/1367-2630/ad327c |
PQID | 2973440334 |
PQPubID | 4491272 |
PageCount | 30 |
ParticipantIDs | iop_journals_10_1088_1367_2630_ad327c doaj_primary_oai_doaj_org_article_b10d10e5181d4a7fa165f93a6b1dfd02 crossref_citationtrail_10_1088_1367_2630_ad327c crossref_primary_10_1088_1367_2630_ad327c proquest_journals_2973440334 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-03-01 |
PublicationDateYYYYMMDD | 2024-03-01 |
PublicationDate_xml | – month: 03 year: 2024 text: 2024-03-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Bristol |
PublicationPlace_xml | – name: Bristol |
PublicationTitle | New journal of physics |
PublicationTitleAbbrev | NJP |
PublicationTitleAlternate | New J. Phys |
PublicationYear | 2024 |
Publisher | IOP Publishing |
Publisher_xml | – name: IOP Publishing |
References | Zhang (njpad327cbib15) 2014; 113 Leggett (njpad327cbib97) 2002; 14 Kani (njpad327cbib183) 2022; 128 Fabre (njpad327cbib132) 1994; 49 Clerk (njpad327cbib3) 2020; 16 Chong (njpad327cbib71) 2010; 105 Gurevich (njpad327cbib33) 1996 Li (njpad327cbib179) 2023; 108 Wang (njpad327cbib68) 2016; 94 Yu (njpad327cbib56) 2020; 124 Qian (njpad327cbib118) 2023; 8 Soykal (njpad327cbib32) 2010; 82 Lewis (njpad327cbib150) 1969; 10 Maksymov (njpad327cbib83) 2019; 8 Wiseman (njpad327cbib119) 2007; 98 Tan (njpad327cbib138) 2013; 87 Yu (njpad327cbib130) 2020; 53 Xiang (njpad327cbib1) 2013; 85 Soykal (njpad327cbib31) 2010; 104 Gonzalez-Ballestero (njpad327cbib182) 2020; 124 QUAX Collaboration (njpad327cbib129) 2020; 124 Kong (njpad327cbib45) 2019; 27 Li (njpad327cbib58) 2019; 21 Dreher (njpad327cbib191) 2012; 86 Amazioug (njpad327cbib108) 2023; 13 Li (njpad327cbib186) 2021; 2 Vitali (njpad327cbib103) 2007; 98 Fan (njpad327cbib115) 2024 Chen (njpad327cbib113) 2021; 103 Xiong (njpad327cbib88) 2023; 3 Li (njpad327cbib5) 2020; 128 Wang (njpad327cbib64) 2023; 25 Lachance-Quirion (njpad327cbib4) 2019; 12 Qian (njpad327cbib144) 2024; 109 Osada (njpad327cbib22) 2018; 120 Fan (njpad327cbib152) 2023; 108 Ding (njpad327cbib54) 2020; 37 An (njpad327cbib160) 2020; 101 Qi (njpad327cbib148) 2022; 105 Hei (njpad327cbib184) 2023; 130 Liu (njpad327cbib91) 2024; 124 Sahu (njpad327cbib157) 2023; 380 Zhang (njpad327cbib75) 2017; 8 Brooks (njpad327cbib134) 2012; 488 Purdy (njpad327cbib136) 2013; 3 Tan (njpad327cbib187) 2021; 3 Asjad (njpad327cbib55) 2023; 3 Das (njpad327cbib168) 2023; 108 Ding (njpad327cbib110) 2022; 39 Xiong (njpad327cbib84) 2023; 17 Shen (njpad327cbib39) 2023 Agarwal (njpad327cbib42) 2010; 81 Hussain (njpad327cbib111) 2022; 105 Liu (njpad327cbib90) 2023; 107 Wan (njpad327cbib72) 2011; 331 Giovannetti (njpad327cbib102) 2011; 5 Gröblacher (njpad327cbib79) 2009; 460 Wang (njpad327cbib170) 2019; 11 Hatanaka (njpad327cbib193) 2023; 19 Fan (njpad327cbib37) 2023; 8 Lu (njpad327cbib176) 2021; 103 Braunstein (njpad327cbib122) 2005; 77 Zhang (njpad327cbib112) 2022; 30 Aggarwal (njpad327cbib137) 2020; 16 Hula (njpad327cbib87) 2022; 121 Kronwald (njpad327cbib139) 2013; 88 Fröwis (njpad327cbib96) 2018; 90 Pirro (njpad327cbib6) 2021; 6 Goryachev (njpad327cbib16) 2014; 2 Bai (njpad327cbib17) 2015; 114 Vashahri-Ghamsari (njpad327cbib62) 2021; 104 Ashida (njpad327cbib165) 2020; 69 Pirkkalainen (njpad327cbib141) 2015; 115 Corbitt (njpad327cbib65) 2007; 98 Xu (njpad327cbib61) 2021; 103 Potts (njpad327cbib25) 2021; 11 Cao (njpad327cbib85) 2014; 112 Awschalom (njpad327cbib7) 2021; 2 Li (njpad327cbib117) 2021; 6 Qi (njpad327cbib145) 2021; 103 Engelhardt (njpad327cbib162) 2022; 18 Ding (njpad327cbib60) 2019; 9 Wang (njpad327cbib69) 2018; 120 Teufel (njpad327cbib80) 2011; 471 Tan (njpad327cbib188) 2023; 10 Li (njpad327cbib109) 2017; 95 Nair (njpad327cbib173) 2021; 126 Zhang (njpad327cbib18) 2015; 1 Zuo (njpad327cbib44) 2023 Osada (njpad327cbib19) 2016; 116 Verhagen (njpad327cbib81) 2012; 482 Xiang (njpad327cbib120) 2022; 3 Flower (njpad327cbib128) 2019; 25 Yuan (njpad327cbib8) 2022; 965 Plenio (njpad327cbib105) 2005; 95 Zhang (njpad327cbib23) 2016; 2 Furusawa (njpad327cbib101) 1998; 282 Lecocq (njpad327cbib142) 2015; 5 Xu (njpad327cbib178) 2019; 100 Lachance-Quirion (njpad327cbib29) 2020; 367 Fan (njpad327cbib151) 2023; 17 Wang (njpad327cbib86) 2021; 127 Tan (njpad327cbib121) 2019; 1 Meenehan (njpad327cbib95) 2015; 5 Yang (njpad327cbib174) 2020; 125 Gonzalez-Ballestero (njpad327cbib40) 2020; 101 Marquardt (njpad327cbib52) 2007; 99 Chakraborty (njpad327cbib114) 2023; 108 Genes (njpad327cbib53) 2008; 77 Chumak (njpad327cbib10) 2022; 58 El-Ganainy (njpad327cbib164) 2018; 14 Wang (njpad327cbib169) 2020; 532 Weiler (njpad327cbib190) 2012; 108 Weaver (njpad327cbib100) 2018; 97 Chen (njpad327cbib78) 2021; 103 Huai (njpad327cbib167) 2019; 99 Huebl (njpad327cbib13) 2013; 111 Baranov (njpad327cbib74) 2017; 2 Wang (njpad327cbib76) 2021; 373 Anderson (njpad327cbib70) 1955; 100 Wilson-Rae (njpad327cbib51) 2007; 99 Kuklinski (njpad327cbib147) 1989; 40 Rameshti (njpad327cbib9) 2022; 979 Xu (njpad327cbib161) 2021; 16 Zheng (njpad327cbib11) 2023; 134 Kittel (njpad327cbib35) 1958; 110 de Jong (njpad327cbib50) 2022; 9 Sarma (njpad327cbib146) 2021; 23 Aspelmeyer (njpad327cbib49) 2014; 86 Kamran (njpad327cbib46) 2020; 102 Haigh (njpad327cbib21) 2016; 117 Di (njpad327cbib158) 2023; 31 Xu (njpad327cbib89) 2023; 131 Zhang (njpad327cbib12) 2023; 5 Potts (njpad327cbib66) 2023; 107 Fan (njpad327cbib154) 2022; 105 Noh (njpad327cbib73) 2012; 108 Adesso (njpad327cbib106) 2006; 8 Favero (njpad327cbib156) 2007; 90 Harder (njpad327cbib177) 2018; 121 Lachance-Quirion (njpad327cbib28) 2017; 3 Taylor (njpad327cbib126) 2013; 7 Tabuchi (njpad327cbib14) 2014; 113 Xiong (njpad327cbib43) 2018; 5 Kittel (njpad327cbib34) 1949; 21 Wollman (njpad327cbib140) 2015; 349 Caves (njpad327cbib125) 1981; 23 Yang (njpad327cbib82) 2023; 10 Landau (njpad327cbib67) 1986 Zhang (njpad327cbib63) 2023; 25 Zhang (njpad327cbib20) 2016; 117 Guéry-Odelin (njpad327cbib149) 2019; 91 Chen (njpad327cbib98) 2013; 46 Cheng (njpad327cbib180) 2023; 5 Holstein (njpad327cbib36) 1940; 58 Hougne (njpad327cbib77) 2021; 15 Li (njpad327cbib131) 2023; 10 Potts (njpad327cbib93) 2020; 13 Bassi (njpad327cbib99) 2013; 85 Giovannetti (njpad327cbib124) 2004; 306 Wang (njpad327cbib92) 2023; 31 Shen (njpad327cbib26) 2022; 129 Xia (njpad327cbib127) 2023; 17 Li (njpad327cbib181) 2021; 9 Li (njpad327cbib24) 2018; 121 Godejohann (njpad327cbib38) 2020; 102 Shen (njpad327cbib163) 2022; 129 Xu (njpad327cbib30) 2023; 130 Weis (njpad327cbib41) 2010; 330 Adesso (njpad327cbib107) 2007; 40 Kurizki (njpad327cbib2) 2015; 112 Wu (njpad327cbib159) 2023; 20 Vidal (njpad327cbib104) 2002; 65 Kansanen (njpad327cbib59) 2021; 104 Kleckner (njpad327cbib155) 2006; 96 Bergholtz (njpad327cbib166) 2021; 93 Lu (njpad327cbib47) 2023; 107 Hatanaka (njpad327cbib192) 2022; 17 Jing (njpad327cbib171) 2014; 113 Purdy (njpad327cbib94) 2017; 356 Caves (njpad327cbib123) 1980; 52 Zhao (njpad327cbib172) 2020; 13 Li (njpad327cbib48) 2020; 128 Mukhopadhyay (njpad327cbib175) 2022; 105 Mancini (njpad327cbib133) 1994; 49 Heyroth (njpad327cbib153) 2019; 12 Tabuchi (njpad327cbib27) 2015; 349 Zhang (njpad327cbib116) 2024; 109 Weiler (njpad327cbib189) 2011; 106 Li (njpad327cbib57) 2019; 99 Zhang (njpad327cbib143) 2021; 29 Wang (njpad327cbib185) 2023; 66 Safavi-Naeini (njpad327cbib135) 2013; 500 |
References_xml | – volume: 21 year: 2019 ident: njpad327cbib58 article-title: Entangling two magnon modes via magnetostrictive interaction publication-title: New J. Phys. doi: 10.1088/1367-2630/ab3508 – volume: 482 start-page: 63 year: 2012 ident: njpad327cbib81 article-title: Quantum-coherent coupling of a mechanical oscillator to an optical cavity mode publication-title: Nature doi: 10.1038/nature10787 – volume: 87 year: 2013 ident: njpad327cbib138 article-title: Dissipation-driven two-mode mechanical squeezed states in optomechanical systems publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.87.033829 – volume: 8 start-page: 15 year: 2006 ident: njpad327cbib106 article-title: Continuous variable tangle, monogamy inequality and entanglement sharing in Gaussian states of continuous variable systems publication-title: New J. Phys. doi: 10.1088/1367-2630/8/1/015 – volume: 91 year: 2019 ident: njpad327cbib149 article-title: Shortcuts to adiabaticity: concepts, methods and applications publication-title: Rev. Mod. Phys. doi: 10.1103/RevModPhys.91.045001 – volume: 121 year: 2022 ident: njpad327cbib87 article-title: Spin-wave frequency combs publication-title: Appl. Phys. Lett. doi: 10.1063/5.0090033 – volume: 9 year: 2021 ident: njpad327cbib181 article-title: Advances in coherent coupling between magnons and acoustic phonons publication-title: APL Mater. doi: 10.1063/5.0047054 – volume: 2 year: 2014 ident: njpad327cbib16 article-title: High-cooperativity cavity QED with magnons at microwave frequencies publication-title: Phys. Rev. Appl. doi: 10.1103/PhysRevApplied.2.054002 – volume: 98 year: 2007 ident: njpad327cbib103 article-title: Optomechanical entanglement between a movable mirror and a cavity field publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.98.030405 – volume: 69 start-page: 249 year: 2020 ident: njpad327cbib165 article-title: Non-Hermitian physics publication-title: Adv. Phys. doi: 10.1080/00018732.2021.1876991 – volume: 82 year: 2010 ident: njpad327cbib32 article-title: Size dependence of strong coupling between nanomagnets and photonic cavities publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.82.104413 – volume: 96 year: 2006 ident: njpad327cbib155 article-title: High finesse opto-mechanical cavity with a movable thirty-micron-size mirror publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.96.173901 – volume: 99 year: 2007 ident: njpad327cbib52 article-title: Quantum theory of cavity-assisted sideband cooling of mechanical motion publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.99.093902 – volume: 99 year: 2019 ident: njpad327cbib167 article-title: Enhanced sideband responses in a PT -symmetric-like cavity magnomechanical system publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.99.043803 – volume: 108 year: 2012 ident: njpad327cbib190 article-title: Spin pumping with coherent elastic waves publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.108.176601 – volume: 5 year: 2018 ident: njpad327cbib43 article-title: Fundamentals and applications of optomechanically induced transparency publication-title: Appl. Phys. Rev. doi: 10.1063/1.5027122 – volume: 86 start-page: 1391 year: 2014 ident: njpad327cbib49 article-title: Cavity optomechanics publication-title: Rev. Mod. Phys. doi: 10.1103/RevModPhys.86.1391 – volume: 37 start-page: 627 year: 2020 ident: njpad327cbib54 article-title: Ground-state cooling of a magnomechanical resonator induced by magnetic damping publication-title: J. Opt. Soc. Am. B doi: 10.1364/JOSAB.380755 – volume: 965 start-page: 1 year: 2022 ident: njpad327cbib8 article-title: Quantum magnonics: when magnon spintronics meets quantum information science publication-title: Phys. Rep. doi: 10.1016/j.physrep.2022.03.002 – volume: 66 year: 2023 ident: njpad327cbib185 article-title: Quantum parametric amplification of phonon-mediated magnon-spin interaction publication-title: Sci. China Phys. Mech. Astron. doi: 10.1007/s11433-023-2180-x – volume: 17 year: 2023 ident: njpad327cbib84 article-title: Optomechanically induced Benjamin-Feir instability publication-title: Laser Photon. Rev. doi: 10.1002/lpor.202200935 – volume: 5 year: 2015 ident: njpad327cbib95 article-title: Pulsed excitation dynamics of an optomechanical crystal resonator near its quantum ground state of motion publication-title: Phys. Rev. X doi: 10.1103/PhysRevX.5.041002 – volume: 49 start-page: 1337 year: 1994 ident: njpad327cbib132 article-title: Quantum-noise reduction using a cavity with a movable mirror publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.49.1337 – volume: 95 year: 2017 ident: njpad327cbib109 article-title: Enhanced entanglement of two different mechanical resonators via coherent feedback publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.95.043819 – volume: 282 start-page: 706 year: 1998 ident: njpad327cbib101 article-title: Unconditional quantum teleportation publication-title: Science doi: 10.1126/science.282.5389.706 – volume: 3 start-page: 3 year: 2023 ident: njpad327cbib55 article-title: Magnon squeezing enhanced ground-state cooling in cavity magnomechanics publication-title: Fundam. Res. doi: 10.1016/j.fmre.2022.07.006 – volume: 109 year: 2024 ident: njpad327cbib116 article-title: Nonreciprocal quantum coherence in spinning magnomechanical systems publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.109.013719 – volume: 107 year: 2023 ident: njpad327cbib66 article-title: Dynamical backaction evading magnomechanics publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.107.L140405 – volume: 107 year: 2023 ident: njpad327cbib90 article-title: Generation of magnonic frequency combs via a two-tone microwave drive publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.107.053708 – volume: 460 start-page: 724 year: 2009 ident: njpad327cbib79 article-title: Observation of strong coupling between a micromechanical resonator and an optical cavity field publication-title: Nature doi: 10.1038/nature08171 – volume: 77 start-page: 513 year: 2005 ident: njpad327cbib122 article-title: Quantum information with continuous variables publication-title: Rev. Mod. Phys. doi: 10.1103/RevModPhys.77.513 – volume: 116 year: 2016 ident: njpad327cbib19 article-title: Cavity optomagnonics with spin-orbit coupled photons publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.116.223601 – volume: 8 start-page: 367 year: 2019 ident: njpad327cbib83 article-title: Coupling light and sound: giant nonlinearities from oscillating bubbles and droplets publication-title: Nanophotonics doi: 10.1515/nanoph-2018-0195 – volume: 21 start-page: 541 year: 1949 ident: njpad327cbib34 article-title: Physical theory of ferromagnetic domains publication-title: Rev. Mod. Phys. doi: 10.1103/RevModPhys.21.541 – volume: 5 year: 2023 ident: njpad327cbib180 article-title: Synchronization by magnetostriction publication-title: Phys. Rev. Res. doi: 10.1103/PhysRevResearch.5.043197 – volume: 128 year: 2020 ident: njpad327cbib5 article-title: Hybrid magnonics: physics, circuits and applications for coherent information processing publication-title: J. Appl. Phys. doi: 10.1063/5.0020277 – volume: 124 year: 2020 ident: njpad327cbib129 article-title: Axion search with a quantum-limited ferromagnetic haloscope publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.124.171801 – volume: 129 year: 2022 ident: njpad327cbib163 article-title: Coherent coupling between phonons, magnons and photons publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.129.243601 – volume: 117 year: 2016 ident: njpad327cbib20 article-title: Optomagnonic whispering gallery microresonators publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.117.123605 – volume: 114 year: 2015 ident: njpad327cbib17 article-title: Spin pumping in electrodynamically coupled magnon-photon systems publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.114.227201 – volume: 380 start-page: 718 year: 2023 ident: njpad327cbib157 article-title: Entangling microwaves with light publication-title: Science doi: 10.1126/science.adg3812 – volume: 330 start-page: 1520 year: 2010 ident: njpad327cbib41 article-title: Optomechanically induced transparency publication-title: Science doi: 10.1126/science.1195596 – volume: 130 year: 2023 ident: njpad327cbib30 article-title: Quantum control of a single magnon in a macroscopic spin system publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.130.193603 – volume: 129 year: 2022 ident: njpad327cbib26 article-title: Mechanical bistability in Kerr-modified cavity magnomechanics publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.129.123601 – volume: 17 year: 2022 ident: njpad327cbib192 article-title: On-chip coherent transduction between magnons and acoustic phonons in cavity magnomechanics publication-title: Phys. Rev. Appl. doi: 10.1103/PhysRevApplied.17.034024 – volume: 367 start-page: 425 year: 2020 ident: njpad327cbib29 article-title: Entanglement-based single-shot detection of a single magnon with a superconducting qubit publication-title: Science doi: 10.1126/science.aaz9236 – volume: 113 year: 2014 ident: njpad327cbib15 article-title: Strongly coupled magnons and cavity microwave photons publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.113.156401 – volume: 27 start-page: 5544 year: 2019 ident: njpad327cbib45 article-title: Magnetically controllable slow light based on magnetostrictive forces publication-title: Opt. Express doi: 10.1364/OE.27.005544 – volume: 108 year: 2023 ident: njpad327cbib152 article-title: Entangling ferrimagnetic magnons with an atomic ensemble via optomagnomechanics publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.108.023501 – volume: 128 year: 2020 ident: njpad327cbib48 article-title: Phase control of the transmission in cavity magnomechanical system with magnon driving publication-title: J. Appl. Phys. doi: 10.1063/5.0028395 – volume: 103 year: 2021 ident: njpad327cbib61 article-title: Nonreciprocal phonon laser in a spinning microwave magnomechanical system publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.103.053501 – volume: 115 year: 2015 ident: njpad327cbib141 article-title: Squeezing of quantum noise of motion in a micromechanical resonator publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.115.243601 – volume: 105 year: 2010 ident: njpad327cbib71 article-title: Coherent perfect absorbers: time-reversed lasers publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.105.053901 – volume: 88 year: 2013 ident: njpad327cbib139 article-title: Arbitrarily large steady-state bosonic squeezing via dissipation publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.88.063833 – volume: 10 start-page: 1081 year: 2023 ident: njpad327cbib188 article-title: Measurement-based control of quantum entanglement and steering in a distant magnomechanical system publication-title: Photonics doi: 10.3390/photonics10101081 – volume: 100 start-page: 1788 year: 1955 ident: njpad327cbib70 article-title: Instability in the motion of ferromagnets at high microwave power levels publication-title: Phys. Rev. doi: 10.1103/PhysRev.100.1788 – volume: 105 year: 2022 ident: njpad327cbib175 article-title: Anti- PT symmetry enhanced interconversion between microwave and optical fields publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.105.064405 – volume: 100 year: 2019 ident: njpad327cbib178 article-title: Cavity-mediated dissipative coupling of distant magnetic moments: theory and experiment publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.100.094415 – volume: 18 year: 2022 ident: njpad327cbib162 article-title: Optimal broadband frequency conversion via a magnetomechanical transducer publication-title: Phys. Rev. Appl. doi: 10.1103/PhysRevApplied.18.044059 – volume: 13 start-page: 3833 year: 2023 ident: njpad327cbib108 article-title: Enhancement of magnon-photon-phonon entanglement in a cavity magnomechanics with coherent feedback loop publication-title: Sci. Rep. doi: 10.1038/s41598-023-30693-x – volume: 9 year: 2019 ident: njpad327cbib60 article-title: Phonon laser in a cavity magnomechanical system publication-title: Sci. Rep. doi: 10.1038/s41598-019-52050-7 – volume: 108 year: 2023 ident: njpad327cbib168 article-title: Gain-assisted controllable fast-light generation in cavity magnomechanics publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.108.033517 – volume: 58 start-page: 1098 year: 1940 ident: njpad327cbib36 article-title: Field dependence of the intrinsic domain magnetization of a ferromagnet publication-title: Phys. Rev. doi: 10.1103/PhysRev.58.1098 – volume: 1 year: 2019 ident: njpad327cbib121 article-title: Genuine photon-magnon-phonon Einstein-Podolsky-Rosen steerable nonlocality in a continuously-monitored cavity magnomechanical system publication-title: Phys. Rev. Res. doi: 10.1103/PhysRevResearch.1.033161 – volume: 103 year: 2021 ident: njpad327cbib145 article-title: Magnon-assisted photon-phonon conversion in the presence of structured environments publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.103.043704 – volume: 14 start-page: 11 year: 2018 ident: njpad327cbib164 article-title: Non-Hermitian physics and PT symmetry publication-title: Nat. Phys. doi: 10.1038/nphys4323 – volume: 29 year: 2021 ident: njpad327cbib143 article-title: Generation and transfer of squeezed states in a cavity magnomechanical system by two-tone microwave fields publication-title: Opt. Express doi: 10.1364/OE.418531 – volume: 85 start-page: 623 year: 2013 ident: njpad327cbib1 article-title: Hybrid quantum circuits: superconducting circuits interacting with other quantum systems publication-title: Rev. Mod. Phys. doi: 10.1103/RevModPhys.85.623 – volume: 102 year: 2020 ident: njpad327cbib38 article-title: Magnon polaron formed by selectively coupled coherent magnon and phonon modes of a surface patterned ferromagnet publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.102.144438 – volume: 31 year: 2023 ident: njpad327cbib158 article-title: High-efficiency entanglement of microwave fields in cavity opto-magnomechanical systems publication-title: Opt. Express doi: 10.1364/OE.495656 – volume: 94 year: 2016 ident: njpad327cbib68 article-title: Magnon Kerr effect in a strongly coupled cavity-magnon system publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.94.224410 – volume: 105 year: 2022 ident: njpad327cbib111 article-title: Entanglement enhancement in cavity magnomechanics by an optical parametric amplifier publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.105.063704 – volume: 3 year: 2021 ident: njpad327cbib187 article-title: Einstein-Podolsky-Rosen entanglement and asymmetric steering between distant macroscopic mechanical and magnonic systems publication-title: Phys. Rev. Res. doi: 10.1103/PhysRevResearch.3.013192 – volume: 124 year: 2024 ident: njpad327cbib91 article-title: Dissipative coupling induced UWB magnonic frequency comb generation publication-title: Appl. Phys. Lett. doi: 10.1063/5.0189017 – volume: 7 start-page: 229 year: 2013 ident: njpad327cbib126 article-title: Biological measurement beyond the quantum limit publication-title: Nat. Photon. doi: 10.1038/nphoton.2012.346 – volume: 11 year: 2021 ident: njpad327cbib25 article-title: Dynamical backaction magnomechanics publication-title: Phys. Rev. X doi: 10.1103/PhysRevX.11.031053 – volume: 130 year: 2023 ident: njpad327cbib184 article-title: Enhanced tripartite interactions in spin-magnon-mechanical hybrid systems publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.130.073602 – volume: 113 year: 2014 ident: njpad327cbib14 article-title: Hybridizing ferromagnetic magnons and microwave photons in the quantum limit publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.113.083603 – volume: 8 year: 2023 ident: njpad327cbib118 article-title: Entangling mechanical vibrations of two massive ferrimagnets by fully exploiting the nonlinearity of magnetostriction publication-title: Quantum Sci. Technol. doi: 10.1088/2058-9565/acab7b – volume: 16 start-page: 784 year: 2020 ident: njpad327cbib137 article-title: Room-temperature optomechanical squeezing publication-title: Nat. Phys. doi: 10.1038/s41567-020-0877-x – volume: 127 year: 2021 ident: njpad327cbib86 article-title: Magnonic frequency comb through nonlinear magnon-Skyrmion scattering publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.127.037202 – volume: 121 year: 2018 ident: njpad327cbib177 article-title: Level attraction due to dissipative magnon-photon coupling publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.121.137203 – volume: 46 year: 2013 ident: njpad327cbib98 article-title: Macroscopic quantum mechanics: theory and experimental concepts of optomechanics publication-title: J. Phys. B: At. Mol. Opt. Phys. doi: 10.1088/0953-4075/46/10/104001 – volume: 1 year: 2015 ident: njpad327cbib18 article-title: Cavity quantum electrodynamics with ferromagnetic magnons in a small yttrium-iron-garnet sphere publication-title: npj Quantum Inf. doi: 10.1038/npjqi.2015.14 – volume: 81 year: 2010 ident: njpad327cbib42 article-title: Electromagnetically induced transparency in mechanical effects of light publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.81.041803 – volume: 25 year: 2023 ident: njpad327cbib63 article-title: Generation and manipulation of phonon lasering in a two-drive cavity magnomechanical system publication-title: New J. Phys. doi: 10.1088/1367-2630/acd717 – volume: 86 year: 2012 ident: njpad327cbib191 article-title: Surface acoustic wave driven ferromagnetic resonance in nickel thin films: theory and experiment publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.86.134415 – volume: 125 year: 2020 ident: njpad327cbib174 article-title: Unconventional singularity in anti-parity-time symmetric cavity magnonics publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.125.147202 – volume: 128 year: 2022 ident: njpad327cbib183 article-title: Intensive cavity-magnomechanical cooling of a levitated macromagnet publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.128.013602 – volume: 15 year: 2021 ident: njpad327cbib77 article-title: On-demand coherent perfect absorption in complex scattering systems: time delay divergence and enhanced sensitivity to perturbations publication-title: Laser Photon. Rev. doi: 10.1002/lpor.202000471 – volume: 117 year: 2016 ident: njpad327cbib21 article-title: Triple-resonant Brillouin light scattering in magneto-optical cavities publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.117.133602 – volume: 5 start-page: 222 year: 2011 ident: njpad327cbib102 article-title: Advances in quantum metrology publication-title: Nat. Photon. doi: 10.1038/nphoton.2011.35 – volume: 8 start-page: 1368 year: 2017 ident: njpad327cbib75 article-title: Observation of the exceptional point in cavity magnon-polaritons publication-title: Nat. Commun. doi: 10.1038/s41467-017-01634-w – volume: 471 start-page: 204 year: 2011 ident: njpad327cbib80 article-title: Circuit cavity electromechanics in the strong-coupling regime publication-title: Nature doi: 10.1038/nature09898 – volume: 131 year: 2023 ident: njpad327cbib89 article-title: Magnonic frequency comb in the magnomechanical resonator publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.131.243601 – volume: 13 year: 2020 ident: njpad327cbib172 article-title: Observation of anti- PT -symmetry phase transition in the magnon-cavity-magnon coupled system publication-title: Phys. Rev. Appl. doi: 10.1103/PhysRevApplied.13.014053 – volume: 11 year: 2019 ident: njpad327cbib170 article-title: Magnon chaos in PT -symmetric cavity magnomechanics publication-title: IEEE Photon. J. doi: 10.1109/JPHOT.2019.2911963 – volume: 103 year: 2021 ident: njpad327cbib113 article-title: Perfect transfer of enhanced entanglement and asymmetric steering in a cavity-magnomechanical system publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.103.053712 – volume: 356 start-page: 1265 year: 2017 ident: njpad327cbib94 article-title: Quantum correlations from a room-temperature optomechanical cavity publication-title: Science doi: 10.1126/science.aag1407 – volume: 3 year: 2017 ident: njpad327cbib28 article-title: Resolving quanta of collective spin excitations in a millimeter-sized ferromagnet publication-title: Sci. Adv. doi: 10.1126/sciadv.1603150 – volume: 3 start-page: 8 year: 2023 ident: njpad327cbib88 article-title: Magnonic frequency combs based on the resonantly enhanced magnetostrictive effect publication-title: Fundam. Res. doi: 10.1016/j.fmre.2022.08.017 – volume: 103 year: 2021 ident: njpad327cbib176 article-title: Exceptional-point-engineered cavity magnomechanics publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.103.063708 – volume: 111 year: 2013 ident: njpad327cbib13 article-title: High cooperativity in coupled microwave resonator ferrimagnetic insulator hybrids publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.111.127003 – volume: 12 year: 2019 ident: njpad327cbib153 article-title: Monocrystalline freestanding three-dimensional Yttrium-Iron-Garnet magnon nanoresonators publication-title: Phys. Rev. Appl. doi: 10.1103/PhysRevApplied.12.054031 – volume: 3 year: 2013 ident: njpad327cbib136 article-title: Strong optomechanical squeezing of light publication-title: Phys. Rev. X doi: 10.1103/PhysRevX.3.031012 – volume: 104 year: 2021 ident: njpad327cbib59 article-title: Magnomechanics in suspended magnetic beams publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.104.214416 – volume: 52 start-page: 341 year: 1980 ident: njpad327cbib123 article-title: On the measurement of a weak classical force coupled to a quantum-mechanical oscillator. I. Issues of principle publication-title: Rev. Mod. Phys. doi: 10.1103/RevModPhys.52.341 – volume: 8 year: 2023 ident: njpad327cbib37 article-title: Stationary optomagnonic entanglement and magnon-to-optics quantum state transfer via opto-magnomechanics publication-title: Quantum Sci. Technol. doi: 10.1088/2058-9565/aca3cf – year: 1986 ident: njpad327cbib67 – volume: 40 start-page: 6741(R) year: 1989 ident: njpad327cbib147 article-title: Adiabatic population transfer in a three-level system driven by delayed laser pulses publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.40.6741 – volume: 20 year: 2023 ident: njpad327cbib159 article-title: Entangling a magnon and an atomic ensemble mediated by an optical cavity publication-title: Phys. Rev. Appl. doi: 10.1103/PhysRevApplied.20.034043 – volume: 107 year: 2023 ident: njpad327cbib47 article-title: Magnon-squeezing-enhanced slow light and second-order sideband in cavity magnomechanics publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.107.063714 – volume: 102 year: 2020 ident: njpad327cbib46 article-title: Tunable multiwindow magnomechanically induced transparency, Fano resonances and slow-to-fast light conversion publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.102.033721 – volume: 124 year: 2020 ident: njpad327cbib182 article-title: Quantum acoustomechanics with a micromagnet publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.124.093602 – volume: 2 year: 2016 ident: njpad327cbib23 article-title: Cavity magnomechanics publication-title: Sci. Adv. doi: 10.1126/sciadv.1501286 – volume: 104 year: 2021 ident: njpad327cbib62 article-title: Magnomechanical phonon laser beyond the steady state publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.104.033511 – volume: 6 start-page: 1114 year: 2021 ident: njpad327cbib6 article-title: Advances in coherent magnonics publication-title: Nat. Rev. Mater. doi: 10.1038/s41578-021-00332-w – volume: 30 year: 2022 ident: njpad327cbib112 article-title: Quantum entanglement and one way steering in a cavity magnomechanical system via a squeezed vacuum field publication-title: Opt. Express doi: 10.1364/OE.453787 – volume: 10 start-page: nwac247 year: 2023 ident: njpad327cbib131 article-title: Squeezing microwaves by magnetostriction publication-title: Natl. Sci. Rev. doi: 10.1093/nsr/nwac247 – volume: 6 year: 2021 ident: njpad327cbib117 article-title: Entangling the vibrational modes of two massive ferromagnetic spheres using cavity magnomechanics publication-title: Quantum Sci. Technol. doi: 10.1088/2058-9565/abd982 – volume: 2 start-page: 1 year: 2021 ident: njpad327cbib7 article-title: Quantum engineering with hybrid magnonic systems and materials publication-title: IEEE Trans. Quantum Eng. doi: 10.1109/TQE.2021.3057799 – volume: 93 year: 2021 ident: njpad327cbib166 article-title: Exceptional topology of non-Hermitian systems publication-title: Rev. Mod. Phys. doi: 10.1103/RevModPhys.93.015005 – volume: 19 year: 2023 ident: njpad327cbib193 article-title: Phononic crystal cavity magnomechanics publication-title: Phys. Rev. Appl. doi: 10.1103/PhysRevApplied.19.054071 – year: 2024 ident: njpad327cbib115 article-title: Nonreciprocal entanglement in cavity magnomechanics exploiting chiral cavity-magnon coupling – volume: 112 start-page: 3866 year: 2015 ident: njpad327cbib2 article-title: Quantum technologies with hybrid systems publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1419326112 – volume: 3 year: 2022 ident: njpad327cbib120 article-title: Quantum steering: practical challenges and future directions publication-title: PRX Quantum doi: 10.1103/PRXQuantum.3.030102 – volume: 134 year: 2023 ident: njpad327cbib11 article-title: Tutorial: nonlinear magnonics publication-title: J. Appl. Phys. doi: 10.1063/5.0152543 – volume: 16 start-page: 257 year: 2020 ident: njpad327cbib3 article-title: Hybrid quantum systems with circuit quantum electrodynamics publication-title: Nat. Phys. doi: 10.1038/s41567-020-0797-9 – volume: 5 year: 2015 ident: njpad327cbib142 article-title: Quantum nondemolition measurement of a nonclassical state of a massive object publication-title: Phys. Rev. X doi: 10.1103/PhysRevX.5.041037 – volume: 90 year: 2007 ident: njpad327cbib156 article-title: Optical cooling of a micromirror of wavelength size publication-title: Appl. Phys. Lett. doi: 10.1063/1.2711181 – volume: 979 start-page: 1 year: 2022 ident: njpad327cbib9 article-title: Cavity magnonics publication-title: Phys. Rep. doi: 10.1016/j.physrep.2022.06.001 – year: 2023 ident: njpad327cbib44 article-title: Entangling two bosonic polaritons via dispersive coupling with a third mode – volume: 112 year: 2014 ident: njpad327cbib85 article-title: Phononic frequency combs through nonlinear resonances publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.112.075505 – volume: 105 year: 2022 ident: njpad327cbib154 article-title: Optical sensing of magnons via the magnetoelastic displacement publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.105.033507 – volume: 331 start-page: 889 year: 2011 ident: njpad327cbib72 article-title: Time-reversed lasing and interferometric control of absorption publication-title: Science doi: 10.1126/science.1200735 – volume: 349 start-page: 952 year: 2015 ident: njpad327cbib140 article-title: Quantum squeezing of motion in a mechanical resonator publication-title: Science doi: 10.1126/science.aac5138 – volume: 106 year: 2011 ident: njpad327cbib189 article-title: Elastically driven ferromagnetic resonance in nickel thin films publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.106.117601 – volume: 104 year: 2010 ident: njpad327cbib31 article-title: Strong field interactions between a nanomagnet and a photonic cavity publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.104.077202 – volume: 25 year: 2019 ident: njpad327cbib128 article-title: Broadening frequency range of a ferromagnetic axion haloscope with strongly coupled cavity-magnon polaritons publication-title: Phys. Dark Universe doi: 10.1016/j.dark.2019.100306 – volume: 97 year: 2018 ident: njpad327cbib100 article-title: Phonon interferometry for measuring quantum decoherence publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.97.063832 – volume: 99 year: 2007 ident: njpad327cbib51 article-title: Theory of ground state cooling of a mechanical oscillator using dynamical backaction publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.99.093901 – volume: 16 year: 2021 ident: njpad327cbib161 article-title: Coherent pulse echo in hybrid magnonics with multimode phonons publication-title: Phys. Rev. Appl. doi: 10.1103/PhysRevApplied.16.024009 – volume: 39 start-page: 2665 year: 2022 ident: njpad327cbib110 article-title: Magnon squeezing enhanced entanglement in a cavity magnomechanical system publication-title: J. Opt. Soc. Am. B doi: 10.1364/JOSAB.465554 – volume: 23 start-page: 1693 year: 1981 ident: njpad327cbib125 article-title: Quantum-mechanical noise in an interferometer publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.23.1693 – volume: 53 year: 2020 ident: njpad327cbib130 article-title: Macroscopic entanglement of two magnon modes via quantum correlated microwave fields publication-title: J. Phys. B: At. Mol. Opt. Phys. doi: 10.1088/1361-6455/ab68b5 – year: 1996 ident: njpad327cbib33 – volume: 373 start-page: 1261 year: 2021 ident: njpad327cbib76 article-title: Coherent perfect absorption at an exceptional point publication-title: Science doi: 10.1126/science.abj1028 – volume: 40 start-page: 7821 year: 2007 ident: njpad327cbib107 article-title: Entanglement in continuous-variable systems: recent advances and current perspectives publication-title: J. Phys. A: Math. Theor. doi: 10.1088/1751-8113/40/28/S01 – year: 2023 ident: njpad327cbib39 article-title: Observation of strong coupling between a mechanical oscillator and a cavity-magnon polariton – volume: 10 start-page: 886 year: 2023 ident: njpad327cbib82 article-title: Generation of second-order sideband through nonlinear magnetostrictive interaction publication-title: Photonics doi: 10.3390/photonics10080886 – volume: 14 start-page: R415 year: 2002 ident: njpad327cbib97 article-title: Testing the limits of quantum mechanics: motivation, state of play, prospects publication-title: J. Phys.: Condens. Matter doi: 10.1088/0953-8984/14/15/201 – volume: 306 start-page: 1330 year: 2004 ident: njpad327cbib124 article-title: Quantum-enhanced measurements: beating the standard quantum limit publication-title: Science doi: 10.1126/science.1104149 – volume: 108 year: 2023 ident: njpad327cbib179 article-title: Nonlinear self-sustaining dynamics in cavity magnomechanics publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.108.033518 – volume: 85 start-page: 471 year: 2013 ident: njpad327cbib99 article-title: Models of wave-function collapse, underlying theories and experimental tests publication-title: Rev. Mod. Phys. doi: 10.1103/RevModPhys.85.471 – volume: 500 start-page: 185 year: 2013 ident: njpad327cbib135 article-title: Squeezed light from a silicon micromechanical resonator publication-title: Nature doi: 10.1038/nature12307 – volume: 90 year: 2018 ident: njpad327cbib96 article-title: Macroscopic quantum states: Measures, fragility and implementations publication-title: Rev. Mod. Phys. doi: 10.1103/RevModPhys.90.025004 – volume: 49 start-page: 4055 year: 1994 ident: njpad327cbib133 article-title: Quantum noise reduction by radiation pressure publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.49.4055 – volume: 349 start-page: 405 year: 2015 ident: njpad327cbib27 article-title: Coherent coupling between a ferromagnetic magnon and a superconducting qubit publication-title: Science doi: 10.1126/science.aaa3693 – volume: 17 start-page: 470 year: 2023 ident: njpad327cbib127 article-title: Entanglement-enhanced optomechanical sensing publication-title: Nat. Photon. doi: 10.1038/s41566-023-01178-0 – volume: 110 start-page: 836 year: 1958 ident: njpad327cbib35 article-title: Interaction of spin waves and ultrasonic waves in ferromagnetic crystals publication-title: Phys. Rev. doi: 10.1103/PhysRev.110.836 – volume: 2 year: 2017 ident: njpad327cbib74 article-title: Coherent perfect absorbers: linear control of light with light publication-title: Nat. Rev. Mater. doi: 10.1038/natrevmats.2017.64 – volume: 2 year: 2021 ident: njpad327cbib186 article-title: Quantum network with magnonic and mechanical nodes publication-title: PRX Quantum doi: 10.1103/PRXQuantum.2.040344 – volume: 108 year: 2012 ident: njpad327cbib73 article-title: Perfect coupling of light to surface plasmons by coherent absorption publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.108.186805 – volume: 31 start-page: 5492 year: 2023 ident: njpad327cbib92 article-title: Nonreciprocal sideband responses in a spinning microwave magnomechanical system publication-title: Opt. Express doi: 10.1364/OE.480554 – volume: 99 year: 2019 ident: njpad327cbib57 article-title: Squeezed states of magnons and phonons in cavity magnomechanics publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.99.021801 – volume: 120 year: 2018 ident: njpad327cbib69 article-title: Bistability of cavity magnon polaritons publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.120.057202 – volume: 12 year: 2019 ident: njpad327cbib4 article-title: Hybrid quantum systems based on magnonics publication-title: Appl. Phys. Express doi: 10.7567/1882-0786/ab248d – volume: 10 start-page: 1458 year: 1969 ident: njpad327cbib150 article-title: An exact quantum theory of the time-dependent harmonic oscillator and of a charged particle in a time-dependent electromagnetic field publication-title: J. Math. Phys. doi: 10.1063/1.1664991 – volume: 95 year: 2005 ident: njpad327cbib105 article-title: Logarithmic negativity: a full entanglement monotone that is not convex publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.95.090503 – volume: 65 year: 2002 ident: njpad327cbib104 article-title: Computable measure of entanglement publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.65.032314 – volume: 98 year: 2007 ident: njpad327cbib65 article-title: An all-optical trap for a gram-scale mirror publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.98.150802 – volume: 532 year: 2020 ident: njpad327cbib169 article-title: Magnon blockade in a PT -symmetric-like cavity magnomechanical system publication-title: Ann. Phys. doi: 10.1002/andp.202000028 – volume: 105 year: 2022 ident: njpad327cbib148 article-title: Accelerated adiabatic passage in cavity magnomechanics publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.105.053710 – volume: 101 year: 2020 ident: njpad327cbib160 article-title: Coherent long-range transfer of angular momentum between magnon Kittel modes by phonons publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.101.060407 – volume: 77 year: 2008 ident: njpad327cbib53 article-title: Ground-state cooling of a micromechanical oscillator: comparing cold damping and cavity-assisted cooling schemes publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.77.033804 – volume: 23 year: 2021 ident: njpad327cbib146 article-title: Cavity magnomechanical storage and retrieval of quantum states publication-title: New J. Phys. doi: 10.1088/1367-2630/abf535 – volume: 5 year: 2023 ident: njpad327cbib12 article-title: A review of common materials for hybrid quantum magnonics publication-title: Mater. Today Electron. doi: 10.1016/j.mtelec.2023.100044 – volume: 120 year: 2018 ident: njpad327cbib22 article-title: Brillouin light scattering by magnetic quasivortices in cavity optomagnonics publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.120.133602 – volume: 103 year: 2021 ident: njpad327cbib78 article-title: Generalization of Wigner time delay to subunitary scattering systems publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.103.L050203 – volume: 108 year: 2023 ident: njpad327cbib114 article-title: Nonreciprocal magnon-photon-phonon entanglement in cavity magnomechanics publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.108.063704 – volume: 109 year: 2024 ident: njpad327cbib144 article-title: Strong squeezing of microwave output fields via reservoir-engineered cavity magnomechanics publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.109.013704 – volume: 9 start-page: 170 year: 2022 ident: njpad327cbib50 article-title: Coherent mechanical noise cancellation and cooperativity competition in optomechanical arrays publication-title: Optica doi: 10.1364/OPTICA.446434 – volume: 124 year: 2020 ident: njpad327cbib56 article-title: Magnetostrictively induced stationary entanglement between two microwave fields publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.124.213604 – volume: 121 year: 2018 ident: njpad327cbib24 article-title: Magnon-photon-phonon entanglement in cavity magnomechanics publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.121.203601 – volume: 98 year: 2007 ident: njpad327cbib119 article-title: Steering, entanglement, nonlocality and the Einstein-Podolsky-Rosen paradox publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.98.140402 – volume: 58 start-page: 1 year: 2022 ident: njpad327cbib10 article-title: Advances in magnetics roadmap on spin-wave computing publication-title: IEEE Trans. Magn. doi: 10.1109/TMAG.2022.3149664 – volume: 488 start-page: 476 year: 2012 ident: njpad327cbib134 article-title: Non-classical light generated by quantum-noise-driven cavity optomechanics publication-title: Nature doi: 10.1038/nature11325 – volume: 113 year: 2014 ident: njpad327cbib171 article-title: PT -symmetric phonon laser publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.113.053604 – volume: 101 year: 2020 ident: njpad327cbib40 article-title: Theory of quantum acoustomagnonics and acoustomechanics with a micromagnet publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.101.125404 – volume: 25 year: 2023 ident: njpad327cbib64 article-title: Exceptional-point-engineered phonon laser in a cavity magnomechanical system publication-title: New J. Phys. doi: 10.1088/1367-2630/acf068 – volume: 13 year: 2020 ident: njpad327cbib93 article-title: Magnon-phonon quantum correlation thermometry publication-title: Phys. Rev. Appl. doi: 10.1103/PhysRevApplied.13.064001 – volume: 17 year: 2023 ident: njpad327cbib151 article-title: Microwave-optics entanglement via cavity optomagnomechanics publication-title: Laser Photon. Rev. doi: 10.1002/lpor.202200866 – volume: 126 year: 2021 ident: njpad327cbib173 article-title: Enhanced sensing of weak anharmonicities through coherences in dissipatively coupled anti-PT symmetric systems publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.126.180401 |
SSID | ssj0011822 |
Score | 2.6501782 |
SecondaryResourceType | review_article |
Snippet | Hybrid quantum systems based on magnons in magnetic materials have made significant progress in the past decade. They are built based on the couplings of... |
SourceID | doaj proquest crossref iop |
SourceType | Open Website Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 31201 |
SubjectTerms | cavity quantum electrodynamics Couplings Electrons hybrid magnonics Hybrid systems Magnetic materials magnomechanics Magnons Optics Opto-mechanics optomechanics Phonons Photons Physics Quantum electrodynamics quantum information Quantum optics Quantum phenomena Qubits (quantum computing) Vibration |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LSwMxEA5SELyIT6xW2YMePCzdzTvetFiKoCcLvYU8QbAP7fb_O9ndVkXQi9cwy2a_yew3IZNvELpkgUXnscjLACuYOkxzK1iZGwd7Zgg-GWslpscnPhrThwmbfGn1lWrCGnngBri-LQtfFoEBE3lqRDQlZ1ERw23po29kJIHz1pup9vwAsmbcHkpCGPWTLlmOOSn6xhMs3DcSqrX6gVpe5osfP-SaZYZ7aLdND7PbZlr7aCvMDtB2XabploeoGJjU6yGbpvq4aUi3dmH8JkuXRDKXEuGEeVbNs7cVQLaaHqHx8P55MMrbnge5g9SoyqW0VMCOlXgZCZCztCRECLRAHA5CMemTOgynEr7DSEw5ULpV2EfOTGGNIseoM5vPwgnKPPUOq8KpABROpDVCyOiFDJ4SrhTrov4aBO1aQfDUl-JV1wfTUuoEm06w6Qa2LrrePLFoxDB-sb1LuG7skox1PQDO1a1z9V_O7aIr8Ipuw2r5y8t6a799GqeuXJQWhNDT_5jLGdrBkNA09Wc91KneV-EcEpLKXtRr7wOyktgi priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1JS8QwFA46g-BFXHHc6EEPHsq0WZrUi6gog6CIKHgrWUVwprP-f9_rZEZEmGuaUvrlbcl7-R4h58KLYB2Vae5BgrmlPDVS5Km2sGcG5VOhYWJ6ei567_zxQ3zEA7dJLKtc2MTGULva4hl5F3sscZ4xxq-HoxS7RmF2NbbQWCdtMMEKJLx9e__88rrMI0D0TGNyEtSpi_xkKS1Y1tWOUWn_OKOGsx9czFc9_GeYG2_zsE22YpiY3MzXdYes-cEu2WjKNe1kj2R3Gns-JH2sk-t7vL0L41cJXhZJLAbEiH0yrZPRDKCb9ffJ-8P9210vjb0PUgsh0jRVynAJO1fmVGDgpJVhPoDCeWapl6VQDlliCq7gP7SivADXbkrqQiF0ZnTJDkhrUA_8IUkcd5aWmS09uHKmjJZSBSeVd5wVZSk6pLsAobKRGBz7U3xXTYJaqQphqxC2ag5bh1wu3xjOSTFWzL1FXJfzkM66GajHn1XUjsrkmcszLyDccFzLoPNChJLpwuQuuIx2yAWsShXVa7LiYyeLdfud_Cs5R6sfH5NNCiHLvMLshLSm45k_hZBjas6iXP0AqOnQtg priority: 102 providerName: ProQuest |
Title | Cavity magnomechanics: from classical to quantum |
URI | https://iopscience.iop.org/article/10.1088/1367-2630/ad327c https://www.proquest.com/docview/2973440334 https://doaj.org/article/b10d10e5181d4a7fa165f93a6b1dfd02 |
Volume | 26 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB4toEpcoLQgFpZVDu2hh-wmfsQOPXXRIoTEQ1VX5VAp8vMC-wCyF3494yS7FS1aIS5RZI0TZ8b2fI5nPgN84Y57Y4mIU4c9mBnCYi14GiuDa2YcfNJXTEwXl9nZiJ3f8JsWfF_mwkxnzdTfw9uaKLhWYRMQJ_uBZCwmGU36ylIizBpsUIluJmTvXV0vtxAQOJNmX_K1Wi_8UEXXj94FX_nfnFw5mtNt-LNoYh1fctubl7pnnv5hb3znN3yErQaARj9q0R1ouckn-FAFgprHz5CcqHCaRDQOEXhjF_KCsfw4CmkokQlQO1g1KqfR_RyNMh_vwuh0-OvkLG5OVYgNgq8yllIzgWtiaqWn6P6lps7jUHbUECdyLm3gn8mYxIYpSViGoEHnxPqMq0SrnO7B-mQ6cfsQWWYNyROTOwQJVGolhPRWSGcZzfKct6G_0HFhGsrxcPLFXVFtfUtZBD0UQQ9FrYc2fFvWmNV0GytkB8FsS7lAlF0VoMKLRuGFThObJo4jkLFMCa_SjPucqkyn1tuEtOEr2qhoBu7jipd1Ft3ir3A494uxhFJ28MbHHMImQVRUB7F1YL18mLsjRDWl7sLGYHh5_bNb_RXoVn0Zr1f09zMxU_A6 |
linkProvider | IOP Publishing |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LaxRBEC7CBtGLxBeuRp2DOXgYdqYf0z0BERMTNiZZRBLIre3phwjuzia7i_in_I1WzWODCHvLtad7BurR9fVU9VcAb2WQ0Xmm0jygBQvHRFopmafW4ZkZnU_HhonpfFKML8XnK3m1BX_6uzBUVtnvic1G7WtH_8hH1GNJiIxz8WF-nVLXKMqu9i00WrM4Db9_4ZFt8f7kE-p3j7Hjo4vDcdp1FUgdgo9lqnUlFJ4JudeRY_jTFQ8RTTlwx4IqpfbEv1II7TmzmokCg2ZVMh8LabPKEvkSbvnbgiNUGMD2wdHky9d13gLROuuSoei-I-JDS1nBs5HFtyn3T_BregRgSPtRz_8LBE10O96Bhx0sTT62dvQItsLsMdxrykPd4glkh5Z6TCRTqsubBrotjOP7CV1OSRwBcNJ1sqyT6xWqajV9Cpd3IpVnMJjVs_AcEi-8Y2XmyoDQgevKKqWjVzp4lFlZyiGMeiEY1xGRUz-Mn6ZJiGttSGyGxGZasQ3h3XrFvCXh2DD3gOS6nkf02c1AffPddN5oqjzzeRYkwhsvrIo2L2QsuS2q3EefsSHsoVZM586LDR_b7fV2O_nWUl9sfvwG7o8vzs_M2cnk9CU8YAiX2uq2XRgsb1bhFcKdZfW6s7EEvt21Wf8FWzwLRg |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JbhQxEC1BEIhLwhYxSYA-wIFDz3R7b24kMApbyIFIuRmvF5gF0nPh61N2ewaxKELi1rLKbbvKy7Nc9QrgKQ88Ok9k3QacwcwRVlvJ29o4vDPj4lMxMzF9OBHHZ-ztOT8veU5zLMxiWbb-MX4ORMGDCotDnJokkrGaCNpMjKdEusnSx-twg1NBcwTfx9PNMwKCZ1LeJv9W85ezKFP24wmDzf6xL-fDZroDn9fdHHxMvoxXvR27H78xOP7HOO7AdgGi1ctB_C5cC_N7cDM7hLqL-9AcmZRVopolT7xZSPHBWP6iSuEolUuQO1m36hfVtxUaZzV7AGfT15-OjuuSXaF2CML6WinLJN6NqVeRIgxQloaISzpQR4LsuPKJh0YwhZ0zijCB4MF2xEfBTWNNR3dha76Yh4dQeeYd6RrXBQQLVFkjpYpequAZFV3HRzBZ61m7Qj2eMmB81fkJXCmddKGTLvSgixE839RYDrQbV8geJtNt5BJhdi5ApeuidG3bxrdN4AhoPDMymlbw2FEjbOujb8gInqGddFnAF1c0drCeGj-FU_4vxhpK2d4__uYJ3Dp9NdXv35y824fbBIHS4Nd2AFv991V4hECnt4_zZL4EnuTyFQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Cavity+magnomechanics%3A+from+classical+to+quantum&rft.jtitle=New+journal+of+physics&rft.au=Zuo%2C+Xuan&rft.au=Fan%2C+Zhi-Yuan&rft.au=Qian%2C+Hang&rft.au=Ding%2C+Ming-Song&rft.date=2024-03-01&rft.pub=IOP+Publishing&rft.eissn=1367-2630&rft.volume=26&rft.issue=3&rft_id=info:doi/10.1088%2F1367-2630%2Fad327c&rft.externalDocID=njpad327c |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1367-2630&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1367-2630&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1367-2630&client=summon |