Skeleton-based Human Action Recognition via Large-kernel Attention Graph Convolutional Network
The skeleton-based human action recognition has broad application prospects in the field of virtual reality, as skeleton data is more resistant to data noise such as background interference and camera angle changes. Notably, recent works treat the human skeleton as a non-grid representation, e.g., s...
Saved in:
Published in | IEEE transactions on visualization and computer graphics Vol. 29; no. 5; pp. 2575 - 2585 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
United States
IEEE
01.05.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The skeleton-based human action recognition has broad application prospects in the field of virtual reality, as skeleton data is more resistant to data noise such as background interference and camera angle changes. Notably, recent works treat the human skeleton as a non-grid representation, e.g., skeleton graph, then learns the spatio-temporal pattern via graph convolution operators. Still, the stacked graph convolution plays a marginal role in modeling long-range dependences that may contain crucial action semantic cues. In this work, we introduce a skeleton large kernel attention operator (SLKA), which can enlarge the receptive field and improve channel adaptability without increasing too much computational burden. Then a spatiotemporal SLKA module (ST-SLKA) is integrated, which can aggregate long-range spatial features and learn long-distance temporal correlations. Further, we have designed a novel skeleton-based action recognition network architecture called the spatiotemporal large-kernel attention graph convolution network (LKA-GCN). In addition, large-movement frames may carry significant action information. This work proposes a joint movement modeling strategy (JMM) to focus on valuable temporal interactions. Ultimately, on the NTU-RGBD 60, NTU-RGBD 120 and Kinetics-Skeleton 400 action datasets, the performance of our LKA-GCN has achieved a state-of-the-art level. |
---|---|
AbstractList | The skeleton-based human action recognition has broad application prospects in the field of virtual reality, as skeleton data is more resistant to data noise such as background interference and camera angle changes. Notably, recent works treat the human skeleton as a non-grid representation, e.g., skeleton graph, then learns the spatio-temporal pattern via graph convolution operators. Still, the stacked graph convolution plays a marginal role in modeling long-range dependences that may contain crucial action semantic cues. In this work, we introduce a skeleton large kernel attention operator (SLKA), which can enlarge the receptive field and improve channel adaptability without increasing too much computational burden. Then a spatiotemporal SLKA module (ST-SLKA) is integrated, which can aggregate long-range spatial features and learn long-distance temporal correlations. Further, we have designed a novel skeleton-based action recognition network architecture called the spatiotemporal large-kernel attention graph convolution network (LKA-GCN). In addition, large-movement frames may carry significant action information. This work proposes a joint movement modeling strategy (JMM) to focus on valuable temporal interactions. Ultimately, on the NTU-RGBD 60, NTU-RGBD 120 and Kinetics-Skeleton 400 action datasets, the performance of our LKA-GCN has achieved a state-of-the-art level. The skeleton-based human action recognition has broad application prospects in the field of virtual reality, as skeleton data is more resistant to data noise such as background interference and camera angle changes. Notably, recent works treat the human skeleton as a non-grid representation, e.g., skeleton graph, then learns the spatio-temporal pattern via graph convolution operators. Still, the stacked graph convolution plays a marginal role in modeling long-range dependences that may contain crucial action semantic cues. In this work, we introduce a skeleton large kernel attention operator (SLKA), which can enlarge the receptive field and improve channel adaptability without increasing too much computational burden. Then a spatiotemporal SLKA module (ST-SLKA) is integrated, which can aggregate long-range spatial features and learn long-distance temporal correlations. Further, we have designed a novel skeleton-based action recognition network architecture called the spatiotemporal large-kernel attention graph convolution network (LKA-GCN). In addition, large-movement frames may carry significant action information. This work proposes a joint movement modeling strategy (JMM) to focus on valuable temporal interactions. Ultimately, on the NTU-RGBD 60, NTU-RGBD 120 and Kinetics-Skeleton 400 action datasets, the performance of our LKA-GCN has achieved a state-of-the-art level.The skeleton-based human action recognition has broad application prospects in the field of virtual reality, as skeleton data is more resistant to data noise such as background interference and camera angle changes. Notably, recent works treat the human skeleton as a non-grid representation, e.g., skeleton graph, then learns the spatio-temporal pattern via graph convolution operators. Still, the stacked graph convolution plays a marginal role in modeling long-range dependences that may contain crucial action semantic cues. In this work, we introduce a skeleton large kernel attention operator (SLKA), which can enlarge the receptive field and improve channel adaptability without increasing too much computational burden. Then a spatiotemporal SLKA module (ST-SLKA) is integrated, which can aggregate long-range spatial features and learn long-distance temporal correlations. Further, we have designed a novel skeleton-based action recognition network architecture called the spatiotemporal large-kernel attention graph convolution network (LKA-GCN). In addition, large-movement frames may carry significant action information. This work proposes a joint movement modeling strategy (JMM) to focus on valuable temporal interactions. Ultimately, on the NTU-RGBD 60, NTU-RGBD 120 and Kinetics-Skeleton 400 action datasets, the performance of our LKA-GCN has achieved a state-of-the-art level. |
Author | He, Kangjian Zhang, Hao Li, Yanqiu Liu, Yanan Xu, Dan |
Author_xml | – sequence: 1 givenname: Yanan surname: Liu fullname: Liu, Yanan email: 731696785@qq.com organization: School of Information Science and Engineering, Yunnan University, Kunming, China – sequence: 2 givenname: Hao surname: Zhang fullname: Zhang, Hao organization: School of Information Science and Engineering, Yunnan University, Kunming, China – sequence: 3 givenname: Yanqiu surname: Li fullname: Li, Yanqiu organization: School of Information Science and Engineering, Yunnan University, Kunming, China – sequence: 4 givenname: Kangjian surname: He fullname: He, Kangjian organization: School of Information Science and Engineering, Yunnan University, Kunming, China – sequence: 5 givenname: Dan orcidid: 0000-0003-4602-3550 surname: Xu fullname: Xu, Dan email: danxu@ynu.edu.cn organization: School of Information Science and Engineering, Yunnan University, Kunming, China |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/37027698$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kV-L1DAUxYOsuH_0AwgiBV986ZibpEn6OAw6KwwKuvpoSNPbtTudZEzSFb-97cwsyD74lEPyO4d7cy7JmQ8eCXkJdAFA63c331frBaOMLzgTiqrqCbmAWkBJKyrPJk2VKplk8pxcpnRHKQih62fknCvKlKz1BfnxdYsD5uDLxiZsi-txZ32xdLkPvviCLtz6_qDve1tsbLzFcovR41Asc0Z_eFpHu_9ZrIK_D8M439ih-IT5d4jb5-RpZ4eEL07nFfn24f3N6rrcfF5_XC03pRMgc6klh8ZRWmkFrZUUmkq2jYVOduA6WUkrXau1lq7puoYzrazgGmTrwKJoOn5F3h5z9zH8GjFls-uTw2GwHsOYDFP1FE0V8Al98wi9C2OcZj5QDEDVYqZen6ix2WFr9rHf2fjHPPzcBKgj4GJIKWJnXJ_tvH2Oth8MUDN3ZOaOzNyROXU0OeGR8yH8f55XR0-PiP_wVNSKVfwvogOcXw |
CODEN | ITVGEA |
CitedBy_id | crossref_primary_10_1007_s11042_024_18864_y crossref_primary_10_1016_j_imavis_2024_104919 crossref_primary_10_1109_TCSVT_2024_3358836 crossref_primary_10_1007_s00371_024_03601_1 crossref_primary_10_1109_JSEN_2024_3491183 crossref_primary_10_1007_s10489_024_05544_5 crossref_primary_10_1016_j_imavis_2024_105277 crossref_primary_10_1016_j_neucom_2024_128426 crossref_primary_10_1007_s13735_024_00341_9 crossref_primary_10_1016_j_asoc_2025_112797 crossref_primary_10_1109_TASE_2024_3431128 crossref_primary_10_1109_TCE_2024_3384974 crossref_primary_10_1002_aisy_202300266 crossref_primary_10_1587_transinf_2023EDP7223 crossref_primary_10_3390_app15010198 crossref_primary_10_1002_est2_70060 crossref_primary_10_1109_TIP_2024_3391913 crossref_primary_10_1007_s11760_024_03805_x crossref_primary_10_1049_ipr2_12868 crossref_primary_10_1109_ACCESS_2024_3452553 crossref_primary_10_3390_s24216817 crossref_primary_10_1109_TCSVT_2024_3386553 crossref_primary_10_1016_j_ins_2024_121832 crossref_primary_10_1109_ACCESS_2023_3263155 crossref_primary_10_1109_TCSVT_2024_3491133 crossref_primary_10_1080_00207543_2024_2448604 crossref_primary_10_1002_cav_2244 crossref_primary_10_1016_j_jksuci_2024_102072 crossref_primary_10_1007_s10489_023_05173_4 crossref_primary_10_1016_j_chb_2024_108482 crossref_primary_10_1016_j_knosys_2024_112868 crossref_primary_10_1080_1206212X_2024_2427287 crossref_primary_10_1515_nleng_2024_0071 crossref_primary_10_1007_s10044_024_01319_3 crossref_primary_10_1016_j_patcog_2024_110427 crossref_primary_10_1109_JSEN_2023_3306819 crossref_primary_10_1038_s41598_024_65850_3 crossref_primary_10_1109_ACCESS_2024_3525185 crossref_primary_10_2478_amns_2024_2297 crossref_primary_10_3390_s24082567 crossref_primary_10_1016_j_neunet_2024_107114 crossref_primary_10_1007_s00530_024_01358_0 |
Cites_doi | 10.1109/cvpr.2019.01230 10.1109/CVPR52688.2022.01165 10.1109/CVPR.2017.387 10.2307/1269835 10.1007/s11263-012-0550-7 10.1109/CVPR.2018.00230 10.48550/arXiv.1512.03385 10.1109/cvpr42600.2020.00026 10.1155/2021/3495203 10.1109/ICME.2017.8019438 10.1109/TPAMI.2019.2929257 10.1109/ICPR.2014.772 10.1109/tpami.2019.2896631 10.1609/aaai.v34i04.5747 10.1016/j.patcog.2021.107921 10.1007/978-3-030-68796-0_50 10.1109/tip.2021.3129117 10.1609/aaai.v31i1.11231 10.1016/j.knosys.2018.05.029 10.1109/cvpr.2019.00132 10.1109/cvpr.2018.00558 10.1109/iccv.2017.115 10.1109/tpami.2019.2916873 10.1109/CVPR.2011.5995488 10.1145/3306214.3338550 10.1109/cvpr52688.2022.00298 10.1007/s41095-023-0364-2 10.1109/CVPR.2017.486 10.1109/cvpr.2019.00810 10.1007/s00779-016-0918-8 10.1007/978-3-030-69541-5_3 10.1016/j.neucom.2021.02.001 10.1109/ICCV48922.2021.00986 10.1109/cvpr.2016.115 10.1109/icmew.2017.8026281 10.1145/3343031.3351170 10.1007/978-3-642-33709-3_62 10.1109/cvpr52688.2022.01166 10.1609/aaai.v32i1.12328 10.1109/CVPR42600.2020.00059 10.1109/cvpr42600.2020.00022 10.1109/ICME.2017.8019545 10.1109/tpami.2021.3053765 10.1109/CVPR.2017.189 10.24963/ijcai.2018/227 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023 |
DBID | 97E RIA RIE AAYXX CITATION NPM 7SC 7SP 8FD JQ2 L7M L~C L~D 7X8 |
DOI | 10.1109/TVCG.2023.3247075 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE/IET Electronic Library CrossRef PubMed Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional MEDLINE - Academic |
DatabaseTitleList | PubMed MEDLINE - Academic Technology Research Database |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1941-0506 |
EndPage | 2585 |
ExternalDocumentID | 37027698 10_1109_TVCG_2023_3247075 10049725 |
Genre | orig-research Journal Article |
GrantInformation_xml | – fundername: Science Research Fund Project of Yunnan Provincial Department of Education grantid: 2021Y027 – fundername: Yunnan Province Ten Thousand Talents Program and Yunling Scholars Special grantid: YNWR-YLXZ-2018-022 – fundername: Yunnan Provincial Science and Technology Department-Yunnan University grantid: 2019fy003012 – fundername: provincial major science and technology special plan grantid: 202202AD080003 – fundername: National Natural Science Foundation of China grantid: 62162068; 61761049; 62202416 funderid: 10.13039/501100001809 – fundername: Graduate Research and Innovation Foundation of Yunnan University grantid: KC-22221726 |
GroupedDBID | --- -~X .DC 0R~ 29I 4.4 53G 5GY 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACIWK AENEX AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD F5P HZ~ H~9 IEDLZ IFIPE IFJZH IPLJI JAVBF LAI M43 O9- OCL P2P PQQKQ RIA RIE RNI RNS RZB TN5 VH1 AAYOK AAYXX CITATION RIG NPM 7SC 7SP 8FD JQ2 L7M L~C L~D 7X8 |
ID | FETCH-LOGICAL-c416t-8631bc005871da601b56dba1f6f1cf656a6cd8886cbffb3287a43816dc1ae4bf3 |
IEDL.DBID | RIE |
ISSN | 1077-2626 1941-0506 |
IngestDate | Fri Jul 11 02:45:28 EDT 2025 Sun Jun 29 14:16:16 EDT 2025 Sun Apr 06 01:21:17 EDT 2025 Tue Jul 01 02:12:17 EDT 2025 Thu Apr 24 23:10:43 EDT 2025 Wed Aug 27 02:18:07 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c416t-8631bc005871da601b56dba1f6f1cf656a6cd8886cbffb3287a43816dc1ae4bf3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0003-4602-3550 |
PMID | 37027698 |
PQID | 2792117943 |
PQPubID | 75741 |
PageCount | 11 |
ParticipantIDs | proquest_journals_2792117943 ieee_primary_10049725 proquest_miscellaneous_2798710713 pubmed_primary_37027698 crossref_primary_10_1109_TVCG_2023_3247075 crossref_citationtrail_10_1109_TVCG_2023_3247075 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-05-01 |
PublicationDateYYYYMMDD | 2023-05-01 |
PublicationDate_xml | – month: 05 year: 2023 text: 2023-05-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: New York |
PublicationTitle | IEEE transactions on visualization and computer graphics |
PublicationTitleAbbrev | TVCG |
PublicationTitleAlternate | IEEE Trans Vis Comput Graph |
PublicationYear | 2023 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 ref15 ref52 ref11 ref10 ref17 ref16 ref19 ref18 Simonyan (ref37) 2014 ref51 ref50 Kay (ref14) 2017 ref46 ref45 ref48 ref47 ref42 ref41 ref44 ref49 ref8 ref7 ref9 ref4 ref3 ref6 ref5 ref35 ref34 Wang (ref43) ref36 ref31 ref30 ref33 ref2 ref1 ref39 ref38 Shi (ref32) 2018 ref24 ref23 ref26 ref25 ref20 ref22 ref21 Rao (ref29) 2021 ref28 ref27 Vaswani (ref40) 2017 Howard (ref12) 2017 |
References_xml | – ident: ref34 doi: 10.1109/cvpr.2019.01230 – year: 2017 ident: ref40 article-title: Attention is all you need publication-title: neural information processing systems – ident: ref52 doi: 10.1109/CVPR52688.2022.01165 – ident: ref41 doi: 10.1109/CVPR.2017.387 – ident: ref24 doi: 10.2307/1269835 – ident: ref7 doi: 10.1007/s11263-012-0550-7 – ident: ref26 doi: 10.1109/CVPR.2018.00230 – ident: ref11 doi: 10.48550/arXiv.1512.03385 – ident: ref3 doi: 10.1109/cvpr42600.2020.00026 – ident: ref25 doi: 10.1155/2021/3495203 – ident: ref20 doi: 10.1109/ICME.2017.8019438 – ident: ref1 doi: 10.1109/TPAMI.2019.2929257 – ident: ref8 doi: 10.1109/ICPR.2014.772 – ident: ref51 doi: 10.1109/tpami.2019.2896631 – ident: ref2 doi: 10.1609/aaai.v34i04.5747 – ident: ref46 doi: 10.1016/j.patcog.2021.107921 – ident: ref28 doi: 10.1007/978-3-030-68796-0_50 – ident: ref49 doi: 10.1109/tip.2021.3129117 – ident: ref38 doi: 10.1609/aaai.v31i1.11231 – ident: ref44 doi: 10.1016/j.knosys.2018.05.029 – ident: ref36 doi: 10.1109/cvpr.2019.00132 – year: 2021 ident: ref29 article-title: Global filter networks for image classification publication-title: arXiv: Computer Vision and Pattern Recognition – ident: ref39 doi: 10.1109/cvpr.2018.00558 – ident: ref16 doi: 10.1109/iccv.2017.115 – ident: ref19 doi: 10.1109/tpami.2019.2916873 – ident: ref43 article-title: Actionclip: A new paradigm for video action recognition publication-title: arXiv: Computer Vision and Pattern Recognition, 2021 – ident: ref50 doi: 10.1109/CVPR.2011.5995488 – ident: ref30 doi: 10.1145/3306214.3338550 – ident: ref6 doi: 10.1109/cvpr52688.2022.00298 – ident: ref10 doi: 10.1007/s41095-023-0364-2 – ident: ref15 doi: 10.1109/CVPR.2017.486 – ident: ref33 doi: 10.1109/cvpr.2019.00810 – year: 2017 ident: ref12 article-title: Mobilenets: Efficient convolutional neural networks for mobile vision applications publication-title: arXiv: Computer Vision and Pattern Recognition – ident: ref21 doi: 10.1007/s00779-016-0918-8 – ident: ref35 doi: 10.1007/978-3-030-69541-5_3 – ident: ref13 doi: 10.1016/j.neucom.2021.02.001 – year: 2018 ident: ref32 article-title: Adaptive spectral graph convolutional networks for skeleton-based action recognition publication-title: CoRR, abs/1805.07694 – ident: ref22 doi: 10.1109/ICCV48922.2021.00986 – ident: ref31 doi: 10.1109/cvpr.2016.115 – year: 2017 ident: ref14 article-title: The kinetics human action video dataset publication-title: CoRR – ident: ref17 doi: 10.1109/icmew.2017.8026281 – ident: ref9 doi: 10.1145/3343031.3351170 – ident: ref42 doi: 10.1007/978-3-642-33709-3_62 – ident: ref5 doi: 10.1109/cvpr52688.2022.01166 – ident: ref48 doi: 10.1609/aaai.v32i1.12328 – ident: ref45 doi: 10.1109/CVPR42600.2020.00059 – ident: ref23 doi: 10.1109/cvpr42600.2020.00022 – ident: ref4 doi: 10.1109/ICME.2017.8019545 – ident: ref18 doi: 10.1109/tpami.2021.3053765 – ident: ref27 doi: 10.1109/CVPR.2017.189 – year: 2014 ident: ref37 article-title: Very deep convolutional networks for large-scale image recognition publication-title: computer vision and pattern recognition – ident: ref47 doi: 10.24963/ijcai.2018/227 |
SSID | ssj0014489 |
Score | 2.6075108 |
Snippet | The skeleton-based human action recognition has broad application prospects in the field of virtual reality, as skeleton data is more resistant to data noise... |
SourceID | proquest pubmed crossref ieee |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 2575 |
SubjectTerms | action recognition Adaptation models Artificial neural networks Background noise Computer architecture Convolution graph convolution Graphical representations Human activity recognition human skeleton Joints Kernel Kernels large kernels Modelling Skeleton Task analysis Topology Virtual reality |
Title | Skeleton-based Human Action Recognition via Large-kernel Attention Graph Convolutional Network |
URI | https://ieeexplore.ieee.org/document/10049725 https://www.ncbi.nlm.nih.gov/pubmed/37027698 https://www.proquest.com/docview/2792117943 https://www.proquest.com/docview/2798710713 |
Volume | 29 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NT9tAEB0RTnAoLaStgSIjcaq0jh3HdnxEUROEIIc2QTnVmv2SqlROBQ4Hfj0zu04UVaLqbSWvP2etebPz5g3AVWbJi8tCiSxGKwaqGAhUKEUaxzbOrM5T13nufprfzAe3i2zRFqu7WhhjjCOfmYiHLpevV2rNW2U9Vjcri37WgQ5Fbr5Ya5syoDij9ATDQvQJprcpzCQue7OH0STiPuERwYciZk7hjhNyXVXeBpjO0YyPYLp5RM8vWUbrRkbq5S_1xv9-h_fwroWc4bVfIx9gz9THcLgjRHgCP38syf1wN2H2ajp0W_vhtat5CL9vOEY0fv6F4R2Tx8XSPNaGrto0njAZTlj6Ohyt6ud2NdM9p55k3oX5-NtsdCPazgtCEUBrxJBMJBW3HCwSjRSzySzXEhOb20RZgoCYK02xc66ktTKlqAtZKizXKkEzkDb9CPv1qjafIdQEMF2uE8kRImLZR5UlmlBBWgwRswDijSkq1cqSc3eM35ULT-KyYutVbL2qtV4AX7en_PGaHP-a3GUj7Ez03z-A843Bq_a3fapYTdFr5gVwuT1MPxxnUbA2q7WbQ1-Fg_sAPvmFsr14WlCUn5fD0zduegYH_GyeMHkO-83j2nwhUNPIC7eYXwEc8fG_ |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NT9tAEB1Remg50NJS6hZaV-qp0ho7ztrxEUVAaEMONFScas1-SVWQg6jDgV_fmV0nipCouK3k9eesNW923rwB-CodeXFVaiFTdKKvy75AjUrkaepS6UyR-85z55NidNn_fiWvumJ1XwtjrfXkM5vw0OfyzVwveKvskNXNqrInn8FzcvyyF8q1VkkDijSqQDEsRY-AepfEzNLqcPpreJpwp_CEAESZMqtwzQ35viqPQ0zvak5ewWT5kIFhMksWrUr0_QP9xie_xWvY7kBnfBRWyQ5s2OYNbK1JEb6F3z9n5IC4nzD7NRP7zf34yFc9xBdLlhGN7_5gPGb6uJjZ28bSVds2UCbjUxa_jofz5q5bz3TPSaCZ78LlyfF0OBJd7wWhCaK1YkBGUpqbDpaZQYralCyMwswVLtOOQCAW2lD0XGjlnMop7kIWCyuMztD2lcvfwWYzb-x7iA1BTJ_tRHKFiFj1UMvMEC7IywGijCBdmqLWnTA598e4rn2AklY1W69m69Wd9SL4tjrlJqhy_G_yLhthbWL4_hHsLw1edz_u35r1FINqXgRfVofpl-M8CjZ2vvBz6KtweB_BXlgoq4vnJcX5RTX48MhNP8OL0fR8XI_PJj8-wkt-zkCf3IfN9nZhDwjitOqTX9j_AOGC9Qk |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Skeleton-based+Human+Action+Recognition+via+Large-kernel+Attention+Graph+Convolutional+Network&rft.jtitle=IEEE+transactions+on+visualization+and+computer+graphics&rft.au=Liu%2C+Yanan&rft.au=Zhang%2C+Hao&rft.au=Li%2C+Yanqiu&rft.au=He%2C+Kangjian&rft.date=2023-05-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=1077-2626&rft.eissn=1941-0506&rft.volume=29&rft.issue=5&rft.spage=2575&rft_id=info:doi/10.1109%2FTVCG.2023.3247075&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1077-2626&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1077-2626&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1077-2626&client=summon |