An Evolution and Eruption of the Coronal Magnetic Field through a Data-driven MHD Simulation
We present a newly developed data-driven magnetohydrodynamics (MHD) simulation code under a zero- β approximation based on a method proposed by Hayashi et al. 2018 and 2019. Although many data-driven MHD simulations have been developed and conducted, there are not many studies on how accurately thos...
Saved in:
Published in | The Astrophysical journal Vol. 946; no. 1; pp. 46 - 72 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Philadelphia
The American Astronomical Society
01.03.2023
IOP Publishing |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | We present a newly developed data-driven magnetohydrodynamics (MHD) simulation code under a zero-
β
approximation based on a method proposed by Hayashi et al. 2018 and 2019. Although many data-driven MHD simulations have been developed and conducted, there are not many studies on how accurately those simulations can reproduce the phenomena observed in the solar corona. In this study, we investigated the performance of our data-driven simulation quantitatively using ground-truth data. The ground-truth data was produced by an MHD simulation in which the magnetic field is twisted by the sunspot motions. A magnetic flux rope (MFR) is created by the cancellation of the magnetic flux at the polarity inversion line due to the converging flow on the sunspot, which eventually leads to the eruption of the MFR. We attempted to reproduce these dynamics using the data-driven MHD simulation. The coronal magnetic fields are driven by the electric fields, which are obtained from a time series of the photospheric magnetic field that is extracted from the ground-truth data, on the surface. As a result, the data-driven simulation could capture the subsequent MHD processes, the twisted coronal magnetic field and formation of the MFR, and also its eruption. We report these results and compare them with the ground-truth data, and discuss how to improve the accuracy and optimize the numerical method. |
---|---|
AbstractList | We present a newly developed data-driven magnetohydrodynamics (MHD) simulation code under a zero-β approximation based on a method proposed by Hayashi et al. 2018 and 2019. Although many data-driven MHD simulations have been developed and conducted, there are not many studies on how accurately those simulations can reproduce the phenomena observed in the solar corona. In this study, we investigated the performance of our data-driven simulation quantitatively using ground-truth data. The ground-truth data was produced by an MHD simulation in which the magnetic field is twisted by the sunspot motions. A magnetic flux rope (MFR) is created by the cancellation of the magnetic flux at the polarity inversion line due to the converging flow on the sunspot, which eventually leads to the eruption of the MFR. We attempted to reproduce these dynamics using the data-driven MHD simulation. The coronal magnetic fields are driven by the electric fields, which are obtained from a time series of the photospheric magnetic field that is extracted from the ground-truth data, on the surface. As a result, the data-driven simulation could capture the subsequent MHD processes, the twisted coronal magnetic field and formation of the MFR, and also its eruption. We report these results and compare them with the ground-truth data, and discuss how to improve the accuracy and optimize the numerical method. We present a newly developed data-driven magnetohydrodynamics (MHD) simulation code under a zero- β approximation based on a method proposed by Hayashi et al. 2018 and 2019. Although many data-driven MHD simulations have been developed and conducted, there are not many studies on how accurately those simulations can reproduce the phenomena observed in the solar corona. In this study, we investigated the performance of our data-driven simulation quantitatively using ground-truth data. The ground-truth data was produced by an MHD simulation in which the magnetic field is twisted by the sunspot motions. A magnetic flux rope (MFR) is created by the cancellation of the magnetic flux at the polarity inversion line due to the converging flow on the sunspot, which eventually leads to the eruption of the MFR. We attempted to reproduce these dynamics using the data-driven MHD simulation. The coronal magnetic fields are driven by the electric fields, which are obtained from a time series of the photospheric magnetic field that is extracted from the ground-truth data, on the surface. As a result, the data-driven simulation could capture the subsequent MHD processes, the twisted coronal magnetic field and formation of the MFR, and also its eruption. We report these results and compare them with the ground-truth data, and discuss how to improve the accuracy and optimize the numerical method. |
Author | Inoue, Satoshi Miyoshi, Takahiro Hayashi, Keiji |
Author_xml | – sequence: 1 givenname: Satoshi orcidid: 0000-0001-5121-5122 surname: Inoue fullname: Inoue, Satoshi organization: New Jersey Institute of Technology Center for Solar-Terrestrial Research, University Heights, Newark, NJ 07102-1982, USA – sequence: 2 givenname: Keiji orcidid: 0000-0001-9046-6688 surname: Hayashi fullname: Hayashi, Keiji organization: College of Science, George Mason University , Fairfax, VA 22030, USA – sequence: 3 givenname: Takahiro orcidid: 0000-0002-4675-4460 surname: Miyoshi fullname: Miyoshi, Takahiro organization: Hiroshima University Graduate School of Advanced Science and Engineering, 1-3-1 Kagamiyama, Higashihiroshima 739-8526, Japan |
BookMark | eNp9kc9LwzAUx4MoOH_cPQa8WpcsaZoex5xOUDzowYMQXpO3mdE1M20F_3vbVRQEPYX38v188_J9R2S_ChUScsbZpdAyG_NU6ESKNBuDzRFgj4y-W_tkxBiTiRLZ8yE5qut1X07yfERephWdv4eybXyoKFSOzmO73RVhSZtXpLMQQwUlvYdVhY239Npj6bqrGNrVKwV6BQ0kLvp3rOj94oo--k1bQm9xQg6WUNZ4-nUek6fr-dNskdw93NzOpneJlVw1SeacSieFRpln0inMlRBpIS2Iwuau4A4KnQK3TAsOWFjk1ikpAFPFO0Yck9vB1gVYm230G4gfJoA3u0aIKwOxm7xEY0HaQjGOSoLkmIHOOeguP0CFnEPndT54bWN4a7FuzDq0sft_bSZZPmFcaJ12KjaobAx1HXH5_Spnpl-H6bM3ffZmWEeHqF-I9c0upSaCL_8DLwbQh-3PMH_KPwExgKA1 |
CitedBy_id | crossref_primary_10_3847_1538_4365_ad0e0c crossref_primary_10_3847_1538_4357_ad8089 crossref_primary_10_3847_2041_8213_acc6ce crossref_primary_10_3847_1538_4357_ad088d crossref_primary_10_3847_1538_4357_acc8c5 crossref_primary_10_3390_physics5030058 |
Cites_doi | 10.3847/1538-4357/aa750e 10.3847/1538-4357/ab6b1f 10.1038/s41467-017-02616-8 10.1016/j.xinn.2022.100236 10.1007/s11207-017-1214-0 10.1086/175188 10.3847/1538-4357/aadd08 10.1063/5.0035086 10.3847/1538-4357/aaacd8 10.3847/1538-4357/abe414 10.1088/0004-637X/788/2/182 10.1007/s11207-021-01789-2 10.1088/0305-4470/39/26/005 10.3847/2041-8213/aaffcf 10.3389/fphy.2021.646750 10.1088/0004-637X/715/1/242 10.1117/12.586032 10.3847/1538-4357/ab9816 10.1088/0004-637X/757/2/147 10.3847/1538-4357/ab8ea9 10.1088/0004-637X/750/1/15 10.1007/BF00170988 10.3847/1538-4365/ab8303 10.1117/12.925494 10.1088/0004-637X/780/1/55 10.1088/0004-637X/748/2/77 10.3847/1538-4357/aa6578 10.3847/1538-4357/abb8d2 10.1086/312444 10.1086/589434 10.1088/1367-2630/9/8/301 10.1051/0004-6361/201935225 10.1088/0004-637X/780/2/130 10.1088/0004-637X/747/1/65 10.3847/1538-4357/ab6bc8 10.3847/1538-4357/aaebfc 10.3847/1538-4357/aad181 10.1086/527413 10.1086/345501 10.3847/1538-4357/abcfbb 10.3847/2041-8213/aafabf 10.1007/s41116-019-0019-7 10.1007/s11207-011-9841-3 10.1051/0004-6361/202038925 10.1007/s11207-019-1430-x 10.1186/s40645-016-0084-7 10.1088/0004-637X/738/2/161 10.1038/s41550-017-0085 10.1038/ncomms11522 10.3847/1538-4357/aa917a 10.1007/s11207-014-0529-3 10.3847/1538-4357/ab5582 10.1006/jcph.2001.6961 10.12942/lrsp-2011-6 10.1088/0004-637X/795/1/17 |
ContentType | Journal Article |
Copyright | 2023. The Author(s). Published by the American Astronomical Society. 2023. The Author(s). Published by the American Astronomical Society. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2023. The Author(s). Published by the American Astronomical Society. – notice: 2023. The Author(s). Published by the American Astronomical Society. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | O3W TSCCA AAYXX CITATION 7TG 8FD H8D KL. L7M DOA |
DOI | 10.3847/1538-4357/ac9eaa |
DatabaseName | Institute of Physics Open Access Journal Titles IOPscience (Open Access) CrossRef Meteorological & Geoastrophysical Abstracts Technology Research Database Aerospace Database Meteorological & Geoastrophysical Abstracts - Academic Advanced Technologies Database with Aerospace DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Aerospace Database Meteorological & Geoastrophysical Abstracts Technology Research Database Advanced Technologies Database with Aerospace Meteorological & Geoastrophysical Abstracts - Academic |
DatabaseTitleList | Aerospace Database CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: O3W name: Institute of Physics Open Access Journal Titles url: http://iopscience.iop.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Astronomy & Astrophysics Physics |
EISSN | 1538-4357 |
ExternalDocumentID | oai_doaj_org_article_ca4cb601e64a41e7a891a8847ae6e11a 10_3847_1538_4357_ac9eaa apjac9eaa |
GrantInformation_xml | – fundername: Satoshi Inoue grantid: AGS-2145253 |
GroupedDBID | -DZ -~X 123 1JI 23N 2FS 4.4 6J9 85S AAFWJ AAGCD AAJIO ABHWH ACBEA ACGFS ACHIP ACNCT ADACN AEFHF AENEX AFPKN AKPSB ALMA_UNASSIGNED_HOLDINGS ASPBG ATQHT AVWKF AZFZN CJUJL CRLBU CS3 EBS F5P FRP GROUPED_DOAJ IJHAN IOP KOT M~E N5L O3W O43 OK1 PJBAE RIN RNS ROL SJN SY9 T37 TN5 TR2 TSCCA WH7 XSW 2WC AAYXX CITATION 7TG 8FD AEINN H8D KL. L7M |
ID | FETCH-LOGICAL-c416t-7dd652b8e4974d6e96335b4ca3bc9db1dab85a1c0831aebce1cd643ae561e493 |
IEDL.DBID | IOP |
ISSN | 0004-637X |
IngestDate | Wed Aug 27 01:29:51 EDT 2025 Wed Aug 13 11:15:29 EDT 2025 Tue Jul 01 03:39:31 EDT 2025 Thu Apr 24 23:09:04 EDT 2025 Wed Aug 21 03:34:55 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | Original content from this work may be used under the terms of the Creative Commons Attribution 4.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c416t-7dd652b8e4974d6e96335b4ca3bc9db1dab85a1c0831aebce1cd643ae561e493 |
Notes | AAS36245 The Sun and the Heliosphere ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-4675-4460 0000-0001-5121-5122 0000-0001-9046-6688 |
OpenAccessLink | https://proxy.k.utb.cz/login?url=https://iopscience.iop.org/article/10.3847/1538-4357/ac9eaa |
PQID | 2792013885 |
PQPubID | 4562441 |
PageCount | 27 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_ca4cb601e64a41e7a891a8847ae6e11a crossref_citationtrail_10_3847_1538_4357_ac9eaa proquest_journals_2792013885 crossref_primary_10_3847_1538_4357_ac9eaa iop_journals_10_3847_1538_4357_ac9eaa |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-03-01 |
PublicationDateYYYYMMDD | 2023-03-01 |
PublicationDate_xml | – month: 03 year: 2023 text: 2023-03-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Philadelphia |
PublicationPlace_xml | – name: Philadelphia |
PublicationTitle | The Astrophysical journal |
PublicationTitleAbbrev | APJ |
PublicationTitleAlternate | Astrophys. J |
PublicationYear | 2023 |
Publisher | The American Astronomical Society IOP Publishing |
Publisher_xml | – name: The American Astronomical Society – name: IOP Publishing |
References | Clyne (apjac9eaabib7) 2005; 5669 Toriumi (apjac9eaabib51) 2019; 16 Lumme (apjac9eaabib34) 2017; 292 Hayashi (apjac9eaabib13) 2018; 855 Kaneko (apjac9eaabib26) 2021; 909 Schuck (apjac9eaabib47) 2008; 683 Liu (apjac9eaabib33) 2019; 626 Inoue (apjac9eaabib19) 2012; 747 Toriumi (apjac9eaabib50) 2020; 890 Pesnell (apjac9eaabib39) 2012; 275 Jiang (apjac9eaabib20) 2021; 9 Savcheva (apjac9eaabib45) 2012; 750 Kawabata (apjac9eaabib29) 2018; 869 Sakurai (apjac9eaabib44) 1982; 76 Shibata (apjac9eaabib48) 2011; 8 Kawabata (apjac9eaabib30) 2020b; 895 Amari (apjac9eaabib1) 2003; 585 Yamasaki (apjac9eaabib55) 2021; 908 Bobra (apjac9eaabib4) 2014; 289 Jiang (apjac9eaabib23) 2014; 780 Fisher (apjac9eaabib9) 2020; 248 Pomoell (apjac9eaabib40) 2019; 294 Jiang (apjac9eaabib25) 2017; 850 Kang (apjac9eaabib27) 2019; 887 Clyne (apjac9eaabib6) 2007; 9 Inoue (apjac9eaabib15) 2016; 3 Hayashi (apjac9eaabib14) 2019; 871 Muhamad (apjac9eaabib37) 2018; 863 Dedner (apjac9eaabib8) 2002; 175 Metcalf (apjac9eaabib35) 1995; 439 Price (apjac9eaabib42) 2020; 644 Rast (apjac9eaabib43) 2021; 296 Inoue (apjac9eaabib16) 2014; 788 Inoue (apjac9eaabib18) 2011; 738 Muhamad (apjac9eaabib36) 2017; 842 Jiang (apjac9eaabib24) 2016; 7 Leake (apjac9eaabib32) 2017; 838 Jiang (apjac9eaabib22) 2018; 866 Kazachenko (apjac9eaabib31) 2014; 795 Inoue (apjac9eaabib17) 2018; 9 Cheung (apjac9eaabib5) 2012; 757 Berger (apjac9eaabib3) 2006; 39 Jiang (apjac9eaabib21) 2022; 3 Amari (apjac9eaabib2) 2000; 529 Prasad (apjac9eaabib41) 2020; 903 Woods (apjac9eaabib53) 2020; 890 Nayak (apjac9eaabib38) 2021; 28 Schrijver (apjac9eaabib46) 2008; 675 Wang (apjac9eaabib52) 2017; 1 Xia (apjac9eaabib54) 2014; 780 Sun (apjac9eaabib49) 2012; 748 Kawabata (apjac9eaabib28) 2020a; 898 Guo (apjac9eaabib12) 2019; 870 Goode (apjac9eaabib11) 2012; 8444 Fisher (apjac9eaabib10) 2010; 715 |
References_xml | – volume: 842 start-page: 86 year: 2017 ident: apjac9eaabib36 publication-title: ApJ doi: 10.3847/1538-4357/aa750e – volume: 890 start-page: 103 year: 2020 ident: apjac9eaabib50 publication-title: ApJ doi: 10.3847/1538-4357/ab6b1f – volume: 9 start-page: 174 year: 2018 ident: apjac9eaabib17 publication-title: NatCo doi: 10.1038/s41467-017-02616-8 – volume: 3 year: 2022 ident: apjac9eaabib21 publication-title: Innov doi: 10.1016/j.xinn.2022.100236 – volume: 292 start-page: 191 year: 2017 ident: apjac9eaabib34 publication-title: SoPh doi: 10.1007/s11207-017-1214-0 – volume: 439 start-page: 474 year: 1995 ident: apjac9eaabib35 publication-title: ApJ doi: 10.1086/175188 – volume: 866 start-page: 96 year: 2018 ident: apjac9eaabib22 publication-title: ApJ doi: 10.3847/1538-4357/aadd08 – volume: 28 year: 2021 ident: apjac9eaabib38 publication-title: PhPl doi: 10.1063/5.0035086 – volume: 855 start-page: 11 year: 2018 ident: apjac9eaabib13 publication-title: ApJ doi: 10.3847/1538-4357/aaacd8 – volume: 909 start-page: 155 year: 2021 ident: apjac9eaabib26 publication-title: ApJ doi: 10.3847/1538-4357/abe414 – volume: 788 start-page: 182 year: 2014 ident: apjac9eaabib16 publication-title: ApJ doi: 10.1088/0004-637X/788/2/182 – volume: 296 start-page: 70 year: 2021 ident: apjac9eaabib43 publication-title: SoPh doi: 10.1007/s11207-021-01789-2 – volume: 39 start-page: 8321 year: 2006 ident: apjac9eaabib3 publication-title: JPhA doi: 10.1088/0305-4470/39/26/005 – volume: 871 start-page: L28 year: 2019 ident: apjac9eaabib14 publication-title: ApJL doi: 10.3847/2041-8213/aaffcf – volume: 9 start-page: 224 year: 2021 ident: apjac9eaabib20 publication-title: FrP doi: 10.3389/fphy.2021.646750 – volume: 715 start-page: 242 year: 2010 ident: apjac9eaabib10 publication-title: ApJ doi: 10.1088/0004-637X/715/1/242 – volume: 5669 start-page: 284 year: 2005 ident: apjac9eaabib7 publication-title: Proc. SPIE doi: 10.1117/12.586032 – volume: 898 start-page: 32 year: 2020a ident: apjac9eaabib28 publication-title: ApJ doi: 10.3847/1538-4357/ab9816 – volume: 757 start-page: 147 year: 2012 ident: apjac9eaabib5 publication-title: ApJ doi: 10.1088/0004-637X/757/2/147 – volume: 895 start-page: 105 year: 2020b ident: apjac9eaabib30 publication-title: ApJ doi: 10.3847/1538-4357/ab8ea9 – volume: 750 start-page: 15 year: 2012 ident: apjac9eaabib45 publication-title: ApJ doi: 10.1088/0004-637X/750/1/15 – volume: 76 start-page: 301 year: 1982 ident: apjac9eaabib44 publication-title: SoPh doi: 10.1007/BF00170988 – volume: 248 start-page: 2 year: 2020 ident: apjac9eaabib9 publication-title: ApJS doi: 10.3847/1538-4365/ab8303 – volume: 8444 year: 2012 ident: apjac9eaabib11 publication-title: Proc. SPIE doi: 10.1117/12.925494 – volume: 780 start-page: 55 year: 2014 ident: apjac9eaabib23 publication-title: ApJ doi: 10.1088/0004-637X/780/1/55 – volume: 748 start-page: 77 year: 2012 ident: apjac9eaabib49 publication-title: ApJ doi: 10.1088/0004-637X/748/2/77 – volume: 838 start-page: 113 year: 2017 ident: apjac9eaabib32 publication-title: ApJ doi: 10.3847/1538-4357/aa6578 – volume: 903 start-page: 129 year: 2020 ident: apjac9eaabib41 publication-title: ApJ doi: 10.3847/1538-4357/abb8d2 – volume: 529 start-page: L49 year: 2000 ident: apjac9eaabib2 publication-title: ApJL doi: 10.1086/312444 – volume: 683 start-page: 1134 year: 2008 ident: apjac9eaabib47 publication-title: ApJ doi: 10.1086/589434 – volume: 9 start-page: 301 year: 2007 ident: apjac9eaabib6 publication-title: NJPh doi: 10.1088/1367-2630/9/8/301 – volume: 626 start-page: A91 year: 2019 ident: apjac9eaabib33 publication-title: A&A doi: 10.1051/0004-6361/201935225 – volume: 780 start-page: 130 year: 2014 ident: apjac9eaabib54 publication-title: ApJ doi: 10.1088/0004-637X/780/2/130 – volume: 747 start-page: 65 year: 2012 ident: apjac9eaabib19 publication-title: ApJ doi: 10.1088/0004-637X/747/1/65 – volume: 890 start-page: 84 year: 2020 ident: apjac9eaabib53 publication-title: ApJ doi: 10.3847/1538-4357/ab6bc8 – volume: 869 start-page: 99 year: 2018 ident: apjac9eaabib29 publication-title: ApJ doi: 10.3847/1538-4357/aaebfc – volume: 863 start-page: 162 year: 2018 ident: apjac9eaabib37 publication-title: ApJ doi: 10.3847/1538-4357/aad181 – volume: 675 start-page: 1637 year: 2008 ident: apjac9eaabib46 publication-title: ApJ doi: 10.1086/527413 – volume: 585 start-page: 1073 year: 2003 ident: apjac9eaabib1 publication-title: ApJ doi: 10.1086/345501 – volume: 908 start-page: 132 year: 2021 ident: apjac9eaabib55 publication-title: ApJ doi: 10.3847/1538-4357/abcfbb – volume: 870 start-page: L21 year: 2019 ident: apjac9eaabib12 publication-title: ApJL doi: 10.3847/2041-8213/aafabf – volume: 16 start-page: 3 year: 2019 ident: apjac9eaabib51 publication-title: LRSP doi: 10.1007/s41116-019-0019-7 – volume: 275 start-page: 3 year: 2012 ident: apjac9eaabib39 publication-title: SoPh doi: 10.1007/s11207-011-9841-3 – volume: 644 start-page: A28 year: 2020 ident: apjac9eaabib42 publication-title: A&A doi: 10.1051/0004-6361/202038925 – volume: 294 start-page: 41 year: 2019 ident: apjac9eaabib40 publication-title: SoPh doi: 10.1007/s11207-019-1430-x – volume: 3 start-page: 19 year: 2016 ident: apjac9eaabib15 publication-title: PEPS doi: 10.1186/s40645-016-0084-7 – volume: 738 start-page: 161 year: 2011 ident: apjac9eaabib18 publication-title: ApJ doi: 10.1088/0004-637X/738/2/161 – volume: 1 start-page: 0085 year: 2017 ident: apjac9eaabib52 publication-title: NatAs doi: 10.1038/s41550-017-0085 – volume: 7 start-page: 11522 year: 2016 ident: apjac9eaabib24 publication-title: NatCo doi: 10.1038/ncomms11522 – volume: 850 start-page: 8 year: 2017 ident: apjac9eaabib25 publication-title: ApJ doi: 10.3847/1538-4357/aa917a – volume: 289 start-page: 3549 year: 2014 ident: apjac9eaabib4 publication-title: SoPh doi: 10.1007/s11207-014-0529-3 – volume: 887 start-page: 263 year: 2019 ident: apjac9eaabib27 publication-title: ApJ doi: 10.3847/1538-4357/ab5582 – volume: 175 start-page: 645 year: 2002 ident: apjac9eaabib8 publication-title: JCoPh doi: 10.1006/jcph.2001.6961 – volume: 8 start-page: 6 year: 2011 ident: apjac9eaabib48 publication-title: LRSP doi: 10.12942/lrsp-2011-6 – volume: 795 start-page: 17 year: 2014 ident: apjac9eaabib31 publication-title: ApJ doi: 10.1088/0004-637X/795/1/17 |
SSID | ssj0004299 |
Score | 2.4532208 |
Snippet | We present a newly developed data-driven magnetohydrodynamics (MHD) simulation code under a zero-
β
approximation based on a method proposed by Hayashi et al.... We present a newly developed data-driven magnetohydrodynamics (MHD) simulation code under a zero-β approximation based on a method proposed by Hayashi et al.... We present a newly developed data-driven magnetohydrodynamics (MHD) simulation code under a zero- β approximation based on a method proposed by Hayashi et al.... |
SourceID | doaj proquest crossref iop |
SourceType | Open Website Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 46 |
SubjectTerms | Astrophysics Corona Coronal magnetic fields Electric fields Magnetic fields Magnetic flux Magnetohydrodynamical simulations Magnetohydrodynamics Numerical methods Photosphere Photospheric magnetic fields Simulation Solar active region magnetic fields Solar corona Solar coronal mass ejections Solar flares Solar magnetic field Sunspots |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LSwMxEA4iCF7EJ9YXOajgYemmm30dq7YUoSKo4EFYJsmsCLotbRX8985stj4Q9OJtWSa7YTKZ-SaPb4Q4tKqjMDdZEKZICQp2TADa6MC4EEMbQV5GfN95eJkMbvXFXXz3pdQXnwnz9MBecW0L2hrKGjDRoBWmkOUKMvKpgAkqVUMjinnzZGp-I5K8rN-UjEi0XU9rAgZpG2yO8D0I1Vz9FFoeR-MfDrmOMv1VsdLAQ9n13VoTC1iti-3ulBesR89v8ljWz349Yroulq7804a471ay99oYkoTKyd7kpfYHclRKgnnyjMkK6ONDeKj46qLs8-k12VTqkSDPYQaBm7D_k8PBubx-fG6Ke22Km37v5mwQNKUTAksIaxakziVxx2SoKV9wCdI0i2KjLUTG5s4oByaLQVmuMwZoLCrrCJsAEpyiNtGWWKxGFW4L6QBVmpXo0jzWZVgaU2JkS8pmIVYuDVuiPVdlYRtaca5u8VRQesHKL1j5BSu_8MpviZOPFmNPqfGL7CmPzocck2HXL8hEisZEir9MpCWOaGyLZnJOf_nZ3nz0P4WZYJF3c7N45z_6siuWuWC9P8W2JxZnkxfcJ1gzMwe1Bb8DiD71ng priority: 102 providerName: Directory of Open Access Journals |
Title | An Evolution and Eruption of the Coronal Magnetic Field through a Data-driven MHD Simulation |
URI | https://iopscience.iop.org/article/10.3847/1538-4357/ac9eaa https://www.proquest.com/docview/2792013885 https://doaj.org/article/ca4cb601e64a41e7a891a8847ae6e11a |
Volume | 946 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3daxQxEA-lIviitiqt1pIHK_iwd5tN9gufzvaOo3C2YMV7KCyTZFZEu1fu9gT9651sclf6QSm-LGHJTnZnkpnfZDMzjL0zIhFY6iKKcyQHBRMdgdIq0jbG2Egoa-ninSefs_FXdTxNpxvs4zoWZnYZVH-Pmj5RsGehW9-SdGm_W6Nk5fM-mBKBwNEjWZDhdNF7J6dXQZFJGbCvijKZT_0_yjspXLNJXep-sjQ0_C393Bmd0TN2vnpdf9bkZ2_Z6p75eyOT439-z3P2NIBRPvBdt9gGNttsZ7Bw2-Oziz_8Pe_afvdjsc0en_rWC3Y-aPjwd5i2HBrLh_Nlp334rOYEKvmhS41AxCfwvXGBknzkzsrxUBeIAz-CFiI7d9qWT8ZH_MuPi1BK7CU7Gw3PDsdRKNQQGcJzbZRbm6WJLlCRd2IzpEUtU60MSG1Kq4UFXaQgjKtqBqgNCmMJCQESeKNn5Cu22cwa3GHcAoq8qNHmZarquNa6Rmlq8p0hFTaPd1l_JanKhCTmrpbGr4qcGcfNynGzctysPDd32Yf1E5c-gcc9fT854a_7udTb3Q0SWxXEVhlQRpMbi5kCJTCHohRQEDnADIUgIgck6SqogsU9g-2tJtdVZ5fO0f07LtLXDyTzhj1JCHf5Y3F7bLOdL_Et4aRW73f7C_vdqqDrifz2D7JaD1I |
linkProvider | IOP Publishing |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1R3JbhMx1CpFIC4sBdRCAR8oEodJxjOe7cAhNIlSSkokipQD0ujZfoNQ20mUBVQ-il_hl3geO6lYVHHpgZs1st-M_fbxWxh7rkUksFB5EGZIDgpGKgCpZKBMiKGOoahim-88PEoHH-SbcTLeYN_XuTCTqRf9LRq6QsHuCC1_xyRL2w2PkpbP2qALBGhPTeWjKg_x_Cv5bPNXB11C8F4U9XvH-4PAtxUINFkfiyAzJk0ilaMkW9qkSCQYJ0pqiJUujBIGVJ6A0LYHF6DSKLQhvQ1IpgatiQnsNXY9iUlV24TBd6OLPMyo8Oa2DNI4G7tr0b9-9C9qsOkWQMqNdvyHSmj0XP8O-7E6IRfectJaLlRLf_uteOT_c4R32W1vcvOO-7p7bAPrLbbdmdtLgMnZOX_Bm7H7xzPfYjdGbnSffezUvPfFMyeH2vDebNnIWD6pOJnOfN8WgCDgQ_hU23RQ3rcRgdx3P-LAu7CAwMysTuHDQZe__3zmG6Y9YMdXsemHbLOe1LjNuAEUWV6hyYpEVmGlVIWxrsIog0SYLNxh7RVxlNqXarcdQ05LctksAkuLwNIisHQI3GEv1yumrkzJJXNfW3pbz7MFxpsHRCmlp5RSg9SKnHVMJUiBGeSFgJzAAaYoBAHZI-IqvcCbX_Ky3RU9X0y2RSvtDXmePPpHMM_YzVG3X749ODp8zG5FZGi6OMBdtrmYLfEJGYYL9bThRs7KKybdnyvJbjc |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+Evolution+and+Eruption+of+the+Coronal+Magnetic+Field+through+a+Data-driven+MHD+Simulation&rft.jtitle=The+Astrophysical+journal&rft.au=Inoue%2C+Satoshi&rft.au=Hayashi%2C+Keiji&rft.au=Miyoshi%2C+Takahiro&rft.date=2023-03-01&rft.pub=The+American+Astronomical+Society&rft.issn=0004-637X&rft.eissn=1538-4357&rft.volume=946&rft.issue=1&rft_id=info:doi/10.3847%2F1538-4357%2Fac9eaa&rft.externalDocID=apjac9eaa |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0004-637X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0004-637X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0004-637X&client=summon |