An Evolution and Eruption of the Coronal Magnetic Field through a Data-driven MHD Simulation

We present a newly developed data-driven magnetohydrodynamics (MHD) simulation code under a zero- β approximation based on a method proposed by Hayashi et al. 2018 and 2019. Although many data-driven MHD simulations have been developed and conducted, there are not many studies on how accurately thos...

Full description

Saved in:
Bibliographic Details
Published inThe Astrophysical journal Vol. 946; no. 1; pp. 46 - 72
Main Authors Inoue, Satoshi, Hayashi, Keiji, Miyoshi, Takahiro
Format Journal Article
LanguageEnglish
Published Philadelphia The American Astronomical Society 01.03.2023
IOP Publishing
Subjects
Online AccessGet full text

Cover

Loading…
Abstract We present a newly developed data-driven magnetohydrodynamics (MHD) simulation code under a zero- β approximation based on a method proposed by Hayashi et al. 2018 and 2019. Although many data-driven MHD simulations have been developed and conducted, there are not many studies on how accurately those simulations can reproduce the phenomena observed in the solar corona. In this study, we investigated the performance of our data-driven simulation quantitatively using ground-truth data. The ground-truth data was produced by an MHD simulation in which the magnetic field is twisted by the sunspot motions. A magnetic flux rope (MFR) is created by the cancellation of the magnetic flux at the polarity inversion line due to the converging flow on the sunspot, which eventually leads to the eruption of the MFR. We attempted to reproduce these dynamics using the data-driven MHD simulation. The coronal magnetic fields are driven by the electric fields, which are obtained from a time series of the photospheric magnetic field that is extracted from the ground-truth data, on the surface. As a result, the data-driven simulation could capture the subsequent MHD processes, the twisted coronal magnetic field and formation of the MFR, and also its eruption. We report these results and compare them with the ground-truth data, and discuss how to improve the accuracy and optimize the numerical method.
AbstractList We present a newly developed data-driven magnetohydrodynamics (MHD) simulation code under a zero-β approximation based on a method proposed by Hayashi et al. 2018 and 2019. Although many data-driven MHD simulations have been developed and conducted, there are not many studies on how accurately those simulations can reproduce the phenomena observed in the solar corona. In this study, we investigated the performance of our data-driven simulation quantitatively using ground-truth data. The ground-truth data was produced by an MHD simulation in which the magnetic field is twisted by the sunspot motions. A magnetic flux rope (MFR) is created by the cancellation of the magnetic flux at the polarity inversion line due to the converging flow on the sunspot, which eventually leads to the eruption of the MFR. We attempted to reproduce these dynamics using the data-driven MHD simulation. The coronal magnetic fields are driven by the electric fields, which are obtained from a time series of the photospheric magnetic field that is extracted from the ground-truth data, on the surface. As a result, the data-driven simulation could capture the subsequent MHD processes, the twisted coronal magnetic field and formation of the MFR, and also its eruption. We report these results and compare them with the ground-truth data, and discuss how to improve the accuracy and optimize the numerical method.
We present a newly developed data-driven magnetohydrodynamics (MHD) simulation code under a zero- β approximation based on a method proposed by Hayashi et al. 2018 and 2019. Although many data-driven MHD simulations have been developed and conducted, there are not many studies on how accurately those simulations can reproduce the phenomena observed in the solar corona. In this study, we investigated the performance of our data-driven simulation quantitatively using ground-truth data. The ground-truth data was produced by an MHD simulation in which the magnetic field is twisted by the sunspot motions. A magnetic flux rope (MFR) is created by the cancellation of the magnetic flux at the polarity inversion line due to the converging flow on the sunspot, which eventually leads to the eruption of the MFR. We attempted to reproduce these dynamics using the data-driven MHD simulation. The coronal magnetic fields are driven by the electric fields, which are obtained from a time series of the photospheric magnetic field that is extracted from the ground-truth data, on the surface. As a result, the data-driven simulation could capture the subsequent MHD processes, the twisted coronal magnetic field and formation of the MFR, and also its eruption. We report these results and compare them with the ground-truth data, and discuss how to improve the accuracy and optimize the numerical method.
Author Inoue, Satoshi
Miyoshi, Takahiro
Hayashi, Keiji
Author_xml – sequence: 1
  givenname: Satoshi
  orcidid: 0000-0001-5121-5122
  surname: Inoue
  fullname: Inoue, Satoshi
  organization: New Jersey Institute of Technology Center for Solar-Terrestrial Research, University Heights, Newark, NJ 07102-1982, USA
– sequence: 2
  givenname: Keiji
  orcidid: 0000-0001-9046-6688
  surname: Hayashi
  fullname: Hayashi, Keiji
  organization: College of Science, George Mason University , Fairfax, VA 22030, USA
– sequence: 3
  givenname: Takahiro
  orcidid: 0000-0002-4675-4460
  surname: Miyoshi
  fullname: Miyoshi, Takahiro
  organization: Hiroshima University Graduate School of Advanced Science and Engineering, 1-3-1 Kagamiyama, Higashihiroshima 739-8526, Japan
BookMark eNp9kc9LwzAUx4MoOH_cPQa8WpcsaZoex5xOUDzowYMQXpO3mdE1M20F_3vbVRQEPYX38v188_J9R2S_ChUScsbZpdAyG_NU6ESKNBuDzRFgj4y-W_tkxBiTiRLZ8yE5qut1X07yfERephWdv4eybXyoKFSOzmO73RVhSZtXpLMQQwUlvYdVhY239Npj6bqrGNrVKwV6BQ0kLvp3rOj94oo--k1bQm9xQg6WUNZ4-nUek6fr-dNskdw93NzOpneJlVw1SeacSieFRpln0inMlRBpIS2Iwuau4A4KnQK3TAsOWFjk1ikpAFPFO0Yck9vB1gVYm230G4gfJoA3u0aIKwOxm7xEY0HaQjGOSoLkmIHOOeguP0CFnEPndT54bWN4a7FuzDq0sft_bSZZPmFcaJ12KjaobAx1HXH5_Spnpl-H6bM3ffZmWEeHqF-I9c0upSaCL_8DLwbQh-3PMH_KPwExgKA1
CitedBy_id crossref_primary_10_3847_1538_4365_ad0e0c
crossref_primary_10_3847_1538_4357_ad8089
crossref_primary_10_3847_2041_8213_acc6ce
crossref_primary_10_3847_1538_4357_ad088d
crossref_primary_10_3847_1538_4357_acc8c5
crossref_primary_10_3390_physics5030058
Cites_doi 10.3847/1538-4357/aa750e
10.3847/1538-4357/ab6b1f
10.1038/s41467-017-02616-8
10.1016/j.xinn.2022.100236
10.1007/s11207-017-1214-0
10.1086/175188
10.3847/1538-4357/aadd08
10.1063/5.0035086
10.3847/1538-4357/aaacd8
10.3847/1538-4357/abe414
10.1088/0004-637X/788/2/182
10.1007/s11207-021-01789-2
10.1088/0305-4470/39/26/005
10.3847/2041-8213/aaffcf
10.3389/fphy.2021.646750
10.1088/0004-637X/715/1/242
10.1117/12.586032
10.3847/1538-4357/ab9816
10.1088/0004-637X/757/2/147
10.3847/1538-4357/ab8ea9
10.1088/0004-637X/750/1/15
10.1007/BF00170988
10.3847/1538-4365/ab8303
10.1117/12.925494
10.1088/0004-637X/780/1/55
10.1088/0004-637X/748/2/77
10.3847/1538-4357/aa6578
10.3847/1538-4357/abb8d2
10.1086/312444
10.1086/589434
10.1088/1367-2630/9/8/301
10.1051/0004-6361/201935225
10.1088/0004-637X/780/2/130
10.1088/0004-637X/747/1/65
10.3847/1538-4357/ab6bc8
10.3847/1538-4357/aaebfc
10.3847/1538-4357/aad181
10.1086/527413
10.1086/345501
10.3847/1538-4357/abcfbb
10.3847/2041-8213/aafabf
10.1007/s41116-019-0019-7
10.1007/s11207-011-9841-3
10.1051/0004-6361/202038925
10.1007/s11207-019-1430-x
10.1186/s40645-016-0084-7
10.1088/0004-637X/738/2/161
10.1038/s41550-017-0085
10.1038/ncomms11522
10.3847/1538-4357/aa917a
10.1007/s11207-014-0529-3
10.3847/1538-4357/ab5582
10.1006/jcph.2001.6961
10.12942/lrsp-2011-6
10.1088/0004-637X/795/1/17
ContentType Journal Article
Copyright 2023. The Author(s). Published by the American Astronomical Society.
2023. The Author(s). Published by the American Astronomical Society. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2023. The Author(s). Published by the American Astronomical Society.
– notice: 2023. The Author(s). Published by the American Astronomical Society. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID O3W
TSCCA
AAYXX
CITATION
7TG
8FD
H8D
KL.
L7M
DOA
DOI 10.3847/1538-4357/ac9eaa
DatabaseName Institute of Physics Open Access Journal Titles
IOPscience (Open Access)
CrossRef
Meteorological & Geoastrophysical Abstracts
Technology Research Database
Aerospace Database
Meteorological & Geoastrophysical Abstracts - Academic
Advanced Technologies Database with Aerospace
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Aerospace Database
Meteorological & Geoastrophysical Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
Meteorological & Geoastrophysical Abstracts - Academic
DatabaseTitleList Aerospace Database
CrossRef

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: O3W
  name: Institute of Physics Open Access Journal Titles
  url: http://iopscience.iop.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Astronomy & Astrophysics
Physics
EISSN 1538-4357
ExternalDocumentID oai_doaj_org_article_ca4cb601e64a41e7a891a8847ae6e11a
10_3847_1538_4357_ac9eaa
apjac9eaa
GrantInformation_xml – fundername: Satoshi Inoue
  grantid: AGS-2145253
GroupedDBID -DZ
-~X
123
1JI
23N
2FS
4.4
6J9
85S
AAFWJ
AAGCD
AAJIO
ABHWH
ACBEA
ACGFS
ACHIP
ACNCT
ADACN
AEFHF
AENEX
AFPKN
AKPSB
ALMA_UNASSIGNED_HOLDINGS
ASPBG
ATQHT
AVWKF
AZFZN
CJUJL
CRLBU
CS3
EBS
F5P
FRP
GROUPED_DOAJ
IJHAN
IOP
KOT
M~E
N5L
O3W
O43
OK1
PJBAE
RIN
RNS
ROL
SJN
SY9
T37
TN5
TR2
TSCCA
WH7
XSW
2WC
AAYXX
CITATION
7TG
8FD
AEINN
H8D
KL.
L7M
ID FETCH-LOGICAL-c416t-7dd652b8e4974d6e96335b4ca3bc9db1dab85a1c0831aebce1cd643ae561e493
IEDL.DBID IOP
ISSN 0004-637X
IngestDate Wed Aug 27 01:29:51 EDT 2025
Wed Aug 13 11:15:29 EDT 2025
Tue Jul 01 03:39:31 EDT 2025
Thu Apr 24 23:09:04 EDT 2025
Wed Aug 21 03:34:55 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License Original content from this work may be used under the terms of the Creative Commons Attribution 4.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c416t-7dd652b8e4974d6e96335b4ca3bc9db1dab85a1c0831aebce1cd643ae561e493
Notes AAS36245
The Sun and the Heliosphere
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-4675-4460
0000-0001-5121-5122
0000-0001-9046-6688
OpenAccessLink https://proxy.k.utb.cz/login?url=https://iopscience.iop.org/article/10.3847/1538-4357/ac9eaa
PQID 2792013885
PQPubID 4562441
PageCount 27
ParticipantIDs doaj_primary_oai_doaj_org_article_ca4cb601e64a41e7a891a8847ae6e11a
crossref_citationtrail_10_3847_1538_4357_ac9eaa
proquest_journals_2792013885
crossref_primary_10_3847_1538_4357_ac9eaa
iop_journals_10_3847_1538_4357_ac9eaa
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-03-01
PublicationDateYYYYMMDD 2023-03-01
PublicationDate_xml – month: 03
  year: 2023
  text: 2023-03-01
  day: 01
PublicationDecade 2020
PublicationPlace Philadelphia
PublicationPlace_xml – name: Philadelphia
PublicationTitle The Astrophysical journal
PublicationTitleAbbrev APJ
PublicationTitleAlternate Astrophys. J
PublicationYear 2023
Publisher The American Astronomical Society
IOP Publishing
Publisher_xml – name: The American Astronomical Society
– name: IOP Publishing
References Clyne (apjac9eaabib7) 2005; 5669
Toriumi (apjac9eaabib51) 2019; 16
Lumme (apjac9eaabib34) 2017; 292
Hayashi (apjac9eaabib13) 2018; 855
Kaneko (apjac9eaabib26) 2021; 909
Schuck (apjac9eaabib47) 2008; 683
Liu (apjac9eaabib33) 2019; 626
Inoue (apjac9eaabib19) 2012; 747
Toriumi (apjac9eaabib50) 2020; 890
Pesnell (apjac9eaabib39) 2012; 275
Jiang (apjac9eaabib20) 2021; 9
Savcheva (apjac9eaabib45) 2012; 750
Kawabata (apjac9eaabib29) 2018; 869
Sakurai (apjac9eaabib44) 1982; 76
Shibata (apjac9eaabib48) 2011; 8
Kawabata (apjac9eaabib30) 2020b; 895
Amari (apjac9eaabib1) 2003; 585
Yamasaki (apjac9eaabib55) 2021; 908
Bobra (apjac9eaabib4) 2014; 289
Jiang (apjac9eaabib23) 2014; 780
Fisher (apjac9eaabib9) 2020; 248
Pomoell (apjac9eaabib40) 2019; 294
Jiang (apjac9eaabib25) 2017; 850
Kang (apjac9eaabib27) 2019; 887
Clyne (apjac9eaabib6) 2007; 9
Inoue (apjac9eaabib15) 2016; 3
Hayashi (apjac9eaabib14) 2019; 871
Muhamad (apjac9eaabib37) 2018; 863
Dedner (apjac9eaabib8) 2002; 175
Metcalf (apjac9eaabib35) 1995; 439
Price (apjac9eaabib42) 2020; 644
Rast (apjac9eaabib43) 2021; 296
Inoue (apjac9eaabib16) 2014; 788
Inoue (apjac9eaabib18) 2011; 738
Muhamad (apjac9eaabib36) 2017; 842
Jiang (apjac9eaabib24) 2016; 7
Leake (apjac9eaabib32) 2017; 838
Jiang (apjac9eaabib22) 2018; 866
Kazachenko (apjac9eaabib31) 2014; 795
Inoue (apjac9eaabib17) 2018; 9
Cheung (apjac9eaabib5) 2012; 757
Berger (apjac9eaabib3) 2006; 39
Jiang (apjac9eaabib21) 2022; 3
Amari (apjac9eaabib2) 2000; 529
Prasad (apjac9eaabib41) 2020; 903
Woods (apjac9eaabib53) 2020; 890
Nayak (apjac9eaabib38) 2021; 28
Schrijver (apjac9eaabib46) 2008; 675
Wang (apjac9eaabib52) 2017; 1
Xia (apjac9eaabib54) 2014; 780
Sun (apjac9eaabib49) 2012; 748
Kawabata (apjac9eaabib28) 2020a; 898
Guo (apjac9eaabib12) 2019; 870
Goode (apjac9eaabib11) 2012; 8444
Fisher (apjac9eaabib10) 2010; 715
References_xml – volume: 842
  start-page: 86
  year: 2017
  ident: apjac9eaabib36
  publication-title: ApJ
  doi: 10.3847/1538-4357/aa750e
– volume: 890
  start-page: 103
  year: 2020
  ident: apjac9eaabib50
  publication-title: ApJ
  doi: 10.3847/1538-4357/ab6b1f
– volume: 9
  start-page: 174
  year: 2018
  ident: apjac9eaabib17
  publication-title: NatCo
  doi: 10.1038/s41467-017-02616-8
– volume: 3
  year: 2022
  ident: apjac9eaabib21
  publication-title: Innov
  doi: 10.1016/j.xinn.2022.100236
– volume: 292
  start-page: 191
  year: 2017
  ident: apjac9eaabib34
  publication-title: SoPh
  doi: 10.1007/s11207-017-1214-0
– volume: 439
  start-page: 474
  year: 1995
  ident: apjac9eaabib35
  publication-title: ApJ
  doi: 10.1086/175188
– volume: 866
  start-page: 96
  year: 2018
  ident: apjac9eaabib22
  publication-title: ApJ
  doi: 10.3847/1538-4357/aadd08
– volume: 28
  year: 2021
  ident: apjac9eaabib38
  publication-title: PhPl
  doi: 10.1063/5.0035086
– volume: 855
  start-page: 11
  year: 2018
  ident: apjac9eaabib13
  publication-title: ApJ
  doi: 10.3847/1538-4357/aaacd8
– volume: 909
  start-page: 155
  year: 2021
  ident: apjac9eaabib26
  publication-title: ApJ
  doi: 10.3847/1538-4357/abe414
– volume: 788
  start-page: 182
  year: 2014
  ident: apjac9eaabib16
  publication-title: ApJ
  doi: 10.1088/0004-637X/788/2/182
– volume: 296
  start-page: 70
  year: 2021
  ident: apjac9eaabib43
  publication-title: SoPh
  doi: 10.1007/s11207-021-01789-2
– volume: 39
  start-page: 8321
  year: 2006
  ident: apjac9eaabib3
  publication-title: JPhA
  doi: 10.1088/0305-4470/39/26/005
– volume: 871
  start-page: L28
  year: 2019
  ident: apjac9eaabib14
  publication-title: ApJL
  doi: 10.3847/2041-8213/aaffcf
– volume: 9
  start-page: 224
  year: 2021
  ident: apjac9eaabib20
  publication-title: FrP
  doi: 10.3389/fphy.2021.646750
– volume: 715
  start-page: 242
  year: 2010
  ident: apjac9eaabib10
  publication-title: ApJ
  doi: 10.1088/0004-637X/715/1/242
– volume: 5669
  start-page: 284
  year: 2005
  ident: apjac9eaabib7
  publication-title: Proc. SPIE
  doi: 10.1117/12.586032
– volume: 898
  start-page: 32
  year: 2020a
  ident: apjac9eaabib28
  publication-title: ApJ
  doi: 10.3847/1538-4357/ab9816
– volume: 757
  start-page: 147
  year: 2012
  ident: apjac9eaabib5
  publication-title: ApJ
  doi: 10.1088/0004-637X/757/2/147
– volume: 895
  start-page: 105
  year: 2020b
  ident: apjac9eaabib30
  publication-title: ApJ
  doi: 10.3847/1538-4357/ab8ea9
– volume: 750
  start-page: 15
  year: 2012
  ident: apjac9eaabib45
  publication-title: ApJ
  doi: 10.1088/0004-637X/750/1/15
– volume: 76
  start-page: 301
  year: 1982
  ident: apjac9eaabib44
  publication-title: SoPh
  doi: 10.1007/BF00170988
– volume: 248
  start-page: 2
  year: 2020
  ident: apjac9eaabib9
  publication-title: ApJS
  doi: 10.3847/1538-4365/ab8303
– volume: 8444
  year: 2012
  ident: apjac9eaabib11
  publication-title: Proc. SPIE
  doi: 10.1117/12.925494
– volume: 780
  start-page: 55
  year: 2014
  ident: apjac9eaabib23
  publication-title: ApJ
  doi: 10.1088/0004-637X/780/1/55
– volume: 748
  start-page: 77
  year: 2012
  ident: apjac9eaabib49
  publication-title: ApJ
  doi: 10.1088/0004-637X/748/2/77
– volume: 838
  start-page: 113
  year: 2017
  ident: apjac9eaabib32
  publication-title: ApJ
  doi: 10.3847/1538-4357/aa6578
– volume: 903
  start-page: 129
  year: 2020
  ident: apjac9eaabib41
  publication-title: ApJ
  doi: 10.3847/1538-4357/abb8d2
– volume: 529
  start-page: L49
  year: 2000
  ident: apjac9eaabib2
  publication-title: ApJL
  doi: 10.1086/312444
– volume: 683
  start-page: 1134
  year: 2008
  ident: apjac9eaabib47
  publication-title: ApJ
  doi: 10.1086/589434
– volume: 9
  start-page: 301
  year: 2007
  ident: apjac9eaabib6
  publication-title: NJPh
  doi: 10.1088/1367-2630/9/8/301
– volume: 626
  start-page: A91
  year: 2019
  ident: apjac9eaabib33
  publication-title: A&A
  doi: 10.1051/0004-6361/201935225
– volume: 780
  start-page: 130
  year: 2014
  ident: apjac9eaabib54
  publication-title: ApJ
  doi: 10.1088/0004-637X/780/2/130
– volume: 747
  start-page: 65
  year: 2012
  ident: apjac9eaabib19
  publication-title: ApJ
  doi: 10.1088/0004-637X/747/1/65
– volume: 890
  start-page: 84
  year: 2020
  ident: apjac9eaabib53
  publication-title: ApJ
  doi: 10.3847/1538-4357/ab6bc8
– volume: 869
  start-page: 99
  year: 2018
  ident: apjac9eaabib29
  publication-title: ApJ
  doi: 10.3847/1538-4357/aaebfc
– volume: 863
  start-page: 162
  year: 2018
  ident: apjac9eaabib37
  publication-title: ApJ
  doi: 10.3847/1538-4357/aad181
– volume: 675
  start-page: 1637
  year: 2008
  ident: apjac9eaabib46
  publication-title: ApJ
  doi: 10.1086/527413
– volume: 585
  start-page: 1073
  year: 2003
  ident: apjac9eaabib1
  publication-title: ApJ
  doi: 10.1086/345501
– volume: 908
  start-page: 132
  year: 2021
  ident: apjac9eaabib55
  publication-title: ApJ
  doi: 10.3847/1538-4357/abcfbb
– volume: 870
  start-page: L21
  year: 2019
  ident: apjac9eaabib12
  publication-title: ApJL
  doi: 10.3847/2041-8213/aafabf
– volume: 16
  start-page: 3
  year: 2019
  ident: apjac9eaabib51
  publication-title: LRSP
  doi: 10.1007/s41116-019-0019-7
– volume: 275
  start-page: 3
  year: 2012
  ident: apjac9eaabib39
  publication-title: SoPh
  doi: 10.1007/s11207-011-9841-3
– volume: 644
  start-page: A28
  year: 2020
  ident: apjac9eaabib42
  publication-title: A&A
  doi: 10.1051/0004-6361/202038925
– volume: 294
  start-page: 41
  year: 2019
  ident: apjac9eaabib40
  publication-title: SoPh
  doi: 10.1007/s11207-019-1430-x
– volume: 3
  start-page: 19
  year: 2016
  ident: apjac9eaabib15
  publication-title: PEPS
  doi: 10.1186/s40645-016-0084-7
– volume: 738
  start-page: 161
  year: 2011
  ident: apjac9eaabib18
  publication-title: ApJ
  doi: 10.1088/0004-637X/738/2/161
– volume: 1
  start-page: 0085
  year: 2017
  ident: apjac9eaabib52
  publication-title: NatAs
  doi: 10.1038/s41550-017-0085
– volume: 7
  start-page: 11522
  year: 2016
  ident: apjac9eaabib24
  publication-title: NatCo
  doi: 10.1038/ncomms11522
– volume: 850
  start-page: 8
  year: 2017
  ident: apjac9eaabib25
  publication-title: ApJ
  doi: 10.3847/1538-4357/aa917a
– volume: 289
  start-page: 3549
  year: 2014
  ident: apjac9eaabib4
  publication-title: SoPh
  doi: 10.1007/s11207-014-0529-3
– volume: 887
  start-page: 263
  year: 2019
  ident: apjac9eaabib27
  publication-title: ApJ
  doi: 10.3847/1538-4357/ab5582
– volume: 175
  start-page: 645
  year: 2002
  ident: apjac9eaabib8
  publication-title: JCoPh
  doi: 10.1006/jcph.2001.6961
– volume: 8
  start-page: 6
  year: 2011
  ident: apjac9eaabib48
  publication-title: LRSP
  doi: 10.12942/lrsp-2011-6
– volume: 795
  start-page: 17
  year: 2014
  ident: apjac9eaabib31
  publication-title: ApJ
  doi: 10.1088/0004-637X/795/1/17
SSID ssj0004299
Score 2.4532208
Snippet We present a newly developed data-driven magnetohydrodynamics (MHD) simulation code under a zero- β approximation based on a method proposed by Hayashi et al....
We present a newly developed data-driven magnetohydrodynamics (MHD) simulation code under a zero-β approximation based on a method proposed by Hayashi et al....
We present a newly developed data-driven magnetohydrodynamics (MHD) simulation code under a zero- β approximation based on a method proposed by Hayashi et al....
SourceID doaj
proquest
crossref
iop
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 46
SubjectTerms Astrophysics
Corona
Coronal magnetic fields
Electric fields
Magnetic fields
Magnetic flux
Magnetohydrodynamical simulations
Magnetohydrodynamics
Numerical methods
Photosphere
Photospheric magnetic fields
Simulation
Solar active region magnetic fields
Solar corona
Solar coronal mass ejections
Solar flares
Solar magnetic field
Sunspots
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LSwMxEA4iCF7EJ9YXOajgYemmm30dq7YUoSKo4EFYJsmsCLotbRX8985stj4Q9OJtWSa7YTKZ-SaPb4Q4tKqjMDdZEKZICQp2TADa6MC4EEMbQV5GfN95eJkMbvXFXXz3pdQXnwnz9MBecW0L2hrKGjDRoBWmkOUKMvKpgAkqVUMjinnzZGp-I5K8rN-UjEi0XU9rAgZpG2yO8D0I1Vz9FFoeR-MfDrmOMv1VsdLAQ9n13VoTC1iti-3ulBesR89v8ljWz349Yroulq7804a471ay99oYkoTKyd7kpfYHclRKgnnyjMkK6ONDeKj46qLs8-k12VTqkSDPYQaBm7D_k8PBubx-fG6Ke22Km37v5mwQNKUTAksIaxakziVxx2SoKV9wCdI0i2KjLUTG5s4oByaLQVmuMwZoLCrrCJsAEpyiNtGWWKxGFW4L6QBVmpXo0jzWZVgaU2JkS8pmIVYuDVuiPVdlYRtaca5u8VRQesHKL1j5BSu_8MpviZOPFmNPqfGL7CmPzocck2HXL8hEisZEir9MpCWOaGyLZnJOf_nZ3nz0P4WZYJF3c7N45z_6siuWuWC9P8W2JxZnkxfcJ1gzMwe1Bb8DiD71ng
  priority: 102
  providerName: Directory of Open Access Journals
Title An Evolution and Eruption of the Coronal Magnetic Field through a Data-driven MHD Simulation
URI https://iopscience.iop.org/article/10.3847/1538-4357/ac9eaa
https://www.proquest.com/docview/2792013885
https://doaj.org/article/ca4cb601e64a41e7a891a8847ae6e11a
Volume 946
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3daxQxEA-lIviitiqt1pIHK_iwd5tN9gufzvaOo3C2YMV7KCyTZFZEu1fu9gT9651sclf6QSm-LGHJTnZnkpnfZDMzjL0zIhFY6iKKcyQHBRMdgdIq0jbG2Egoa-ninSefs_FXdTxNpxvs4zoWZnYZVH-Pmj5RsGehW9-SdGm_W6Nk5fM-mBKBwNEjWZDhdNF7J6dXQZFJGbCvijKZT_0_yjspXLNJXep-sjQ0_C393Bmd0TN2vnpdf9bkZ2_Z6p75eyOT439-z3P2NIBRPvBdt9gGNttsZ7Bw2-Oziz_8Pe_afvdjsc0en_rWC3Y-aPjwd5i2HBrLh_Nlp334rOYEKvmhS41AxCfwvXGBknzkzsrxUBeIAz-CFiI7d9qWT8ZH_MuPi1BK7CU7Gw3PDsdRKNQQGcJzbZRbm6WJLlCRd2IzpEUtU60MSG1Kq4UFXaQgjKtqBqgNCmMJCQESeKNn5Cu22cwa3GHcAoq8qNHmZarquNa6Rmlq8p0hFTaPd1l_JanKhCTmrpbGr4qcGcfNynGzctysPDd32Yf1E5c-gcc9fT854a_7udTb3Q0SWxXEVhlQRpMbi5kCJTCHohRQEDnADIUgIgck6SqogsU9g-2tJtdVZ5fO0f07LtLXDyTzhj1JCHf5Y3F7bLOdL_Et4aRW73f7C_vdqqDrifz2D7JaD1I
linkProvider IOP Publishing
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1R3JbhMx1CpFIC4sBdRCAR8oEodJxjOe7cAhNIlSSkokipQD0ujZfoNQ20mUBVQ-il_hl3geO6lYVHHpgZs1st-M_fbxWxh7rkUksFB5EGZIDgpGKgCpZKBMiKGOoahim-88PEoHH-SbcTLeYN_XuTCTqRf9LRq6QsHuCC1_xyRL2w2PkpbP2qALBGhPTeWjKg_x_Cv5bPNXB11C8F4U9XvH-4PAtxUINFkfiyAzJk0ilaMkW9qkSCQYJ0pqiJUujBIGVJ6A0LYHF6DSKLQhvQ1IpgatiQnsNXY9iUlV24TBd6OLPMyo8Oa2DNI4G7tr0b9-9C9qsOkWQMqNdvyHSmj0XP8O-7E6IRfectJaLlRLf_uteOT_c4R32W1vcvOO-7p7bAPrLbbdmdtLgMnZOX_Bm7H7xzPfYjdGbnSffezUvPfFMyeH2vDebNnIWD6pOJnOfN8WgCDgQ_hU23RQ3rcRgdx3P-LAu7CAwMysTuHDQZe__3zmG6Y9YMdXsemHbLOe1LjNuAEUWV6hyYpEVmGlVIWxrsIog0SYLNxh7RVxlNqXarcdQ05LctksAkuLwNIisHQI3GEv1yumrkzJJXNfW3pbz7MFxpsHRCmlp5RSg9SKnHVMJUiBGeSFgJzAAaYoBAHZI-IqvcCbX_Ky3RU9X0y2RSvtDXmePPpHMM_YzVG3X749ODp8zG5FZGi6OMBdtrmYLfEJGYYL9bThRs7KKybdnyvJbjc
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+Evolution+and+Eruption+of+the+Coronal+Magnetic+Field+through+a+Data-driven+MHD+Simulation&rft.jtitle=The+Astrophysical+journal&rft.au=Inoue%2C+Satoshi&rft.au=Hayashi%2C+Keiji&rft.au=Miyoshi%2C+Takahiro&rft.date=2023-03-01&rft.pub=The+American+Astronomical+Society&rft.issn=0004-637X&rft.eissn=1538-4357&rft.volume=946&rft.issue=1&rft_id=info:doi/10.3847%2F1538-4357%2Fac9eaa&rft.externalDocID=apjac9eaa
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0004-637X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0004-637X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0004-637X&client=summon