Analyzing JWST/NIRSpec Hydrogen Line Detections at TWA 27B: Constraining Accretion Properties and Geometry
Hydrogen lines from forming planets are crucial for understanding planet formation. However, the number of planetary hydrogen line detections is still limited. Recent JWST/NIRSpec observations have detected Paschen and Brackett hydrogen lines at TWA 27 B (2M1207b). Although classified as a planetary...
Saved in:
Published in | The Astronomical journal Vol. 168; no. 4; pp. 155 - 164 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Madison
The American Astronomical Society
01.10.2024
IOP Publishing |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Hydrogen lines from forming planets are crucial for understanding planet formation. However, the number of planetary hydrogen line detections is still limited. Recent JWST/NIRSpec observations have detected Paschen and Brackett hydrogen lines at TWA 27 B (2M1207b). Although classified as a planetary- mass companison (PMC) rather than a planet due to its large mass ratio to the central star, TWA 27 B’s hydrogen line emissions are expected to be same as the planetary one, given its small mass (≈5
M
J
). We aim to constrain the accretion properties and accretion geometry of TWA 27 B, contributing to our understanding of hydrogen-line emission mechanisms common to both PMCs and planets. We conduct spectral fitting of four bright hydrogen lines (Pa-
α
, Pa-
β
, Pa-
γ
, Pa-
δ
) with an accretion-shock emission model tailored for forming planets. We estimate the mass accretion rate at
M
̇
≈
3
×
10
−
9
M
J
yr
−
1
with our fiducial parameters, though this is subject to an uncertainty of up to factor of ten. Our analysis also indicates a dense accretion flow,
n
≳ 10
13
cm
−3
just before the shock, implying a small accretion-shock filling factor
f
f
on the planetary surface (
f
f
≲ 5 × 10
−4
). This finding suggests that magnetospheric accretion is occurring at TWA 27 B. Additionally, we carry out a comparative analysis of hydrogen-line emission color to identify the emission mechanism, but the associated uncertainties proved too large for definitive conclusions. This underscores the need for further high-precision observational studies to elucidate these emission mechanisms fully. |
---|---|
AbstractList | Hydrogen lines from forming planets are crucial for understanding planet formation. However, the number of planetary hydrogen line detections is still limited. Recent JWST/NIRSpec observations have detected Paschen and Brackett hydrogen lines at TWA 27 B (2M1207b). Although classified as a planetary- mass companison (PMC) rather than a planet due to its large mass ratio to the central star, TWA 27 B’s hydrogen line emissions are expected to be same as the planetary one, given its small mass (≈5 M _J ). We aim to constrain the accretion properties and accretion geometry of TWA 27 B, contributing to our understanding of hydrogen-line emission mechanisms common to both PMCs and planets. We conduct spectral fitting of four bright hydrogen lines (Pa- α , Pa- β , Pa- γ , Pa- δ ) with an accretion-shock emission model tailored for forming planets. We estimate the mass accretion rate at $\dot{M}\approx 3\times {10}^{-9}\,{M}_{{\rm{J}}}\,{\mathrm{yr}}^{-1}$ with our fiducial parameters, though this is subject to an uncertainty of up to factor of ten. Our analysis also indicates a dense accretion flow, n ≳ 10 ^13 cm ^−3 just before the shock, implying a small accretion-shock filling factor f _f on the planetary surface ( f _f ≲ 5 × 10 ^−4 ). This finding suggests that magnetospheric accretion is occurring at TWA 27 B. Additionally, we carry out a comparative analysis of hydrogen-line emission color to identify the emission mechanism, but the associated uncertainties proved too large for definitive conclusions. This underscores the need for further high-precision observational studies to elucidate these emission mechanisms fully. Hydrogen lines from forming planets are crucial for understanding planet formation. However, the number of planetary hydrogen line detections is still limited. Recent JWST/NIRSpec observations have detected Paschen and Brackett hydrogen lines at TWA 27 B (2M1207b). Although classified as a planetary- mass companison (PMC) rather than a planet due to its large mass ratio to the central star, TWA 27 B’s hydrogen line emissions are expected to be same as the planetary one, given its small mass (≈5 M J ). We aim to constrain the accretion properties and accretion geometry of TWA 27 B, contributing to our understanding of hydrogen-line emission mechanisms common to both PMCs and planets. We conduct spectral fitting of four bright hydrogen lines (Pa- α , Pa- β , Pa- γ , Pa- δ ) with an accretion-shock emission model tailored for forming planets. We estimate the mass accretion rate at M ̇ ≈ 3 × 10 − 9 M J yr − 1 with our fiducial parameters, though this is subject to an uncertainty of up to factor of ten. Our analysis also indicates a dense accretion flow, n ≳ 10 13 cm −3 just before the shock, implying a small accretion-shock filling factor f f on the planetary surface ( f f ≲ 5 × 10 −4 ). This finding suggests that magnetospheric accretion is occurring at TWA 27 B. Additionally, we carry out a comparative analysis of hydrogen-line emission color to identify the emission mechanism, but the associated uncertainties proved too large for definitive conclusions. This underscores the need for further high-precision observational studies to elucidate these emission mechanisms fully. Hydrogen lines from forming planets are crucial for understanding planet formation. However, the number of planetary hydrogen line detections is still limited. Recent JWST/NIRSpec observations have detected Paschen and Brackett hydrogen lines at TWA 27 B (2M1207b). Although classified as a planetary- mass companison (PMC) rather than a planet due to its large mass ratio to the central star, TWA 27 B’s hydrogen line emissions are expected to be same as the planetary one, given its small mass (≈5MJ). We aim to constrain the accretion properties and accretion geometry of TWA 27 B, contributing to our understanding of hydrogen-line emission mechanisms common to both PMCs and planets. We conduct spectral fitting of four bright hydrogen lines (Pa-α, Pa-β, Pa-γ, Pa-δ) with an accretion-shock emission model tailored for forming planets. We estimate the mass accretion rate at Ṁ≈3×10−9MJyr−1 with our fiducial parameters, though this is subject to an uncertainty of up to factor of ten. Our analysis also indicates a dense accretion flow, n ≳ 1013 cm−3 just before the shock, implying a small accretion-shock filling factor ff on the planetary surface (ff ≲ 5 × 10−4). This finding suggests that magnetospheric accretion is occurring at TWA 27 B. Additionally, we carry out a comparative analysis of hydrogen-line emission color to identify the emission mechanism, but the associated uncertainties proved too large for definitive conclusions. This underscores the need for further high-precision observational studies to elucidate these emission mechanisms fully. |
Author | Marleau, Gabriel-Dominique Aoyama, Yuhiko Hashimoto, Jun |
Author_xml | – sequence: 1 givenname: Yuhiko orcidid: 0000-0003-0568-9225 surname: Aoyama fullname: Aoyama, Yuhiko organization: Sun Yat-sen University School of Physics and Astronomy, Zhuhai 519082, People's Republic of China – sequence: 2 givenname: Gabriel-Dominique orcidid: 0000-0002-2919-7500 surname: Marleau fullname: Marleau, Gabriel-Dominique organization: Max-Planck-Institut für Astronomie , Königstuhl 17, 69117 Heidelberg, Germany – sequence: 3 givenname: Jun orcidid: 0000-0002-3053-3575 surname: Hashimoto fullname: Hashimoto, Jun organization: Graduate University for Advanced Studies (SOKENDAI) Department of Astronomy, School of Science, Mitaka, Tokyo 181-8588, Japan |
BookMark | eNp9kcFv0zAYxS00JLrBnaMlroTaie043EoHW1EFiBXtaDlfPleuOjs43qH89UsWNCQkOFl6er_nT--dk7MQAxLymrN3lRb1kstKF5XWfGk7VXfuGVk8SWdkwRgThSqlekHOh-HAGOeaiQU5rII9nn75sKefb292yy-b7zc9Ar0-dSnuMdCtD0gvMSNkH8NAbaa72xUt6w_v6XoUcrI-TPgKIOHkod9S7DFlj6M7dPQK4x3mdHpJnjt7HPDV7_eC_Pj0cbe-LrZfrzbr1bYAwVUuFDgupW2w6aTVzjpnbQ0t61rFeF2DQwfKgeau0h1gKzpWibKyoGwLFYfqgmzm3C7ag-mTv7PpZKL15lGIaW_seB0c0WCjZQtCyBqY0E41AKWS0HIuVNm29Zj1Zs7qU_x5j0M2h3ifxsoGU3EmJOOSNaOLzS5IcRgSuqdfOTPTOmaawkxTmHmdEVF_IeCzneqbCj3-D3w7gz72f475p_0BqLWlRg |
CitedBy_id | crossref_primary_10_3847_1538_3881_ad957e crossref_primary_10_3847_2041_8213_adb134 |
Cites_doi | 10.1051/0004-6361/201014490 10.1051/0004-6361/201629929 10.3847/2041-8213/ac85ef 10.3847/2041-8213/ab5062 10.1051/0004-6361/201322068 10.1051/0004-6361/202038242 10.3847/2041-8213/ac19bd 10.1146/annurev-astro-081915-023347 10.1051/0004-6361/201525930 10.3847/1538-4357/ab44c1 10.1088/0004-637X/767/2/112 10.3847/1538-3881/aa816a 10.1051/0004-6361/202038131 10.1086/185972 10.1145/1089014.1089020 10.1103/PhysRevA.22.940 10.3847/1538-3881/abd806 10.1051/0004-6361/201423768 10.3847/1538-4357/aadc11 10.1051/0004-6361/202243918 10.3847/2041-8213/ac7fef 10.3847/1538-3881/ad2938 10.1088/0004-637X/799/1/16 10.3847/2041-8213/acd635 10.3847/1538-3881/aabc4f 10.1086/174104 10.3847/1538-3881/acc183 10.5281/zenodo.8145703 10.1051/0004-6361/202245424 10.1016/j.jqsrt.2013.03.003 10.1086/305069 10.1145/3539801 10.3847/1538-4357/ac0f7e 10.1051/0004-6361/201834170 10.1086/319779 10.3847/1538-3881/ac2739 10.1051/0004-6361/201936891 10.1111/j.1745-3933.2005.00112.x 10.3847/1538-3881/aab54e 10.1109/MCSE.2007.55 10.1088/0953-4075/35/6/701 10.1051/0004-6361:200400056 10.1093/mnras/stw1160 10.1051/0004-6361/202037494 10.3847/2041-8213/aca331 10.1111/j.1365-2966.2010.17863.x 10.1038/s41550-022-01634-x 10.1086/116783 10.1038/s41550-019-0780-5 10.3847/2041-8213/aad695 10.1088/0004-637X/813/2/88 10.3847/1538-3881/acf375 10.3847/1538-4357/ac257b 10.3847/1538-3881/abeb7a 10.3847/1538-3881/ab811e 10.1051/0004-6361/202346221 10.3847/1538-4357/accf12 10.1086/586728 10.3847/1538-3881/ad1cec 10.1038/s41586-020-2649-2 10.1002/9783527617722 10.3847/1538-4357/ad1ee9 10.1038/s41592-019-0686-2 10.3847/1538-4357/ab1c61 10.3847/1538-3881/acf9ec 10.3847/1538-4357/ac7c74 |
ContentType | Journal Article |
Copyright | 2024. The Author(s). Published by the American Astronomical Society. 2024. The Author(s). Published by the American Astronomical Society. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2024. The Author(s). Published by the American Astronomical Society. – notice: 2024. The Author(s). Published by the American Astronomical Society. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | O3W TSCCA AAYXX CITATION 7TG 8FD H8D KL. L7M DOA |
DOI | 10.3847/1538-3881/ad67df |
DatabaseName | Institute of Physics Open Access Journals (Activated by CARLI) IOPscience (Open Access) CrossRef Meteorological & Geoastrophysical Abstracts Technology Research Database Aerospace Database Meteorological & Geoastrophysical Abstracts - Academic Advanced Technologies Database with Aerospace DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Aerospace Database Meteorological & Geoastrophysical Abstracts Technology Research Database Advanced Technologies Database with Aerospace Meteorological & Geoastrophysical Abstracts - Academic |
DatabaseTitleList | CrossRef Aerospace Database |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: O3W name: Institute of Physics Open Access Journal Titles url: http://iopscience.iop.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Astronomy & Astrophysics |
EISSN | 1538-3881 |
ExternalDocumentID | oai_doaj_org_article_e985bc4457c048f69cc265cb11462bb7 10_3847_1538_3881_ad67df ajad67df |
GrantInformation_xml | – fundername: Deutsche Forschungsgemeinschaft (DFG) grantid: MA~9185/1 funderid: https://doi.org/10.13039/501100001659 – fundername: China Postdoctoral Science Foundation (China Postdoctoral Foundation Project) grantid: 2023M740110 funderid: https://doi.org/10.13039/501100002858 – fundername: MOST ∣ NSFC ∣ Key Programme grantid: 12233004 funderid: https://doi.org/10.13039/501100010903 |
GroupedDBID | -DZ -~X 123 1JI 23N 4.4 6J9 85S AAFWJ AAGCD AAJIO ABDNZ ABHWH ABXSS ACBEA ACGFS ACHIP ACNCT ACYRX AEFHF AENEX AFPKN AGNAY AHPAA AKPSB ALMA_UNASSIGNED_HOLDINGS ASPBG ATQHT AVWKF AZFZN CJUJL CRLBU CS3 EBS F5P FRP GROUPED_DOAJ HF~ IJHAN IOP KOT N5L O3W O43 OK1 P2P PJBAE RIN RNP RNS ROL SY9 T37 TR2 TSCCA UPT WH7 ~02 AAYXX CITATION 7TG 8FD AEINN H8D KL. L7M |
ID | FETCH-LOGICAL-c416t-6cf155a9e9d5a8faffaa7cb0db60177cfefc6fc81f38dceb4d03423ac6abc31c3 |
IEDL.DBID | DOA |
ISSN | 0004-6256 |
IngestDate | Wed Aug 27 01:31:24 EDT 2025 Wed Aug 13 04:40:59 EDT 2025 Tue Jul 01 03:26:50 EDT 2025 Thu Apr 24 23:00:43 EDT 2025 Tue Sep 17 22:32:42 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Language | English |
License | Original content from this work may be used under the terms of the Creative Commons Attribution 4.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c416t-6cf155a9e9d5a8faffaa7cb0db60177cfefc6fc81f38dceb4d03423ac6abc31c3 |
Notes | AAS53660 The Solar System, Exoplanets, and Astrobiology ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0003-0568-9225 0000-0002-3053-3575 0000-0002-2919-7500 |
OpenAccessLink | https://doaj.org/article/e985bc4457c048f69cc265cb11462bb7 |
PQID | 3104501509 |
PQPubID | 4562438 |
PageCount | 10 |
ParticipantIDs | iop_journals_10_3847_1538_3881_ad67df crossref_primary_10_3847_1538_3881_ad67df doaj_primary_oai_doaj_org_article_e985bc4457c048f69cc265cb11462bb7 proquest_journals_3104501509 crossref_citationtrail_10_3847_1538_3881_ad67df |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-10-01 |
PublicationDateYYYYMMDD | 2024-10-01 |
PublicationDate_xml | – month: 10 year: 2024 text: 2024-10-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Madison |
PublicationPlace_xml | – name: Madison |
PublicationTitle | The Astronomical journal |
PublicationTitleAbbrev | AJ |
PublicationTitleAlternate | Astron. J |
PublicationYear | 2024 |
Publisher | The American Astronomical Society IOP Publishing |
Publisher_xml | – name: The American Astronomical Society – name: IOP Publishing |
References | Aoyama (ajad67dfbib3) 2019; 885 Zhu (ajad67dfbib69) 2015; 799 Zhou (ajad67dfbib67) 2023; 166 Spitzer (ajad67dfbib51) 1998 Zhou (ajad67dfbib66) 2021; 161 Hartmann (ajad67dfbib26) 1994; 426 Aoyama (ajad67dfbib4) 2018; 866 Demars (ajad67dfbib19) 2023; 676 Hasegawa (ajad67dfbib28) 2024; 167 Zhou (ajad67dfbib68) 2022; 934 Gardner (ajad67dfbib22) 2022; 48 Valenti (ajad67dfbib58) 1993; 106 Follette (ajad67dfbib21) 2023; 165 Haffert (ajad67dfbib23) 2019; 3 Muzerolle (ajad67dfbib46) 1998; 492 Harris (ajad67dfbib24) 2020; 585 Aoyama (ajad67dfbib6) 2020 Currie (ajad67dfbib18) 2022; 6 Hindmarsh (ajad67dfbib31) 2005; 31 Lodato (ajad67dfbib39) 2005; 364 Anderson (ajad67dfbib2) 2002; 35 Uyama (ajad67dfbib57) 2021; 162 Hasegawa (ajad67dfbib27) 2021; 923 Szulágyi (ajad67dfbib53) 2016; 460 Hunter (ajad67dfbib34) 2007; 9 Hindmarsh (ajad67dfbib32) 2024 Ringqvist (ajad67dfbib50) 2023; 669 Batygin (ajad67dfbib11) 2018; 155 Wang (ajad67dfbib64) 2019; 877 Newville (ajad67dfbib48) 2023 Muzerolle (ajad67dfbib47) 2001; 550 Van Rossum (ajad67dfbib59) 2009 Chauvin (ajad67dfbib15) 2004; 425 Thanathibodee (ajad67dfbib55) 2019; 885 Wagner (ajad67dfbib63) 2018; 863 Hashimoto (ajad67dfbib29) 2020; 159 Manjavacas (ajad67dfbib42) 2024; 167 Lima (ajad67dfbib38) 2010; 522 Betti (ajad67dfbib13) 2022b; 941 Marleau (ajad67dfbib45) 2023; 952 Betti (ajad67dfbib12) 2022a; 935 Herczeg (ajad67dfbib30) 2008; 681 Virtanen (ajad67dfbib61) 2020; 17 Zurlo (ajad67dfbib71) 2020; 633 Ingleby (ajad67dfbib35) 2013; 767 Koenigl (ajad67dfbib36) 1991; 370 Vaytet (ajad67dfbib60) 2013; 125 Malygin (ajad67dfbib41) 2014; 568 Marleau (ajad67dfbib43) 2024; 964 Bailer-Jones (ajad67dfbib10) 2021; 161 Zhu (ajad67dfbib70) 2015; 813 Astropy Collaboration (ajad67dfbib8) 2018; 156 Hartmann (ajad67dfbib25) 2016; 54 Eriksson (ajad67dfbib20) 2020; 638 Alcalá (ajad67dfbib1) 2017; 600 Huélamo (ajad67dfbib33) 2022; 668 Cugno (ajad67dfbib17) 2023; 166 Luhman (ajad67dfbib40) 2023; 949 Marleau (ajad67dfbib44) 2022; 657 Aoyama (ajad67dfbib5) 2021; 917 Cugno (ajad67dfbib16) 2019; 622 Astropy Collaboration (ajad67dfbib7) 2022; 935 Reggiani (ajad67dfbib49) 2016; 586 Takasao (ajad67dfbib54) 2021; 921 Vriens (ajad67dfbib62) 1980; 22 STScI Development Team (ajad67dfbib52) 2013 Astropy Collaboration (ajad67dfbib9) 2013; 558 Kwan (ajad67dfbib37) 2011; 411 Uyama (ajad67dfbib56) 2017; 154 Castelli (ajad67dfbib14) 2003 Xie (ajad67dfbib65) 2020; 644 |
References_xml | – volume: 522 start-page: A104 year: 2010 ident: ajad67dfbib38 publication-title: A&A doi: 10.1051/0004-6361/201014490 – volume: 600 start-page: A20 year: 2017 ident: ajad67dfbib1 publication-title: A&A doi: 10.1051/0004-6361/201629929 – volume: 935 start-page: L18 year: 2022a ident: ajad67dfbib12 publication-title: ApJL doi: 10.3847/2041-8213/ac85ef – volume: 885 start-page: L29 year: 2019 ident: ajad67dfbib3 publication-title: ApJ doi: 10.3847/2041-8213/ab5062 – volume: 558 start-page: A33 year: 2013 ident: ajad67dfbib9 publication-title: A&A doi: 10.1051/0004-6361/201322068 – volume: 644 start-page: A149 year: 2020 ident: ajad67dfbib65 publication-title: A&A doi: 10.1051/0004-6361/202038242 – volume: 917 start-page: L30 year: 2021 ident: ajad67dfbib5 publication-title: ApJL doi: 10.3847/2041-8213/ac19bd – volume: 54 start-page: 135 year: 2016 ident: ajad67dfbib25 publication-title: ARA&A doi: 10.1146/annurev-astro-081915-023347 – volume: 586 start-page: A147 year: 2016 ident: ajad67dfbib49 publication-title: A&A doi: 10.1051/0004-6361/201525930 – volume: 885 start-page: 94 year: 2019 ident: ajad67dfbib55 publication-title: ApJ doi: 10.3847/1538-4357/ab44c1 – volume: 767 start-page: 112 year: 2013 ident: ajad67dfbib35 publication-title: ApJ doi: 10.1088/0004-637X/767/2/112 – volume: 154 start-page: 90 year: 2017 ident: ajad67dfbib56 publication-title: AJ doi: 10.3847/1538-3881/aa816a – volume: 638 start-page: L6 year: 2020 ident: ajad67dfbib20 publication-title: A&A doi: 10.1051/0004-6361/202038131 – volume: 370 start-page: L39 year: 1991 ident: ajad67dfbib36 publication-title: ApJL doi: 10.1086/185972 – volume: 31 start-page: 363 year: 2005 ident: ajad67dfbib31 publication-title: TOMS doi: 10.1145/1089014.1089020 – volume: 22 start-page: 940 year: 1980 ident: ajad67dfbib62 publication-title: PhRvA doi: 10.1103/PhysRevA.22.940 – volume: 161 start-page: 147 year: 2021 ident: ajad67dfbib10 publication-title: AJ doi: 10.3847/1538-3881/abd806 – volume: 568 start-page: A91 year: 2014 ident: ajad67dfbib41 publication-title: A&A doi: 10.1051/0004-6361/201423768 – volume: 866 start-page: 84 year: 2018 ident: ajad67dfbib4 publication-title: ApJ doi: 10.3847/1538-4357/aadc11 – volume: 668 start-page: A138 year: 2022 ident: ajad67dfbib33 publication-title: A&A doi: 10.1051/0004-6361/202243918 – volume: 934 start-page: L13 year: 2022 ident: ajad67dfbib68 publication-title: ApJL doi: 10.3847/2041-8213/ac7fef – volume: 167 start-page: 168 year: 2024 ident: ajad67dfbib42 publication-title: AJ doi: 10.3847/1538-3881/ad2938 – year: 2013 ident: ajad67dfbib52 – volume: 799 start-page: 16 year: 2015 ident: ajad67dfbib69 publication-title: ApJ doi: 10.1088/0004-637X/799/1/16 – volume: 949 start-page: L36 year: 2023 ident: ajad67dfbib40 publication-title: ApJL doi: 10.3847/2041-8213/acd635 – volume: 156 start-page: 123 year: 2018 ident: ajad67dfbib8 publication-title: AJ doi: 10.3847/1538-3881/aabc4f – volume: 426 start-page: 669 year: 1994 ident: ajad67dfbib26 publication-title: ApJ doi: 10.1086/174104 – volume: 165 start-page: 225 year: 2023 ident: ajad67dfbib21 publication-title: AJ doi: 10.3847/1538-3881/acc183 – year: 2023 ident: ajad67dfbib48 doi: 10.5281/zenodo.8145703 – year: 2024 ident: ajad67dfbib32 – volume: 669 start-page: L12 year: 2023 ident: ajad67dfbib50 publication-title: A&A doi: 10.1051/0004-6361/202245424 – volume: 125 start-page: 105 year: 2013 ident: ajad67dfbib60 publication-title: JQSRT doi: 10.1016/j.jqsrt.2013.03.003 – volume: 492 start-page: 743 year: 1998 ident: ajad67dfbib46 publication-title: ApJ doi: 10.1086/305069 – volume: 48 start-page: 1 year: 2022 ident: ajad67dfbib22 publication-title: TOMS doi: 10.1145/3539801 – volume: 921 start-page: 10 year: 2021 ident: ajad67dfbib54 publication-title: ApJ doi: 10.3847/1538-4357/ac0f7e – start-page: A20 year: 2003 ident: ajad67dfbib14 – volume: 622 start-page: A156 year: 2019 ident: ajad67dfbib16 publication-title: A&A doi: 10.1051/0004-6361/201834170 – volume: 550 start-page: 944 year: 2001 ident: ajad67dfbib47 publication-title: ApJ doi: 10.1086/319779 – volume: 162 start-page: 214 year: 2021 ident: ajad67dfbib57 publication-title: AJ doi: 10.3847/1538-3881/ac2739 – volume: 633 start-page: A119 year: 2020 ident: ajad67dfbib71 publication-title: A&A doi: 10.1051/0004-6361/201936891 – volume: 364 start-page: L91 year: 2005 ident: ajad67dfbib39 publication-title: MNRAS doi: 10.1111/j.1745-3933.2005.00112.x – volume: 155 start-page: 178 year: 2018 ident: ajad67dfbib11 publication-title: AJ doi: 10.3847/1538-3881/aab54e – volume: 9 start-page: 90 year: 2007 ident: ajad67dfbib34 publication-title: CSE doi: 10.1109/MCSE.2007.55 – volume: 35 start-page: 1613 year: 2002 ident: ajad67dfbib2 publication-title: JPhB doi: 10.1088/0953-4075/35/6/701 – volume: 425 start-page: L29 year: 2004 ident: ajad67dfbib15 publication-title: A&A doi: 10.1051/0004-6361:200400056 – volume: 460 start-page: 2853 year: 2016 ident: ajad67dfbib53 publication-title: MNRAS doi: 10.1093/mnras/stw1160 – year: 2009 ident: ajad67dfbib59 – volume: 657 start-page: A38 year: 2022 ident: ajad67dfbib44 publication-title: A&A doi: 10.1051/0004-6361/202037494 – volume: 941 start-page: L20 year: 2022b ident: ajad67dfbib13 publication-title: ApJL doi: 10.3847/2041-8213/aca331 – volume: 411 start-page: 2383 year: 2011 ident: ajad67dfbib37 publication-title: MNRAS doi: 10.1111/j.1365-2966.2010.17863.x – volume: 6 start-page: 751 year: 2022 ident: ajad67dfbib18 publication-title: NatAs doi: 10.1038/s41550-022-01634-x – volume: 106 start-page: 2024 year: 1993 ident: ajad67dfbib58 publication-title: AJ doi: 10.1086/116783 – volume: 3 start-page: 749 year: 2019 ident: ajad67dfbib23 publication-title: NatAs doi: 10.1038/s41550-019-0780-5 – volume: 863 start-page: L8 year: 2018 ident: ajad67dfbib63 publication-title: ApJL doi: 10.3847/2041-8213/aad695 – volume: 813 start-page: 88 year: 2015 ident: ajad67dfbib70 publication-title: ApJ doi: 10.1088/0004-637X/813/2/88 – volume: 166 start-page: 162 year: 2023 ident: ajad67dfbib17 publication-title: AJ doi: 10.3847/1538-3881/acf375 – volume: 923 start-page: 27 year: 2021 ident: ajad67dfbib27 publication-title: ApJ doi: 10.3847/1538-4357/ac257b – volume: 161 start-page: 244 year: 2021 ident: ajad67dfbib66 publication-title: AJ doi: 10.3847/1538-3881/abeb7a – year: 2020 ident: ajad67dfbib6 – volume: 159 start-page: 222 year: 2020 ident: ajad67dfbib29 publication-title: AJ doi: 10.3847/1538-3881/ab811e – volume: 676 start-page: A123 year: 2023 ident: ajad67dfbib19 publication-title: A&A doi: 10.1051/0004-6361/202346221 – volume: 952 start-page: 89 year: 2023 ident: ajad67dfbib45 publication-title: ApJ doi: 10.3847/1538-4357/accf12 – volume: 681 start-page: 594 year: 2008 ident: ajad67dfbib30 publication-title: ApJ doi: 10.1086/586728 – volume: 167 start-page: 105 year: 2024 ident: ajad67dfbib28 publication-title: AJ doi: 10.3847/1538-3881/ad1cec – volume: 585 start-page: 357 year: 2020 ident: ajad67dfbib24 publication-title: Natur doi: 10.1038/s41586-020-2649-2 – year: 1998 ident: ajad67dfbib51 doi: 10.1002/9783527617722 – volume: 964 start-page: 70 year: 2024 ident: ajad67dfbib43 publication-title: ApJ doi: 10.3847/1538-4357/ad1ee9 – volume: 17 start-page: 261 year: 2020 ident: ajad67dfbib61 publication-title: NatMe doi: 10.1038/s41592-019-0686-2 – volume: 877 start-page: 116 year: 2019 ident: ajad67dfbib64 publication-title: ApJ doi: 10.3847/1538-4357/ab1c61 – volume: 166 start-page: 220 year: 2023 ident: ajad67dfbib67 publication-title: AJ doi: 10.3847/1538-3881/acf9ec – volume: 935 start-page: 167 year: 2022 ident: ajad67dfbib7 publication-title: ApJ doi: 10.3847/1538-4357/ac7c74 |
SSID | ssj0011804 |
Score | 2.4784992 |
Snippet | Hydrogen lines from forming planets are crucial for understanding planet formation. However, the number of planetary hydrogen line detections is still limited.... |
SourceID | doaj proquest crossref iop |
SourceType | Open Website Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 155 |
SubjectTerms | Accretion Emission analysis Exoplanet formation Extrasolar gaseous giant planets H I line emission Hydrogen James Webb Space Telescope Line spectra Magnetospheres Observational studies Parameter uncertainty Planet formation Planetary surfaces Planets Spectral energy distribution Uncertainty analysis |
SummonAdditionalLinks | – databaseName: Institute of Physics Open Access Journals (Activated by CARLI) dbid: O3W link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELZKuXBBPNUtBfkASBzCJvEbTlugLJUoCLba3iJ7bB8QTardcFh-PWMnuwiBKm5W5NiWZzwve74h5Cl3BqqgRYHaRBUcdV6ho2SFCVarujRlgBTv-Hgm5-f89EJc7JHXu1yY7moU_S-xOQAFD1uYzjdDWTrNZ5RpXU2tl8rHG-Qm01Inz-sTW-6uECpdDhDMJS_QyB_vKP85wh86KUP3o6bB6f-Sz1npnNwht0drkc6Gtd0le6G9Rw5m6xS_7i439DnN7SE8sb5PvmWMkZ-ojujp8utievbhSyowT-cbv-qQVSi6noG-DX1-gNWuqe3pYjmjtTp-RVPtzm3FCDoDSPmNXUs_p3D9KuGuUtt6-j50l6FfbR6Q85N3izfzYqymUAAaXX0hIaLtYE0wXlgdbYzWKnCld-iTKQUxRJARdBWZ9hAc9xkd0IK0DlgF7CHZb7s2HBAaeAy8DMwKj96kk85qr9AzFKbWtmZmQqbb_WxghBpP6__eoMuRKNAkCjSJAs1AgQl5sfvjaoDZuKbvcSLRrl8CyM4fkFmakVmaYLRwwLlQgDIqSgNQSwEuJWHXzqkJeYYEbsYDu75msqMtC_zujCYxFylUZA7_c5hH5FaN1tDwCvCI7PerH-ExWjO9e5K59hdZmu1r priority: 102 providerName: IOP Publishing |
Title | Analyzing JWST/NIRSpec Hydrogen Line Detections at TWA 27B: Constraining Accretion Properties and Geometry |
URI | https://iopscience.iop.org/article/10.3847/1538-3881/ad67df https://www.proquest.com/docview/3104501509 https://doaj.org/article/e985bc4457c048f69cc265cb11462bb7 |
Volume | 168 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQT70goKAuFOQDIHGI8rDjR2_bQtlWoq1gq-0tsse2VESTajc9LL--YydbQEjlwsWKoolieT57Hra_IeQttxpKr-oMrYnMONq8TAXBMu2NklWhCw8x3_HlVMwu-Mllfflbqa94JmygBx4GLvda1RY4ryUg2ILQAJWowcbbtJW16R452rxNMDXuH5Sq4MOmJMPlN0_TmilV5sYJ6cIfRihx9aNpuepu_lqQk5U5ekIej-4hnQ7dekoe-fYZ2Z2uYsK6u17T9zQ9D_mI1Q75nkhFfqL9oSeLb_P89PhrrChPZ2u37BAbFGNNTz_6Pp24alfU9HS-mNJKHuzTWKxzUyKCTgHihcaupecxP7-MRKvUtI5-9t2175fr5-Ti6NP8cJaN5RMyQC-rzwQEdBaM9trVRgUTgjESbOEsBmFSQvABRABVBqYceMtdogM0IIwFVgJ7QbbarvW7hHoePC88M7XD8NEKa5STGArWulKmYnpC8s14NjByi8f-_2gwxogaaKIGmqiBZtDAhHy4_-Jm4NV4QPYgquheLjJipxeIk2bESfMvnEzIO1RwM87Q1QM_29tA4Jcw-sC8jrkh_fJ_9OUV2a7QNxrOBO6RrX5561-jb9PbNwnG2B6fnWN7xhZ3x7D3JQ |
linkProvider | Directory of Open Access Journals |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LbxMxELagSIgLKi81tIAPgMRh2Yff3FJKSAuEClKlt5WfB0R3o2Q5hF_P2LsJQqCK22rl9Vqe8cw3Y_sbhJ5To2zpJcvAm4iMgs_LZOAkU15LURWq8DbmOz7N-PSCnl2yy6HOaboL0y4H0_8aHnui4H4K4_omYEvztEaJlGWuHRcu5EsXbqJbjHAeazd8JovdNkIpi56GuaAZAP1hn_KfvfzhlxJ9P3gbGMJfNjo5nsk-ujsgRjzux3cP3fDNfXQwXsccdnu1wS9xeu5TFOsH6FviGfkJLgmfLb7O89npl1hkHk83btWCumAIPz0-8V06hNWsse7wfDHGlTh-g2P9zm3VCDy2Nt5xbBt8HlP2q8i9inXj8HvfXvlutXmILibv5m-n2VBRIbMAvLqM2wD4QSuvHNMy6BC0FtYUzkBcJoQNPlgerCwDkc56Q11iCNSWa2NJackjtNe0jT9A2NPgaeGJZg4iSsONlk5AdMhUJXVF1Ajl2_ms7UA3Hsf_vYawI0qgjhKoowTqXgIj9Gr3xbKn2rim7XEU0a5dJMlOL0Bh6kFhaq8kM5ZSJizYqcCVtRVn1sSL2JUxYoRegIDrYdGur_nZ0VYFfjcGWExZTBepx__ZzTN0-_xkUn88nX04RHcqAEf9ocAjtNetfvgnAG468zQp8C8FnPFa |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Analyzing+JWST%2FNIRSpec+Hydrogen+Line+Detections+at+TWA+27B%3A+Constraining+Accretion+Properties+and+Geometry&rft.jtitle=The+Astronomical+journal&rft.au=Aoyama%2C+Yuhiko&rft.au=Marleau%2C+Gabriel-Dominique&rft.au=Hashimoto%2C+Jun&rft.date=2024-10-01&rft.issn=0004-6256&rft.eissn=1538-3881&rft.volume=168&rft.issue=4&rft.spage=155&rft_id=info:doi/10.3847%2F1538-3881%2Fad67df&rft.externalDBID=n%2Fa&rft.externalDocID=10_3847_1538_3881_ad67df |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0004-6256&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0004-6256&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0004-6256&client=summon |