Analyzing JWST/NIRSpec Hydrogen Line Detections at TWA 27B: Constraining Accretion Properties and Geometry

Hydrogen lines from forming planets are crucial for understanding planet formation. However, the number of planetary hydrogen line detections is still limited. Recent JWST/NIRSpec observations have detected Paschen and Brackett hydrogen lines at TWA 27 B (2M1207b). Although classified as a planetary...

Full description

Saved in:
Bibliographic Details
Published inThe Astronomical journal Vol. 168; no. 4; pp. 155 - 164
Main Authors Aoyama, Yuhiko, Marleau, Gabriel-Dominique, Hashimoto, Jun
Format Journal Article
LanguageEnglish
Published Madison The American Astronomical Society 01.10.2024
IOP Publishing
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Hydrogen lines from forming planets are crucial for understanding planet formation. However, the number of planetary hydrogen line detections is still limited. Recent JWST/NIRSpec observations have detected Paschen and Brackett hydrogen lines at TWA 27 B (2M1207b). Although classified as a planetary- mass companison (PMC) rather than a planet due to its large mass ratio to the central star, TWA 27 B’s hydrogen line emissions are expected to be same as the planetary one, given its small mass (≈5 M J ). We aim to constrain the accretion properties and accretion geometry of TWA 27 B, contributing to our understanding of hydrogen-line emission mechanisms common to both PMCs and planets. We conduct spectral fitting of four bright hydrogen lines (Pa- α , Pa- β , Pa- γ , Pa- δ ) with an accretion-shock emission model tailored for forming planets. We estimate the mass accretion rate at M ̇ ≈ 3 × 10 − 9 M J yr − 1 with our fiducial parameters, though this is subject to an uncertainty of up to factor of ten. Our analysis also indicates a dense accretion flow, n ≳ 10 13 cm −3 just before the shock, implying a small accretion-shock filling factor f f on the planetary surface ( f f ≲ 5 × 10 −4 ). This finding suggests that magnetospheric accretion is occurring at TWA 27 B. Additionally, we carry out a comparative analysis of hydrogen-line emission color to identify the emission mechanism, but the associated uncertainties proved too large for definitive conclusions. This underscores the need for further high-precision observational studies to elucidate these emission mechanisms fully.
AbstractList Hydrogen lines from forming planets are crucial for understanding planet formation. However, the number of planetary hydrogen line detections is still limited. Recent JWST/NIRSpec observations have detected Paschen and Brackett hydrogen lines at TWA 27 B (2M1207b). Although classified as a planetary- mass companison (PMC) rather than a planet due to its large mass ratio to the central star, TWA 27 B’s hydrogen line emissions are expected to be same as the planetary one, given its small mass (≈5 M _J ). We aim to constrain the accretion properties and accretion geometry of TWA 27 B, contributing to our understanding of hydrogen-line emission mechanisms common to both PMCs and planets. We conduct spectral fitting of four bright hydrogen lines (Pa- α , Pa- β , Pa- γ , Pa- δ ) with an accretion-shock emission model tailored for forming planets. We estimate the mass accretion rate at $\dot{M}\approx 3\times {10}^{-9}\,{M}_{{\rm{J}}}\,{\mathrm{yr}}^{-1}$ with our fiducial parameters, though this is subject to an uncertainty of up to factor of ten. Our analysis also indicates a dense accretion flow, n ≳ 10 ^13 cm ^−3 just before the shock, implying a small accretion-shock filling factor f _f on the planetary surface ( f _f ≲ 5 × 10 ^−4 ). This finding suggests that magnetospheric accretion is occurring at TWA 27 B. Additionally, we carry out a comparative analysis of hydrogen-line emission color to identify the emission mechanism, but the associated uncertainties proved too large for definitive conclusions. This underscores the need for further high-precision observational studies to elucidate these emission mechanisms fully.
Hydrogen lines from forming planets are crucial for understanding planet formation. However, the number of planetary hydrogen line detections is still limited. Recent JWST/NIRSpec observations have detected Paschen and Brackett hydrogen lines at TWA 27 B (2M1207b). Although classified as a planetary- mass companison (PMC) rather than a planet due to its large mass ratio to the central star, TWA 27 B’s hydrogen line emissions are expected to be same as the planetary one, given its small mass (≈5 M J ). We aim to constrain the accretion properties and accretion geometry of TWA 27 B, contributing to our understanding of hydrogen-line emission mechanisms common to both PMCs and planets. We conduct spectral fitting of four bright hydrogen lines (Pa- α , Pa- β , Pa- γ , Pa- δ ) with an accretion-shock emission model tailored for forming planets. We estimate the mass accretion rate at M ̇ ≈ 3 × 10 − 9 M J yr − 1 with our fiducial parameters, though this is subject to an uncertainty of up to factor of ten. Our analysis also indicates a dense accretion flow, n ≳ 10 13 cm −3 just before the shock, implying a small accretion-shock filling factor f f on the planetary surface ( f f ≲ 5 × 10 −4 ). This finding suggests that magnetospheric accretion is occurring at TWA 27 B. Additionally, we carry out a comparative analysis of hydrogen-line emission color to identify the emission mechanism, but the associated uncertainties proved too large for definitive conclusions. This underscores the need for further high-precision observational studies to elucidate these emission mechanisms fully.
Hydrogen lines from forming planets are crucial for understanding planet formation. However, the number of planetary hydrogen line detections is still limited. Recent JWST/NIRSpec observations have detected Paschen and Brackett hydrogen lines at TWA 27 B (2M1207b). Although classified as a planetary- mass companison (PMC) rather than a planet due to its large mass ratio to the central star, TWA 27 B’s hydrogen line emissions are expected to be same as the planetary one, given its small mass (≈5MJ). We aim to constrain the accretion properties and accretion geometry of TWA 27 B, contributing to our understanding of hydrogen-line emission mechanisms common to both PMCs and planets. We conduct spectral fitting of four bright hydrogen lines (Pa-α, Pa-β, Pa-γ, Pa-δ) with an accretion-shock emission model tailored for forming planets. We estimate the mass accretion rate at Ṁ≈3×10−9MJyr−1 with our fiducial parameters, though this is subject to an uncertainty of up to factor of ten. Our analysis also indicates a dense accretion flow, n ≳ 1013 cm−3 just before the shock, implying a small accretion-shock filling factor ff on the planetary surface (ff ≲ 5 × 10−4). This finding suggests that magnetospheric accretion is occurring at TWA 27 B. Additionally, we carry out a comparative analysis of hydrogen-line emission color to identify the emission mechanism, but the associated uncertainties proved too large for definitive conclusions. This underscores the need for further high-precision observational studies to elucidate these emission mechanisms fully.
Author Marleau, Gabriel-Dominique
Aoyama, Yuhiko
Hashimoto, Jun
Author_xml – sequence: 1
  givenname: Yuhiko
  orcidid: 0000-0003-0568-9225
  surname: Aoyama
  fullname: Aoyama, Yuhiko
  organization: Sun Yat-sen University School of Physics and Astronomy, Zhuhai 519082, People's Republic of China
– sequence: 2
  givenname: Gabriel-Dominique
  orcidid: 0000-0002-2919-7500
  surname: Marleau
  fullname: Marleau, Gabriel-Dominique
  organization: Max-Planck-Institut für Astronomie , Königstuhl 17, 69117 Heidelberg, Germany
– sequence: 3
  givenname: Jun
  orcidid: 0000-0002-3053-3575
  surname: Hashimoto
  fullname: Hashimoto, Jun
  organization: Graduate University for Advanced Studies (SOKENDAI) Department of Astronomy, School of Science, Mitaka, Tokyo 181-8588, Japan
BookMark eNp9kcFv0zAYxS00JLrBnaMlroTaie043EoHW1EFiBXtaDlfPleuOjs43qH89UsWNCQkOFl6er_nT--dk7MQAxLymrN3lRb1kstKF5XWfGk7VXfuGVk8SWdkwRgThSqlekHOh-HAGOeaiQU5rII9nn75sKefb292yy-b7zc9Ar0-dSnuMdCtD0gvMSNkH8NAbaa72xUt6w_v6XoUcrI-TPgKIOHkod9S7DFlj6M7dPQK4x3mdHpJnjt7HPDV7_eC_Pj0cbe-LrZfrzbr1bYAwVUuFDgupW2w6aTVzjpnbQ0t61rFeF2DQwfKgeau0h1gKzpWibKyoGwLFYfqgmzm3C7ag-mTv7PpZKL15lGIaW_seB0c0WCjZQtCyBqY0E41AKWS0HIuVNm29Zj1Zs7qU_x5j0M2h3ifxsoGU3EmJOOSNaOLzS5IcRgSuqdfOTPTOmaawkxTmHmdEVF_IeCzneqbCj3-D3w7gz72f475p_0BqLWlRg
CitedBy_id crossref_primary_10_3847_1538_3881_ad957e
crossref_primary_10_3847_2041_8213_adb134
Cites_doi 10.1051/0004-6361/201014490
10.1051/0004-6361/201629929
10.3847/2041-8213/ac85ef
10.3847/2041-8213/ab5062
10.1051/0004-6361/201322068
10.1051/0004-6361/202038242
10.3847/2041-8213/ac19bd
10.1146/annurev-astro-081915-023347
10.1051/0004-6361/201525930
10.3847/1538-4357/ab44c1
10.1088/0004-637X/767/2/112
10.3847/1538-3881/aa816a
10.1051/0004-6361/202038131
10.1086/185972
10.1145/1089014.1089020
10.1103/PhysRevA.22.940
10.3847/1538-3881/abd806
10.1051/0004-6361/201423768
10.3847/1538-4357/aadc11
10.1051/0004-6361/202243918
10.3847/2041-8213/ac7fef
10.3847/1538-3881/ad2938
10.1088/0004-637X/799/1/16
10.3847/2041-8213/acd635
10.3847/1538-3881/aabc4f
10.1086/174104
10.3847/1538-3881/acc183
10.5281/zenodo.8145703
10.1051/0004-6361/202245424
10.1016/j.jqsrt.2013.03.003
10.1086/305069
10.1145/3539801
10.3847/1538-4357/ac0f7e
10.1051/0004-6361/201834170
10.1086/319779
10.3847/1538-3881/ac2739
10.1051/0004-6361/201936891
10.1111/j.1745-3933.2005.00112.x
10.3847/1538-3881/aab54e
10.1109/MCSE.2007.55
10.1088/0953-4075/35/6/701
10.1051/0004-6361:200400056
10.1093/mnras/stw1160
10.1051/0004-6361/202037494
10.3847/2041-8213/aca331
10.1111/j.1365-2966.2010.17863.x
10.1038/s41550-022-01634-x
10.1086/116783
10.1038/s41550-019-0780-5
10.3847/2041-8213/aad695
10.1088/0004-637X/813/2/88
10.3847/1538-3881/acf375
10.3847/1538-4357/ac257b
10.3847/1538-3881/abeb7a
10.3847/1538-3881/ab811e
10.1051/0004-6361/202346221
10.3847/1538-4357/accf12
10.1086/586728
10.3847/1538-3881/ad1cec
10.1038/s41586-020-2649-2
10.1002/9783527617722
10.3847/1538-4357/ad1ee9
10.1038/s41592-019-0686-2
10.3847/1538-4357/ab1c61
10.3847/1538-3881/acf9ec
10.3847/1538-4357/ac7c74
ContentType Journal Article
Copyright 2024. The Author(s). Published by the American Astronomical Society.
2024. The Author(s). Published by the American Astronomical Society. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2024. The Author(s). Published by the American Astronomical Society.
– notice: 2024. The Author(s). Published by the American Astronomical Society. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID O3W
TSCCA
AAYXX
CITATION
7TG
8FD
H8D
KL.
L7M
DOA
DOI 10.3847/1538-3881/ad67df
DatabaseName Institute of Physics Open Access Journals (Activated by CARLI)
IOPscience (Open Access)
CrossRef
Meteorological & Geoastrophysical Abstracts
Technology Research Database
Aerospace Database
Meteorological & Geoastrophysical Abstracts - Academic
Advanced Technologies Database with Aerospace
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Aerospace Database
Meteorological & Geoastrophysical Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
Meteorological & Geoastrophysical Abstracts - Academic
DatabaseTitleList
CrossRef
Aerospace Database
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: O3W
  name: Institute of Physics Open Access Journal Titles
  url: http://iopscience.iop.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Astronomy & Astrophysics
EISSN 1538-3881
ExternalDocumentID oai_doaj_org_article_e985bc4457c048f69cc265cb11462bb7
10_3847_1538_3881_ad67df
ajad67df
GrantInformation_xml – fundername: Deutsche Forschungsgemeinschaft (DFG)
  grantid: MA~9185/1
  funderid: https://doi.org/10.13039/501100001659
– fundername: China Postdoctoral Science Foundation (China Postdoctoral Foundation Project)
  grantid: 2023M740110
  funderid: https://doi.org/10.13039/501100002858
– fundername: MOST ∣ NSFC ∣ Key Programme
  grantid: 12233004
  funderid: https://doi.org/10.13039/501100010903
GroupedDBID -DZ
-~X
123
1JI
23N
4.4
6J9
85S
AAFWJ
AAGCD
AAJIO
ABDNZ
ABHWH
ABXSS
ACBEA
ACGFS
ACHIP
ACNCT
ACYRX
AEFHF
AENEX
AFPKN
AGNAY
AHPAA
AKPSB
ALMA_UNASSIGNED_HOLDINGS
ASPBG
ATQHT
AVWKF
AZFZN
CJUJL
CRLBU
CS3
EBS
F5P
FRP
GROUPED_DOAJ
HF~
IJHAN
IOP
KOT
N5L
O3W
O43
OK1
P2P
PJBAE
RIN
RNP
RNS
ROL
SY9
T37
TR2
TSCCA
UPT
WH7
~02
AAYXX
CITATION
7TG
8FD
AEINN
H8D
KL.
L7M
ID FETCH-LOGICAL-c416t-6cf155a9e9d5a8faffaa7cb0db60177cfefc6fc81f38dceb4d03423ac6abc31c3
IEDL.DBID DOA
ISSN 0004-6256
IngestDate Wed Aug 27 01:31:24 EDT 2025
Wed Aug 13 04:40:59 EDT 2025
Tue Jul 01 03:26:50 EDT 2025
Thu Apr 24 23:00:43 EDT 2025
Tue Sep 17 22:32:42 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
License Original content from this work may be used under the terms of the Creative Commons Attribution 4.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c416t-6cf155a9e9d5a8faffaa7cb0db60177cfefc6fc81f38dceb4d03423ac6abc31c3
Notes AAS53660
The Solar System, Exoplanets, and Astrobiology
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-0568-9225
0000-0002-3053-3575
0000-0002-2919-7500
OpenAccessLink https://doaj.org/article/e985bc4457c048f69cc265cb11462bb7
PQID 3104501509
PQPubID 4562438
PageCount 10
ParticipantIDs iop_journals_10_3847_1538_3881_ad67df
crossref_primary_10_3847_1538_3881_ad67df
doaj_primary_oai_doaj_org_article_e985bc4457c048f69cc265cb11462bb7
proquest_journals_3104501509
crossref_citationtrail_10_3847_1538_3881_ad67df
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-10-01
PublicationDateYYYYMMDD 2024-10-01
PublicationDate_xml – month: 10
  year: 2024
  text: 2024-10-01
  day: 01
PublicationDecade 2020
PublicationPlace Madison
PublicationPlace_xml – name: Madison
PublicationTitle The Astronomical journal
PublicationTitleAbbrev AJ
PublicationTitleAlternate Astron. J
PublicationYear 2024
Publisher The American Astronomical Society
IOP Publishing
Publisher_xml – name: The American Astronomical Society
– name: IOP Publishing
References Aoyama (ajad67dfbib3) 2019; 885
Zhu (ajad67dfbib69) 2015; 799
Zhou (ajad67dfbib67) 2023; 166
Spitzer (ajad67dfbib51) 1998
Zhou (ajad67dfbib66) 2021; 161
Hartmann (ajad67dfbib26) 1994; 426
Aoyama (ajad67dfbib4) 2018; 866
Demars (ajad67dfbib19) 2023; 676
Hasegawa (ajad67dfbib28) 2024; 167
Zhou (ajad67dfbib68) 2022; 934
Gardner (ajad67dfbib22) 2022; 48
Valenti (ajad67dfbib58) 1993; 106
Follette (ajad67dfbib21) 2023; 165
Haffert (ajad67dfbib23) 2019; 3
Muzerolle (ajad67dfbib46) 1998; 492
Harris (ajad67dfbib24) 2020; 585
Aoyama (ajad67dfbib6) 2020
Currie (ajad67dfbib18) 2022; 6
Hindmarsh (ajad67dfbib31) 2005; 31
Lodato (ajad67dfbib39) 2005; 364
Anderson (ajad67dfbib2) 2002; 35
Uyama (ajad67dfbib57) 2021; 162
Hasegawa (ajad67dfbib27) 2021; 923
Szulágyi (ajad67dfbib53) 2016; 460
Hunter (ajad67dfbib34) 2007; 9
Hindmarsh (ajad67dfbib32) 2024
Ringqvist (ajad67dfbib50) 2023; 669
Batygin (ajad67dfbib11) 2018; 155
Wang (ajad67dfbib64) 2019; 877
Newville (ajad67dfbib48) 2023
Muzerolle (ajad67dfbib47) 2001; 550
Van Rossum (ajad67dfbib59) 2009
Chauvin (ajad67dfbib15) 2004; 425
Thanathibodee (ajad67dfbib55) 2019; 885
Wagner (ajad67dfbib63) 2018; 863
Hashimoto (ajad67dfbib29) 2020; 159
Manjavacas (ajad67dfbib42) 2024; 167
Lima (ajad67dfbib38) 2010; 522
Betti (ajad67dfbib13) 2022b; 941
Marleau (ajad67dfbib45) 2023; 952
Betti (ajad67dfbib12) 2022a; 935
Herczeg (ajad67dfbib30) 2008; 681
Virtanen (ajad67dfbib61) 2020; 17
Zurlo (ajad67dfbib71) 2020; 633
Ingleby (ajad67dfbib35) 2013; 767
Koenigl (ajad67dfbib36) 1991; 370
Vaytet (ajad67dfbib60) 2013; 125
Malygin (ajad67dfbib41) 2014; 568
Marleau (ajad67dfbib43) 2024; 964
Bailer-Jones (ajad67dfbib10) 2021; 161
Zhu (ajad67dfbib70) 2015; 813
Astropy Collaboration (ajad67dfbib8) 2018; 156
Hartmann (ajad67dfbib25) 2016; 54
Eriksson (ajad67dfbib20) 2020; 638
Alcalá (ajad67dfbib1) 2017; 600
Huélamo (ajad67dfbib33) 2022; 668
Cugno (ajad67dfbib17) 2023; 166
Luhman (ajad67dfbib40) 2023; 949
Marleau (ajad67dfbib44) 2022; 657
Aoyama (ajad67dfbib5) 2021; 917
Cugno (ajad67dfbib16) 2019; 622
Astropy Collaboration (ajad67dfbib7) 2022; 935
Reggiani (ajad67dfbib49) 2016; 586
Takasao (ajad67dfbib54) 2021; 921
Vriens (ajad67dfbib62) 1980; 22
STScI Development Team (ajad67dfbib52) 2013
Astropy Collaboration (ajad67dfbib9) 2013; 558
Kwan (ajad67dfbib37) 2011; 411
Uyama (ajad67dfbib56) 2017; 154
Castelli (ajad67dfbib14) 2003
Xie (ajad67dfbib65) 2020; 644
References_xml – volume: 522
  start-page: A104
  year: 2010
  ident: ajad67dfbib38
  publication-title: A&A
  doi: 10.1051/0004-6361/201014490
– volume: 600
  start-page: A20
  year: 2017
  ident: ajad67dfbib1
  publication-title: A&A
  doi: 10.1051/0004-6361/201629929
– volume: 935
  start-page: L18
  year: 2022a
  ident: ajad67dfbib12
  publication-title: ApJL
  doi: 10.3847/2041-8213/ac85ef
– volume: 885
  start-page: L29
  year: 2019
  ident: ajad67dfbib3
  publication-title: ApJ
  doi: 10.3847/2041-8213/ab5062
– volume: 558
  start-page: A33
  year: 2013
  ident: ajad67dfbib9
  publication-title: A&A
  doi: 10.1051/0004-6361/201322068
– volume: 644
  start-page: A149
  year: 2020
  ident: ajad67dfbib65
  publication-title: A&A
  doi: 10.1051/0004-6361/202038242
– volume: 917
  start-page: L30
  year: 2021
  ident: ajad67dfbib5
  publication-title: ApJL
  doi: 10.3847/2041-8213/ac19bd
– volume: 54
  start-page: 135
  year: 2016
  ident: ajad67dfbib25
  publication-title: ARA&A
  doi: 10.1146/annurev-astro-081915-023347
– volume: 586
  start-page: A147
  year: 2016
  ident: ajad67dfbib49
  publication-title: A&A
  doi: 10.1051/0004-6361/201525930
– volume: 885
  start-page: 94
  year: 2019
  ident: ajad67dfbib55
  publication-title: ApJ
  doi: 10.3847/1538-4357/ab44c1
– volume: 767
  start-page: 112
  year: 2013
  ident: ajad67dfbib35
  publication-title: ApJ
  doi: 10.1088/0004-637X/767/2/112
– volume: 154
  start-page: 90
  year: 2017
  ident: ajad67dfbib56
  publication-title: AJ
  doi: 10.3847/1538-3881/aa816a
– volume: 638
  start-page: L6
  year: 2020
  ident: ajad67dfbib20
  publication-title: A&A
  doi: 10.1051/0004-6361/202038131
– volume: 370
  start-page: L39
  year: 1991
  ident: ajad67dfbib36
  publication-title: ApJL
  doi: 10.1086/185972
– volume: 31
  start-page: 363
  year: 2005
  ident: ajad67dfbib31
  publication-title: TOMS
  doi: 10.1145/1089014.1089020
– volume: 22
  start-page: 940
  year: 1980
  ident: ajad67dfbib62
  publication-title: PhRvA
  doi: 10.1103/PhysRevA.22.940
– volume: 161
  start-page: 147
  year: 2021
  ident: ajad67dfbib10
  publication-title: AJ
  doi: 10.3847/1538-3881/abd806
– volume: 568
  start-page: A91
  year: 2014
  ident: ajad67dfbib41
  publication-title: A&A
  doi: 10.1051/0004-6361/201423768
– volume: 866
  start-page: 84
  year: 2018
  ident: ajad67dfbib4
  publication-title: ApJ
  doi: 10.3847/1538-4357/aadc11
– volume: 668
  start-page: A138
  year: 2022
  ident: ajad67dfbib33
  publication-title: A&A
  doi: 10.1051/0004-6361/202243918
– volume: 934
  start-page: L13
  year: 2022
  ident: ajad67dfbib68
  publication-title: ApJL
  doi: 10.3847/2041-8213/ac7fef
– volume: 167
  start-page: 168
  year: 2024
  ident: ajad67dfbib42
  publication-title: AJ
  doi: 10.3847/1538-3881/ad2938
– year: 2013
  ident: ajad67dfbib52
– volume: 799
  start-page: 16
  year: 2015
  ident: ajad67dfbib69
  publication-title: ApJ
  doi: 10.1088/0004-637X/799/1/16
– volume: 949
  start-page: L36
  year: 2023
  ident: ajad67dfbib40
  publication-title: ApJL
  doi: 10.3847/2041-8213/acd635
– volume: 156
  start-page: 123
  year: 2018
  ident: ajad67dfbib8
  publication-title: AJ
  doi: 10.3847/1538-3881/aabc4f
– volume: 426
  start-page: 669
  year: 1994
  ident: ajad67dfbib26
  publication-title: ApJ
  doi: 10.1086/174104
– volume: 165
  start-page: 225
  year: 2023
  ident: ajad67dfbib21
  publication-title: AJ
  doi: 10.3847/1538-3881/acc183
– year: 2023
  ident: ajad67dfbib48
  doi: 10.5281/zenodo.8145703
– year: 2024
  ident: ajad67dfbib32
– volume: 669
  start-page: L12
  year: 2023
  ident: ajad67dfbib50
  publication-title: A&A
  doi: 10.1051/0004-6361/202245424
– volume: 125
  start-page: 105
  year: 2013
  ident: ajad67dfbib60
  publication-title: JQSRT
  doi: 10.1016/j.jqsrt.2013.03.003
– volume: 492
  start-page: 743
  year: 1998
  ident: ajad67dfbib46
  publication-title: ApJ
  doi: 10.1086/305069
– volume: 48
  start-page: 1
  year: 2022
  ident: ajad67dfbib22
  publication-title: TOMS
  doi: 10.1145/3539801
– volume: 921
  start-page: 10
  year: 2021
  ident: ajad67dfbib54
  publication-title: ApJ
  doi: 10.3847/1538-4357/ac0f7e
– start-page: A20
  year: 2003
  ident: ajad67dfbib14
– volume: 622
  start-page: A156
  year: 2019
  ident: ajad67dfbib16
  publication-title: A&A
  doi: 10.1051/0004-6361/201834170
– volume: 550
  start-page: 944
  year: 2001
  ident: ajad67dfbib47
  publication-title: ApJ
  doi: 10.1086/319779
– volume: 162
  start-page: 214
  year: 2021
  ident: ajad67dfbib57
  publication-title: AJ
  doi: 10.3847/1538-3881/ac2739
– volume: 633
  start-page: A119
  year: 2020
  ident: ajad67dfbib71
  publication-title: A&A
  doi: 10.1051/0004-6361/201936891
– volume: 364
  start-page: L91
  year: 2005
  ident: ajad67dfbib39
  publication-title: MNRAS
  doi: 10.1111/j.1745-3933.2005.00112.x
– volume: 155
  start-page: 178
  year: 2018
  ident: ajad67dfbib11
  publication-title: AJ
  doi: 10.3847/1538-3881/aab54e
– volume: 9
  start-page: 90
  year: 2007
  ident: ajad67dfbib34
  publication-title: CSE
  doi: 10.1109/MCSE.2007.55
– volume: 35
  start-page: 1613
  year: 2002
  ident: ajad67dfbib2
  publication-title: JPhB
  doi: 10.1088/0953-4075/35/6/701
– volume: 425
  start-page: L29
  year: 2004
  ident: ajad67dfbib15
  publication-title: A&A
  doi: 10.1051/0004-6361:200400056
– volume: 460
  start-page: 2853
  year: 2016
  ident: ajad67dfbib53
  publication-title: MNRAS
  doi: 10.1093/mnras/stw1160
– year: 2009
  ident: ajad67dfbib59
– volume: 657
  start-page: A38
  year: 2022
  ident: ajad67dfbib44
  publication-title: A&A
  doi: 10.1051/0004-6361/202037494
– volume: 941
  start-page: L20
  year: 2022b
  ident: ajad67dfbib13
  publication-title: ApJL
  doi: 10.3847/2041-8213/aca331
– volume: 411
  start-page: 2383
  year: 2011
  ident: ajad67dfbib37
  publication-title: MNRAS
  doi: 10.1111/j.1365-2966.2010.17863.x
– volume: 6
  start-page: 751
  year: 2022
  ident: ajad67dfbib18
  publication-title: NatAs
  doi: 10.1038/s41550-022-01634-x
– volume: 106
  start-page: 2024
  year: 1993
  ident: ajad67dfbib58
  publication-title: AJ
  doi: 10.1086/116783
– volume: 3
  start-page: 749
  year: 2019
  ident: ajad67dfbib23
  publication-title: NatAs
  doi: 10.1038/s41550-019-0780-5
– volume: 863
  start-page: L8
  year: 2018
  ident: ajad67dfbib63
  publication-title: ApJL
  doi: 10.3847/2041-8213/aad695
– volume: 813
  start-page: 88
  year: 2015
  ident: ajad67dfbib70
  publication-title: ApJ
  doi: 10.1088/0004-637X/813/2/88
– volume: 166
  start-page: 162
  year: 2023
  ident: ajad67dfbib17
  publication-title: AJ
  doi: 10.3847/1538-3881/acf375
– volume: 923
  start-page: 27
  year: 2021
  ident: ajad67dfbib27
  publication-title: ApJ
  doi: 10.3847/1538-4357/ac257b
– volume: 161
  start-page: 244
  year: 2021
  ident: ajad67dfbib66
  publication-title: AJ
  doi: 10.3847/1538-3881/abeb7a
– year: 2020
  ident: ajad67dfbib6
– volume: 159
  start-page: 222
  year: 2020
  ident: ajad67dfbib29
  publication-title: AJ
  doi: 10.3847/1538-3881/ab811e
– volume: 676
  start-page: A123
  year: 2023
  ident: ajad67dfbib19
  publication-title: A&A
  doi: 10.1051/0004-6361/202346221
– volume: 952
  start-page: 89
  year: 2023
  ident: ajad67dfbib45
  publication-title: ApJ
  doi: 10.3847/1538-4357/accf12
– volume: 681
  start-page: 594
  year: 2008
  ident: ajad67dfbib30
  publication-title: ApJ
  doi: 10.1086/586728
– volume: 167
  start-page: 105
  year: 2024
  ident: ajad67dfbib28
  publication-title: AJ
  doi: 10.3847/1538-3881/ad1cec
– volume: 585
  start-page: 357
  year: 2020
  ident: ajad67dfbib24
  publication-title: Natur
  doi: 10.1038/s41586-020-2649-2
– year: 1998
  ident: ajad67dfbib51
  doi: 10.1002/9783527617722
– volume: 964
  start-page: 70
  year: 2024
  ident: ajad67dfbib43
  publication-title: ApJ
  doi: 10.3847/1538-4357/ad1ee9
– volume: 17
  start-page: 261
  year: 2020
  ident: ajad67dfbib61
  publication-title: NatMe
  doi: 10.1038/s41592-019-0686-2
– volume: 877
  start-page: 116
  year: 2019
  ident: ajad67dfbib64
  publication-title: ApJ
  doi: 10.3847/1538-4357/ab1c61
– volume: 166
  start-page: 220
  year: 2023
  ident: ajad67dfbib67
  publication-title: AJ
  doi: 10.3847/1538-3881/acf9ec
– volume: 935
  start-page: 167
  year: 2022
  ident: ajad67dfbib7
  publication-title: ApJ
  doi: 10.3847/1538-4357/ac7c74
SSID ssj0011804
Score 2.4784992
Snippet Hydrogen lines from forming planets are crucial for understanding planet formation. However, the number of planetary hydrogen line detections is still limited....
SourceID doaj
proquest
crossref
iop
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 155
SubjectTerms Accretion
Emission analysis
Exoplanet formation
Extrasolar gaseous giant planets
H I line emission
Hydrogen
James Webb Space Telescope
Line spectra
Magnetospheres
Observational studies
Parameter uncertainty
Planet formation
Planetary surfaces
Planets
Spectral energy distribution
Uncertainty analysis
SummonAdditionalLinks – databaseName: Institute of Physics Open Access Journals (Activated by CARLI)
  dbid: O3W
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELZKuXBBPNUtBfkASBzCJvEbTlugLJUoCLba3iJ7bB8QTardcFh-PWMnuwiBKm5W5NiWZzwve74h5Cl3BqqgRYHaRBUcdV6ho2SFCVarujRlgBTv-Hgm5-f89EJc7JHXu1yY7moU_S-xOQAFD1uYzjdDWTrNZ5RpXU2tl8rHG-Qm01Inz-sTW-6uECpdDhDMJS_QyB_vKP85wh86KUP3o6bB6f-Sz1npnNwht0drkc6Gtd0le6G9Rw5m6xS_7i439DnN7SE8sb5PvmWMkZ-ojujp8utievbhSyowT-cbv-qQVSi6noG-DX1-gNWuqe3pYjmjtTp-RVPtzm3FCDoDSPmNXUs_p3D9KuGuUtt6-j50l6FfbR6Q85N3izfzYqymUAAaXX0hIaLtYE0wXlgdbYzWKnCld-iTKQUxRJARdBWZ9hAc9xkd0IK0DlgF7CHZb7s2HBAaeAy8DMwKj96kk85qr9AzFKbWtmZmQqbb_WxghBpP6__eoMuRKNAkCjSJAs1AgQl5sfvjaoDZuKbvcSLRrl8CyM4fkFmakVmaYLRwwLlQgDIqSgNQSwEuJWHXzqkJeYYEbsYDu75msqMtC_zujCYxFylUZA7_c5hH5FaN1tDwCvCI7PerH-ExWjO9e5K59hdZmu1r
  priority: 102
  providerName: IOP Publishing
Title Analyzing JWST/NIRSpec Hydrogen Line Detections at TWA 27B: Constraining Accretion Properties and Geometry
URI https://iopscience.iop.org/article/10.3847/1538-3881/ad67df
https://www.proquest.com/docview/3104501509
https://doaj.org/article/e985bc4457c048f69cc265cb11462bb7
Volume 168
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQT70goKAuFOQDIHGI8rDjR2_bQtlWoq1gq-0tsse2VESTajc9LL--YydbQEjlwsWKoolieT57Hra_IeQttxpKr-oMrYnMONq8TAXBMu2NklWhCw8x3_HlVMwu-Mllfflbqa94JmygBx4GLvda1RY4ryUg2ILQAJWowcbbtJW16R452rxNMDXuH5Sq4MOmJMPlN0_TmilV5sYJ6cIfRihx9aNpuepu_lqQk5U5ekIej-4hnQ7dekoe-fYZ2Z2uYsK6u17T9zQ9D_mI1Q75nkhFfqL9oSeLb_P89PhrrChPZ2u37BAbFGNNTz_6Pp24alfU9HS-mNJKHuzTWKxzUyKCTgHihcaupecxP7-MRKvUtI5-9t2175fr5-Ti6NP8cJaN5RMyQC-rzwQEdBaM9trVRgUTgjESbOEsBmFSQvABRABVBqYceMtdogM0IIwFVgJ7QbbarvW7hHoePC88M7XD8NEKa5STGArWulKmYnpC8s14NjByi8f-_2gwxogaaKIGmqiBZtDAhHy4_-Jm4NV4QPYgquheLjJipxeIk2bESfMvnEzIO1RwM87Q1QM_29tA4Jcw-sC8jrkh_fJ_9OUV2a7QNxrOBO6RrX5561-jb9PbNwnG2B6fnWN7xhZ3x7D3JQ
linkProvider Directory of Open Access Journals
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LbxMxELagSIgLKi81tIAPgMRh2Yff3FJKSAuEClKlt5WfB0R3o2Q5hF_P2LsJQqCK22rl9Vqe8cw3Y_sbhJ5To2zpJcvAm4iMgs_LZOAkU15LURWq8DbmOz7N-PSCnl2yy6HOaboL0y4H0_8aHnui4H4K4_omYEvztEaJlGWuHRcu5EsXbqJbjHAeazd8JovdNkIpi56GuaAZAP1hn_KfvfzhlxJ9P3gbGMJfNjo5nsk-ujsgRjzux3cP3fDNfXQwXsccdnu1wS9xeu5TFOsH6FviGfkJLgmfLb7O89npl1hkHk83btWCumAIPz0-8V06hNWsse7wfDHGlTh-g2P9zm3VCDy2Nt5xbBt8HlP2q8i9inXj8HvfXvlutXmILibv5m-n2VBRIbMAvLqM2wD4QSuvHNMy6BC0FtYUzkBcJoQNPlgerCwDkc56Q11iCNSWa2NJackjtNe0jT9A2NPgaeGJZg4iSsONlk5AdMhUJXVF1Ajl2_ms7UA3Hsf_vYawI0qgjhKoowTqXgIj9Gr3xbKn2rim7XEU0a5dJMlOL0Bh6kFhaq8kM5ZSJizYqcCVtRVn1sSL2JUxYoRegIDrYdGur_nZ0VYFfjcGWExZTBepx__ZzTN0-_xkUn88nX04RHcqAEf9ocAjtNetfvgnAG468zQp8C8FnPFa
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Analyzing+JWST%2FNIRSpec+Hydrogen+Line+Detections+at+TWA+27B%3A+Constraining+Accretion+Properties+and+Geometry&rft.jtitle=The+Astronomical+journal&rft.au=Aoyama%2C+Yuhiko&rft.au=Marleau%2C+Gabriel-Dominique&rft.au=Hashimoto%2C+Jun&rft.date=2024-10-01&rft.issn=0004-6256&rft.eissn=1538-3881&rft.volume=168&rft.issue=4&rft.spage=155&rft_id=info:doi/10.3847%2F1538-3881%2Fad67df&rft.externalDBID=n%2Fa&rft.externalDocID=10_3847_1538_3881_ad67df
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0004-6256&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0004-6256&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0004-6256&client=summon