Simulating Nonhydrostatic Atmospheres on Planets (SNAP): Formulation, Validation, and Application to the Jovian Atmosphere
A new nonhydrostatic and cloud-resolving atmospheric model is developed for studying moist convection and cloud formation in planetary atmospheres. It is built on top of the Athena++ framework, utilizing its static/adaptive mesh-refinement, parallelization, curvilinear geometry, and dynamic task sch...
Saved in:
Published in | The Astrophysical journal. Supplement series Vol. 240; no. 2; pp. 37 - 55 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Saskatoon
The American Astronomical Society
13.02.2019
IOP Publishing |
Subjects | |
Online Access | Get full text |
ISSN | 0067-0049 1538-4365 1538-4365 |
DOI | 10.3847/1538-4365/aafdaa |
Cover
Loading…
Abstract | A new nonhydrostatic and cloud-resolving atmospheric model is developed for studying moist convection and cloud formation in planetary atmospheres. It is built on top of the Athena++ framework, utilizing its static/adaptive mesh-refinement, parallelization, curvilinear geometry, and dynamic task scheduling. We extend the original hydrodynamic solver to vapors, clouds, and precipitation. Microphysics is formulated generically so that it can be applied to both Earth and Jovian planets. We implemented the Low Mach number Approximate Riemann Solver for simulating low-speed atmospheric flows in addition to the usual Roe and Harten-Lax-van Leer-Contact (HLLC) Riemann solvers. Coupled with a fifth-order weighted essentially nonoscillatory subgrid-reconstruction method, the sharpness of critical fields such as clouds is well-preserved, and no extra hyperviscosity or spatial filter is needed to stabilize the model. Unlike many atmospheric models, total energy is used as the prognostic variable of the thermodynamic equation. One significant advantage of using total energy as a prognostic variable is that the entropy production due to irreversible mixing processes can be properly captured. The model is designed to provide a unified framework for exploring planetary atmospheres across various conditions, both terrestrial and Jovian. First, a series of standard numerical tests for Earth's atmosphere is performed to demonstrate the performance and robustness of the new model. Second, simulation of an idealized Jovian atmosphere in radiative-convective equilibrium shows that (1) the temperature gradient is superadiabatic near the water condensation level because of the changing of the mean molecular weight, and (2) the mean profile of ammonia gas shows a depletion in the subcloud layer down to nearly 10 bars. Relevance to the recent Juno observations is discussed. |
---|---|
AbstractList | A new nonhydrostatic and cloud-resolving atmospheric model is developed for studying moist convection and cloud formation in planetary atmospheres. It is built on top of the Athena++ framework, utilizing its static/adaptive mesh-refinement, parallelization, curvilinear geometry, and dynamic task scheduling. We extend the original hydrodynamic solver to vapors, clouds, and precipitation. Microphysics is formulated generically so that it can be applied to both Earth and Jovian planets. We implemented the Low Mach number Approximate Riemann Solver for simulating low-speed atmospheric flows in addition to the usual Roe and Harten–Lax–van Leer-Contact (HLLC) Riemann solvers. Coupled with a fifth-order weighted essentially nonoscillatory subgrid-reconstruction method, the sharpness of critical fields such as clouds is well-preserved, and no extra hyperviscosity or spatial filter is needed to stabilize the model. Unlike many atmospheric models, total energy is used as the prognostic variable of the thermodynamic equation. One significant advantage of using total energy as a prognostic variable is that the entropy production due to irreversible mixing processes can be properly captured. The model is designed to provide a unified framework for exploring planetary atmospheres across various conditions, both terrestrial and Jovian. First, a series of standard numerical tests for Earth’s atmosphere is performed to demonstrate the performance and robustness of the new model. Second, simulation of an idealized Jovian atmosphere in radiative-convective equilibrium shows that (1) the temperature gradient is superadiabatic near the water condensation level because of the changing of the mean molecular weight, and (2) the mean profile of ammonia gas shows a depletion in the subcloud layer down to nearly 10 bars. Relevance to the recent Juno observations is discussed. |
Author | Chen, Xi Li, Cheng |
Author_xml | – sequence: 1 givenname: Cheng orcidid: 0000-0002-8280-3119 surname: Li fullname: Li, Cheng email: cli@gps.caltech.edu organization: California Institute of Technology, 1200 E California Blvd, Pasadena, CA 91106, USA – sequence: 2 givenname: Xi surname: Chen fullname: Chen, Xi organization: Princeton University , Princeton, NJ 08544, USA |
BookMark | eNp9kNtLwzAUh4NMcF7efQz4orC6pLm1vpXhFVFh6mvI2tRldElNMkH_ejsrKoI-5eTw-05yvm0wsM5qAPYxOiYZFWPMSJZQwtlYqbpSagMMv1oDMESIiwQhmm-B7RAWCCHBSD4Eb1OzXDUqGvsEb5ydv1behdjdS1jEpQvtXHsdoLPwrlFWxwAPpzfF3dEJPHO-J50dwUfVmOqzVraCRds2pvxowOhgnGt45V6Msj-m7oLNWjVB732eO-Dh7PR-cpFc355fTorrpKSYx4QTPUtpmta4JCwVTM1yQnTOZphzxLOs5GmOKRcKq5zQXLNMUFaTCmUZq7goyQ446Oe23j2vdIhy4Vbedk_KlDDBcUqR6FK8T5WdgOB1LUsTPxaIXplGYiTXnuVaqlxLlb3nDkS_wNabpfKv_yGjHjGu_f7Mn_F3JuyRrQ |
CitedBy_id | crossref_primary_10_1029_2020JE006653 crossref_primary_10_1029_2021JE006858 crossref_primary_10_1051_0004_6361_202245220 crossref_primary_10_3847_PSJ_ad9b1a crossref_primary_10_3847_1538_4357_ab9ec7 crossref_primary_10_1016_j_icarus_2024_116438 crossref_primary_10_5194_gmd_16_5601_2023 crossref_primary_10_1016_j_compfluid_2024_106349 crossref_primary_10_1093_mnras_staa1799 crossref_primary_10_1029_2020MS002280 crossref_primary_10_1007_s11214_019_0631_9 crossref_primary_10_5194_gmd_17_6195_2024 crossref_primary_10_1029_2020JE006655 crossref_primary_10_1093_mnras_stad1753 crossref_primary_10_1007_s10686_021_09812_x crossref_primary_10_1051_0004_6361_202348936 crossref_primary_10_3847_1538_4357_ac7879 crossref_primary_10_3847_1538_4357_acee7d crossref_primary_10_1093_mnras_stz2436 crossref_primary_10_1038_s41550_020_1009_3 crossref_primary_10_1088_1674_4527_20_7_99 crossref_primary_10_1016_j_jcp_2023_112273 crossref_primary_10_3847_1538_4357_ad33b9 crossref_primary_10_1038_s41550_024_02420_7 crossref_primary_10_1029_2020JE006504 crossref_primary_10_1029_2020JE006404 crossref_primary_10_3847_PSJ_ad0ed3 crossref_primary_10_1016_j_icarus_2024_116028 crossref_primary_10_1016_j_pss_2023_105663 crossref_primary_10_1051_0004_6361_202452521 crossref_primary_10_1098_rsta_2019_0476 crossref_primary_10_1029_2023MS003732 crossref_primary_10_1017_S0962492920000057 crossref_primary_10_1007_s13351_023_2158_y crossref_primary_10_1051_0004_6361_202245609 |
Cites_doi | 10.1177/1094342017694427 10.1016/j.icarus.2007.11.036 10.1175/1520-0469(1993)050<1865:BCEWAS>2.0.CO;2 10.1051/0004-6361/201629140 10.1098/rspa.2016.0107 10.1016/0019-1035(78)90072-6 10.1016/j.icarus.2004.06.010 10.1016/0019-1035(84)90065-4 10.1002/2015MS000496 10.1006/icar.2001.6605 10.1016/j.icarus.2007.10.025 10.1016/0021-9991(81)90128-5 10.1175/1520-0469(1988)045<2066:CMOTGP>2.0.CO;2 10.1016/j.icarus.2017.06.029 10.1016/j.jcp.2016.02.078 10.3847/1538-4357/aada7c 10.1126/science.aal2108 10.1126/science.7569896 10.1016/S0169-8095(01)00126-0 10.5194/gmd-9-2007-2016 10.1016/0168-9274(95)00115-8 10.1175/1520-0493(1993)121<0788:AGRFTD>2.0.CO;2 10.1086/588755 10.1038/nature03174 10.1016/S0169-5983(01)00004-1 10.1175/1520-0469(2003)060<0607:CRMOTA>2.0.CO;2 10.1016/0019-1035(86)90179-X 10.1175/1520-0469(1987)044<2887:EAPT>2.0.CO;2 10.1175/1520-0469(2001)058<2073:ADATFF>2.0.CO;2 10.3847/0067-0049/225/2/22 10.1016/0019-1035(73)90019-5 10.1175/2008JAS2798.1 10.1006/icar.2000.6606 10.1007/BF01025401 10.1029/JA086iA10p08721 10.1002/2017MS001209 10.1002/fld.1650170103 10.1137/S106482750139738X 10.1029/2018MS001361 10.1088/0004-637X/756/2/172 10.1038/ngeo2405 10.1016/0021-9991(88)90177-5 10.1006/jcph.2001.6779 10.1016/j.newast.2008.06.003 10.1038/nature16068 10.1175/1520-0493(2004)132<2293:AVLFDC>2.0.CO;2 10.1051/0004-6361/201527815 10.1038/nature12955 10.1007/978-1-935704-36-2 10.1175/MWR-D-13-00187.1 10.1086/321540 10.1093/oso/9780195066302.001.0001 10.1016/0021-9991(84)90143-8 10.1006/icar.1995.1062 10.1175/1520-0493(2002)130<1227:CSFTCN>2.0.CO;2 10.1006/icar.1998.6000 10.1029/2000GL011740 10.1016/S0045-7930(98)00017-6 10.1016/j.atmosres.2011.08.009 10.1029/2006GL027648 10.1175/JAS-D-17-0257.1 10.1175/1520-0450(1983)022<1065:BPOTSF>2.0.CO;2 10.1016/j.icarus.2009.10.006 10.1016/j.icarus.2013.10.016 10.1002/2017GL074277 10.1006/jcph.1996.0130 10.3847/1538-4357/aada85 10.1016/j.pss.2013.10.009 10.1175/MWR-D-12-00129.1 10.3847/1538-4357/aae38c 10.1017/CBO9780511791253 10.1002/2017GL073159 10.1007/s00703-005-0112-4 10.1175/1520-0493(2002)130<2917:ABSFMN>2.0.CO;2 |
ContentType | Journal Article |
Copyright | 2019. The American Astronomical Society. All rights reserved. Copyright IOP Publishing Feb 2019 |
Copyright_xml | – notice: 2019. The American Astronomical Society. All rights reserved. – notice: Copyright IOP Publishing Feb 2019 |
DBID | AAYXX CITATION 7TG 8FD H8D KL. L7M |
DOI | 10.3847/1538-4365/aafdaa |
DatabaseName | CrossRef Meteorological & Geoastrophysical Abstracts Technology Research Database Aerospace Database Meteorological & Geoastrophysical Abstracts - Academic Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Aerospace Database Meteorological & Geoastrophysical Abstracts Technology Research Database Advanced Technologies Database with Aerospace Meteorological & Geoastrophysical Abstracts - Academic |
DatabaseTitleList | Aerospace Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Astronomy & Astrophysics Physics |
DocumentTitleAlternate | Simulating Nonhydrostatic Atmospheres on Planets (SNAP): Formulation, Validation, and Application to the Jovian Atmosphere |
EISSN | 1538-4365 |
ExternalDocumentID | 10_3847_1538_4365_aafdaa apjsaafdaa |
GroupedDBID | -~X 123 1JI 23N 4.4 6J9 85S AAFWJ AAGCD AAJIO ABCQX ABHWH ACBEA ACGFO ACGFS ACHIP ADACN AEFHF AENEX AFPKN AKPSB ALMA_UNASSIGNED_HOLDINGS ASPBG ATQHT AVWKF AZFZN CJUJL CRLBU E3Z EBS EJD F5P FRP GROUPED_DOAJ IJHAN IOP KOT L7B M~E N5L O3W O43 OK1 P2P PJBAE RIN RNP RNS ROL SY9 T37 UPT AAYXX CITATION 7TG 8FD AEINN H8D KL. L7M |
ID | FETCH-LOGICAL-c416t-63eb2422f1c35275ab933e95b1660688c6291467a1a9349e58745f3d0885d67c3 |
IEDL.DBID | IOP |
ISSN | 0067-0049 1538-4365 |
IngestDate | Wed Aug 13 06:36:30 EDT 2025 Tue Jul 01 00:17:58 EDT 2025 Thu Apr 24 22:53:40 EDT 2025 Wed Aug 21 03:33:56 EDT 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c416t-63eb2422f1c35275ab933e95b1660688c6291467a1a9349e58745f3d0885d67c3 |
Notes | AAS13147 The Solar System, Exoplanets, and Astrobiology ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-8280-3119 |
OpenAccessLink | https://iopscience.iop.org/article/10.3847/1538-4365/aafdaa/pdf |
PQID | 2357612407 |
PQPubID | 4562442 |
PageCount | 19 |
ParticipantIDs | crossref_citationtrail_10_3847_1538_4365_aafdaa proquest_journals_2357612407 crossref_primary_10_3847_1538_4365_aafdaa iop_journals_10_3847_1538_4365_aafdaa |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-02-13 |
PublicationDateYYYYMMDD | 2019-02-13 |
PublicationDate_xml | – month: 02 year: 2019 text: 2019-02-13 day: 13 |
PublicationDecade | 2010 |
PublicationPlace | Saskatoon |
PublicationPlace_xml | – name: Saskatoon |
PublicationTitle | The Astrophysical journal. Supplement series |
PublicationTitleAbbrev | APJS |
PublicationTitleAlternate | Astrophys. J. Suppl |
PublicationYear | 2019 |
Publisher | The American Astronomical Society IOP Publishing |
Publisher_xml | – name: The American Astronomical Society – name: IOP Publishing |
References | 44 45 46 48 49 Emanuel K. A. (18) 1994 Grote E. (21) 2001; 28 Shu C.-W. (62) 1998 50 51 52 53 10 54 11 55 12 56 13 57 14 58 15 59 16 19 Stone J. M. (68) 2008; 178 Toro E. F. (71) 2013 1 2 4 5 6 7 8 9 60 61 63 20 64 65 22 66 23 67 24 25 69 26 27 28 29 Morley C. V. (47) 2012; 756 Zhang X. (76) 2018; 866 70 72 Ackerman A. S. (3) 2001; 556 30 74 31 32 33 77 34 35 36 38 Ding F. (17) 2018; 867 Lewis S. R. (37) 2017 39 White C. J. (73) 2016; 225 Zhang X. (75) 2018; 866 40 41 42 43 |
References_xml | – ident: 1 doi: 10.1177/1094342017694427 – ident: 46 doi: 10.1016/j.icarus.2007.11.036 – ident: 55 doi: 10.1175/1520-0469(1993)050<1865:BCEWAS>2.0.CO;2 – ident: 35 doi: 10.1051/0004-6361/201629140 – ident: 52 doi: 10.1098/rspa.2016.0107 – ident: 57 doi: 10.1016/0019-1035(78)90072-6 – ident: 28 doi: 10.1016/j.icarus.2004.06.010 – ident: 13 doi: 10.1016/0019-1035(84)90065-4 – ident: 53 doi: 10.1002/2015MS000496 – ident: 54 doi: 10.1006/icar.2001.6605 – ident: 50 doi: 10.1016/j.icarus.2007.10.025 – ident: 56 doi: 10.1016/0021-9991(81)90128-5 – ident: 9 doi: 10.1175/1520-0469(1988)045<2066:CMOTGP>2.0.CO;2 – ident: 20 doi: 10.1016/j.icarus.2017.06.029 – ident: 19 doi: 10.1016/j.jcp.2016.02.078 – volume: 866 start-page: 2 issn: 0004-637X year: 2018 ident: 76 publication-title: ApJ doi: 10.3847/1538-4357/aada7c – ident: 6 doi: 10.1126/science.aal2108 – ident: 24 doi: 10.1126/science.7569896 – ident: 61 doi: 10.1016/S0169-8095(01)00126-0 – ident: 22 doi: 10.5194/gmd-9-2007-2016 – ident: 26 doi: 10.1016/0168-9274(95)00115-8 – ident: 65 doi: 10.1175/1520-0493(1993)121<0788:AGRFTD>2.0.CO;2 – year: 2013 ident: 71 publication-title: Riemann Solvers and Numerical Methods for Fluid Dynamics: A Practical Introduction – volume: 178 start-page: 137 issn: 0067-0049 year: 2008 ident: 68 publication-title: ApJS doi: 10.1086/588755 – ident: 2 doi: 10.1038/nature03174 – volume: 28 start-page: 349 issn: 1873-7005 year: 2001 ident: 21 publication-title: FlDyR doi: 10.1016/S0169-5983(01)00004-1 – ident: 33 doi: 10.1175/1520-0469(2003)060<0607:CRMOTA>2.0.CO;2 – ident: 66 doi: 10.1016/0019-1035(86)90179-X – ident: 25 doi: 10.1175/1520-0469(1987)044<2887:EAPT>2.0.CO;2 – ident: 49 doi: 10.1175/1520-0469(2001)058<2073:ADATFF>2.0.CO;2 – volume: 225 start-page: 22 issn: 0067-0049 year: 2016 ident: 73 publication-title: ApJS doi: 10.3847/0067-0049/225/2/22 – ident: 72 doi: 10.1016/0019-1035(73)90019-5 – ident: 59 doi: 10.1175/2008JAS2798.1 – ident: 27 doi: 10.1006/icar.2000.6606 – ident: 51 doi: 10.1007/BF01025401 – ident: 45 doi: 10.1029/JA086iA10p08721 – ident: 77 doi: 10.1002/2017MS001209 – ident: 69 doi: 10.1002/fld.1650170103 – ident: 5 doi: 10.1137/S106482750139738X – ident: 11 doi: 10.1029/2018MS001361 – volume: 756 start-page: 172 issn: 0004-637X year: 2012 ident: 47 publication-title: ApJ doi: 10.1088/0004-637X/756/2/172 – ident: 39 doi: 10.1038/ngeo2405 – ident: 63 doi: 10.1016/0021-9991(88)90177-5 – ident: 16 doi: 10.1006/jcph.2001.6779 – ident: 67 doi: 10.1016/j.newast.2008.06.003 – ident: 64 doi: 10.1038/nature16068 – ident: 43 doi: 10.1175/1520-0493(2004)132<2293:AVLFDC>2.0.CO;2 – ident: 31 doi: 10.1051/0004-6361/201527815 – ident: 15 doi: 10.1038/nature12955 – ident: 32 doi: 10.1007/978-1-935704-36-2 – ident: 34 doi: 10.1175/MWR-D-13-00187.1 – volume: 556 start-page: 872 issn: 0004-637X year: 2001 ident: 3 publication-title: ApJ doi: 10.1086/321540 – year: 1994 ident: 18 publication-title: Atmospheric Convection doi: 10.1093/oso/9780195066302.001.0001 – ident: 12 doi: 10.1016/0021-9991(84)90143-8 – start-page: 17 year: 2017 ident: 37 publication-title: Proc. 6th Workshop on the Mars Atmosphere, Modelling and Observations – year: 1998 ident: 62 publication-title: Advanced Numerical Approximation of Nonlinear Hyperbolic Equations – ident: 74 doi: 10.1006/icar.1995.1062 – ident: 58 doi: 10.1175/1520-0493(2002)130<1227:CSFTCN>2.0.CO;2 – ident: 14 doi: 10.1006/icar.1998.6000 – ident: 48 doi: 10.1029/2000GL011740 – ident: 23 doi: 10.1016/S0045-7930(98)00017-6 – ident: 4 doi: 10.1016/j.atmosres.2011.08.009 – ident: 7 doi: 10.1029/2006GL027648 – ident: 40 doi: 10.1175/JAS-D-17-0257.1 – ident: 44 doi: 10.1175/1520-0450(1983)022<1065:BPOTSF>2.0.CO;2 – ident: 42 doi: 10.1016/j.icarus.2009.10.006 – ident: 70 doi: 10.1016/j.icarus.2013.10.016 – ident: 29 doi: 10.1002/2017GL074277 – ident: 30 doi: 10.1006/jcph.1996.0130 – volume: 866 start-page: 1 issn: 0004-637X year: 2018 ident: 75 publication-title: ApJ doi: 10.3847/1538-4357/aada85 – ident: 41 doi: 10.1016/j.pss.2013.10.009 – ident: 10 doi: 10.1175/MWR-D-12-00129.1 – volume: 867 start-page: 54 issn: 0004-637X year: 2018 ident: 17 publication-title: ApJ doi: 10.3847/1538-4357/aae38c – ident: 36 doi: 10.1017/CBO9780511791253 – ident: 38 doi: 10.1002/2017GL073159 – ident: 60 doi: 10.1007/s00703-005-0112-4 – ident: 8 doi: 10.1175/1520-0493(2002)130<2917:ABSFMN>2.0.CO;2 |
SSID | ssj0007539 |
Score | 2.5074415 |
Snippet | A new nonhydrostatic and cloud-resolving atmospheric model is developed for studying moist convection and cloud formation in planetary atmospheres. It is built... |
SourceID | proquest crossref iop |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 37 |
SubjectTerms | Ammonia Atmosphere Atmospheric flows Atmospheric models Cloud formation Clouds Computer simulation Condensates Depletion Entropy Entropy production Finite element method hydrodynamics Jupiter atmosphere Jupiter probes Low speed Mach number Microphysics Mixing processes Moist convection Planet formation Planetary atmospheres Planets planets and satellites: atmospheres planets and satellites: gaseous planets Riemann solver Robustness (mathematics) Sharpness Spatial filtering Task scheduling Temperature gradients Vapors |
Title | Simulating Nonhydrostatic Atmospheres on Planets (SNAP): Formulation, Validation, and Application to the Jovian Atmosphere |
URI | https://iopscience.iop.org/article/10.3847/1538-4365/aafdaa https://www.proquest.com/docview/2357612407 |
Volume | 240 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEA66InjxLb7JQUXB7tKmTa2eirjIguuCrz0IJU1SFd12sVXQX-9M012fiHgpc0jTdjoz-fKYbwjZQMxsiySw1B6uVoEvWkGiHCthtgNgztEqxkThkzY_vnBbXa87Qg6GuTBZvwr9dRANUbBRIfo3g1jaKH3UZdxrCJEoAeBojO3BMIPZe6edYRgGHG6wL0QCxMFmj_LHHj6NSaPw3G-BuRxtmlPkevCe5pDJff2piOvy9QuF4z8_ZJpMViiUhqbpDBnR6SxZDHNcF896L3SLlrJZ9shnyXjHSHPk9eyuV1b8Sm9oO0tvXxSmjSDtKw2LXpYjS4HOaZZSLIeki5xun7XDzs4-bQI6rmqF7dJLgP-qkkWqaPi-j06LjAIqpa3sGUz3Q6_z5KJ5dH54bFX1GywJJlBYnMG03XWcxJYA83xPxAFjOvBim3OsdSO5E2CgFrYImBtoD6n3E6Yg8HmK-5ItkFqapXqRUKYYbuAqaXvC5ToGkCMFYD-W-MJnsVwijcEfjGRFbo41Nh4imOSgsiNUdoTKjoyyl8jO8I6-Ifb4pe0m_MOo8u78l3arA7N5b4x8QgAjYeK8_MduVsgEwLIAz4bbbJXUiscnvQbQp4jXSxOH6ym7egOyOv65 |
linkProvider | IOP Publishing |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjZ3dS8MwEMCDThRfRKey6dQ8qDiwjjZtZ30r6phT52BO91bSJlXBtcNWYf713jXdpijDt6OkacnlLr983RGyj8ys89DRxCmuVoEtak4oDC1kugEwZ0jh40Xh27bd7JmtvtXP85xmd2HiYe76T0BUgYJVE6J9M_CltcxGTWZbNc5DwXltKMJ5smDBE-zWd-xx4oqBxRX_gjdAFlb7lH_W8mNcmodv_3LO2YjTWCUrOSpSV_3YGpmTUZGU3AQXr-PBiB7STFZrE0mRLHaUtE4-uy-DLC1X9ETbcfQ8Eni3A2OzUjcdxAmGEpAJjSOKOYtkmtCjbtvtVM9oAxA2T-h1TB-A0UUu80hQd7rZTdOYAjrSVvwB_etbrRuk17i8P29qeZIFLQA9pZrNYG5tGkaoB8BidYv7DmPSsXzdtjEhTWAbDnpTrnOHmY60MD5-yAR4J0vY9YBtkkIUR7JEKBMMd1lFoFvctKUPJBJwADQW1nmd-UGZ1MZN7AV5BHJMhPHqwUwEleKhUjxUiqeUUibVyRtDFX1jRtkD0JqXm2Ayo1xlrNdpYQz6A6wHs9utf1azR5Y6Fw3v5qp9vU2WAaMcPMutswoppG_vcgdQJfV3s-74BUdh4fc |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Simulating+Nonhydrostatic+Atmospheres+on+Planets+%28SNAP%29%3A+Formulation%2C+Validation%2C+and+Application+to+the+Jovian+Atmosphere&rft.jtitle=The+Astrophysical+journal.+Supplement+series&rft.au=Cheng%2C+Li&rft.au=Chen%2C+Xi&rft.date=2019-02-13&rft.pub=IOP+Publishing&rft.issn=0067-0049&rft.eissn=1538-4365&rft.volume=240&rft.issue=2&rft_id=info:doi/10.3847%2F1538-4365%2Faafdaa&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0067-0049&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0067-0049&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0067-0049&client=summon |