Fast Volume Reconstruction From Motion Corrupted Stacks of 2D Slices

Capturing an enclosing volume of moving subjects and organs using fast individual image slice acquisition has shown promise in dealing with motion artefacts. Motion between slice acquisitions results in spatial inconsistencies that can be resolved by slice-to-volume reconstruction (SVR) methods to p...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on medical imaging Vol. 34; no. 9; pp. 1901 - 1913
Main Authors Kainz, Bernhard, Steinberger, Markus, Wein, Wolfgang, Kuklisova-Murgasova, Maria, Malamateniou, Christina, Keraudren, Kevin, Torsney-Weir, Thomas, Rutherford, Mary, Aljabar, Paul, Hajnal, Joseph V., Rueckert, Daniel
Format Journal Article
LanguageEnglish
Published United States IEEE 01.09.2015
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Capturing an enclosing volume of moving subjects and organs using fast individual image slice acquisition has shown promise in dealing with motion artefacts. Motion between slice acquisitions results in spatial inconsistencies that can be resolved by slice-to-volume reconstruction (SVR) methods to provide high quality 3D image data. Existing algorithms are, however, typically very slow, specialised to specific applications and rely on approximations, which impedes their potential clinical use. In this paper, we present a fast multi-GPU accelerated framework for slice-to-volume reconstruction. It is based on optimised 2D/3D registration, super-resolution with automatic outlier rejection and an additional (optional) intensity bias correction. We introduce a novel and fully automatic procedure for selecting the image stack with least motion to serve as an initial registration target. We evaluate the proposed method using artificial motion corrupted phantom data as well as clinical data, including tracked freehand ultrasound of the liver and fetal Magnetic Resonance Imaging. We achieve speed-up factors greater than 30 compared to a single CPU system and greater than 10 compared to currently available state-of-the-art multi-core CPU methods. We ensure high reconstruction accuracy by exact computation of the point-spread function for every input data point, which has not previously been possible due to computational limitations. Our framework and its implementation is scalable for available computational infrastructures and tests show a speed-up factor of 1.70 for each additional GPU. This paves the way for the online application of image based reconstruction methods during clinical examinations. The source code for the proposed approach is publicly available.
AbstractList Capturing an enclosing volume of moving subjects and organs using fast individual image slice acquisition has shown promise in dealing with motion artefacts. Motion between slice acquisitions results in spatial inconsistencies that can be resolved by slice-to-volume reconstruction (SVR) methods to provide high quality 3D image data. Existing algorithms are, however, typically very slow, specialised to specific applications and rely on approximations, which impedes their potential clinical use. In this paper, we present a fast multi-GPU accelerated framework for slice-to-volume reconstruction. It is based on optimised 2D/3D registration, super-resolution with automatic outlier rejection and an additional (optional) intensity bias correction. We introduce a novel and fully automatic procedure for selecting the image stack with least motion to serve as an initial registration target. We evaluate the proposed method using artificial motion corrupted phantom data as well as clinical data, including tracked freehand ultrasound of the liver and fetal Magnetic Resonance Imaging. We achieve speed-up factors greater than 30 compared to a single CPU system and greater than 10 compared to currently available state-of-the-art multi-core CPU methods. We ensure high reconstruction accuracy by exact computation of the point-spread function for every input data point, which has not previously been possible due to computational limitations. Our framework and its implementation is scalable for available computational infrastructures and tests show a speed-up factor of 1.70 for each additional GPU. This paves the way for the online application of image based reconstruction methods during clinical examinations. The source code for the proposed approach is publicly available.
Capturing an enclosing volume of moving subjects and organs using fast individual image slice acquisition has shown promise in dealing with motion artefacts. Motion between slice acquisitions results in spatial inconsistencies that can be resolved by slice-to-volume reconstruction (SVR) methods to provide high quality 3D image data. Existing algorithms are, however, typically very slow, specialised to specific applications and rely on approximations, which impedes their potential clinical use. In this paper, we present a fast multi-GPU accelerated framework for slice-to-volume reconstruction. It is based on optimised 2D/3D registration, super-resolution with automatic outlier rejection and an additional (optional) intensity bias correction. We introduce a novel and fully automatic procedure for selecting the image stack with least motion to serve as an initial registration target. We evaluate the proposed method using artificial motion corrupted phantom data as well as clinical data, including tracked freehand ultrasound of the liver and fetal Magnetic Resonance Imaging. We achieve speed-up factors greater than 30 compared to a single CPU system and greater than 10 compared to currently available state-of-the-art multi-core CPU methods. We ensure high reconstruction accuracy by exact computation of the point-spread function for every input data point, which has not previously been possible due to computational limitations. Our framework and its implementation is scalable for available computational infrastructures and tests show a speed-up factor of 1.70 for each additional GPU. This paves the way for the online application of image based reconstruction methods during clinical examinations. The source code for the proposed approach is publicly available.Capturing an enclosing volume of moving subjects and organs using fast individual image slice acquisition has shown promise in dealing with motion artefacts. Motion between slice acquisitions results in spatial inconsistencies that can be resolved by slice-to-volume reconstruction (SVR) methods to provide high quality 3D image data. Existing algorithms are, however, typically very slow, specialised to specific applications and rely on approximations, which impedes their potential clinical use. In this paper, we present a fast multi-GPU accelerated framework for slice-to-volume reconstruction. It is based on optimised 2D/3D registration, super-resolution with automatic outlier rejection and an additional (optional) intensity bias correction. We introduce a novel and fully automatic procedure for selecting the image stack with least motion to serve as an initial registration target. We evaluate the proposed method using artificial motion corrupted phantom data as well as clinical data, including tracked freehand ultrasound of the liver and fetal Magnetic Resonance Imaging. We achieve speed-up factors greater than 30 compared to a single CPU system and greater than 10 compared to currently available state-of-the-art multi-core CPU methods. We ensure high reconstruction accuracy by exact computation of the point-spread function for every input data point, which has not previously been possible due to computational limitations. Our framework and its implementation is scalable for available computational infrastructures and tests show a speed-up factor of 1.70 for each additional GPU. This paves the way for the online application of image based reconstruction methods during clinical examinations. The source code for the proposed approach is publicly available.
Capturing an enclosing volume of moving subjects and organs using fast individual image slice acquisition has shown promise in dealing with motion artefacts. Motion between slice acquisitions results in spatial inconsistencies that can be resolved by slice-to-volume reconstruction (SVR) methods to provide high quality 3D image data. Existing algorithms are, however, typically very slow, specialised to specific applications and rely on approximations, which impedes their potential clinical use. In this paper, we present a fast multi-GPU accelerated framework for slice-to-volume reconstruction. It is based on optimised 2D/3D registration, super-resolution with automatic outlier rejection and an additional (optional) intensity bias correction. We introduce a novel and fully automatic procedure for selecting the image stack with least motion to serve as an initial registration target. We evaluate the proposed method using artificial motion corrupted phantom data as well as clinical data, including tracked freehand ultrasound of the liver and fetal Magnetic Resonance Imaging. We achieve speed-up factors greater than 30 compared to a single CPU system and greater than 10 compared to currently available state-of-the-art multi-core CPU methods. We ensure high reconstruction accuracy by exact computation of the point-spread function for every input data point, which has not previously been possible due to computational limitations. Our framework and its implementation is scalable for available computational infrastructures and tests show a speed-up factor of 1.70 for each additional GPU. This paves the way for the online application of image based reconstruction methods during clinical examinations. The source code for the proposed approach is publicly available
Author Kainz, Bernhard
Keraudren, Kevin
Rutherford, Mary
Aljabar, Paul
Kuklisova-Murgasova, Maria
Malamateniou, Christina
Torsney-Weir, Thomas
Steinberger, Markus
Hajnal, Joseph V.
Rueckert, Daniel
Wein, Wolfgang
Author_xml – sequence: 1
  givenname: Bernhard
  surname: Kainz
  fullname: Kainz, Bernhard
  email: b.kainz@imperial.ac.uk
  organization: Dept. of Comput., Imperial Coll. London, London, UK
– sequence: 2
  givenname: Markus
  surname: Steinberger
  fullname: Steinberger, Markus
  organization: Inst. for Comput. Graphics & Vision, Graz Univ. of Technol., Graz, Austria
– sequence: 3
  givenname: Wolfgang
  surname: Wein
  fullname: Wein, Wolfgang
  organization: Dept. of Comput. Aided Med. Procedures & Augmented Reality, Tech. Univ. Munich, Munich, Germany
– sequence: 4
  givenname: Maria
  surname: Kuklisova-Murgasova
  fullname: Kuklisova-Murgasova, Maria
  organization: Dept. of Perinatal Imaging & Health, King's Coll. London, London, UK
– sequence: 5
  givenname: Christina
  surname: Malamateniou
  fullname: Malamateniou, Christina
  organization: Dept. of Perinatal Imaging & Health, King's Coll. London, London, UK
– sequence: 6
  givenname: Kevin
  surname: Keraudren
  fullname: Keraudren, Kevin
  organization: Dept. of Comput., Imperial Coll. London, London, UK
– sequence: 7
  givenname: Thomas
  surname: Torsney-Weir
  fullname: Torsney-Weir, Thomas
  organization: Visualization & Data Anal. Group, Univ. of Vienna, Vienna, Austria
– sequence: 8
  givenname: Mary
  surname: Rutherford
  fullname: Rutherford, Mary
  organization: Dept. of Perinatal Imaging & Health, King's Coll. London, London, UK
– sequence: 9
  givenname: Paul
  surname: Aljabar
  fullname: Aljabar, Paul
  organization: Dept. of Perinatal Imaging & Health, King's Coll. London, London, UK
– sequence: 10
  givenname: Joseph V.
  surname: Hajnal
  fullname: Hajnal, Joseph V.
  organization: Dept. of Perinatal Imaging & Health, King's Coll. London, London, UK
– sequence: 11
  givenname: Daniel
  surname: Rueckert
  fullname: Rueckert, Daniel
  organization: Dept. of Comput., Imperial Coll. London, London, UK
BackLink https://www.ncbi.nlm.nih.gov/pubmed/25807565$$D View this record in MEDLINE/PubMed
BookMark eNp9UU2L1EAQbWTFnV29C4Lk6CVjVac_kosgs866sIvgruKt6elUtDVJj90dYf-9GWcc1IOnKqj3Ubx3xk7GMBJjTxGWiNC8vLu5WnJAueQCpZDVA7ZAKeuSS_HphC2A67oEUPyUnaX0FQCFhOYRO-WyBi2VXLCLtU25-Bj6aaDiPbkwphwnl30Yi3UMQ3ETfu2rEOO0zdQWt9m6b6kIXcEvitveO0qP2cPO9omeHOY5-7B-c7d6W16_u7xavb4unUCVSwWyRavRdYhY2a5xCCBAdE21UcIqrWq50a6utBBtg22HHBoSdQvckXNQnbNXe93ttBmodTTmaHuzjX6w8d4E683fl9F_MZ_DD6MRZV1Xs8CLg0AM3ydK2Qw-Oep7O1KYkkENjcZKSjFDn__pdTT5Hd0MgD3AxZBSpO4IQTC7dszcjtm1Yw7tzBT1D8X5bHf5zt_6_n_EZ3uiJ6KjjwYltODVT4xzm1I
CODEN ITMID4
CitedBy_id crossref_primary_10_1016_j_compmedimag_2022_102071
crossref_primary_10_1088_1361_6560_ad33b6
crossref_primary_10_1016_j_compbiomed_2024_109077
crossref_primary_10_1016_j_mric_2021_06_007
crossref_primary_10_1016_j_compmedimag_2019_101647
crossref_primary_10_1016_j_mri_2019_05_020
crossref_primary_10_1016_j_mric_2024_04_008
crossref_primary_10_1007_s11042_019_7686_1
crossref_primary_10_1001_jamanetworkopen_2019_19940
crossref_primary_10_1109_TMI_2020_3046579
crossref_primary_10_1093_cercor_bhaa033
crossref_primary_10_1109_TMI_2017_2656907
crossref_primary_10_1016_j_biotno_2024_08_001
crossref_primary_10_3389_fnins_2021_636268
crossref_primary_10_1016_j_neuroimage_2022_119474
crossref_primary_10_1007_s00429_021_02303_x
crossref_primary_10_1016_j_placenta_2023_08_066
crossref_primary_10_1109_TMI_2022_3176814
crossref_primary_10_1016_j_bpsc_2021_11_009
crossref_primary_10_1155_2021_6685943
crossref_primary_10_1016_j_neuroimage_2017_04_033
crossref_primary_10_1515_bmt_2022_0349
crossref_primary_10_1111_jon_13096
crossref_primary_10_1016_j_neuroimage_2018_08_030
crossref_primary_10_1002_uog_29109
crossref_primary_10_1007_s00723_019_01161_5
crossref_primary_10_1137_19M1257895
crossref_primary_10_1016_j_media_2022_102484
crossref_primary_10_1038_s41597_021_00946_3
crossref_primary_10_1118_1_4935149
crossref_primary_10_1002_nbm_5248
crossref_primary_10_1016_j_ejogrb_2021_06_026
crossref_primary_10_1038_s41380_024_02449_0
crossref_primary_10_1016_j_dcn_2023_101282
crossref_primary_10_1016_j_media_2024_103282
crossref_primary_10_1002_mrm_27798
crossref_primary_10_1016_j_neuroimage_2017_04_004
crossref_primary_10_1093_cercor_bhab386
crossref_primary_10_1177_2473974X211055372
crossref_primary_10_1007_s11554_017_0710_7
crossref_primary_10_1109_TMI_2023_3327295
crossref_primary_10_3389_fnhum_2022_1108253
crossref_primary_10_1002_jmri_26316
crossref_primary_10_1002_jmri_27526
crossref_primary_10_1016_j_media_2019_03_008
crossref_primary_10_1109_TMI_2017_2721362
crossref_primary_10_3389_fped_2021_639746
crossref_primary_10_1109_TMI_2018_2798801
crossref_primary_10_1016_j_biopsych_2022_11_019
crossref_primary_10_1016_j_neucom_2017_06_014
crossref_primary_10_1016_j_media_2017_04_010
crossref_primary_10_1093_cercor_bhab035
crossref_primary_10_1148_radiol_211222
crossref_primary_10_1002_hbm_23536
crossref_primary_10_1016_j_media_2016_06_009
crossref_primary_10_1109_TMI_2023_3236216
crossref_primary_10_1038_s41598_022_09327_1
crossref_primary_10_1186_s12968_022_00902_z
crossref_primary_10_3389_fneur_2022_827816
crossref_primary_10_1002_mrm_27613
crossref_primary_10_1148_ryct_240119
crossref_primary_10_1002_hbm_70159
crossref_primary_10_1002_mrm_27852
crossref_primary_10_1001_jamanetworkopen_2022_9244
crossref_primary_10_1038_s41598_022_09760_2
crossref_primary_10_1016_j_media_2022_102731
crossref_primary_10_1002_spe_2418
crossref_primary_10_1016_j_neuroimage_2019_116310
crossref_primary_10_1002_ana_25940
crossref_primary_10_1109_TMI_2017_2737081
crossref_primary_10_1016_j_neuroimage_2019_116324
crossref_primary_10_1002_jmri_27665
crossref_primary_10_3174_ajnr_A6869
crossref_primary_10_1002_ima_22563
crossref_primary_10_1111_aogs_13983
crossref_primary_10_1088_1361_6560_ac9c40
crossref_primary_10_1109_TMI_2020_2998600
crossref_primary_10_1001_jamapediatrics_2019_5316
crossref_primary_10_1016_j_neuroimage_2017_09_056
crossref_primary_10_1038_s43856_022_00111_w
crossref_primary_10_1109_TVCG_2017_2674938
crossref_primary_10_3174_ajnr_A6635
crossref_primary_10_1038_s41598_022_10335_4
crossref_primary_10_1186_s41747_021_00219_z
crossref_primary_10_1016_j_neuroimage_2021_118482
crossref_primary_10_1109_OJEMB_2024_3426969
crossref_primary_10_1038_s41551_019_0476_2
crossref_primary_10_3389_fcvm_2023_1206138
crossref_primary_10_1002_hbm_25653
crossref_primary_10_1002_mrm_30245
crossref_primary_10_1109_TMI_2020_2974844
crossref_primary_10_1016_j_neuroimage_2020_116702
crossref_primary_10_1161_CIRCULATIONAHA_121_056305
crossref_primary_10_3174_ajnr_A7808
crossref_primary_10_1001_jamanetworkopen_2021_3526
crossref_primary_10_1109_TMI_2018_2866442
crossref_primary_10_1038_s41598_017_00525_w
crossref_primary_10_1109_TMI_2016_2555244
crossref_primary_10_3389_fneur_2024_1358741
crossref_primary_10_1002_hbm_25006
crossref_primary_10_1002_hbm_70132
crossref_primary_10_1016_j_compbiomed_2025_110005
crossref_primary_10_1038_s41390_019_0717_9
crossref_primary_10_1093_cercor_bhz200
crossref_primary_10_1016_S0140_6736_18_32490_5
crossref_primary_10_1002_hbm_25762
crossref_primary_10_1016_j_mric_2024_03_004
crossref_primary_10_3174_ajnr_A7419
crossref_primary_10_1109_TMI_2022_3208277
crossref_primary_10_1007_s12021_023_09635_5
crossref_primary_10_1097_RMR_0000000000000211
crossref_primary_10_1360_TB_2022_0621
crossref_primary_10_1016_j_nicl_2018_09_029
Cites_doi 10.1007/s00330-007-0812-x
10.1007/978-3-319-10470-6_36
10.1007/s00247-004-1246-0
10.1016/j.cmpb.2012.08.007
10.1016/j.ejrad.2005.11.031
10.1016/j.acra.2006.05.003
10.1002/(SICI)1522-2594(199911)42:5<963::AID-MRM17>3.0.CO;2-L
10.1148/radiology.187.2.8475300
10.1016/j.neuroimage.2014.07.023
10.1109/TMI.2007.895456
10.1016/j.neuroimage.2005.02.018
10.1016/j.bspc.2013.05.009
10.1007/BF02288367
10.1002/dneu.20614
10.1016/S0167-8655(02)00180-0
10.1002/mrm.1910330517
10.1007/11566465_68
10.1109/TMI.2013.2294630
10.1109/TMI.2010.2051680
10.1002/mrm.22176
10.1148/radiology.206.2.9457211
10.1016/j.ultrasmedbio.2007.02.015
10.3174/ajnr.A2295
10.1016/j.media.2005.04.005
10.1109/34.56205
10.1016/j.jare.2013.06.001
10.1109/CVPR.2010.5540138
10.1016/S1361-8415(97)85009-8
10.1109/TVCG.2011.248
10.1007/3-540-45468-3_69
10.1117/12.813835
10.1109/TMI.2009.2030679
10.1016/j.media.2012.07.004
10.1109/ISBI.2010.5490365
ContentType Journal Article
DBID 97E
ESBDL
RIA
RIE
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
DOI 10.1109/TMI.2015.2415453
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE Xplore Open Access Journals
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL) - NZ
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
MEDLINE

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: RIE
  name: IEEE Xplore : IEEE Electronic Library (IEL) [unlimited simultaenous users]
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Engineering
EISSN 1558-254X
EndPage 1913
ExternalDocumentID PMC7115883
25807565
10_1109_TMI_2015_2415453
7064742
Genre orig-research
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: EU FP7
  grantid: FP7-PEOPLE-2012-IEF F.A.U.S.T. 325661
– fundername: Austrian Science Fund
  grantid: P23329
  funderid: 10.13039/501100002428
– fundername: National Institute for Health Research
  grantid: Biomedical Research Centre based at Guy's and St T
  funderid: 10.13039/501100000272
– fundername: Kings College London Medical Engineering Centre
  grantid: iFIND [102431]
– fundername: Medical Research Council
  grantid: MC_U120088465
– fundername: Wellcome Trust
  grantid: 102431
– fundername: Wellcome Trust
  grantid: 203148
– fundername: Medical Research Council
  grantid: MR/K006355/1
GroupedDBID ---
-DZ
-~X
.GJ
0R~
29I
4.4
53G
5GY
5RE
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACNCT
ACPRK
AENEX
AETIX
AFRAH
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
ESBDL
F5P
HZ~
H~9
IBMZZ
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
PQQKQ
RIA
RIE
RNS
RXW
TAE
TN5
VH1
AAYOK
AAYXX
CITATION
RIG
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
ID FETCH-LOGICAL-c416t-605d1a71cf1113af9c100404f93b64a67685b7c83744d91df1209e48d02cecc03
IEDL.DBID RIE
ISSN 0278-0062
1558-254X
IngestDate Thu Aug 21 18:25:55 EDT 2025
Fri Jul 11 06:08:52 EDT 2025
Mon Jul 21 05:57:11 EDT 2025
Thu Apr 24 23:00:07 EDT 2025
Tue Jul 01 03:15:55 EDT 2025
Tue Aug 26 16:39:59 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed false
IsScholarly true
Issue 9
Language English
License https://creativecommons.org/licenses/by/3.0/legalcode
This work is licensed under a Creative Commons Attribution 3.0 License. For more information, see http://creativecommons.org/licenses/by/3.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c416t-605d1a71cf1113af9c100404f93b64a67685b7c83744d91df1209e48d02cecc03
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/document/7064742
PMID 25807565
PQID 1709713554
PQPubID 23479
PageCount 13
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_7115883
crossref_primary_10_1109_TMI_2015_2415453
pubmed_primary_25807565
crossref_citationtrail_10_1109_TMI_2015_2415453
ieee_primary_7064742
proquest_miscellaneous_1709713554
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2015-09-01
PublicationDateYYYYMMDD 2015-09-01
PublicationDate_xml – month: 09
  year: 2015
  text: 2015-09-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle IEEE transactions on medical imaging
PublicationTitleAbbrev TMI
PublicationTitleAlternate IEEE Trans Med Imaging
PublicationYear 2015
Publisher IEEE
Publisher_xml – name: IEEE
References ref13
harris (ref36) 2007; 2
ref12
ref15
ref14
ref31
ref30
ref11
ref32
humphrey (ref37) 2011
ref10
ref2
ref1
ref17
karamalis (ref3) 2009; 7261
ref38
ref16
ref19
ref18
criminisi (ref42) 2008; 5302
schnabel (ref33) 2001; 2208
kainz (ref27) 2014
malamateniou (ref9) 2012; 6
ref24
ref26
ref25
ref20
ref41
sanders (ref34) 2010
ref22
ref21
ref43
forbes (ref23) 2003; 24
ref28
ref29
ref8
ref7
ref4
ref6
ref5
reinders (ref35) 2007
ref40
cocosco (ref39) 1997; 5
References_xml – ident: ref22
  doi: 10.1007/s00330-007-0812-x
– ident: ref15
  doi: 10.1007/978-3-319-10470-6_36
– ident: ref16
  doi: 10.1007/s00247-004-1246-0
– ident: ref7
  doi: 10.1016/j.cmpb.2012.08.007
– ident: ref14
  doi: 10.1016/j.ejrad.2005.11.031
– ident: ref2
  doi: 10.1016/j.acra.2006.05.003
– ident: ref21
  doi: 10.1002/(SICI)1522-2594(199911)42:5<963::AID-MRM17>3.0.CO;2-L
– ident: ref8
  doi: 10.1148/radiology.187.2.8475300
– ident: ref26
  doi: 10.1016/j.neuroimage.2014.07.023
– ident: ref30
  doi: 10.1109/TMI.2007.895456
– volume: 5
  start-page: 425
  year: 1997
  ident: ref39
  article-title: BrainWeb: Online interface to a 3D MRI simulated brain database
  publication-title: NeuroImage
– ident: ref31
  doi: 10.1016/j.neuroimage.2005.02.018
– ident: ref6
  doi: 10.1016/j.bspc.2013.05.009
– ident: ref29
  doi: 10.1007/BF02288367
– ident: ref13
  doi: 10.1002/dneu.20614
– ident: ref12
  doi: 10.1016/S0167-8655(02)00180-0
– ident: ref19
  doi: 10.1002/mrm.1910330517
– ident: ref25
  doi: 10.1007/11566465_68
– ident: ref11
  doi: 10.1109/TMI.2013.2294630
– ident: ref24
  doi: 10.1109/TMI.2010.2051680
– ident: ref20
  doi: 10.1002/mrm.22176
– ident: ref18
  doi: 10.1148/radiology.206.2.9457211
– year: 2007
  ident: ref35
  publication-title: Intel Threading Building Blocks
– ident: ref10
  doi: 10.1016/j.ultrasmedbio.2007.02.015
– year: 2011
  ident: ref37
  article-title: CULA: Hybrid GPU accelerated linear algebra routines
  publication-title: SPIE Defense Security Symp
– volume: 24
  start-page: 794
  year: 2003
  ident: ref23
  article-title: Brain imaging in the unsedated pediatric patient: Comparison of periodically rotated overlapping parallel lines with enhanced reconstruction and single-shot fast spin-echo sequences
  publication-title: Am J Neuroradiol
– ident: ref40
  doi: 10.3174/ajnr.A2295
– ident: ref43
  doi: 10.1016/j.media.2005.04.005
– start-page: 1230
  year: 2014
  ident: ref27
  article-title: Fast fully automatic brain detection in foetal MRI using dense rotation invariant image descriptors
  publication-title: IEEE Int Symp Biomed Imag
– ident: ref32
  doi: 10.1109/34.56205
– volume: 2
  year: 2007
  ident: ref36
  article-title: Optimizing parallel reduction in CUDA
  publication-title: NVIDIA Dev Technology
– ident: ref17
  doi: 10.1016/j.jare.2013.06.001
– ident: ref28
  doi: 10.1109/CVPR.2010.5540138
– ident: ref1
  doi: 10.1016/S1361-8415(97)85009-8
– ident: ref41
  doi: 10.1109/TVCG.2011.248
– volume: 5302
  start-page: 99
  year: 2008
  ident: ref42
  publication-title: ECCV'08 Part I
– volume: 2208
  start-page: 573
  year: 2001
  ident: ref33
  publication-title: Medical Image Computing and Computer-Assisted Intervention MICCAI 2001
  doi: 10.1007/3-540-45468-3_69
– year: 2010
  ident: ref34
  publication-title: CUDA by Example An Introduction to General-Purpose GPU Programming
– volume: 7261
  start-page: 726 114
  year: 2009
  ident: ref3
  article-title: Fast hybrid freehand ultrasound volume reconstruction
  publication-title: Proc SPIE
  doi: 10.1117/12.813835
– ident: ref4
  doi: 10.1109/TMI.2009.2030679
– ident: ref5
  doi: 10.1016/j.media.2012.07.004
– volume: 6
  start-page: 1124
  year: 2012
  ident: ref9
  article-title: Motion-compensation techniques in neonatal and fetal MR imaging
  publication-title: AJNR Am J Neuroradiol
– ident: ref38
  doi: 10.1109/ISBI.2010.5490365
SSID ssj0014509
Score 2.5643752
Snippet Capturing an enclosing volume of moving subjects and organs using fast individual image slice acquisition has shown promise in dealing with motion artefacts....
SourceID pubmedcentral
proquest
pubmed
crossref
ieee
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1901
SubjectTerms Algorithms
Approximation methods
Female
fetal imaging
freehand compound ultrasound
GPU acceleration
Humans
Image reconstruction
Imaging, Three-Dimensional - methods
Liver - diagnostic imaging
Magnetic resonance imaging
Magnetic Resonance Imaging - methods
Motion correction
Phantoms, Imaging
Pregnancy
Spatial resolution
Three-dimensional displays
Ultrasonography - methods
Ultrasonography, Prenatal
Title Fast Volume Reconstruction From Motion Corrupted Stacks of 2D Slices
URI https://ieeexplore.ieee.org/document/7064742
https://www.ncbi.nlm.nih.gov/pubmed/25807565
https://www.proquest.com/docview/1709713554
https://pubmed.ncbi.nlm.nih.gov/PMC7115883
Volume 34
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1JS8VADA7qQfTgvtSNEbwI9r2-vpkuR1EfKtSLC97KdGaKorbylou_3mS6-BQRb4XOwLRJky9N8gXgCE1-j5sod3UgKc2oclfqXLhGEjtV7BthaReTm-Dynl8_iscZOGl7YYwxtvjMdOjS5vJ1qSb0q6wbUmckR4M7i4Fb1avVZgy4qMo5fGKM9QK_SUl6cfcuuaIaLtEhb8UFjc7xBZHwkkeZ8kZ2vMpvSPNnweSUBxosQ9KcvSo8eelMxllHffygdfzvw63AUg1F2WmlO6swY4o1WJwiKFyD-aROva_D-UCOxuzBGjNGQesX9SwbDMs3lth5QOysHA4n74hjGeJY9TJiZc78c3b7ShZpA-4HF3dnl249gsFViNTGLgY7uidDFCGNpJd5rIhhzuN53M8CLgMMVkQWKoxyOddxT-fUimt4pD1foXJ4_U2YK8rCbAPjOoozrQMVagxBpYgjTypFY-vzzA905EC3EUWqan5yGpPxmto4xYtTlGNKckxrOTpw3O54r7g5_li7Tq-8XVe_bQcOG2mn-F1RskQWppyM0l5I7FqExhzYqqTfbm60x4Hwm160C4iz-_ud4vnJcneHiMCjqL_z-3F2YYEOXdWw7cEcytHsI-gZZwdW2z8BB5n7Dg
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwEB4hKtFyaHkUGijUlXpBIrvZrJ3HsWJZ7QLh0gVxixzbEQiaoH1c-PXMOI8uCKHeIsWWbH8Tz0xm5huAX3jl97iJclcHksKMKnelzoVrJLFTxb4RlnYxuQxGV_zsRtyswHFbC2OMsclnpkOPNpavS7WgX2XdkCojOV64H1DvC7-q1mpjBlxUCR0-ccZ6gd8EJb24O0nGlMUlOqSvuKDmOb4gGl7SKUv6yDZYecvWfJ0yuaSDhl8gaVZfpZ7cdxbzrKOeXhE7_u_2NuBzbYyy35X0bMKKKbZgfYmicAvWkjr4vg2DoZzN2bW9zhi5rf_IZ9lwWv5lie0IxE7K6XTxiJYsQ0tW3c9YmTN_wP480J30Fa6Gp5OTkVs3YXAV2mpzF90d3ZMhgkhN6WUeK-KY83ge97OAywDdFZGFCv1cznXc0zkV4xoeac9XKB5efwdWi7Iw34BxHcWZ1oEKNTqhUsSRJ5WixvV55gc6cqDbQJGqmqGcGmU8pNZT8eIUcUwJx7TG0YGjdsZjxc7xzthtOvJ2XH3aDvxs0E7xy6JwiSxMuZilvZD4tcgec2C3Qr-d3EiPA-ELuWgHEGv3yzfF3a1l7w7RBo-i_t7by_kBH0eT5CK9GF-e78Mn2kCV0fYdVhFTc4Am0Dw7tJL_DEeZ_lg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fast+Volume+Reconstruction+From+Motion+Corrupted+Stacks+of+2D+Slices&rft.jtitle=IEEE+transactions+on+medical+imaging&rft.au=Kainz%2C+Bernhard&rft.au=Steinberger%2C+Markus&rft.au=Wein%2C+Wolfgang&rft.au=Kuklisova-Murgasova%2C+Maria&rft.date=2015-09-01&rft.issn=0278-0062&rft.eissn=1558-254X&rft.volume=34&rft.issue=9&rft.spage=1901&rft.epage=1913&rft_id=info:doi/10.1109%2FTMI.2015.2415453&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TMI_2015_2415453
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0278-0062&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0278-0062&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0278-0062&client=summon