Fast Volume Reconstruction From Motion Corrupted Stacks of 2D Slices
Capturing an enclosing volume of moving subjects and organs using fast individual image slice acquisition has shown promise in dealing with motion artefacts. Motion between slice acquisitions results in spatial inconsistencies that can be resolved by slice-to-volume reconstruction (SVR) methods to p...
Saved in:
Published in | IEEE transactions on medical imaging Vol. 34; no. 9; pp. 1901 - 1913 |
---|---|
Main Authors | , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
IEEE
01.09.2015
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Capturing an enclosing volume of moving subjects and organs using fast individual image slice acquisition has shown promise in dealing with motion artefacts. Motion between slice acquisitions results in spatial inconsistencies that can be resolved by slice-to-volume reconstruction (SVR) methods to provide high quality 3D image data. Existing algorithms are, however, typically very slow, specialised to specific applications and rely on approximations, which impedes their potential clinical use. In this paper, we present a fast multi-GPU accelerated framework for slice-to-volume reconstruction. It is based on optimised 2D/3D registration, super-resolution with automatic outlier rejection and an additional (optional) intensity bias correction. We introduce a novel and fully automatic procedure for selecting the image stack with least motion to serve as an initial registration target. We evaluate the proposed method using artificial motion corrupted phantom data as well as clinical data, including tracked freehand ultrasound of the liver and fetal Magnetic Resonance Imaging. We achieve speed-up factors greater than 30 compared to a single CPU system and greater than 10 compared to currently available state-of-the-art multi-core CPU methods. We ensure high reconstruction accuracy by exact computation of the point-spread function for every input data point, which has not previously been possible due to computational limitations. Our framework and its implementation is scalable for available computational infrastructures and tests show a speed-up factor of 1.70 for each additional GPU. This paves the way for the online application of image based reconstruction methods during clinical examinations. The source code for the proposed approach is publicly available. |
---|---|
AbstractList | Capturing an enclosing volume of moving subjects and organs using fast individual image slice acquisition has shown promise in dealing with motion artefacts. Motion between slice acquisitions results in spatial inconsistencies that can be resolved by slice-to-volume reconstruction (SVR) methods to provide high quality 3D image data. Existing algorithms are, however, typically very slow, specialised to specific applications and rely on approximations, which impedes their potential clinical use. In this paper, we present a fast multi-GPU accelerated framework for slice-to-volume reconstruction. It is based on optimised 2D/3D registration, super-resolution with automatic outlier rejection and an additional (optional) intensity bias correction. We introduce a novel and fully automatic procedure for selecting the image stack with least motion to serve as an initial registration target. We evaluate the proposed method using artificial motion corrupted phantom data as well as clinical data, including tracked freehand ultrasound of the liver and fetal Magnetic Resonance Imaging. We achieve speed-up factors greater than 30 compared to a single CPU system and greater than 10 compared to currently available state-of-the-art multi-core CPU methods. We ensure high reconstruction accuracy by exact computation of the point-spread function for every input data point, which has not previously been possible due to computational limitations. Our framework and its implementation is scalable for available computational infrastructures and tests show a speed-up factor of 1.70 for each additional GPU. This paves the way for the online application of image based reconstruction methods during clinical examinations. The source code for the proposed approach is publicly available. Capturing an enclosing volume of moving subjects and organs using fast individual image slice acquisition has shown promise in dealing with motion artefacts. Motion between slice acquisitions results in spatial inconsistencies that can be resolved by slice-to-volume reconstruction (SVR) methods to provide high quality 3D image data. Existing algorithms are, however, typically very slow, specialised to specific applications and rely on approximations, which impedes their potential clinical use. In this paper, we present a fast multi-GPU accelerated framework for slice-to-volume reconstruction. It is based on optimised 2D/3D registration, super-resolution with automatic outlier rejection and an additional (optional) intensity bias correction. We introduce a novel and fully automatic procedure for selecting the image stack with least motion to serve as an initial registration target. We evaluate the proposed method using artificial motion corrupted phantom data as well as clinical data, including tracked freehand ultrasound of the liver and fetal Magnetic Resonance Imaging. We achieve speed-up factors greater than 30 compared to a single CPU system and greater than 10 compared to currently available state-of-the-art multi-core CPU methods. We ensure high reconstruction accuracy by exact computation of the point-spread function for every input data point, which has not previously been possible due to computational limitations. Our framework and its implementation is scalable for available computational infrastructures and tests show a speed-up factor of 1.70 for each additional GPU. This paves the way for the online application of image based reconstruction methods during clinical examinations. The source code for the proposed approach is publicly available.Capturing an enclosing volume of moving subjects and organs using fast individual image slice acquisition has shown promise in dealing with motion artefacts. Motion between slice acquisitions results in spatial inconsistencies that can be resolved by slice-to-volume reconstruction (SVR) methods to provide high quality 3D image data. Existing algorithms are, however, typically very slow, specialised to specific applications and rely on approximations, which impedes their potential clinical use. In this paper, we present a fast multi-GPU accelerated framework for slice-to-volume reconstruction. It is based on optimised 2D/3D registration, super-resolution with automatic outlier rejection and an additional (optional) intensity bias correction. We introduce a novel and fully automatic procedure for selecting the image stack with least motion to serve as an initial registration target. We evaluate the proposed method using artificial motion corrupted phantom data as well as clinical data, including tracked freehand ultrasound of the liver and fetal Magnetic Resonance Imaging. We achieve speed-up factors greater than 30 compared to a single CPU system and greater than 10 compared to currently available state-of-the-art multi-core CPU methods. We ensure high reconstruction accuracy by exact computation of the point-spread function for every input data point, which has not previously been possible due to computational limitations. Our framework and its implementation is scalable for available computational infrastructures and tests show a speed-up factor of 1.70 for each additional GPU. This paves the way for the online application of image based reconstruction methods during clinical examinations. The source code for the proposed approach is publicly available. Capturing an enclosing volume of moving subjects and organs using fast individual image slice acquisition has shown promise in dealing with motion artefacts. Motion between slice acquisitions results in spatial inconsistencies that can be resolved by slice-to-volume reconstruction (SVR) methods to provide high quality 3D image data. Existing algorithms are, however, typically very slow, specialised to specific applications and rely on approximations, which impedes their potential clinical use. In this paper, we present a fast multi-GPU accelerated framework for slice-to-volume reconstruction. It is based on optimised 2D/3D registration, super-resolution with automatic outlier rejection and an additional (optional) intensity bias correction. We introduce a novel and fully automatic procedure for selecting the image stack with least motion to serve as an initial registration target. We evaluate the proposed method using artificial motion corrupted phantom data as well as clinical data, including tracked freehand ultrasound of the liver and fetal Magnetic Resonance Imaging. We achieve speed-up factors greater than 30 compared to a single CPU system and greater than 10 compared to currently available state-of-the-art multi-core CPU methods. We ensure high reconstruction accuracy by exact computation of the point-spread function for every input data point, which has not previously been possible due to computational limitations. Our framework and its implementation is scalable for available computational infrastructures and tests show a speed-up factor of 1.70 for each additional GPU. This paves the way for the online application of image based reconstruction methods during clinical examinations. The source code for the proposed approach is publicly available |
Author | Kainz, Bernhard Keraudren, Kevin Rutherford, Mary Aljabar, Paul Kuklisova-Murgasova, Maria Malamateniou, Christina Torsney-Weir, Thomas Steinberger, Markus Hajnal, Joseph V. Rueckert, Daniel Wein, Wolfgang |
Author_xml | – sequence: 1 givenname: Bernhard surname: Kainz fullname: Kainz, Bernhard email: b.kainz@imperial.ac.uk organization: Dept. of Comput., Imperial Coll. London, London, UK – sequence: 2 givenname: Markus surname: Steinberger fullname: Steinberger, Markus organization: Inst. for Comput. Graphics & Vision, Graz Univ. of Technol., Graz, Austria – sequence: 3 givenname: Wolfgang surname: Wein fullname: Wein, Wolfgang organization: Dept. of Comput. Aided Med. Procedures & Augmented Reality, Tech. Univ. Munich, Munich, Germany – sequence: 4 givenname: Maria surname: Kuklisova-Murgasova fullname: Kuklisova-Murgasova, Maria organization: Dept. of Perinatal Imaging & Health, King's Coll. London, London, UK – sequence: 5 givenname: Christina surname: Malamateniou fullname: Malamateniou, Christina organization: Dept. of Perinatal Imaging & Health, King's Coll. London, London, UK – sequence: 6 givenname: Kevin surname: Keraudren fullname: Keraudren, Kevin organization: Dept. of Comput., Imperial Coll. London, London, UK – sequence: 7 givenname: Thomas surname: Torsney-Weir fullname: Torsney-Weir, Thomas organization: Visualization & Data Anal. Group, Univ. of Vienna, Vienna, Austria – sequence: 8 givenname: Mary surname: Rutherford fullname: Rutherford, Mary organization: Dept. of Perinatal Imaging & Health, King's Coll. London, London, UK – sequence: 9 givenname: Paul surname: Aljabar fullname: Aljabar, Paul organization: Dept. of Perinatal Imaging & Health, King's Coll. London, London, UK – sequence: 10 givenname: Joseph V. surname: Hajnal fullname: Hajnal, Joseph V. organization: Dept. of Perinatal Imaging & Health, King's Coll. London, London, UK – sequence: 11 givenname: Daniel surname: Rueckert fullname: Rueckert, Daniel organization: Dept. of Comput., Imperial Coll. London, London, UK |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/25807565$$D View this record in MEDLINE/PubMed |
BookMark | eNp9UU2L1EAQbWTFnV29C4Lk6CVjVac_kosgs866sIvgruKt6elUtDVJj90dYf-9GWcc1IOnKqj3Ubx3xk7GMBJjTxGWiNC8vLu5WnJAueQCpZDVA7ZAKeuSS_HphC2A67oEUPyUnaX0FQCFhOYRO-WyBi2VXLCLtU25-Bj6aaDiPbkwphwnl30Yi3UMQ3ETfu2rEOO0zdQWt9m6b6kIXcEvitveO0qP2cPO9omeHOY5-7B-c7d6W16_u7xavb4unUCVSwWyRavRdYhY2a5xCCBAdE21UcIqrWq50a6utBBtg22HHBoSdQvckXNQnbNXe93ttBmodTTmaHuzjX6w8d4E683fl9F_MZ_DD6MRZV1Xs8CLg0AM3ydK2Qw-Oep7O1KYkkENjcZKSjFDn__pdTT5Hd0MgD3AxZBSpO4IQTC7dszcjtm1Yw7tzBT1D8X5bHf5zt_6_n_EZ3uiJ6KjjwYltODVT4xzm1I |
CODEN | ITMID4 |
CitedBy_id | crossref_primary_10_1016_j_compmedimag_2022_102071 crossref_primary_10_1088_1361_6560_ad33b6 crossref_primary_10_1016_j_compbiomed_2024_109077 crossref_primary_10_1016_j_mric_2021_06_007 crossref_primary_10_1016_j_compmedimag_2019_101647 crossref_primary_10_1016_j_mri_2019_05_020 crossref_primary_10_1016_j_mric_2024_04_008 crossref_primary_10_1007_s11042_019_7686_1 crossref_primary_10_1001_jamanetworkopen_2019_19940 crossref_primary_10_1109_TMI_2020_3046579 crossref_primary_10_1093_cercor_bhaa033 crossref_primary_10_1109_TMI_2017_2656907 crossref_primary_10_1016_j_biotno_2024_08_001 crossref_primary_10_3389_fnins_2021_636268 crossref_primary_10_1016_j_neuroimage_2022_119474 crossref_primary_10_1007_s00429_021_02303_x crossref_primary_10_1016_j_placenta_2023_08_066 crossref_primary_10_1109_TMI_2022_3176814 crossref_primary_10_1016_j_bpsc_2021_11_009 crossref_primary_10_1155_2021_6685943 crossref_primary_10_1016_j_neuroimage_2017_04_033 crossref_primary_10_1515_bmt_2022_0349 crossref_primary_10_1111_jon_13096 crossref_primary_10_1016_j_neuroimage_2018_08_030 crossref_primary_10_1002_uog_29109 crossref_primary_10_1007_s00723_019_01161_5 crossref_primary_10_1137_19M1257895 crossref_primary_10_1016_j_media_2022_102484 crossref_primary_10_1038_s41597_021_00946_3 crossref_primary_10_1118_1_4935149 crossref_primary_10_1002_nbm_5248 crossref_primary_10_1016_j_ejogrb_2021_06_026 crossref_primary_10_1038_s41380_024_02449_0 crossref_primary_10_1016_j_dcn_2023_101282 crossref_primary_10_1016_j_media_2024_103282 crossref_primary_10_1002_mrm_27798 crossref_primary_10_1016_j_neuroimage_2017_04_004 crossref_primary_10_1093_cercor_bhab386 crossref_primary_10_1177_2473974X211055372 crossref_primary_10_1007_s11554_017_0710_7 crossref_primary_10_1109_TMI_2023_3327295 crossref_primary_10_3389_fnhum_2022_1108253 crossref_primary_10_1002_jmri_26316 crossref_primary_10_1002_jmri_27526 crossref_primary_10_1016_j_media_2019_03_008 crossref_primary_10_1109_TMI_2017_2721362 crossref_primary_10_3389_fped_2021_639746 crossref_primary_10_1109_TMI_2018_2798801 crossref_primary_10_1016_j_biopsych_2022_11_019 crossref_primary_10_1016_j_neucom_2017_06_014 crossref_primary_10_1016_j_media_2017_04_010 crossref_primary_10_1093_cercor_bhab035 crossref_primary_10_1148_radiol_211222 crossref_primary_10_1002_hbm_23536 crossref_primary_10_1016_j_media_2016_06_009 crossref_primary_10_1109_TMI_2023_3236216 crossref_primary_10_1038_s41598_022_09327_1 crossref_primary_10_1186_s12968_022_00902_z crossref_primary_10_3389_fneur_2022_827816 crossref_primary_10_1002_mrm_27613 crossref_primary_10_1148_ryct_240119 crossref_primary_10_1002_hbm_70159 crossref_primary_10_1002_mrm_27852 crossref_primary_10_1001_jamanetworkopen_2022_9244 crossref_primary_10_1038_s41598_022_09760_2 crossref_primary_10_1016_j_media_2022_102731 crossref_primary_10_1002_spe_2418 crossref_primary_10_1016_j_neuroimage_2019_116310 crossref_primary_10_1002_ana_25940 crossref_primary_10_1109_TMI_2017_2737081 crossref_primary_10_1016_j_neuroimage_2019_116324 crossref_primary_10_1002_jmri_27665 crossref_primary_10_3174_ajnr_A6869 crossref_primary_10_1002_ima_22563 crossref_primary_10_1111_aogs_13983 crossref_primary_10_1088_1361_6560_ac9c40 crossref_primary_10_1109_TMI_2020_2998600 crossref_primary_10_1001_jamapediatrics_2019_5316 crossref_primary_10_1016_j_neuroimage_2017_09_056 crossref_primary_10_1038_s43856_022_00111_w crossref_primary_10_1109_TVCG_2017_2674938 crossref_primary_10_3174_ajnr_A6635 crossref_primary_10_1038_s41598_022_10335_4 crossref_primary_10_1186_s41747_021_00219_z crossref_primary_10_1016_j_neuroimage_2021_118482 crossref_primary_10_1109_OJEMB_2024_3426969 crossref_primary_10_1038_s41551_019_0476_2 crossref_primary_10_3389_fcvm_2023_1206138 crossref_primary_10_1002_hbm_25653 crossref_primary_10_1002_mrm_30245 crossref_primary_10_1109_TMI_2020_2974844 crossref_primary_10_1016_j_neuroimage_2020_116702 crossref_primary_10_1161_CIRCULATIONAHA_121_056305 crossref_primary_10_3174_ajnr_A7808 crossref_primary_10_1001_jamanetworkopen_2021_3526 crossref_primary_10_1109_TMI_2018_2866442 crossref_primary_10_1038_s41598_017_00525_w crossref_primary_10_1109_TMI_2016_2555244 crossref_primary_10_3389_fneur_2024_1358741 crossref_primary_10_1002_hbm_25006 crossref_primary_10_1002_hbm_70132 crossref_primary_10_1016_j_compbiomed_2025_110005 crossref_primary_10_1038_s41390_019_0717_9 crossref_primary_10_1093_cercor_bhz200 crossref_primary_10_1016_S0140_6736_18_32490_5 crossref_primary_10_1002_hbm_25762 crossref_primary_10_1016_j_mric_2024_03_004 crossref_primary_10_3174_ajnr_A7419 crossref_primary_10_1109_TMI_2022_3208277 crossref_primary_10_1007_s12021_023_09635_5 crossref_primary_10_1097_RMR_0000000000000211 crossref_primary_10_1360_TB_2022_0621 crossref_primary_10_1016_j_nicl_2018_09_029 |
Cites_doi | 10.1007/s00330-007-0812-x 10.1007/978-3-319-10470-6_36 10.1007/s00247-004-1246-0 10.1016/j.cmpb.2012.08.007 10.1016/j.ejrad.2005.11.031 10.1016/j.acra.2006.05.003 10.1002/(SICI)1522-2594(199911)42:5<963::AID-MRM17>3.0.CO;2-L 10.1148/radiology.187.2.8475300 10.1016/j.neuroimage.2014.07.023 10.1109/TMI.2007.895456 10.1016/j.neuroimage.2005.02.018 10.1016/j.bspc.2013.05.009 10.1007/BF02288367 10.1002/dneu.20614 10.1016/S0167-8655(02)00180-0 10.1002/mrm.1910330517 10.1007/11566465_68 10.1109/TMI.2013.2294630 10.1109/TMI.2010.2051680 10.1002/mrm.22176 10.1148/radiology.206.2.9457211 10.1016/j.ultrasmedbio.2007.02.015 10.3174/ajnr.A2295 10.1016/j.media.2005.04.005 10.1109/34.56205 10.1016/j.jare.2013.06.001 10.1109/CVPR.2010.5540138 10.1016/S1361-8415(97)85009-8 10.1109/TVCG.2011.248 10.1007/3-540-45468-3_69 10.1117/12.813835 10.1109/TMI.2009.2030679 10.1016/j.media.2012.07.004 10.1109/ISBI.2010.5490365 |
ContentType | Journal Article |
DBID | 97E ESBDL RIA RIE AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM |
DOI | 10.1109/TMI.2015.2415453 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE Xplore Open Access Journals IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) - NZ CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: RIE name: IEEE Xplore : IEEE Electronic Library (IEL) [unlimited simultaenous users] url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Engineering |
EISSN | 1558-254X |
EndPage | 1913 |
ExternalDocumentID | PMC7115883 25807565 10_1109_TMI_2015_2415453 7064742 |
Genre | orig-research Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: EU FP7 grantid: FP7-PEOPLE-2012-IEF F.A.U.S.T. 325661 – fundername: Austrian Science Fund grantid: P23329 funderid: 10.13039/501100002428 – fundername: National Institute for Health Research grantid: Biomedical Research Centre based at Guy's and St T funderid: 10.13039/501100000272 – fundername: Kings College London Medical Engineering Centre grantid: iFIND [102431] – fundername: Medical Research Council grantid: MC_U120088465 – fundername: Wellcome Trust grantid: 102431 – fundername: Wellcome Trust grantid: 203148 – fundername: Medical Research Council grantid: MR/K006355/1 |
GroupedDBID | --- -DZ -~X .GJ 0R~ 29I 4.4 53G 5GY 5RE 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK ACNCT ACPRK AENEX AETIX AFRAH AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD ESBDL F5P HZ~ H~9 IBMZZ ICLAB IFIPE IFJZH IPLJI JAVBF LAI M43 MS~ O9- OCL P2P PQQKQ RIA RIE RNS RXW TAE TN5 VH1 AAYOK AAYXX CITATION RIG CGR CUY CVF ECM EIF NPM 7X8 5PM |
ID | FETCH-LOGICAL-c416t-605d1a71cf1113af9c100404f93b64a67685b7c83744d91df1209e48d02cecc03 |
IEDL.DBID | RIE |
ISSN | 0278-0062 1558-254X |
IngestDate | Thu Aug 21 18:25:55 EDT 2025 Fri Jul 11 06:08:52 EDT 2025 Mon Jul 21 05:57:11 EDT 2025 Thu Apr 24 23:00:07 EDT 2025 Tue Jul 01 03:15:55 EDT 2025 Tue Aug 26 16:39:59 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | false |
IsScholarly | true |
Issue | 9 |
Language | English |
License | https://creativecommons.org/licenses/by/3.0/legalcode This work is licensed under a Creative Commons Attribution 3.0 License. For more information, see http://creativecommons.org/licenses/by/3.0/. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c416t-605d1a71cf1113af9c100404f93b64a67685b7c83744d91df1209e48d02cecc03 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/document/7064742 |
PMID | 25807565 |
PQID | 1709713554 |
PQPubID | 23479 |
PageCount | 13 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_7115883 crossref_primary_10_1109_TMI_2015_2415453 pubmed_primary_25807565 crossref_citationtrail_10_1109_TMI_2015_2415453 ieee_primary_7064742 proquest_miscellaneous_1709713554 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2015-09-01 |
PublicationDateYYYYMMDD | 2015-09-01 |
PublicationDate_xml | – month: 09 year: 2015 text: 2015-09-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | IEEE transactions on medical imaging |
PublicationTitleAbbrev | TMI |
PublicationTitleAlternate | IEEE Trans Med Imaging |
PublicationYear | 2015 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
References | ref13 harris (ref36) 2007; 2 ref12 ref15 ref14 ref31 ref30 ref11 ref32 humphrey (ref37) 2011 ref10 ref2 ref1 ref17 karamalis (ref3) 2009; 7261 ref38 ref16 ref19 ref18 criminisi (ref42) 2008; 5302 schnabel (ref33) 2001; 2208 kainz (ref27) 2014 malamateniou (ref9) 2012; 6 ref24 ref26 ref25 ref20 ref41 sanders (ref34) 2010 ref22 ref21 ref43 forbes (ref23) 2003; 24 ref28 ref29 ref8 ref7 ref4 ref6 ref5 reinders (ref35) 2007 ref40 cocosco (ref39) 1997; 5 |
References_xml | – ident: ref22 doi: 10.1007/s00330-007-0812-x – ident: ref15 doi: 10.1007/978-3-319-10470-6_36 – ident: ref16 doi: 10.1007/s00247-004-1246-0 – ident: ref7 doi: 10.1016/j.cmpb.2012.08.007 – ident: ref14 doi: 10.1016/j.ejrad.2005.11.031 – ident: ref2 doi: 10.1016/j.acra.2006.05.003 – ident: ref21 doi: 10.1002/(SICI)1522-2594(199911)42:5<963::AID-MRM17>3.0.CO;2-L – ident: ref8 doi: 10.1148/radiology.187.2.8475300 – ident: ref26 doi: 10.1016/j.neuroimage.2014.07.023 – ident: ref30 doi: 10.1109/TMI.2007.895456 – volume: 5 start-page: 425 year: 1997 ident: ref39 article-title: BrainWeb: Online interface to a 3D MRI simulated brain database publication-title: NeuroImage – ident: ref31 doi: 10.1016/j.neuroimage.2005.02.018 – ident: ref6 doi: 10.1016/j.bspc.2013.05.009 – ident: ref29 doi: 10.1007/BF02288367 – ident: ref13 doi: 10.1002/dneu.20614 – ident: ref12 doi: 10.1016/S0167-8655(02)00180-0 – ident: ref19 doi: 10.1002/mrm.1910330517 – ident: ref25 doi: 10.1007/11566465_68 – ident: ref11 doi: 10.1109/TMI.2013.2294630 – ident: ref24 doi: 10.1109/TMI.2010.2051680 – ident: ref20 doi: 10.1002/mrm.22176 – ident: ref18 doi: 10.1148/radiology.206.2.9457211 – year: 2007 ident: ref35 publication-title: Intel Threading Building Blocks – ident: ref10 doi: 10.1016/j.ultrasmedbio.2007.02.015 – year: 2011 ident: ref37 article-title: CULA: Hybrid GPU accelerated linear algebra routines publication-title: SPIE Defense Security Symp – volume: 24 start-page: 794 year: 2003 ident: ref23 article-title: Brain imaging in the unsedated pediatric patient: Comparison of periodically rotated overlapping parallel lines with enhanced reconstruction and single-shot fast spin-echo sequences publication-title: Am J Neuroradiol – ident: ref40 doi: 10.3174/ajnr.A2295 – ident: ref43 doi: 10.1016/j.media.2005.04.005 – start-page: 1230 year: 2014 ident: ref27 article-title: Fast fully automatic brain detection in foetal MRI using dense rotation invariant image descriptors publication-title: IEEE Int Symp Biomed Imag – ident: ref32 doi: 10.1109/34.56205 – volume: 2 year: 2007 ident: ref36 article-title: Optimizing parallel reduction in CUDA publication-title: NVIDIA Dev Technology – ident: ref17 doi: 10.1016/j.jare.2013.06.001 – ident: ref28 doi: 10.1109/CVPR.2010.5540138 – ident: ref1 doi: 10.1016/S1361-8415(97)85009-8 – ident: ref41 doi: 10.1109/TVCG.2011.248 – volume: 5302 start-page: 99 year: 2008 ident: ref42 publication-title: ECCV'08 Part I – volume: 2208 start-page: 573 year: 2001 ident: ref33 publication-title: Medical Image Computing and Computer-Assisted Intervention MICCAI 2001 doi: 10.1007/3-540-45468-3_69 – year: 2010 ident: ref34 publication-title: CUDA by Example An Introduction to General-Purpose GPU Programming – volume: 7261 start-page: 726 114 year: 2009 ident: ref3 article-title: Fast hybrid freehand ultrasound volume reconstruction publication-title: Proc SPIE doi: 10.1117/12.813835 – ident: ref4 doi: 10.1109/TMI.2009.2030679 – ident: ref5 doi: 10.1016/j.media.2012.07.004 – volume: 6 start-page: 1124 year: 2012 ident: ref9 article-title: Motion-compensation techniques in neonatal and fetal MR imaging publication-title: AJNR Am J Neuroradiol – ident: ref38 doi: 10.1109/ISBI.2010.5490365 |
SSID | ssj0014509 |
Score | 2.5643752 |
Snippet | Capturing an enclosing volume of moving subjects and organs using fast individual image slice acquisition has shown promise in dealing with motion artefacts.... |
SourceID | pubmedcentral proquest pubmed crossref ieee |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1901 |
SubjectTerms | Algorithms Approximation methods Female fetal imaging freehand compound ultrasound GPU acceleration Humans Image reconstruction Imaging, Three-Dimensional - methods Liver - diagnostic imaging Magnetic resonance imaging Magnetic Resonance Imaging - methods Motion correction Phantoms, Imaging Pregnancy Spatial resolution Three-dimensional displays Ultrasonography - methods Ultrasonography, Prenatal |
Title | Fast Volume Reconstruction From Motion Corrupted Stacks of 2D Slices |
URI | https://ieeexplore.ieee.org/document/7064742 https://www.ncbi.nlm.nih.gov/pubmed/25807565 https://www.proquest.com/docview/1709713554 https://pubmed.ncbi.nlm.nih.gov/PMC7115883 |
Volume | 34 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1JS8VADA7qQfTgvtSNEbwI9r2-vpkuR1EfKtSLC97KdGaKorbylou_3mS6-BQRb4XOwLRJky9N8gXgCE1-j5sod3UgKc2oclfqXLhGEjtV7BthaReTm-Dynl8_iscZOGl7YYwxtvjMdOjS5vJ1qSb0q6wbUmckR4M7i4Fb1avVZgy4qMo5fGKM9QK_SUl6cfcuuaIaLtEhb8UFjc7xBZHwkkeZ8kZ2vMpvSPNnweSUBxosQ9KcvSo8eelMxllHffygdfzvw63AUg1F2WmlO6swY4o1WJwiKFyD-aROva_D-UCOxuzBGjNGQesX9SwbDMs3lth5QOysHA4n74hjGeJY9TJiZc78c3b7ShZpA-4HF3dnl249gsFViNTGLgY7uidDFCGNpJd5rIhhzuN53M8CLgMMVkQWKoxyOddxT-fUimt4pD1foXJ4_U2YK8rCbAPjOoozrQMVagxBpYgjTypFY-vzzA905EC3EUWqan5yGpPxmto4xYtTlGNKckxrOTpw3O54r7g5_li7Tq-8XVe_bQcOG2mn-F1RskQWppyM0l5I7FqExhzYqqTfbm60x4Hwm160C4iz-_ud4vnJcneHiMCjqL_z-3F2YYEOXdWw7cEcytHsI-gZZwdW2z8BB5n7Dg |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwEB4hKtFyaHkUGijUlXpBIrvZrJ3HsWJZ7QLh0gVxixzbEQiaoH1c-PXMOI8uCKHeIsWWbH8Tz0xm5huAX3jl97iJclcHksKMKnelzoVrJLFTxb4RlnYxuQxGV_zsRtyswHFbC2OMsclnpkOPNpavS7WgX2XdkCojOV64H1DvC7-q1mpjBlxUCR0-ccZ6gd8EJb24O0nGlMUlOqSvuKDmOb4gGl7SKUv6yDZYecvWfJ0yuaSDhl8gaVZfpZ7cdxbzrKOeXhE7_u_2NuBzbYyy35X0bMKKKbZgfYmicAvWkjr4vg2DoZzN2bW9zhi5rf_IZ9lwWv5lie0IxE7K6XTxiJYsQ0tW3c9YmTN_wP480J30Fa6Gp5OTkVs3YXAV2mpzF90d3ZMhgkhN6WUeK-KY83ge97OAywDdFZGFCv1cznXc0zkV4xoeac9XKB5efwdWi7Iw34BxHcWZ1oEKNTqhUsSRJ5WixvV55gc6cqDbQJGqmqGcGmU8pNZT8eIUcUwJx7TG0YGjdsZjxc7xzthtOvJ2XH3aDvxs0E7xy6JwiSxMuZilvZD4tcgec2C3Qr-d3EiPA-ELuWgHEGv3yzfF3a1l7w7RBo-i_t7by_kBH0eT5CK9GF-e78Mn2kCV0fYdVhFTc4Am0Dw7tJL_DEeZ_lg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fast+Volume+Reconstruction+From+Motion+Corrupted+Stacks+of+2D+Slices&rft.jtitle=IEEE+transactions+on+medical+imaging&rft.au=Kainz%2C+Bernhard&rft.au=Steinberger%2C+Markus&rft.au=Wein%2C+Wolfgang&rft.au=Kuklisova-Murgasova%2C+Maria&rft.date=2015-09-01&rft.issn=0278-0062&rft.eissn=1558-254X&rft.volume=34&rft.issue=9&rft.spage=1901&rft.epage=1913&rft_id=info:doi/10.1109%2FTMI.2015.2415453&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TMI_2015_2415453 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0278-0062&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0278-0062&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0278-0062&client=summon |