Mining e-cigarette adverse events in social media using Bi-LSTM recurrent neural network with word embedding representation

Abstract Objective Recent years have seen increased worldwide popularity of e-cigarette use. However, the risks of e-cigarettes are underexamined. Most e-cigarette adverse event studies have achieved low detection rates due to limited subject sample sizes in the experiments and surveys. Social media...

Full description

Saved in:
Bibliographic Details
Published inJournal of the American Medical Informatics Association : JAMIA Vol. 25; no. 1; pp. 72 - 80
Main Authors Xie, Jiaheng, Liu, Xiao, Dajun Zeng, Daniel
Format Journal Article
LanguageEnglish
Published England Oxford University Press 01.01.2018
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Abstract Objective Recent years have seen increased worldwide popularity of e-cigarette use. However, the risks of e-cigarettes are underexamined. Most e-cigarette adverse event studies have achieved low detection rates due to limited subject sample sizes in the experiments and surveys. Social media provides a large data repository of consumers’ e-cigarette feedback and experiences, which are useful for e-cigarette safety surveillance. However, it is difficult to automatically interpret the informal and nontechnical consumer vocabulary about e-cigarettes in social media. This issue hinders the use of social media content for e-cigarette safety surveillance. Recent developments in deep neural network methods have shown promise for named entity extraction from noisy text. Motivated by these observations, we aimed to design a deep neural network approach to extract e-cigarette safety information in social media. Methods Our deep neural language model utilizes word embedding as the representation of text input and recognizes named entity types with the state-of-the-art Bidirectional Long Short-Term Memory (Bi-LSTM) Recurrent Neural Network. Results Our Bi-LSTM model achieved the best performance compared to 3 baseline models, with a precision of 94.10%, a recall of 91.80%, and an F-measure of 92.94%. We identified 1591 unique adverse events and 9930 unique e-cigarette components (ie, chemicals, flavors, and devices) from our research testbed. Conclusion Although the conditional random field baseline model had slightly better precision than our approach, our Bi-LSTM model achieved much higher recall, resulting in the best F-measure. Our method can be generalized to extract medical concepts from social media for other medical applications.
AbstractList Abstract Objective Recent years have seen increased worldwide popularity of e-cigarette use. However, the risks of e-cigarettes are underexamined. Most e-cigarette adverse event studies have achieved low detection rates due to limited subject sample sizes in the experiments and surveys. Social media provides a large data repository of consumers’ e-cigarette feedback and experiences, which are useful for e-cigarette safety surveillance. However, it is difficult to automatically interpret the informal and nontechnical consumer vocabulary about e-cigarettes in social media. This issue hinders the use of social media content for e-cigarette safety surveillance. Recent developments in deep neural network methods have shown promise for named entity extraction from noisy text. Motivated by these observations, we aimed to design a deep neural network approach to extract e-cigarette safety information in social media. Methods Our deep neural language model utilizes word embedding as the representation of text input and recognizes named entity types with the state-of-the-art Bidirectional Long Short-Term Memory (Bi-LSTM) Recurrent Neural Network. Results Our Bi-LSTM model achieved the best performance compared to 3 baseline models, with a precision of 94.10%, a recall of 91.80%, and an F-measure of 92.94%. We identified 1591 unique adverse events and 9930 unique e-cigarette components (ie, chemicals, flavors, and devices) from our research testbed. Conclusion Although the conditional random field baseline model had slightly better precision than our approach, our Bi-LSTM model achieved much higher recall, resulting in the best F-measure. Our method can be generalized to extract medical concepts from social media for other medical applications.
Recent years have seen increased worldwide popularity of e-cigarette use. However, the risks of e-cigarettes are underexamined. Most e-cigarette adverse event studies have achieved low detection rates due to limited subject sample sizes in the experiments and surveys. Social media provides a large data repository of consumers' e-cigarette feedback and experiences, which are useful for e-cigarette safety surveillance. However, it is difficult to automatically interpret the informal and nontechnical consumer vocabulary about e-cigarettes in social media. This issue hinders the use of social media content for e-cigarette safety surveillance. Recent developments in deep neural network methods have shown promise for named entity extraction from noisy text. Motivated by these observations, we aimed to design a deep neural network approach to extract e-cigarette safety information in social media.ObjectiveRecent years have seen increased worldwide popularity of e-cigarette use. However, the risks of e-cigarettes are underexamined. Most e-cigarette adverse event studies have achieved low detection rates due to limited subject sample sizes in the experiments and surveys. Social media provides a large data repository of consumers' e-cigarette feedback and experiences, which are useful for e-cigarette safety surveillance. However, it is difficult to automatically interpret the informal and nontechnical consumer vocabulary about e-cigarettes in social media. This issue hinders the use of social media content for e-cigarette safety surveillance. Recent developments in deep neural network methods have shown promise for named entity extraction from noisy text. Motivated by these observations, we aimed to design a deep neural network approach to extract e-cigarette safety information in social media.Our deep neural language model utilizes word embedding as the representation of text input and recognizes named entity types with the state-of-the-art Bidirectional Long Short-Term Memory (Bi-LSTM) Recurrent Neural Network.MethodsOur deep neural language model utilizes word embedding as the representation of text input and recognizes named entity types with the state-of-the-art Bidirectional Long Short-Term Memory (Bi-LSTM) Recurrent Neural Network.Our Bi-LSTM model achieved the best performance compared to 3 baseline models, with a precision of 94.10%, a recall of 91.80%, and an F-measure of 92.94%. We identified 1591 unique adverse events and 9930 unique e-cigarette components (ie, chemicals, flavors, and devices) from our research testbed.ResultsOur Bi-LSTM model achieved the best performance compared to 3 baseline models, with a precision of 94.10%, a recall of 91.80%, and an F-measure of 92.94%. We identified 1591 unique adverse events and 9930 unique e-cigarette components (ie, chemicals, flavors, and devices) from our research testbed.Although the conditional random field baseline model had slightly better precision than our approach, our Bi-LSTM model achieved much higher recall, resulting in the best F-measure. Our method can be generalized to extract medical concepts from social media for other medical applications.ConclusionAlthough the conditional random field baseline model had slightly better precision than our approach, our Bi-LSTM model achieved much higher recall, resulting in the best F-measure. Our method can be generalized to extract medical concepts from social media for other medical applications.
Recent years have seen increased worldwide popularity of e-cigarette use. However, the risks of e-cigarettes are underexamined. Most e-cigarette adverse event studies have achieved low detection rates due to limited subject sample sizes in the experiments and surveys. Social media provides a large data repository of consumers' e-cigarette feedback and experiences, which are useful for e-cigarette safety surveillance. However, it is difficult to automatically interpret the informal and nontechnical consumer vocabulary about e-cigarettes in social media. This issue hinders the use of social media content for e-cigarette safety surveillance. Recent developments in deep neural network methods have shown promise for named entity extraction from noisy text. Motivated by these observations, we aimed to design a deep neural network approach to extract e-cigarette safety information in social media. Our deep neural language model utilizes word embedding as the representation of text input and recognizes named entity types with the state-of-the-art Bidirectional Long Short-Term Memory (Bi-LSTM) Recurrent Neural Network. Our Bi-LSTM model achieved the best performance compared to 3 baseline models, with a precision of 94.10%, a recall of 91.80%, and an F-measure of 92.94%. We identified 1591 unique adverse events and 9930 unique e-cigarette components (ie, chemicals, flavors, and devices) from our research testbed. Although the conditional random field baseline model had slightly better precision than our approach, our Bi-LSTM model achieved much higher recall, resulting in the best F-measure. Our method can be generalized to extract medical concepts from social media for other medical applications.
Author Liu, Xiao
Dajun Zeng, Daniel
Xie, Jiaheng
AuthorAffiliation 1 Department of Management Information Systems, University of Arizona, Tucson, AZ, USA
3 State Key Laboratory of Management and Control for Complex Systems, Institute of Automation, Chinese Academy of Sciences, Beijing, China
2 Department of Operation and Information Systems, University of Utah, Salt Lake City, UT, USA
AuthorAffiliation_xml – name: 1 Department of Management Information Systems, University of Arizona, Tucson, AZ, USA
– name: 3 State Key Laboratory of Management and Control for Complex Systems, Institute of Automation, Chinese Academy of Sciences, Beijing, China
– name: 2 Department of Operation and Information Systems, University of Utah, Salt Lake City, UT, USA
Author_xml – sequence: 1
  givenname: Jiaheng
  surname: Xie
  fullname: Xie, Jiaheng
  email: xiej@email.arizona.edu
  organization: Department of Management Information Systems, University of Arizona, Tucson, AZ, USA
– sequence: 2
  givenname: Xiao
  surname: Liu
  fullname: Liu, Xiao
  organization: Department of Operation and Information Systems, University of Utah, Salt Lake City, UT, USA
– sequence: 3
  givenname: Daniel
  surname: Dajun Zeng
  fullname: Dajun Zeng, Daniel
  organization: Department of Management Information Systems, University of Arizona, Tucson, AZ, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/28505280$$D View this record in MEDLINE/PubMed
BookMark eNp9kc1v1DAQxS1URD_gxhn5BgdC_RnHFySogCJtxYEicbMcZ7J1SezFTrYg_nm8TalaJDh5JP_emzczh2gvxAAIPaXkFSWaH1_a0dvj6H4QIR-gAyqZqrQSX_dKTWpVScLUPjrM-ZIQWjMuH6F91kgiWUMO0K8zH3xYY6icX9sE0wTYdltIGTBsIUwZ-4BzdN4OeITOWzznneCtr1afz89wAjenVEAcYE4FCjBdxfQNX_npApeqwzC20HU7UYJNglxgO_kYHqOHvR0yPLl5j9CX9-_OT06r1acPH0_erConaD1VElrlHOOkb1uuOZMNF7xTjnVO95R1qtVacCJ61TjW9rrnwlKoO0W165lq-BF6vfhu5raM4Er_EtRskh9t-mmi9eb-T_AXZh23phZSNnpn8OLGIMXvM-TJjD47GAYbIM7Z0KYkIIIRXtBnd3vdNvmz8QK8XACXYs4J-luEErM7qLk-qFkOWnD2F-78sr2S1A__Ej1fRHHe_N_-N4aWt2c
CitedBy_id crossref_primary_10_1186_s12886_023_03208_5
crossref_primary_10_1007_s40290_022_00434_y
crossref_primary_10_1136_tobaccocontrol_2020_056438
crossref_primary_10_3390_su10093292
crossref_primary_10_1016_j_jbi_2019_103323
crossref_primary_10_1145_3468780
crossref_primary_10_1109_JBHI_2021_3064696
crossref_primary_10_1177_2042098617729318
crossref_primary_10_1016_j_jbi_2018_10_002
crossref_primary_10_1016_j_ijmedinf_2019_103973
crossref_primary_10_1016_j_compag_2020_105612
crossref_primary_10_1016_j_jad_2020_12_160
crossref_primary_10_2196_56080
crossref_primary_10_2196_34050
crossref_primary_10_2196_57271
crossref_primary_10_3390_e22020252
crossref_primary_10_3390_ijerph18168301
crossref_primary_10_1371_journal_pone_0266565
crossref_primary_10_2196_30257
crossref_primary_10_1016_j_jbi_2019_103252
crossref_primary_10_2196_26407
crossref_primary_10_1007_s10506_022_09342_7
crossref_primary_10_1016_j_ipm_2020_102279
crossref_primary_10_1016_j_jksuci_2021_01_007
crossref_primary_10_3390_s19020234
Cites_doi 10.1186/1471-2458-11-786
10.1136/amiajnl-2014-002669
10.1001/jamapediatrics.2013.5488
10.1016/j.jbi.2015.02.004
10.1093/ntr/nts145
10.1016/j.ipm.2014.10.006
10.1371/journal.pcbi.1002854
10.1378/chest.11-2443
10.1109/TITB.2011.2131669
10.3115/v1/P15-1150
10.1136/amiajnl-2014-002767
10.1136/jamia.2009.002733
10.1136/tc.2009.031567
10.1093/database/baw140
10.1056/NEJMp1004986
10.1136/amiajnl-2013-002381
10.1145/365628.365657
10.1109/TPDS.2014.2368568
10.18653/v1/N16-1030
10.1136/tobaccocontrol-2012-050859
10.1158/1055-9965.EPI-10-0288
10.1136/tobaccocontrol-2013-051470
10.3389/fpubh.2013.00056
10.1109/MIS.2015.7
10.1177/2042098614524430
10.1016/j.amepre.2016.10.017
10.1002/(SICI)1097-0258(20000315)19:5<723::AID-SIM379>3.0.CO;2-A
10.1136/amiajnl-2011-000417
10.3109/08958378.2012.758197
ContentType Journal Article
Copyright The Author 2017. Published by Oxford University Press on behalf of the American Medical Informatics Association. All rights reserved. For Permissions, please email: journals.permissions@oup.com 2017
The Author 2017. Published by Oxford University Press on behalf of the American Medical Informatics Association. All rights reserved. For Permissions, please email: journals.permissions@oup.com
Copyright_xml – notice: The Author 2017. Published by Oxford University Press on behalf of the American Medical Informatics Association. All rights reserved. For Permissions, please email: journals.permissions@oup.com 2017
– notice: The Author 2017. Published by Oxford University Press on behalf of the American Medical Informatics Association. All rights reserved. For Permissions, please email: journals.permissions@oup.com
DBID AAYXX
CITATION
NPM
7X8
5PM
DOI 10.1093/jamia/ocx045
DatabaseName CrossRef
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1527-974X
EndPage 80
ExternalDocumentID PMC6455898
28505280
10_1093_jamia_ocx045
10.1093/jamia/ocx045
Genre Research Support, U.S. Gov't, Non-P.H.S
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: National Science Foundation
  grantid: IIS-1553109; IIS-1552860
  funderid: 10.13039/100000001
– fundername: NIDA NIH HHS
  grantid: R01 DA037378
– fundername: ; ; ;
  grantid: IIS-1553109; IIS-1552860
GroupedDBID ---
.DC
0R~
18M
29L
2WC
4.4
48X
53G
5GY
5RE
5WD
6PF
7~T
AABZA
AACZT
AAJQQ
AAMVS
AAOGV
AAPQZ
AAPXW
AARHZ
AASNB
AAUAY
AAUQX
AAVAP
AAWTL
ABEUO
ABIXL
ABJNI
ABNHQ
ABOCM
ABPTD
ABQLI
ABQNK
ABWST
ABXVV
ACGFO
ACGFS
ACGOD
ACHQT
ACUFI
ACUTJ
ACYHN
ADBBV
ADGZP
ADHKW
ADHZD
ADIPN
ADJQC
ADQBN
ADRIX
ADRTK
ADVEK
ADYVW
AEGPL
AEJOX
AEKSI
AEMDU
AENEX
AENZO
AEPUE
AETBJ
AEWNT
AFFZL
AFIYH
AFOFC
AFXEN
AGINJ
AGQXC
AGSYK
AGUTN
AHMBA
AJEEA
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALUQC
APIBT
ATGXG
AVWKF
AXUDD
AYCSE
BAWUL
BAYMD
BCRHZ
BEYMZ
BHONS
BTRTY
BVRKM
C45
CDBKE
CS3
DAKXR
DIK
DILTD
DU5
E3Z
EBD
EBS
EJD
EMOBN
ENERS
F5P
FDB
FECEO
FLUFQ
FOEOM
FOTVD
FQBLK
G-Q
GAUVT
GJXCC
GX1
H13
HAR
IH2
IHE
J21
KBUDW
KOP
KSI
KSN
LSO
MHKGH
NOMLY
NOYVH
NQ-
O9-
OAUYM
OAWHX
OCZFY
ODMLO
OJQWA
OJZSN
OK1
OPAEJ
OVD
OWPYF
P2P
PAFKI
PEELM
Q5Y
ROX
ROZ
RPM
RPZ
RUSNO
RWL
RXO
SV3
TAE
TEORI
TJX
TMA
WOW
YAYTL
YKOAZ
YXANX
~S-
AAYXX
ABDFA
ABEJV
ABGNP
ABPQP
ABVGC
ADNBA
AEMQT
AFXAL
AFYAG
AGORE
AHMMS
AJBYB
AJNCP
ALXQX
CITATION
JXSIZ
NPM
7X8
1TH
5PM
NVLIB
ID FETCH-LOGICAL-c416t-5eb7cc230fbb393258343d7c2dc9f12d7b994304f78c2bf9f34a1e6d719cf2783
ISSN 1067-5027
1527-974X
IngestDate Thu Aug 21 14:04:06 EDT 2025
Fri Jul 11 09:34:08 EDT 2025
Thu Apr 03 07:10:22 EDT 2025
Thu Apr 24 23:09:08 EDT 2025
Tue Jul 01 02:01:49 EDT 2025
Wed Sep 11 04:48:24 EDT 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Bi-LSTM
E-cigarette adverse event
recurrent neural network
word embedding
deep neural network
Language English
License https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model
The Author 2017. Published by Oxford University Press on behalf of the American Medical Informatics Association. All rights reserved. For Permissions, please email: journals.permissions@oup.com
This article is published and distributed under the terms of the Oxford University Press, Standard Journals Publication Model (https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model)
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c416t-5eb7cc230fbb393258343d7c2dc9f12d7b994304f78c2bf9f34a1e6d719cf2783
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://academic.oup.com/jamia/article-pdf/25/1/72/34149565/ocx045.pdf
PMID 28505280
PQID 1899404203
PQPubID 23479
PageCount 9
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_6455898
proquest_miscellaneous_1899404203
pubmed_primary_28505280
crossref_primary_10_1093_jamia_ocx045
crossref_citationtrail_10_1093_jamia_ocx045
oup_primary_10_1093_jamia_ocx045
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-01-01
PublicationDateYYYYMMDD 2018-01-01
PublicationDate_xml – month: 01
  year: 2018
  text: 2018-01-01
  day: 01
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Journal of the American Medical Informatics Association : JAMIA
PublicationTitleAlternate J Am Med Inform Assoc
PublicationYear 2018
Publisher Oxford University Press
Publisher_xml – name: Oxford University Press
References 2020110620011679300_ocx045-B27
Dos Santos (2020110620011679300_ocx045-B39) 2014
Benson (2020110620011679300_ocx045-B35) 2011; 1
Schoenborn (2020110620011679300_ocx045-B2) 2015; 217
2020110620011679300_ocx045-B20
Rubenstein (2020110620011679300_ocx045-B38) 1965; 8
Vilar (2020110620011679300_ocx045-B24) 2011; 18
2020110620011679300_ocx045-B3
2020110620011679300_ocx045-B4
Turian (2020110620011679300_ocx045-B48) 2010
Pascanu (2020110620011679300_ocx045-B42) 2013; 28
Farsalinos (2020110620011679300_ocx045-B19) 2014; 5
Sarker (2020110620011679300_ocx045-B25) 2015; 54
Tzatzarakis (2020110620011679300_ocx045-B15); 2013
Wang (2020110620011679300_ocx045-B23) 2014
Polosa (2020110620011679300_ocx045-B11) 2011; 11
Flouris (2020110620011679300_ocx045-B14) 2013; 25
Okazaki (2020110620011679300_ocx045-B51) 2007
Huerta (2020110620011679300_ocx045-B8) 2016; 52
Cunningham (2020110620011679300_ocx045-B28) 2013; 9
Vardavas (2020110620011679300_ocx045-B17) 2012; 141
2020110620011679300_ocx045-B55
Wei (2020110620011679300_ocx045-B34) 2016; 2016
Westenberger (2020110620011679300_ocx045-B10) 2009
Osborne (2020110620011679300_ocx045-B30)
Li (2020110620011679300_ocx045-B33) 2015; 26
Callahan-Lyon (2020110620011679300_ocx045-B5) 2014; 23
Lample (2020110620011679300_ocx045-B37)
Ritter (2020110620011679300_ocx045-B49) 2011
Greene (2020110620011679300_ocx045-B26) 2010; 363
Derczynski (2020110620011679300_ocx045-B21) 2015; 51
Graves (2020110620011679300_ocx045-B46)
Tai (2020110620011679300_ocx045-B45)
Hanauer (2020110620011679300_ocx045-B54) 2014; 21
Friedman (2020110620011679300_ocx045-B29) 2000
Milokov (2020110620011679300_ocx045-B44) 2013
Palazzolo (2020110620011679300_ocx045-B9) 2013; 1
Gupta (2020110620011679300_ocx045-B31) 2014; 21
Liu (2020110620011679300_ocx045-B22) 2015; 30
Jakob (2020110620011679300_ocx045-B36) 2010
Maaten (2020110620011679300_ocx045-B56) 2008; 9
Sutskever (2020110620011679300_ocx045-B41) 2014
Leaman R, Gonzalez G. BANNER: an executable survey of advances in biomedical named entity recognition (2020110620011679300_ocx045-B50) 2008
Aronson (2020110620011679300_ocx045-B53) 2010; 17
Chen (2020110620011679300_ocx045-B6) 2013; 15
2020110620011679300_ocx045-B7
Goniewicz (2020110620011679300_ocx045-B13) 2014; 23
Dutra (2020110620011679300_ocx045-B1) 2014; 168
Baldwin (2020110620011679300_ocx045-B40); 2015
Lei (2020110620011679300_ocx045-B32) 2014; 21
Ji (2020110620011679300_ocx045-B18) 2011; 15
Bullen (2020110620011679300_ocx045-B12) 2010; 19
Vansickel (2020110620011679300_ocx045-B16) 2010; 19
Ling (2020110620011679300_ocx045-B47)
Blackman (2020110620011679300_ocx045-B43) 2000; 19
Aronson (2020110620011679300_ocx045-B52) 2001
References_xml – volume: 11
  start-page: 1
  issue: 1
  year: 2011
  ident: 2020110620011679300_ocx045-B11
  article-title: Effect of an electronic nicotine delivery device (e-cigarette) on smoking reduction and cessation: a prospective 6-month pilot study
  publication-title: BMC Public Health.
  doi: 10.1186/1471-2458-11-786
– volume: 21
  start-page: 902
  issue: 5
  year: 2014
  ident: 2020110620011679300_ocx045-B31
  article-title: Induced lexico-syntactic patterns improve information extraction from online medical forums
  publication-title: J Am Med Inform Assoc.
  doi: 10.1136/amiajnl-2014-002669
– volume: 168
  start-page: 610
  issue: 7
  year: 2014
  ident: 2020110620011679300_ocx045-B1
  article-title: Electronic cigarettes and conventional cigarette use among US adolescents: a cross-sectional study
  publication-title: JAMA Pediatrics.
  doi: 10.1001/jamapediatrics.2013.5488
– volume: 54
  start-page: 202
  year: 2015
  ident: 2020110620011679300_ocx045-B25
  article-title: Utilizing social media data for pharmacovigilance: a review
  publication-title: J Biomed Inform.
  doi: 10.1016/j.jbi.2015.02.004
– volume: 15
  start-page: 615
  issue: 2
  year: 2013
  ident: 2020110620011679300_ocx045-B6
  article-title: FDA summary of adverse events on electronic cigarettes
  publication-title: Nicotine Tobacco Res.
  doi: 10.1093/ntr/nts145
– volume: 51
  start-page: 32
  issue: 2
  year: 2015
  ident: 2020110620011679300_ocx045-B21
  article-title: Analysis of named entity recognition and linking for tweets
  publication-title: Inform Process Manag.
  doi: 10.1016/j.ipm.2014.10.006
– ident: 2020110620011679300_ocx045-B30
  article-title: Evaluation of YTEX and MetaMap for Clinical Concept Recognition
– start-page: 1818
  volume-title: Learning Character-level Representations for Part-of-Speech Tagging
  year: 2014
  ident: 2020110620011679300_ocx045-B39
– start-page: 1
  volume-title: Evaluation of e-cigarettes
  year: 2009
  ident: 2020110620011679300_ocx045-B10
– volume: 9
  start-page: e1002854
  issue: 2
  year: 2013
  ident: 2020110620011679300_ocx045-B28
  article-title: Getting more out of biomedical documents with GATE’s full lifecycle open source text analytics
  publication-title: PLoS Comput Biol.
  doi: 10.1371/journal.pcbi.1002854
– start-page: 1524
  year: 2011
  ident: 2020110620011679300_ocx045-B49
  article-title: Named entity recognition in tweets: an experimental study
  publication-title: Proceedings of the Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics
– ident: 2020110620011679300_ocx045-B4
– start-page: 270
  year: 2000
  ident: 2020110620011679300_ocx045-B29
  article-title: A broad-coverage natural language processing system
  publication-title: Proceedings of the AMIA Symposium. American Medical Informatics Association
– volume: 141
  start-page: 1400
  issue: 6
  year: 2012
  ident: 2020110620011679300_ocx045-B17
  article-title: Short-term pulmonary effects of using an electronic cigarette: impact on respiratory flow resistance, impedance, and exhaled nitric oxide
  publication-title: Chest J.
  doi: 10.1378/chest.11-2443
– start-page: 1160
  year: 2014
  ident: 2020110620011679300_ocx045-B23
  article-title: Adverse drug event-based stratification of tumor mutations: a case study of breast cancer patients receiving aromatase inhibitors
  publication-title: AMIA Annual Symposium Proceedings. American Medical Informatics Association
– volume: 15
  start-page: 428
  issue: 3
  year: 2011
  ident: 2020110620011679300_ocx045-B18
  article-title: A potential causal association mining algorithm for screening adverse drug reactions in postmarketing surveillance
  publication-title: IEEE Trans Inf Technol Biomed.
  doi: 10.1109/TITB.2011.2131669
– volume-title: Improved Semantic Representations from Tree-structured Long Short-term Memory Networks
  ident: 2020110620011679300_ocx045-B45
  doi: 10.3115/v1/P15-1150
– volume: 21
  start-page: 925
  issue: 5
  year: 2014
  ident: 2020110620011679300_ocx045-B54
  article-title: Applying MetaMap to Medline for identifying novel associations in a large clinical dataset: a feasibility analysis
  publication-title: J Am Med Inform Assoc.
  doi: 10.1136/amiajnl-2014-002767
– volume: 17
  start-page: 229
  issue: 3
  year: 2010
  ident: 2020110620011679300_ocx045-B53
  article-title: An overview of MetaMap: historical perspective and recent advances
  publication-title: J Am Med Inform Assoc.
  doi: 10.1136/jamia.2009.002733
– volume: 19
  start-page: 98
  issue: 2
  year: 2010
  ident: 2020110620011679300_ocx045-B12
  article-title: Effect of an electronic nicotine delivery device (e cigarette) on desire to smoke and withdrawal, user preferences and nicotine delivery: randomised cross-over trial
  publication-title: Tobacco Control.
  doi: 10.1136/tc.2009.031567
– volume: 2015
  start-page: 126
  ident: 2020110620011679300_ocx045-B40
  article-title: Shared tasks of the 2015 workshop on noisy user-generated text: Twitter lexical normalization and named entity recognition
  publication-title: ACL-IJCNLP
– ident: 2020110620011679300_ocx045-B55
– volume: 2016
  start-page: baw140
  year: 2016
  ident: 2020110620011679300_ocx045-B34
  article-title: Disease named entity recognition by combining conditional random fields and bidirectional recurrent neural networks
  publication-title: Database.
  doi: 10.1093/database/baw140
– volume: 363
  start-page: 2087
  issue: 22
  year: 2010
  ident: 2020110620011679300_ocx045-B26
  article-title: Pharmaceutical Marketing and the New Social Media
  publication-title: New Engl J Med.
  doi: 10.1056/NEJMp1004986
– start-page: 3104
  year: 2014
  ident: 2020110620011679300_ocx045-B41
  article-title: Sequence to sequence learning with neural networks
  publication-title: Adv Neural Inform Process Sys.
– volume: 21
  start-page: 808
  issue: 5
  year: 2014
  ident: 2020110620011679300_ocx045-B32
  article-title: A comprehensive study of named entity recognition in Chinese clinical text
  publication-title: J Am Med Inform Assoc.
  doi: 10.1136/amiajnl-2013-002381
– volume: 8
  start-page: 627
  issue: 10
  year: 1965
  ident: 2020110620011679300_ocx045-B38
  article-title: Contextual correlates of synonymy
  publication-title: Commun ACM.
  doi: 10.1145/365628.365657
– ident: 2020110620011679300_ocx045-B20
– volume: 1
  start-page: 389
  year: 2011
  ident: 2020110620011679300_ocx045-B35
  article-title: Event discovery in social media feeds
  publication-title: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies. Association for Computational Linguistics.
– start-page: 652
  volume-title: Pacific Symp Biocomput
  year: 2008
  ident: 2020110620011679300_ocx045-B50
– volume: 26
  start-page: 3040
  issue: 11
  year: 2015
  ident: 2020110620011679300_ocx045-B33
  article-title: Hadoop recognition of biomedical named entity using conditional random fields
  publication-title: IEEE Trans Parallel Distributed Sys.
  doi: 10.1109/TPDS.2014.2368568
– start-page: 17
  year: 2001
  ident: 2020110620011679300_ocx045-B52
  article-title: Effective mapping of biomedical text to the UMLS Metathesaurus: the MetaMap program
  publication-title: Proceedings of the AMIA Symposium. American Medical Informatics Association.
– ident: 2020110620011679300_ocx045-B27
– volume-title: Neural Architectures for Named Entity Recognition
  ident: 2020110620011679300_ocx045-B37
  doi: 10.18653/v1/N16-1030
– volume: 23
  start-page: 133
  issue: 2
  year: 2014
  ident: 2020110620011679300_ocx045-B13
  article-title: Levels of selected carcinogens and toxicants in vapour from electronic cigarettes
  publication-title: Tobacco Control.
  doi: 10.1136/tobaccocontrol-2012-050859
– volume: 28
  start-page: 1310
  year: 2013
  ident: 2020110620011679300_ocx045-B42
  article-title: On the difficulty of training recurrent neural networks
  publication-title: ICML (3).
– start-page: 3111
  year: 2013
  ident: 2020110620011679300_ocx045-B44
  article-title: Distributed representations of words and phrases and their compositionality
  publication-title: Adv Neural Inform Process Sys.
– volume: 217
  start-page: 1
  year: 2015
  ident: 2020110620011679300_ocx045-B2
  article-title: Electronic cigarette use among adults: United States, 2014
  publication-title: NCHS Data Brief.
– volume: 19
  start-page: 1945
  issue: 8
  year: 2010
  ident: 2020110620011679300_ocx045-B16
  article-title: A clinical laboratory model for evaluating the acute effects of electronic “cigarettes”: nicotine delivery profile and cardiovascular and subjective effects
  publication-title: Cancer Epidemiol Biomarkers Prevent.
  doi: 10.1158/1055-9965.EPI-10-0288
– start-page: 384
  year: 2010
  ident: 2020110620011679300_ocx045-B48
  article-title: Word representations: a simple and general method for semi-supervised learning
  publication-title: Proceedings of the 48th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics.
– volume: 23
  start-page: ii36
  issue: Suppl 2
  year: 2014
  ident: 2020110620011679300_ocx045-B5
  article-title: Electronic cigarettes: human health effects
  publication-title: Tobacco Control.
  doi: 10.1136/tobaccocontrol-2013-051470
– volume: 1
  start-page: 56
  year: 2013
  ident: 2020110620011679300_ocx045-B9
  article-title: Electronic cigarettes and vaping: a new challenge in clinical medicine and public health. A literature review
  publication-title: Front Public Health.
  doi: 10.3389/fpubh.2013.00056
– volume: 30
  start-page: 44
  issue: 3
  year: 2015
  ident: 2020110620011679300_ocx045-B22
  article-title: Identifying adverse drug events from patient social media: a case study for diabetes
  publication-title: IEEE Intell Sys.
  doi: 10.1109/MIS.2015.7
– volume: 5
  start-page: 67
  issue: 2
  year: 2014
  ident: 2020110620011679300_ocx045-B19
  article-title: Safety evaluation and risk assessment of electronic cigarettes as tobacco cigarette substitutes: a systematic review
  publication-title: Therapeutic Adv Drug Safety.
  doi: 10.1177/2042098614524430
– start-page: 1035
  year: 2010
  ident: 2020110620011679300_ocx045-B36
  article-title: Extracting opinion targets in a single- and cross-domain setting with conditional random fields
  publication-title: Proceedings of the 2010 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics.
– volume-title: Finding Function in Form: Compositional Character Models for Open Vocabulary Word Representation
  ident: 2020110620011679300_ocx045-B47
– ident: 2020110620011679300_ocx045-B46
  article-title: Hybrid speech recognition with deep bidirectional LSTM
  publication-title: 2013 IEEE Workshop on Automatic Speech Recognition and Understanding.
– volume: 9
  year: 2008
  ident: 2020110620011679300_ocx045-B56
  article-title: Visualizing data using t-SNE
  publication-title: J Machine Learning Res.
– ident: 2020110620011679300_ocx045-B3
– volume: 52
  start-page: 339
  issue: 3
  year: 2016
  ident: 2020110620011679300_ocx045-B8
  article-title: Trends in E-Cigarette Awareness and Perceived Harmfulness in the US
  publication-title: Am J Prevent Med.
  doi: 10.1016/j.amepre.2016.10.017
– ident: 2020110620011679300_ocx045-B7
– volume: 19
  start-page: 723
  issue: 5
  year: 2000
  ident: 2020110620011679300_ocx045-B43
  article-title: Interval estimation for Cohen’s kappa as a measure of agreement
  publication-title: Stats Med.
  doi: 10.1002/(SICI)1097-0258(20000315)19:5<723::AID-SIM379>3.0.CO;2-A
– volume: 18
  start-page: i73
  issue: Suppl 1
  year: 2011
  ident: 2020110620011679300_ocx045-B24
  article-title: Focus on clinical care and patient safety: Facilitating adverse drug event detection in pharmacovigilance databases using molecular structure similarity: application to rhabdomyolysis
  publication-title: J Am Med Inform Assoc.
  doi: 10.1136/amiajnl-2011-000417
– volume-title: CRFsuite: a Fast Implementation of Conditional Random Fields (CRFs)
  year: 2007
  ident: 2020110620011679300_ocx045-B51
– volume: 25
  start-page: 91
  issue: 2
  year: 2013
  ident: 2020110620011679300_ocx045-B14
  article-title: Acute impact of active and passive electronic cigarette smoking on serum cotinine and lung function
  publication-title: Inhalation Toxicol.
  doi: 10.3109/08958378.2012.758197
– volume: 2013
  start-page: S86
  issue: 221
  ident: 2020110620011679300_ocx045-B15
  article-title: Acute and short term impact of active and passive tobacco and electronic cigarette smoking on inflammatory markers
  publication-title: Toxicol Lett.
SSID ssj0016235
Score 2.4144924
Snippet Abstract Objective Recent years have seen increased worldwide popularity of e-cigarette use. However, the risks of e-cigarettes are underexamined. Most...
Recent years have seen increased worldwide popularity of e-cigarette use. However, the risks of e-cigarettes are underexamined. Most e-cigarette adverse event...
SourceID pubmedcentral
proquest
pubmed
crossref
oup
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 72
SubjectTerms Research and Applications
Title Mining e-cigarette adverse events in social media using Bi-LSTM recurrent neural network with word embedding representation
URI https://www.ncbi.nlm.nih.gov/pubmed/28505280
https://www.proquest.com/docview/1899404203
https://pubmed.ncbi.nlm.nih.gov/PMC6455898
Volume 25
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELaWIiEuiDdbHjISnKLQTeIkzhFQl1LtlgNZKeISxY6jpqJZ1CYCwZn_zdjjzSbQisIlWnkt72M-j2fGM98Q8kLIisMemrkyjiqXiQi2VCGYK6UqEs4SpQx98fIoOlixwyzMJpOfg6ylrhWv5PcL60r-R6owBnLVVbL_INl-URiA1yBfeIKE4XklGS9NdwdHubI23Wpbpe_0waBTjiFmMrmuNipuSkSczoQG3tTu4mO6dM50sN3QM2laS5jUYFI4Rme_6kpCdSpUaQpfDP3lplSpucSoHRSqbC-BbMmTIYQewMFEI0Dpv-9BlOFlyWFdHCt7oupcobrTo1ldrLdx9ZOucT4pVFRYJj-MX3h8EL-wKtePXfBqMjyRLhizehoLpEd4RKWLvX_-OAuQJ-ukONVZx_O1_DZD4sox6fbRh3y-WizydD9Lr5HrPngbuhHGu6zPFPLAQgwN7a79UrZ-AtbfM6vv4dojy2ZULTlwWn7PvR0YM-ltcssKjL5GSN0hE9XcJTeWNs_iHvmByKIDZFGLLIrIonVDEVnUIIsaZFGLLNojiyKyqEUW1ciiGlm0RxYdI-s-Wc3307cHrm3T4Uqw5ls3VCKWElzZSogA3IGQBywoY-mXMqk8v4xFojn-WRVz6YsqqQJWeCoqYy-RlW708oDsNOtGPSI09EtVqFnhCwZuuhfxsgADm3kq4eBXecmUOJu_OJeWw163UvmcYy5FkBuB5CiQKXnZz_6C3C2XzKMgrb9Meb4RZQ76V1-qFY1ad-e5x-HXwck3C6bkIYq2X8nnuk0kn01JPBJ6P0Fzu4_faepjw_EesTDkCd-9wuc-Jje3--oJ2WnPOvUULOVWPDM4_gU0RMme
linkProvider Geneva Foundation for Medical Education and Research
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Mining+e-cigarette+adverse+events+in+social+media+using+Bi-LSTM+recurrent+neural+network+with+word+embedding+representation&rft.jtitle=Journal+of+the+American+Medical+Informatics+Association+%3A+JAMIA&rft.au=Xie%2C+Jiaheng&rft.au=Liu%2C+Xiao&rft.au=Dajun+Zeng%2C+Daniel&rft.date=2018-01-01&rft.issn=1527-974X&rft.eissn=1527-974X&rft.volume=25&rft.issue=1&rft.spage=72&rft_id=info:doi/10.1093%2Fjamia%2Focx045&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1067-5027&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1067-5027&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1067-5027&client=summon