Mining e-cigarette adverse events in social media using Bi-LSTM recurrent neural network with word embedding representation
Abstract Objective Recent years have seen increased worldwide popularity of e-cigarette use. However, the risks of e-cigarettes are underexamined. Most e-cigarette adverse event studies have achieved low detection rates due to limited subject sample sizes in the experiments and surveys. Social media...
Saved in:
Published in | Journal of the American Medical Informatics Association : JAMIA Vol. 25; no. 1; pp. 72 - 80 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
England
Oxford University Press
01.01.2018
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Abstract
Objective
Recent years have seen increased worldwide popularity of e-cigarette use. However, the risks of e-cigarettes are underexamined. Most e-cigarette adverse event studies have achieved low detection rates due to limited subject sample sizes in the experiments and surveys. Social media provides a large data repository of consumers’ e-cigarette feedback and experiences, which are useful for e-cigarette safety surveillance. However, it is difficult to automatically interpret the informal and nontechnical consumer vocabulary about e-cigarettes in social media. This issue hinders the use of social media content for e-cigarette safety surveillance. Recent developments in deep neural network methods have shown promise for named entity extraction from noisy text. Motivated by these observations, we aimed to design a deep neural network approach to extract e-cigarette safety information in social media.
Methods
Our deep neural language model utilizes word embedding as the representation of text input and recognizes named entity types with the state-of-the-art Bidirectional Long Short-Term Memory (Bi-LSTM) Recurrent Neural Network.
Results
Our Bi-LSTM model achieved the best performance compared to 3 baseline models, with a precision of 94.10%, a recall of 91.80%, and an F-measure of 92.94%. We identified 1591 unique adverse events and 9930 unique e-cigarette components (ie, chemicals, flavors, and devices) from our research testbed.
Conclusion
Although the conditional random field baseline model had slightly better precision than our approach, our Bi-LSTM model achieved much higher recall, resulting in the best F-measure. Our method can be generalized to extract medical concepts from social media for other medical applications. |
---|---|
AbstractList | Abstract
Objective
Recent years have seen increased worldwide popularity of e-cigarette use. However, the risks of e-cigarettes are underexamined. Most e-cigarette adverse event studies have achieved low detection rates due to limited subject sample sizes in the experiments and surveys. Social media provides a large data repository of consumers’ e-cigarette feedback and experiences, which are useful for e-cigarette safety surveillance. However, it is difficult to automatically interpret the informal and nontechnical consumer vocabulary about e-cigarettes in social media. This issue hinders the use of social media content for e-cigarette safety surveillance. Recent developments in deep neural network methods have shown promise for named entity extraction from noisy text. Motivated by these observations, we aimed to design a deep neural network approach to extract e-cigarette safety information in social media.
Methods
Our deep neural language model utilizes word embedding as the representation of text input and recognizes named entity types with the state-of-the-art Bidirectional Long Short-Term Memory (Bi-LSTM) Recurrent Neural Network.
Results
Our Bi-LSTM model achieved the best performance compared to 3 baseline models, with a precision of 94.10%, a recall of 91.80%, and an F-measure of 92.94%. We identified 1591 unique adverse events and 9930 unique e-cigarette components (ie, chemicals, flavors, and devices) from our research testbed.
Conclusion
Although the conditional random field baseline model had slightly better precision than our approach, our Bi-LSTM model achieved much higher recall, resulting in the best F-measure. Our method can be generalized to extract medical concepts from social media for other medical applications. Recent years have seen increased worldwide popularity of e-cigarette use. However, the risks of e-cigarettes are underexamined. Most e-cigarette adverse event studies have achieved low detection rates due to limited subject sample sizes in the experiments and surveys. Social media provides a large data repository of consumers' e-cigarette feedback and experiences, which are useful for e-cigarette safety surveillance. However, it is difficult to automatically interpret the informal and nontechnical consumer vocabulary about e-cigarettes in social media. This issue hinders the use of social media content for e-cigarette safety surveillance. Recent developments in deep neural network methods have shown promise for named entity extraction from noisy text. Motivated by these observations, we aimed to design a deep neural network approach to extract e-cigarette safety information in social media.ObjectiveRecent years have seen increased worldwide popularity of e-cigarette use. However, the risks of e-cigarettes are underexamined. Most e-cigarette adverse event studies have achieved low detection rates due to limited subject sample sizes in the experiments and surveys. Social media provides a large data repository of consumers' e-cigarette feedback and experiences, which are useful for e-cigarette safety surveillance. However, it is difficult to automatically interpret the informal and nontechnical consumer vocabulary about e-cigarettes in social media. This issue hinders the use of social media content for e-cigarette safety surveillance. Recent developments in deep neural network methods have shown promise for named entity extraction from noisy text. Motivated by these observations, we aimed to design a deep neural network approach to extract e-cigarette safety information in social media.Our deep neural language model utilizes word embedding as the representation of text input and recognizes named entity types with the state-of-the-art Bidirectional Long Short-Term Memory (Bi-LSTM) Recurrent Neural Network.MethodsOur deep neural language model utilizes word embedding as the representation of text input and recognizes named entity types with the state-of-the-art Bidirectional Long Short-Term Memory (Bi-LSTM) Recurrent Neural Network.Our Bi-LSTM model achieved the best performance compared to 3 baseline models, with a precision of 94.10%, a recall of 91.80%, and an F-measure of 92.94%. We identified 1591 unique adverse events and 9930 unique e-cigarette components (ie, chemicals, flavors, and devices) from our research testbed.ResultsOur Bi-LSTM model achieved the best performance compared to 3 baseline models, with a precision of 94.10%, a recall of 91.80%, and an F-measure of 92.94%. We identified 1591 unique adverse events and 9930 unique e-cigarette components (ie, chemicals, flavors, and devices) from our research testbed.Although the conditional random field baseline model had slightly better precision than our approach, our Bi-LSTM model achieved much higher recall, resulting in the best F-measure. Our method can be generalized to extract medical concepts from social media for other medical applications.ConclusionAlthough the conditional random field baseline model had slightly better precision than our approach, our Bi-LSTM model achieved much higher recall, resulting in the best F-measure. Our method can be generalized to extract medical concepts from social media for other medical applications. Recent years have seen increased worldwide popularity of e-cigarette use. However, the risks of e-cigarettes are underexamined. Most e-cigarette adverse event studies have achieved low detection rates due to limited subject sample sizes in the experiments and surveys. Social media provides a large data repository of consumers' e-cigarette feedback and experiences, which are useful for e-cigarette safety surveillance. However, it is difficult to automatically interpret the informal and nontechnical consumer vocabulary about e-cigarettes in social media. This issue hinders the use of social media content for e-cigarette safety surveillance. Recent developments in deep neural network methods have shown promise for named entity extraction from noisy text. Motivated by these observations, we aimed to design a deep neural network approach to extract e-cigarette safety information in social media. Our deep neural language model utilizes word embedding as the representation of text input and recognizes named entity types with the state-of-the-art Bidirectional Long Short-Term Memory (Bi-LSTM) Recurrent Neural Network. Our Bi-LSTM model achieved the best performance compared to 3 baseline models, with a precision of 94.10%, a recall of 91.80%, and an F-measure of 92.94%. We identified 1591 unique adverse events and 9930 unique e-cigarette components (ie, chemicals, flavors, and devices) from our research testbed. Although the conditional random field baseline model had slightly better precision than our approach, our Bi-LSTM model achieved much higher recall, resulting in the best F-measure. Our method can be generalized to extract medical concepts from social media for other medical applications. |
Author | Liu, Xiao Dajun Zeng, Daniel Xie, Jiaheng |
AuthorAffiliation | 1 Department of Management Information Systems, University of Arizona, Tucson, AZ, USA 3 State Key Laboratory of Management and Control for Complex Systems, Institute of Automation, Chinese Academy of Sciences, Beijing, China 2 Department of Operation and Information Systems, University of Utah, Salt Lake City, UT, USA |
AuthorAffiliation_xml | – name: 1 Department of Management Information Systems, University of Arizona, Tucson, AZ, USA – name: 3 State Key Laboratory of Management and Control for Complex Systems, Institute of Automation, Chinese Academy of Sciences, Beijing, China – name: 2 Department of Operation and Information Systems, University of Utah, Salt Lake City, UT, USA |
Author_xml | – sequence: 1 givenname: Jiaheng surname: Xie fullname: Xie, Jiaheng email: xiej@email.arizona.edu organization: Department of Management Information Systems, University of Arizona, Tucson, AZ, USA – sequence: 2 givenname: Xiao surname: Liu fullname: Liu, Xiao organization: Department of Operation and Information Systems, University of Utah, Salt Lake City, UT, USA – sequence: 3 givenname: Daniel surname: Dajun Zeng fullname: Dajun Zeng, Daniel organization: Department of Management Information Systems, University of Arizona, Tucson, AZ, USA |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/28505280$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kc1v1DAQxS1URD_gxhn5BgdC_RnHFySogCJtxYEicbMcZ7J1SezFTrYg_nm8TalaJDh5JP_emzczh2gvxAAIPaXkFSWaH1_a0dvj6H4QIR-gAyqZqrQSX_dKTWpVScLUPjrM-ZIQWjMuH6F91kgiWUMO0K8zH3xYY6icX9sE0wTYdltIGTBsIUwZ-4BzdN4OeITOWzznneCtr1afz89wAjenVEAcYE4FCjBdxfQNX_npApeqwzC20HU7UYJNglxgO_kYHqOHvR0yPLl5j9CX9-_OT06r1acPH0_erConaD1VElrlHOOkb1uuOZMNF7xTjnVO95R1qtVacCJ61TjW9rrnwlKoO0W165lq-BF6vfhu5raM4Er_EtRskh9t-mmi9eb-T_AXZh23phZSNnpn8OLGIMXvM-TJjD47GAYbIM7Z0KYkIIIRXtBnd3vdNvmz8QK8XACXYs4J-luEErM7qLk-qFkOWnD2F-78sr2S1A__Ej1fRHHe_N_-N4aWt2c |
CitedBy_id | crossref_primary_10_1186_s12886_023_03208_5 crossref_primary_10_1007_s40290_022_00434_y crossref_primary_10_1136_tobaccocontrol_2020_056438 crossref_primary_10_3390_su10093292 crossref_primary_10_1016_j_jbi_2019_103323 crossref_primary_10_1145_3468780 crossref_primary_10_1109_JBHI_2021_3064696 crossref_primary_10_1177_2042098617729318 crossref_primary_10_1016_j_jbi_2018_10_002 crossref_primary_10_1016_j_ijmedinf_2019_103973 crossref_primary_10_1016_j_compag_2020_105612 crossref_primary_10_1016_j_jad_2020_12_160 crossref_primary_10_2196_56080 crossref_primary_10_2196_34050 crossref_primary_10_2196_57271 crossref_primary_10_3390_e22020252 crossref_primary_10_3390_ijerph18168301 crossref_primary_10_1371_journal_pone_0266565 crossref_primary_10_2196_30257 crossref_primary_10_1016_j_jbi_2019_103252 crossref_primary_10_2196_26407 crossref_primary_10_1007_s10506_022_09342_7 crossref_primary_10_1016_j_ipm_2020_102279 crossref_primary_10_1016_j_jksuci_2021_01_007 crossref_primary_10_3390_s19020234 |
Cites_doi | 10.1186/1471-2458-11-786 10.1136/amiajnl-2014-002669 10.1001/jamapediatrics.2013.5488 10.1016/j.jbi.2015.02.004 10.1093/ntr/nts145 10.1016/j.ipm.2014.10.006 10.1371/journal.pcbi.1002854 10.1378/chest.11-2443 10.1109/TITB.2011.2131669 10.3115/v1/P15-1150 10.1136/amiajnl-2014-002767 10.1136/jamia.2009.002733 10.1136/tc.2009.031567 10.1093/database/baw140 10.1056/NEJMp1004986 10.1136/amiajnl-2013-002381 10.1145/365628.365657 10.1109/TPDS.2014.2368568 10.18653/v1/N16-1030 10.1136/tobaccocontrol-2012-050859 10.1158/1055-9965.EPI-10-0288 10.1136/tobaccocontrol-2013-051470 10.3389/fpubh.2013.00056 10.1109/MIS.2015.7 10.1177/2042098614524430 10.1016/j.amepre.2016.10.017 10.1002/(SICI)1097-0258(20000315)19:5<723::AID-SIM379>3.0.CO;2-A 10.1136/amiajnl-2011-000417 10.3109/08958378.2012.758197 |
ContentType | Journal Article |
Copyright | The Author 2017. Published by Oxford University Press on behalf of the American Medical Informatics Association. All rights reserved. For Permissions, please email: journals.permissions@oup.com 2017 The Author 2017. Published by Oxford University Press on behalf of the American Medical Informatics Association. All rights reserved. For Permissions, please email: journals.permissions@oup.com |
Copyright_xml | – notice: The Author 2017. Published by Oxford University Press on behalf of the American Medical Informatics Association. All rights reserved. For Permissions, please email: journals.permissions@oup.com 2017 – notice: The Author 2017. Published by Oxford University Press on behalf of the American Medical Informatics Association. All rights reserved. For Permissions, please email: journals.permissions@oup.com |
DBID | AAYXX CITATION NPM 7X8 5PM |
DOI | 10.1093/jamia/ocx045 |
DatabaseName | CrossRef PubMed MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1527-974X |
EndPage | 80 |
ExternalDocumentID | PMC6455898 28505280 10_1093_jamia_ocx045 10.1093/jamia/ocx045 |
Genre | Research Support, U.S. Gov't, Non-P.H.S Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: National Science Foundation grantid: IIS-1553109; IIS-1552860 funderid: 10.13039/100000001 – fundername: NIDA NIH HHS grantid: R01 DA037378 – fundername: ; ; ; grantid: IIS-1553109; IIS-1552860 |
GroupedDBID | --- .DC 0R~ 18M 29L 2WC 4.4 48X 53G 5GY 5RE 5WD 6PF 7~T AABZA AACZT AAJQQ AAMVS AAOGV AAPQZ AAPXW AARHZ AASNB AAUAY AAUQX AAVAP AAWTL ABEUO ABIXL ABJNI ABNHQ ABOCM ABPTD ABQLI ABQNK ABWST ABXVV ACGFO ACGFS ACGOD ACHQT ACUFI ACUTJ ACYHN ADBBV ADGZP ADHKW ADHZD ADIPN ADJQC ADQBN ADRIX ADRTK ADVEK ADYVW AEGPL AEJOX AEKSI AEMDU AENEX AENZO AEPUE AETBJ AEWNT AFFZL AFIYH AFOFC AFXEN AGINJ AGQXC AGSYK AGUTN AHMBA AJEEA ALIPV ALMA_UNASSIGNED_HOLDINGS ALUQC APIBT ATGXG AVWKF AXUDD AYCSE BAWUL BAYMD BCRHZ BEYMZ BHONS BTRTY BVRKM C45 CDBKE CS3 DAKXR DIK DILTD DU5 E3Z EBD EBS EJD EMOBN ENERS F5P FDB FECEO FLUFQ FOEOM FOTVD FQBLK G-Q GAUVT GJXCC GX1 H13 HAR IH2 IHE J21 KBUDW KOP KSI KSN LSO MHKGH NOMLY NOYVH NQ- O9- OAUYM OAWHX OCZFY ODMLO OJQWA OJZSN OK1 OPAEJ OVD OWPYF P2P PAFKI PEELM Q5Y ROX ROZ RPM RPZ RUSNO RWL RXO SV3 TAE TEORI TJX TMA WOW YAYTL YKOAZ YXANX ~S- AAYXX ABDFA ABEJV ABGNP ABPQP ABVGC ADNBA AEMQT AFXAL AFYAG AGORE AHMMS AJBYB AJNCP ALXQX CITATION JXSIZ NPM 7X8 1TH 5PM NVLIB |
ID | FETCH-LOGICAL-c416t-5eb7cc230fbb393258343d7c2dc9f12d7b994304f78c2bf9f34a1e6d719cf2783 |
ISSN | 1067-5027 1527-974X |
IngestDate | Thu Aug 21 14:04:06 EDT 2025 Fri Jul 11 09:34:08 EDT 2025 Thu Apr 03 07:10:22 EDT 2025 Thu Apr 24 23:09:08 EDT 2025 Tue Jul 01 02:01:49 EDT 2025 Wed Sep 11 04:48:24 EDT 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | Bi-LSTM E-cigarette adverse event recurrent neural network word embedding deep neural network |
Language | English |
License | https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model The Author 2017. Published by Oxford University Press on behalf of the American Medical Informatics Association. All rights reserved. For Permissions, please email: journals.permissions@oup.com This article is published and distributed under the terms of the Oxford University Press, Standard Journals Publication Model (https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model) |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c416t-5eb7cc230fbb393258343d7c2dc9f12d7b994304f78c2bf9f34a1e6d719cf2783 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | https://academic.oup.com/jamia/article-pdf/25/1/72/34149565/ocx045.pdf |
PMID | 28505280 |
PQID | 1899404203 |
PQPubID | 23479 |
PageCount | 9 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_6455898 proquest_miscellaneous_1899404203 pubmed_primary_28505280 crossref_primary_10_1093_jamia_ocx045 crossref_citationtrail_10_1093_jamia_ocx045 oup_primary_10_1093_jamia_ocx045 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2018-01-01 |
PublicationDateYYYYMMDD | 2018-01-01 |
PublicationDate_xml | – month: 01 year: 2018 text: 2018-01-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | England |
PublicationPlace_xml | – name: England |
PublicationTitle | Journal of the American Medical Informatics Association : JAMIA |
PublicationTitleAlternate | J Am Med Inform Assoc |
PublicationYear | 2018 |
Publisher | Oxford University Press |
Publisher_xml | – name: Oxford University Press |
References | 2020110620011679300_ocx045-B27 Dos Santos (2020110620011679300_ocx045-B39) 2014 Benson (2020110620011679300_ocx045-B35) 2011; 1 Schoenborn (2020110620011679300_ocx045-B2) 2015; 217 2020110620011679300_ocx045-B20 Rubenstein (2020110620011679300_ocx045-B38) 1965; 8 Vilar (2020110620011679300_ocx045-B24) 2011; 18 2020110620011679300_ocx045-B3 2020110620011679300_ocx045-B4 Turian (2020110620011679300_ocx045-B48) 2010 Pascanu (2020110620011679300_ocx045-B42) 2013; 28 Farsalinos (2020110620011679300_ocx045-B19) 2014; 5 Sarker (2020110620011679300_ocx045-B25) 2015; 54 Tzatzarakis (2020110620011679300_ocx045-B15); 2013 Wang (2020110620011679300_ocx045-B23) 2014 Polosa (2020110620011679300_ocx045-B11) 2011; 11 Flouris (2020110620011679300_ocx045-B14) 2013; 25 Okazaki (2020110620011679300_ocx045-B51) 2007 Huerta (2020110620011679300_ocx045-B8) 2016; 52 Cunningham (2020110620011679300_ocx045-B28) 2013; 9 Vardavas (2020110620011679300_ocx045-B17) 2012; 141 2020110620011679300_ocx045-B55 Wei (2020110620011679300_ocx045-B34) 2016; 2016 Westenberger (2020110620011679300_ocx045-B10) 2009 Osborne (2020110620011679300_ocx045-B30) Li (2020110620011679300_ocx045-B33) 2015; 26 Callahan-Lyon (2020110620011679300_ocx045-B5) 2014; 23 Lample (2020110620011679300_ocx045-B37) Ritter (2020110620011679300_ocx045-B49) 2011 Greene (2020110620011679300_ocx045-B26) 2010; 363 Derczynski (2020110620011679300_ocx045-B21) 2015; 51 Graves (2020110620011679300_ocx045-B46) Tai (2020110620011679300_ocx045-B45) Hanauer (2020110620011679300_ocx045-B54) 2014; 21 Friedman (2020110620011679300_ocx045-B29) 2000 Milokov (2020110620011679300_ocx045-B44) 2013 Palazzolo (2020110620011679300_ocx045-B9) 2013; 1 Gupta (2020110620011679300_ocx045-B31) 2014; 21 Liu (2020110620011679300_ocx045-B22) 2015; 30 Jakob (2020110620011679300_ocx045-B36) 2010 Maaten (2020110620011679300_ocx045-B56) 2008; 9 Sutskever (2020110620011679300_ocx045-B41) 2014 Leaman R, Gonzalez G. BANNER: an executable survey of advances in biomedical named entity recognition (2020110620011679300_ocx045-B50) 2008 Aronson (2020110620011679300_ocx045-B53) 2010; 17 Chen (2020110620011679300_ocx045-B6) 2013; 15 2020110620011679300_ocx045-B7 Goniewicz (2020110620011679300_ocx045-B13) 2014; 23 Dutra (2020110620011679300_ocx045-B1) 2014; 168 Baldwin (2020110620011679300_ocx045-B40); 2015 Lei (2020110620011679300_ocx045-B32) 2014; 21 Ji (2020110620011679300_ocx045-B18) 2011; 15 Bullen (2020110620011679300_ocx045-B12) 2010; 19 Vansickel (2020110620011679300_ocx045-B16) 2010; 19 Ling (2020110620011679300_ocx045-B47) Blackman (2020110620011679300_ocx045-B43) 2000; 19 Aronson (2020110620011679300_ocx045-B52) 2001 |
References_xml | – volume: 11 start-page: 1 issue: 1 year: 2011 ident: 2020110620011679300_ocx045-B11 article-title: Effect of an electronic nicotine delivery device (e-cigarette) on smoking reduction and cessation: a prospective 6-month pilot study publication-title: BMC Public Health. doi: 10.1186/1471-2458-11-786 – volume: 21 start-page: 902 issue: 5 year: 2014 ident: 2020110620011679300_ocx045-B31 article-title: Induced lexico-syntactic patterns improve information extraction from online medical forums publication-title: J Am Med Inform Assoc. doi: 10.1136/amiajnl-2014-002669 – volume: 168 start-page: 610 issue: 7 year: 2014 ident: 2020110620011679300_ocx045-B1 article-title: Electronic cigarettes and conventional cigarette use among US adolescents: a cross-sectional study publication-title: JAMA Pediatrics. doi: 10.1001/jamapediatrics.2013.5488 – volume: 54 start-page: 202 year: 2015 ident: 2020110620011679300_ocx045-B25 article-title: Utilizing social media data for pharmacovigilance: a review publication-title: J Biomed Inform. doi: 10.1016/j.jbi.2015.02.004 – volume: 15 start-page: 615 issue: 2 year: 2013 ident: 2020110620011679300_ocx045-B6 article-title: FDA summary of adverse events on electronic cigarettes publication-title: Nicotine Tobacco Res. doi: 10.1093/ntr/nts145 – volume: 51 start-page: 32 issue: 2 year: 2015 ident: 2020110620011679300_ocx045-B21 article-title: Analysis of named entity recognition and linking for tweets publication-title: Inform Process Manag. doi: 10.1016/j.ipm.2014.10.006 – ident: 2020110620011679300_ocx045-B30 article-title: Evaluation of YTEX and MetaMap for Clinical Concept Recognition – start-page: 1818 volume-title: Learning Character-level Representations for Part-of-Speech Tagging year: 2014 ident: 2020110620011679300_ocx045-B39 – start-page: 1 volume-title: Evaluation of e-cigarettes year: 2009 ident: 2020110620011679300_ocx045-B10 – volume: 9 start-page: e1002854 issue: 2 year: 2013 ident: 2020110620011679300_ocx045-B28 article-title: Getting more out of biomedical documents with GATE’s full lifecycle open source text analytics publication-title: PLoS Comput Biol. doi: 10.1371/journal.pcbi.1002854 – start-page: 1524 year: 2011 ident: 2020110620011679300_ocx045-B49 article-title: Named entity recognition in tweets: an experimental study publication-title: Proceedings of the Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics – ident: 2020110620011679300_ocx045-B4 – start-page: 270 year: 2000 ident: 2020110620011679300_ocx045-B29 article-title: A broad-coverage natural language processing system publication-title: Proceedings of the AMIA Symposium. American Medical Informatics Association – volume: 141 start-page: 1400 issue: 6 year: 2012 ident: 2020110620011679300_ocx045-B17 article-title: Short-term pulmonary effects of using an electronic cigarette: impact on respiratory flow resistance, impedance, and exhaled nitric oxide publication-title: Chest J. doi: 10.1378/chest.11-2443 – start-page: 1160 year: 2014 ident: 2020110620011679300_ocx045-B23 article-title: Adverse drug event-based stratification of tumor mutations: a case study of breast cancer patients receiving aromatase inhibitors publication-title: AMIA Annual Symposium Proceedings. American Medical Informatics Association – volume: 15 start-page: 428 issue: 3 year: 2011 ident: 2020110620011679300_ocx045-B18 article-title: A potential causal association mining algorithm for screening adverse drug reactions in postmarketing surveillance publication-title: IEEE Trans Inf Technol Biomed. doi: 10.1109/TITB.2011.2131669 – volume-title: Improved Semantic Representations from Tree-structured Long Short-term Memory Networks ident: 2020110620011679300_ocx045-B45 doi: 10.3115/v1/P15-1150 – volume: 21 start-page: 925 issue: 5 year: 2014 ident: 2020110620011679300_ocx045-B54 article-title: Applying MetaMap to Medline for identifying novel associations in a large clinical dataset: a feasibility analysis publication-title: J Am Med Inform Assoc. doi: 10.1136/amiajnl-2014-002767 – volume: 17 start-page: 229 issue: 3 year: 2010 ident: 2020110620011679300_ocx045-B53 article-title: An overview of MetaMap: historical perspective and recent advances publication-title: J Am Med Inform Assoc. doi: 10.1136/jamia.2009.002733 – volume: 19 start-page: 98 issue: 2 year: 2010 ident: 2020110620011679300_ocx045-B12 article-title: Effect of an electronic nicotine delivery device (e cigarette) on desire to smoke and withdrawal, user preferences and nicotine delivery: randomised cross-over trial publication-title: Tobacco Control. doi: 10.1136/tc.2009.031567 – volume: 2015 start-page: 126 ident: 2020110620011679300_ocx045-B40 article-title: Shared tasks of the 2015 workshop on noisy user-generated text: Twitter lexical normalization and named entity recognition publication-title: ACL-IJCNLP – ident: 2020110620011679300_ocx045-B55 – volume: 2016 start-page: baw140 year: 2016 ident: 2020110620011679300_ocx045-B34 article-title: Disease named entity recognition by combining conditional random fields and bidirectional recurrent neural networks publication-title: Database. doi: 10.1093/database/baw140 – volume: 363 start-page: 2087 issue: 22 year: 2010 ident: 2020110620011679300_ocx045-B26 article-title: Pharmaceutical Marketing and the New Social Media publication-title: New Engl J Med. doi: 10.1056/NEJMp1004986 – start-page: 3104 year: 2014 ident: 2020110620011679300_ocx045-B41 article-title: Sequence to sequence learning with neural networks publication-title: Adv Neural Inform Process Sys. – volume: 21 start-page: 808 issue: 5 year: 2014 ident: 2020110620011679300_ocx045-B32 article-title: A comprehensive study of named entity recognition in Chinese clinical text publication-title: J Am Med Inform Assoc. doi: 10.1136/amiajnl-2013-002381 – volume: 8 start-page: 627 issue: 10 year: 1965 ident: 2020110620011679300_ocx045-B38 article-title: Contextual correlates of synonymy publication-title: Commun ACM. doi: 10.1145/365628.365657 – ident: 2020110620011679300_ocx045-B20 – volume: 1 start-page: 389 year: 2011 ident: 2020110620011679300_ocx045-B35 article-title: Event discovery in social media feeds publication-title: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies. Association for Computational Linguistics. – start-page: 652 volume-title: Pacific Symp Biocomput year: 2008 ident: 2020110620011679300_ocx045-B50 – volume: 26 start-page: 3040 issue: 11 year: 2015 ident: 2020110620011679300_ocx045-B33 article-title: Hadoop recognition of biomedical named entity using conditional random fields publication-title: IEEE Trans Parallel Distributed Sys. doi: 10.1109/TPDS.2014.2368568 – start-page: 17 year: 2001 ident: 2020110620011679300_ocx045-B52 article-title: Effective mapping of biomedical text to the UMLS Metathesaurus: the MetaMap program publication-title: Proceedings of the AMIA Symposium. American Medical Informatics Association. – ident: 2020110620011679300_ocx045-B27 – volume-title: Neural Architectures for Named Entity Recognition ident: 2020110620011679300_ocx045-B37 doi: 10.18653/v1/N16-1030 – volume: 23 start-page: 133 issue: 2 year: 2014 ident: 2020110620011679300_ocx045-B13 article-title: Levels of selected carcinogens and toxicants in vapour from electronic cigarettes publication-title: Tobacco Control. doi: 10.1136/tobaccocontrol-2012-050859 – volume: 28 start-page: 1310 year: 2013 ident: 2020110620011679300_ocx045-B42 article-title: On the difficulty of training recurrent neural networks publication-title: ICML (3). – start-page: 3111 year: 2013 ident: 2020110620011679300_ocx045-B44 article-title: Distributed representations of words and phrases and their compositionality publication-title: Adv Neural Inform Process Sys. – volume: 217 start-page: 1 year: 2015 ident: 2020110620011679300_ocx045-B2 article-title: Electronic cigarette use among adults: United States, 2014 publication-title: NCHS Data Brief. – volume: 19 start-page: 1945 issue: 8 year: 2010 ident: 2020110620011679300_ocx045-B16 article-title: A clinical laboratory model for evaluating the acute effects of electronic “cigarettes”: nicotine delivery profile and cardiovascular and subjective effects publication-title: Cancer Epidemiol Biomarkers Prevent. doi: 10.1158/1055-9965.EPI-10-0288 – start-page: 384 year: 2010 ident: 2020110620011679300_ocx045-B48 article-title: Word representations: a simple and general method for semi-supervised learning publication-title: Proceedings of the 48th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics. – volume: 23 start-page: ii36 issue: Suppl 2 year: 2014 ident: 2020110620011679300_ocx045-B5 article-title: Electronic cigarettes: human health effects publication-title: Tobacco Control. doi: 10.1136/tobaccocontrol-2013-051470 – volume: 1 start-page: 56 year: 2013 ident: 2020110620011679300_ocx045-B9 article-title: Electronic cigarettes and vaping: a new challenge in clinical medicine and public health. A literature review publication-title: Front Public Health. doi: 10.3389/fpubh.2013.00056 – volume: 30 start-page: 44 issue: 3 year: 2015 ident: 2020110620011679300_ocx045-B22 article-title: Identifying adverse drug events from patient social media: a case study for diabetes publication-title: IEEE Intell Sys. doi: 10.1109/MIS.2015.7 – volume: 5 start-page: 67 issue: 2 year: 2014 ident: 2020110620011679300_ocx045-B19 article-title: Safety evaluation and risk assessment of electronic cigarettes as tobacco cigarette substitutes: a systematic review publication-title: Therapeutic Adv Drug Safety. doi: 10.1177/2042098614524430 – start-page: 1035 year: 2010 ident: 2020110620011679300_ocx045-B36 article-title: Extracting opinion targets in a single- and cross-domain setting with conditional random fields publication-title: Proceedings of the 2010 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics. – volume-title: Finding Function in Form: Compositional Character Models for Open Vocabulary Word Representation ident: 2020110620011679300_ocx045-B47 – ident: 2020110620011679300_ocx045-B46 article-title: Hybrid speech recognition with deep bidirectional LSTM publication-title: 2013 IEEE Workshop on Automatic Speech Recognition and Understanding. – volume: 9 year: 2008 ident: 2020110620011679300_ocx045-B56 article-title: Visualizing data using t-SNE publication-title: J Machine Learning Res. – ident: 2020110620011679300_ocx045-B3 – volume: 52 start-page: 339 issue: 3 year: 2016 ident: 2020110620011679300_ocx045-B8 article-title: Trends in E-Cigarette Awareness and Perceived Harmfulness in the US publication-title: Am J Prevent Med. doi: 10.1016/j.amepre.2016.10.017 – ident: 2020110620011679300_ocx045-B7 – volume: 19 start-page: 723 issue: 5 year: 2000 ident: 2020110620011679300_ocx045-B43 article-title: Interval estimation for Cohen’s kappa as a measure of agreement publication-title: Stats Med. doi: 10.1002/(SICI)1097-0258(20000315)19:5<723::AID-SIM379>3.0.CO;2-A – volume: 18 start-page: i73 issue: Suppl 1 year: 2011 ident: 2020110620011679300_ocx045-B24 article-title: Focus on clinical care and patient safety: Facilitating adverse drug event detection in pharmacovigilance databases using molecular structure similarity: application to rhabdomyolysis publication-title: J Am Med Inform Assoc. doi: 10.1136/amiajnl-2011-000417 – volume-title: CRFsuite: a Fast Implementation of Conditional Random Fields (CRFs) year: 2007 ident: 2020110620011679300_ocx045-B51 – volume: 25 start-page: 91 issue: 2 year: 2013 ident: 2020110620011679300_ocx045-B14 article-title: Acute impact of active and passive electronic cigarette smoking on serum cotinine and lung function publication-title: Inhalation Toxicol. doi: 10.3109/08958378.2012.758197 – volume: 2013 start-page: S86 issue: 221 ident: 2020110620011679300_ocx045-B15 article-title: Acute and short term impact of active and passive tobacco and electronic cigarette smoking on inflammatory markers publication-title: Toxicol Lett. |
SSID | ssj0016235 |
Score | 2.4144924 |
Snippet | Abstract
Objective
Recent years have seen increased worldwide popularity of e-cigarette use. However, the risks of e-cigarettes are underexamined. Most... Recent years have seen increased worldwide popularity of e-cigarette use. However, the risks of e-cigarettes are underexamined. Most e-cigarette adverse event... |
SourceID | pubmedcentral proquest pubmed crossref oup |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 72 |
SubjectTerms | Research and Applications |
Title | Mining e-cigarette adverse events in social media using Bi-LSTM recurrent neural network with word embedding representation |
URI | https://www.ncbi.nlm.nih.gov/pubmed/28505280 https://www.proquest.com/docview/1899404203 https://pubmed.ncbi.nlm.nih.gov/PMC6455898 |
Volume | 25 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELaWIiEuiDdbHjISnKLQTeIkzhFQl1LtlgNZKeISxY6jpqJZ1CYCwZn_zdjjzSbQisIlWnkt72M-j2fGM98Q8kLIisMemrkyjiqXiQi2VCGYK6UqEs4SpQx98fIoOlixwyzMJpOfg6ylrhWv5PcL60r-R6owBnLVVbL_INl-URiA1yBfeIKE4XklGS9NdwdHubI23Wpbpe_0waBTjiFmMrmuNipuSkSczoQG3tTu4mO6dM50sN3QM2laS5jUYFI4Rme_6kpCdSpUaQpfDP3lplSpucSoHRSqbC-BbMmTIYQewMFEI0Dpv-9BlOFlyWFdHCt7oupcobrTo1ldrLdx9ZOucT4pVFRYJj-MX3h8EL-wKtePXfBqMjyRLhizehoLpEd4RKWLvX_-OAuQJ-ukONVZx_O1_DZD4sox6fbRh3y-WizydD9Lr5HrPngbuhHGu6zPFPLAQgwN7a79UrZ-AtbfM6vv4dojy2ZULTlwWn7PvR0YM-ltcssKjL5GSN0hE9XcJTeWNs_iHvmByKIDZFGLLIrIonVDEVnUIIsaZFGLLNojiyKyqEUW1ciiGlm0RxYdI-s-Wc3307cHrm3T4Uqw5ls3VCKWElzZSogA3IGQBywoY-mXMqk8v4xFojn-WRVz6YsqqQJWeCoqYy-RlW708oDsNOtGPSI09EtVqFnhCwZuuhfxsgADm3kq4eBXecmUOJu_OJeWw163UvmcYy5FkBuB5CiQKXnZz_6C3C2XzKMgrb9Meb4RZQ76V1-qFY1ad-e5x-HXwck3C6bkIYq2X8nnuk0kn01JPBJ6P0Fzu4_faepjw_EesTDkCd-9wuc-Jje3--oJ2WnPOvUULOVWPDM4_gU0RMme |
linkProvider | Geneva Foundation for Medical Education and Research |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Mining+e-cigarette+adverse+events+in+social+media+using+Bi-LSTM+recurrent+neural+network+with+word+embedding+representation&rft.jtitle=Journal+of+the+American+Medical+Informatics+Association+%3A+JAMIA&rft.au=Xie%2C+Jiaheng&rft.au=Liu%2C+Xiao&rft.au=Dajun+Zeng%2C+Daniel&rft.date=2018-01-01&rft.issn=1527-974X&rft.eissn=1527-974X&rft.volume=25&rft.issue=1&rft.spage=72&rft_id=info:doi/10.1093%2Fjamia%2Focx045&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1067-5027&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1067-5027&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1067-5027&client=summon |