Deep learning reveals Alzheimer's disease onset in MCI subjects: Results from an international challenge
•A classification strategy based on Random Forest feature selection and Deep Neural Network is proposed.•The work demonstrated the accuracy of deep learning strategies for early detection of Alzheimer's disease.•This work ranked third for overall accuracy over all participating teams of the “In...
Saved in:
Published in | Journal of neuroscience methods Vol. 302; pp. 3 - 9 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Netherlands
Elsevier B.V
15.05.2018
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | •A classification strategy based on Random Forest feature selection and Deep Neural Network is proposed.•The work demonstrated the accuracy of deep learning strategies for early detection of Alzheimer's disease.•This work ranked third for overall accuracy over all participating teams of the “International challenge for automated prediction of MCI from MRI data” hosted by the Kaggle platform.
Early diagnosis of Alzheimer's disease (AD) and its onset in subjects affected by mild cognitive impairment (MCI) based on structural MRI features is one of the most important open issues in neuroimaging. Accordingly, a scientific challenge has been promoted, on the international Kaggle platform, to assess the performance of different classification methods for prediction of MCI and its conversion to AD.
This work presents a classification strategy based on Random Forest feature selection and Deep Neural Network classification using a mixed cohort including the four classes of classification problem, that is HC, AD, MCI and cMCI, to train the model. Moreover, we compare this approach with a novel classification strategy based on fuzzy logic learned on a mixed cohort including only HC and AD.
A training set of 240 subjects and a test set including mixed cohort of 500 real and simulated subjects were used. The data included AD patients, MCI subjects converting to AD (cMCI), MCI subjects and healthy controls (HC). This work ranked third for overall accuracy (38.8%) over 19 participating teams.
The “International challenge for automated prediction of MCI from MRI data” hosted by the Kaggle platform has been promoted to validate different methodologies with a common set of data and evaluation procedures.
DNNs reach a classification accuracy significantly higher than other machine learning strategies; on the other hand, fuzzy logic is particularly accurate with cMCI, suggesting a combination of these approaches could lead to interesting future perspectives. |
---|---|
AbstractList | Early diagnosis of Alzheimer's disease (AD) and its onset in subjects affected by mild cognitive impairment (MCI) based on structural MRI features is one of the most important open issues in neuroimaging. Accordingly, a scientific challenge has been promoted, on the international Kaggle platform, to assess the performance of different classification methods for prediction of MCI and its conversion to AD.
This work presents a classification strategy based on Random Forest feature selection and Deep Neural Network classification using a mixed cohort including the four classes of classification problem, that is HC, AD, MCI and cMCI, to train the model. Moreover, we compare this approach with a novel classification strategy based on fuzzy logic learned on a mixed cohort including only HC and AD.
A training set of 240 subjects and a test set including mixed cohort of 500 real and simulated subjects were used. The data included AD patients, MCI subjects converting to AD (cMCI), MCI subjects and healthy controls (HC). This work ranked third for overall accuracy (38.8%) over 19 participating teams.
The "International challenge for automated prediction of MCI from MRI data" hosted by the Kaggle platform has been promoted to validate different methodologies with a common set of data and evaluation procedures.
DNNs reach a classification accuracy significantly higher than other machine learning strategies; on the other hand, fuzzy logic is particularly accurate with cMCI, suggesting a combination of these approaches could lead to interesting future perspectives. •A classification strategy based on Random Forest feature selection and Deep Neural Network is proposed.•The work demonstrated the accuracy of deep learning strategies for early detection of Alzheimer's disease.•This work ranked third for overall accuracy over all participating teams of the “International challenge for automated prediction of MCI from MRI data” hosted by the Kaggle platform. Early diagnosis of Alzheimer's disease (AD) and its onset in subjects affected by mild cognitive impairment (MCI) based on structural MRI features is one of the most important open issues in neuroimaging. Accordingly, a scientific challenge has been promoted, on the international Kaggle platform, to assess the performance of different classification methods for prediction of MCI and its conversion to AD. This work presents a classification strategy based on Random Forest feature selection and Deep Neural Network classification using a mixed cohort including the four classes of classification problem, that is HC, AD, MCI and cMCI, to train the model. Moreover, we compare this approach with a novel classification strategy based on fuzzy logic learned on a mixed cohort including only HC and AD. A training set of 240 subjects and a test set including mixed cohort of 500 real and simulated subjects were used. The data included AD patients, MCI subjects converting to AD (cMCI), MCI subjects and healthy controls (HC). This work ranked third for overall accuracy (38.8%) over 19 participating teams. The “International challenge for automated prediction of MCI from MRI data” hosted by the Kaggle platform has been promoted to validate different methodologies with a common set of data and evaluation procedures. DNNs reach a classification accuracy significantly higher than other machine learning strategies; on the other hand, fuzzy logic is particularly accurate with cMCI, suggesting a combination of these approaches could lead to interesting future perspectives. Early diagnosis of Alzheimer's disease (AD) and its onset in subjects affected by mild cognitive impairment (MCI) based on structural MRI features is one of the most important open issues in neuroimaging. Accordingly, a scientific challenge has been promoted, on the international Kaggle platform, to assess the performance of different classification methods for prediction of MCI and its conversion to AD.BACKGROUNDEarly diagnosis of Alzheimer's disease (AD) and its onset in subjects affected by mild cognitive impairment (MCI) based on structural MRI features is one of the most important open issues in neuroimaging. Accordingly, a scientific challenge has been promoted, on the international Kaggle platform, to assess the performance of different classification methods for prediction of MCI and its conversion to AD.This work presents a classification strategy based on Random Forest feature selection and Deep Neural Network classification using a mixed cohort including the four classes of classification problem, that is HC, AD, MCI and cMCI, to train the model. Moreover, we compare this approach with a novel classification strategy based on fuzzy logic learned on a mixed cohort including only HC and AD.NEW METHODThis work presents a classification strategy based on Random Forest feature selection and Deep Neural Network classification using a mixed cohort including the four classes of classification problem, that is HC, AD, MCI and cMCI, to train the model. Moreover, we compare this approach with a novel classification strategy based on fuzzy logic learned on a mixed cohort including only HC and AD.A training set of 240 subjects and a test set including mixed cohort of 500 real and simulated subjects were used. The data included AD patients, MCI subjects converting to AD (cMCI), MCI subjects and healthy controls (HC). This work ranked third for overall accuracy (38.8%) over 19 participating teams.EXPERIMENTSA training set of 240 subjects and a test set including mixed cohort of 500 real and simulated subjects were used. The data included AD patients, MCI subjects converting to AD (cMCI), MCI subjects and healthy controls (HC). This work ranked third for overall accuracy (38.8%) over 19 participating teams.The "International challenge for automated prediction of MCI from MRI data" hosted by the Kaggle platform has been promoted to validate different methodologies with a common set of data and evaluation procedures.COMPARISON WITH EXISTING METHOD(S)The "International challenge for automated prediction of MCI from MRI data" hosted by the Kaggle platform has been promoted to validate different methodologies with a common set of data and evaluation procedures.DNNs reach a classification accuracy significantly higher than other machine learning strategies; on the other hand, fuzzy logic is particularly accurate with cMCI, suggesting a combination of these approaches could lead to interesting future perspectives.CONCLUSIONDNNs reach a classification accuracy significantly higher than other machine learning strategies; on the other hand, fuzzy logic is particularly accurate with cMCI, suggesting a combination of these approaches could lead to interesting future perspectives. |
Author | Amoroso, Nicola Bellotti, Roberto Lombardi, Angela Monaco, Alfonso Diacono, Domenico La Rocca, Marianna Guaragnella, Cataldo Fanizzi, Annarita Tangaro, Sabina |
Author_xml | – sequence: 1 givenname: Nicola surname: Amoroso fullname: Amoroso, Nicola email: nicola.amoroso@ba.infn.it organization: Dipartimento Interateneo di Fisica “M. Merlin”, Università degli studi di Bari “A. Moro”, Bari, Italy – sequence: 2 givenname: Domenico surname: Diacono fullname: Diacono, Domenico email: domenico.diacono@ba.infn.it organization: Istituto Nazionale di Fisica Nucleare, Sezione di Bari, Bari, Italy – sequence: 3 givenname: Annarita surname: Fanizzi fullname: Fanizzi, Annarita email: annarita.fanizzi.af@gmail.com organization: Istituto Tumori “Giovanni Paolo II” – I.R.C.C.S., Bari, Italy – sequence: 4 givenname: Marianna surname: La Rocca fullname: La Rocca, Marianna email: marianna.larocca@ba.infn.it organization: Dipartimento Interateneo di Fisica “M. Merlin”, Università degli studi di Bari “A. Moro”, Bari, Italy – sequence: 5 givenname: Alfonso surname: Monaco fullname: Monaco, Alfonso email: Alfonso.Monaco@ba.infn.it organization: Istituto Nazionale di Fisica Nucleare, Sezione di Bari, Bari, Italy – sequence: 6 givenname: Angela surname: Lombardi fullname: Lombardi, Angela email: angela.lombardi@poliba.it organization: Dipartimento di Ingegneria Elettrica e dell’Informazione, Politecnico di Bari, Bari, Italy – sequence: 7 givenname: Cataldo surname: Guaragnella fullname: Guaragnella, Cataldo email: cataldo.guaragnella@poliba.it organization: Dipartimento di Ingegneria Elettrica e dell’Informazione, Politecnico di Bari, Bari, Italy – sequence: 8 givenname: Roberto surname: Bellotti fullname: Bellotti, Roberto email: roberto.bellotti@uniba.it organization: Dipartimento Interateneo di Fisica “M. Merlin”, Università degli studi di Bari “A. Moro”, Bari, Italy – sequence: 9 givenname: Sabina surname: Tangaro fullname: Tangaro, Sabina email: Sonia.Tangaro@ba.infn.it organization: Istituto Nazionale di Fisica Nucleare, Sezione di Bari, Bari, Italy |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/29287745$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkc1u1DAUhS1URKcDr1B5B5sE23FsB7GgGv4qFSEhkNhZjnPTceQ4g-1UgqfHZTobNpUXV5a-c67uORfoLCwBELqkpKaEitdTPQVYZ8j7mhEqa8pqQukTtKFKskpI9fMMbQrYVoRJco4uUpoIIbwj4hk6Zx1TUvJ2g_bvAQ7Yg4nBhVsc4Q6MT_jK_9mDmyG-THhwCUwCvIQEGbuAv-yucVr7CWxOb_A3SKvPCY9xmbEJBcgQg8luCcZjuzfeQ7iF5-jpWJzhxcPcoh8fP3zffa5uvn663l3dVJZTkau2p1w0XIqm_KXiauxbynpqhSS8URIaZYcWVEe7cbCdHQehOB-ZbLuGiE42W_Tq6HuIy68VUtazSxa8NwGWNWnaKaZ4Q8vbossHdO1nGPQhutnE3_qUTgHeHgEbl5QijNq6_O-yHI3zmhJ9X4ae9KkMfV-GpkyXMopc_Cc_bXhU-O4ohBLUnYOok3UQLAwultD1sLjHLP4CYVCn0w |
CitedBy_id | crossref_primary_10_1109_ACCESS_2019_2949577 crossref_primary_10_3390_app13031464 crossref_primary_10_1016_j_compbiomed_2020_103764 crossref_primary_10_1016_j_xops_2023_100355 crossref_primary_10_3389_fnins_2021_674055 crossref_primary_10_1016_j_bspc_2022_104312 crossref_primary_10_3390_brainsci13020260 crossref_primary_10_1016_j_bspc_2023_105364 crossref_primary_10_1016_j_bbr_2024_114900 crossref_primary_10_1155_2021_5514839 crossref_primary_10_3233_JIFS_233000 crossref_primary_10_1016_j_compbiomed_2023_107005 crossref_primary_10_1186_s12911_018_0710_y crossref_primary_10_3390_app11136175 crossref_primary_10_1109_ACCESS_2020_2979969 crossref_primary_10_3389_fnagi_2019_00115 crossref_primary_10_1007_s40998_023_00622_9 crossref_primary_10_1186_s12938_018_0566_5 crossref_primary_10_1016_j_future_2020_10_005 crossref_primary_10_7717_peerj_5908 crossref_primary_10_1016_j_neucom_2020_05_087 crossref_primary_10_3389_fnagi_2020_00206 crossref_primary_10_3390_electronics10222860 crossref_primary_10_3390_biomedicines10020315 crossref_primary_10_1016_j_neulet_2020_134971 crossref_primary_10_1145_3502433 crossref_primary_10_3390_jpm12050815 crossref_primary_10_1088_1742_6596_1372_1_012065 crossref_primary_10_1155_2020_5629090 crossref_primary_10_1080_17425255_2023_2298827 crossref_primary_10_1016_j_bspc_2023_105669 crossref_primary_10_1136_bjophthalmol_2020_318407 crossref_primary_10_1088_1742_6596_1997_1_012004 crossref_primary_10_1016_j_heliyon_2022_e08827 crossref_primary_10_1016_j_neuroscience_2024_03_007 crossref_primary_10_1016_j_tice_2019_04_009 crossref_primary_10_3390_app13074489 crossref_primary_10_1109_TCDS_2023_3254209 crossref_primary_10_3390_app10238606 crossref_primary_10_3390_app10030934 crossref_primary_10_1016_j_phrs_2023_107038 crossref_primary_10_1142_S0129065721300023 crossref_primary_10_1016_j_bspc_2022_104092 crossref_primary_10_1109_ACCESS_2019_2919385 crossref_primary_10_3389_fpsyt_2020_619629 crossref_primary_10_1007_s12021_023_09625_7 crossref_primary_10_1109_ACCESS_2023_3244952 crossref_primary_10_3390_brainsci13040690 crossref_primary_10_1109_TIM_2022_3162265 crossref_primary_10_1109_ACCESS_2021_3062484 crossref_primary_10_1080_09540091_2022_2123450 crossref_primary_10_54105_ijainn_B1045_022222 crossref_primary_10_3233_JIFS_179425 crossref_primary_10_3389_fncom_2018_00084 crossref_primary_10_3389_fnagi_2023_1238065 crossref_primary_10_1016_j_bspc_2020_102397 crossref_primary_10_1007_s10916_019_1475_2 crossref_primary_10_1016_j_jalz_2019_02_007 crossref_primary_10_1038_s41598_022_20674_x crossref_primary_10_1038_s43856_023_00313_w crossref_primary_10_32604_cmc_2023_026379 crossref_primary_10_1007_s11042_022_13506_7 crossref_primary_10_32604_cmc_2024_048725 crossref_primary_10_1016_j_medntd_2024_100343 crossref_primary_10_1016_j_jneumeth_2018_03_011 crossref_primary_10_1016_j_cmpb_2022_106825 crossref_primary_10_1186_s40708_020_00112_2 crossref_primary_10_1016_j_cmpb_2019_105242 crossref_primary_10_1016_j_jneumeth_2019_108544 crossref_primary_10_1016_j_knosys_2020_106688 crossref_primary_10_3389_fnagi_2022_810873 crossref_primary_10_1021_acs_jcim_2c01126 crossref_primary_10_57197_JDR_2024_0064 crossref_primary_10_1136_bjophthalmol_2020_317659 crossref_primary_10_3390_rs12152355 crossref_primary_10_58620_fbujoss_1368922 crossref_primary_10_1007_s10916_019_1519_7 crossref_primary_10_1016_j_bspc_2022_103725 crossref_primary_10_4103_1673_5374_233433 crossref_primary_10_1016_j_media_2020_101694 crossref_primary_10_1080_23279095_2024_2382823 crossref_primary_10_3233_JAD_210573 |
Cites_doi | 10.1016/j.neuroimage.2014.10.002 10.1162/neco.2006.18.7.1527 10.1140/epjp/i2012-12135-6 10.1016/j.neuroimage.2010.12.066 10.1016/j.neuroimage.2010.03.018 10.1109/TMI.2016.2528162 10.1016/j.neuroimage.2010.10.081 10.1038/nature21056 10.1016/j.ejmp.2017.04.027 10.1016/j.neurobiolaging.2008.08.013 10.1016/j.media.2016.07.007 10.1088/0031-9155/60/22/8851 10.1016/S1474-4422(04)00710-0 10.1016/j.nicl.2013.05.004 10.1016/j.neuroimage.2015.10.065 10.1109/TBME.2014.2372011 10.1016/j.ejmp.2014.06.044 10.1016/j.neuroimage.2011.09.085 10.1023/A:1010933404324 10.1371/journal.pone.0033182 10.1016/j.neuroimage.2011.01.008 10.1007/s40708-015-0028-9 10.1016/j.neuroimage.2012.01.075 10.1016/j.jalz.2016.02.006 10.1016/j.neuroimage.2015.01.048 10.1016/j.patrec.2016.10.010 10.1016/j.jalz.2011.03.008 10.1016/j.neurobiolaging.2010.05.023 10.1192/apt.21.6.362 |
ContentType | Journal Article |
Copyright | 2017 Elsevier B.V. Copyright © 2017 Elsevier B.V. All rights reserved. |
Copyright_xml | – notice: 2017 Elsevier B.V. – notice: Copyright © 2017 Elsevier B.V. All rights reserved. |
CorporateAuthor | for the Alzheimer's Disease Neuroimaging Initiative Alzheimer's Disease Neuroimaging Initiative |
CorporateAuthor_xml | – name: for the Alzheimer's Disease Neuroimaging Initiative – name: Alzheimer's Disease Neuroimaging Initiative |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 |
DOI | 10.1016/j.jneumeth.2017.12.011 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Anatomy & Physiology |
EISSN | 1872-678X |
EndPage | 9 |
ExternalDocumentID | 29287745 10_1016_j_jneumeth_2017_12_011 S0165027017304296 |
Genre | Journal Article |
GroupedDBID | --- --K --M -~X .~1 0R~ 1B1 1RT 1~. 1~5 4.4 457 4G. 5GY 5RE 7-5 71M 8P~ 9JM AABNK AACTN AADPK AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAXLA AAXUO ABCQJ ABFNM ABFRF ABJNI ABMAC ABYKQ ACDAQ ACGFO ACGFS ACIUM ACRLP ADBBV ADEZE AEBSH AEFWE AEKER AENEX AFKWA AFTJW AFXIZ AGUBO AGWIK AGYEJ AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W K-O KOM L7B M2V M41 MO0 MOBAO N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 ROL RPZ SDF SDG SDP SES SPCBC SSN SSZ T5K ~G- .55 .GJ 29L 53G 5VS AAQFI AAQXK AATTM AAXKI AAYWO AAYXX ABWVN ABXDB ACRPL ACVFH ADCNI ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AGCQF AGHFR AGQPQ AGRNS AHHHB AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CITATION FEDTE FGOYB G-2 HMQ HVGLF HZ~ R2- RIG SEW SNS SSH WUQ X7M ZGI CGR CUY CVF ECM EIF NPM 7X8 |
ID | FETCH-LOGICAL-c416t-5b14634763c417848fb512b1c6704387e38cd5e8919fdc9cfd6844f2759306973 |
IEDL.DBID | .~1 |
ISSN | 0165-0270 1872-678X |
IngestDate | Fri Jul 11 06:59:45 EDT 2025 Wed Feb 19 02:35:03 EST 2025 Thu Apr 24 22:58:50 EDT 2025 Tue Jul 01 02:57:09 EDT 2025 Fri Feb 23 02:33:09 EST 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Deep learning Fuzzy logic MCI MRI Alzheimer's disease |
Language | English |
License | Copyright © 2017 Elsevier B.V. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c416t-5b14634763c417848fb512b1c6704387e38cd5e8919fdc9cfd6844f2759306973 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | http://adni.loni.usc.edu/wp-content/uploads/how_to_apply/ADNI_Acknowledgement_List.pdf |
PMID | 29287745 |
PQID | 1982843131 |
PQPubID | 23479 |
PageCount | 7 |
ParticipantIDs | proquest_miscellaneous_1982843131 pubmed_primary_29287745 crossref_citationtrail_10_1016_j_jneumeth_2017_12_011 crossref_primary_10_1016_j_jneumeth_2017_12_011 elsevier_sciencedirect_doi_10_1016_j_jneumeth_2017_12_011 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2018-05-15 |
PublicationDateYYYYMMDD | 2018-05-15 |
PublicationDate_xml | – month: 05 year: 2018 text: 2018-05-15 day: 15 |
PublicationDecade | 2010 |
PublicationPlace | Netherlands |
PublicationPlace_xml | – name: Netherlands |
PublicationTitle | Journal of neuroscience methods |
PublicationTitleAlternate | J Neurosci Methods |
PublicationYear | 2018 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Davatzikos, Bhatt, Shaw, Batmanghelich, Trojanowski (bib0060) 2011; 32 Zadeh (bib0155) 1999 Bron, Smits, Van Der Flier, Vrenken, Barkhof, Scheltens, Papma, Steketee, Orellana, Meijboom (bib0040) 2015; 111 Esteva, Kuprel, Novoa, Ko, Swetter, Blau, Thrun (bib0075) 2017; 542 Tangaro, Amoroso, Boccardi, Bruno, Chincarini, Ferraro, Frisoni, Maglietta, Redolfi, Rei (bib0135) 2014; 30 Walhovd, Fjell, Dale, McEvoy, Brewer, Karow, Salmon, Fennema-Notestine, Initiative (bib0145) 2010; 31 Leung, Barnes, Ridgway, Bartlett, Clarkson, Macdonald (bib0110) 2010; 51 Zhang, Shen, Initiative (bib0165) 2012; 7 Moradi, Pepe, Gaser, Huttunen, Tohka, Initiative (bib0120) 2015; 104 Liu, Liu, Cai, Che, Pujol, Kikinis, Feng, Fulham (bib0115) 2015; 62 Nanni, Salvatore, Cerasa, Castiglioni, Initiative (bib0125) 2016; 84 Dubois, Albert (bib0070) 2004; 3 Breiman (bib0035) 2001; 45 Goodfellow, Bengio, Courville (bib0085) 2016 Devanand, Bansal, Liu, Hao, Pradhaban, Peterson (bib0065) 2012; 60 Zhang, Wang, Zhou, Yuan, Shen, Initiative (bib0160) 2011; 55 Arevalo-Rodriguez, Smailagic, i Figuls, Ciapponi, Sanchez-Perez, Giannakou, Pedraza, Cosp, Cullum (bib0020) 2015; 21 Shin, Roth, Gao, Lu, Xu, Nogues, Yao, Mollura, Summers (bib0130) 2016; 35 Allen, Amoroso, Anghel, Balagurusamy, Bare, Beaton, Bellotti, Bennett, Boehme, Boutros (bib0010) 2016; 12 Bengio, Lamblin, Popovici, Larochelle (bib0030) 2007; 19 Chincarini, Bosco, Gemme, Morbelli, Arnaldi, Sensi, Solano, Amoroso, Tangaro, Longo (bib0045) 2012; 127 Arora, Basu, Mianjy, Mukherjee (bib0025) 2016 Hinton, Osindero, Teh (bib0095) 2006; 18 Filipovych, Davatzikos, Initiative (bib0080) 2011; 55 Kingma, Ba (bib0100) 2014 Tangaro, Fanizzi, Amoroso, Bellotti, Initiative (bib0140) 2017; 38 Chincarini, Sensi, Rei, Gemme, Squarcia, Longo, Brun, Tangaro, Bellotti, Amoroso (bib0050) 2016; 125 Zhao, Chen, Zhou (bib0170) 2016; 3 Amoroso, Errico, Bruno, Chincarini, Garuccio, Sensi, Tangaro, Tateo, Bellotti, Initiative (bib0015) 2015; 60 Cho, Seong, Jeong, Shin, Initiative (bib0055) 2012; 59 Young, Modat, Cardoso, Mendelson, Cash, Ourselin (bib0150) 2013; 2 Hinrichs, Singh, Xu, Johnson, Initiative (bib0090) 2011; 55 Albert, DeKosky, Dickson, Dubois, Feldman, Fox, Gamst, Holtzman, Jagust, Petersen (bib0005) 2011; 7 Kooi, Litjens, van Ginneken, Gubern-Mérida, Sánchez, Mann, den Heeten, Karssemeijer (bib0105) 2017; 35 Hinton (10.1016/j.jneumeth.2017.12.011_bib0095) 2006; 18 Filipovych (10.1016/j.jneumeth.2017.12.011_bib0080) 2011; 55 Breiman (10.1016/j.jneumeth.2017.12.011_bib0035) 2001; 45 Tangaro (10.1016/j.jneumeth.2017.12.011_bib0135) 2014; 30 Allen (10.1016/j.jneumeth.2017.12.011_bib0010) 2016; 12 Kingma (10.1016/j.jneumeth.2017.12.011_bib0100) 2014 Davatzikos (10.1016/j.jneumeth.2017.12.011_bib0060) 2011; 32 Chincarini (10.1016/j.jneumeth.2017.12.011_bib0045) 2012; 127 Hinrichs (10.1016/j.jneumeth.2017.12.011_bib0090) 2011; 55 Arevalo-Rodriguez (10.1016/j.jneumeth.2017.12.011_bib0020) 2015; 21 Goodfellow (10.1016/j.jneumeth.2017.12.011_bib0085) 2016 Bengio (10.1016/j.jneumeth.2017.12.011_bib0030) 2007; 19 Chincarini (10.1016/j.jneumeth.2017.12.011_bib0050) 2016; 125 Esteva (10.1016/j.jneumeth.2017.12.011_bib0075) 2017; 542 Zhang (10.1016/j.jneumeth.2017.12.011_bib0160) 2011; 55 Zhang (10.1016/j.jneumeth.2017.12.011_bib0165) 2012; 7 Cho (10.1016/j.jneumeth.2017.12.011_bib0055) 2012; 59 Devanand (10.1016/j.jneumeth.2017.12.011_bib0065) 2012; 60 Moradi (10.1016/j.jneumeth.2017.12.011_bib0120) 2015; 104 Albert (10.1016/j.jneumeth.2017.12.011_bib0005) 2011; 7 Zhao (10.1016/j.jneumeth.2017.12.011_bib0170) 2016; 3 Arora (10.1016/j.jneumeth.2017.12.011_bib0025) 2016 Bron (10.1016/j.jneumeth.2017.12.011_bib0040) 2015; 111 Young (10.1016/j.jneumeth.2017.12.011_bib0150) 2013; 2 Liu (10.1016/j.jneumeth.2017.12.011_bib0115) 2015; 62 Shin (10.1016/j.jneumeth.2017.12.011_bib0130) 2016; 35 Walhovd (10.1016/j.jneumeth.2017.12.011_bib0145) 2010; 31 Dubois (10.1016/j.jneumeth.2017.12.011_bib0070) 2004; 3 Amoroso (10.1016/j.jneumeth.2017.12.011_bib0015) 2015; 60 Zadeh (10.1016/j.jneumeth.2017.12.011_bib0155) 1999 Leung (10.1016/j.jneumeth.2017.12.011_bib0110) 2010; 51 Tangaro (10.1016/j.jneumeth.2017.12.011_bib0140) 2017; 38 Kooi (10.1016/j.jneumeth.2017.12.011_bib0105) 2017; 35 Nanni (10.1016/j.jneumeth.2017.12.011_bib0125) 2016; 84 |
References_xml | – volume: 3 start-page: 29 year: 2016 end-page: 37 ident: bib0170 article-title: Quantitative multimodal multiparametric imaging in Alzheimer's disease publication-title: Brain Inform. – volume: 59 start-page: 2217 year: 2012 end-page: 2230 ident: bib0055 article-title: Individual subject classification for Alzheimer's disease based on incremental learning using a spatial frequency representation of cortical thickness data publication-title: Neuroimage – start-page: 507 year: 1999 end-page: 544 ident: bib0155 article-title: From computing with numbers to computing with words-from manipulation of measurements to manipulation of perceptions publication-title: Logic, Thought and Action – volume: 127 start-page: 135 year: 2012 ident: bib0045 article-title: Alzheimer's disease markers from structural MRI and FDG-PET brain images publication-title: Eur. Phys. J. Plus – volume: 45 start-page: 5 year: 2001 end-page: 32 ident: bib0035 article-title: Random forests publication-title: Mach. Learn. – volume: 51 start-page: 1345 year: 2010 end-page: 1359 ident: bib0110 article-title: Automated cross-sectional and longitudinal hippocampal volume measurement in mild cognitive impairment and Alzheimer's disease publication-title: Neuroimage – volume: 32 start-page: 2322-e19 year: 2011 ident: bib0060 article-title: Prediction of MCI to AD conversion, via MRI, CSF biomarkers, and pattern classification publication-title: Neurobiol. Aging – volume: 38 start-page: 36 year: 2017 end-page: 44 ident: bib0140 article-title: A fuzzy-based system reveals Alzheimer's disease onset in subjects with mild cognitive impairment publication-title: Phys. Med. – volume: 7 start-page: 270 year: 2011 end-page: 279 ident: bib0005 article-title: The diagnosis of mild cognitive impairment due to Alzheimer's disease: recommendations from the National Institute on Aging-Alzheimer's Association workgroups on diagnostic guidelines for Alzheimer's disease publication-title: Alzheimers Dement. – year: 2014 ident: bib0100 article-title: Adam: A Method for Stochastic Optimization – volume: 18 start-page: 1527 year: 2006 end-page: 1554 ident: bib0095 article-title: A fast learning algorithm for deep belief nets publication-title: Neural Comput. – year: 2016 ident: bib0025 article-title: Understanding Deep Neural Networks with Rectified Linear Units – volume: 19 start-page: 153 year: 2007 ident: bib0030 article-title: Greedy layer-wise training of deep networks publication-title: Adv. Neural Inf. Process. Syst. – volume: 60 start-page: 1622 year: 2012 end-page: 1629 ident: bib0065 article-title: MRI hippocampal and entorhinal cortex mapping in predicting conversion to Alzheimer's disease publication-title: Neuroimage – volume: 84 start-page: 259 year: 2016 end-page: 266 ident: bib0125 article-title: Combining multiple approaches for the early diagnosis of Alzheimer's disease publication-title: Pattern Recognit. Lett. – year: 2016 ident: bib0085 article-title: Deep Learning – volume: 55 start-page: 1109 year: 2011 end-page: 1119 ident: bib0080 article-title: Semi-supervised pattern classification of medical images: application to mild cognitive impairment (MCI) publication-title: Neuroimage – volume: 55 start-page: 856 year: 2011 end-page: 867 ident: bib0160 article-title: Multimodal classification of Alzheimer's disease and mild cognitive impairment publication-title: Neuroimage – volume: 60 start-page: 8851 year: 2015 ident: bib0015 article-title: Hippocampal unified multi-atlas network (HUMAN): protocol and scale validation of a novel segmentation tool publication-title: Phys. Med. Biol. – volume: 62 start-page: 1132 year: 2015 end-page: 1140 ident: bib0115 article-title: Multimodal neuroimaging feature learning for multiclass diagnosis of Alzheimer's disease publication-title: IEEE Trans. Biomed. Eng. – volume: 125 start-page: 834 year: 2016 end-page: 847 ident: bib0050 article-title: Integrating longitudinal information in hippocampal volume measurements for the early detection of Alzheimer's disease publication-title: Neuroimage – volume: 104 start-page: 398 year: 2015 end-page: 412 ident: bib0120 article-title: Machine learning framework for early MRI-based Alzheimer's conversion prediction in MCI subjects publication-title: Neuroimage – volume: 2 start-page: 735 year: 2013 end-page: 745 ident: bib0150 article-title: Accurate multimodal probabilistic prediction of conversion to Alzheimer's disease in patients with mild cognitive impairment publication-title: Neuroimage Clin. – volume: 31 start-page: 1107 year: 2010 end-page: 1121 ident: bib0145 article-title: Multi-modal imaging predicts memory performance in normal aging and cognitive decline publication-title: Neurobiol. Aging – volume: 55 start-page: 574 year: 2011 end-page: 589 ident: bib0090 article-title: Predictive markers for AD in a multi-modality framework: an analysis of MCI progression in the ADNI population publication-title: Neuroimage – volume: 3 start-page: 246 year: 2004 end-page: 248 ident: bib0070 article-title: Amnestic MCI or prodromal Alzheimer's disease? publication-title: Lancet Neurol. – volume: 542 start-page: 115 year: 2017 end-page: 118 ident: bib0075 article-title: Dermatologist-level classification of skin cancer with deep neural networks publication-title: Nature – volume: 21 start-page: 362 year: 2015 ident: bib0020 article-title: Mini-Mental State Examination (MMSE) for the detection of Alzheimer's disease and other dementias in people with mild cognitive impairment (MCI) publication-title: BJPsych Adv. – volume: 30 start-page: 878 year: 2014 end-page: 887 ident: bib0135 article-title: Automated voxel-by-voxel tissue classification for hippocampal segmentation: methods and validation publication-title: Phys. Med. – volume: 12 start-page: 645 year: 2016 end-page: 653 ident: bib0010 article-title: Crowdsourced estimation of cognitive decline and resilience in Alzheimer's disease publication-title: Alzheimers Dement. – volume: 35 start-page: 303 year: 2017 end-page: 312 ident: bib0105 article-title: Large scale deep learning for computer aided detection of mammographic lesions publication-title: Med. Image Anal. – volume: 35 start-page: 1285 year: 2016 end-page: 1298 ident: bib0130 article-title: Deep convolutional neural networks for computer-aided detection: CNN architectures, dataset characteristics and transfer learning publication-title: IEEE Trans. Med. Imaging – volume: 7 start-page: e33182 year: 2012 ident: bib0165 article-title: Predicting future clinical changes of MCI patients using longitudinal and multimodal biomarkers publication-title: PLoS ONE – volume: 111 start-page: 562 year: 2015 end-page: 579 ident: bib0040 article-title: Standardized evaluation of algorithms for computer-aided diagnosis of dementia based on structural MRI: the CADDementia challenge publication-title: Neuroimage – volume: 104 start-page: 398 year: 2015 ident: 10.1016/j.jneumeth.2017.12.011_bib0120 article-title: Machine learning framework for early MRI-based Alzheimer's conversion prediction in MCI subjects publication-title: Neuroimage doi: 10.1016/j.neuroimage.2014.10.002 – volume: 18 start-page: 1527 year: 2006 ident: 10.1016/j.jneumeth.2017.12.011_bib0095 article-title: A fast learning algorithm for deep belief nets publication-title: Neural Comput. doi: 10.1162/neco.2006.18.7.1527 – volume: 127 start-page: 135 year: 2012 ident: 10.1016/j.jneumeth.2017.12.011_bib0045 article-title: Alzheimer's disease markers from structural MRI and FDG-PET brain images publication-title: Eur. Phys. J. Plus doi: 10.1140/epjp/i2012-12135-6 – volume: 55 start-page: 1109 year: 2011 ident: 10.1016/j.jneumeth.2017.12.011_bib0080 article-title: Semi-supervised pattern classification of medical images: application to mild cognitive impairment (MCI) publication-title: Neuroimage doi: 10.1016/j.neuroimage.2010.12.066 – volume: 51 start-page: 1345 year: 2010 ident: 10.1016/j.jneumeth.2017.12.011_bib0110 article-title: Automated cross-sectional and longitudinal hippocampal volume measurement in mild cognitive impairment and Alzheimer's disease publication-title: Neuroimage doi: 10.1016/j.neuroimage.2010.03.018 – volume: 35 start-page: 1285 year: 2016 ident: 10.1016/j.jneumeth.2017.12.011_bib0130 article-title: Deep convolutional neural networks for computer-aided detection: CNN architectures, dataset characteristics and transfer learning publication-title: IEEE Trans. Med. Imaging doi: 10.1109/TMI.2016.2528162 – volume: 55 start-page: 574 year: 2011 ident: 10.1016/j.jneumeth.2017.12.011_bib0090 article-title: Predictive markers for AD in a multi-modality framework: an analysis of MCI progression in the ADNI population publication-title: Neuroimage doi: 10.1016/j.neuroimage.2010.10.081 – volume: 542 start-page: 115 year: 2017 ident: 10.1016/j.jneumeth.2017.12.011_bib0075 article-title: Dermatologist-level classification of skin cancer with deep neural networks publication-title: Nature doi: 10.1038/nature21056 – volume: 38 start-page: 36 year: 2017 ident: 10.1016/j.jneumeth.2017.12.011_bib0140 article-title: A fuzzy-based system reveals Alzheimer's disease onset in subjects with mild cognitive impairment publication-title: Phys. Med. doi: 10.1016/j.ejmp.2017.04.027 – year: 2016 ident: 10.1016/j.jneumeth.2017.12.011_bib0025 – volume: 31 start-page: 1107 year: 2010 ident: 10.1016/j.jneumeth.2017.12.011_bib0145 article-title: Multi-modal imaging predicts memory performance in normal aging and cognitive decline publication-title: Neurobiol. Aging doi: 10.1016/j.neurobiolaging.2008.08.013 – volume: 19 start-page: 153 year: 2007 ident: 10.1016/j.jneumeth.2017.12.011_bib0030 article-title: Greedy layer-wise training of deep networks publication-title: Adv. Neural Inf. Process. Syst. – volume: 35 start-page: 303 year: 2017 ident: 10.1016/j.jneumeth.2017.12.011_bib0105 article-title: Large scale deep learning for computer aided detection of mammographic lesions publication-title: Med. Image Anal. doi: 10.1016/j.media.2016.07.007 – volume: 60 start-page: 8851 year: 2015 ident: 10.1016/j.jneumeth.2017.12.011_bib0015 article-title: Hippocampal unified multi-atlas network (HUMAN): protocol and scale validation of a novel segmentation tool publication-title: Phys. Med. Biol. doi: 10.1088/0031-9155/60/22/8851 – volume: 3 start-page: 246 year: 2004 ident: 10.1016/j.jneumeth.2017.12.011_bib0070 article-title: Amnestic MCI or prodromal Alzheimer's disease? publication-title: Lancet Neurol. doi: 10.1016/S1474-4422(04)00710-0 – volume: 2 start-page: 735 year: 2013 ident: 10.1016/j.jneumeth.2017.12.011_bib0150 article-title: Accurate multimodal probabilistic prediction of conversion to Alzheimer's disease in patients with mild cognitive impairment publication-title: Neuroimage Clin. doi: 10.1016/j.nicl.2013.05.004 – volume: 125 start-page: 834 year: 2016 ident: 10.1016/j.jneumeth.2017.12.011_bib0050 article-title: Integrating longitudinal information in hippocampal volume measurements for the early detection of Alzheimer's disease publication-title: Neuroimage doi: 10.1016/j.neuroimage.2015.10.065 – start-page: 507 year: 1999 ident: 10.1016/j.jneumeth.2017.12.011_bib0155 article-title: From computing with numbers to computing with words-from manipulation of measurements to manipulation of perceptions – volume: 62 start-page: 1132 year: 2015 ident: 10.1016/j.jneumeth.2017.12.011_bib0115 article-title: Multimodal neuroimaging feature learning for multiclass diagnosis of Alzheimer's disease publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2014.2372011 – volume: 30 start-page: 878 year: 2014 ident: 10.1016/j.jneumeth.2017.12.011_bib0135 article-title: Automated voxel-by-voxel tissue classification for hippocampal segmentation: methods and validation publication-title: Phys. Med. doi: 10.1016/j.ejmp.2014.06.044 – volume: 59 start-page: 2217 year: 2012 ident: 10.1016/j.jneumeth.2017.12.011_bib0055 article-title: Individual subject classification for Alzheimer's disease based on incremental learning using a spatial frequency representation of cortical thickness data publication-title: Neuroimage doi: 10.1016/j.neuroimage.2011.09.085 – volume: 45 start-page: 5 year: 2001 ident: 10.1016/j.jneumeth.2017.12.011_bib0035 article-title: Random forests publication-title: Mach. Learn. doi: 10.1023/A:1010933404324 – year: 2016 ident: 10.1016/j.jneumeth.2017.12.011_bib0085 – year: 2014 ident: 10.1016/j.jneumeth.2017.12.011_bib0100 – volume: 7 start-page: e33182 year: 2012 ident: 10.1016/j.jneumeth.2017.12.011_bib0165 article-title: Predicting future clinical changes of MCI patients using longitudinal and multimodal biomarkers publication-title: PLoS ONE doi: 10.1371/journal.pone.0033182 – volume: 55 start-page: 856 year: 2011 ident: 10.1016/j.jneumeth.2017.12.011_bib0160 article-title: Multimodal classification of Alzheimer's disease and mild cognitive impairment publication-title: Neuroimage doi: 10.1016/j.neuroimage.2011.01.008 – volume: 3 start-page: 29 year: 2016 ident: 10.1016/j.jneumeth.2017.12.011_bib0170 article-title: Quantitative multimodal multiparametric imaging in Alzheimer's disease publication-title: Brain Inform. doi: 10.1007/s40708-015-0028-9 – volume: 60 start-page: 1622 year: 2012 ident: 10.1016/j.jneumeth.2017.12.011_bib0065 article-title: MRI hippocampal and entorhinal cortex mapping in predicting conversion to Alzheimer's disease publication-title: Neuroimage doi: 10.1016/j.neuroimage.2012.01.075 – volume: 12 start-page: 645 year: 2016 ident: 10.1016/j.jneumeth.2017.12.011_bib0010 article-title: Crowdsourced estimation of cognitive decline and resilience in Alzheimer's disease publication-title: Alzheimers Dement. doi: 10.1016/j.jalz.2016.02.006 – volume: 111 start-page: 562 year: 2015 ident: 10.1016/j.jneumeth.2017.12.011_bib0040 article-title: Standardized evaluation of algorithms for computer-aided diagnosis of dementia based on structural MRI: the CADDementia challenge publication-title: Neuroimage doi: 10.1016/j.neuroimage.2015.01.048 – volume: 84 start-page: 259 year: 2016 ident: 10.1016/j.jneumeth.2017.12.011_bib0125 article-title: Combining multiple approaches for the early diagnosis of Alzheimer's disease publication-title: Pattern Recognit. Lett. doi: 10.1016/j.patrec.2016.10.010 – volume: 7 start-page: 270 year: 2011 ident: 10.1016/j.jneumeth.2017.12.011_bib0005 article-title: The diagnosis of mild cognitive impairment due to Alzheimer's disease: recommendations from the National Institute on Aging-Alzheimer's Association workgroups on diagnostic guidelines for Alzheimer's disease publication-title: Alzheimers Dement. doi: 10.1016/j.jalz.2011.03.008 – volume: 32 start-page: 2322-e19 year: 2011 ident: 10.1016/j.jneumeth.2017.12.011_bib0060 article-title: Prediction of MCI to AD conversion, via MRI, CSF biomarkers, and pattern classification publication-title: Neurobiol. Aging doi: 10.1016/j.neurobiolaging.2010.05.023 – volume: 21 start-page: 362 year: 2015 ident: 10.1016/j.jneumeth.2017.12.011_bib0020 article-title: Mini-Mental State Examination (MMSE) for the detection of Alzheimer's disease and other dementias in people with mild cognitive impairment (MCI) publication-title: BJPsych Adv. doi: 10.1192/apt.21.6.362 |
SSID | ssj0004906 |
Score | 2.5152664 |
Snippet | •A classification strategy based on Random Forest feature selection and Deep Neural Network is proposed.•The work demonstrated the accuracy of deep learning... Early diagnosis of Alzheimer's disease (AD) and its onset in subjects affected by mild cognitive impairment (MCI) based on structural MRI features is one of... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 3 |
SubjectTerms | Alzheimer Disease - classification Alzheimer Disease - diagnostic imaging Alzheimer's disease Brain - diagnostic imaging Cognitive Dysfunction - classification Cognitive Dysfunction - diagnostic imaging Deep Learning Disease Progression Fuzzy logic Humans Image Interpretation, Computer-Assisted - methods Magnetic Resonance Imaging MCI MRI Pattern Recognition, Automated |
Title | Deep learning reveals Alzheimer's disease onset in MCI subjects: Results from an international challenge |
URI | https://dx.doi.org/10.1016/j.jneumeth.2017.12.011 https://www.ncbi.nlm.nih.gov/pubmed/29287745 https://www.proquest.com/docview/1982843131 |
Volume | 302 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NT9swFLcQkxCXaQPGYAO9SQhOoXXjxPZuVRkqoHKAIXGz6tSGVCVUJDnAYX_73ksdYAfEYUdHtmz5vTz_3jdje4gxvFNpN5Jc20hozyObCNR5UA6mcS_OxpZyh0fn6fBKnF4n10ts0ObCUFhlkP0Lmd5I6_ClE26zM8_zziUl4qBShSxFKrmmsttCSOLywz8vYR5CN_01aTL5K7uvsoSnh9PC1dSpmUK8ZGMW5PytB-otANo8RMef2MeAIKG_OORntuSKNbbeL1B7vnuEfWhiOhtj-RpbGQXX-Tq7PXJuDqFJxA1Q5SbkPOjPnm5dfuceDkoIzhqgAOsK8gJGgxMoa0ummvInXLiynlUlUEYKjAvIXxsTIWu7smywq-NfvwfDKLRZiDJEY1WUWJSWMd5cjGOphPIWUYDlWSrJTShdrLJJ4pTm2k8ynflJqoTwPZlo1De0jL-w5eK-cF8ZkHWkK6wXCAyEk16lWlmVjh3twbt-iyXt3Zos1CCnVhgz0wabTU1LE0M0MbxnkCZbrPO8br6owvHuCt2SzvzDTwafinfX_mhpbfBnIw_KuHD3dWm4RgUVIVeMczYXTPB8np5G5VOKZPs_dv7GVnGkKDqBJ9_ZcvVQux0EPZXdbbh6l33on5wNz_8CL3H_nw |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3Nb9MwFH8anQRcprHBGGxgJASn0LqxE5tbVZhatvYAm7SbVac2S9Vl1ZIcxl_Pe6mzjcO0A8cktmz5vTz_3jfAR8QY3qmkF6Vc20hozyMrBeo8KAeTuB9nM0u5w5NpMjoTP87l-QYM21wYCqsMsn8t0xtpHd50w2l2V3ne_UWJOKhUIUuRSq6TJ7BJ1alkBzYH4-PR9C49UjctNmk8uSx79xKFF18WhaupWTNFeaWNZZDzh-6ohzBocxcdbcNWAJFssN7nC9hwxQ7sDgpUoC9v2CfWhHU29vIdeDoJ3vNduPjm3IqFPhG_GRVvQuZjg-WfC5dfuuvPJQv-GkYx1hXLCzYZjllZW7LWlF_ZT1fWy6pklJTCZgXL79sTWdY2ZnkJZ0ffT4ejKHRaiDIEZFUkLQrMWKCswedUCeUtAgHLsyQlT2HqYpXNpVOaaz_PdObniRLC91OpUeXQafwKOsVV4V4DIwNJT1gvEBsIl3qVaGVVMnO0Bu_5fZDt2ZoslCGnbhhL08abLUxLE0M0MbxvkCb70L2dt1oX4nh0hm5JZ_5hKYO3xaNzP7S0Nvi_kRNlVrirujRco46KqCvGMXtrJrjdT1-j_pkK-eY_Vn4Pz0ankxNzMp4ev4Xn-EVRsAKXB9Cprmt3iBiosu8Cj_8F7kICXw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deep+learning+reveals+Alzheimer%27s+disease+onset+in+MCI+subjects%3A+Results+from+an+international+challenge&rft.jtitle=Journal+of+neuroscience+methods&rft.au=Amoroso%2C+Nicola&rft.au=Diacono%2C+Domenico&rft.au=Fanizzi%2C+Annarita&rft.au=La+Rocca%2C+Marianna&rft.date=2018-05-15&rft.eissn=1872-678X&rft.volume=302&rft.spage=3&rft_id=info:doi/10.1016%2Fj.jneumeth.2017.12.011&rft_id=info%3Apmid%2F29287745&rft.externalDocID=29287745 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0165-0270&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0165-0270&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0165-0270&client=summon |