Deep learning reveals Alzheimer's disease onset in MCI subjects: Results from an international challenge

•A classification strategy based on Random Forest feature selection and Deep Neural Network is proposed.•The work demonstrated the accuracy of deep learning strategies for early detection of Alzheimer's disease.•This work ranked third for overall accuracy over all participating teams of the “In...

Full description

Saved in:
Bibliographic Details
Published inJournal of neuroscience methods Vol. 302; pp. 3 - 9
Main Authors Amoroso, Nicola, Diacono, Domenico, Fanizzi, Annarita, La Rocca, Marianna, Monaco, Alfonso, Lombardi, Angela, Guaragnella, Cataldo, Bellotti, Roberto, Tangaro, Sabina
Format Journal Article
LanguageEnglish
Published Netherlands Elsevier B.V 15.05.2018
Subjects
Online AccessGet full text

Cover

Loading…
Abstract •A classification strategy based on Random Forest feature selection and Deep Neural Network is proposed.•The work demonstrated the accuracy of deep learning strategies for early detection of Alzheimer's disease.•This work ranked third for overall accuracy over all participating teams of the “International challenge for automated prediction of MCI from MRI data” hosted by the Kaggle platform. Early diagnosis of Alzheimer's disease (AD) and its onset in subjects affected by mild cognitive impairment (MCI) based on structural MRI features is one of the most important open issues in neuroimaging. Accordingly, a scientific challenge has been promoted, on the international Kaggle platform, to assess the performance of different classification methods for prediction of MCI and its conversion to AD. This work presents a classification strategy based on Random Forest feature selection and Deep Neural Network classification using a mixed cohort including the four classes of classification problem, that is HC, AD, MCI and cMCI, to train the model. Moreover, we compare this approach with a novel classification strategy based on fuzzy logic learned on a mixed cohort including only HC and AD. A training set of 240 subjects and a test set including mixed cohort of 500 real and simulated subjects were used. The data included AD patients, MCI subjects converting to AD (cMCI), MCI subjects and healthy controls (HC). This work ranked third for overall accuracy (38.8%) over 19 participating teams. The “International challenge for automated prediction of MCI from MRI data” hosted by the Kaggle platform has been promoted to validate different methodologies with a common set of data and evaluation procedures. DNNs reach a classification accuracy significantly higher than other machine learning strategies; on the other hand, fuzzy logic is particularly accurate with cMCI, suggesting a combination of these approaches could lead to interesting future perspectives.
AbstractList Early diagnosis of Alzheimer's disease (AD) and its onset in subjects affected by mild cognitive impairment (MCI) based on structural MRI features is one of the most important open issues in neuroimaging. Accordingly, a scientific challenge has been promoted, on the international Kaggle platform, to assess the performance of different classification methods for prediction of MCI and its conversion to AD. This work presents a classification strategy based on Random Forest feature selection and Deep Neural Network classification using a mixed cohort including the four classes of classification problem, that is HC, AD, MCI and cMCI, to train the model. Moreover, we compare this approach with a novel classification strategy based on fuzzy logic learned on a mixed cohort including only HC and AD. A training set of 240 subjects and a test set including mixed cohort of 500 real and simulated subjects were used. The data included AD patients, MCI subjects converting to AD (cMCI), MCI subjects and healthy controls (HC). This work ranked third for overall accuracy (38.8%) over 19 participating teams. The "International challenge for automated prediction of MCI from MRI data" hosted by the Kaggle platform has been promoted to validate different methodologies with a common set of data and evaluation procedures. DNNs reach a classification accuracy significantly higher than other machine learning strategies; on the other hand, fuzzy logic is particularly accurate with cMCI, suggesting a combination of these approaches could lead to interesting future perspectives.
•A classification strategy based on Random Forest feature selection and Deep Neural Network is proposed.•The work demonstrated the accuracy of deep learning strategies for early detection of Alzheimer's disease.•This work ranked third for overall accuracy over all participating teams of the “International challenge for automated prediction of MCI from MRI data” hosted by the Kaggle platform. Early diagnosis of Alzheimer's disease (AD) and its onset in subjects affected by mild cognitive impairment (MCI) based on structural MRI features is one of the most important open issues in neuroimaging. Accordingly, a scientific challenge has been promoted, on the international Kaggle platform, to assess the performance of different classification methods for prediction of MCI and its conversion to AD. This work presents a classification strategy based on Random Forest feature selection and Deep Neural Network classification using a mixed cohort including the four classes of classification problem, that is HC, AD, MCI and cMCI, to train the model. Moreover, we compare this approach with a novel classification strategy based on fuzzy logic learned on a mixed cohort including only HC and AD. A training set of 240 subjects and a test set including mixed cohort of 500 real and simulated subjects were used. The data included AD patients, MCI subjects converting to AD (cMCI), MCI subjects and healthy controls (HC). This work ranked third for overall accuracy (38.8%) over 19 participating teams. The “International challenge for automated prediction of MCI from MRI data” hosted by the Kaggle platform has been promoted to validate different methodologies with a common set of data and evaluation procedures. DNNs reach a classification accuracy significantly higher than other machine learning strategies; on the other hand, fuzzy logic is particularly accurate with cMCI, suggesting a combination of these approaches could lead to interesting future perspectives.
Early diagnosis of Alzheimer's disease (AD) and its onset in subjects affected by mild cognitive impairment (MCI) based on structural MRI features is one of the most important open issues in neuroimaging. Accordingly, a scientific challenge has been promoted, on the international Kaggle platform, to assess the performance of different classification methods for prediction of MCI and its conversion to AD.BACKGROUNDEarly diagnosis of Alzheimer's disease (AD) and its onset in subjects affected by mild cognitive impairment (MCI) based on structural MRI features is one of the most important open issues in neuroimaging. Accordingly, a scientific challenge has been promoted, on the international Kaggle platform, to assess the performance of different classification methods for prediction of MCI and its conversion to AD.This work presents a classification strategy based on Random Forest feature selection and Deep Neural Network classification using a mixed cohort including the four classes of classification problem, that is HC, AD, MCI and cMCI, to train the model. Moreover, we compare this approach with a novel classification strategy based on fuzzy logic learned on a mixed cohort including only HC and AD.NEW METHODThis work presents a classification strategy based on Random Forest feature selection and Deep Neural Network classification using a mixed cohort including the four classes of classification problem, that is HC, AD, MCI and cMCI, to train the model. Moreover, we compare this approach with a novel classification strategy based on fuzzy logic learned on a mixed cohort including only HC and AD.A training set of 240 subjects and a test set including mixed cohort of 500 real and simulated subjects were used. The data included AD patients, MCI subjects converting to AD (cMCI), MCI subjects and healthy controls (HC). This work ranked third for overall accuracy (38.8%) over 19 participating teams.EXPERIMENTSA training set of 240 subjects and a test set including mixed cohort of 500 real and simulated subjects were used. The data included AD patients, MCI subjects converting to AD (cMCI), MCI subjects and healthy controls (HC). This work ranked third for overall accuracy (38.8%) over 19 participating teams.The "International challenge for automated prediction of MCI from MRI data" hosted by the Kaggle platform has been promoted to validate different methodologies with a common set of data and evaluation procedures.COMPARISON WITH EXISTING METHOD(S)The "International challenge for automated prediction of MCI from MRI data" hosted by the Kaggle platform has been promoted to validate different methodologies with a common set of data and evaluation procedures.DNNs reach a classification accuracy significantly higher than other machine learning strategies; on the other hand, fuzzy logic is particularly accurate with cMCI, suggesting a combination of these approaches could lead to interesting future perspectives.CONCLUSIONDNNs reach a classification accuracy significantly higher than other machine learning strategies; on the other hand, fuzzy logic is particularly accurate with cMCI, suggesting a combination of these approaches could lead to interesting future perspectives.
Author Amoroso, Nicola
Bellotti, Roberto
Lombardi, Angela
Monaco, Alfonso
Diacono, Domenico
La Rocca, Marianna
Guaragnella, Cataldo
Fanizzi, Annarita
Tangaro, Sabina
Author_xml – sequence: 1
  givenname: Nicola
  surname: Amoroso
  fullname: Amoroso, Nicola
  email: nicola.amoroso@ba.infn.it
  organization: Dipartimento Interateneo di Fisica “M. Merlin”, Università degli studi di Bari “A. Moro”, Bari, Italy
– sequence: 2
  givenname: Domenico
  surname: Diacono
  fullname: Diacono, Domenico
  email: domenico.diacono@ba.infn.it
  organization: Istituto Nazionale di Fisica Nucleare, Sezione di Bari, Bari, Italy
– sequence: 3
  givenname: Annarita
  surname: Fanizzi
  fullname: Fanizzi, Annarita
  email: annarita.fanizzi.af@gmail.com
  organization: Istituto Tumori “Giovanni Paolo II” – I.R.C.C.S., Bari, Italy
– sequence: 4
  givenname: Marianna
  surname: La Rocca
  fullname: La Rocca, Marianna
  email: marianna.larocca@ba.infn.it
  organization: Dipartimento Interateneo di Fisica “M. Merlin”, Università degli studi di Bari “A. Moro”, Bari, Italy
– sequence: 5
  givenname: Alfonso
  surname: Monaco
  fullname: Monaco, Alfonso
  email: Alfonso.Monaco@ba.infn.it
  organization: Istituto Nazionale di Fisica Nucleare, Sezione di Bari, Bari, Italy
– sequence: 6
  givenname: Angela
  surname: Lombardi
  fullname: Lombardi, Angela
  email: angela.lombardi@poliba.it
  organization: Dipartimento di Ingegneria Elettrica e dell’Informazione, Politecnico di Bari, Bari, Italy
– sequence: 7
  givenname: Cataldo
  surname: Guaragnella
  fullname: Guaragnella, Cataldo
  email: cataldo.guaragnella@poliba.it
  organization: Dipartimento di Ingegneria Elettrica e dell’Informazione, Politecnico di Bari, Bari, Italy
– sequence: 8
  givenname: Roberto
  surname: Bellotti
  fullname: Bellotti, Roberto
  email: roberto.bellotti@uniba.it
  organization: Dipartimento Interateneo di Fisica “M. Merlin”, Università degli studi di Bari “A. Moro”, Bari, Italy
– sequence: 9
  givenname: Sabina
  surname: Tangaro
  fullname: Tangaro, Sabina
  email: Sonia.Tangaro@ba.infn.it
  organization: Istituto Nazionale di Fisica Nucleare, Sezione di Bari, Bari, Italy
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29287745$$D View this record in MEDLINE/PubMed
BookMark eNqFkc1u1DAUhS1URKcDr1B5B5sE23FsB7GgGv4qFSEhkNhZjnPTceQ4g-1UgqfHZTobNpUXV5a-c67uORfoLCwBELqkpKaEitdTPQVYZ8j7mhEqa8pqQukTtKFKskpI9fMMbQrYVoRJco4uUpoIIbwj4hk6Zx1TUvJ2g_bvAQ7Yg4nBhVsc4Q6MT_jK_9mDmyG-THhwCUwCvIQEGbuAv-yucVr7CWxOb_A3SKvPCY9xmbEJBcgQg8luCcZjuzfeQ7iF5-jpWJzhxcPcoh8fP3zffa5uvn663l3dVJZTkau2p1w0XIqm_KXiauxbynpqhSS8URIaZYcWVEe7cbCdHQehOB-ZbLuGiE42W_Tq6HuIy68VUtazSxa8NwGWNWnaKaZ4Q8vbossHdO1nGPQhutnE3_qUTgHeHgEbl5QijNq6_O-yHI3zmhJ9X4ae9KkMfV-GpkyXMopc_Cc_bXhU-O4ohBLUnYOok3UQLAwultD1sLjHLP4CYVCn0w
CitedBy_id crossref_primary_10_1109_ACCESS_2019_2949577
crossref_primary_10_3390_app13031464
crossref_primary_10_1016_j_compbiomed_2020_103764
crossref_primary_10_1016_j_xops_2023_100355
crossref_primary_10_3389_fnins_2021_674055
crossref_primary_10_1016_j_bspc_2022_104312
crossref_primary_10_3390_brainsci13020260
crossref_primary_10_1016_j_bspc_2023_105364
crossref_primary_10_1016_j_bbr_2024_114900
crossref_primary_10_1155_2021_5514839
crossref_primary_10_3233_JIFS_233000
crossref_primary_10_1016_j_compbiomed_2023_107005
crossref_primary_10_1186_s12911_018_0710_y
crossref_primary_10_3390_app11136175
crossref_primary_10_1109_ACCESS_2020_2979969
crossref_primary_10_3389_fnagi_2019_00115
crossref_primary_10_1007_s40998_023_00622_9
crossref_primary_10_1186_s12938_018_0566_5
crossref_primary_10_1016_j_future_2020_10_005
crossref_primary_10_7717_peerj_5908
crossref_primary_10_1016_j_neucom_2020_05_087
crossref_primary_10_3389_fnagi_2020_00206
crossref_primary_10_3390_electronics10222860
crossref_primary_10_3390_biomedicines10020315
crossref_primary_10_1016_j_neulet_2020_134971
crossref_primary_10_1145_3502433
crossref_primary_10_3390_jpm12050815
crossref_primary_10_1088_1742_6596_1372_1_012065
crossref_primary_10_1155_2020_5629090
crossref_primary_10_1080_17425255_2023_2298827
crossref_primary_10_1016_j_bspc_2023_105669
crossref_primary_10_1136_bjophthalmol_2020_318407
crossref_primary_10_1088_1742_6596_1997_1_012004
crossref_primary_10_1016_j_heliyon_2022_e08827
crossref_primary_10_1016_j_neuroscience_2024_03_007
crossref_primary_10_1016_j_tice_2019_04_009
crossref_primary_10_3390_app13074489
crossref_primary_10_1109_TCDS_2023_3254209
crossref_primary_10_3390_app10238606
crossref_primary_10_3390_app10030934
crossref_primary_10_1016_j_phrs_2023_107038
crossref_primary_10_1142_S0129065721300023
crossref_primary_10_1016_j_bspc_2022_104092
crossref_primary_10_1109_ACCESS_2019_2919385
crossref_primary_10_3389_fpsyt_2020_619629
crossref_primary_10_1007_s12021_023_09625_7
crossref_primary_10_1109_ACCESS_2023_3244952
crossref_primary_10_3390_brainsci13040690
crossref_primary_10_1109_TIM_2022_3162265
crossref_primary_10_1109_ACCESS_2021_3062484
crossref_primary_10_1080_09540091_2022_2123450
crossref_primary_10_54105_ijainn_B1045_022222
crossref_primary_10_3233_JIFS_179425
crossref_primary_10_3389_fncom_2018_00084
crossref_primary_10_3389_fnagi_2023_1238065
crossref_primary_10_1016_j_bspc_2020_102397
crossref_primary_10_1007_s10916_019_1475_2
crossref_primary_10_1016_j_jalz_2019_02_007
crossref_primary_10_1038_s41598_022_20674_x
crossref_primary_10_1038_s43856_023_00313_w
crossref_primary_10_32604_cmc_2023_026379
crossref_primary_10_1007_s11042_022_13506_7
crossref_primary_10_32604_cmc_2024_048725
crossref_primary_10_1016_j_medntd_2024_100343
crossref_primary_10_1016_j_jneumeth_2018_03_011
crossref_primary_10_1016_j_cmpb_2022_106825
crossref_primary_10_1186_s40708_020_00112_2
crossref_primary_10_1016_j_cmpb_2019_105242
crossref_primary_10_1016_j_jneumeth_2019_108544
crossref_primary_10_1016_j_knosys_2020_106688
crossref_primary_10_3389_fnagi_2022_810873
crossref_primary_10_1021_acs_jcim_2c01126
crossref_primary_10_57197_JDR_2024_0064
crossref_primary_10_1136_bjophthalmol_2020_317659
crossref_primary_10_3390_rs12152355
crossref_primary_10_58620_fbujoss_1368922
crossref_primary_10_1007_s10916_019_1519_7
crossref_primary_10_1016_j_bspc_2022_103725
crossref_primary_10_4103_1673_5374_233433
crossref_primary_10_1016_j_media_2020_101694
crossref_primary_10_1080_23279095_2024_2382823
crossref_primary_10_3233_JAD_210573
Cites_doi 10.1016/j.neuroimage.2014.10.002
10.1162/neco.2006.18.7.1527
10.1140/epjp/i2012-12135-6
10.1016/j.neuroimage.2010.12.066
10.1016/j.neuroimage.2010.03.018
10.1109/TMI.2016.2528162
10.1016/j.neuroimage.2010.10.081
10.1038/nature21056
10.1016/j.ejmp.2017.04.027
10.1016/j.neurobiolaging.2008.08.013
10.1016/j.media.2016.07.007
10.1088/0031-9155/60/22/8851
10.1016/S1474-4422(04)00710-0
10.1016/j.nicl.2013.05.004
10.1016/j.neuroimage.2015.10.065
10.1109/TBME.2014.2372011
10.1016/j.ejmp.2014.06.044
10.1016/j.neuroimage.2011.09.085
10.1023/A:1010933404324
10.1371/journal.pone.0033182
10.1016/j.neuroimage.2011.01.008
10.1007/s40708-015-0028-9
10.1016/j.neuroimage.2012.01.075
10.1016/j.jalz.2016.02.006
10.1016/j.neuroimage.2015.01.048
10.1016/j.patrec.2016.10.010
10.1016/j.jalz.2011.03.008
10.1016/j.neurobiolaging.2010.05.023
10.1192/apt.21.6.362
ContentType Journal Article
Copyright 2017 Elsevier B.V.
Copyright © 2017 Elsevier B.V. All rights reserved.
Copyright_xml – notice: 2017 Elsevier B.V.
– notice: Copyright © 2017 Elsevier B.V. All rights reserved.
CorporateAuthor for the Alzheimer's Disease Neuroimaging Initiative
Alzheimer's Disease Neuroimaging Initiative
CorporateAuthor_xml – name: for the Alzheimer's Disease Neuroimaging Initiative
– name: Alzheimer's Disease Neuroimaging Initiative
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1016/j.jneumeth.2017.12.011
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Anatomy & Physiology
EISSN 1872-678X
EndPage 9
ExternalDocumentID 29287745
10_1016_j_jneumeth_2017_12_011
S0165027017304296
Genre Journal Article
GroupedDBID ---
--K
--M
-~X
.~1
0R~
1B1
1RT
1~.
1~5
4.4
457
4G.
5GY
5RE
7-5
71M
8P~
9JM
AABNK
AACTN
AADPK
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAXLA
AAXUO
ABCQJ
ABFNM
ABFRF
ABJNI
ABMAC
ABYKQ
ACDAQ
ACGFO
ACGFS
ACIUM
ACRLP
ADBBV
ADEZE
AEBSH
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AFXIZ
AGUBO
AGWIK
AGYEJ
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
K-O
KOM
L7B
M2V
M41
MO0
MOBAO
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
ROL
RPZ
SDF
SDG
SDP
SES
SPCBC
SSN
SSZ
T5K
~G-
.55
.GJ
29L
53G
5VS
AAQFI
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ABXDB
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGHFR
AGQPQ
AGRNS
AHHHB
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CITATION
FEDTE
FGOYB
G-2
HMQ
HVGLF
HZ~
R2-
RIG
SEW
SNS
SSH
WUQ
X7M
ZGI
CGR
CUY
CVF
ECM
EIF
NPM
7X8
ID FETCH-LOGICAL-c416t-5b14634763c417848fb512b1c6704387e38cd5e8919fdc9cfd6844f2759306973
IEDL.DBID .~1
ISSN 0165-0270
1872-678X
IngestDate Fri Jul 11 06:59:45 EDT 2025
Wed Feb 19 02:35:03 EST 2025
Thu Apr 24 22:58:50 EDT 2025
Tue Jul 01 02:57:09 EDT 2025
Fri Feb 23 02:33:09 EST 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Deep learning
Fuzzy logic
MCI
MRI
Alzheimer's disease
Language English
License Copyright © 2017 Elsevier B.V. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c416t-5b14634763c417848fb512b1c6704387e38cd5e8919fdc9cfd6844f2759306973
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink http://adni.loni.usc.edu/wp-content/uploads/how_to_apply/ADNI_Acknowledgement_List.pdf
PMID 29287745
PQID 1982843131
PQPubID 23479
PageCount 7
ParticipantIDs proquest_miscellaneous_1982843131
pubmed_primary_29287745
crossref_citationtrail_10_1016_j_jneumeth_2017_12_011
crossref_primary_10_1016_j_jneumeth_2017_12_011
elsevier_sciencedirect_doi_10_1016_j_jneumeth_2017_12_011
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-05-15
PublicationDateYYYYMMDD 2018-05-15
PublicationDate_xml – month: 05
  year: 2018
  text: 2018-05-15
  day: 15
PublicationDecade 2010
PublicationPlace Netherlands
PublicationPlace_xml – name: Netherlands
PublicationTitle Journal of neuroscience methods
PublicationTitleAlternate J Neurosci Methods
PublicationYear 2018
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Davatzikos, Bhatt, Shaw, Batmanghelich, Trojanowski (bib0060) 2011; 32
Zadeh (bib0155) 1999
Bron, Smits, Van Der Flier, Vrenken, Barkhof, Scheltens, Papma, Steketee, Orellana, Meijboom (bib0040) 2015; 111
Esteva, Kuprel, Novoa, Ko, Swetter, Blau, Thrun (bib0075) 2017; 542
Tangaro, Amoroso, Boccardi, Bruno, Chincarini, Ferraro, Frisoni, Maglietta, Redolfi, Rei (bib0135) 2014; 30
Walhovd, Fjell, Dale, McEvoy, Brewer, Karow, Salmon, Fennema-Notestine, Initiative (bib0145) 2010; 31
Leung, Barnes, Ridgway, Bartlett, Clarkson, Macdonald (bib0110) 2010; 51
Zhang, Shen, Initiative (bib0165) 2012; 7
Moradi, Pepe, Gaser, Huttunen, Tohka, Initiative (bib0120) 2015; 104
Liu, Liu, Cai, Che, Pujol, Kikinis, Feng, Fulham (bib0115) 2015; 62
Nanni, Salvatore, Cerasa, Castiglioni, Initiative (bib0125) 2016; 84
Dubois, Albert (bib0070) 2004; 3
Breiman (bib0035) 2001; 45
Goodfellow, Bengio, Courville (bib0085) 2016
Devanand, Bansal, Liu, Hao, Pradhaban, Peterson (bib0065) 2012; 60
Zhang, Wang, Zhou, Yuan, Shen, Initiative (bib0160) 2011; 55
Arevalo-Rodriguez, Smailagic, i Figuls, Ciapponi, Sanchez-Perez, Giannakou, Pedraza, Cosp, Cullum (bib0020) 2015; 21
Shin, Roth, Gao, Lu, Xu, Nogues, Yao, Mollura, Summers (bib0130) 2016; 35
Allen, Amoroso, Anghel, Balagurusamy, Bare, Beaton, Bellotti, Bennett, Boehme, Boutros (bib0010) 2016; 12
Bengio, Lamblin, Popovici, Larochelle (bib0030) 2007; 19
Chincarini, Bosco, Gemme, Morbelli, Arnaldi, Sensi, Solano, Amoroso, Tangaro, Longo (bib0045) 2012; 127
Arora, Basu, Mianjy, Mukherjee (bib0025) 2016
Hinton, Osindero, Teh (bib0095) 2006; 18
Filipovych, Davatzikos, Initiative (bib0080) 2011; 55
Kingma, Ba (bib0100) 2014
Tangaro, Fanizzi, Amoroso, Bellotti, Initiative (bib0140) 2017; 38
Chincarini, Sensi, Rei, Gemme, Squarcia, Longo, Brun, Tangaro, Bellotti, Amoroso (bib0050) 2016; 125
Zhao, Chen, Zhou (bib0170) 2016; 3
Amoroso, Errico, Bruno, Chincarini, Garuccio, Sensi, Tangaro, Tateo, Bellotti, Initiative (bib0015) 2015; 60
Cho, Seong, Jeong, Shin, Initiative (bib0055) 2012; 59
Young, Modat, Cardoso, Mendelson, Cash, Ourselin (bib0150) 2013; 2
Hinrichs, Singh, Xu, Johnson, Initiative (bib0090) 2011; 55
Albert, DeKosky, Dickson, Dubois, Feldman, Fox, Gamst, Holtzman, Jagust, Petersen (bib0005) 2011; 7
Kooi, Litjens, van Ginneken, Gubern-Mérida, Sánchez, Mann, den Heeten, Karssemeijer (bib0105) 2017; 35
Hinton (10.1016/j.jneumeth.2017.12.011_bib0095) 2006; 18
Filipovych (10.1016/j.jneumeth.2017.12.011_bib0080) 2011; 55
Breiman (10.1016/j.jneumeth.2017.12.011_bib0035) 2001; 45
Tangaro (10.1016/j.jneumeth.2017.12.011_bib0135) 2014; 30
Allen (10.1016/j.jneumeth.2017.12.011_bib0010) 2016; 12
Kingma (10.1016/j.jneumeth.2017.12.011_bib0100) 2014
Davatzikos (10.1016/j.jneumeth.2017.12.011_bib0060) 2011; 32
Chincarini (10.1016/j.jneumeth.2017.12.011_bib0045) 2012; 127
Hinrichs (10.1016/j.jneumeth.2017.12.011_bib0090) 2011; 55
Arevalo-Rodriguez (10.1016/j.jneumeth.2017.12.011_bib0020) 2015; 21
Goodfellow (10.1016/j.jneumeth.2017.12.011_bib0085) 2016
Bengio (10.1016/j.jneumeth.2017.12.011_bib0030) 2007; 19
Chincarini (10.1016/j.jneumeth.2017.12.011_bib0050) 2016; 125
Esteva (10.1016/j.jneumeth.2017.12.011_bib0075) 2017; 542
Zhang (10.1016/j.jneumeth.2017.12.011_bib0160) 2011; 55
Zhang (10.1016/j.jneumeth.2017.12.011_bib0165) 2012; 7
Cho (10.1016/j.jneumeth.2017.12.011_bib0055) 2012; 59
Devanand (10.1016/j.jneumeth.2017.12.011_bib0065) 2012; 60
Moradi (10.1016/j.jneumeth.2017.12.011_bib0120) 2015; 104
Albert (10.1016/j.jneumeth.2017.12.011_bib0005) 2011; 7
Zhao (10.1016/j.jneumeth.2017.12.011_bib0170) 2016; 3
Arora (10.1016/j.jneumeth.2017.12.011_bib0025) 2016
Bron (10.1016/j.jneumeth.2017.12.011_bib0040) 2015; 111
Young (10.1016/j.jneumeth.2017.12.011_bib0150) 2013; 2
Liu (10.1016/j.jneumeth.2017.12.011_bib0115) 2015; 62
Shin (10.1016/j.jneumeth.2017.12.011_bib0130) 2016; 35
Walhovd (10.1016/j.jneumeth.2017.12.011_bib0145) 2010; 31
Dubois (10.1016/j.jneumeth.2017.12.011_bib0070) 2004; 3
Amoroso (10.1016/j.jneumeth.2017.12.011_bib0015) 2015; 60
Zadeh (10.1016/j.jneumeth.2017.12.011_bib0155) 1999
Leung (10.1016/j.jneumeth.2017.12.011_bib0110) 2010; 51
Tangaro (10.1016/j.jneumeth.2017.12.011_bib0140) 2017; 38
Kooi (10.1016/j.jneumeth.2017.12.011_bib0105) 2017; 35
Nanni (10.1016/j.jneumeth.2017.12.011_bib0125) 2016; 84
References_xml – volume: 3
  start-page: 29
  year: 2016
  end-page: 37
  ident: bib0170
  article-title: Quantitative multimodal multiparametric imaging in Alzheimer's disease
  publication-title: Brain Inform.
– volume: 59
  start-page: 2217
  year: 2012
  end-page: 2230
  ident: bib0055
  article-title: Individual subject classification for Alzheimer's disease based on incremental learning using a spatial frequency representation of cortical thickness data
  publication-title: Neuroimage
– start-page: 507
  year: 1999
  end-page: 544
  ident: bib0155
  article-title: From computing with numbers to computing with words-from manipulation of measurements to manipulation of perceptions
  publication-title: Logic, Thought and Action
– volume: 127
  start-page: 135
  year: 2012
  ident: bib0045
  article-title: Alzheimer's disease markers from structural MRI and FDG-PET brain images
  publication-title: Eur. Phys. J. Plus
– volume: 45
  start-page: 5
  year: 2001
  end-page: 32
  ident: bib0035
  article-title: Random forests
  publication-title: Mach. Learn.
– volume: 51
  start-page: 1345
  year: 2010
  end-page: 1359
  ident: bib0110
  article-title: Automated cross-sectional and longitudinal hippocampal volume measurement in mild cognitive impairment and Alzheimer's disease
  publication-title: Neuroimage
– volume: 32
  start-page: 2322-e19
  year: 2011
  ident: bib0060
  article-title: Prediction of MCI to AD conversion, via MRI, CSF biomarkers, and pattern classification
  publication-title: Neurobiol. Aging
– volume: 38
  start-page: 36
  year: 2017
  end-page: 44
  ident: bib0140
  article-title: A fuzzy-based system reveals Alzheimer's disease onset in subjects with mild cognitive impairment
  publication-title: Phys. Med.
– volume: 7
  start-page: 270
  year: 2011
  end-page: 279
  ident: bib0005
  article-title: The diagnosis of mild cognitive impairment due to Alzheimer's disease: recommendations from the National Institute on Aging-Alzheimer's Association workgroups on diagnostic guidelines for Alzheimer's disease
  publication-title: Alzheimers Dement.
– year: 2014
  ident: bib0100
  article-title: Adam: A Method for Stochastic Optimization
– volume: 18
  start-page: 1527
  year: 2006
  end-page: 1554
  ident: bib0095
  article-title: A fast learning algorithm for deep belief nets
  publication-title: Neural Comput.
– year: 2016
  ident: bib0025
  article-title: Understanding Deep Neural Networks with Rectified Linear Units
– volume: 19
  start-page: 153
  year: 2007
  ident: bib0030
  article-title: Greedy layer-wise training of deep networks
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 60
  start-page: 1622
  year: 2012
  end-page: 1629
  ident: bib0065
  article-title: MRI hippocampal and entorhinal cortex mapping in predicting conversion to Alzheimer's disease
  publication-title: Neuroimage
– volume: 84
  start-page: 259
  year: 2016
  end-page: 266
  ident: bib0125
  article-title: Combining multiple approaches for the early diagnosis of Alzheimer's disease
  publication-title: Pattern Recognit. Lett.
– year: 2016
  ident: bib0085
  article-title: Deep Learning
– volume: 55
  start-page: 1109
  year: 2011
  end-page: 1119
  ident: bib0080
  article-title: Semi-supervised pattern classification of medical images: application to mild cognitive impairment (MCI)
  publication-title: Neuroimage
– volume: 55
  start-page: 856
  year: 2011
  end-page: 867
  ident: bib0160
  article-title: Multimodal classification of Alzheimer's disease and mild cognitive impairment
  publication-title: Neuroimage
– volume: 60
  start-page: 8851
  year: 2015
  ident: bib0015
  article-title: Hippocampal unified multi-atlas network (HUMAN): protocol and scale validation of a novel segmentation tool
  publication-title: Phys. Med. Biol.
– volume: 62
  start-page: 1132
  year: 2015
  end-page: 1140
  ident: bib0115
  article-title: Multimodal neuroimaging feature learning for multiclass diagnosis of Alzheimer's disease
  publication-title: IEEE Trans. Biomed. Eng.
– volume: 125
  start-page: 834
  year: 2016
  end-page: 847
  ident: bib0050
  article-title: Integrating longitudinal information in hippocampal volume measurements for the early detection of Alzheimer's disease
  publication-title: Neuroimage
– volume: 104
  start-page: 398
  year: 2015
  end-page: 412
  ident: bib0120
  article-title: Machine learning framework for early MRI-based Alzheimer's conversion prediction in MCI subjects
  publication-title: Neuroimage
– volume: 2
  start-page: 735
  year: 2013
  end-page: 745
  ident: bib0150
  article-title: Accurate multimodal probabilistic prediction of conversion to Alzheimer's disease in patients with mild cognitive impairment
  publication-title: Neuroimage Clin.
– volume: 31
  start-page: 1107
  year: 2010
  end-page: 1121
  ident: bib0145
  article-title: Multi-modal imaging predicts memory performance in normal aging and cognitive decline
  publication-title: Neurobiol. Aging
– volume: 55
  start-page: 574
  year: 2011
  end-page: 589
  ident: bib0090
  article-title: Predictive markers for AD in a multi-modality framework: an analysis of MCI progression in the ADNI population
  publication-title: Neuroimage
– volume: 3
  start-page: 246
  year: 2004
  end-page: 248
  ident: bib0070
  article-title: Amnestic MCI or prodromal Alzheimer's disease?
  publication-title: Lancet Neurol.
– volume: 542
  start-page: 115
  year: 2017
  end-page: 118
  ident: bib0075
  article-title: Dermatologist-level classification of skin cancer with deep neural networks
  publication-title: Nature
– volume: 21
  start-page: 362
  year: 2015
  ident: bib0020
  article-title: Mini-Mental State Examination (MMSE) for the detection of Alzheimer's disease and other dementias in people with mild cognitive impairment (MCI)
  publication-title: BJPsych Adv.
– volume: 30
  start-page: 878
  year: 2014
  end-page: 887
  ident: bib0135
  article-title: Automated voxel-by-voxel tissue classification for hippocampal segmentation: methods and validation
  publication-title: Phys. Med.
– volume: 12
  start-page: 645
  year: 2016
  end-page: 653
  ident: bib0010
  article-title: Crowdsourced estimation of cognitive decline and resilience in Alzheimer's disease
  publication-title: Alzheimers Dement.
– volume: 35
  start-page: 303
  year: 2017
  end-page: 312
  ident: bib0105
  article-title: Large scale deep learning for computer aided detection of mammographic lesions
  publication-title: Med. Image Anal.
– volume: 35
  start-page: 1285
  year: 2016
  end-page: 1298
  ident: bib0130
  article-title: Deep convolutional neural networks for computer-aided detection: CNN architectures, dataset characteristics and transfer learning
  publication-title: IEEE Trans. Med. Imaging
– volume: 7
  start-page: e33182
  year: 2012
  ident: bib0165
  article-title: Predicting future clinical changes of MCI patients using longitudinal and multimodal biomarkers
  publication-title: PLoS ONE
– volume: 111
  start-page: 562
  year: 2015
  end-page: 579
  ident: bib0040
  article-title: Standardized evaluation of algorithms for computer-aided diagnosis of dementia based on structural MRI: the CADDementia challenge
  publication-title: Neuroimage
– volume: 104
  start-page: 398
  year: 2015
  ident: 10.1016/j.jneumeth.2017.12.011_bib0120
  article-title: Machine learning framework for early MRI-based Alzheimer's conversion prediction in MCI subjects
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2014.10.002
– volume: 18
  start-page: 1527
  year: 2006
  ident: 10.1016/j.jneumeth.2017.12.011_bib0095
  article-title: A fast learning algorithm for deep belief nets
  publication-title: Neural Comput.
  doi: 10.1162/neco.2006.18.7.1527
– volume: 127
  start-page: 135
  year: 2012
  ident: 10.1016/j.jneumeth.2017.12.011_bib0045
  article-title: Alzheimer's disease markers from structural MRI and FDG-PET brain images
  publication-title: Eur. Phys. J. Plus
  doi: 10.1140/epjp/i2012-12135-6
– volume: 55
  start-page: 1109
  year: 2011
  ident: 10.1016/j.jneumeth.2017.12.011_bib0080
  article-title: Semi-supervised pattern classification of medical images: application to mild cognitive impairment (MCI)
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2010.12.066
– volume: 51
  start-page: 1345
  year: 2010
  ident: 10.1016/j.jneumeth.2017.12.011_bib0110
  article-title: Automated cross-sectional and longitudinal hippocampal volume measurement in mild cognitive impairment and Alzheimer's disease
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2010.03.018
– volume: 35
  start-page: 1285
  year: 2016
  ident: 10.1016/j.jneumeth.2017.12.011_bib0130
  article-title: Deep convolutional neural networks for computer-aided detection: CNN architectures, dataset characteristics and transfer learning
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2016.2528162
– volume: 55
  start-page: 574
  year: 2011
  ident: 10.1016/j.jneumeth.2017.12.011_bib0090
  article-title: Predictive markers for AD in a multi-modality framework: an analysis of MCI progression in the ADNI population
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2010.10.081
– volume: 542
  start-page: 115
  year: 2017
  ident: 10.1016/j.jneumeth.2017.12.011_bib0075
  article-title: Dermatologist-level classification of skin cancer with deep neural networks
  publication-title: Nature
  doi: 10.1038/nature21056
– volume: 38
  start-page: 36
  year: 2017
  ident: 10.1016/j.jneumeth.2017.12.011_bib0140
  article-title: A fuzzy-based system reveals Alzheimer's disease onset in subjects with mild cognitive impairment
  publication-title: Phys. Med.
  doi: 10.1016/j.ejmp.2017.04.027
– year: 2016
  ident: 10.1016/j.jneumeth.2017.12.011_bib0025
– volume: 31
  start-page: 1107
  year: 2010
  ident: 10.1016/j.jneumeth.2017.12.011_bib0145
  article-title: Multi-modal imaging predicts memory performance in normal aging and cognitive decline
  publication-title: Neurobiol. Aging
  doi: 10.1016/j.neurobiolaging.2008.08.013
– volume: 19
  start-page: 153
  year: 2007
  ident: 10.1016/j.jneumeth.2017.12.011_bib0030
  article-title: Greedy layer-wise training of deep networks
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 35
  start-page: 303
  year: 2017
  ident: 10.1016/j.jneumeth.2017.12.011_bib0105
  article-title: Large scale deep learning for computer aided detection of mammographic lesions
  publication-title: Med. Image Anal.
  doi: 10.1016/j.media.2016.07.007
– volume: 60
  start-page: 8851
  year: 2015
  ident: 10.1016/j.jneumeth.2017.12.011_bib0015
  article-title: Hippocampal unified multi-atlas network (HUMAN): protocol and scale validation of a novel segmentation tool
  publication-title: Phys. Med. Biol.
  doi: 10.1088/0031-9155/60/22/8851
– volume: 3
  start-page: 246
  year: 2004
  ident: 10.1016/j.jneumeth.2017.12.011_bib0070
  article-title: Amnestic MCI or prodromal Alzheimer's disease?
  publication-title: Lancet Neurol.
  doi: 10.1016/S1474-4422(04)00710-0
– volume: 2
  start-page: 735
  year: 2013
  ident: 10.1016/j.jneumeth.2017.12.011_bib0150
  article-title: Accurate multimodal probabilistic prediction of conversion to Alzheimer's disease in patients with mild cognitive impairment
  publication-title: Neuroimage Clin.
  doi: 10.1016/j.nicl.2013.05.004
– volume: 125
  start-page: 834
  year: 2016
  ident: 10.1016/j.jneumeth.2017.12.011_bib0050
  article-title: Integrating longitudinal information in hippocampal volume measurements for the early detection of Alzheimer's disease
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2015.10.065
– start-page: 507
  year: 1999
  ident: 10.1016/j.jneumeth.2017.12.011_bib0155
  article-title: From computing with numbers to computing with words-from manipulation of measurements to manipulation of perceptions
– volume: 62
  start-page: 1132
  year: 2015
  ident: 10.1016/j.jneumeth.2017.12.011_bib0115
  article-title: Multimodal neuroimaging feature learning for multiclass diagnosis of Alzheimer's disease
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2014.2372011
– volume: 30
  start-page: 878
  year: 2014
  ident: 10.1016/j.jneumeth.2017.12.011_bib0135
  article-title: Automated voxel-by-voxel tissue classification for hippocampal segmentation: methods and validation
  publication-title: Phys. Med.
  doi: 10.1016/j.ejmp.2014.06.044
– volume: 59
  start-page: 2217
  year: 2012
  ident: 10.1016/j.jneumeth.2017.12.011_bib0055
  article-title: Individual subject classification for Alzheimer's disease based on incremental learning using a spatial frequency representation of cortical thickness data
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2011.09.085
– volume: 45
  start-page: 5
  year: 2001
  ident: 10.1016/j.jneumeth.2017.12.011_bib0035
  article-title: Random forests
  publication-title: Mach. Learn.
  doi: 10.1023/A:1010933404324
– year: 2016
  ident: 10.1016/j.jneumeth.2017.12.011_bib0085
– year: 2014
  ident: 10.1016/j.jneumeth.2017.12.011_bib0100
– volume: 7
  start-page: e33182
  year: 2012
  ident: 10.1016/j.jneumeth.2017.12.011_bib0165
  article-title: Predicting future clinical changes of MCI patients using longitudinal and multimodal biomarkers
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0033182
– volume: 55
  start-page: 856
  year: 2011
  ident: 10.1016/j.jneumeth.2017.12.011_bib0160
  article-title: Multimodal classification of Alzheimer's disease and mild cognitive impairment
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2011.01.008
– volume: 3
  start-page: 29
  year: 2016
  ident: 10.1016/j.jneumeth.2017.12.011_bib0170
  article-title: Quantitative multimodal multiparametric imaging in Alzheimer's disease
  publication-title: Brain Inform.
  doi: 10.1007/s40708-015-0028-9
– volume: 60
  start-page: 1622
  year: 2012
  ident: 10.1016/j.jneumeth.2017.12.011_bib0065
  article-title: MRI hippocampal and entorhinal cortex mapping in predicting conversion to Alzheimer's disease
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2012.01.075
– volume: 12
  start-page: 645
  year: 2016
  ident: 10.1016/j.jneumeth.2017.12.011_bib0010
  article-title: Crowdsourced estimation of cognitive decline and resilience in Alzheimer's disease
  publication-title: Alzheimers Dement.
  doi: 10.1016/j.jalz.2016.02.006
– volume: 111
  start-page: 562
  year: 2015
  ident: 10.1016/j.jneumeth.2017.12.011_bib0040
  article-title: Standardized evaluation of algorithms for computer-aided diagnosis of dementia based on structural MRI: the CADDementia challenge
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2015.01.048
– volume: 84
  start-page: 259
  year: 2016
  ident: 10.1016/j.jneumeth.2017.12.011_bib0125
  article-title: Combining multiple approaches for the early diagnosis of Alzheimer's disease
  publication-title: Pattern Recognit. Lett.
  doi: 10.1016/j.patrec.2016.10.010
– volume: 7
  start-page: 270
  year: 2011
  ident: 10.1016/j.jneumeth.2017.12.011_bib0005
  article-title: The diagnosis of mild cognitive impairment due to Alzheimer's disease: recommendations from the National Institute on Aging-Alzheimer's Association workgroups on diagnostic guidelines for Alzheimer's disease
  publication-title: Alzheimers Dement.
  doi: 10.1016/j.jalz.2011.03.008
– volume: 32
  start-page: 2322-e19
  year: 2011
  ident: 10.1016/j.jneumeth.2017.12.011_bib0060
  article-title: Prediction of MCI to AD conversion, via MRI, CSF biomarkers, and pattern classification
  publication-title: Neurobiol. Aging
  doi: 10.1016/j.neurobiolaging.2010.05.023
– volume: 21
  start-page: 362
  year: 2015
  ident: 10.1016/j.jneumeth.2017.12.011_bib0020
  article-title: Mini-Mental State Examination (MMSE) for the detection of Alzheimer's disease and other dementias in people with mild cognitive impairment (MCI)
  publication-title: BJPsych Adv.
  doi: 10.1192/apt.21.6.362
SSID ssj0004906
Score 2.5152664
Snippet •A classification strategy based on Random Forest feature selection and Deep Neural Network is proposed.•The work demonstrated the accuracy of deep learning...
Early diagnosis of Alzheimer's disease (AD) and its onset in subjects affected by mild cognitive impairment (MCI) based on structural MRI features is one of...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 3
SubjectTerms Alzheimer Disease - classification
Alzheimer Disease - diagnostic imaging
Alzheimer's disease
Brain - diagnostic imaging
Cognitive Dysfunction - classification
Cognitive Dysfunction - diagnostic imaging
Deep Learning
Disease Progression
Fuzzy logic
Humans
Image Interpretation, Computer-Assisted - methods
Magnetic Resonance Imaging
MCI
MRI
Pattern Recognition, Automated
Title Deep learning reveals Alzheimer's disease onset in MCI subjects: Results from an international challenge
URI https://dx.doi.org/10.1016/j.jneumeth.2017.12.011
https://www.ncbi.nlm.nih.gov/pubmed/29287745
https://www.proquest.com/docview/1982843131
Volume 302
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NT9swFLcQkxCXaQPGYAO9SQhOoXXjxPZuVRkqoHKAIXGz6tSGVCVUJDnAYX_73ksdYAfEYUdHtmz5vTz_3jdje4gxvFNpN5Jc20hozyObCNR5UA6mcS_OxpZyh0fn6fBKnF4n10ts0ObCUFhlkP0Lmd5I6_ClE26zM8_zziUl4qBShSxFKrmmsttCSOLywz8vYR5CN_01aTL5K7uvsoSnh9PC1dSpmUK8ZGMW5PytB-otANo8RMef2MeAIKG_OORntuSKNbbeL1B7vnuEfWhiOhtj-RpbGQXX-Tq7PXJuDqFJxA1Q5SbkPOjPnm5dfuceDkoIzhqgAOsK8gJGgxMoa0ummvInXLiynlUlUEYKjAvIXxsTIWu7smywq-NfvwfDKLRZiDJEY1WUWJSWMd5cjGOphPIWUYDlWSrJTShdrLJJ4pTm2k8ynflJqoTwPZlo1De0jL-w5eK-cF8ZkHWkK6wXCAyEk16lWlmVjh3twbt-iyXt3Zos1CCnVhgz0wabTU1LE0M0MbxnkCZbrPO8br6owvHuCt2SzvzDTwafinfX_mhpbfBnIw_KuHD3dWm4RgUVIVeMczYXTPB8np5G5VOKZPs_dv7GVnGkKDqBJ9_ZcvVQux0EPZXdbbh6l33on5wNz_8CL3H_nw
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3Nb9MwFH8anQRcprHBGGxgJASn0LqxE5tbVZhatvYAm7SbVac2S9Vl1ZIcxl_Pe6mzjcO0A8cktmz5vTz_3jfAR8QY3qmkF6Vc20hozyMrBeo8KAeTuB9nM0u5w5NpMjoTP87l-QYM21wYCqsMsn8t0xtpHd50w2l2V3ne_UWJOKhUIUuRSq6TJ7BJ1alkBzYH4-PR9C49UjctNmk8uSx79xKFF18WhaupWTNFeaWNZZDzh-6ohzBocxcdbcNWAJFssN7nC9hwxQ7sDgpUoC9v2CfWhHU29vIdeDoJ3vNduPjm3IqFPhG_GRVvQuZjg-WfC5dfuuvPJQv-GkYx1hXLCzYZjllZW7LWlF_ZT1fWy6pklJTCZgXL79sTWdY2ZnkJZ0ffT4ejKHRaiDIEZFUkLQrMWKCswedUCeUtAgHLsyQlT2HqYpXNpVOaaz_PdObniRLC91OpUeXQafwKOsVV4V4DIwNJT1gvEBsIl3qVaGVVMnO0Bu_5fZDt2ZoslCGnbhhL08abLUxLE0M0MbxvkCb70L2dt1oX4nh0hm5JZ_5hKYO3xaNzP7S0Nvi_kRNlVrirujRco46KqCvGMXtrJrjdT1-j_pkK-eY_Vn4Pz0ankxNzMp4ev4Xn-EVRsAKXB9Cprmt3iBiosu8Cj_8F7kICXw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deep+learning+reveals+Alzheimer%27s+disease+onset+in+MCI+subjects%3A+Results+from+an+international+challenge&rft.jtitle=Journal+of+neuroscience+methods&rft.au=Amoroso%2C+Nicola&rft.au=Diacono%2C+Domenico&rft.au=Fanizzi%2C+Annarita&rft.au=La+Rocca%2C+Marianna&rft.date=2018-05-15&rft.eissn=1872-678X&rft.volume=302&rft.spage=3&rft_id=info:doi/10.1016%2Fj.jneumeth.2017.12.011&rft_id=info%3Apmid%2F29287745&rft.externalDocID=29287745
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0165-0270&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0165-0270&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0165-0270&client=summon