Pre-merger Electromagnetic Counterparts of Binary Compact Stars
We investigate emission signatures of binary compact star gravitational wave (GW) sources consisting of strongly magnetized neutron stars (NSs) and/or white dwarfs (WDs) in their late-time inspiral phase. Because of electromagnetic interactions between the magnetospheres of the two compact stars, a...
Saved in:
Published in | The Astrophysical journal Vol. 868; no. 1; pp. 19 - 27 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Philadelphia
The American Astronomical Society
20.11.2018
IOP Publishing |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | We investigate emission signatures of binary compact star gravitational wave (GW) sources consisting of strongly magnetized neutron stars (NSs) and/or white dwarfs (WDs) in their late-time inspiral phase. Because of electromagnetic interactions between the magnetospheres of the two compact stars, a substantial amount of energy will be extracted, and the resultant power is expected to be ∼1038-1044 erg s−1 in the last few seconds before the two stars merge, when the binary system contains a NS with a surface magnetic field 1012 G. The induced electric field in the process can accelerate charged particles up to the EeV energy range. Synchrotron radiation is emitted from energetic electrons, with radiative energies reaching the GeV energy for binary NSs and the MeV energy for NS-WD or double WD binaries. In addition, a blackbody component is also presented, and it peaks at several to hundreds keV for binary NSs and at several keV for NS-WD or double WD binaries. The strong angular dependence of the synchrotron radiation and the isotropic nature of the blackbody radiation lead to distinguishable modulation patterns between the two emission components. If coherent curvature radiation is presented, fast radio bursts could be produced. These components provide unique simultaneous electromagnetic signatures as precursors of GW events associated with magnetized compact star mergers and short gamma-ray bursts (e.g., GRB 100717). |
---|---|
AbstractList | We investigate emission signatures of binary compact star gravitational wave (GW) sources consisting of strongly magnetized neutron stars (NSs) and/or white dwarfs (WDs) in their late-time inspiral phase. Because of electromagnetic interactions between the magnetospheres of the two compact stars, a substantial amount of energy will be extracted, and the resultant power is expected to be ∼1038–1044 erg s−1 in the last few seconds before the two stars merge, when the binary system contains a NS with a surface magnetic field 1012 G. The induced electric field in the process can accelerate charged particles up to the EeV energy range. Synchrotron radiation is emitted from energetic electrons, with radiative energies reaching the GeV energy for binary NSs and the MeV energy for NS–WD or double WD binaries. In addition, a blackbody component is also presented, and it peaks at several to hundreds keV for binary NSs and at several keV for NS–WD or double WD binaries. The strong angular dependence of the synchrotron radiation and the isotropic nature of the blackbody radiation lead to distinguishable modulation patterns between the two emission components. If coherent curvature radiation is presented, fast radio bursts could be produced. These components provide unique simultaneous electromagnetic signatures as precursors of GW events associated with magnetized compact star mergers and short gamma-ray bursts (e.g., GRB 100717). We investigate emission signatures of binary compact star gravitational wave (GW) sources consisting of strongly magnetized neutron stars (NSs) and/or white dwarfs (WDs) in their late-time inspiral phase. Because of electromagnetic interactions between the magnetospheres of the two compact stars, a substantial amount of energy will be extracted, and the resultant power is expected to be ∼10 38 –10 44 erg s −1 in the last few seconds before the two stars merge, when the binary system contains a NS with a surface magnetic field 10 12 G. The induced electric field in the process can accelerate charged particles up to the EeV energy range. Synchrotron radiation is emitted from energetic electrons, with radiative energies reaching the GeV energy for binary NSs and the MeV energy for NS–WD or double WD binaries. In addition, a blackbody component is also presented, and it peaks at several to hundreds keV for binary NSs and at several keV for NS–WD or double WD binaries. The strong angular dependence of the synchrotron radiation and the isotropic nature of the blackbody radiation lead to distinguishable modulation patterns between the two emission components. If coherent curvature radiation is presented, fast radio bursts could be produced. These components provide unique simultaneous electromagnetic signatures as precursors of GW events associated with magnetized compact star mergers and short gamma-ray bursts (e.g., GRB 100717). |
Author | Peng, Fang-Kun Dai, Zi-Gao Wang, Jie-Shuang Wu, Kinwah |
Author_xml | – sequence: 1 givenname: Jie-Shuang orcidid: 0000-0002-2662-6912 surname: Wang fullname: Wang, Jie-Shuang email: jiesh.wang@gmail.com organization: Tsung-Dao Lee Institute , Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China – sequence: 2 givenname: Fang-Kun surname: Peng fullname: Peng, Fang-Kun organization: Guizhou Normal University School of Physics and Electronic Science, Guiyang 550001, People's Republic of China – sequence: 3 givenname: Kinwah surname: Wu fullname: Wu, Kinwah email: dzg@nju.edu.cn organization: University College London Mullard Space Science Laboratory, Holmbury St. Mary, Dorking, Surrey, RH5 6NT, UK – sequence: 4 givenname: Zi-Gao orcidid: 0000-0002-7835-8585 surname: Dai fullname: Dai, Zi-Gao email: kinwah.wu@ucl.ac.uk organization: (Nanjing University) Key Laboratory of Modern Astronomy and Astrophysics , Ministry of Education, People's Republic of China |
BookMark | eNp9kM9LwzAUx4NMcJvePRa8Wpc0aZOeRMf8AQMFFbyFNH0dGWtSk-zgf7-WioKgl_d4j-_3_fjM0MQ6CwidE3xFBeMLklORMprzhVKQU3KEpt-tCZpijFlaUP5-gmYhbIcyK8spun72kLbgN-CT1Q509K5VGwvR6GTp9jaC75SPIXFNcmus8p99u-2UjslLVD6couNG7QKcfeU5ertbvS4f0vXT_ePyZp1qRoqYsoaCqGotSFXyUggMhAJuak50JgrIS0oIq0jZCK6B9bEWrMpUDaQQQlNO5-hinNt597GHEOXW7b3tV8qMFrlghOW0VxWjSnsXgodGahNVNM5Gr8xOEiwHWHIgIwcycoTVG_EvY-dN23_7n-VytBjX_Rzzp_wAXpZ7tg |
CitedBy_id | crossref_primary_10_3847_1538_4357_acefbf crossref_primary_10_1007_s11433_024_2600_3 crossref_primary_10_3847_1538_4357_ab1fe2 crossref_primary_10_3847_2041_8213_ab40c5 crossref_primary_10_1140_epjp_s13360_021_01362_7 crossref_primary_10_1007_s41114_020_00028_7 crossref_primary_10_3847_1538_4357_aca018 crossref_primary_10_1088_1674_4527_acb9de crossref_primary_10_1093_ptep_ptaa126 crossref_primary_10_1038_s41586_022_04841_8 crossref_primary_10_3847_1538_4357_abd7a7 crossref_primary_10_3847_1538_4357_ad4ee1 crossref_primary_10_1093_mnras_staa3794 crossref_primary_10_3847_1538_4357_ab7dbf crossref_primary_10_1103_PhysRevD_108_024020 crossref_primary_10_3847_2041_8213_ac9b55 crossref_primary_10_1093_mnras_stad1756 crossref_primary_10_3847_1538_4357_ab3e48 crossref_primary_10_1103_PhysRevD_108_072015 crossref_primary_10_3847_2041_8213_abbfb8 crossref_primary_10_1038_s41467_024_51711_0 crossref_primary_10_1134_S1063773722070064 crossref_primary_10_3847_2041_8213_ab0b45 crossref_primary_10_1093_mnras_stae2756 crossref_primary_10_1007_s41114_022_00041_y crossref_primary_10_1103_PhysRevD_105_124042 crossref_primary_10_3390_galaxies9040104 crossref_primary_10_3847_2041_8213_ab2248 crossref_primary_10_1017_pasa_2020_42 crossref_primary_10_1093_mnras_staa1889 crossref_primary_10_3390_universe10120441 crossref_primary_10_3847_1538_4357_adaceb crossref_primary_10_3847_1538_4357_ad4d95 crossref_primary_10_3847_2041_8213_ab7244 crossref_primary_10_1088_1674_4527_20_4_56 crossref_primary_10_3847_1538_4357_ace358 crossref_primary_10_3847_1538_4357_ab74d0 crossref_primary_10_3847_1538_4357_aba955 crossref_primary_10_3847_1538_4357_ac5d5a crossref_primary_10_3847_2041_8213_ab8f99 crossref_primary_10_3847_1538_4357_ac9841 |
Cites_doi | 10.1088/0954-3899/25/8/317 10.1046/j.1365-8711.1999.02703.x 10.1051/0004-6361/201117079 10.1103/PhysRevD.90.044007 10.1126/science.aap9811 10.1103/PhysRevD.94.023001 10.1086/161195 10.1093/mnras/stx312 10.1086/171851 10.1146/annurev-nucl-102115-044819 10.1134/S1063773717010017 10.1103/PhysRevD.88.043011 10.3847/2041-8205/822/1/L7 10.1086/172995 10.1088/0004-637X/763/2/108 10.1093/mnras/235.1.51 10.1088/0004-637X/755/1/80 10.1086/310340 10.1088/1674-4527/9/7/001 10.3847/0067-0049/223/2/28 10.1093/mnras/237.3.715 10.1088/0004-637X/723/2/1711 10.3847/2041-8213/aa91c9 10.1088/1361-6382/aa61ce 10.1093/mnras/stw2640 10.1086/186493 10.1088/0954-3899/20/9/018 10.1046/j.1365-8711.2002.05190.x 10.1016/j.pss.2006.05.045 10.3847/2041-8213/aa9057 10.1088/0004-637X/777/2/103 10.1086/306394 10.3847/2041-8205/827/2/L31 10.1088/0004-637X/742/2/90 10.1086/184740 10.1103/PhysRevD.97.103016 10.1051/0004-6361:20052843 10.1038/nature24290 10.1007/s11433-017-9107-5 10.1103/PhysRevLett.119.161101 10.1046/j.1365-8711.2001.04103.x 10.1051/0004-6361:20064862 10.1086/149947 10.1051/0004-6361/201424104 10.1103/RevModPhys.38.626 10.1103/PhysRevLett.108.011102 10.1126/science.aap9855 10.1088/2041-8205/757/1/L3 10.1038/217935a0 10.1111/j.1365-2966.2004.07363.x 10.1051/0004-6361/201116530 10.3847/2041-8213/aa905d 10.3847/2041-8213/aa920c 10.1103/PhysRevD.88.021504 10.1016/j.pss.2006.05.016 10.1146/annurev.aa.22.090184.002233 10.1038/340126a0 10.1086/171983 10.1051/0004-6361:20040455 10.1103/PhysRev.136.B1224 10.1051/0004-6361:20054696 10.1093/mnras/270.3.611 10.1086/184741 10.1086/311546 10.3847/2041-8213/aa8f41 10.3847/2041-8213/aa8f94 10.1051/0004-6361:20040417 10.1086/150119 10.1088/0004-637X/745/1/2 10.1023/A:1012221527425 10.1086/175439 10.1093/mnras/252.3.386 10.3847/0004-637X/829/1/27 10.1086/309004 |
ContentType | Journal Article |
Copyright | 2018. The American Astronomical Society. All rights reserved. Copyright IOP Publishing Nov 20, 2018 |
Copyright_xml | – notice: 2018. The American Astronomical Society. All rights reserved. – notice: Copyright IOP Publishing Nov 20, 2018 |
DBID | AAYXX CITATION 7TG 8FD H8D KL. L7M |
DOI | 10.3847/1538-4357/aae531 |
DatabaseName | CrossRef Meteorological & Geoastrophysical Abstracts Technology Research Database Aerospace Database Meteorological & Geoastrophysical Abstracts - Academic Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Aerospace Database Meteorological & Geoastrophysical Abstracts Technology Research Database Advanced Technologies Database with Aerospace Meteorological & Geoastrophysical Abstracts - Academic |
DatabaseTitleList | Aerospace Database CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Astronomy & Astrophysics Physics |
DocumentTitleAlternate | Pre-merger Electromagnetic Counterparts of Binary Compact Stars |
EISSN | 1538-4357 |
ExternalDocumentID | 10_3847_1538_4357_aae531 apjaae531 |
GroupedDBID | -DZ -~X 123 1JI 23N 2FS 2WC 4.4 6J9 85S AAFWJ AAGCD AAJIO AALHV ABHWH ACBEA ACGFS ACHIP ACNCT ADACN AEFHF AENEX AFPKN AKPSB ALMA_UNASSIGNED_HOLDINGS ASPBG ATQHT AVWKF AZFZN CJUJL CRLBU CS3 EBS EJD F5P FRP GROUPED_DOAJ IJHAN IOP KOT M~E N5L O3W O43 OK1 PJBAE RIN RNS ROL SJN SY9 T37 TN5 TR2 WH7 XSW AAYXX CITATION 7TG 8FD AEINN H8D KL. L7M |
ID | FETCH-LOGICAL-c416t-4f3e8bdc81b979880e13e0fd71c286e593114b19f87ce4f87d84b2ade1688c373 |
IEDL.DBID | IOP |
ISSN | 0004-637X |
IngestDate | Wed Aug 13 11:35:06 EDT 2025 Tue Jul 01 04:09:38 EDT 2025 Thu Apr 24 23:00:43 EDT 2025 Wed Aug 21 03:33:01 EDT 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c416t-4f3e8bdc81b979880e13e0fd71c286e593114b19f87ce4f87d84b2ade1688c373 |
Notes | High-Energy Phenomena and Fundamental Physics AAS11126 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-2662-6912 0000-0002-7835-8585 |
OpenAccessLink | https://iopscience.iop.org/article/10.3847/1538-4357/aae531/pdf |
PQID | 2365841453 |
PQPubID | 4562441 |
PageCount | 9 |
ParticipantIDs | proquest_journals_2365841453 crossref_primary_10_3847_1538_4357_aae531 iop_journals_10_3847_1538_4357_aae531 crossref_citationtrail_10_3847_1538_4357_aae531 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2018-11-20 |
PublicationDateYYYYMMDD | 2018-11-20 |
PublicationDate_xml | – month: 11 year: 2018 text: 2018-11-20 day: 20 |
PublicationDecade | 2010 |
PublicationPlace | Philadelphia |
PublicationPlace_xml | – name: Philadelphia |
PublicationTitle | The Astrophysical journal |
PublicationTitleAbbrev | APJ |
PublicationTitleAlternate | Astrophys. J |
PublicationYear | 2018 |
Publisher | The American Astronomical Society IOP Publishing |
Publisher_xml | – name: The American Astronomical Society – name: IOP Publishing |
References | Geppert (apjaae531bib17) 2004; 426 Mottez (apjaae531bib43) 2011a; 532 Savchenko (apjaae531bib58) 2017; 848 Wu (apjaae531bib69) 2002; 331 Margutti (apjaae531bib40) 2017; 848 Troja (apjaae531bib59) 2017; 551 Paschalidis (apjaae531bib52) 2017; 34 Lai (apjaae531bib33) 1994; 270 Eichler (apjaae531bib14) 1989; 340 Lai (apjaae531bib34) 2012; 757 Abbott (apjaae531bib1) 2017a; 848 Bildsten (apjaae531bib9) 1992; 400 Anguelov (apjaae531bib6) 1999; 25 Li (apjaae531bib37) 2018; 61 Dall’Osso (apjaae531bib11) 2006; 447 Piddington (apjaae531bib55) 1968; 217 Page (apjaae531bib50) 1995; 442 Laine (apjaae531bib35) 2012; 745 Geppert (apjaae531bib18) 2006; 457 Wang (apjaae531bib65) 2016; 822 Margalit (apjaae531bib39) 2017; 465 Abbott (apjaae531bib3) 2017c; 848 Goldstein (apjaae531bib21) 2017; 848 Goldreich (apjaae531bib19) 1969; 157 Hess (apjaae531bib27) 2007; 55 Abbott (apjaae531bib2) 2017b; 119 Piro (apjaae531bib56) 2012; 755 Zarka (apjaae531bib72) 2007; 55 Mottez (apjaae531bib45) 2014; 569 Erber (apjaae531bib15) 1966; 38 Mottez (apjaae531bib44) 2011b; 532 Dai (apjaae531bib11a) 2016; 829 Kochanek (apjaae531bib32) 1992; 398 Goodman (apjaae531bib22) 1986; 308 Fernández (apjaae531bib16) 2016; 66 Minaev (apjaae531bib42) 2017; 43 Ho (apjaae531bib29) 1999; 308 Peters (apjaae531bib54) 1964; 136 Lyubarskii (apjaae531bib38) 1998; 337 Zenati (apjaae531bib74a) 2018 Harding (apjaae531bib26) 1998; 508 Ponce (apjaae531bib57) 2014; 90 Narayan (apjaae531bib46) 1992; 395 Baring (apjaae531bib8) 1988; 235 Kirk (apjaae531bib31) 2009 D’Orazio (apjaae531bib13) 2016; 94 Paczynski (apjaae531bib49) 1986; 308 Wang (apjaae531bib64) 2018; 97 Tsang (apjaae531bib62) 2012; 108 Fernández (apjaae531bib16a) 2013; 763 Greenstein (apjaae531bib23) 1983; 271 Zhang (apjaae531bib74) 2017 Band (apjaae531bib7) 1993; 413 Goldreich (apjaae531bib20) 1969; 156 Zhang (apjaae531bib74b) 2016; 827 Vietri (apjaae531bib63) 1996; 471 Willes (apjaae531bib67) 2005; 432 McWilliams (apjaae531bib41) 2011; 742 Bobrick (apjaae531bib10a) 2017; 467 Willes (apjaae531bib66) 2004; 348 Hillas (apjaae531bib28) 1984; 22 Narayana Bhat (apjaae531bib47) 2016; 223 Palenzuela (apjaae531bib51) 2013; 88 Paschalidis (apjaae531bib53) 2013; 88 Troja (apjaae531bib60) 2010; 723 Tsang (apjaae531bib61) 2013; 777 Alexander (apjaae531bib5) 2017; 848 Norton (apjaae531bib48) 1989; 237 Hallinan (apjaae531bib24) 2017; 358 Akhiezer (apjaae531bib4) 1994; 20 Ioka (apjaae531bib30) 2000; 537 Zarka (apjaae531bib73) 2001; 277 Coulter (apjaae531bib10) 2017; 358 Dall’Osso (apjaae531bib12) 2007; 464 Li (apjaae531bib36) 1998; 503 Wu (apjaae531bib71) 1991; 252 Hansen (apjaae531bib25) 2001; 322 Wu (apjaae531bib68) 2009; 9 Wu (apjaae531bib70) 2008; 8 |
References_xml | – volume: 25 start-page: 1755 year: 1999 ident: apjaae531bib6 publication-title: JPhG doi: 10.1088/0954-3899/25/8/317 – volume: 308 start-page: 153 year: 1999 ident: apjaae531bib29 publication-title: MNRAS doi: 10.1046/j.1365-8711.1999.02703.x – volume: 532 start-page: A22 year: 2011a ident: apjaae531bib43 publication-title: A&A doi: 10.1051/0004-6361/201117079 – volume: 90 start-page: 044007 year: 2014 ident: apjaae531bib57 publication-title: PhRvD doi: 10.1103/PhysRevD.90.044007 – volume: 358 start-page: 1556 year: 2017 ident: apjaae531bib10 doi: 10.1126/science.aap9811 – volume: 94 year: 2016 ident: apjaae531bib13 publication-title: PhRvD doi: 10.1103/PhysRevD.94.023001 – volume: 271 start-page: 283 year: 1983 ident: apjaae531bib23 publication-title: ApJ doi: 10.1086/161195 – volume: 467 start-page: 3556 year: 2017 ident: apjaae531bib10a publication-title: MNRAS doi: 10.1093/mnras/stx312 – volume: 398 start-page: 234 year: 1992 ident: apjaae531bib32 publication-title: ApJ doi: 10.1086/171851 – volume: 66 start-page: 23 year: 2016 ident: apjaae531bib16 publication-title: ARNPS doi: 10.1146/annurev-nucl-102115-044819 – year: 2018 ident: apjaae531bib74a – volume: 43 start-page: 1 year: 2017 ident: apjaae531bib42 publication-title: AstL doi: 10.1134/S1063773717010017 – volume: 88 start-page: 043011 year: 2013 ident: apjaae531bib51 publication-title: PhRvD doi: 10.1103/PhysRevD.88.043011 – volume: 822 start-page: L7 year: 2016 ident: apjaae531bib65 publication-title: ApJL doi: 10.3847/2041-8205/822/1/L7 – volume: 413 start-page: 281 year: 1993 ident: apjaae531bib7 publication-title: ApJ doi: 10.1086/172995 – volume: 763 start-page: 108 year: 2013 ident: apjaae531bib16a publication-title: ApJ doi: 10.1088/0004-637X/763/2/108 – volume: 235 start-page: 51 year: 1988 ident: apjaae531bib8 publication-title: MNRAS doi: 10.1093/mnras/235.1.51 – volume: 755 start-page: 80 year: 2012 ident: apjaae531bib56 publication-title: ApJ doi: 10.1088/0004-637X/755/1/80 – volume: 471 start-page: L95 year: 1996 ident: apjaae531bib63 publication-title: ApJL doi: 10.1086/310340 – volume: 9 start-page: 725 year: 2009 ident: apjaae531bib68 publication-title: RAA doi: 10.1088/1674-4527/9/7/001 – volume: 223 start-page: 28 year: 2016 ident: apjaae531bib47 publication-title: ApJS doi: 10.3847/0067-0049/223/2/28 – volume: 237 start-page: 715 year: 1989 ident: apjaae531bib48 publication-title: MNRAS doi: 10.1093/mnras/237.3.715 – volume: 723 start-page: 1711 year: 2010 ident: apjaae531bib60 publication-title: ApJ doi: 10.1088/0004-637X/723/2/1711 – volume: 848 start-page: L12 year: 2017c ident: apjaae531bib3 publication-title: ApJL doi: 10.3847/2041-8213/aa91c9 – volume: 34 start-page: 084002 year: 2017 ident: apjaae531bib52 publication-title: CQGra doi: 10.1088/1361-6382/aa61ce – volume: 465 start-page: 2790 year: 2017 ident: apjaae531bib39 publication-title: MNRAS doi: 10.1093/mnras/stw2640 – volume: 395 start-page: L83 year: 1992 ident: apjaae531bib46 publication-title: ApJL doi: 10.1086/186493 – volume: 20 start-page: 1499 year: 1994 ident: apjaae531bib4 publication-title: JPhG doi: 10.1088/0954-3899/20/9/018 – volume: 331 start-page: 221 year: 2002 ident: apjaae531bib69 publication-title: MNRAS doi: 10.1046/j.1365-8711.2002.05190.x – volume: 55 start-page: 598 year: 2007 ident: apjaae531bib72 publication-title: P&SS doi: 10.1016/j.pss.2006.05.045 – start-page: 421 year: 2009 ident: apjaae531bib31 – volume: 337 start-page: 433 year: 1998 ident: apjaae531bib38 publication-title: A&A – volume: 848 start-page: L20 year: 2017 ident: apjaae531bib40 publication-title: ApJL doi: 10.3847/2041-8213/aa9057 – volume: 777 start-page: 103 year: 2013 ident: apjaae531bib61 publication-title: ApJ doi: 10.1088/0004-637X/777/2/103 – volume: 508 start-page: 328 year: 1998 ident: apjaae531bib26 publication-title: ApJ doi: 10.1086/306394 – volume: 827 start-page: L31 year: 2016 ident: apjaae531bib74b publication-title: ApJL doi: 10.3847/2041-8205/827/2/L31 – volume: 742 start-page: 90 year: 2011 ident: apjaae531bib41 publication-title: ApJ doi: 10.1088/0004-637X/742/2/90 – volume: 308 start-page: L43 year: 1986 ident: apjaae531bib49 publication-title: ApJL doi: 10.1086/184740 – volume: 97 start-page: 103016 year: 2018 ident: apjaae531bib64 publication-title: PhRvD doi: 10.1103/PhysRevD.97.103016 – volume: 447 start-page: 785 year: 2006 ident: apjaae531bib11 publication-title: A&A doi: 10.1051/0004-6361:20052843 – volume: 551 start-page: 71 year: 2017 ident: apjaae531bib59 publication-title: Natur doi: 10.1038/nature24290 – volume: 61 start-page: 31011 year: 2018 ident: apjaae531bib37 publication-title: SCPMA doi: 10.1007/s11433-017-9107-5 – volume: 119 start-page: 161101 year: 2017b ident: apjaae531bib2 publication-title: PhRvL doi: 10.1103/PhysRevLett.119.161101 – volume: 322 start-page: 695 year: 2001 ident: apjaae531bib25 publication-title: MNRAS doi: 10.1046/j.1365-8711.2001.04103.x – volume: 464 start-page: 417 year: 2007 ident: apjaae531bib12 publication-title: A&A doi: 10.1051/0004-6361:20064862 – volume: 156 start-page: 59 year: 1969 ident: apjaae531bib20 publication-title: ApJ doi: 10.1086/149947 – volume: 569 start-page: A86 year: 2014 ident: apjaae531bib45 publication-title: A&A doi: 10.1051/0004-6361/201424104 – volume: 38 start-page: 626 year: 1966 ident: apjaae531bib15 publication-title: RvMP doi: 10.1103/RevModPhys.38.626 – volume: 108 start-page: 011102 year: 2012 ident: apjaae531bib62 publication-title: PhRvL doi: 10.1103/PhysRevLett.108.011102 – volume: 358 start-page: 1579 year: 2017 ident: apjaae531bib24 doi: 10.1126/science.aap9855 – volume: 757 start-page: L3 year: 2012 ident: apjaae531bib34 publication-title: ApJL doi: 10.1088/2041-8205/757/1/L3 – volume: 217 start-page: 935 year: 1968 ident: apjaae531bib55 publication-title: Natur doi: 10.1038/217935a0 – volume: 348 start-page: 285 year: 2004 ident: apjaae531bib66 publication-title: MNRAS doi: 10.1111/j.1365-2966.2004.07363.x – volume: 532 start-page: A21 year: 2011b ident: apjaae531bib44 publication-title: A&A doi: 10.1051/0004-6361/201116530 – volume: 848 start-page: L21 year: 2017 ident: apjaae531bib5 publication-title: ApJL doi: 10.3847/2041-8213/aa905d – volume: 848 start-page: L13 year: 2017a ident: apjaae531bib1 publication-title: ApJL doi: 10.3847/2041-8213/aa920c – volume: 88 start-page: 021504 year: 2013 ident: apjaae531bib53 publication-title: PhRvD doi: 10.1103/PhysRevD.88.021504 – year: 2017 ident: apjaae531bib74 – volume: 55 start-page: 89 year: 2007 ident: apjaae531bib27 publication-title: P&SS doi: 10.1016/j.pss.2006.05.016 – volume: 22 start-page: 425 year: 1984 ident: apjaae531bib28 publication-title: ARA&A doi: 10.1146/annurev.aa.22.090184.002233 – volume: 340 start-page: 126 year: 1989 ident: apjaae531bib14 publication-title: Natur doi: 10.1038/340126a0 – volume: 400 start-page: 175 year: 1992 ident: apjaae531bib9 publication-title: ApJ doi: 10.1086/171983 – volume: 426 start-page: 267 year: 2004 ident: apjaae531bib17 publication-title: A&A doi: 10.1051/0004-6361:20040455 – volume: 136 start-page: 1224 year: 1964 ident: apjaae531bib54 publication-title: PhRv doi: 10.1103/PhysRev.136.B1224 – volume: 457 start-page: 937 year: 2006 ident: apjaae531bib18 publication-title: A&A doi: 10.1051/0004-6361:20054696 – volume: 270 start-page: 611 year: 1994 ident: apjaae531bib33 publication-title: MNRAS doi: 10.1093/mnras/270.3.611 – volume: 308 start-page: L47 year: 1986 ident: apjaae531bib22 publication-title: ApJL doi: 10.1086/184741 – volume: 8 start-page: 169 year: 2008 ident: apjaae531bib70 publication-title: ChJAS – volume: 503 start-page: L151 year: 1998 ident: apjaae531bib36 publication-title: ApJL doi: 10.1086/311546 – volume: 848 start-page: L14 year: 2017 ident: apjaae531bib21 publication-title: ApJL doi: 10.3847/2041-8213/aa8f41 – volume: 848 start-page: L15 year: 2017 ident: apjaae531bib58 publication-title: ApJL doi: 10.3847/2041-8213/aa8f94 – volume: 432 start-page: 1091 year: 2005 ident: apjaae531bib67 publication-title: A&A doi: 10.1051/0004-6361:20040417 – volume: 157 start-page: 869 year: 1969 ident: apjaae531bib19 publication-title: ApJ doi: 10.1086/150119 – volume: 745 start-page: 2 year: 2012 ident: apjaae531bib35 publication-title: ApJ doi: 10.1088/0004-637X/745/1/2 – volume: 277 start-page: 293 year: 2001 ident: apjaae531bib73 publication-title: Ap&SS doi: 10.1023/A:1012221527425 – volume: 442 start-page: 273 year: 1995 ident: apjaae531bib50 publication-title: ApJ doi: 10.1086/175439 – volume: 252 start-page: 386 year: 1991 ident: apjaae531bib71 publication-title: MNRAS doi: 10.1093/mnras/252.3.386 – volume: 829 start-page: 27 year: 2016 ident: apjaae531bib11a publication-title: ApJ doi: 10.3847/0004-637X/829/1/27 – volume: 537 start-page: 327 year: 2000 ident: apjaae531bib30 publication-title: ApJ doi: 10.1086/309004 |
SSID | ssj0004299 |
Score | 2.521891 |
Snippet | We investigate emission signatures of binary compact star gravitational wave (GW) sources consisting of strongly magnetized neutron stars (NSs) and/or white... |
SourceID | proquest crossref iop |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 19 |
SubjectTerms | Astrophysics binaries: close Binary stars Black body radiation Blackbody Charged particles Charging Electric fields Electromagnetic interactions Emission analysis Energy Gamma ray bursts Gamma rays Gravitational waves Magnetic fields Magnetospheres Neutron stars Radiation Radio bursts Signatures Star mergers stars: magnetic field stars: neutron Synchrotron radiation White dwarf stars white dwarfs |
Title | Pre-merger Electromagnetic Counterparts of Binary Compact Stars |
URI | https://iopscience.iop.org/article/10.3847/1538-4357/aae531 https://www.proquest.com/docview/2365841453 |
Volume | 868 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NT8IwFG8QY-LFD9SAoulBTTwU2LqPLh4MGgkxUThI5GCydF3rQWGEjYP-9b6uA-JHiPHS9PData_te792_b0idMoBA8d2zIiMVEDA-nHChOcQRWE2eypqKaoJzvcPXnfg3A3dYQldLrgwyaQw_Q3ImkDBRoV6fVOwpc18jYKX95ucS1dzqNcpA8ep2Xu9_pIUaQcF9nWIR_2h-Uf5aw1ffNIafPeHYc69TWcbPc_baS6ZvDZmWdQQH99COP6zIztoq0ChuG1Ed1FJjiuo2k71uXgyesfnOM-bY4-0gjb6JreHrvpTSXLK5hTfmid0RvxlrKmQWPPb9RVGaEGKE4Wvc64vzk2OyDDg2mm6jwad28ebLikeYSACsFpGHEUli2IB8DbQsc1a0qKypWLfEjbzpBtQ2FFFVqCYL6QDacycyOaxtDzGBPXpASqPk7GsIqwCS_HI5SKGPWBsC8YDKOApFXhMwuSooeZ8GEJRRCjXD2W8hbBT0RoLtcZCrbHQaKyGLhYlJiY6xwrZMxiIsFii6Qq5-nzsl8I21UjNclx6-MdqjtAmYCumaYt2q47K2XQmjwG_ZNFJPk8h7dGnT1zY6GQ |
linkProvider | IOP Publishing |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwELagCMSCoIBaKOABkBhMmjgPZ0IFWpVX6UBFt8jxg4WmVVMG_j3nOKVCoIol8mA7yfl8952T7w6hUw4YWHqSEZXqmID144SJ0CeagjaHOm1qagjOT72wO_Dvh8GwrHNacGHGk9L0X0LTJgq2IjT7m4ItdYo9Cl4-cjhXoELOROpVtBZQcDWg0M_0dUGM9OIS__okpNHQfqf8c5YffmkV7v3LOBcep7ONtkqoiFv2wXbQisqqqNbKzeH1ePSJz3HRtmcTeRWt921rF131p4oUvMopbts6NyP-lhm-IjYkdPOfIbxvjscaXxeEXFzYBTHDAD6n-R4adNovN11SVkogAgDVjPiaKpZKARg0NgnImsqlqqll5AqPhSqIKYQ9qRtrFgnlw1UyP_W4VG7ImKAR3UeVbJypGsI6djVPAy4kBGrSE4zHMCDUOg6ZghWsI2cup0SUacRNNYv3BMIJI9nESDYxkk2sZOvo4nvExKbQWNL3DESflPsoX9KvMV-cRWePGjjl-gE9-Oc0J2ijf9tJHu96D4doE7AQMzRDr9lAldn0Qx0B3pilx4VOfQGfpcwm |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Pre-merger+Electromagnetic+Counterparts+of+Binary+Compact+Stars&rft.jtitle=The+Astrophysical+journal&rft.au=Wang%2C+Jie-Shuang&rft.au=Peng%2C+Fang-Kun&rft.au=Wu%2C+Kinwah&rft.au=Dai%2C+Zi-Gao&rft.date=2018-11-20&rft.issn=0004-637X&rft.eissn=1538-4357&rft.volume=868&rft.issue=1&rft.spage=19&rft_id=info:doi/10.3847%2F1538-4357%2Faae531&rft.externalDBID=n%2Fa&rft.externalDocID=10_3847_1538_4357_aae531 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0004-637X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0004-637X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0004-637X&client=summon |