Pre-merger Electromagnetic Counterparts of Binary Compact Stars

We investigate emission signatures of binary compact star gravitational wave (GW) sources consisting of strongly magnetized neutron stars (NSs) and/or white dwarfs (WDs) in their late-time inspiral phase. Because of electromagnetic interactions between the magnetospheres of the two compact stars, a...

Full description

Saved in:
Bibliographic Details
Published inThe Astrophysical journal Vol. 868; no. 1; pp. 19 - 27
Main Authors Wang, Jie-Shuang, Peng, Fang-Kun, Wu, Kinwah, Dai, Zi-Gao
Format Journal Article
LanguageEnglish
Published Philadelphia The American Astronomical Society 20.11.2018
IOP Publishing
Subjects
Online AccessGet full text

Cover

Loading…
Abstract We investigate emission signatures of binary compact star gravitational wave (GW) sources consisting of strongly magnetized neutron stars (NSs) and/or white dwarfs (WDs) in their late-time inspiral phase. Because of electromagnetic interactions between the magnetospheres of the two compact stars, a substantial amount of energy will be extracted, and the resultant power is expected to be ∼1038-1044 erg s−1 in the last few seconds before the two stars merge, when the binary system contains a NS with a surface magnetic field 1012 G. The induced electric field in the process can accelerate charged particles up to the EeV energy range. Synchrotron radiation is emitted from energetic electrons, with radiative energies reaching the GeV energy for binary NSs and the MeV energy for NS-WD or double WD binaries. In addition, a blackbody component is also presented, and it peaks at several to hundreds keV for binary NSs and at several keV for NS-WD or double WD binaries. The strong angular dependence of the synchrotron radiation and the isotropic nature of the blackbody radiation lead to distinguishable modulation patterns between the two emission components. If coherent curvature radiation is presented, fast radio bursts could be produced. These components provide unique simultaneous electromagnetic signatures as precursors of GW events associated with magnetized compact star mergers and short gamma-ray bursts (e.g., GRB 100717).
AbstractList We investigate emission signatures of binary compact star gravitational wave (GW) sources consisting of strongly magnetized neutron stars (NSs) and/or white dwarfs (WDs) in their late-time inspiral phase. Because of electromagnetic interactions between the magnetospheres of the two compact stars, a substantial amount of energy will be extracted, and the resultant power is expected to be ∼1038–1044 erg s−1 in the last few seconds before the two stars merge, when the binary system contains a NS with a surface magnetic field 1012 G. The induced electric field in the process can accelerate charged particles up to the EeV energy range. Synchrotron radiation is emitted from energetic electrons, with radiative energies reaching the GeV energy for binary NSs and the MeV energy for NS–WD or double WD binaries. In addition, a blackbody component is also presented, and it peaks at several to hundreds keV for binary NSs and at several keV for NS–WD or double WD binaries. The strong angular dependence of the synchrotron radiation and the isotropic nature of the blackbody radiation lead to distinguishable modulation patterns between the two emission components. If coherent curvature radiation is presented, fast radio bursts could be produced. These components provide unique simultaneous electromagnetic signatures as precursors of GW events associated with magnetized compact star mergers and short gamma-ray bursts (e.g., GRB 100717).
We investigate emission signatures of binary compact star gravitational wave (GW) sources consisting of strongly magnetized neutron stars (NSs) and/or white dwarfs (WDs) in their late-time inspiral phase. Because of electromagnetic interactions between the magnetospheres of the two compact stars, a substantial amount of energy will be extracted, and the resultant power is expected to be ∼10 38 –10 44 erg s −1 in the last few seconds before the two stars merge, when the binary system contains a NS with a surface magnetic field 10 12  G. The induced electric field in the process can accelerate charged particles up to the EeV energy range. Synchrotron radiation is emitted from energetic electrons, with radiative energies reaching the GeV energy for binary NSs and the MeV energy for NS–WD or double WD binaries. In addition, a blackbody component is also presented, and it peaks at several to hundreds keV for binary NSs and at several keV for NS–WD or double WD binaries. The strong angular dependence of the synchrotron radiation and the isotropic nature of the blackbody radiation lead to distinguishable modulation patterns between the two emission components. If coherent curvature radiation is presented, fast radio bursts could be produced. These components provide unique simultaneous electromagnetic signatures as precursors of GW events associated with magnetized compact star mergers and short gamma-ray bursts (e.g., GRB 100717).
Author Peng, Fang-Kun
Dai, Zi-Gao
Wang, Jie-Shuang
Wu, Kinwah
Author_xml – sequence: 1
  givenname: Jie-Shuang
  orcidid: 0000-0002-2662-6912
  surname: Wang
  fullname: Wang, Jie-Shuang
  email: jiesh.wang@gmail.com
  organization: Tsung-Dao Lee Institute , Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China
– sequence: 2
  givenname: Fang-Kun
  surname: Peng
  fullname: Peng, Fang-Kun
  organization: Guizhou Normal University School of Physics and Electronic Science, Guiyang 550001, People's Republic of China
– sequence: 3
  givenname: Kinwah
  surname: Wu
  fullname: Wu, Kinwah
  email: dzg@nju.edu.cn
  organization: University College London Mullard Space Science Laboratory, Holmbury St. Mary, Dorking, Surrey, RH5 6NT, UK
– sequence: 4
  givenname: Zi-Gao
  orcidid: 0000-0002-7835-8585
  surname: Dai
  fullname: Dai, Zi-Gao
  email: kinwah.wu@ucl.ac.uk
  organization: (Nanjing University) Key Laboratory of Modern Astronomy and Astrophysics , Ministry of Education, People's Republic of China
BookMark eNp9kM9LwzAUx4NMcJvePRa8Wpc0aZOeRMf8AQMFFbyFNH0dGWtSk-zgf7-WioKgl_d4j-_3_fjM0MQ6CwidE3xFBeMLklORMprzhVKQU3KEpt-tCZpijFlaUP5-gmYhbIcyK8spun72kLbgN-CT1Q509K5VGwvR6GTp9jaC75SPIXFNcmus8p99u-2UjslLVD6couNG7QKcfeU5ertbvS4f0vXT_ePyZp1qRoqYsoaCqGotSFXyUggMhAJuak50JgrIS0oIq0jZCK6B9bEWrMpUDaQQQlNO5-hinNt597GHEOXW7b3tV8qMFrlghOW0VxWjSnsXgodGahNVNM5Gr8xOEiwHWHIgIwcycoTVG_EvY-dN23_7n-VytBjX_Rzzp_wAXpZ7tg
CitedBy_id crossref_primary_10_3847_1538_4357_acefbf
crossref_primary_10_1007_s11433_024_2600_3
crossref_primary_10_3847_1538_4357_ab1fe2
crossref_primary_10_3847_2041_8213_ab40c5
crossref_primary_10_1140_epjp_s13360_021_01362_7
crossref_primary_10_1007_s41114_020_00028_7
crossref_primary_10_3847_1538_4357_aca018
crossref_primary_10_1088_1674_4527_acb9de
crossref_primary_10_1093_ptep_ptaa126
crossref_primary_10_1038_s41586_022_04841_8
crossref_primary_10_3847_1538_4357_abd7a7
crossref_primary_10_3847_1538_4357_ad4ee1
crossref_primary_10_1093_mnras_staa3794
crossref_primary_10_3847_1538_4357_ab7dbf
crossref_primary_10_1103_PhysRevD_108_024020
crossref_primary_10_3847_2041_8213_ac9b55
crossref_primary_10_1093_mnras_stad1756
crossref_primary_10_3847_1538_4357_ab3e48
crossref_primary_10_1103_PhysRevD_108_072015
crossref_primary_10_3847_2041_8213_abbfb8
crossref_primary_10_1038_s41467_024_51711_0
crossref_primary_10_1134_S1063773722070064
crossref_primary_10_3847_2041_8213_ab0b45
crossref_primary_10_1093_mnras_stae2756
crossref_primary_10_1007_s41114_022_00041_y
crossref_primary_10_1103_PhysRevD_105_124042
crossref_primary_10_3390_galaxies9040104
crossref_primary_10_3847_2041_8213_ab2248
crossref_primary_10_1017_pasa_2020_42
crossref_primary_10_1093_mnras_staa1889
crossref_primary_10_3390_universe10120441
crossref_primary_10_3847_1538_4357_adaceb
crossref_primary_10_3847_1538_4357_ad4d95
crossref_primary_10_3847_2041_8213_ab7244
crossref_primary_10_1088_1674_4527_20_4_56
crossref_primary_10_3847_1538_4357_ace358
crossref_primary_10_3847_1538_4357_ab74d0
crossref_primary_10_3847_1538_4357_aba955
crossref_primary_10_3847_1538_4357_ac5d5a
crossref_primary_10_3847_2041_8213_ab8f99
crossref_primary_10_3847_1538_4357_ac9841
Cites_doi 10.1088/0954-3899/25/8/317
10.1046/j.1365-8711.1999.02703.x
10.1051/0004-6361/201117079
10.1103/PhysRevD.90.044007
10.1126/science.aap9811
10.1103/PhysRevD.94.023001
10.1086/161195
10.1093/mnras/stx312
10.1086/171851
10.1146/annurev-nucl-102115-044819
10.1134/S1063773717010017
10.1103/PhysRevD.88.043011
10.3847/2041-8205/822/1/L7
10.1086/172995
10.1088/0004-637X/763/2/108
10.1093/mnras/235.1.51
10.1088/0004-637X/755/1/80
10.1086/310340
10.1088/1674-4527/9/7/001
10.3847/0067-0049/223/2/28
10.1093/mnras/237.3.715
10.1088/0004-637X/723/2/1711
10.3847/2041-8213/aa91c9
10.1088/1361-6382/aa61ce
10.1093/mnras/stw2640
10.1086/186493
10.1088/0954-3899/20/9/018
10.1046/j.1365-8711.2002.05190.x
10.1016/j.pss.2006.05.045
10.3847/2041-8213/aa9057
10.1088/0004-637X/777/2/103
10.1086/306394
10.3847/2041-8205/827/2/L31
10.1088/0004-637X/742/2/90
10.1086/184740
10.1103/PhysRevD.97.103016
10.1051/0004-6361:20052843
10.1038/nature24290
10.1007/s11433-017-9107-5
10.1103/PhysRevLett.119.161101
10.1046/j.1365-8711.2001.04103.x
10.1051/0004-6361:20064862
10.1086/149947
10.1051/0004-6361/201424104
10.1103/RevModPhys.38.626
10.1103/PhysRevLett.108.011102
10.1126/science.aap9855
10.1088/2041-8205/757/1/L3
10.1038/217935a0
10.1111/j.1365-2966.2004.07363.x
10.1051/0004-6361/201116530
10.3847/2041-8213/aa905d
10.3847/2041-8213/aa920c
10.1103/PhysRevD.88.021504
10.1016/j.pss.2006.05.016
10.1146/annurev.aa.22.090184.002233
10.1038/340126a0
10.1086/171983
10.1051/0004-6361:20040455
10.1103/PhysRev.136.B1224
10.1051/0004-6361:20054696
10.1093/mnras/270.3.611
10.1086/184741
10.1086/311546
10.3847/2041-8213/aa8f41
10.3847/2041-8213/aa8f94
10.1051/0004-6361:20040417
10.1086/150119
10.1088/0004-637X/745/1/2
10.1023/A:1012221527425
10.1086/175439
10.1093/mnras/252.3.386
10.3847/0004-637X/829/1/27
10.1086/309004
ContentType Journal Article
Copyright 2018. The American Astronomical Society. All rights reserved.
Copyright IOP Publishing Nov 20, 2018
Copyright_xml – notice: 2018. The American Astronomical Society. All rights reserved.
– notice: Copyright IOP Publishing Nov 20, 2018
DBID AAYXX
CITATION
7TG
8FD
H8D
KL.
L7M
DOI 10.3847/1538-4357/aae531
DatabaseName CrossRef
Meteorological & Geoastrophysical Abstracts
Technology Research Database
Aerospace Database
Meteorological & Geoastrophysical Abstracts - Academic
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Aerospace Database
Meteorological & Geoastrophysical Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
Meteorological & Geoastrophysical Abstracts - Academic
DatabaseTitleList Aerospace Database

CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Astronomy & Astrophysics
Physics
DocumentTitleAlternate Pre-merger Electromagnetic Counterparts of Binary Compact Stars
EISSN 1538-4357
ExternalDocumentID 10_3847_1538_4357_aae531
apjaae531
GroupedDBID -DZ
-~X
123
1JI
23N
2FS
2WC
4.4
6J9
85S
AAFWJ
AAGCD
AAJIO
AALHV
ABHWH
ACBEA
ACGFS
ACHIP
ACNCT
ADACN
AEFHF
AENEX
AFPKN
AKPSB
ALMA_UNASSIGNED_HOLDINGS
ASPBG
ATQHT
AVWKF
AZFZN
CJUJL
CRLBU
CS3
EBS
EJD
F5P
FRP
GROUPED_DOAJ
IJHAN
IOP
KOT
M~E
N5L
O3W
O43
OK1
PJBAE
RIN
RNS
ROL
SJN
SY9
T37
TN5
TR2
WH7
XSW
AAYXX
CITATION
7TG
8FD
AEINN
H8D
KL.
L7M
ID FETCH-LOGICAL-c416t-4f3e8bdc81b979880e13e0fd71c286e593114b19f87ce4f87d84b2ade1688c373
IEDL.DBID IOP
ISSN 0004-637X
IngestDate Wed Aug 13 11:35:06 EDT 2025
Tue Jul 01 04:09:38 EDT 2025
Thu Apr 24 23:00:43 EDT 2025
Wed Aug 21 03:33:01 EDT 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c416t-4f3e8bdc81b979880e13e0fd71c286e593114b19f87ce4f87d84b2ade1688c373
Notes High-Energy Phenomena and Fundamental Physics
AAS11126
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-2662-6912
0000-0002-7835-8585
OpenAccessLink https://iopscience.iop.org/article/10.3847/1538-4357/aae531/pdf
PQID 2365841453
PQPubID 4562441
PageCount 9
ParticipantIDs proquest_journals_2365841453
crossref_primary_10_3847_1538_4357_aae531
iop_journals_10_3847_1538_4357_aae531
crossref_citationtrail_10_3847_1538_4357_aae531
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-11-20
PublicationDateYYYYMMDD 2018-11-20
PublicationDate_xml – month: 11
  year: 2018
  text: 2018-11-20
  day: 20
PublicationDecade 2010
PublicationPlace Philadelphia
PublicationPlace_xml – name: Philadelphia
PublicationTitle The Astrophysical journal
PublicationTitleAbbrev APJ
PublicationTitleAlternate Astrophys. J
PublicationYear 2018
Publisher The American Astronomical Society
IOP Publishing
Publisher_xml – name: The American Astronomical Society
– name: IOP Publishing
References Geppert (apjaae531bib17) 2004; 426
Mottez (apjaae531bib43) 2011a; 532
Savchenko (apjaae531bib58) 2017; 848
Wu (apjaae531bib69) 2002; 331
Margutti (apjaae531bib40) 2017; 848
Troja (apjaae531bib59) 2017; 551
Paschalidis (apjaae531bib52) 2017; 34
Lai (apjaae531bib33) 1994; 270
Eichler (apjaae531bib14) 1989; 340
Lai (apjaae531bib34) 2012; 757
Abbott (apjaae531bib1) 2017a; 848
Bildsten (apjaae531bib9) 1992; 400
Anguelov (apjaae531bib6) 1999; 25
Li (apjaae531bib37) 2018; 61
Dall’Osso (apjaae531bib11) 2006; 447
Piddington (apjaae531bib55) 1968; 217
Page (apjaae531bib50) 1995; 442
Laine (apjaae531bib35) 2012; 745
Geppert (apjaae531bib18) 2006; 457
Wang (apjaae531bib65) 2016; 822
Margalit (apjaae531bib39) 2017; 465
Abbott (apjaae531bib3) 2017c; 848
Goldstein (apjaae531bib21) 2017; 848
Goldreich (apjaae531bib19) 1969; 157
Hess (apjaae531bib27) 2007; 55
Abbott (apjaae531bib2) 2017b; 119
Piro (apjaae531bib56) 2012; 755
Zarka (apjaae531bib72) 2007; 55
Mottez (apjaae531bib45) 2014; 569
Erber (apjaae531bib15) 1966; 38
Mottez (apjaae531bib44) 2011b; 532
Dai (apjaae531bib11a) 2016; 829
Kochanek (apjaae531bib32) 1992; 398
Goodman (apjaae531bib22) 1986; 308
Fernández (apjaae531bib16) 2016; 66
Minaev (apjaae531bib42) 2017; 43
Ho (apjaae531bib29) 1999; 308
Peters (apjaae531bib54) 1964; 136
Lyubarskii (apjaae531bib38) 1998; 337
Zenati (apjaae531bib74a) 2018
Harding (apjaae531bib26) 1998; 508
Ponce (apjaae531bib57) 2014; 90
Narayan (apjaae531bib46) 1992; 395
Baring (apjaae531bib8) 1988; 235
Kirk (apjaae531bib31) 2009
D’Orazio (apjaae531bib13) 2016; 94
Paczynski (apjaae531bib49) 1986; 308
Wang (apjaae531bib64) 2018; 97
Tsang (apjaae531bib62) 2012; 108
Fernández (apjaae531bib16a) 2013; 763
Greenstein (apjaae531bib23) 1983; 271
Zhang (apjaae531bib74) 2017
Band (apjaae531bib7) 1993; 413
Goldreich (apjaae531bib20) 1969; 156
Zhang (apjaae531bib74b) 2016; 827
Vietri (apjaae531bib63) 1996; 471
Willes (apjaae531bib67) 2005; 432
McWilliams (apjaae531bib41) 2011; 742
Bobrick (apjaae531bib10a) 2017; 467
Willes (apjaae531bib66) 2004; 348
Hillas (apjaae531bib28) 1984; 22
Narayana Bhat (apjaae531bib47) 2016; 223
Palenzuela (apjaae531bib51) 2013; 88
Paschalidis (apjaae531bib53) 2013; 88
Troja (apjaae531bib60) 2010; 723
Tsang (apjaae531bib61) 2013; 777
Alexander (apjaae531bib5) 2017; 848
Norton (apjaae531bib48) 1989; 237
Hallinan (apjaae531bib24) 2017; 358
Akhiezer (apjaae531bib4) 1994; 20
Ioka (apjaae531bib30) 2000; 537
Zarka (apjaae531bib73) 2001; 277
Coulter (apjaae531bib10) 2017; 358
Dall’Osso (apjaae531bib12) 2007; 464
Li (apjaae531bib36) 1998; 503
Wu (apjaae531bib71) 1991; 252
Hansen (apjaae531bib25) 2001; 322
Wu (apjaae531bib68) 2009; 9
Wu (apjaae531bib70) 2008; 8
References_xml – volume: 25
  start-page: 1755
  year: 1999
  ident: apjaae531bib6
  publication-title: JPhG
  doi: 10.1088/0954-3899/25/8/317
– volume: 308
  start-page: 153
  year: 1999
  ident: apjaae531bib29
  publication-title: MNRAS
  doi: 10.1046/j.1365-8711.1999.02703.x
– volume: 532
  start-page: A22
  year: 2011a
  ident: apjaae531bib43
  publication-title: A&A
  doi: 10.1051/0004-6361/201117079
– volume: 90
  start-page: 044007
  year: 2014
  ident: apjaae531bib57
  publication-title: PhRvD
  doi: 10.1103/PhysRevD.90.044007
– volume: 358
  start-page: 1556
  year: 2017
  ident: apjaae531bib10
  doi: 10.1126/science.aap9811
– volume: 94
  year: 2016
  ident: apjaae531bib13
  publication-title: PhRvD
  doi: 10.1103/PhysRevD.94.023001
– volume: 271
  start-page: 283
  year: 1983
  ident: apjaae531bib23
  publication-title: ApJ
  doi: 10.1086/161195
– volume: 467
  start-page: 3556
  year: 2017
  ident: apjaae531bib10a
  publication-title: MNRAS
  doi: 10.1093/mnras/stx312
– volume: 398
  start-page: 234
  year: 1992
  ident: apjaae531bib32
  publication-title: ApJ
  doi: 10.1086/171851
– volume: 66
  start-page: 23
  year: 2016
  ident: apjaae531bib16
  publication-title: ARNPS
  doi: 10.1146/annurev-nucl-102115-044819
– year: 2018
  ident: apjaae531bib74a
– volume: 43
  start-page: 1
  year: 2017
  ident: apjaae531bib42
  publication-title: AstL
  doi: 10.1134/S1063773717010017
– volume: 88
  start-page: 043011
  year: 2013
  ident: apjaae531bib51
  publication-title: PhRvD
  doi: 10.1103/PhysRevD.88.043011
– volume: 822
  start-page: L7
  year: 2016
  ident: apjaae531bib65
  publication-title: ApJL
  doi: 10.3847/2041-8205/822/1/L7
– volume: 413
  start-page: 281
  year: 1993
  ident: apjaae531bib7
  publication-title: ApJ
  doi: 10.1086/172995
– volume: 763
  start-page: 108
  year: 2013
  ident: apjaae531bib16a
  publication-title: ApJ
  doi: 10.1088/0004-637X/763/2/108
– volume: 235
  start-page: 51
  year: 1988
  ident: apjaae531bib8
  publication-title: MNRAS
  doi: 10.1093/mnras/235.1.51
– volume: 755
  start-page: 80
  year: 2012
  ident: apjaae531bib56
  publication-title: ApJ
  doi: 10.1088/0004-637X/755/1/80
– volume: 471
  start-page: L95
  year: 1996
  ident: apjaae531bib63
  publication-title: ApJL
  doi: 10.1086/310340
– volume: 9
  start-page: 725
  year: 2009
  ident: apjaae531bib68
  publication-title: RAA
  doi: 10.1088/1674-4527/9/7/001
– volume: 223
  start-page: 28
  year: 2016
  ident: apjaae531bib47
  publication-title: ApJS
  doi: 10.3847/0067-0049/223/2/28
– volume: 237
  start-page: 715
  year: 1989
  ident: apjaae531bib48
  publication-title: MNRAS
  doi: 10.1093/mnras/237.3.715
– volume: 723
  start-page: 1711
  year: 2010
  ident: apjaae531bib60
  publication-title: ApJ
  doi: 10.1088/0004-637X/723/2/1711
– volume: 848
  start-page: L12
  year: 2017c
  ident: apjaae531bib3
  publication-title: ApJL
  doi: 10.3847/2041-8213/aa91c9
– volume: 34
  start-page: 084002
  year: 2017
  ident: apjaae531bib52
  publication-title: CQGra
  doi: 10.1088/1361-6382/aa61ce
– volume: 465
  start-page: 2790
  year: 2017
  ident: apjaae531bib39
  publication-title: MNRAS
  doi: 10.1093/mnras/stw2640
– volume: 395
  start-page: L83
  year: 1992
  ident: apjaae531bib46
  publication-title: ApJL
  doi: 10.1086/186493
– volume: 20
  start-page: 1499
  year: 1994
  ident: apjaae531bib4
  publication-title: JPhG
  doi: 10.1088/0954-3899/20/9/018
– volume: 331
  start-page: 221
  year: 2002
  ident: apjaae531bib69
  publication-title: MNRAS
  doi: 10.1046/j.1365-8711.2002.05190.x
– volume: 55
  start-page: 598
  year: 2007
  ident: apjaae531bib72
  publication-title: P&SS
  doi: 10.1016/j.pss.2006.05.045
– start-page: 421
  year: 2009
  ident: apjaae531bib31
– volume: 337
  start-page: 433
  year: 1998
  ident: apjaae531bib38
  publication-title: A&A
– volume: 848
  start-page: L20
  year: 2017
  ident: apjaae531bib40
  publication-title: ApJL
  doi: 10.3847/2041-8213/aa9057
– volume: 777
  start-page: 103
  year: 2013
  ident: apjaae531bib61
  publication-title: ApJ
  doi: 10.1088/0004-637X/777/2/103
– volume: 508
  start-page: 328
  year: 1998
  ident: apjaae531bib26
  publication-title: ApJ
  doi: 10.1086/306394
– volume: 827
  start-page: L31
  year: 2016
  ident: apjaae531bib74b
  publication-title: ApJL
  doi: 10.3847/2041-8205/827/2/L31
– volume: 742
  start-page: 90
  year: 2011
  ident: apjaae531bib41
  publication-title: ApJ
  doi: 10.1088/0004-637X/742/2/90
– volume: 308
  start-page: L43
  year: 1986
  ident: apjaae531bib49
  publication-title: ApJL
  doi: 10.1086/184740
– volume: 97
  start-page: 103016
  year: 2018
  ident: apjaae531bib64
  publication-title: PhRvD
  doi: 10.1103/PhysRevD.97.103016
– volume: 447
  start-page: 785
  year: 2006
  ident: apjaae531bib11
  publication-title: A&A
  doi: 10.1051/0004-6361:20052843
– volume: 551
  start-page: 71
  year: 2017
  ident: apjaae531bib59
  publication-title: Natur
  doi: 10.1038/nature24290
– volume: 61
  start-page: 31011
  year: 2018
  ident: apjaae531bib37
  publication-title: SCPMA
  doi: 10.1007/s11433-017-9107-5
– volume: 119
  start-page: 161101
  year: 2017b
  ident: apjaae531bib2
  publication-title: PhRvL
  doi: 10.1103/PhysRevLett.119.161101
– volume: 322
  start-page: 695
  year: 2001
  ident: apjaae531bib25
  publication-title: MNRAS
  doi: 10.1046/j.1365-8711.2001.04103.x
– volume: 464
  start-page: 417
  year: 2007
  ident: apjaae531bib12
  publication-title: A&A
  doi: 10.1051/0004-6361:20064862
– volume: 156
  start-page: 59
  year: 1969
  ident: apjaae531bib20
  publication-title: ApJ
  doi: 10.1086/149947
– volume: 569
  start-page: A86
  year: 2014
  ident: apjaae531bib45
  publication-title: A&A
  doi: 10.1051/0004-6361/201424104
– volume: 38
  start-page: 626
  year: 1966
  ident: apjaae531bib15
  publication-title: RvMP
  doi: 10.1103/RevModPhys.38.626
– volume: 108
  start-page: 011102
  year: 2012
  ident: apjaae531bib62
  publication-title: PhRvL
  doi: 10.1103/PhysRevLett.108.011102
– volume: 358
  start-page: 1579
  year: 2017
  ident: apjaae531bib24
  doi: 10.1126/science.aap9855
– volume: 757
  start-page: L3
  year: 2012
  ident: apjaae531bib34
  publication-title: ApJL
  doi: 10.1088/2041-8205/757/1/L3
– volume: 217
  start-page: 935
  year: 1968
  ident: apjaae531bib55
  publication-title: Natur
  doi: 10.1038/217935a0
– volume: 348
  start-page: 285
  year: 2004
  ident: apjaae531bib66
  publication-title: MNRAS
  doi: 10.1111/j.1365-2966.2004.07363.x
– volume: 532
  start-page: A21
  year: 2011b
  ident: apjaae531bib44
  publication-title: A&A
  doi: 10.1051/0004-6361/201116530
– volume: 848
  start-page: L21
  year: 2017
  ident: apjaae531bib5
  publication-title: ApJL
  doi: 10.3847/2041-8213/aa905d
– volume: 848
  start-page: L13
  year: 2017a
  ident: apjaae531bib1
  publication-title: ApJL
  doi: 10.3847/2041-8213/aa920c
– volume: 88
  start-page: 021504
  year: 2013
  ident: apjaae531bib53
  publication-title: PhRvD
  doi: 10.1103/PhysRevD.88.021504
– year: 2017
  ident: apjaae531bib74
– volume: 55
  start-page: 89
  year: 2007
  ident: apjaae531bib27
  publication-title: P&SS
  doi: 10.1016/j.pss.2006.05.016
– volume: 22
  start-page: 425
  year: 1984
  ident: apjaae531bib28
  publication-title: ARA&A
  doi: 10.1146/annurev.aa.22.090184.002233
– volume: 340
  start-page: 126
  year: 1989
  ident: apjaae531bib14
  publication-title: Natur
  doi: 10.1038/340126a0
– volume: 400
  start-page: 175
  year: 1992
  ident: apjaae531bib9
  publication-title: ApJ
  doi: 10.1086/171983
– volume: 426
  start-page: 267
  year: 2004
  ident: apjaae531bib17
  publication-title: A&A
  doi: 10.1051/0004-6361:20040455
– volume: 136
  start-page: 1224
  year: 1964
  ident: apjaae531bib54
  publication-title: PhRv
  doi: 10.1103/PhysRev.136.B1224
– volume: 457
  start-page: 937
  year: 2006
  ident: apjaae531bib18
  publication-title: A&A
  doi: 10.1051/0004-6361:20054696
– volume: 270
  start-page: 611
  year: 1994
  ident: apjaae531bib33
  publication-title: MNRAS
  doi: 10.1093/mnras/270.3.611
– volume: 308
  start-page: L47
  year: 1986
  ident: apjaae531bib22
  publication-title: ApJL
  doi: 10.1086/184741
– volume: 8
  start-page: 169
  year: 2008
  ident: apjaae531bib70
  publication-title: ChJAS
– volume: 503
  start-page: L151
  year: 1998
  ident: apjaae531bib36
  publication-title: ApJL
  doi: 10.1086/311546
– volume: 848
  start-page: L14
  year: 2017
  ident: apjaae531bib21
  publication-title: ApJL
  doi: 10.3847/2041-8213/aa8f41
– volume: 848
  start-page: L15
  year: 2017
  ident: apjaae531bib58
  publication-title: ApJL
  doi: 10.3847/2041-8213/aa8f94
– volume: 432
  start-page: 1091
  year: 2005
  ident: apjaae531bib67
  publication-title: A&A
  doi: 10.1051/0004-6361:20040417
– volume: 157
  start-page: 869
  year: 1969
  ident: apjaae531bib19
  publication-title: ApJ
  doi: 10.1086/150119
– volume: 745
  start-page: 2
  year: 2012
  ident: apjaae531bib35
  publication-title: ApJ
  doi: 10.1088/0004-637X/745/1/2
– volume: 277
  start-page: 293
  year: 2001
  ident: apjaae531bib73
  publication-title: Ap&SS
  doi: 10.1023/A:1012221527425
– volume: 442
  start-page: 273
  year: 1995
  ident: apjaae531bib50
  publication-title: ApJ
  doi: 10.1086/175439
– volume: 252
  start-page: 386
  year: 1991
  ident: apjaae531bib71
  publication-title: MNRAS
  doi: 10.1093/mnras/252.3.386
– volume: 829
  start-page: 27
  year: 2016
  ident: apjaae531bib11a
  publication-title: ApJ
  doi: 10.3847/0004-637X/829/1/27
– volume: 537
  start-page: 327
  year: 2000
  ident: apjaae531bib30
  publication-title: ApJ
  doi: 10.1086/309004
SSID ssj0004299
Score 2.521891
Snippet We investigate emission signatures of binary compact star gravitational wave (GW) sources consisting of strongly magnetized neutron stars (NSs) and/or white...
SourceID proquest
crossref
iop
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 19
SubjectTerms Astrophysics
binaries: close
Binary stars
Black body radiation
Blackbody
Charged particles
Charging
Electric fields
Electromagnetic interactions
Emission analysis
Energy
Gamma ray bursts
Gamma rays
Gravitational waves
Magnetic fields
Magnetospheres
Neutron stars
Radiation
Radio bursts
Signatures
Star mergers
stars: magnetic field
stars: neutron
Synchrotron radiation
White dwarf stars
white dwarfs
Title Pre-merger Electromagnetic Counterparts of Binary Compact Stars
URI https://iopscience.iop.org/article/10.3847/1538-4357/aae531
https://www.proquest.com/docview/2365841453
Volume 868
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NT8IwFG8QY-LFD9SAoulBTTwU2LqPLh4MGgkxUThI5GCydF3rQWGEjYP-9b6uA-JHiPHS9PData_te792_b0idMoBA8d2zIiMVEDA-nHChOcQRWE2eypqKaoJzvcPXnfg3A3dYQldLrgwyaQw_Q3ImkDBRoV6fVOwpc18jYKX95ucS1dzqNcpA8ep2Xu9_pIUaQcF9nWIR_2h-Uf5aw1ffNIafPeHYc69TWcbPc_baS6ZvDZmWdQQH99COP6zIztoq0ChuG1Ed1FJjiuo2k71uXgyesfnOM-bY4-0gjb6JreHrvpTSXLK5hTfmid0RvxlrKmQWPPb9RVGaEGKE4Wvc64vzk2OyDDg2mm6jwad28ebLikeYSACsFpGHEUli2IB8DbQsc1a0qKypWLfEjbzpBtQ2FFFVqCYL6QDacycyOaxtDzGBPXpASqPk7GsIqwCS_HI5SKGPWBsC8YDKOApFXhMwuSooeZ8GEJRRCjXD2W8hbBT0RoLtcZCrbHQaKyGLhYlJiY6xwrZMxiIsFii6Qq5-nzsl8I21UjNclx6-MdqjtAmYCumaYt2q47K2XQmjwG_ZNFJPk8h7dGnT1zY6GQ
linkProvider IOP Publishing
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwELagCMSCoIBaKOABkBhMmjgPZ0IFWpVX6UBFt8jxg4WmVVMG_j3nOKVCoIol8mA7yfl8952T7w6hUw4YWHqSEZXqmID144SJ0CeagjaHOm1qagjOT72wO_Dvh8GwrHNacGHGk9L0X0LTJgq2IjT7m4ItdYo9Cl4-cjhXoELOROpVtBZQcDWg0M_0dUGM9OIS__okpNHQfqf8c5YffmkV7v3LOBcep7ONtkqoiFv2wXbQisqqqNbKzeH1ePSJz3HRtmcTeRWt921rF131p4oUvMopbts6NyP-lhm-IjYkdPOfIbxvjscaXxeEXFzYBTHDAD6n-R4adNovN11SVkogAgDVjPiaKpZKARg0NgnImsqlqqll5AqPhSqIKYQ9qRtrFgnlw1UyP_W4VG7ImKAR3UeVbJypGsI6djVPAy4kBGrSE4zHMCDUOg6ZghWsI2cup0SUacRNNYv3BMIJI9nESDYxkk2sZOvo4nvExKbQWNL3DESflPsoX9KvMV-cRWePGjjl-gE9-Oc0J2ijf9tJHu96D4doE7AQMzRDr9lAldn0Qx0B3pilx4VOfQGfpcwm
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Pre-merger+Electromagnetic+Counterparts+of+Binary+Compact+Stars&rft.jtitle=The+Astrophysical+journal&rft.au=Wang%2C+Jie-Shuang&rft.au=Peng%2C+Fang-Kun&rft.au=Wu%2C+Kinwah&rft.au=Dai%2C+Zi-Gao&rft.date=2018-11-20&rft.issn=0004-637X&rft.eissn=1538-4357&rft.volume=868&rft.issue=1&rft.spage=19&rft_id=info:doi/10.3847%2F1538-4357%2Faae531&rft.externalDBID=n%2Fa&rft.externalDocID=10_3847_1538_4357_aae531
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0004-637X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0004-637X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0004-637X&client=summon