The Korean Integrated Model (KIM) System for Global Weather Forecasting
The Korea Institute of Atmospheric Prediction Systems (KIAPS) began a national project to develop a new global atmospheric model system in 2011. The ultimate goal of this 9-year project is to replace the current operational model at the Korea Meteorological Administration (KMA), which was adopted fr...
Saved in:
Published in | Asia-Pacific journal of atmospheric sciences Vol. 54; no. Suppl 1; pp. 267 - 292 |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Seoul
Korean Meteorological Society
01.06.2018
Springer Nature B.V 한국기상학회 |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The Korea Institute of Atmospheric Prediction Systems (KIAPS) began a national project to develop a new global atmospheric model system in 2011. The ultimate goal of this 9-year project is to replace the current operational model at the Korea Meteorological Administration (KMA), which was adopted from the United Kingdom’s Meteorological Office’s unified model (UM) in 2010. The 12-km Korean Integrated Model (KIM) system, consisting of a spectral-element non-hydrostatic dynamical core on a cubed sphere grid and a state-of-the-art physics parameterization package, has been launched in a real-time forecast framework, with initial conditions obtained via the advanced hybrid four-dimensional ensemble variational data assimilation (4DEnVar) over its native grid. A development strategy for KIM and the evolution of its performance in medium-range forecasts toward a world-class global forecast system are described. Outstanding issues in KIM 3.1 as of February 2018 are discussed, along with a future plan for operational deployment in 2020. |
---|---|
AbstractList | The Korea Institute of Atmospheric Prediction Systems (KIAPS) began a national project to develop a new global atmospheric model system in 2011. The ultimate goal of this 9-year project is to replace the current operational model at the Korea Meteorological Administration (KMA), which was adopted from the United Kingdom’s Meteorological Office’s unified model (UM) in 2010.
The 12-km Korean Integrated Model (KIM) system, consisting of a spectral-element non-hydrostatic dynamical core on a cubed sphere grid and a state-of-the-art physics parameterization package, has been launched in a real-time forecast framework, with initial conditions obtained via the advanced hybrid four-dimensional ensemble variational data assimilation (4DEnVar) over its native grid. A development strategy for KIM and the evolution of its performance in medium-range forecasts toward a world-class global forecast system are described. Outstanding issues in KIM 3.1 as of February 2018 are discussed, along with a future plan for operational deployment in 2020. KCI Citation Count: 30 The Korea Institute of Atmospheric Prediction Systems (KIAPS) began a national project to develop a new global atmospheric model system in 2011. The ultimate goal of this 9-year project is to replace the current operational model at the Korea Meteorological Administration (KMA), which was adopted from the United Kingdom’s Meteorological Office’s unified model (UM) in 2010. The 12-km Korean Integrated Model (KIM) system, consisting of a spectral-element non-hydrostatic dynamical core on a cubed sphere grid and a state-of-the-art physics parameterization package, has been launched in a real-time forecast framework, with initial conditions obtained via the advanced hybrid four-dimensional ensemble variational data assimilation (4DEnVar) over its native grid. A development strategy for KIM and the evolution of its performance in medium-range forecasts toward a world-class global forecast system are described. Outstanding issues in KIM 3.1 as of February 2018 are discussed, along with a future plan for operational deployment in 2020. |
Author | Kwon, In-Hyuk Esther Kim, Jung-Eun Kim, Tae-Hun Choi, Suk-Jin Kim, Junghan Hong, Song-You Lee, Eun-Hee Kim, Dong-Il Kwon, Young Cheol Park, Rae-Seol |
Author_xml | – sequence: 1 givenname: Song-You surname: Hong fullname: Hong, Song-You email: songyou.hong@kiaps.org organization: Korea Institute of Atmospheric Prediction Systems (KIAPS), Korea Institute of Atmospheric Prediction Systems (KIAPS) – sequence: 2 givenname: Young Cheol surname: Kwon fullname: Kwon, Young Cheol organization: Korea Institute of Atmospheric Prediction Systems (KIAPS) – sequence: 3 givenname: Tae-Hun surname: Kim fullname: Kim, Tae-Hun organization: Korea Institute of Atmospheric Prediction Systems (KIAPS) – sequence: 4 givenname: Jung-Eun surname: Esther Kim fullname: Esther Kim, Jung-Eun organization: Korea Institute of Atmospheric Prediction Systems (KIAPS) – sequence: 5 givenname: Suk-Jin surname: Choi fullname: Choi, Suk-Jin organization: Korea Institute of Atmospheric Prediction Systems (KIAPS) – sequence: 6 givenname: In-Hyuk surname: Kwon fullname: Kwon, In-Hyuk organization: Korea Institute of Atmospheric Prediction Systems (KIAPS) – sequence: 7 givenname: Junghan surname: Kim fullname: Kim, Junghan organization: Korea Institute of Atmospheric Prediction Systems (KIAPS) – sequence: 8 givenname: Eun-Hee surname: Lee fullname: Lee, Eun-Hee organization: Korea Institute of Atmospheric Prediction Systems (KIAPS) – sequence: 9 givenname: Rae-Seol surname: Park fullname: Park, Rae-Seol organization: Korea Institute of Atmospheric Prediction Systems (KIAPS) – sequence: 10 givenname: Dong-Il surname: Kim fullname: Kim, Dong-Il organization: Korea Institute of Atmospheric Prediction Systems (KIAPS) |
BackLink | https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART002364970$$DAccess content in National Research Foundation of Korea (NRF) |
BookMark | eNp9kM1OAjEURhuDiYg8gLsmbmQx2p9hpl0SIkiAmCjGZdOWDgwMLbZlwds7OBoTE119d3HOvTffJWhZZw0A1xjdYYTy-4ApTmmCMEsQIizhZ6CNeZ4lOe_j1vecUXoBuiFsUA0hTDjBbTBerA2cOm-khRMbzcrLaJZw7pamgrfTybwHX44hmh0snIfjyilZwTcj49p4OKo9LUMs7eoKnBeyCqb7lR3wOnpYDB-T2dN4MhzMEp3iLCapUkvSp1whyTTBVJlUyoJwmRGtCC-UTjVTrCDG5FJxxsiSEKl1QXPCOcppB_SavdYXYqtL4WT5mSsntl4MnhcTQfsUpZTV7E3D7r17P5gQxcYdvK3fEwRlnOEUUVJTuKG0dyF4U4i9L3fSHwVG4lSvaOoVdb3iVK_gtZP_cnQZZSydjV6W1b8macxQX7Er439--lv6AOqijkE |
CitedBy_id | crossref_primary_10_1175_MWR_D_20_0102_1 crossref_primary_10_1038_s41612_025_00898_0 crossref_primary_10_1002_qj_3440 crossref_primary_10_1175_MWR_D_21_0086_1 crossref_primary_10_1007_s00382_024_07210_5 crossref_primary_10_5194_gmd_15_8541_2022 crossref_primary_10_1109_TGRS_2023_3335930 crossref_primary_10_3390_atmos15040479 crossref_primary_10_3390_meteorology2030018 crossref_primary_10_5572_KOSAE_2022_38_6_933 crossref_primary_10_1007_s13143_022_00297_y crossref_primary_10_1016_j_atmosres_2025_107990 crossref_primary_10_1080_15715124_2023_2270971 crossref_primary_10_1007_s13143_024_00365_5 crossref_primary_10_1175_MWR_D_17_0350_1 crossref_primary_10_3390_atmos10120818 crossref_primary_10_1007_s13143_024_00387_z crossref_primary_10_1029_2021MS002592 crossref_primary_10_3390_atmos12091194 crossref_primary_10_5194_gmd_14_4465_2021 crossref_primary_10_1007_s13143_024_00382_4 crossref_primary_10_1007_s13143_019_00137_6 crossref_primary_10_1016_j_ast_2021_107060 crossref_primary_10_1007_s44273_023_00016_7 crossref_primary_10_1007_s00382_023_06905_5 crossref_primary_10_1029_2021EA001643 crossref_primary_10_1029_2022EA002419 crossref_primary_10_1029_2018JD028678 crossref_primary_10_3390_atmos13111805 crossref_primary_10_1029_2020JC017158 crossref_primary_10_3390_atmos12091089 crossref_primary_10_1029_2021MS002540 crossref_primary_10_1007_s00376_024_3232_9 crossref_primary_10_1007_s13143_024_00358_4 crossref_primary_10_5194_gmd_14_6241_2021 crossref_primary_10_2151_sola_2020_025 crossref_primary_10_1002_asl_1138 crossref_primary_10_1007_s13143_018_0021_3 crossref_primary_10_3390_app10249010 crossref_primary_10_3390_atmos16030292 crossref_primary_10_3390_rs15020435 crossref_primary_10_1002_qj_3541 crossref_primary_10_1038_s41598_019_52157_x crossref_primary_10_1007_s13143_018_0029_8 crossref_primary_10_1029_2020MS002160 crossref_primary_10_1029_2020JD033084 crossref_primary_10_1007_s13143_024_00368_2 crossref_primary_10_1007_s13143_023_00344_2 crossref_primary_10_1007_s00382_024_07272_5 crossref_primary_10_1029_2022MS003283 crossref_primary_10_3390_atmos14111680 crossref_primary_10_3390_atmos11070704 crossref_primary_10_1007_s13143_018_0030_2 crossref_primary_10_1007_s13143_022_00281_6 crossref_primary_10_1002_qj_4286 crossref_primary_10_1029_2018MS001398 crossref_primary_10_1029_2021MS002609 crossref_primary_10_1007_s13143_018_0018_y crossref_primary_10_1175_MWR_D_18_0387_1 crossref_primary_10_5467_JKESS_2024_45_1_19 crossref_primary_10_1016_j_atmosenv_2023_120201 crossref_primary_10_1002_qj_3862 crossref_primary_10_1016_j_marpolbul_2023_115254 crossref_primary_10_1007_s13143_018_0022_2 crossref_primary_10_1007_s13143_024_00376_2 crossref_primary_10_1007_s00703_018_0647_9 crossref_primary_10_1016_j_agrformet_2024_110256 |
Cites_doi | 10.1137/120876034 10.1175/MWR-D-12-00270.1 10.1007/s13143-018-0020-4 10.1175/MWR-D-14-00089.1 10.1007/s13143-018-0023-1 10.1002/qj.665 10.1007/s13143-014-0039-0 10.1175/MWR-D-15-0255.1 10.1175/WAF-D-13-00143.1 10.1175/JAS-D-12-0290.1 10.1256/qj.02.74 10.1175/1520-0493(1972)100<0136:CFAOTP>2.3.CO;2 10.1007/s13143-018-0013-3 10.1175/1520-0493(1993)121<3040:ROCILS>2.0.CO;2 10.1007/s13143-013-0023-0 10.1256/qj.05.129 10.1007/s13143-017-0043-2 10.1175/MWR-D-16-0034.1 10.1175/JHM-D-11-0117.1 10.1175/MWR3121.1 10.1175/MWR-D-13-00170.1 10.1175/1520-0426(2000)017<0525:ARTLSI>2.0.CO;2 10.1007/s13143-016-0005-0 10.1175/MWR2830.1 10.1002/2015JD024230 10.1175/MWR-D-14-00195.1 10.1175/1520-0469(1987)044<1775:TEOOEG>2.0.CO;2 10.1002/2017JD027598 10.1175/BAMS-D-17-0266.1 10.1175/1520-0493(1980)108<1279:SMATNM>2.0.CO;2 10.1175/BAMS-D-15-00278.1 10.1007/s13143-018-0029-8 10.1175/WAF-D-10-05038.1 10.1002/qj.2378 10.1175/1520-0493(2002)130<0319:TOGIHG>2.0.CO;2 10.1002/qj.49712555904 10.1175/1520-0469(2001)058<1837:AUSPFN>2.0.CO;2 10.1002/2017JA023860 10.1002/qj.1899 10.1175/1520-0493(2004)132<0103:ARATIM>2.0.CO;2 10.1029/2008JD009944 10.1006/jcph.1996.5554 10.1029/2002JD003296 10.1175/MWR3199.1 10.1175/1520-0434(1989)004<0335:DOTNGD>2.0.CO;2 10.1002/2017MS000965 10.1007/s13143-014-0029-2 10.1016/j.jcp.2016.12.001 10.1175/2007WAF2007030.1 10.1175/MWR-D-13-00016.1 10.1155/2016/5070154 10.1007/s13143-018-0022-2 10.1002/qj.197 10.1177/1094342011428142 10.1007/s13143-018-0027-x 10.1175/MWR-D-15-0273.1 10.1175/MWR-D-11-00215.1 10.1175/MWR-D-14-00116.1 10.1175/1520-0469(1998)055<3299:MFBTII>2.0.CO;2 10.1002/qj.2054 10.1007/s13143-018-0030-2 10.1175/1520-0469(1995)052<1875:IOOGWP>2.0.CO;2 10.2151/jmsj1965.61.6_812 10.5194/gmd-7-2717-2014 10.1016/j.fluiddyn.2004.03.003 10.1002/2017MS000994 10.1175/1520-0493(1989)117<1779:ACMFSF>2.0.CO;2 10.1175/2011BAMS3224.1 10.1029/2009JD013253 10.1175/MWR-D-12-00352.1 |
ContentType | Journal Article |
Copyright | Korean Meteorological Society and Springer Nature B.V. 2018 Copyright Springer Science & Business Media 2018 |
Copyright_xml | – notice: Korean Meteorological Society and Springer Nature B.V. 2018 – notice: Copyright Springer Science & Business Media 2018 |
DBID | AAYXX CITATION 7TG 7TN F1W H96 KL. L.G ACYCR |
DOI | 10.1007/s13143-018-0028-9 |
DatabaseName | CrossRef Meteorological & Geoastrophysical Abstracts Oceanic Abstracts ASFA: Aquatic Sciences and Fisheries Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Meteorological & Geoastrophysical Abstracts - Academic Aquatic Science & Fisheries Abstracts (ASFA) Professional Korean Citation Index |
DatabaseTitle | CrossRef Aquatic Science & Fisheries Abstracts (ASFA) Professional Meteorological & Geoastrophysical Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Oceanic Abstracts Meteorological & Geoastrophysical Abstracts - Academic ASFA: Aquatic Sciences and Fisheries Abstracts |
DatabaseTitleList | Aquatic Science & Fisheries Abstracts (ASFA) Professional |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics |
EISSN | 1976-7951 |
EndPage | 292 |
ExternalDocumentID | oai_kci_go_kr_ARTI_3530438 10_1007_s13143_018_0028_9 |
GroupedDBID | -EM 06D 0R~ 0VY 1N0 203 2KG 2VQ 30V 4.4 406 408 40D 67M 67Z 8TC 96X 9ZL AAAVM AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH AAZMS ABAKF ABDZT ABECU ABFTV ABJNI ABJOX ABKCH ABMQK ABQBU ABSXP ABTEG ABTHY ABTKH ABTMW ABXPI ACAOD ACDTI ACGFS ACHSB ACKNC ACMDZ ACMLO ACOKC ACPIV ACZOJ ADHHG ADHIR ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFQL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETCA AEVLU AEXYK AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGJBK AGMZJ AGQEE AGQMX AGRTI AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALFXC ALMA_UNASSIGNED_HOLDINGS AMKLP AMXSW AMYLF AMYQR ANMIH AOCGG ASPBG AVWKF AXYYD AYJHY AZFZN BGNMA CSCUP DBRKI DDRTE DNIVK DPUIP EBLON EBS EIOEI EJD ESBYG FEDTE FERAY FIGPU FINBP FNLPD FRRFC FSGXE FYJPI GGCAI GGRSB GJIRD GQ6 GQ7 GW5 H13 HF~ HMJXF HRMNR HVGLF HZ~ I0C IKXTQ IWAJR IXD J-C J0Z JBSCW JZLTJ KOV LLZTM M4Y NPVJJ NQJWS NU0 O9- O9J P2P PT4 R9I RLLFE ROL RSV S1Z S27 S3B SEV SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE T13 TDB TSG U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W48 WK8 Z45 ZMTXR ~A9 AAPKM AAYXX ABBRH ABDBE AFDZB AFOHR AHPBZ ATHPR AYFIA CITATION 7TG 7TN ABRTQ F1W H96 KL. L.G ACYCR |
ID | FETCH-LOGICAL-c416t-4bbd2539b0a8c213be4aaf29a62cb29fbc4c8b8f2ee7ab9882d22accf37299073 |
IEDL.DBID | U2A |
ISSN | 1976-7633 |
IngestDate | Sun Mar 09 07:51:37 EDT 2025 Fri Jul 25 04:49:37 EDT 2025 Thu Apr 24 22:52:10 EDT 2025 Tue Jul 01 02:10:25 EDT 2025 Fri Feb 21 02:34:33 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | Suppl 1 |
Keywords | WRF GRIMs global forecast system Numerical weather prediction KIM |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c416t-4bbd2539b0a8c213be4aaf29a62cb29fbc4c8b8f2ee7ab9882d22accf37299073 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 2069814032 |
PQPubID | 2044292 |
PageCount | 26 |
ParticipantIDs | nrf_kci_oai_kci_go_kr_ARTI_3530438 proquest_journals_2069814032 crossref_primary_10_1007_s13143_018_0028_9 crossref_citationtrail_10_1007_s13143_018_0028_9 springer_journals_10_1007_s13143_018_0028_9 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2018-06-01 |
PublicationDateYYYYMMDD | 2018-06-01 |
PublicationDate_xml | – month: 06 year: 2018 text: 2018-06-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Seoul |
PublicationPlace_xml | – name: Seoul – name: Heidelberg |
PublicationTitle | Asia-Pacific journal of atmospheric sciences |
PublicationTitleAbbrev | Asia-Pacific J Atmos Sci |
PublicationYear | 2018 |
Publisher | Korean Meteorological Society Springer Nature B.V 한국기상학회 |
Publisher_xml | – name: Korean Meteorological Society – name: Springer Nature B.V – name: 한국기상학회 |
References | HaywoodJ.The strategy for aerosols and dust in climate, weather and air quality forecasting2009 KwonY. C.HongS.-Y.A mass-flux cumulus parameterization scheme across gray-zone resolutionsMon. Wea. Rev.201714558359810.1175/MWR-D-16-0034.1 Kwon, I.-H., and Coauthors, 2018: Development of operational hybrid data assimilation system at KIAPS (in press). Asia-Pac. J. Atmos. Sci., 54, doi:10.1007/s13143-018-0029-8. HongS.-Y.DudhiaJ.Next-generation numerical weather prediction: Bridging parameterization, explicit clouds, and large eddiesBull. Amer. Meteor. Soc.201293ES6ES910.1175/2011BAMS3224.1 HongS.-Y.NohY.DudhiaJ.A new vertical diffusion package with an explicit treatment of entrainment processesMon. Wea. Rev.20061342318234110.1175/MWR3199.1 ShinH. H.HongS.-Y.Representation of the subgrid-scale turbulent transport in convective boundary layers at gray-zone resolutionsMon. Wea. Rev.201514325027110.1175/MWR-D-14-00116.1 McNallyT.BonvitaM.The ìpautJ.-N.The role of satellite data in the forecasting of Hurricane SandyMon. Wea. Rev.201414263464610.1175/MWR-D-13-00170.1 Long, P. E., 1984: A general unified similarity theory for the calculation of turbulent fluxes in numerical weather prediction models for unstable conditions. NCEP Office Note302, 30 pp. KanamitsuM.TadaK.KuoT.SatoN.IsaS.Description of the JMA operational spectral modelJ. Meteor. Soc. Japan19836181282810.2151/jmsj1965.61.6_812 LimK.-S.HongS.-Y.YoonJ.-H.HanJ.Simulation of the summer monsoon rainfall over East Asia using the NCEP GFS cumulus parameterization at different horizontal resolutionWea. Forecasting2014291143115410.1175/WAF-D-13-00143.1 SongH.-J.KlempJ. B.DudaM.G.FowlerL.D.ParkS.RinglerT.D.A multi-scale nonhydrostatic atmospheric model using centroidal voronoi tesselations and c-grid staggeringMon. Wea. Rev.20121403090310510.1175/MWR-D-11-00215.1 DennisJ.EdwardsJ.EvansK. J.GubaO. N.LauritzenP. H.MirinA. A.St-CyrA.TaylorM. A.WorlyP. H.CAM-SE: a scalable spectral element dynamical core for the community atmosphere modelInt. J. High Perform Comput. Appl.201126748910.1177/1094342011428142 ZänglG.ReinertD.RipodasM.-P.BaldaufM.The ICON (ICOsahedral Non-hydrostatic) modelling framework of DWD and MPI-M: Description of the non-hydrostatic dynamical coreQuart. J. Roy. Meteor. Soc.201414156357910.1002/qj.2378 BaeS.-Y.HongS.-Y.LimK.-S.Coupling WRF doublemoment 6-class microphysics schemes to RRTMG radiation scheme in weather research and forecasting ModelAdv. Meteor.20162016507015410.1155/2016/5070154 Kang, J.-H., and Coauthors, 2018: Development of an observation processing package for data assimilation in KIAPS (in press). Asia-Pac. J. Atmos. Sci., 54, doi:10.1007/s13143-018-0030-2. KangH.-G.CheongH.-B.An efficient implementation of a high-order filter for a cubed-sphere spectral element modelJ. Comput. Phys.2017332668210.1016/j.jcp.2016.12.001 KimJ.KwonY. C.KimT.-H.A scalable high-performance I/O System for a numerical weather forecast model on the cubed-sphere grid (in press)Asia-Pac. J. Atmos. Sci.2018 LeeE.-H.LeeE.ParkR.KwonY.-C.HongS.-Y.Impact of turbulent Mmixing in the stratocumulus-topped boundary layer on numerical weather prediction (in press)Asia-Pac. J. Atmos. Sci.2018 TaylorM. A.TribbiaJ.IskandaraniM.The spectral element method for the shallow water equations on the sphereJ. Comput. Phys.19971309210810.1006/jcph.1996.5554 ChoiH.-J.ChoiS.-J.KooM.-S.KimJ.-E.KwonY. C.HongS.-Y.Effects of parameterized orographic drag on weather forecasting and simulated climatology over East Asia during boreal summerJ. Geophys. Res.2017122106691067810.1002/2017JA023860 HongS.-Y.ChoiJ.ChangE.-C.ParkH.KimY.-J.Lowertropospheric enhancement of gravity wave drag in a global spectral atmospheric forecast modelWea. Forecasting20082352353110.1175/2007WAF2007030.1 WilsonD. R.GregoryD.The behaviour of large-scale model cloud schemes under idealized forcing scenariosQuart. J. Roy. Meteorol. Soc.200312996798610.1256/qj.02.74 GiraldoF. X.KellyJ. F.ConstantinescuE. M.Implicit-Explicit Formulations for a 3D Nonhydrostatic Unified Model of the Atmosphere (NUMA)SIAM J. Sci. Comput.201335B1162B119410.1137/120876034 MajewskiD.LiermannD.ProhlP.RitterB.BuchholdM.HanischT.PaulG.WergenW.BaumgardnerJ.The operational global icosahedral-hexagonal gridpoint model GME: Description and highresolution testsMon. Wea. Rev.200213031933810.1175/1520-0493(2002)130<0319:TOGIHG>2.0.CO;2 ParkH.HongS.-Y.CheongH.-B.KooM.-S.A double Fourier series (DFS) dynamic core in a global atmospheric model with full physicsMon. Wea. Rev.20131413052306110.1175/MWR-D-12-00270.1 ViterboP.BeljaarsA.MahfoufJ.-F.TeixeiraJ.The representation of soil moisture freezing and its impact on the stable boundary layerQuart. J. Roy. Meteorol. Soc.19991252401242610.1002/qj.49712555904 Shin, S., and Coauthors, 2018: Real data assimilation using the Local Ensemble Transform Kalman Filter (LETKF) system for a global nonhydrostatic NWP model on the cubed-sphere (in press). Asia-Pac. J. Atmos. Sci., 54, doi: 10.1007/s13143-018-0022-2. ChoiH.-J.HongS.-Y.An updated subgrid orographic parameterization for global atmospheric forecastJ. Geophys. Res.20151201244512457 WarnerC. D.McIntyreM. E.An ultrasimple spectral parameterization for nonorographic gravity wavesJ. Atmos. Sci.2001581837185710.1175/1520-0469(2001)058<1837:AUSPFN>2.0.CO;2 EkM. B.MitchellK. E.LinY.RogersE.GrunmannP.KorenV.GaynoG.TarpleyJ. D.Implementation of Noah land surface model advances in the National Centers for Environmental Prediction operational mesoscale Eta ModelJ. Geophys. Res.2003108D2210.1029/2002JD003296 KalnayE.Atmospheric Modeling, Data Assimilation and Predictability2003 Long, P. E., 1986: An economical and compatible scheme for parameterizing the stable surface layer in the medium range forecast model. NCEP Office Note321, 24 pp. KanamitsuM.Description of the NMC Global Data Assimilation and Forecast SystemWea. Forecasting1989433534210.1175/1520-0434(1989)004<0335:DOTNGD>2.0.CO;2 TomitaH.SatohM.A new dynamical framework of nonhydrostatic global model using the icosahedral gridFluid Dyn. Res.20043435740010.1016/j.fluiddyn.2004.03.003 ChoiS.-J.GiraldoF. X.KimJ.ShinS.Verification of a nonhydrostatic dynamical core using horizontally spectral element vertically finite difference method: 2-D aspectsGeosci. Model Dev.201472717273110.5194/gmd-7-2717-2014 WintonM.A Reformulated Three-Layer Sea Ice ModelJ. Atmos.Oceanic Technol.20001752553110.1175/1520-0426(2000)017<0525:ARTLSI>2.0.CO;2 HongS.-Y.KooM.JangJ.Esther KimJ.ParkH.JohM.KangJ.OhT.An evaluation of the system software dependency of a global spectral modelMon. Wea. Rev.20131414165417210.1175/MWR-D-12-00352.1 ZengX.WangZ.WangA.Surface skin temperature and the interplay between sensible and ground heat fluxes over arid regionsJ. Hydrometeor.2012131359137010.1175/JHM-D-11-0117.1 BaekS.A revised radiation package of G-packed McICA and twostream approximation: Performance evaluation in a global weather forecasting modelJ. Adv. Model. Earth Syst.201791628164010.1002/2017MS000994 TiedtkeM.Representation of clouds in large-scale models, MonWea. Rev.19931213040306110.1175/1520-0493(1993)121<3040:ROCILS>2.0.CO;2 GovettM.CoauthorsParallelization and performance of the NIM weather model on CPU, GPU, and MIC processorsBull. Amer. Meteor. Soc.2017982201221310.1175/BAMS-D-15-00278.1 RabierF.Overview of global data assimilation developments in numerical weather prediction centresQuart. J. Roy. Meteor. Soc.20051313215323310.1256/qj.05.129 HongS.-Y.A new stable boundary-layer mixing scheme and its impact on the simulated East Asian summer monsoonQuart. J. Roy. Meteor. Soc.20101361481149610.1002/qj.665 ClaytonA. M.LorencA. C.BarkerD. M.Operational implementation of a hybrid ensemble/4D-Var global data assimilation system at the Met OfficeQuart. J. Roy. Meteor. Soc.20131391445146110.1002/qj.2054 HanJ.-Y.HongS.-Y.LimK.-S. S.HanJ.Sensitivity of a cumulus parameterization scheme to precipitation production representation and its impact on a heavy rain event over KoreaMon. Wea. Rev.20161442125213510.1175/MWR-D-15-0255.1 BonavitaM.IsaksenL.HólmE.On the use of EDA background error variances in the ECMWF 4D-VarQuart. J. Roy. Meteor. Soc.20121381540155910.1002/qj.1899 HanJ.PanH.-L.Revision of convection and vertical diffusion schemes in the NCEP Global Forecast SystemWea. Forecasting20112652053310.1175/WAF-D-10-05038.1 CheongH.-B.A dynamical core with double Fourier series: Comparison with the spherical harmonics methodMon. Wea. Rev.20061341299131510.1175/MWR3121.1 SongH.-J.ShinS.HaJ.-H.LimS.The advantages of hybrid 4DEnVar in the context of the forecast sensitivity to initial conditionsJ. Geophys. Res.20171221222612244 SongH.-J.KlempJ. B.DudhiaJ.GillD. O.BarkerD. M.DudaM. G.HuangX.-Y.WangW.PowersJ. G.A description of the advanced research WRF version 32008 TiedtkeM.A comprehensive mass flux scheme for cumulus parameterization in large-scale modelsMon. Wea. Rev.19891171779180010.1175/1520-0493(1989)117<1779:ACMFSF>2.0.CO;2 LorencA. C.BowlerN. E.ClaytonA. M.PringS. R.FairbairnD.Comparison of hybrid-4DEnVar and hybrid-4DVar data assimilation methods for global NWPMon. Wea. Rev.201514321222910.1175/MWR-D-14-00195.1 Hong, S.-Y., and J. Jang, 2018: Impacts of shallow convection processes on a simulated boreal summer climatology in a global atmospheric model (in press). Asia-Pac. J. Atmos. Sci., 54, doi:10.1007/s13143-018-0013-3. Kim, K.-H., P.-S. Shim, S. Shin, and J. Kim, 2018b: A simple method to find a neighboring grid point on the cubed-sphere (in press). Asia-Pac. J. Atmos. Sci., 54, doi:10.1007/s13143-018-0027-x. ChoiS.-J.HongS.-Y.A global non-hydrostatic dynamical core using the spectral element method on a cubed-sphere gridAsia-Pac. J. Atmos. Sci.20165229130710.1007/s13143-016-0005-0 ShinH. H.HongS.-Y.Analysis on resolved and parameterized vertical transport in convective boundary layers at gray-zone resolutionJ. Atmos. Sci.2013703248326110.1175/JAS-D-12-0290.1 SongH.-J.KwonI.-H.Spectral transformation using a cubedsphere grid for a three-dimensional variational data assimilation systemMon. Wea 28_CR70 H.-J. Choi (28_CR11) 2017; 122 H. H. Shin (28_CR69) 2015; 143 H.-J. Song (28_CR72) 2017; 122 M. A. Taylor (28_CR77) 1997; 130 R.-S. Park (28_CR63) 2016; 144 N. P. Wedi (28_CR83) 2013; 141 ACEC Advanced Computing Evaluation Committee (28_CR1) 2016 A. C. Lorenc (28_CR57) 2015; 143 R. Sadourny (28_CR67) 1972; 100 L. Mahrt (28_CR58) 2008; 134 J. Han (28_CR22) 2011; 26 M. Tiedtke (28_CR78) 1989; 117 H.-J. Choi (28_CR10) 2015; 120 H. Tomita (28_CR80) 2004; 34 S.-J. Choi (28_CR15) 2014; 7 S.-Y. Hong (28_CR33) 2013; 49 H.-Y. Chun (28_CR16) 1998; 55 F. X. Giraldo (28_CR20) 2013; 35 K.-S. Lim (28_CR53) 2014; 29 M.-S. Koo (28_CR48) 2018 N. A. McFarlane (28_CR60) 1987; 44 J. G. Sela (28_CR66) 1980; 108 I.-H. Kwon (28_CR49) 2018; 99 E. Kalnay (28_CR36) 2003 J.-Y. Han (28_CR23) 2016; 144 S.-Y. Hong (28_CR28) 2014; 50 S.-Y. Hong (28_CR31) 2006; 134 S.-Y. Hong (28_CR34) 2013; 141 H.-J. Choi (28_CR9) 2011; 68 F. Rabier (28_CR64) 2005; 131 E.-H. Lee (28_CR52) 2018 28_CR29 M. Kanamitsu (28_CR38) 1983; 61 Y. C. Kwon (28_CR51) 2017; 145 S.-J. Lin (28_CR54) 2017; 9 H.-J. Song (28_CR75) 2008 S. Baek (28_CR4) 2017; 9 H.-B. Cheong (28_CR8) 2006; 134 D. A. Randall (28_CR65) 2000 M. Winton (28_CR85) 2000; 17 S.-Y. Kim (28_CR44) 2018 M. Bonavita (28_CR5) 2012; 138 P. Viterbo (28_CR81) 1999; 125 C. D. Warner (28_CR82) 2001; 58 T. McNally (28_CR61) 2014; 142 A. M. Clayton (28_CR17) 2013; 139 F. Chen (28_CR7) 2001; 129 S.-Y. Hong (28_CR26) 2006; 42 28_CR50 S.-Y. Hong (28_CR25) 2010; 136 28_CR12 28_CR56 28_CR55 H. H. Shin (28_CR68) 2013; 70 28_CR13 M. B. Ek (28_CR19) 2003; 108 J. Kim (28_CR42) 2018 H.-J. Song (28_CR71) 2015; 143 M. Kanamitsu (28_CR37) 1989; 4 M.-S. Koo (28_CR47) 2017; 53 M. Tiedtke (28_CR79) 1993; 121 M. Buehner (28_CR6) 2015; 143 M. Govett (28_CR21) 2017; 98 H. Park (28_CR62) 2013; 141 H.-J. Song (28_CR76) 2012; 140 S.-Y. Hong (28_CR30) 2004; 132 X. Zeng (28_CR87) 2012; 13 28_CR40 E.-J. Kim (28_CR41) 2010; 115 28_CR43 J. Dennis (28_CR18) 2011; 26 M.-J. Iacono (28_CR35) 2008; 113 Y.-J. Kim (28_CR45) 1995; 52 S.-Y. Bae (28_CR3) 2016; 2016 S.-Y. Hong (28_CR27) 2012; 93 J. C. Alpert (28_CR2) 1988 S.-Y. Hong (28_CR32) 2008; 23 H.-G. Kang (28_CR39) 2017; 332 W. C. Skamarock (28_CR74) 2004; 132 S.-J. Choi (28_CR14) 2016; 52 H.-J. Song (28_CR73) 2018 D. R. Wilson (28_CR84) 2003; 129 G. Zängl (28_CR86) 2014; 141 D. Majewski (28_CR59) 2002; 130 M.-S. Koo (28_CR46) 2014; 50 J. Haywood (28_CR24) 2009 |
References_xml | – reference: Choi, S.-J., 2018: Structure of Eigenvalues in the advection-diffusion equation by the spectral element method on a cubed-sphere grid (in press). Asia-Pac. J. Atmos. Sci., 54, doi:10.1007/s13143-018-0020-4. – reference: LorencA. C.BowlerN. E.ClaytonA. M.PringS. R.FairbairnD.Comparison of hybrid-4DEnVar and hybrid-4DVar data assimilation methods for global NWPMon. Wea. Rev.201514321222910.1175/MWR-D-14-00195.1 – reference: Kwon, I.-H., and Coauthors, 2018: Development of operational hybrid data assimilation system at KIAPS (in press). Asia-Pac. J. Atmos. Sci., 54, doi:10.1007/s13143-018-0029-8. – reference: McFarlaneN. A.The Effect of Orographically Excited Gravity Wave Drag on the General Circulation of the Lower Stratosphere and TroposphereJ. Atmos. Sci.1987441775180010.1175/1520-0469(1987)044<1775:TEOOEG>2.0.CO;2 – reference: ACEC Advanced Computing Evaluation CommitteeNGGPS phase-2 Benchmarks and Software Evaluation2016 – reference: KanamitsuM.Description of the NMC Global Data Assimilation and Forecast SystemWea. Forecasting1989433534210.1175/1520-0434(1989)004<0335:DOTNGD>2.0.CO;2 – reference: GovettM.CoauthorsParallelization and performance of the NIM weather model on CPU, GPU, and MIC processorsBull. Amer. Meteor. Soc.2017982201221310.1175/BAMS-D-15-00278.1 – reference: SongH.-J.HaJ.-H.KwonI.-H.KimJ.KwunJ.Multiresolution Hybrid Data Assimilation Core on a Cubed-sphere Grid (HybDA)Asia-Pac. J. Atmos. Sci.2018 – reference: KimY.-J.ArakawaA.Improvement of orographic gravity wave parameterization using a mesoscale gravity wave modelJ. Atmos. Sci.1995521875190210.1175/1520-0469(1995)052<1875:IOOGWP>2.0.CO;2 – reference: AlpertJ. C.KanamitsuM.CaplanP. M.SelaJ. G.WhiteG. H.KalnayE.Mountain induced gravity wave drag parameterization in the NMC medium-range forecast modelProc. Eighth Conference on Numerical Weather Prediction, Baltimore, USA, Amer. Meteor. Soc.1988726733 – reference: HanJ.-Y.HongS.-Y.LimK.-S. S.HanJ.Sensitivity of a cumulus parameterization scheme to precipitation production representation and its impact on a heavy rain event over KoreaMon. Wea. Rev.20161442125213510.1175/MWR-D-15-0255.1 – reference: EkM. B.MitchellK. E.LinY.RogersE.GrunmannP.KorenV.GaynoG.TarpleyJ. D.Implementation of Noah land surface model advances in the National Centers for Environmental Prediction operational mesoscale Eta ModelJ. Geophys. Res.2003108D2210.1029/2002JD003296 – reference: LeeE.-H.LeeE.ParkR.KwonY.-C.HongS.-Y.Impact of turbulent Mmixing in the stratocumulus-topped boundary layer on numerical weather prediction (in press)Asia-Pac. J. Atmos. Sci.2018 – reference: HongS.-Y.NohY.DudhiaJ.A new vertical diffusion package with an explicit treatment of entrainment processesMon. Wea. Rev.20061342318234110.1175/MWR3199.1 – reference: KimS.-Y.HongS.-Y.The use of partial cloudiness in a bulk cloud microphysics scheme: Concept and 2D results (in press)J. Atmos. Sci.2018 – reference: ParkR.-S.ChaeJ.-H.HongS.-Y.A revised prognostic cloud fraction scheme in a global forecasting systemMon. Wea. Rev.20161441219122910.1175/MWR-D-15-0273.1 – reference: McNallyT.BonvitaM.The ìpautJ.-N.The role of satellite data in the forecasting of Hurricane SandyMon. Wea. Rev.201414263464610.1175/MWR-D-13-00170.1 – reference: KimE.-J.HongS.-Y.Impact of air-sea interaction on East Asian summer monsoon climate in WRFJ. Geophys. Res.2010115D1911810.1029/2009JD013253 – reference: HaywoodJ.The strategy for aerosols and dust in climate, weather and air quality forecasting2009 – reference: Kang, J.-H., and Coauthors, 2018: Development of an observation processing package for data assimilation in KIAPS (in press). Asia-Pac. J. Atmos. Sci., 54, doi:10.1007/s13143-018-0030-2. – reference: HongS.-Y.KanamitsuM.Dynamical downscaling: Fundamental issues from an NWP point of view and recommendationsAsia-Pac. J. Atmos. Sci.2014508310410.1007/s13143-014-0029-2 – reference: KangH.-G.CheongH.-B.An efficient implementation of a high-order filter for a cubed-sphere spectral element modelJ. Comput. Phys.2017332668210.1016/j.jcp.2016.12.001 – reference: BaekS.A revised radiation package of G-packed McICA and twostream approximation: Performance evaluation in a global weather forecasting modelJ. Adv. Model. Earth Syst.201791628164010.1002/2017MS000994 – reference: TiedtkeM.A comprehensive mass flux scheme for cumulus parameterization in large-scale modelsMon. Wea. Rev.19891171779180010.1175/1520-0493(1989)117<1779:ACMFSF>2.0.CO;2 – reference: GiraldoF. X.KellyJ. F.ConstantinescuE. M.Implicit-Explicit Formulations for a 3D Nonhydrostatic Unified Model of the Atmosphere (NUMA)SIAM J. Sci. Comput.201335B1162B119410.1137/120876034 – reference: ChunH.-Y.BaikJ.-J.Momentum flux by thermally induced internal gravity waves and its approximation for large-scale modelsJ. Atmos. Sci.1998553299331010.1175/1520-0469(1998)055<3299:MFBTII>2.0.CO;2 – reference: HanJ.PanH.-L.Revision of convection and vertical diffusion schemes in the NCEP Global Forecast SystemWea. Forecasting20112652053310.1175/WAF-D-10-05038.1 – reference: BuehnerM.CoauthorsImplementation of deterministic weather forecasting systems based on ensemble-variational data assimilation at Environment CanadaPart I: The global system. Mon. Wea. Rev.201514325322559 – reference: CheongH.-B.A dynamical core with double Fourier series: Comparison with the spherical harmonics methodMon. Wea. Rev.20061341299131510.1175/MWR3121.1 – reference: Choi, H.-J., J.-Y. Han, M.-S. Koo, H.-Y. Chun, Y.-H. Kim, and S.-Y. Hong, 2018: Effects of non-orographic gravity wave drag on seasonal and medium-range predictions in a global model (in press). Asia-Pac. J. Atmos. Sci., 54, doi:10.1007/s13143-018-0023-1. – reference: ZänglG.ReinertD.RipodasM.-P.BaldaufM.The ICON (ICOsahedral Non-hydrostatic) modelling framework of DWD and MPI-M: Description of the non-hydrostatic dynamical coreQuart. J. Roy. Meteor. Soc.201414156357910.1002/qj.2378 – reference: ChoiH.-J.HongS.-Y.An updated subgrid orographic parameterization for global atmospheric forecastJ. Geophys. Res.20151201244512457 – reference: KalnayE.Atmospheric Modeling, Data Assimilation and Predictability2003 – reference: ParkH.HongS.-Y.CheongH.-B.KooM.-S.A double Fourier series (DFS) dynamic core in a global atmospheric model with full physicsMon. Wea. Rev.20131413052306110.1175/MWR-D-12-00270.1 – reference: WilsonD. R.GregoryD.The behaviour of large-scale model cloud schemes under idealized forcing scenariosQuart. J. Roy. Meteorol. Soc.200312996798610.1256/qj.02.74 – reference: LimK.-S.HongS.-Y.YoonJ.-H.HanJ.Simulation of the summer monsoon rainfall over East Asia using the NCEP GFS cumulus parameterization at different horizontal resolutionWea. Forecasting2014291143115410.1175/WAF-D-13-00143.1 – reference: ChoiS.-J.HongS.-Y.A global non-hydrostatic dynamical core using the spectral element method on a cubed-sphere gridAsia-Pac. J. Atmos. Sci.20165229130710.1007/s13143-016-0005-0 – reference: KimJ.KwonY. C.KimT.-H.A scalable high-performance I/O System for a numerical weather forecast model on the cubed-sphere grid (in press)Asia-Pac. J. Atmos. Sci.2018 – reference: Shin, S., and Coauthors, 2018: Real data assimilation using the Local Ensemble Transform Kalman Filter (LETKF) system for a global nonhydrostatic NWP model on the cubed-sphere (in press). Asia-Pac. J. Atmos. Sci., 54, doi: 10.1007/s13143-018-0022-2. – reference: HongS.-Y.CoauthorsThe Global/Regional Integrated Model system (GRIMs)Asia-Pac. J. Atmos. Sci.20134921924310.1007/s13143-013-0023-0 – reference: ShinH. H.HongS.-Y.Representation of the subgrid-scale turbulent transport in convective boundary layers at gray-zone resolutionsMon. Wea. Rev.201514325027110.1175/MWR-D-14-00116.1 – reference: MahrtL.Bulk formulation of surface fluxes extended to weakwind stable conditionsQuart. J. Roy. Meteorol. Soc.200813411010.1002/qj.197 – reference: MajewskiD.LiermannD.ProhlP.RitterB.BuchholdM.HanischT.PaulG.WergenW.BaumgardnerJ.The operational global icosahedral-hexagonal gridpoint model GME: Description and highresolution testsMon. Wea. Rev.200213031933810.1175/1520-0493(2002)130<0319:TOGIHG>2.0.CO;2 – reference: ViterboP.BeljaarsA.MahfoufJ.-F.TeixeiraJ.The representation of soil moisture freezing and its impact on the stable boundary layerQuart. J. Roy. Meteorol. Soc.19991252401242610.1002/qj.49712555904 – reference: Kim, K.-H., P.-S. Shim, S. Shin, and J. Kim, 2018b: A simple method to find a neighboring grid point on the cubed-sphere (in press). Asia-Pac. J. Atmos. Sci., 54, doi:10.1007/s13143-018-0027-x. – reference: TaylorM. A.TribbiaJ.IskandaraniM.The spectral element method for the shallow water equations on the sphereJ. Comput. Phys.19971309210810.1006/jcph.1996.5554 – reference: ChoiH.-J.ChoiS.-J.KooM.-S.KimJ.-E.KwonY. C.HongS.-Y.Effects of parameterized orographic drag on weather forecasting and simulated climatology over East Asia during boreal summerJ. Geophys. Res.2017122106691067810.1002/2017JA023860 – reference: SongH.-J.KwonI.-H.Spectral transformation using a cubedsphere grid for a three-dimensional variational data assimilation systemMon. Wea. Rev.20151432581259910.1175/MWR-D-14-00089.1 – reference: SongH.-J.ShinS.HaJ.-H.LimS.The advantages of hybrid 4DEnVar in the context of the forecast sensitivity to initial conditionsJ. Geophys. Res.20171221222612244 – reference: KooM.-S.HongS.-Y.Stochastic representation of dynamic model tendency: Formulation and preliminary resultsAsia-Pac. J. Atmos. Sci.20145049750610.1007/s13143-014-0039-0 – reference: WarnerC. D.McIntyreM. E.An ultrasimple spectral parameterization for nonorographic gravity wavesJ. Atmos. Sci.2001581837185710.1175/1520-0469(2001)058<1837:AUSPFN>2.0.CO;2 – reference: Long, P. E., 1986: An economical and compatible scheme for parameterizing the stable surface layer in the medium range forecast model. NCEP Office Note321, 24 pp. – reference: ShinH. H.HongS.-Y.Analysis on resolved and parameterized vertical transport in convective boundary layers at gray-zone resolutionJ. Atmos. Sci.2013703248326110.1175/JAS-D-12-0290.1 – reference: WintonM.A Reformulated Three-Layer Sea Ice ModelJ. Atmos.Oceanic Technol.20001752553110.1175/1520-0426(2000)017<0525:ARTLSI>2.0.CO;2 – reference: LinS.-J.HarrisL.ChenX.YaoW.ChaiJ.Colliding modons: A nonlinear test for the evaluation of global dynamical coresJ. Adv. Model. Earth Syst.201792483249210.1002/2017MS000965 – reference: RabierF.Overview of global data assimilation developments in numerical weather prediction centresQuart. J. Roy. Meteor. Soc.20051313215323310.1256/qj.05.129 – reference: RandallD. A.HeikesR.RingerT.General Circulation Model DevelopmentAcademic Press2000 – reference: SongH.-J.KlempJ. B.DudaM.G.FowlerL.D.ParkS.RinglerT.D.A multi-scale nonhydrostatic atmospheric model using centroidal voronoi tesselations and c-grid staggeringMon. Wea. Rev.20121403090310510.1175/MWR-D-11-00215.1 – reference: ChoiS.-J.GiraldoF. X.KimJ.ShinS.Verification of a nonhydrostatic dynamical core using horizontally spectral element vertically finite difference method: 2-D aspectsGeosci. Model Dev.201472717273110.5194/gmd-7-2717-2014 – reference: DennisJ.EdwardsJ.EvansK. J.GubaO. N.LauritzenP. H.MirinA. A.St-CyrA.TaylorM. A.WorlyP. H.CAM-SE: a scalable spectral element dynamical core for the community atmosphere modelInt. J. High Perform Comput. Appl.201126748910.1177/1094342011428142 – reference: SelaJ. G.Spectral modeling at the National Meteorological CenterMon. Wea. Rev.19801081279129210.1175/1520-0493(1980)108<1279:SMATNM>2.0.CO;2 – reference: TiedtkeM.Representation of clouds in large-scale models, MonWea. Rev.19931213040306110.1175/1520-0493(1993)121<3040:ROCILS>2.0.CO;2 – reference: TomitaH.SatohM.A new dynamical framework of nonhydrostatic global model using the icosahedral gridFluid Dyn. Res.20043435740010.1016/j.fluiddyn.2004.03.003 – reference: SkamarockW. C.Evaluating mesoscale NWP models using kinetic energy spectraMon. Wea. Rev.20041323019303210.1175/MWR2830.1 – reference: SongH.-J.KlempJ. B.DudhiaJ.GillD. O.BarkerD. M.DudaM. G.HuangX.-Y.WangW.PowersJ. G.A description of the advanced research WRF version 32008 – reference: KooM.-S.BaekS.SeolK.-H.ChoK.Advances in land surface modeling of KIAPS based on the Noah land surface modelAsia-Pac. J. Atmos. Sci.20175336137310.1007/s13143-017-0043-2 – reference: HongS.-Y.ChoiJ.ChangE.-C.ParkH.KimY.-J.Lowertropospheric enhancement of gravity wave drag in a global spectral atmospheric forecast modelWea. Forecasting20082352353110.1175/2007WAF2007030.1 – reference: ClaytonA. M.LorencA. C.BarkerD. M.Operational implementation of a hybrid ensemble/4D-Var global data assimilation system at the Met OfficeQuart. J. Roy. Meteor. Soc.20131391445146110.1002/qj.2054 – reference: ZengX.WangZ.WangA.Surface skin temperature and the interplay between sensible and ground heat fluxes over arid regionsJ. Hydrometeor.2012131359137010.1175/JHM-D-11-0117.1 – reference: HongS.-Y.A new stable boundary-layer mixing scheme and its impact on the simulated East Asian summer monsoonQuart. J. Roy. Meteor. Soc.20101361481149610.1002/qj.665 – reference: KwonY. C.HongS.-Y.A mass-flux cumulus parameterization scheme across gray-zone resolutionsMon. Wea. Rev.201714558359810.1175/MWR-D-16-0034.1 – reference: ChoiH.-J.ChunH.-Y.Momentum flux spectrum of convective gravity wavesPart I: an update of a parameterization using mesoscale simulations. J. Atmos. Sci.201168739759 – reference: HongS.-Y.DudhiaJ.Next-generation numerical weather prediction: Bridging parameterization, explicit clouds, and large eddiesBull. Amer. Meteor. Soc.201293ES6ES910.1175/2011BAMS3224.1 – reference: HongS.-Y.DuhdiaJ.ChenS.-H.A revised approach to icemicrophysical processes for the bulk parameterization of cloud and precipitationMon. Wea. Rev.200413210312010.1175/1520-0493(2004)132<0103:ARATIM>2.0.CO;2 – reference: BaeS.-Y.HongS.-Y.LimK.-S.Coupling WRF doublemoment 6-class microphysics schemes to RRTMG radiation scheme in weather research and forecasting ModelAdv. Meteor.20162016507015410.1155/2016/5070154 – reference: Hong, S.-Y., and J. Jang, 2018: Impacts of shallow convection processes on a simulated boreal summer climatology in a global atmospheric model (in press). Asia-Pac. J. Atmos. Sci., 54, doi:10.1007/s13143-018-0013-3. – reference: HongS.-Y.KooM.JangJ.Esther KimJ.ParkH.JohM.KangJ.OhT.An evaluation of the system software dependency of a global spectral modelMon. Wea. Rev.20131414165417210.1175/MWR-D-12-00352.1 – reference: KanamitsuM.TadaK.KuoT.SatoN.IsaS.Description of the JMA operational spectral modelJ. Meteor. Soc. Japan19836181282810.2151/jmsj1965.61.6_812 – reference: KwonI.-H.EnglishS.BellW.PotthastR.CollardA.RustonB.Assessment of progress and status of data assimilation in numerical weather predictionBull. Amer. Soc.201899ES75ES7910.1175/BAMS-D-17-0266.1 – reference: ChenF.DudhiaJ.Coupling an advanced land surfacehydrology model with the Penn State-NCAR MM5 modeling systemPart I: Model Implementation and Sensitivity. Mon. Wea. Rev.2001129569585 – reference: HongS.-Y.LimJ.-O. J.The WRF Single-Moment 6-Class Microphysics Scheme (WSM6)J. Korean Meteor. Soc.200642129151 – reference: IaconoM.-J.DelamereJ. S.MlawerE. J.ShepherdM. W.CloughS. A.CollinsW. D.Radiative forcing by long-lived greenhouse gases: Calculation with the AER radiative transfer modelsJ. Geophys. Res.2008113D1310310.1029/2008JD009944 – reference: SadournyR.Conservative finite-difference approximations of the primitive equations on quasi-uniform spherical gridsMon. Wea. Rev.197210013614410.1175/1520-0493(1972)100<0136:CFAOTP>2.3.CO;2 – reference: WediN. P.HamrudM.MozdzynskiG.A fast spherical harmonics transform for global NWP and climate modelsMon. Wea. Rev.20131413450346110.1175/MWR-D-13-00016.1 – reference: BonavitaM.IsaksenL.HólmE.On the use of EDA background error variances in the ECMWF 4D-VarQuart. J. Roy. Meteor. Soc.20121381540155910.1002/qj.1899 – reference: Long, P. E., 1984: A general unified similarity theory for the calculation of turbulent fluxes in numerical weather prediction models for unstable conditions. NCEP Office Note302, 30 pp. – reference: KooM.-S.ChoiH.-J.HanJ.-Y.A parameterization of turbulentscale orographic form drag in a global atmospheric model2018 – volume: 35 start-page: B1162 year: 2013 ident: 28_CR20 publication-title: SIAM J. Sci. Comput. doi: 10.1137/120876034 – volume-title: Asia-Pac. J. Atmos. Sci. year: 2018 ident: 28_CR73 – volume-title: Asia-Pac. J. Atmos. Sci. year: 2018 ident: 28_CR52 – volume: 141 start-page: 3052 year: 2013 ident: 28_CR62 publication-title: Mon. Wea. Rev. doi: 10.1175/MWR-D-12-00270.1 – ident: 28_CR13 doi: 10.1007/s13143-018-0020-4 – volume: 143 start-page: 2581 year: 2015 ident: 28_CR71 publication-title: Mon. Wea. Rev. doi: 10.1175/MWR-D-14-00089.1 – ident: 28_CR12 doi: 10.1007/s13143-018-0023-1 – volume: 136 start-page: 1481 year: 2010 ident: 28_CR25 publication-title: Quart. J. Roy. Meteor. Soc. doi: 10.1002/qj.665 – volume: 50 start-page: 497 year: 2014 ident: 28_CR46 publication-title: Asia-Pac. J. Atmos. Sci. doi: 10.1007/s13143-014-0039-0 – volume: 144 start-page: 2125 year: 2016 ident: 28_CR23 publication-title: Mon. Wea. Rev. doi: 10.1175/MWR-D-15-0255.1 – volume: 29 start-page: 1143 year: 2014 ident: 28_CR53 publication-title: Wea. Forecasting doi: 10.1175/WAF-D-13-00143.1 – volume: 143 start-page: 2532 year: 2015 ident: 28_CR6 publication-title: Part I: The global system. Mon. Wea. Rev. – volume: 70 start-page: 3248 year: 2013 ident: 28_CR68 publication-title: J. Atmos. Sci. doi: 10.1175/JAS-D-12-0290.1 – volume: 129 start-page: 967 year: 2003 ident: 28_CR84 publication-title: Quart. J. Roy. Meteorol. Soc. doi: 10.1256/qj.02.74 – volume-title: Academic Press year: 2000 ident: 28_CR65 – volume: 100 start-page: 136 year: 1972 ident: 28_CR67 publication-title: Mon. Wea. Rev. doi: 10.1175/1520-0493(1972)100<0136:CFAOTP>2.3.CO;2 – ident: 28_CR29 doi: 10.1007/s13143-018-0013-3 – volume: 121 start-page: 3040 year: 1993 ident: 28_CR79 publication-title: Wea. Rev. doi: 10.1175/1520-0493(1993)121<3040:ROCILS>2.0.CO;2 – volume: 49 start-page: 219 year: 2013 ident: 28_CR33 publication-title: Asia-Pac. J. Atmos. Sci. doi: 10.1007/s13143-013-0023-0 – volume: 131 start-page: 3215 year: 2005 ident: 28_CR64 publication-title: Quart. J. Roy. Meteor. Soc. doi: 10.1256/qj.05.129 – volume-title: NGGPS phase-2 Benchmarks and Software Evaluation year: 2016 ident: 28_CR1 – volume: 53 start-page: 361 year: 2017 ident: 28_CR47 publication-title: Asia-Pac. J. Atmos. Sci. doi: 10.1007/s13143-017-0043-2 – volume: 145 start-page: 583 year: 2017 ident: 28_CR51 publication-title: Mon. Wea. Rev. doi: 10.1175/MWR-D-16-0034.1 – volume: 13 start-page: 1359 year: 2012 ident: 28_CR87 publication-title: J. Hydrometeor. doi: 10.1175/JHM-D-11-0117.1 – volume: 134 start-page: 1299 year: 2006 ident: 28_CR8 publication-title: Mon. Wea. Rev. doi: 10.1175/MWR3121.1 – volume: 142 start-page: 634 year: 2014 ident: 28_CR61 publication-title: Mon. Wea. Rev. doi: 10.1175/MWR-D-13-00170.1 – volume: 17 start-page: 525 year: 2000 ident: 28_CR85 publication-title: J. Atmos.Oceanic Technol. doi: 10.1175/1520-0426(2000)017<0525:ARTLSI>2.0.CO;2 – volume: 52 start-page: 291 year: 2016 ident: 28_CR14 publication-title: Asia-Pac. J. Atmos. Sci. doi: 10.1007/s13143-016-0005-0 – ident: 28_CR55 – volume: 132 start-page: 3019 year: 2004 ident: 28_CR74 publication-title: Mon. Wea. Rev. doi: 10.1175/MWR2830.1 – volume: 68 start-page: 739 year: 2011 ident: 28_CR9 publication-title: Part I: an update of a parameterization using mesoscale simulations. J. Atmos. Sci. – volume: 120 start-page: 12445 year: 2015 ident: 28_CR10 publication-title: J. Geophys. Res. doi: 10.1002/2015JD024230 – start-page: 726 volume-title: Proc. Eighth Conference on Numerical Weather Prediction, Baltimore, USA, Amer. Meteor. Soc. year: 1988 ident: 28_CR2 – volume: 143 start-page: 212 year: 2015 ident: 28_CR57 publication-title: Mon. Wea. Rev. doi: 10.1175/MWR-D-14-00195.1 – volume: 44 start-page: 1775 year: 1987 ident: 28_CR60 publication-title: J. Atmos. Sci. doi: 10.1175/1520-0469(1987)044<1775:TEOOEG>2.0.CO;2 – volume: 122 start-page: 12226 year: 2017 ident: 28_CR72 publication-title: J. Geophys. Res. doi: 10.1002/2017JD027598 – volume: 99 start-page: ES75 year: 2018 ident: 28_CR49 publication-title: Bull. Amer. Soc. doi: 10.1175/BAMS-D-17-0266.1 – volume: 108 start-page: 1279 year: 1980 ident: 28_CR66 publication-title: Mon. Wea. Rev. doi: 10.1175/1520-0493(1980)108<1279:SMATNM>2.0.CO;2 – volume: 98 start-page: 2201 year: 2017 ident: 28_CR21 publication-title: Bull. Amer. Meteor. Soc. doi: 10.1175/BAMS-D-15-00278.1 – ident: 28_CR50 doi: 10.1007/s13143-018-0029-8 – volume-title: A description of the advanced research WRF version 3 year: 2008 ident: 28_CR75 – volume: 129 start-page: 569 year: 2001 ident: 28_CR7 publication-title: Part I: Model Implementation and Sensitivity. Mon. Wea. Rev. – volume: 42 start-page: 129 year: 2006 ident: 28_CR26 publication-title: J. Korean Meteor. Soc. – volume-title: Asia-Pac. J. Atmos. Sci. year: 2018 ident: 28_CR42 – volume: 26 start-page: 520 year: 2011 ident: 28_CR22 publication-title: Wea. Forecasting doi: 10.1175/WAF-D-10-05038.1 – volume: 141 start-page: 563 year: 2014 ident: 28_CR86 publication-title: Quart. J. Roy. Meteor. Soc. doi: 10.1002/qj.2378 – volume-title: The strategy for aerosols and dust in climate, weather and air quality forecasting year: 2009 ident: 28_CR24 – volume: 130 start-page: 319 year: 2002 ident: 28_CR59 publication-title: Mon. Wea. Rev. doi: 10.1175/1520-0493(2002)130<0319:TOGIHG>2.0.CO;2 – volume: 125 start-page: 2401 year: 1999 ident: 28_CR81 publication-title: Quart. J. Roy. Meteorol. Soc. doi: 10.1002/qj.49712555904 – volume: 58 start-page: 1837 year: 2001 ident: 28_CR82 publication-title: J. Atmos. Sci. doi: 10.1175/1520-0469(2001)058<1837:AUSPFN>2.0.CO;2 – ident: 28_CR56 – volume: 122 start-page: 10669 year: 2017 ident: 28_CR11 publication-title: J. Geophys. Res. doi: 10.1002/2017JA023860 – volume: 138 start-page: 1540 year: 2012 ident: 28_CR5 publication-title: Quart. J. Roy. Meteor. Soc. doi: 10.1002/qj.1899 – volume: 132 start-page: 103 year: 2004 ident: 28_CR30 publication-title: Mon. Wea. Rev. doi: 10.1175/1520-0493(2004)132<0103:ARATIM>2.0.CO;2 – volume: 113 start-page: D13103 year: 2008 ident: 28_CR35 publication-title: J. Geophys. Res. doi: 10.1029/2008JD009944 – volume: 130 start-page: 92 year: 1997 ident: 28_CR77 publication-title: J. Comput. Phys. doi: 10.1006/jcph.1996.5554 – volume: 108 start-page: D22 year: 2003 ident: 28_CR19 publication-title: J. Geophys. Res. doi: 10.1029/2002JD003296 – volume: 134 start-page: 2318 year: 2006 ident: 28_CR31 publication-title: Mon. Wea. Rev. doi: 10.1175/MWR3199.1 – volume-title: A parameterization of turbulentscale orographic form drag in a global atmospheric model year: 2018 ident: 28_CR48 – volume: 4 start-page: 335 year: 1989 ident: 28_CR37 publication-title: Wea. Forecasting doi: 10.1175/1520-0434(1989)004<0335:DOTNGD>2.0.CO;2 – volume: 9 start-page: 2483 year: 2017 ident: 28_CR54 publication-title: J. Adv. Model. Earth Syst. doi: 10.1002/2017MS000965 – volume: 50 start-page: 83 year: 2014 ident: 28_CR28 publication-title: Asia-Pac. J. Atmos. Sci. doi: 10.1007/s13143-014-0029-2 – volume-title: Atmospheric Modeling, Data Assimilation and Predictability year: 2003 ident: 28_CR36 – volume: 332 start-page: 66 year: 2017 ident: 28_CR39 publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2016.12.001 – volume: 23 start-page: 523 year: 2008 ident: 28_CR32 publication-title: Wea. Forecasting doi: 10.1175/2007WAF2007030.1 – volume: 141 start-page: 3450 year: 2013 ident: 28_CR83 publication-title: Mon. Wea. Rev. doi: 10.1175/MWR-D-13-00016.1 – volume: 2016 start-page: 5070154 year: 2016 ident: 28_CR3 publication-title: Adv. Meteor. doi: 10.1155/2016/5070154 – ident: 28_CR70 doi: 10.1007/s13143-018-0022-2 – volume: 134 start-page: 1 year: 2008 ident: 28_CR58 publication-title: Quart. J. Roy. Meteorol. Soc. doi: 10.1002/qj.197 – volume: 26 start-page: 74 year: 2011 ident: 28_CR18 publication-title: Int. J. High Perform Comput. Appl. doi: 10.1177/1094342011428142 – ident: 28_CR43 doi: 10.1007/s13143-018-0027-x – volume-title: J. Atmos. Sci. year: 2018 ident: 28_CR44 – volume: 144 start-page: 1219 year: 2016 ident: 28_CR63 publication-title: Mon. Wea. Rev. doi: 10.1175/MWR-D-15-0273.1 – volume: 140 start-page: 3090 year: 2012 ident: 28_CR76 publication-title: Mon. Wea. Rev. doi: 10.1175/MWR-D-11-00215.1 – volume: 143 start-page: 250 year: 2015 ident: 28_CR69 publication-title: Mon. Wea. Rev. doi: 10.1175/MWR-D-14-00116.1 – volume: 55 start-page: 3299 year: 1998 ident: 28_CR16 publication-title: J. Atmos. Sci. doi: 10.1175/1520-0469(1998)055<3299:MFBTII>2.0.CO;2 – volume: 139 start-page: 1445 year: 2013 ident: 28_CR17 publication-title: Quart. J. Roy. Meteor. Soc. doi: 10.1002/qj.2054 – ident: 28_CR40 doi: 10.1007/s13143-018-0030-2 – volume: 52 start-page: 1875 year: 1995 ident: 28_CR45 publication-title: J. Atmos. Sci. doi: 10.1175/1520-0469(1995)052<1875:IOOGWP>2.0.CO;2 – volume: 61 start-page: 812 year: 1983 ident: 28_CR38 publication-title: J. Meteor. Soc. Japan doi: 10.2151/jmsj1965.61.6_812 – volume: 7 start-page: 2717 year: 2014 ident: 28_CR15 publication-title: Geosci. Model Dev. doi: 10.5194/gmd-7-2717-2014 – volume: 34 start-page: 357 year: 2004 ident: 28_CR80 publication-title: Fluid Dyn. Res. doi: 10.1016/j.fluiddyn.2004.03.003 – volume: 9 start-page: 1628 year: 2017 ident: 28_CR4 publication-title: J. Adv. Model. Earth Syst. doi: 10.1002/2017MS000994 – volume: 117 start-page: 1779 year: 1989 ident: 28_CR78 publication-title: Mon. Wea. Rev. doi: 10.1175/1520-0493(1989)117<1779:ACMFSF>2.0.CO;2 – volume: 93 start-page: ES6 year: 2012 ident: 28_CR27 publication-title: Bull. Amer. Meteor. Soc. doi: 10.1175/2011BAMS3224.1 – volume: 115 start-page: D19118 year: 2010 ident: 28_CR41 publication-title: J. Geophys. Res. doi: 10.1029/2009JD013253 – volume: 141 start-page: 4165 year: 2013 ident: 28_CR34 publication-title: Mon. Wea. Rev. doi: 10.1175/MWR-D-12-00352.1 |
SSID | ssj0002012921 ssib033405554 ssib060165787 |
Score | 2.4396706 |
Snippet | The Korea Institute of Atmospheric Prediction Systems (KIAPS) began a national project to develop a new global atmospheric model system in 2011. The ultimate... |
SourceID | nrf proquest crossref springer |
SourceType | Open Website Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 267 |
SubjectTerms | Atmospheric models Atmospheric Sciences Climatology Data assimilation Data collection Deployment Earth and Environmental Science Earth Sciences Evolution Frameworks Geophysics/Geodesy Global weather Parameterization Physics Weather forecasting 대기과학 |
Title | The Korean Integrated Model (KIM) System for Global Weather Forecasting |
URI | https://link.springer.com/article/10.1007/s13143-018-0028-9 https://www.proquest.com/docview/2069814032 https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART002364970 |
Volume | 54 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
ispartofPNX | Asia-Pacific Journal of Atmospheric Sciences, 2018, 54(0), , pp.267-292 |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dS8MwEA9ue_FFFBWncwTxwQ8CXdJ2zeOQfTnmk8P5FJI0EdnoZJv_v5e22Zio4FMfmrZwd-n97i73O4SuwSvHMU01YYB3SajjiMjYpcMsYBPbDrjM85Djp3gwCR-n0bTs41750-6-JJn_qbfNbgx8O4S-CclTQryCapEL3cGIJ7TjjYix0HFYhZtEC3WplqL_Clwvgf3EfHXzp7fu-KdKtrQ70PNbtTR3Qr1DdFCiR9wp1H2E9kx2jPqgajxaAPrL8NCzP6TYTTmb45vRcHyLC15yDAAVFyT_-KWAftiN5tRy5Q4_n6BJr_v8MCDlfASiAUatSahUSiPGVSATTVtMmVBKS7mMqVaUW6VDnajEUmPaUnHA0imlUmvrSnUQFLNTVM0WmTlDWLdb1gJyMODSQpW0ZBJxKqnhWhmrbFxHgZeK0CV5uJthMRdb2mMnSAGCFE6QgtfR3eaRj4I546_FVyBqMdPvwvFdu-vbQsyWAlD9ULCIuYJlHTW8JkS501aCBjF3rF2M1tG918729q9fPP_X6gu0T3MbcemXBqqul5_mEtDIWjVRrdN_HXWbuRV-ATJg0ek |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NS8MwFA86D3oRRcXq1CAe_KDQJW3XHIc4V_dx2nC3kKSJyEYn2_z_fWmbjYkKnnpo2sJ7L32_vI_fQ-gGvHIck0z5FPCuH6o48kVsw2EGsIlpBkwUccj-IO6MwpdxNK76uBeu2t2lJIs_9brZjYJvh6Nv4hchIbaNdgALJLaOa0RazogoDS2HVbgKtBAbain7r8D1-rCfqMtu_vTWDf-0nc_NBvT8li0tnFD7AO1X6BG3SnUfoi2dH6FnUDXuzgD95Th17A8ZtlPOpvi2m_bvcMlLjgGg4pLkH7-W0A_b0ZxKLGzx8zEatZ-Gjx2_mo_gK4BRSz-UMiMRZTIQiSINKnUohCFMxERJwoxUoUpkYojWTSEZYOmMEKGUsak6OBTTE1TLZ7k-RVg1G8YActDg0kKZNEQSMSKIZkpqI03socBJhauKPNzOsJjyNe2xFSQHQXIrSM48dL965KNkzvhr8TWImk_UO7d81_b6NuOTOQdUn3IaUZuw9FDdaYJXO23BSRAzy9pFiYcenHbWt3_94tm_Vl-h3c6w3-O9dNA9R3uksBcbiqmj2nL-qS8AmSzlZWGJX6Un00g |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fS8MwEA5OQXwRRcXp1CA--IOyNWm75lHU6ZwbPjjcW0jSRGSjG9v8_73rjw1FBZ_60LSFu0vvy3fJd4ScQVaOIpYYjwPe9QIThZ6KkA5zgE1csyFUxkN2e9FDP3gchIOiz-ms3O1eliTzMw2o0pTO65PE1ZcH3zjkeVgGx15GD4kKWYO_sY9h3WfXZUBxHqCeVbAgXRjSLvlZLEjDHswtXlY6f3rrl1xVSafuCwz9VjnNElJri2wWSJJe567fJis23SH34HbaGQMSTGm7VIJIKHY8G9HzTrt7QXONcgpgleaC__Q1h4EU23QaNcON0Luk37p7uXnwil4JngFINfcCrRMWcqEbKjbM59oGSjkmVMSMZsJpE5hYx45Z21RaAK5OGFPGOCzbwQKZ75HVdJzafUJN03cOUISF9Bbo2FdxKJhiVhhtnXZRlTRKq0hTCIljP4uRXEogoyElGFKiIaWoksvFI5NcReOvwadgajk07xK1r_H6NpbDqQSE35Y85Fi8rJJa6QlZzLqZZI1IoIIXZ1VyVXpnefvXLx78a_QJWX--bcmndq9zSDZYFi7IytTI6nz6YY8ApMz1cRaIn0fo14Q |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+Korean+Integrated+Model+%28KIM%29+System+for+Global+Weather+Forecasting&rft.jtitle=Asia-Pacific+journal+of+atmospheric+sciences&rft.au=Hong%2C+Song-You&rft.au=Kwon%2C+Young+Cheol&rft.au=Kim%2C+Tae-Hun&rft.au=Esther+Kim%2C+Jung-Eun&rft.date=2018-06-01&rft.issn=1976-7633&rft.eissn=1976-7951&rft.volume=54&rft.issue=S1&rft.spage=267&rft.epage=292&rft_id=info:doi/10.1007%2Fs13143-018-0028-9&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s13143_018_0028_9 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1976-7633&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1976-7633&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1976-7633&client=summon |