The Tilt of the Velocity Ellipsoid of Different Galactic Disk Populations
The tilt of the velocity ellipsoid is a helpful tracer of the gravitational potential of the Milky Way. In this paper, we use nearly 140,000 red clump (RC) stars selected from LAMOST and Gaia to make a detailed analysis of the tilt of the velocity ellipsoid for various populations, as defined by ste...
Saved in:
Published in | The Astrophysical journal Vol. 952; no. 2; pp. 163 - 172 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Philadelphia
The American Astronomical Society
01.08.2023
IOP Publishing |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The tilt of the velocity ellipsoid is a helpful tracer of the gravitational potential of the Milky Way. In this paper, we use nearly 140,000 red clump (RC) stars selected from LAMOST and Gaia to make a detailed analysis of the tilt of the velocity ellipsoid for various populations, as defined by stellar ages and chemical information, within 4.5 ≤
R
≤ 15.0 kpc and ∣
Z
∣ ≤ 3.0 kpc, respectively. The tilt angle of the velocity ellipsoid of the RC sample stars is accurately described as
α
=
α
0
arctan
(
Z
/
R
) with
α
0
= (0.68 ± 0.05). This indicates the alignment of the velocity ellipsoid is between cylindrical and spherical, implying that any deviation from the spherical alignment of the velocity ellipsoid may be caused by the gravitational potential of the baryonic disk. The results of various populations suggest that
α
0
displays an age and population dependence, with values
α
0
= (0.72 ± 0.08) and
α
0
= (0.64 ± 0.07) for the thin and thick disks, respectively, and
α
0
displays a decreasing trend as age (and [
α
/Fe]) increases, meaning that the velocity ellipsoids of the kinematically relaxed stars are mainly dominated by the gravitational potential of the baryonic disk. We determine the
α
0
–R
relation for various populations, finding that
α
0
displays oscillations with
R
for the different populations. The oscillations in
α
0
appear in both kinematically hot and cold populations, indicating that resonances with the Galactic bar are the most likely origin for these oscillations. |
---|---|
AbstractList | The tilt of the velocity ellipsoid is a helpful tracer of the gravitational potential of the Milky Way. In this paper, we use nearly 140,000 red clump (RC) stars selected from LAMOST and Gaia to make a detailed analysis of the tilt of the velocity ellipsoid for various populations, as defined by stellar ages and chemical information, within 4.5 ≤ R ≤ 15.0 kpc and ∣ Z ∣ ≤ 3.0 kpc, respectively. The tilt angle of the velocity ellipsoid of the RC sample stars is accurately described as α = α _0 $\arctan $ ( Z / R ) with α _0 = (0.68 ± 0.05). This indicates the alignment of the velocity ellipsoid is between cylindrical and spherical, implying that any deviation from the spherical alignment of the velocity ellipsoid may be caused by the gravitational potential of the baryonic disk. The results of various populations suggest that α _0 displays an age and population dependence, with values α _0 = (0.72 ± 0.08) and α _0 = (0.64 ± 0.07) for the thin and thick disks, respectively, and α _0 displays a decreasing trend as age (and [ α /Fe]) increases, meaning that the velocity ellipsoids of the kinematically relaxed stars are mainly dominated by the gravitational potential of the baryonic disk. We determine the α _0 –R relation for various populations, finding that α _0 displays oscillations with R for the different populations. The oscillations in α _0 appear in both kinematically hot and cold populations, indicating that resonances with the Galactic bar are the most likely origin for these oscillations. The tilt of the velocity ellipsoid is a helpful tracer of the gravitational potential of the Milky Way. In this paper, we use nearly 140,000 red clump (RC) stars selected from LAMOST and Gaia to make a detailed analysis of the tilt of the velocity ellipsoid for various populations, as defined by stellar ages and chemical information, within 4.5 ≤ R ≤ 15.0 kpc and ∣Z∣ ≤ 3.0 kpc, respectively. The tilt angle of the velocity ellipsoid of the RC sample stars is accurately described as α = α0arctan (Z/R) with α0 = (0.68 ± 0.05). This indicates the alignment of the velocity ellipsoid is between cylindrical and spherical, implying that any deviation from the spherical alignment of the velocity ellipsoid may be caused by the gravitational potential of the baryonic disk. The results of various populations suggest that α0 displays an age and population dependence, with values α0 = (0.72 ± 0.08) and α0 = (0.64 ± 0.07) for the thin and thick disks, respectively, and α0 displays a decreasing trend as age (and [α/Fe]) increases, meaning that the velocity ellipsoids of the kinematically relaxed stars are mainly dominated by the gravitational potential of the baryonic disk. We determine the α0–R relation for various populations, finding that α0 displays oscillations with R for the different populations. The oscillations in α0 appear in both kinematically hot and cold populations, indicating that resonances with the Galactic bar are the most likely origin for these oscillations. The tilt of the velocity ellipsoid is a helpful tracer of the gravitational potential of the Milky Way. In this paper, we use nearly 140,000 red clump (RC) stars selected from LAMOST and Gaia to make a detailed analysis of the tilt of the velocity ellipsoid for various populations, as defined by stellar ages and chemical information, within 4.5 ≤ R ≤ 15.0 kpc and ∣ Z ∣ ≤ 3.0 kpc, respectively. The tilt angle of the velocity ellipsoid of the RC sample stars is accurately described as α = α 0 arctan ( Z / R ) with α 0 = (0.68 ± 0.05). This indicates the alignment of the velocity ellipsoid is between cylindrical and spherical, implying that any deviation from the spherical alignment of the velocity ellipsoid may be caused by the gravitational potential of the baryonic disk. The results of various populations suggest that α 0 displays an age and population dependence, with values α 0 = (0.72 ± 0.08) and α 0 = (0.64 ± 0.07) for the thin and thick disks, respectively, and α 0 displays a decreasing trend as age (and [ α /Fe]) increases, meaning that the velocity ellipsoids of the kinematically relaxed stars are mainly dominated by the gravitational potential of the baryonic disk. We determine the α 0 –R relation for various populations, finding that α 0 displays oscillations with R for the different populations. The oscillations in α 0 appear in both kinematically hot and cold populations, indicating that resonances with the Galactic bar are the most likely origin for these oscillations. |
Author | Liu, Xiaowei Sun, Weixiang Shen, Han |
Author_xml | – sequence: 1 givenname: Weixiang orcidid: 0009-0005-9277-6758 surname: Sun fullname: Sun, Weixiang organization: Yunnan University South-Western Institute for Astronomy Research, Kunming 650500, , People’s Republic of China – sequence: 2 givenname: Han orcidid: 0000-0001-8962-4132 surname: Shen fullname: Shen, Han organization: Yunnan University South-Western Institute for Astronomy Research, Kunming 650500, , People’s Republic of China – sequence: 3 givenname: Xiaowei orcidid: 0000-0003-1295-2909 surname: Liu fullname: Liu, Xiaowei organization: Yunnan University South-Western Institute for Astronomy Research, Kunming 650500, , People’s Republic of China |
BookMark | eNp9kEtLxDAUhYMoOD72LgturTaP5rEUnwOCLkZxF-6kqWaMTU0yC_-9rRUFQVdJTs659_DtoM0udBahA1wdU8nECa6pLBmtxQmYZlnLDTT7ljbRrKoqVnIqHrfRTkqr8UmUmqH54tkWC-dzEdoiD_cH64Nx-b248N71Kbhm_Dl3bWuj7XJxBR5MdmaQ0ktxF_q1h-xCl_bQVgs-2f2vcxfdX14szq7Lm9ur-dnpTWkY5rlknBEsgXHSEGKooAxbDFwYjpWVfIkb1VIlGsOauiJLxqy1EmpRc8ENEEx30Xya2wRY6T66V4jvOoDTn0KITxriUNBbbaVhICiRtcLMYg7LhijRCqBYGSHJMOtwmtXH8La2KetVWMduqK-JZLRSTAg-uKrJZWJIKdr2eyuu9Ahfj6T1SFpP8IcI_xUZmH5yyhGc_y94NAVd6H_K_Gn_AFP6l1I |
CitedBy_id | crossref_primary_10_1016_j_newar_2024_101721 crossref_primary_10_3847_1538_4357_ad06ad crossref_primary_10_1051_0004_6361_202449250 crossref_primary_10_3847_2041_8213_ad3554 crossref_primary_10_3847_1538_4357_ad9d41 crossref_primary_10_3847_1538_4365_ad3043 |
Cites_doi | 10.3847/1538-4357/aad285 10.1051/0004-6361/201321397 10.1093/mnras/sty1256 10.1088/0004-637X/801/2/105 10.1111/(ISSN)1365-2966 10.1093/mnras/staa3317 10.3847/1538-4357/abb1b7 10.1051/0004-6361:20054081 10.1093/mnras/stv2729 10.3847/1538-3881/aacda5 10.3847/0004-637X/823/1/30 10.1093/mnras/stw2096 10.3847/0004-637X/816/1/35 10.1088/0004-637X/738/2/187 10.1088/0004-637X/764/2/123 10.1051/0004-6361/201525865 10.1051/0004-6361/201322944 10.1093/mnras/stt2367 10.1093/mnras/stz2217 10.1146/annurev-astro-081915-023441 10.3847/1538-4357/aaf648 10.1111/j.1365-2966.2012.21738.x 10.1093/mnras/76.1.37 10.1051/0004-6361/201525883 10.3847/2041-8213/ab8d45 10.1088/0004-637X/698/2/1110 10.1093/mnras/stu2723 10.1093/mnras/stv1314 10.1051/0004-6361/201322631 10.1088/1674-4527/12/7/003 10.1051/0004-6361/201935264 10.1086/506564 10.1093/mnras/285.1.49 10.1086/670067 10.1051/0004-6361/202243800 10.1111/mnr.2010.403.issue-4 10.1093/mnras/sts327 10.1086/424960 10.1093/mnras/stv204 10.1093/mnras/stz583 10.1088/1674-4527/12/9/003 10.1051/0004-6361/201629356 10.1088/0004-637X/783/2/130 10.1093/mnras/sty3341 10.1093/mnras/stt1522 10.1051/0004-6361/202243750 10.1051/0004-6361/202243511 10.1093/mnras/stx129 10.3847/1538-4365/ab994f 10.1093/mnras/staa335 10.1086/301226 10.1088/2041-8205/804/1/L9 |
ContentType | Journal Article |
Copyright | 2023. The Author(s). Published by the American Astronomical Society. 2023. The Author(s). Published by the American Astronomical Society. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2023. The Author(s). Published by the American Astronomical Society. – notice: 2023. The Author(s). Published by the American Astronomical Society. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | O3W TSCCA AAYXX CITATION 7TG 8FD H8D KL. L7M DOA |
DOI | 10.3847/1538-4357/acdb58 |
DatabaseName | Institute of Physics Open Access Journal Titles IOPscience (Open Access) CrossRef Meteorological & Geoastrophysical Abstracts Technology Research Database Aerospace Database Meteorological & Geoastrophysical Abstracts - Academic Advanced Technologies Database with Aerospace DOAJ Open Access Full Text |
DatabaseTitle | CrossRef Aerospace Database Meteorological & Geoastrophysical Abstracts Technology Research Database Advanced Technologies Database with Aerospace Meteorological & Geoastrophysical Abstracts - Academic |
DatabaseTitleList | Aerospace Database CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: O3W name: Institute of Physics Open Access Journal Titles url: http://iopscience.iop.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Astronomy & Astrophysics Physics |
EISSN | 1538-4357 |
ExternalDocumentID | oai_doaj_org_article_e8c4a73285914e16abd297f7a319c782 10_3847_1538_4357_acdb58 apjacdb58 |
GroupedDBID | -DZ -~X 123 1JI 23N 2FS 4.4 6J9 85S AAFWJ AAGCD AAJIO ABHWH ACBEA ACGFS ACHIP ACNCT ADACN AEFHF AENEX AFPKN AKPSB ALMA_UNASSIGNED_HOLDINGS ASPBG ATQHT AVWKF AZFZN CJUJL CRLBU CS3 EBS F5P FRP GROUPED_DOAJ IJHAN IOP KOT M~E N5L O3W O43 OK1 PJBAE RIN RNS ROL SJN SY9 T37 TN5 TR2 TSCCA WH7 XSW AAYXX CITATION 2WC 7TG 8FD AEINN H8D KL. L7M |
ID | FETCH-LOGICAL-c416t-464218a462d22c37341e1a67c619e86b1d9f397dc4d502b44eee8a575676ca213 |
IEDL.DBID | DOA |
ISSN | 0004-637X |
IngestDate | Wed Aug 27 01:24:33 EDT 2025 Wed Aug 13 04:37:59 EDT 2025 Tue Jul 01 03:39:36 EDT 2025 Thu Apr 24 23:06:14 EDT 2025 Wed Aug 21 03:30:29 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Language | English |
License | Original content from this work may be used under the terms of the Creative Commons Attribution 4.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c416t-464218a462d22c37341e1a67c619e86b1d9f397dc4d502b44eee8a575676ca213 |
Notes | AAS46337 Interstellar Matter and the Local Universe ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0003-1295-2909 0009-0005-9277-6758 0000-0001-8962-4132 |
OpenAccessLink | https://doaj.org/article/e8c4a73285914e16abd297f7a319c782 |
PQID | 2843094776 |
PQPubID | 4562441 |
PageCount | 10 |
ParticipantIDs | proquest_journals_2843094776 crossref_primary_10_3847_1538_4357_acdb58 iop_journals_10_3847_1538_4357_acdb58 doaj_primary_oai_doaj_org_article_e8c4a73285914e16abd297f7a319c782 crossref_citationtrail_10_3847_1538_4357_acdb58 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-08-01 |
PublicationDateYYYYMMDD | 2023-08-01 |
PublicationDate_xml | – month: 08 year: 2023 text: 2023-08-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Philadelphia |
PublicationPlace_xml | – name: Philadelphia |
PublicationTitle | The Astrophysical journal |
PublicationTitleAbbrev | APJ |
PublicationTitleAlternate | Astrophys. J |
PublicationYear | 2023 |
Publisher | The American Astronomical Society IOP Publishing |
Publisher_xml | – name: The American Astronomical Society – name: IOP Publishing |
References | Everall (apjacdb58bib20) 2019; 489 Dehnen (apjacdb58bib15) 2000; 119 Hayden (apjacdb58bib27) 2020; 493 Eddington (apjacdb58bib17) 1915; 76 Evans (apjacdb58bib19) 2016; 456 Liu (apjacdb58bib37) 2014 Gómez (apjacdb58bib24) 2013; 429 Büdenbender (apjacdb58bib10) 2015; 452 Minchev (apjacdb58bib38) 2015; 804 Momany (apjacdb58bib39) 2006; 451 Recio-Blanco (apjacdb58bib40) 2014; 567 Schönrich (apjacdb58bib45) 2012; 427 Bovy (apjacdb58bib8) 2016; 823 Binney (apjacdb58bib6) 2014; 439 Collett (apjacdb58bib13) 1997; 285 Huang (apjacdb58bib31) 2015; 449 Steinmetz (apjacdb58bib49) 2006; 132 Brook (apjacdb58bib9) 2012; 426 Trick (apjacdb58bib51) 2021; 500 Jofré (apjacdb58bib34) 2016; 595 Lee (apjacdb58bib36) 2011; 738 Xiang (apjacdb58bib53) 2017; 467 Deng (apjacdb58bib16) 2012; 12 Schönrich (apjacdb58bib46) 2010; 403 Haywood (apjacdb58bib28) 2013; 560 Yuan (apjacdb58bib55) 2015; 448 Bland-Hawthorn (apjacdb58bib7) 2016; 54 Smith (apjacdb58bib48) 2009; 698 Foreman-Mackey (apjacdb58bib21) 2013; 125 Huang (apjacdb58bib29) 2018a; 156 Williams (apjacdb58bib52) 2013; 436 Guiglion (apjacdb58bib25) 2015; 583 Reid (apjacdb58bib43) 2014; 783 Huang (apjacdb58bib33) 2020; 249 Gaia Collaboration (apjacdb58bib23) 2023b; 674 Xu (apjacdb58bib54) 2015; 801 Hagen (apjacdb58bib26) 2019; 629 Huang (apjacdb58bib30) 2018b; 864 Binney (apjacdb58bib4) 1998 Binney (apjacdb58bib5) 2008 Huang (apjacdb58bib32) 2016; 463 Recio-Blanco (apjacdb58bib41) 2023; 674 Cui (apjacdb58bib14) 2012; 12 Chiappini (apjacdb58bib12) 2015; 576 Schönrich (apjacdb58bib47) 2018; 478 Chen (apjacdb58bib11) 2019; 483 Saha (apjacdb58bib44) 2013; 764 Ablimit (apjacdb58bib1) 2020; 895 Gaia Collaboration (apjacdb58bib22) 2023a; 674 Reid (apjacdb58bib42) 2004; 616 Laporte (apjacdb58bib35) 2019; 485 Sun (apjacdb58bib50) 2020; 903 An (apjacdb58bib2) 2016; 816 Eilers (apjacdb58bib18) 2019; 871 Bensby (apjacdb58bib3) 2014; 562 |
References_xml | – volume: 864 start-page: 129 year: 2018b ident: apjacdb58bib30 publication-title: ApJ doi: 10.3847/1538-4357/aad285 – volume: 560 start-page: A109 year: 2013 ident: apjacdb58bib28 publication-title: A&A doi: 10.1051/0004-6361/201321397 – volume: 478 start-page: 3809 year: 2018 ident: apjacdb58bib47 publication-title: MNRAS doi: 10.1093/mnras/sty1256 – volume: 801 start-page: 105 year: 2015 ident: apjacdb58bib54 publication-title: ApJ doi: 10.1088/0004-637X/801/2/105 – volume: 427 start-page: 274 year: 2012 ident: apjacdb58bib45 publication-title: MNRAS doi: 10.1111/(ISSN)1365-2966 – volume: 500 start-page: 2645 year: 2021 ident: apjacdb58bib51 publication-title: MNRAS doi: 10.1093/mnras/staa3317 – year: 1998 ident: apjacdb58bib4 – volume: 903 start-page: 12 year: 2020 ident: apjacdb58bib50 publication-title: ApJ doi: 10.3847/1538-4357/abb1b7 – volume: 451 start-page: 515 year: 2006 ident: apjacdb58bib39 publication-title: A&A doi: 10.1051/0004-6361:20054081 – volume: 456 start-page: 4506 year: 2016 ident: apjacdb58bib19 publication-title: MNRAS doi: 10.1093/mnras/stv2729 – volume: 156 start-page: 90 year: 2018a ident: apjacdb58bib29 publication-title: AJ doi: 10.3847/1538-3881/aacda5 – volume: 823 start-page: 30 year: 2016 ident: apjacdb58bib8 publication-title: ApJ doi: 10.3847/0004-637X/823/1/30 – start-page: 310 year: 2014 ident: apjacdb58bib37 – volume: 463 start-page: 2623 year: 2016 ident: apjacdb58bib32 publication-title: MNRAS doi: 10.1093/mnras/stw2096 – volume: 816 start-page: 35 year: 2016 ident: apjacdb58bib2 publication-title: ApJ doi: 10.3847/0004-637X/816/1/35 – volume: 738 start-page: 187 year: 2011 ident: apjacdb58bib36 publication-title: ApJ doi: 10.1088/0004-637X/738/2/187 – volume: 764 start-page: 123 year: 2013 ident: apjacdb58bib44 publication-title: ApJ doi: 10.1088/0004-637X/764/2/123 – volume: 576 start-page: L12 year: 2015 ident: apjacdb58bib12 publication-title: A&A doi: 10.1051/0004-6361/201525865 – volume: 567 start-page: A5 year: 2014 ident: apjacdb58bib40 publication-title: A&A doi: 10.1051/0004-6361/201322944 – volume: 439 start-page: 1231 year: 2014 ident: apjacdb58bib6 publication-title: MNRAS doi: 10.1093/mnras/stt2367 – volume: 489 start-page: 910 year: 2019 ident: apjacdb58bib20 publication-title: MNRAS doi: 10.1093/mnras/stz2217 – volume: 54 start-page: 529 year: 2016 ident: apjacdb58bib7 publication-title: ARA&A doi: 10.1146/annurev-astro-081915-023441 – volume: 871 start-page: 120 year: 2019 ident: apjacdb58bib18 publication-title: ApJ doi: 10.3847/1538-4357/aaf648 – volume: 426 start-page: 690 year: 2012 ident: apjacdb58bib9 publication-title: MNRAS doi: 10.1111/j.1365-2966.2012.21738.x – volume: 76 start-page: 37 year: 1915 ident: apjacdb58bib17 publication-title: MNRAS doi: 10.1093/mnras/76.1.37 – volume: 583 start-page: A91 year: 2015 ident: apjacdb58bib25 publication-title: A&A doi: 10.1051/0004-6361/201525883 – volume: 895 start-page: L12 year: 2020 ident: apjacdb58bib1 publication-title: ApJL doi: 10.3847/2041-8213/ab8d45 – volume: 698 start-page: 1110 year: 2009 ident: apjacdb58bib48 publication-title: ApJ doi: 10.1088/0004-637X/698/2/1110 – volume: 448 start-page: 855 year: 2015 ident: apjacdb58bib55 publication-title: MNRAS doi: 10.1093/mnras/stu2723 – volume: 452 start-page: 956 year: 2015 ident: apjacdb58bib10 publication-title: MNRAS doi: 10.1093/mnras/stv1314 – volume: 562 start-page: A71 year: 2014 ident: apjacdb58bib3 publication-title: A&A doi: 10.1051/0004-6361/201322631 – volume: 12 start-page: 735 year: 2012 ident: apjacdb58bib16 publication-title: RAA doi: 10.1088/1674-4527/12/7/003 – volume: 629 start-page: A70 year: 2019 ident: apjacdb58bib26 publication-title: A&A doi: 10.1051/0004-6361/201935264 – volume: 132 start-page: 1645 year: 2006 ident: apjacdb58bib49 publication-title: AJ doi: 10.1086/506564 – volume: 285 start-page: 49 year: 1997 ident: apjacdb58bib13 publication-title: MNRAS doi: 10.1093/mnras/285.1.49 – volume: 125 start-page: 306 year: 2013 ident: apjacdb58bib21 publication-title: PASP doi: 10.1086/670067 – volume: 674 start-page: A39 year: 2023a ident: apjacdb58bib22 publication-title: A&A doi: 10.1051/0004-6361/202243800 – volume: 403 start-page: 1829 year: 2010 ident: apjacdb58bib46 publication-title: MNRAS doi: 10.1111/mnr.2010.403.issue-4 – volume: 429 start-page: 159 year: 2013 ident: apjacdb58bib24 publication-title: MNRAS doi: 10.1093/mnras/sts327 – volume: 616 start-page: 872 year: 2004 ident: apjacdb58bib42 publication-title: ApJ doi: 10.1086/424960 – volume: 449 start-page: 162 year: 2015 ident: apjacdb58bib31 publication-title: MNRAS doi: 10.1093/mnras/stv204 – volume: 485 start-page: 3134 year: 2019 ident: apjacdb58bib35 publication-title: MNRAS doi: 10.1093/mnras/stz583 – volume: 12 start-page: 1197 year: 2012 ident: apjacdb58bib14 publication-title: RAA doi: 10.1088/1674-4527/12/9/003 – volume: 595 start-page: A60 year: 2016 ident: apjacdb58bib34 publication-title: A&A doi: 10.1051/0004-6361/201629356 – volume: 783 start-page: 130 year: 2014 ident: apjacdb58bib43 publication-title: ApJ doi: 10.1088/0004-637X/783/2/130 – volume: 483 start-page: 4277 year: 2019 ident: apjacdb58bib11 publication-title: MNRAS doi: 10.1093/mnras/sty3341 – volume: 436 start-page: 101 year: 2013 ident: apjacdb58bib52 publication-title: MNRAS doi: 10.1093/mnras/stt1522 – volume: 674 start-page: A29 year: 2023 ident: apjacdb58bib41 publication-title: A&A doi: 10.1051/0004-6361/202243750 – volume: 674 start-page: A38 year: 2023b ident: apjacdb58bib23 publication-title: A&A doi: 10.1051/0004-6361/202243511 – volume: 467 start-page: 1890 year: 2017 ident: apjacdb58bib53 publication-title: MNRAS doi: 10.1093/mnras/stx129 – volume: 249 start-page: 29 year: 2020 ident: apjacdb58bib33 publication-title: ApJS doi: 10.3847/1538-4365/ab994f – volume: 493 start-page: 2952 year: 2020 ident: apjacdb58bib27 publication-title: MNRAS doi: 10.1093/mnras/staa335 – volume: 119 start-page: 800 year: 2000 ident: apjacdb58bib15 publication-title: AJ doi: 10.1086/301226 – year: 2008 ident: apjacdb58bib5 – volume: 804 start-page: L9 year: 2015 ident: apjacdb58bib38 publication-title: ApJL doi: 10.1088/2041-8205/804/1/L9 |
SSID | ssj0004299 |
Score | 2.4921536 |
Snippet | The tilt of the velocity ellipsoid is a helpful tracer of the gravitational potential of the Milky Way. In this paper, we use nearly 140,000 red clump (RC)... |
SourceID | doaj proquest crossref iop |
SourceType | Open Website Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 163 |
SubjectTerms | Alignment Astrophysics Baryons Disks Displays Ellipsoids Galactic disk Milky Way Milky Way disk Milky Way evolution Milky Way formation Oscillations Populations Stars Stellar abundances Stellar age Stellar kinematics Tracers Velocity |
SummonAdditionalLinks | – databaseName: IOP Science Platform dbid: IOP link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT-MwEB7xENJeeC2rlpd8YJH2kLZJHDsRJ96wEmwPgHpAivyKhCgNIuEAv56xnRaxIIS4WY5jJzOemc-PmQHY0rJHbdxtlLQ4xgVKkgQCgWvAuEb5kMZwlzrh7JydXNK_g2QwBTsTX5jyvlH9HSz6QMGehFa-Y9SlXSejaOV5Vygtk3QaZuMUDaf13vvXf3WKjLIG-9KAxXzgzyg_7OGNTXKh-9HS4PDv9LMzOkcLcD3-XH_X5LbzWMuOev4vkuM3_2cR5hswSnZ90yWYMqNlaO1Wdnu8vHsi28SV_e5HtQxzfV_6Cac4vcjFzbAmZUEQQ5Irg1YRET05dIcL5Y22Tw6a9Cs1ORZD546FVdUt6U_ShlUrcHl0eLF_EjRZGQKF4K0OqHWNTQVlkY4iFXM0gyYUjCtcipmUyVBnBYIcrahOepGk1BiTCkSFjDMlojD-BTOjcmRaQFDRZoVgIi1ESLHHzG7K9qQIDeOF0GEbumO-5KoJWW4zZwxzXLpY2uWWdrmlXe5p14Y_kzfufbiOT9ruWVZP2tlA264CmZQ3TMpNqqiwAY2SLKQmZELqKOMFF6i6FKKrNvxGvuaN4FefDLY-nkqvjREaxLi85pytfrGbNfhh8937G4jrMFM_PJoNREW13HSz_wXA0QHz priority: 102 providerName: IOP Publishing |
Title | The Tilt of the Velocity Ellipsoid of Different Galactic Disk Populations |
URI | https://iopscience.iop.org/article/10.3847/1538-4357/acdb58 https://www.proquest.com/docview/2843094776 https://doaj.org/article/e8c4a73285914e16abd297f7a319c782 |
Volume | 952 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1RS8MwEA4yEHwRncqmU_Kggg9la5sm7ePUzU3Q7WHTvZU0SWE412Hrg__eS9LOgTBffAmhTdtwd7n77prcIXQpkw7Rebdhpfk-OChB4HAArg5lEtZHohQzpROenulgSh5nwWyj1JfeE2bTA1vCtVUoCNcZZYLIJcqlPJFexFLGQXYEmDetfcHmVc5UdSIStKz9KemD-m2bZQ3AgLW5kIku775hhEyufjAt82z1SyEbK9M_QPslPMRdO61DtKOWddTo5jpgnb1_4Wts-jYekdfR7tj2jtAQGI4n80WBsxQDqsMvCuwUYGzcM-H-bC71nfuyIEqBH_jCHJCCS_kbHq8LeeXHaNrvTe4GTlknwREApwqH6MOqISfUk54nfAaGSbmcMgHOkQpp4sooBdghBZFBx0sIUUqFHHAaZVRwz_VPUG2ZLVUDYVB9UcopD1PuEnhjpMOknYS7irKUS7eJ2hXhYlEmEde1LBYxOBOa1LEmdaxJHVtSN9HN-omVTaCxZeyt5sV6nE59bS6AQMSlQMR_CUQTXQEn43Ip5ls-1qp4_TMYjLUPDi9j9PQ_5nKG9nR5erthsIVqxcenOgcQUyQXRl6hHY7G0I7812-rDevI |
linkProvider | Directory of Open Access Journals |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB5BEYhLCwXULS34AEgcsrtJHDs59rW0PMoeWrQ3169IVbebVZMe2l_P-LFb8VCFxM1yHMeZ8cx8fswMwDujhtTF3UZJy3NcoBRFIhG4JowblA9lLfepE74ds8NT-nlSTGKeU-8L08yj6u9jMQQKDiR08p2jLh14GUUrzwdSG1WUg7mpH8KjIkfb6Tz4vo_vHCOzKuJfmrCcT8I55V97-cUu-fD9aG1wCH_oaG94RmtwthhyuG9y0b_uVF_f_hbN8T_-6RmsRlBKdkLz5_DAztZhY6d12-TN5Q35QHw57IK06_B4HEov4AinGTk5n3akqQliSfLDonVEZE8O_CFDc27ck_2YhqUjn-TUu2VhVXtBxsv0Ye1LOB0dnOwdJjE7Q6IRxHUJdS6ypaQsM1mmc47m0KaScY1LMlsylZqqRrBjNDXFMFOUWmtLieiQcaZlluavYGXWzOwGEFS4VS2ZLGuZUuyxcpuzQyVTy3gtTdqDwYI3QsfQ5S6DxlTgEsbRTzj6CUc_EejXg4_LN-YhbMc9bXcdu5ftXMBtX4GMEpFRwpaaShfYqKhSalMmlckqXnOJKkwjyurBe-StiAqgvedjW4vpdNcYIUKOy2zO2eY_dvMWnoz3R-Lr0fGX1_A0Q-AVLiVuwUp3dW23ESh16o0Xhp9mAQdX |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+Tilt+of+the+Velocity+Ellipsoid+of+Different+Galactic+Disk+Populations&rft.jtitle=The+Astrophysical+journal&rft.au=Weixiang+Sun&rft.au=Han+Shen&rft.au=Xiaowei+Liu&rft.date=2023-08-01&rft.pub=IOP+Publishing&rft.eissn=1538-4357&rft.volume=952&rft.issue=2&rft.spage=163&rft_id=info:doi/10.3847%2F1538-4357%2Facdb58&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_e8c4a73285914e16abd297f7a319c782 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0004-637X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0004-637X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0004-637X&client=summon |