Improved Shear Wave Motion Detection Using Pulse-Inversion Harmonic Imaging With a Phased Array Transducer
Ultrasound tissue harmonic imaging is widely used to improve ultrasound B-mode imaging quality thanks to its effectiveness in suppressing imaging artifacts associated with ultrasound reverberation, phase aberration, and clutter noise. In ultrasound shear wave elastography (SWE), because the shear wa...
Saved in:
Published in | IEEE transactions on medical imaging Vol. 32; no. 12; pp. 2299 - 2310 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
IEEE
01.12.2013
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Ultrasound tissue harmonic imaging is widely used to improve ultrasound B-mode imaging quality thanks to its effectiveness in suppressing imaging artifacts associated with ultrasound reverberation, phase aberration, and clutter noise. In ultrasound shear wave elastography (SWE), because the shear wave motion signal is extracted from the ultrasound signal, these noise sources can significantly deteriorate the shear wave motion tracking process and consequently result in noisy and biased shear wave motion detection. This situation is exacerbated in in vivo SWE applications such as heart, liver, and kidney. This paper, therefore, investigated the possibility of implementing harmonic imaging, specifically pulse-inversion harmonic imaging, in shear wave tracking, with the hypothesis that harmonic imaging can improve shear wave motion detection based on the same principles that apply to general harmonic B-mode imaging. We first designed an experiment with a gelatin phantom covered by an excised piece of pork belly and show that harmonic imaging can significantly improve shear wave motion detection by producing less underestimated shear wave motion and more consistent shear wave speed measurements than fundamental imaging. Then, a transthoracic heart experiment on a freshly sacrificed pig showed that harmonic imaging could robustly track the shear wave motion and give consistent shear wave speed measurements of the left ventricular myocardium while fundamental imaging could not. Finally, an in vivo transthoracic study of seven healthy volunteers showed that the proposed harmonic imaging tracking sequence could provide consistent estimates of the left ventricular myocardium stiffness in end-diastole with a general success rate of 80% and a success rate of 93.3% when excluding the subject with Body Mass Index higher than 25. These promising results indicate that pulse-inversion harmonic imaging can significantly improve shear wave motion tracking and thus potentially facilitate more robust assessment of tissue elasticity by SWE. |
---|---|
AbstractList | Ultrasound tissue harmonic imaging is widely used to improve ultrasound B-mode imaging quality thanks to its effectiveness in suppressing imaging artifacts associated with ultrasound reverberation, phase aberration, and clutter noise. In ultrasound shear wave elastography (SWE), because the shear wave motion signal is extracted from the ultrasound signal, these noise sources can significantly deteriorate the shear wave motion tracking process and consequently result in noisy and biased shear wave motion detection. This situation is exacerbated in in vivo SWE applications such as heart, liver, and kidney. This paper, therefore, investigated the possibility of implementing harmonic imaging, specifically pulse-inversion harmonic imaging, in shear wave tracking, with the hypothesis that harmonic imaging can improve shear wave motion detection based on the same principles that apply to general harmonic B-mode imaging. We first designed an experiment with a gelatin phantom covered by an excised piece of pork belly and show that harmonic imaging can significantly improve shear wave motion detection by producing less underestimated shear wave motion and more consistent shear wave speed measurements than fundamental imaging. Then, a transthoracic heart experiment on a freshly sacrificed pig showed that harmonic imaging could robustly track the shear wave motion and give consistent shear wave speed measurements of the left ventricular myocardium while fundamental imaging could not. Finally, an in vivo transthoracic study of seven healthy volunteers showed that the proposed harmonic imaging tracking sequence could provide consistent estimates of the left ventricular myocardium stiffness in end-diastole with a general success rate of 80% and a success rate of 93.3% when excluding the subject with Body Mass Index higher than 25. These promising results indicate that pulse-inversion harmonic imaging can significantly improve shear wave motion tracking and thus potentially facilitate more robust assessment of tissue elasticity by SWE. Ultrasound tissue harmonic imaging is widely used to improve ultrasound B-mode imaging quality thanks to its effectiveness in suppressing imaging artifacts associated with ultrasound reverberation, phase aberration, and clutter noise. In ultrasound shear wave elastography (SWE), because the shear wave motion signal is extracted from the ultrasound signal, these noise sources can significantly deteriorate the shear wave motion tracking process and consequently result in noisy and biased shear wave motion detection. This situation is exacerbated in in vivo SWE applications such as heart, liver, and kidney. This paper, therefore, investigated the possibility of implementing harmonic imaging, specifically pulse-inversion harmonic imaging, in shear wave tracking, with the hypothesis that harmonic imaging can improve shear wave motion detection based on the same principles that apply to general harmonic B-mode imaging. We first designed an experiment with a gelatin phantom covered by an excised piece of pork belly and show that harmonic imaging can significantly improve shear wave motion detection by producing less underestimated shear wave motion and more consistent shear wave speed measurements than fundamental imaging. Then, a transthoracic heart experiment on a freshly sacrificed pig showed that harmonic imaging could robustly track the shear wave motion and give consistent shear wave speed measurements of the left ventricular myocardium while fundamental imaging could not. Finally, an in vivo transthoracic study of seven healthy volunteers showed that the proposed harmonic imaging tracking sequence could provide consistent estimates of the left ventricular myocardium stiffness in end-diastole with a general success rate of 80% and a success rate of 93.3% when excluding the subject with Body Mass Index higher than 25. These promising results indicate that pulse-inversion harmonic imaging can significantly improve shear wave motion tracking and thus potentially facilitate more robust assessment of tissue elasticity by SWE.Ultrasound tissue harmonic imaging is widely used to improve ultrasound B-mode imaging quality thanks to its effectiveness in suppressing imaging artifacts associated with ultrasound reverberation, phase aberration, and clutter noise. In ultrasound shear wave elastography (SWE), because the shear wave motion signal is extracted from the ultrasound signal, these noise sources can significantly deteriorate the shear wave motion tracking process and consequently result in noisy and biased shear wave motion detection. This situation is exacerbated in in vivo SWE applications such as heart, liver, and kidney. This paper, therefore, investigated the possibility of implementing harmonic imaging, specifically pulse-inversion harmonic imaging, in shear wave tracking, with the hypothesis that harmonic imaging can improve shear wave motion detection based on the same principles that apply to general harmonic B-mode imaging. We first designed an experiment with a gelatin phantom covered by an excised piece of pork belly and show that harmonic imaging can significantly improve shear wave motion detection by producing less underestimated shear wave motion and more consistent shear wave speed measurements than fundamental imaging. Then, a transthoracic heart experiment on a freshly sacrificed pig showed that harmonic imaging could robustly track the shear wave motion and give consistent shear wave speed measurements of the left ventricular myocardium while fundamental imaging could not. Finally, an in vivo transthoracic study of seven healthy volunteers showed that the proposed harmonic imaging tracking sequence could provide consistent estimates of the left ventricular myocardium stiffness in end-diastole with a general success rate of 80% and a success rate of 93.3% when excluding the subject with Body Mass Index higher than 25. These promising results indicate that pulse-inversion harmonic imaging can significantly improve shear wave motion tracking and thus potentially facilitate more robust assessment of tissue elasticity by SWE. Ultrasound tissue harmonic imaging is widely used to improve ultrasound B-mode imaging quality thanks to its effectiveness in suppressing imaging artifacts associated with ultrasound reverberation, phase aberration, and clutter noise. In ultrasound shear wave elastography (SWE), because the shear wave motion signal is extracted from the ultrasound signal, these noise sources can significantly deteriorate the shear wave motion tracking process and consequently result in noisy and biased shear wave motion detection. This situation is exacerbated in in vivo SWE applications such as heart, liver, and kidney. This paper, therefore, investigated the possibility of implementing harmonic imaging, specifically pulse-inversion harmonic imaging, in shear wave tracking, with the hypothesis that harmonic imaging can improve shear wave motion detection based on the same principles that apply to general harmonic B-mode imaging. We first designed an experiment with a gelatin phantom covered by an excised piece of pork belly and show that harmonic imaging can significantly improve shear wave motion detection by producing less underestimated shear wave motion and more consistent shear wave speed measurements than fundamental imaging. Then, a transthoracic heart experiment on a freshly sacrificed pig showed that harmonic imaging could robustly track the shear wave motion and give consistent shear wave speed measurements while fundamental imaging could not. Finally, an in vivo transthoracic study of seven healthy volunteers showed that the proposed harmonic imaging tracking sequence could provide consistent estimates of the left ventricular myocardium stiffness in end-diastole with a general success rate of 80% and a success rate of 93.3% when excluding the subject with Body Mass Index (BMI) higher than 25. These promising results indicate that pulse-inversion harmonic imaging can significantly improve shear wave motion tracking and thus potentially facilitate more robust assessment of tissue elasticity by SWE. |
Author | Pengfei Song Manduca, Armando Shigao Chen Pislaru, Sorin V. Heng Zhao Kinnick, Randall R. Urban, Matthew W. Pislaru, Cristina Greenleaf, James F. |
AuthorAffiliation | 3 Mayo Graduate School, Mayo Clinic College of Medicine, Rochester, MN 1 Department of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine, Rochester, MN 2 Department of Cardiovascular Diseases, Mayo Clinic College of Medicine, Rochester, MN |
AuthorAffiliation_xml | – name: 1 Department of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine, Rochester, MN – name: 3 Mayo Graduate School, Mayo Clinic College of Medicine, Rochester, MN – name: 2 Department of Cardiovascular Diseases, Mayo Clinic College of Medicine, Rochester, MN |
Author_xml | – sequence: 1 surname: Pengfei Song fullname: Pengfei Song email: song.pengfei@mayo.edu organization: Dept. of Physiol. & Biomed. Eng., Mayo Clinic Coll. of Med., Rochester, MN, USA – sequence: 2 surname: Heng Zhao fullname: Heng Zhao organization: Dept. of Physiol. & Biomed. Eng., Mayo Clinic Coll. of Med., Rochester, MN, USA – sequence: 3 givenname: Matthew W. surname: Urban fullname: Urban, Matthew W. organization: Dept. of Physiol. & Biomed. Eng., Mayo Clinic Coll. of Med., Rochester, MN, USA – sequence: 4 givenname: Armando surname: Manduca fullname: Manduca, Armando organization: Dept. of Physiol. & Biomed. Eng., Mayo Clinic Coll. of Med., Rochester, MN, USA – sequence: 5 givenname: Sorin V. surname: Pislaru fullname: Pislaru, Sorin V. organization: Dept. of Cardiovascular Diseases, Mayo Clinic Coll. of Med., Rochester, MN, USA – sequence: 6 givenname: Randall R. surname: Kinnick fullname: Kinnick, Randall R. organization: Dept. of Physiol. & Biomed. Eng., Mayo Clinic Coll. of Med., Rochester, MN, USA – sequence: 7 givenname: Cristina surname: Pislaru fullname: Pislaru, Cristina organization: Dept. of Physiol. & Biomed. Eng., Mayo Clinic Coll. of Med., Rochester, MN, USA – sequence: 8 givenname: James F. surname: Greenleaf fullname: Greenleaf, James F. email: jfg@mayo.edu organization: Dept. of Physiol. & Biomed. Eng., Mayo Clinic Coll. of Med., Rochester, MN, USA – sequence: 9 surname: Shigao Chen fullname: Shigao Chen email: Chen.Shigao@mayo.edu organization: Dept. of Physiol. & Biomed. Eng., Mayo Clinic Coll. of Med., Rochester, MN, USA |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/24021638$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kc1v0zAYhy00xLrBHQkJ5cglxZ-pc0GaBmORNjGJTuNmvXXetJ4Sp9hJpf33c2ipgAOn17J_H7afM3Lie4-EvGV0zhgtPy5vqzmnTMw517Sk4gWZMaV0zpX8cUJmlC90TmnBT8lZjI-UMqlo-Yqcckk5K4Sekceq24Z-h3X2fYMQsgfYYXbbD6732Wcc0P5a3Ufn19nd2EbMK7_DEKfdawhd753Nqg7Wk-DBDZsMsrsNxBR4EQI8ZcsAPtajxfCavGwgJbw5zHNyf_VleXmd33z7Wl1e3ORWsmLIJWvkgiEr0EJDV8qiUljW5ULzmumVLBQFYRGgTK-EBuRKFGk0FEBIZa04J5_2udtx1WFt0Q8BWrMNroPwZHpw5u8T7zZm3e-MKOVClCIFfDgEhP7niHEwnYsW2xY89mM0TFOplaJcJ-n7P7uOJb8_OAnoXmBDH2PA5ihh1EwMTWJoJobmwDBZin8s1g0wcUi3de3_jO_2RoeIx55C6TJxF8-asKsG |
CODEN | ITMID4 |
CitedBy_id | crossref_primary_10_1177_0161734618770359 crossref_primary_10_1016_j_ultrasmedbio_2018_11_007 crossref_primary_10_1016_j_ultrasmedbio_2016_03_009 crossref_primary_10_1093_ehjci_jeae224 crossref_primary_10_1007_s00395_014_0438_5 crossref_primary_10_3179_jjmu_JJMU_R_209 crossref_primary_10_1109_TUFFC_2016_2515366 crossref_primary_10_1109_TUFFC_2016_2641299 crossref_primary_10_1016_j_ultrasmedbio_2021_08_002 crossref_primary_10_1109_TUFFC_2015_007062 crossref_primary_10_1109_TUFFC_2018_2881493 crossref_primary_10_1088_0031_9155_61_1_365 crossref_primary_10_1109_TMI_2021_3049307 crossref_primary_10_1016_j_ultrasmedbio_2014_03_004 crossref_primary_10_1109_TMI_2022_3141613 crossref_primary_10_1016_j_ultrasmedbio_2015_08_012 crossref_primary_10_7863_ultra_15_08053 crossref_primary_10_1109_TUFFC_2016_2530408 crossref_primary_10_1109_TUFFC_2016_2614944 crossref_primary_10_1016_j_ultrasmedbio_2023_10_005 crossref_primary_10_1038_s41598_020_75401_1 crossref_primary_10_1148_ryct_230140 crossref_primary_10_1016_j_ultras_2024_107358 crossref_primary_10_1016_j_ultrasmedbio_2019_09_002 crossref_primary_10_1016_j_ultrasmedbio_2015_12_012 crossref_primary_10_1109_TUFFC_2016_2543026 crossref_primary_10_1109_TMI_2014_2360835 crossref_primary_10_1038_srep44483 crossref_primary_10_1088_1361_6560_aaaffe crossref_primary_10_1002_jmri_25678 crossref_primary_10_1016_j_medengphy_2021_10_002 crossref_primary_10_1088_1361_6560_ac404d crossref_primary_10_1016_j_jcmg_2023_12_007 crossref_primary_10_1007_s10396_021_01127_w crossref_primary_10_1016_j_echo_2017_06_023 crossref_primary_10_1002_mrm_26101 crossref_primary_10_1016_j_ultrasmedbio_2023_02_006 crossref_primary_10_1109_TMI_2016_2638639 crossref_primary_10_3390_app9224883 crossref_primary_10_1088_2057_1976_aabe41 crossref_primary_10_1109_TUFFC_2018_2884348 crossref_primary_10_1109_TUFFC_2014_006653 crossref_primary_10_1088_1361_6560_acba75 crossref_primary_10_1016_j_ultrasmedbio_2016_05_021 crossref_primary_10_1109_TUFFC_2016_2627142 crossref_primary_10_1016_j_ultrasmedbio_2016_01_007 crossref_primary_10_1016_j_ultrasmedbio_2016_11_015 crossref_primary_10_1016_j_jcmg_2014_06_004 crossref_primary_10_1016_j_ultras_2018_05_009 crossref_primary_10_1016_j_ultrasmedbio_2019_04_004 crossref_primary_10_1186_s12947_020_00222_1 crossref_primary_10_1109_TUFFC_2019_2911036 crossref_primary_10_1016_j_ultrasmedbio_2017_04_012 crossref_primary_10_1088_0031_9155_61_13_5000 crossref_primary_10_1063_1_4982882 crossref_primary_10_1016_j_ultrasmedbio_2017_10_003 crossref_primary_10_1002_jum_14925 crossref_primary_10_1080_17434440_2018_1538782 |
Cites_doi | 10.1109/TUFFC.2011.2124 10.1121/1.417977 10.1109/TUFFC.2005.1397352 10.1016/j.ultrasmedbio.2010.02.007 10.1016/S0301-5629(98)00110-0 10.1109/ULTSYM.2012.0052 10.1121/1.4755314 10.1016/S0301-5629(01)00379-9 10.1109/TUFFC.2003.1209550 10.1109/TMI.2012.2205586 10.1109/TUFFC.887 10.1109/58.585208 10.1109/TUFFC.2010.1554 10.1109/TMI.2010.2076829 10.1007/s10396-011-0304-0 10.1016/j.ultrasmedbio.2008.02.002 10.1109/TUFFC.2010.1740 10.1109/58.753026 10.1109/TMI.2013.2257831 10.1016/S0301-5629(99)00060-5 10.1016/j.ultrasmedbio.2007.10.009 10.2214/ajr.171.5.9798848 10.1016/S0894-7317(98)70055-0 10.1109/IEMBS.2009.5333114 10.1016/j.ultrasmedbio.2005.03.006 10.1109/ULTSYM.1985.198654 10.1109/TUFFC.2002.1041078 10.1016/j.ultrasmedbio.2012.02.028 10.1109/TUFFC.2009.1067 10.1109/TUFFC.2004.1295425 10.1109/TUFFC.2010.1710 10.1109/TUFFC.2006.1642509 10.1016/S0301-5629(02)00558-6 10.1109/TMI.2012.2222656 10.1088/0266-5611/22/2/019 |
ContentType | Journal Article |
DBID | 97E RIA RIE AAYXX CITATION NPM 7X8 5PM |
DOI | 10.1109/TMI.2013.2280903 |
DatabaseName | IEEE Xplore (IEEE) IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef PubMed MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
DatabaseTitleList | PubMed MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Engineering |
EISSN | 1558-254X |
EndPage | 2310 |
ExternalDocumentID | PMC3947393 24021638 10_1109_TMI_2013_2280903 6589145 |
Genre | orig-research Journal Article |
GrantInformation_xml | – fundername: NIDDK NIH HHS grantid: R01 DK092255 – fundername: NIDDK NIH HHS grantid: R01 DK082408 – fundername: NIBIB NIH HHS grantid: R01 EB002167 – fundername: NCATS NIH HHS grantid: UL1 TR000135 |
GroupedDBID | --- -DZ -~X .GJ 0R~ 29I 4.4 53G 5GY 5RE 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK ACNCT ACPRK AENEX AETIX AFRAH AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD F5P HZ~ H~9 IBMZZ ICLAB IFIPE IFJZH IPLJI JAVBF LAI M43 MS~ O9- OCL P2P PQQKQ RIA RIE RNS RXW TAE TN5 VH1 AAYOK AAYXX CITATION RIG NPM 7X8 5PM |
ID | FETCH-LOGICAL-c416t-41f471e16ecaf0b5ce55e9d9782d18b4650a3ceaa9254afa4b36afaf0aa345cc3 |
IEDL.DBID | RIE |
ISSN | 0278-0062 1558-254X |
IngestDate | Thu Aug 21 18:28:48 EDT 2025 Fri Jul 11 00:51:41 EDT 2025 Thu Apr 03 07:00:32 EDT 2025 Tue Jul 01 03:15:53 EDT 2025 Thu Apr 24 23:04:15 EDT 2025 Tue Aug 26 16:42:50 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | false |
IsScholarly | true |
Issue | 12 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c416t-41f471e16ecaf0b5ce55e9d9782d18b4650a3ceaa9254afa4b36afaf0aa345cc3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | http://doi.org/10.1109/TMI.2013.2280903 |
PMID | 24021638 |
PQID | 1804855028 |
PQPubID | 23479 |
PageCount | 12 |
ParticipantIDs | pubmed_primary_24021638 ieee_primary_6589145 crossref_primary_10_1109_TMI_2013_2280903 proquest_miscellaneous_1804855028 pubmedcentral_primary_oai_pubmedcentral_nih_gov_3947393 crossref_citationtrail_10_1109_TMI_2013_2280903 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2013-12-01 |
PublicationDateYYYYMMDD | 2013-12-01 |
PublicationDate_xml | – month: 12 year: 2013 text: 2013-12-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | IEEE transactions on medical imaging |
PublicationTitleAbbrev | TMI |
PublicationTitleAlternate | IEEE Trans Med Imaging |
PublicationYear | 2013 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
References | ref35 ref13 ref34 ref12 ref15 ref36 ref31 ref30 ref33 ref11 ref32 ref10 ref2 ogden (ref40) 2012 ref1 ref39 ref17 ref38 ref16 ref19 ref18 ref23 ref26 luo (ref14) 2010; 57 ref25 ref20 averkiou (ref24) 2000 ref22 ref21 shi (ref4) 2011 ref28 ref27 ref8 ref7 ref9 ref3 ref6 (ref29) 1999 ref5 nenadic (ref37) 2011 21041131 - IEEE Trans Ultrason Ferroelectr Freq Control. 2010 Nov;57(11):2437-49 18395961 - Ultrasound Med Biol. 2008 Sep;34(9):1373-86 27278500 - J Med Ultrason (2001). 2011 Jul;38(3):129-40 22736690 - IEEE Trans Med Imaging. 2012 Sep;31(9):1821-32 12401393 - Ultrasound Med Biol. 2002 Sep;28(9):1217-24 19964051 - Conf Proc IEEE Eng Med Biol Soc. 2009;2009:2891-4 19411209 - IEEE Trans Ultrason Ferroelectr Freq Control. 2009 Mar;56(3):489-506 16846143 - IEEE Trans Ultrason Ferroelectr Freq Control. 2006 Jun;53(6):1103-17 12839175 - IEEE Trans Ultrason Ferroelectr Freq Control. 2003 Jun;50(6):631-41 9798848 - AJR Am J Roentgenol. 1998 Nov;171(5):1203-6 18222031 - Ultrasound Med Biol. 2008 Apr;34(4):546-58 15742564 - IEEE Trans Ultrason Ferroelectr Freq Control. 2005 Jan;52(1):80-93 18244110 - IEEE Trans Ultrason Ferroelectr Freq Control. 1997;44(1):125-39 20381950 - Ultrasound Med Biol. 2010 May;36(5):802-13 9000731 - J Acoust Soc Am. 1997 Jan;101(1):143-54 21156362 - IEEE Trans Ultrason Ferroelectr Freq Control. 2010 Dec;57(12 ):2662-70 23060325 - IEEE Trans Med Imaging. 2013 Feb;32(2):247-61 20529710 - IEEE Trans Ultrason Ferroelectr Freq Control. 2010 Jun;57(6):1347-57 22579544 - Ultrasound Med Biol. 2012 Jul;38(7):1271-83 12403138 - IEEE Trans Ultrason Ferroelectr Freq Control. 2002 Oct;49(10):1363-74 23591479 - IEEE Trans Med Imaging. 2013 Aug;32(8):1435-47 11516542 - Ultrasound Med Biol. 2001 Jun;27(6):819-27 18986892 - IEEE Trans Ultrason Ferroelectr Freq Control. 2008 Sep;55(9):1956-74 10385964 - Ultrasound Med Biol. 1998 Nov;24(9):1419-35 20851788 - IEEE Trans Med Imaging. 2011 Feb;30(2):295-305 22617494 - NCHS Data Brief. 2012 Jan;(82):1-8 18238434 - IEEE Trans Ultrason Ferroelectr Freq Control. 1999;46(2):372-82 9719092 - J Am Soc Echocardiogr. 1998 Aug;11(8):803-8 15972194 - Ultrasound Med Biol. 2005 Jul;31(7):889-94 23443697 - IEEE Trans Ultrason Ferroelectr Freq Control. 2011 Dec;58(12 ):2608-19 15139541 - IEEE Trans Ultrason Ferroelectr Freq Control. 2004 Apr;51(4):396-409 10461715 - Ultrasound Med Biol. 1999 Jul;25(6):889-94 |
References_xml | – ident: ref8 doi: 10.1109/TUFFC.2011.2124 – ident: ref26 doi: 10.1121/1.417977 – ident: ref12 doi: 10.1109/TUFFC.2005.1397352 – ident: ref18 doi: 10.1016/j.ultrasmedbio.2010.02.007 – ident: ref1 doi: 10.1016/S0301-5629(98)00110-0 – ident: ref30 doi: 10.1109/ULTSYM.2012.0052 – ident: ref34 doi: 10.1121/1.4755314 – ident: ref3 doi: 10.1016/S0301-5629(01)00379-9 – year: 1999 ident: ref29 publication-title: Two Pulse Technique for Ultrasound Harmonic Imaging – ident: ref38 doi: 10.1109/TUFFC.2003.1209550 – ident: ref10 doi: 10.1109/TMI.2012.2205586 – ident: ref39 doi: 10.1109/TUFFC.887 – ident: ref25 doi: 10.1109/58.585208 – volume: 57 start-page: 1347 year: 2010 ident: ref14 article-title: A fast normalized cross-correlation calculation method for motion estimation publication-title: IEEE Trans Ultrason Ferroelectr Freq Control doi: 10.1109/TUFFC.2010.1554 – ident: ref6 doi: 10.1109/TMI.2010.2076829 – start-page: 17 year: 2011 ident: ref37 article-title: In vivo open and closed chest measruements of myocardial viscoelasticity through a heart cycle using lamb wave dispersion ultrasound vibrometry (LDUV) publication-title: Proc IEEE Int Ultrason Symp – ident: ref31 doi: 10.1007/s10396-011-0304-0 – ident: ref16 doi: 10.1016/j.ultrasmedbio.2008.02.002 – ident: ref17 doi: 10.1109/TUFFC.2010.1740 – ident: ref27 doi: 10.1109/58.753026 – ident: ref11 doi: 10.1109/TMI.2013.2257831 – ident: ref23 doi: 10.1016/S0301-5629(99)00060-5 – ident: ref5 doi: 10.1016/j.ultrasmedbio.2007.10.009 – ident: ref21 doi: 10.2214/ajr.171.5.9798848 – ident: ref22 doi: 10.1016/S0894-7317(98)70055-0 – ident: ref36 doi: 10.1109/IEMBS.2009.5333114 – ident: ref28 doi: 10.1016/j.ultrasmedbio.2005.03.006 – ident: ref32 doi: 10.1109/ULTSYM.1985.198654 – ident: ref20 doi: 10.1109/TUFFC.2002.1041078 – ident: ref7 doi: 10.1016/j.ultrasmedbio.2012.02.028 – ident: ref19 doi: 10.1109/TUFFC.2009.1067 – ident: ref9 doi: 10.1109/TUFFC.2004.1295425 – start-page: 1563 year: 2000 ident: ref24 article-title: Tissue harmonic imaging publication-title: Proc IEEE Int Ultrason Symp – start-page: 1 year: 2012 ident: ref40 article-title: Prevalence of obesity in the United States, 2009?2010 publication-title: NCHS Data Brief – ident: ref13 doi: 10.1109/TUFFC.2010.1710 – ident: ref2 doi: 10.1109/TUFFC.2006.1642509 – ident: ref33 doi: 10.1016/S0301-5629(02)00558-6 – start-page: 2408 year: 2011 ident: ref4 article-title: Phase aberration in shear wave dispersion ultrasound vibrometry publication-title: Proc IEEE Int Ultrason Symp – ident: ref35 doi: 10.1109/TMI.2012.2222656 – ident: ref15 doi: 10.1088/0266-5611/22/2/019 – reference: 23443697 - IEEE Trans Ultrason Ferroelectr Freq Control. 2011 Dec;58(12 ):2608-19 – reference: 21156362 - IEEE Trans Ultrason Ferroelectr Freq Control. 2010 Dec;57(12 ):2662-70 – reference: 23060325 - IEEE Trans Med Imaging. 2013 Feb;32(2):247-61 – reference: 12839175 - IEEE Trans Ultrason Ferroelectr Freq Control. 2003 Jun;50(6):631-41 – reference: 9798848 - AJR Am J Roentgenol. 1998 Nov;171(5):1203-6 – reference: 11516542 - Ultrasound Med Biol. 2001 Jun;27(6):819-27 – reference: 15972194 - Ultrasound Med Biol. 2005 Jul;31(7):889-94 – reference: 12401393 - Ultrasound Med Biol. 2002 Sep;28(9):1217-24 – reference: 12403138 - IEEE Trans Ultrason Ferroelectr Freq Control. 2002 Oct;49(10):1363-74 – reference: 9000731 - J Acoust Soc Am. 1997 Jan;101(1):143-54 – reference: 27278500 - J Med Ultrason (2001). 2011 Jul;38(3):129-40 – reference: 15139541 - IEEE Trans Ultrason Ferroelectr Freq Control. 2004 Apr;51(4):396-409 – reference: 22736690 - IEEE Trans Med Imaging. 2012 Sep;31(9):1821-32 – reference: 20381950 - Ultrasound Med Biol. 2010 May;36(5):802-13 – reference: 10385964 - Ultrasound Med Biol. 1998 Nov;24(9):1419-35 – reference: 19411209 - IEEE Trans Ultrason Ferroelectr Freq Control. 2009 Mar;56(3):489-506 – reference: 22579544 - Ultrasound Med Biol. 2012 Jul;38(7):1271-83 – reference: 22617494 - NCHS Data Brief. 2012 Jan;(82):1-8 – reference: 15742564 - IEEE Trans Ultrason Ferroelectr Freq Control. 2005 Jan;52(1):80-93 – reference: 16846143 - IEEE Trans Ultrason Ferroelectr Freq Control. 2006 Jun;53(6):1103-17 – reference: 20851788 - IEEE Trans Med Imaging. 2011 Feb;30(2):295-305 – reference: 21041131 - IEEE Trans Ultrason Ferroelectr Freq Control. 2010 Nov;57(11):2437-49 – reference: 18222031 - Ultrasound Med Biol. 2008 Apr;34(4):546-58 – reference: 18244110 - IEEE Trans Ultrason Ferroelectr Freq Control. 1997;44(1):125-39 – reference: 10461715 - Ultrasound Med Biol. 1999 Jul;25(6):889-94 – reference: 23591479 - IEEE Trans Med Imaging. 2013 Aug;32(8):1435-47 – reference: 20529710 - IEEE Trans Ultrason Ferroelectr Freq Control. 2010 Jun;57(6):1347-57 – reference: 9719092 - J Am Soc Echocardiogr. 1998 Aug;11(8):803-8 – reference: 19964051 - Conf Proc IEEE Eng Med Biol Soc. 2009;2009:2891-4 – reference: 18986892 - IEEE Trans Ultrason Ferroelectr Freq Control. 2008 Sep;55(9):1956-74 – reference: 18395961 - Ultrasound Med Biol. 2008 Sep;34(9):1373-86 – reference: 18238434 - IEEE Trans Ultrason Ferroelectr Freq Control. 1999;46(2):372-82 |
SSID | ssj0014509 |
Score | 2.4129586 |
Snippet | Ultrasound tissue harmonic imaging is widely used to improve ultrasound B-mode imaging quality thanks to its effectiveness in suppressing imaging artifacts... |
SourceID | pubmedcentral proquest pubmed crossref ieee |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 2299 |
SubjectTerms | Acoustic beams Acoustic radiation force diastolic left ventricle stiffness Harmonic analysis harmonic imaging Heart Imaging In vivo in vivo human heart pulse-inversion shear wave elastography Tracking transthoracic scanning Ultrasonic imaging |
Title | Improved Shear Wave Motion Detection Using Pulse-Inversion Harmonic Imaging With a Phased Array Transducer |
URI | https://ieeexplore.ieee.org/document/6589145 https://www.ncbi.nlm.nih.gov/pubmed/24021638 https://www.proquest.com/docview/1804855028 https://pubmed.ncbi.nlm.nih.gov/PMC3947393 |
Volume | 32 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1La9wwEB6SHEp76CPpY_tChV4K9a5sS34cS9uwKbjkkJDcjCSP2aSNt2ztQvvrOyM_yIZQerLBEoyZEd9I8-kbgLe1iozMUAXaIgaKMCkwEtOgikKnU0KExPLd4eJrsjxVX871-Q68n-7CIKInn-GcX30tv1q7jo_KFgm3wFN6F3Zp49bf1ZoqBkr3dI6IFWNlEo0lSZkvTooj5nDFc5Z-ySW3zuGaAmciW2jk26vclmneJExeQ6DDB1CMtvfEk2_zrrVz9-eGrOP__txDuD-kouJDHzuPYAebfbh3TaBwH-4UQ-n9AC774weshG-CLc7MLxSF7wEkPmHrGV2N8AwEcdwR4AYs4eEP48TSbK5YglccXfmmSOLsol0JI45XhKEVWbAxv4VHzYoibfMYTg8_n3xcBkOjhsBRPtcGKqwJ4zBM0JlaWu1Qa8wr2qBGVZhZRVmgiR0ak9N21NRG2TihRy2NiZV2Ln4Ce826wWcglGG5mKjOdI7KpjbH0KXkNcJUF7k4m8FidFjpBhVzbqbxvfS7GZmX5O2SvV0O3p7Bu2nGj17B4x9jD9gx07jBJzN4M8ZESauPSyqmwXX3swwz6SXhIjLsaR8j0-QxxmaQbkXPNICVvbe_NBcrr_Ad54qVCp_fbs4LuMtG96Sal7DXbjp8RalRa1_7NfEXW6kKFg |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB6VIkF74NGWdnkaiQsS2c3DzuOIgGoXmqqHrdpb5DgTbWmbRUuCBL-eGeehblUhTokUW5poxvrGnvH3Abwrpa_dGKWjckRHEiY52sXIKXzPqIgQIcz57nB6HE5P5ddzdb4BH4a7MIhom89wzK-2ll8sTcNHZZOQJfCkugf3CfeV397WGmoGUrUNHT5zxrqh3xcl3WQyT2fcxRWMmfwlcVk8h6sKnIus4ZEVWLkr17zdMnkDgw4fQ9pb37aeXI6bOh-bP7eIHf_3957Aoy4ZFR_b6HkKG1jtwPYNisIdeJB2xfdd-N4eQGAhrAy2ONO_UKRWBUh8xtr2dFXC9iCIk4Yg12ESD3scJ6Z6dc0kvGJ2bWWRxNlFvRBanCwIRQuyYKV_C4ubBcXaag9OD7_MP02dTqrBMZTR1Y70SkI59EI0unRzZVApTAraovqFF-eS8kAdGNQ6oQ2pLrXMg5Aepat1IJUxwTPYrJYVHoCQmglj_DJWCco8yhP0TEReI1Q1vgniEUx6h2Wm4zFnOY2rzO5n3CQjb2fs7azz9gjeDzN-tBwe_xi7y44ZxnU-GcHbPiYyWn9cVNEVLpufmRe7lhTOJ8P22xgZJvcxNoJoLXqGAcztvf6lulhYju8gkcxV-Pxuc97Aw-k8PcqOZsffXsAW_0DbYvMSNutVg68oUarz13Z9_AVd6A1g |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Improved+Shear+Wave+Motion+Detection+Using+Pulse-Inversion+Harmonic+Imaging+With+a+Phased+Array+Transducer&rft.jtitle=IEEE+transactions+on+medical+imaging&rft.au=Urban%2C+Matthew+W&rft.au=Manduca%2C+Armando&rft.au=Pislaru%2C+Sorin+V&rft.au=Kinnick%2C+Randall+R&rft.date=2013-12-01&rft.issn=1558-254X&rft.eissn=1558-254X&rft.volume=32&rft.issue=12&rft.spage=2299&rft_id=info:doi/10.1109%2FTMI.2013.2280903&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0278-0062&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0278-0062&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0278-0062&client=summon |