Improved Shear Wave Motion Detection Using Pulse-Inversion Harmonic Imaging With a Phased Array Transducer

Ultrasound tissue harmonic imaging is widely used to improve ultrasound B-mode imaging quality thanks to its effectiveness in suppressing imaging artifacts associated with ultrasound reverberation, phase aberration, and clutter noise. In ultrasound shear wave elastography (SWE), because the shear wa...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on medical imaging Vol. 32; no. 12; pp. 2299 - 2310
Main Authors Pengfei Song, Heng Zhao, Urban, Matthew W., Manduca, Armando, Pislaru, Sorin V., Kinnick, Randall R., Pislaru, Cristina, Greenleaf, James F., Shigao Chen
Format Journal Article
LanguageEnglish
Published United States IEEE 01.12.2013
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Ultrasound tissue harmonic imaging is widely used to improve ultrasound B-mode imaging quality thanks to its effectiveness in suppressing imaging artifacts associated with ultrasound reverberation, phase aberration, and clutter noise. In ultrasound shear wave elastography (SWE), because the shear wave motion signal is extracted from the ultrasound signal, these noise sources can significantly deteriorate the shear wave motion tracking process and consequently result in noisy and biased shear wave motion detection. This situation is exacerbated in in vivo SWE applications such as heart, liver, and kidney. This paper, therefore, investigated the possibility of implementing harmonic imaging, specifically pulse-inversion harmonic imaging, in shear wave tracking, with the hypothesis that harmonic imaging can improve shear wave motion detection based on the same principles that apply to general harmonic B-mode imaging. We first designed an experiment with a gelatin phantom covered by an excised piece of pork belly and show that harmonic imaging can significantly improve shear wave motion detection by producing less underestimated shear wave motion and more consistent shear wave speed measurements than fundamental imaging. Then, a transthoracic heart experiment on a freshly sacrificed pig showed that harmonic imaging could robustly track the shear wave motion and give consistent shear wave speed measurements of the left ventricular myocardium while fundamental imaging could not. Finally, an in vivo transthoracic study of seven healthy volunteers showed that the proposed harmonic imaging tracking sequence could provide consistent estimates of the left ventricular myocardium stiffness in end-diastole with a general success rate of 80% and a success rate of 93.3% when excluding the subject with Body Mass Index higher than 25. These promising results indicate that pulse-inversion harmonic imaging can significantly improve shear wave motion tracking and thus potentially facilitate more robust assessment of tissue elasticity by SWE.
AbstractList Ultrasound tissue harmonic imaging is widely used to improve ultrasound B-mode imaging quality thanks to its effectiveness in suppressing imaging artifacts associated with ultrasound reverberation, phase aberration, and clutter noise. In ultrasound shear wave elastography (SWE), because the shear wave motion signal is extracted from the ultrasound signal, these noise sources can significantly deteriorate the shear wave motion tracking process and consequently result in noisy and biased shear wave motion detection. This situation is exacerbated in in vivo SWE applications such as heart, liver, and kidney. This paper, therefore, investigated the possibility of implementing harmonic imaging, specifically pulse-inversion harmonic imaging, in shear wave tracking, with the hypothesis that harmonic imaging can improve shear wave motion detection based on the same principles that apply to general harmonic B-mode imaging. We first designed an experiment with a gelatin phantom covered by an excised piece of pork belly and show that harmonic imaging can significantly improve shear wave motion detection by producing less underestimated shear wave motion and more consistent shear wave speed measurements than fundamental imaging. Then, a transthoracic heart experiment on a freshly sacrificed pig showed that harmonic imaging could robustly track the shear wave motion and give consistent shear wave speed measurements of the left ventricular myocardium while fundamental imaging could not. Finally, an in vivo transthoracic study of seven healthy volunteers showed that the proposed harmonic imaging tracking sequence could provide consistent estimates of the left ventricular myocardium stiffness in end-diastole with a general success rate of 80% and a success rate of 93.3% when excluding the subject with Body Mass Index higher than 25. These promising results indicate that pulse-inversion harmonic imaging can significantly improve shear wave motion tracking and thus potentially facilitate more robust assessment of tissue elasticity by SWE.
Ultrasound tissue harmonic imaging is widely used to improve ultrasound B-mode imaging quality thanks to its effectiveness in suppressing imaging artifacts associated with ultrasound reverberation, phase aberration, and clutter noise. In ultrasound shear wave elastography (SWE), because the shear wave motion signal is extracted from the ultrasound signal, these noise sources can significantly deteriorate the shear wave motion tracking process and consequently result in noisy and biased shear wave motion detection. This situation is exacerbated in in vivo SWE applications such as heart, liver, and kidney. This paper, therefore, investigated the possibility of implementing harmonic imaging, specifically pulse-inversion harmonic imaging, in shear wave tracking, with the hypothesis that harmonic imaging can improve shear wave motion detection based on the same principles that apply to general harmonic B-mode imaging. We first designed an experiment with a gelatin phantom covered by an excised piece of pork belly and show that harmonic imaging can significantly improve shear wave motion detection by producing less underestimated shear wave motion and more consistent shear wave speed measurements than fundamental imaging. Then, a transthoracic heart experiment on a freshly sacrificed pig showed that harmonic imaging could robustly track the shear wave motion and give consistent shear wave speed measurements of the left ventricular myocardium while fundamental imaging could not. Finally, an in vivo transthoracic study of seven healthy volunteers showed that the proposed harmonic imaging tracking sequence could provide consistent estimates of the left ventricular myocardium stiffness in end-diastole with a general success rate of 80% and a success rate of 93.3% when excluding the subject with Body Mass Index higher than 25. These promising results indicate that pulse-inversion harmonic imaging can significantly improve shear wave motion tracking and thus potentially facilitate more robust assessment of tissue elasticity by SWE.Ultrasound tissue harmonic imaging is widely used to improve ultrasound B-mode imaging quality thanks to its effectiveness in suppressing imaging artifacts associated with ultrasound reverberation, phase aberration, and clutter noise. In ultrasound shear wave elastography (SWE), because the shear wave motion signal is extracted from the ultrasound signal, these noise sources can significantly deteriorate the shear wave motion tracking process and consequently result in noisy and biased shear wave motion detection. This situation is exacerbated in in vivo SWE applications such as heart, liver, and kidney. This paper, therefore, investigated the possibility of implementing harmonic imaging, specifically pulse-inversion harmonic imaging, in shear wave tracking, with the hypothesis that harmonic imaging can improve shear wave motion detection based on the same principles that apply to general harmonic B-mode imaging. We first designed an experiment with a gelatin phantom covered by an excised piece of pork belly and show that harmonic imaging can significantly improve shear wave motion detection by producing less underestimated shear wave motion and more consistent shear wave speed measurements than fundamental imaging. Then, a transthoracic heart experiment on a freshly sacrificed pig showed that harmonic imaging could robustly track the shear wave motion and give consistent shear wave speed measurements of the left ventricular myocardium while fundamental imaging could not. Finally, an in vivo transthoracic study of seven healthy volunteers showed that the proposed harmonic imaging tracking sequence could provide consistent estimates of the left ventricular myocardium stiffness in end-diastole with a general success rate of 80% and a success rate of 93.3% when excluding the subject with Body Mass Index higher than 25. These promising results indicate that pulse-inversion harmonic imaging can significantly improve shear wave motion tracking and thus potentially facilitate more robust assessment of tissue elasticity by SWE.
Ultrasound tissue harmonic imaging is widely used to improve ultrasound B-mode imaging quality thanks to its effectiveness in suppressing imaging artifacts associated with ultrasound reverberation, phase aberration, and clutter noise. In ultrasound shear wave elastography (SWE), because the shear wave motion signal is extracted from the ultrasound signal, these noise sources can significantly deteriorate the shear wave motion tracking process and consequently result in noisy and biased shear wave motion detection. This situation is exacerbated in in vivo SWE applications such as heart, liver, and kidney. This paper, therefore, investigated the possibility of implementing harmonic imaging, specifically pulse-inversion harmonic imaging, in shear wave tracking, with the hypothesis that harmonic imaging can improve shear wave motion detection based on the same principles that apply to general harmonic B-mode imaging. We first designed an experiment with a gelatin phantom covered by an excised piece of pork belly and show that harmonic imaging can significantly improve shear wave motion detection by producing less underestimated shear wave motion and more consistent shear wave speed measurements than fundamental imaging. Then, a transthoracic heart experiment on a freshly sacrificed pig showed that harmonic imaging could robustly track the shear wave motion and give consistent shear wave speed measurements while fundamental imaging could not. Finally, an in vivo transthoracic study of seven healthy volunteers showed that the proposed harmonic imaging tracking sequence could provide consistent estimates of the left ventricular myocardium stiffness in end-diastole with a general success rate of 80% and a success rate of 93.3% when excluding the subject with Body Mass Index (BMI) higher than 25. These promising results indicate that pulse-inversion harmonic imaging can significantly improve shear wave motion tracking and thus potentially facilitate more robust assessment of tissue elasticity by SWE.
Author Pengfei Song
Manduca, Armando
Shigao Chen
Pislaru, Sorin V.
Heng Zhao
Kinnick, Randall R.
Urban, Matthew W.
Pislaru, Cristina
Greenleaf, James F.
AuthorAffiliation 3 Mayo Graduate School, Mayo Clinic College of Medicine, Rochester, MN
1 Department of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine, Rochester, MN
2 Department of Cardiovascular Diseases, Mayo Clinic College of Medicine, Rochester, MN
AuthorAffiliation_xml – name: 1 Department of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine, Rochester, MN
– name: 3 Mayo Graduate School, Mayo Clinic College of Medicine, Rochester, MN
– name: 2 Department of Cardiovascular Diseases, Mayo Clinic College of Medicine, Rochester, MN
Author_xml – sequence: 1
  surname: Pengfei Song
  fullname: Pengfei Song
  email: song.pengfei@mayo.edu
  organization: Dept. of Physiol. & Biomed. Eng., Mayo Clinic Coll. of Med., Rochester, MN, USA
– sequence: 2
  surname: Heng Zhao
  fullname: Heng Zhao
  organization: Dept. of Physiol. & Biomed. Eng., Mayo Clinic Coll. of Med., Rochester, MN, USA
– sequence: 3
  givenname: Matthew W.
  surname: Urban
  fullname: Urban, Matthew W.
  organization: Dept. of Physiol. & Biomed. Eng., Mayo Clinic Coll. of Med., Rochester, MN, USA
– sequence: 4
  givenname: Armando
  surname: Manduca
  fullname: Manduca, Armando
  organization: Dept. of Physiol. & Biomed. Eng., Mayo Clinic Coll. of Med., Rochester, MN, USA
– sequence: 5
  givenname: Sorin V.
  surname: Pislaru
  fullname: Pislaru, Sorin V.
  organization: Dept. of Cardiovascular Diseases, Mayo Clinic Coll. of Med., Rochester, MN, USA
– sequence: 6
  givenname: Randall R.
  surname: Kinnick
  fullname: Kinnick, Randall R.
  organization: Dept. of Physiol. & Biomed. Eng., Mayo Clinic Coll. of Med., Rochester, MN, USA
– sequence: 7
  givenname: Cristina
  surname: Pislaru
  fullname: Pislaru, Cristina
  organization: Dept. of Physiol. & Biomed. Eng., Mayo Clinic Coll. of Med., Rochester, MN, USA
– sequence: 8
  givenname: James F.
  surname: Greenleaf
  fullname: Greenleaf, James F.
  email: jfg@mayo.edu
  organization: Dept. of Physiol. & Biomed. Eng., Mayo Clinic Coll. of Med., Rochester, MN, USA
– sequence: 9
  surname: Shigao Chen
  fullname: Shigao Chen
  email: Chen.Shigao@mayo.edu
  organization: Dept. of Physiol. & Biomed. Eng., Mayo Clinic Coll. of Med., Rochester, MN, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/24021638$$D View this record in MEDLINE/PubMed
BookMark eNp9kc1v0zAYhy00xLrBHQkJ5cglxZ-pc0GaBmORNjGJTuNmvXXetJ4Sp9hJpf33c2ipgAOn17J_H7afM3Lie4-EvGV0zhgtPy5vqzmnTMw517Sk4gWZMaV0zpX8cUJmlC90TmnBT8lZjI-UMqlo-Yqcckk5K4Sekceq24Z-h3X2fYMQsgfYYXbbD6732Wcc0P5a3Ufn19nd2EbMK7_DEKfdawhd753Nqg7Wk-DBDZsMsrsNxBR4EQI8ZcsAPtajxfCavGwgJbw5zHNyf_VleXmd33z7Wl1e3ORWsmLIJWvkgiEr0EJDV8qiUljW5ULzmumVLBQFYRGgTK-EBuRKFGk0FEBIZa04J5_2udtx1WFt0Q8BWrMNroPwZHpw5u8T7zZm3e-MKOVClCIFfDgEhP7niHEwnYsW2xY89mM0TFOplaJcJ-n7P7uOJb8_OAnoXmBDH2PA5ihh1EwMTWJoJobmwDBZin8s1g0wcUi3de3_jO_2RoeIx55C6TJxF8-asKsG
CODEN ITMID4
CitedBy_id crossref_primary_10_1177_0161734618770359
crossref_primary_10_1016_j_ultrasmedbio_2018_11_007
crossref_primary_10_1016_j_ultrasmedbio_2016_03_009
crossref_primary_10_1093_ehjci_jeae224
crossref_primary_10_1007_s00395_014_0438_5
crossref_primary_10_3179_jjmu_JJMU_R_209
crossref_primary_10_1109_TUFFC_2016_2515366
crossref_primary_10_1109_TUFFC_2016_2641299
crossref_primary_10_1016_j_ultrasmedbio_2021_08_002
crossref_primary_10_1109_TUFFC_2015_007062
crossref_primary_10_1109_TUFFC_2018_2881493
crossref_primary_10_1088_0031_9155_61_1_365
crossref_primary_10_1109_TMI_2021_3049307
crossref_primary_10_1016_j_ultrasmedbio_2014_03_004
crossref_primary_10_1109_TMI_2022_3141613
crossref_primary_10_1016_j_ultrasmedbio_2015_08_012
crossref_primary_10_7863_ultra_15_08053
crossref_primary_10_1109_TUFFC_2016_2530408
crossref_primary_10_1109_TUFFC_2016_2614944
crossref_primary_10_1016_j_ultrasmedbio_2023_10_005
crossref_primary_10_1038_s41598_020_75401_1
crossref_primary_10_1148_ryct_230140
crossref_primary_10_1016_j_ultras_2024_107358
crossref_primary_10_1016_j_ultrasmedbio_2019_09_002
crossref_primary_10_1016_j_ultrasmedbio_2015_12_012
crossref_primary_10_1109_TUFFC_2016_2543026
crossref_primary_10_1109_TMI_2014_2360835
crossref_primary_10_1038_srep44483
crossref_primary_10_1088_1361_6560_aaaffe
crossref_primary_10_1002_jmri_25678
crossref_primary_10_1016_j_medengphy_2021_10_002
crossref_primary_10_1088_1361_6560_ac404d
crossref_primary_10_1016_j_jcmg_2023_12_007
crossref_primary_10_1007_s10396_021_01127_w
crossref_primary_10_1016_j_echo_2017_06_023
crossref_primary_10_1002_mrm_26101
crossref_primary_10_1016_j_ultrasmedbio_2023_02_006
crossref_primary_10_1109_TMI_2016_2638639
crossref_primary_10_3390_app9224883
crossref_primary_10_1088_2057_1976_aabe41
crossref_primary_10_1109_TUFFC_2018_2884348
crossref_primary_10_1109_TUFFC_2014_006653
crossref_primary_10_1088_1361_6560_acba75
crossref_primary_10_1016_j_ultrasmedbio_2016_05_021
crossref_primary_10_1109_TUFFC_2016_2627142
crossref_primary_10_1016_j_ultrasmedbio_2016_01_007
crossref_primary_10_1016_j_ultrasmedbio_2016_11_015
crossref_primary_10_1016_j_jcmg_2014_06_004
crossref_primary_10_1016_j_ultras_2018_05_009
crossref_primary_10_1016_j_ultrasmedbio_2019_04_004
crossref_primary_10_1186_s12947_020_00222_1
crossref_primary_10_1109_TUFFC_2019_2911036
crossref_primary_10_1016_j_ultrasmedbio_2017_04_012
crossref_primary_10_1088_0031_9155_61_13_5000
crossref_primary_10_1063_1_4982882
crossref_primary_10_1016_j_ultrasmedbio_2017_10_003
crossref_primary_10_1002_jum_14925
crossref_primary_10_1080_17434440_2018_1538782
Cites_doi 10.1109/TUFFC.2011.2124
10.1121/1.417977
10.1109/TUFFC.2005.1397352
10.1016/j.ultrasmedbio.2010.02.007
10.1016/S0301-5629(98)00110-0
10.1109/ULTSYM.2012.0052
10.1121/1.4755314
10.1016/S0301-5629(01)00379-9
10.1109/TUFFC.2003.1209550
10.1109/TMI.2012.2205586
10.1109/TUFFC.887
10.1109/58.585208
10.1109/TUFFC.2010.1554
10.1109/TMI.2010.2076829
10.1007/s10396-011-0304-0
10.1016/j.ultrasmedbio.2008.02.002
10.1109/TUFFC.2010.1740
10.1109/58.753026
10.1109/TMI.2013.2257831
10.1016/S0301-5629(99)00060-5
10.1016/j.ultrasmedbio.2007.10.009
10.2214/ajr.171.5.9798848
10.1016/S0894-7317(98)70055-0
10.1109/IEMBS.2009.5333114
10.1016/j.ultrasmedbio.2005.03.006
10.1109/ULTSYM.1985.198654
10.1109/TUFFC.2002.1041078
10.1016/j.ultrasmedbio.2012.02.028
10.1109/TUFFC.2009.1067
10.1109/TUFFC.2004.1295425
10.1109/TUFFC.2010.1710
10.1109/TUFFC.2006.1642509
10.1016/S0301-5629(02)00558-6
10.1109/TMI.2012.2222656
10.1088/0266-5611/22/2/019
ContentType Journal Article
DBID 97E
RIA
RIE
AAYXX
CITATION
NPM
7X8
5PM
DOI 10.1109/TMI.2013.2280903
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList PubMed
MEDLINE - Academic


Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Engineering
EISSN 1558-254X
EndPage 2310
ExternalDocumentID PMC3947393
24021638
10_1109_TMI_2013_2280903
6589145
Genre orig-research
Journal Article
GrantInformation_xml – fundername: NIDDK NIH HHS
  grantid: R01 DK092255
– fundername: NIDDK NIH HHS
  grantid: R01 DK082408
– fundername: NIBIB NIH HHS
  grantid: R01 EB002167
– fundername: NCATS NIH HHS
  grantid: UL1 TR000135
GroupedDBID ---
-DZ
-~X
.GJ
0R~
29I
4.4
53G
5GY
5RE
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACNCT
ACPRK
AENEX
AETIX
AFRAH
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
F5P
HZ~
H~9
IBMZZ
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
PQQKQ
RIA
RIE
RNS
RXW
TAE
TN5
VH1
AAYOK
AAYXX
CITATION
RIG
NPM
7X8
5PM
ID FETCH-LOGICAL-c416t-41f471e16ecaf0b5ce55e9d9782d18b4650a3ceaa9254afa4b36afaf0aa345cc3
IEDL.DBID RIE
ISSN 0278-0062
1558-254X
IngestDate Thu Aug 21 18:28:48 EDT 2025
Fri Jul 11 00:51:41 EDT 2025
Thu Apr 03 07:00:32 EDT 2025
Tue Jul 01 03:15:53 EDT 2025
Thu Apr 24 23:04:15 EDT 2025
Tue Aug 26 16:42:50 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed false
IsScholarly true
Issue 12
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c416t-41f471e16ecaf0b5ce55e9d9782d18b4650a3ceaa9254afa4b36afaf0aa345cc3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink http://doi.org/10.1109/TMI.2013.2280903
PMID 24021638
PQID 1804855028
PQPubID 23479
PageCount 12
ParticipantIDs pubmed_primary_24021638
ieee_primary_6589145
crossref_primary_10_1109_TMI_2013_2280903
proquest_miscellaneous_1804855028
pubmedcentral_primary_oai_pubmedcentral_nih_gov_3947393
crossref_citationtrail_10_1109_TMI_2013_2280903
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2013-12-01
PublicationDateYYYYMMDD 2013-12-01
PublicationDate_xml – month: 12
  year: 2013
  text: 2013-12-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle IEEE transactions on medical imaging
PublicationTitleAbbrev TMI
PublicationTitleAlternate IEEE Trans Med Imaging
PublicationYear 2013
Publisher IEEE
Publisher_xml – name: IEEE
References ref35
ref13
ref34
ref12
ref15
ref36
ref31
ref30
ref33
ref11
ref32
ref10
ref2
ogden (ref40) 2012
ref1
ref39
ref17
ref38
ref16
ref19
ref18
ref23
ref26
luo (ref14) 2010; 57
ref25
ref20
averkiou (ref24) 2000
ref22
ref21
shi (ref4) 2011
ref28
ref27
ref8
ref7
ref9
ref3
ref6
(ref29) 1999
ref5
nenadic (ref37) 2011
21041131 - IEEE Trans Ultrason Ferroelectr Freq Control. 2010 Nov;57(11):2437-49
18395961 - Ultrasound Med Biol. 2008 Sep;34(9):1373-86
27278500 - J Med Ultrason (2001). 2011 Jul;38(3):129-40
22736690 - IEEE Trans Med Imaging. 2012 Sep;31(9):1821-32
12401393 - Ultrasound Med Biol. 2002 Sep;28(9):1217-24
19964051 - Conf Proc IEEE Eng Med Biol Soc. 2009;2009:2891-4
19411209 - IEEE Trans Ultrason Ferroelectr Freq Control. 2009 Mar;56(3):489-506
16846143 - IEEE Trans Ultrason Ferroelectr Freq Control. 2006 Jun;53(6):1103-17
12839175 - IEEE Trans Ultrason Ferroelectr Freq Control. 2003 Jun;50(6):631-41
9798848 - AJR Am J Roentgenol. 1998 Nov;171(5):1203-6
18222031 - Ultrasound Med Biol. 2008 Apr;34(4):546-58
15742564 - IEEE Trans Ultrason Ferroelectr Freq Control. 2005 Jan;52(1):80-93
18244110 - IEEE Trans Ultrason Ferroelectr Freq Control. 1997;44(1):125-39
20381950 - Ultrasound Med Biol. 2010 May;36(5):802-13
9000731 - J Acoust Soc Am. 1997 Jan;101(1):143-54
21156362 - IEEE Trans Ultrason Ferroelectr Freq Control. 2010 Dec;57(12 ):2662-70
23060325 - IEEE Trans Med Imaging. 2013 Feb;32(2):247-61
20529710 - IEEE Trans Ultrason Ferroelectr Freq Control. 2010 Jun;57(6):1347-57
22579544 - Ultrasound Med Biol. 2012 Jul;38(7):1271-83
12403138 - IEEE Trans Ultrason Ferroelectr Freq Control. 2002 Oct;49(10):1363-74
23591479 - IEEE Trans Med Imaging. 2013 Aug;32(8):1435-47
11516542 - Ultrasound Med Biol. 2001 Jun;27(6):819-27
18986892 - IEEE Trans Ultrason Ferroelectr Freq Control. 2008 Sep;55(9):1956-74
10385964 - Ultrasound Med Biol. 1998 Nov;24(9):1419-35
20851788 - IEEE Trans Med Imaging. 2011 Feb;30(2):295-305
22617494 - NCHS Data Brief. 2012 Jan;(82):1-8
18238434 - IEEE Trans Ultrason Ferroelectr Freq Control. 1999;46(2):372-82
9719092 - J Am Soc Echocardiogr. 1998 Aug;11(8):803-8
15972194 - Ultrasound Med Biol. 2005 Jul;31(7):889-94
23443697 - IEEE Trans Ultrason Ferroelectr Freq Control. 2011 Dec;58(12 ):2608-19
15139541 - IEEE Trans Ultrason Ferroelectr Freq Control. 2004 Apr;51(4):396-409
10461715 - Ultrasound Med Biol. 1999 Jul;25(6):889-94
References_xml – ident: ref8
  doi: 10.1109/TUFFC.2011.2124
– ident: ref26
  doi: 10.1121/1.417977
– ident: ref12
  doi: 10.1109/TUFFC.2005.1397352
– ident: ref18
  doi: 10.1016/j.ultrasmedbio.2010.02.007
– ident: ref1
  doi: 10.1016/S0301-5629(98)00110-0
– ident: ref30
  doi: 10.1109/ULTSYM.2012.0052
– ident: ref34
  doi: 10.1121/1.4755314
– ident: ref3
  doi: 10.1016/S0301-5629(01)00379-9
– year: 1999
  ident: ref29
  publication-title: Two Pulse Technique for Ultrasound Harmonic Imaging
– ident: ref38
  doi: 10.1109/TUFFC.2003.1209550
– ident: ref10
  doi: 10.1109/TMI.2012.2205586
– ident: ref39
  doi: 10.1109/TUFFC.887
– ident: ref25
  doi: 10.1109/58.585208
– volume: 57
  start-page: 1347
  year: 2010
  ident: ref14
  article-title: A fast normalized cross-correlation calculation method for motion estimation
  publication-title: IEEE Trans Ultrason Ferroelectr Freq Control
  doi: 10.1109/TUFFC.2010.1554
– ident: ref6
  doi: 10.1109/TMI.2010.2076829
– start-page: 17
  year: 2011
  ident: ref37
  article-title: In vivo open and closed chest measruements of myocardial viscoelasticity through a heart cycle using lamb wave dispersion ultrasound vibrometry (LDUV)
  publication-title: Proc IEEE Int Ultrason Symp
– ident: ref31
  doi: 10.1007/s10396-011-0304-0
– ident: ref16
  doi: 10.1016/j.ultrasmedbio.2008.02.002
– ident: ref17
  doi: 10.1109/TUFFC.2010.1740
– ident: ref27
  doi: 10.1109/58.753026
– ident: ref11
  doi: 10.1109/TMI.2013.2257831
– ident: ref23
  doi: 10.1016/S0301-5629(99)00060-5
– ident: ref5
  doi: 10.1016/j.ultrasmedbio.2007.10.009
– ident: ref21
  doi: 10.2214/ajr.171.5.9798848
– ident: ref22
  doi: 10.1016/S0894-7317(98)70055-0
– ident: ref36
  doi: 10.1109/IEMBS.2009.5333114
– ident: ref28
  doi: 10.1016/j.ultrasmedbio.2005.03.006
– ident: ref32
  doi: 10.1109/ULTSYM.1985.198654
– ident: ref20
  doi: 10.1109/TUFFC.2002.1041078
– ident: ref7
  doi: 10.1016/j.ultrasmedbio.2012.02.028
– ident: ref19
  doi: 10.1109/TUFFC.2009.1067
– ident: ref9
  doi: 10.1109/TUFFC.2004.1295425
– start-page: 1563
  year: 2000
  ident: ref24
  article-title: Tissue harmonic imaging
  publication-title: Proc IEEE Int Ultrason Symp
– start-page: 1
  year: 2012
  ident: ref40
  article-title: Prevalence of obesity in the United States, 2009?2010
  publication-title: NCHS Data Brief
– ident: ref13
  doi: 10.1109/TUFFC.2010.1710
– ident: ref2
  doi: 10.1109/TUFFC.2006.1642509
– ident: ref33
  doi: 10.1016/S0301-5629(02)00558-6
– start-page: 2408
  year: 2011
  ident: ref4
  article-title: Phase aberration in shear wave dispersion ultrasound vibrometry
  publication-title: Proc IEEE Int Ultrason Symp
– ident: ref35
  doi: 10.1109/TMI.2012.2222656
– ident: ref15
  doi: 10.1088/0266-5611/22/2/019
– reference: 23443697 - IEEE Trans Ultrason Ferroelectr Freq Control. 2011 Dec;58(12 ):2608-19
– reference: 21156362 - IEEE Trans Ultrason Ferroelectr Freq Control. 2010 Dec;57(12 ):2662-70
– reference: 23060325 - IEEE Trans Med Imaging. 2013 Feb;32(2):247-61
– reference: 12839175 - IEEE Trans Ultrason Ferroelectr Freq Control. 2003 Jun;50(6):631-41
– reference: 9798848 - AJR Am J Roentgenol. 1998 Nov;171(5):1203-6
– reference: 11516542 - Ultrasound Med Biol. 2001 Jun;27(6):819-27
– reference: 15972194 - Ultrasound Med Biol. 2005 Jul;31(7):889-94
– reference: 12401393 - Ultrasound Med Biol. 2002 Sep;28(9):1217-24
– reference: 12403138 - IEEE Trans Ultrason Ferroelectr Freq Control. 2002 Oct;49(10):1363-74
– reference: 9000731 - J Acoust Soc Am. 1997 Jan;101(1):143-54
– reference: 27278500 - J Med Ultrason (2001). 2011 Jul;38(3):129-40
– reference: 15139541 - IEEE Trans Ultrason Ferroelectr Freq Control. 2004 Apr;51(4):396-409
– reference: 22736690 - IEEE Trans Med Imaging. 2012 Sep;31(9):1821-32
– reference: 20381950 - Ultrasound Med Biol. 2010 May;36(5):802-13
– reference: 10385964 - Ultrasound Med Biol. 1998 Nov;24(9):1419-35
– reference: 19411209 - IEEE Trans Ultrason Ferroelectr Freq Control. 2009 Mar;56(3):489-506
– reference: 22579544 - Ultrasound Med Biol. 2012 Jul;38(7):1271-83
– reference: 22617494 - NCHS Data Brief. 2012 Jan;(82):1-8
– reference: 15742564 - IEEE Trans Ultrason Ferroelectr Freq Control. 2005 Jan;52(1):80-93
– reference: 16846143 - IEEE Trans Ultrason Ferroelectr Freq Control. 2006 Jun;53(6):1103-17
– reference: 20851788 - IEEE Trans Med Imaging. 2011 Feb;30(2):295-305
– reference: 21041131 - IEEE Trans Ultrason Ferroelectr Freq Control. 2010 Nov;57(11):2437-49
– reference: 18222031 - Ultrasound Med Biol. 2008 Apr;34(4):546-58
– reference: 18244110 - IEEE Trans Ultrason Ferroelectr Freq Control. 1997;44(1):125-39
– reference: 10461715 - Ultrasound Med Biol. 1999 Jul;25(6):889-94
– reference: 23591479 - IEEE Trans Med Imaging. 2013 Aug;32(8):1435-47
– reference: 20529710 - IEEE Trans Ultrason Ferroelectr Freq Control. 2010 Jun;57(6):1347-57
– reference: 9719092 - J Am Soc Echocardiogr. 1998 Aug;11(8):803-8
– reference: 19964051 - Conf Proc IEEE Eng Med Biol Soc. 2009;2009:2891-4
– reference: 18986892 - IEEE Trans Ultrason Ferroelectr Freq Control. 2008 Sep;55(9):1956-74
– reference: 18395961 - Ultrasound Med Biol. 2008 Sep;34(9):1373-86
– reference: 18238434 - IEEE Trans Ultrason Ferroelectr Freq Control. 1999;46(2):372-82
SSID ssj0014509
Score 2.4129586
Snippet Ultrasound tissue harmonic imaging is widely used to improve ultrasound B-mode imaging quality thanks to its effectiveness in suppressing imaging artifacts...
SourceID pubmedcentral
proquest
pubmed
crossref
ieee
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 2299
SubjectTerms Acoustic beams
Acoustic radiation force
diastolic left ventricle stiffness
Harmonic analysis
harmonic imaging
Heart
Imaging
In vivo
in vivo human heart
pulse-inversion
shear wave elastography
Tracking
transthoracic scanning
Ultrasonic imaging
Title Improved Shear Wave Motion Detection Using Pulse-Inversion Harmonic Imaging With a Phased Array Transducer
URI https://ieeexplore.ieee.org/document/6589145
https://www.ncbi.nlm.nih.gov/pubmed/24021638
https://www.proquest.com/docview/1804855028
https://pubmed.ncbi.nlm.nih.gov/PMC3947393
Volume 32
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1La9wwEB6SHEp76CPpY_tChV4K9a5sS34cS9uwKbjkkJDcjCSP2aSNt2ztQvvrOyM_yIZQerLBEoyZEd9I8-kbgLe1iozMUAXaIgaKMCkwEtOgikKnU0KExPLd4eJrsjxVX871-Q68n-7CIKInn-GcX30tv1q7jo_KFgm3wFN6F3Zp49bf1ZoqBkr3dI6IFWNlEo0lSZkvTooj5nDFc5Z-ySW3zuGaAmciW2jk26vclmneJExeQ6DDB1CMtvfEk2_zrrVz9-eGrOP__txDuD-kouJDHzuPYAebfbh3TaBwH-4UQ-n9AC774weshG-CLc7MLxSF7wEkPmHrGV2N8AwEcdwR4AYs4eEP48TSbK5YglccXfmmSOLsol0JI45XhKEVWbAxv4VHzYoibfMYTg8_n3xcBkOjhsBRPtcGKqwJ4zBM0JlaWu1Qa8wr2qBGVZhZRVmgiR0ak9N21NRG2TihRy2NiZV2Ln4Ce826wWcglGG5mKjOdI7KpjbH0KXkNcJUF7k4m8FidFjpBhVzbqbxvfS7GZmX5O2SvV0O3p7Bu2nGj17B4x9jD9gx07jBJzN4M8ZESauPSyqmwXX3swwz6SXhIjLsaR8j0-QxxmaQbkXPNICVvbe_NBcrr_Ad54qVCp_fbs4LuMtG96Sal7DXbjp8RalRa1_7NfEXW6kKFg
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB6VIkF74NGWdnkaiQsS2c3DzuOIgGoXmqqHrdpb5DgTbWmbRUuCBL-eGeehblUhTokUW5poxvrGnvH3Abwrpa_dGKWjckRHEiY52sXIKXzPqIgQIcz57nB6HE5P5ddzdb4BH4a7MIhom89wzK-2ll8sTcNHZZOQJfCkugf3CfeV397WGmoGUrUNHT5zxrqh3xcl3WQyT2fcxRWMmfwlcVk8h6sKnIus4ZEVWLkr17zdMnkDgw4fQ9pb37aeXI6bOh-bP7eIHf_3957Aoy4ZFR_b6HkKG1jtwPYNisIdeJB2xfdd-N4eQGAhrAy2ONO_UKRWBUh8xtr2dFXC9iCIk4Yg12ESD3scJ6Z6dc0kvGJ2bWWRxNlFvRBanCwIRQuyYKV_C4ubBcXaag9OD7_MP02dTqrBMZTR1Y70SkI59EI0unRzZVApTAraovqFF-eS8kAdGNQ6oQ2pLrXMg5Aepat1IJUxwTPYrJYVHoCQmglj_DJWCco8yhP0TEReI1Q1vgniEUx6h2Wm4zFnOY2rzO5n3CQjb2fs7azz9gjeDzN-tBwe_xi7y44ZxnU-GcHbPiYyWn9cVNEVLpufmRe7lhTOJ8P22xgZJvcxNoJoLXqGAcztvf6lulhYju8gkcxV-Pxuc97Aw-k8PcqOZsffXsAW_0DbYvMSNutVg68oUarz13Z9_AVd6A1g
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Improved+Shear+Wave+Motion+Detection+Using+Pulse-Inversion+Harmonic+Imaging+With+a+Phased+Array+Transducer&rft.jtitle=IEEE+transactions+on+medical+imaging&rft.au=Urban%2C+Matthew+W&rft.au=Manduca%2C+Armando&rft.au=Pislaru%2C+Sorin+V&rft.au=Kinnick%2C+Randall+R&rft.date=2013-12-01&rft.issn=1558-254X&rft.eissn=1558-254X&rft.volume=32&rft.issue=12&rft.spage=2299&rft_id=info:doi/10.1109%2FTMI.2013.2280903&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0278-0062&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0278-0062&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0278-0062&client=summon