Advances in cathode designs and reactor configurations of microbial electrosynthesis systems to facilitate gas electro-fermentation

[Display omitted] •MES integration with gas fermentation is promising to sustain bioproduction.•Various cathode materials and their performances in MES are reviewed.•Different aspects of effective cathode and reactor design are explored.•Strategies are offered for future research on gas electro-ferm...

Full description

Saved in:
Bibliographic Details
Published inBioresource technology Vol. 354; p. 127178
Main Authors Bajracharya, Suman, Krige, Adolf, Matsakas, Leonidas, Rova, Ulrika, Christakopoulos, Paul
Format Journal Article
LanguageEnglish
Published England Elsevier Ltd 01.06.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract [Display omitted] •MES integration with gas fermentation is promising to sustain bioproduction.•Various cathode materials and their performances in MES are reviewed.•Different aspects of effective cathode and reactor design are explored.•Strategies are offered for future research on gas electro-fermentation in MES. In gas fermentation, a range of chemolithoautotrophs fix single-carbon (C1) gases (CO2 and CO) when H2 or other reductants are available. Microbial electrosynthesis (MES) enables CO2 reduction by generating H2 or reducing equivalents with the sole input of renewable electricity. A combined approach as gas electro-fermentation is attractive for the sustainable production of biofuels and biochemicals utilizing C1 gases. Various platform compounds such as acetate, butyrate, caproate, ethanol, butanol and bioplastics can be produced. However, technological challenges pertaining to the microbe-material interactions such as poor gas–liquid mass transfer, low biomass and biofilm coverage on cathode, low productivities still exist. We are presenting a review on latest developments in MES focusing on the configuration and design of cathodes that can address the challenges and support the gas electro-fermentation. Overall, the opportunities for advancing CO and CO2-based biochemicals and biofuels production in MES with suitable cathode/reactor design are prospected.
AbstractList In gas fermentation, a range of chemolithoautotrophs fix single-carbon (C1) gases (CO2 and CO) when H2 or other reductants are available. Microbial electrosynthesis (MES) enables CO2 reduction by generating H2 or reducing equivalents with the sole input of renewable electricity. A combined approach as gas electro-fermentation is attractive for the sustainable production of biofuels and biochemicals utilizing C1 gases. Various platform compounds such as acetate, butyrate, caproate, ethanol, butanol and bioplastics can be produced. However, technological challenges pertaining to the microbe-material interactions such as poor gas-liquid mass transfer, low biomass and biofilm coverage on cathode, low productivities still exist. We are presenting a review on latest developments in MES focusing on the configuration and design of cathodes that can address the challenges and support the gas electro-fermentation. Overall, the opportunities for advancing CO and CO2-based biochemicals and biofuels production in MES with suitable cathode/reactor design are prospected.In gas fermentation, a range of chemolithoautotrophs fix single-carbon (C1) gases (CO2 and CO) when H2 or other reductants are available. Microbial electrosynthesis (MES) enables CO2 reduction by generating H2 or reducing equivalents with the sole input of renewable electricity. A combined approach as gas electro-fermentation is attractive for the sustainable production of biofuels and biochemicals utilizing C1 gases. Various platform compounds such as acetate, butyrate, caproate, ethanol, butanol and bioplastics can be produced. However, technological challenges pertaining to the microbe-material interactions such as poor gas-liquid mass transfer, low biomass and biofilm coverage on cathode, low productivities still exist. We are presenting a review on latest developments in MES focusing on the configuration and design of cathodes that can address the challenges and support the gas electro-fermentation. Overall, the opportunities for advancing CO and CO2-based biochemicals and biofuels production in MES with suitable cathode/reactor design are prospected.
In gas fermentation, a range of chemolithoautotrophs fix single-carbon (C1) gases (CO₂ and CO) when H₂ or other reductants are available. Microbial electrosynthesis (MES) enables CO₂ reduction by generating H₂ or reducing equivalents with the sole input of renewable electricity. A combined approach as gas electro-fermentation is attractive for the sustainable production of biofuels and biochemicals utilizing C1 gases. Various platform compounds such as acetate, butyrate, caproate, ethanol, butanol and bioplastics can be produced. However, technological challenges pertaining to the microbe-material interactions such as poor gas–liquid mass transfer, low biomass and biofilm coverage on cathode, low productivities still exist. We are presenting a review on latest developments in MES focusing on the configuration and design of cathodes that can address the challenges and support the gas electro-fermentation. Overall, the opportunities for advancing CO and CO₂-based biochemicals and biofuels production in MES with suitable cathode/reactor design are prospected.
[Display omitted] •MES integration with gas fermentation is promising to sustain bioproduction.•Various cathode materials and their performances in MES are reviewed.•Different aspects of effective cathode and reactor design are explored.•Strategies are offered for future research on gas electro-fermentation in MES. In gas fermentation, a range of chemolithoautotrophs fix single-carbon (C1) gases (CO2 and CO) when H2 or other reductants are available. Microbial electrosynthesis (MES) enables CO2 reduction by generating H2 or reducing equivalents with the sole input of renewable electricity. A combined approach as gas electro-fermentation is attractive for the sustainable production of biofuels and biochemicals utilizing C1 gases. Various platform compounds such as acetate, butyrate, caproate, ethanol, butanol and bioplastics can be produced. However, technological challenges pertaining to the microbe-material interactions such as poor gas–liquid mass transfer, low biomass and biofilm coverage on cathode, low productivities still exist. We are presenting a review on latest developments in MES focusing on the configuration and design of cathodes that can address the challenges and support the gas electro-fermentation. Overall, the opportunities for advancing CO and CO2-based biochemicals and biofuels production in MES with suitable cathode/reactor design are prospected.
In gas fermentation, a range of chemolithoautotrophs fix single-carbon (C1) gases (CO2 and CO) when H2 or other reductants are available. Microbial electrosynthesis (MES) enables CO2 reduction by generating H2 or reducing equivalents with the sole input of renewable electricity. A combined approach as gas electro-fermentation is attractive for the sustainable production of biofuels and biochemicals utilizing C1 gases. Various platform compounds such as acetate, butyrate, caproate, ethanol, butanol and bioplastics can be produced. However, technological challenges pertaining to the microbe-material interactions such as poor gas-liquid mass transfer, low biomass and biofilm coverage on cathode, low productivities still exist. We are presenting a review on latest developments in MES focusing on the configuration and design of cathodes that can address the challenges and support the gas electro-fermentation. Overall, the opportunities for advancing CO and CO2-based biochemicals and biofuels production in MES with suitable cathode/reactor design are prospected.
In gas fermentation, a range of chemolithoautotrophs fix single-carbon (C1) gases (CO and CO) when H or other reductants are available. Microbial electrosynthesis (MES) enables CO reduction by generating H or reducing equivalents with the sole input of renewable electricity. A combined approach as gas electro-fermentation is attractive for the sustainable production of biofuels and biochemicals utilizing C1 gases. Various platform compounds such as acetate, butyrate, caproate, ethanol, butanol and bioplastics can be produced. However, technological challenges pertaining to the microbe-material interactions such as poor gas-liquid mass transfer, low biomass and biofilm coverage on cathode, low productivities still exist. We are presenting a review on latest developments in MES focusing on the configuration and design of cathodes that can address the challenges and support the gas electro-fermentation. Overall, the opportunities for advancing CO and CO -based biochemicals and biofuels production in MES with suitable cathode/reactor design are prospected.
ArticleNumber 127178
Author Krige, Adolf
Bajracharya, Suman
Matsakas, Leonidas
Christakopoulos, Paul
Rova, Ulrika
Author_xml – sequence: 1
  givenname: Suman
  surname: Bajracharya
  fullname: Bajracharya, Suman
  email: suman.bajracharya@ltu.se
– sequence: 2
  givenname: Adolf
  surname: Krige
  fullname: Krige, Adolf
– sequence: 3
  givenname: Leonidas
  surname: Matsakas
  fullname: Matsakas, Leonidas
– sequence: 4
  givenname: Ulrika
  surname: Rova
  fullname: Rova, Ulrika
– sequence: 5
  givenname: Paul
  surname: Christakopoulos
  fullname: Christakopoulos, Paul
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35436538$$D View this record in MEDLINE/PubMed
https://urn.kb.se/resolve?urn=urn:nbn:se:ltu:diva-90331$$DView record from Swedish Publication Index
BookMark eNqNkktv1DAYRS1URKeFv1B5yYIMfiROLLFgVJ5SJTbA1nLsLzMeJfZgO61mzR_HJZ0u2JSVFz73yrrHF-jMBw8IXVGypoSKt_t170LMYHZrRhhbU9bStnuGVrRrecVkK87QikhBqq5h9Tm6SGlPCOG0ZS_QOW9qLhrerdDvjb3V3kDCzmOj8y5YwBaS2_qEtbc4gjY5RGyCH9x2jjq7UK7CgCdnYuidHjGMYHIM6ejzrkQTTseUYUo4Bzxo40aXdQa81emEVgPECXz-2_YSPR_0mODVw3mJfnz6-P36S3Xz7fPX681NZWoqcsUN6UU_cFt3Xd1LaQYOBqS0bdPWtDdGdnwYJBPSMKtNT2zT6qaBkihDMM0v0ZulN93BYe7VIbpJx6MK2qkP7udGhbhVY56VJJzTgr9e8EMMv2ZIWU0uGRhH7SHMSTEhKOFld_YfaMOajre8LujVAzr3E9jHR5yUFEAsQFk3pQjDI0KJunev9urkXt27V4v7Enz3T9C4ZeActRufjr9f4lAU3DqIKhkH5WtYF4szZYN7quIPWvrSwg
CitedBy_id crossref_primary_10_1016_j_apenergy_2023_121609
crossref_primary_10_1016_j_biortech_2023_130124
crossref_primary_10_3390_pr11030766
crossref_primary_10_1016_j_biortech_2022_128040
crossref_primary_10_1007_s10973_023_12861_3
crossref_primary_10_1016_j_jece_2024_113063
crossref_primary_10_1039_D3GC00471F
crossref_primary_10_1111_1751_7915_14383
crossref_primary_10_1016_j_rser_2024_114704
crossref_primary_10_1016_j_scitotenv_2023_169766
crossref_primary_10_1016_j_ijhydene_2024_09_450
crossref_primary_10_1016_j_bej_2022_108745
crossref_primary_10_1021_acssuschemeng_4c06214
crossref_primary_10_1016_j_engmic_2024_100141
crossref_primary_10_1016_j_biotechadv_2024_108369
crossref_primary_10_1016_j_biortech_2024_131380
crossref_primary_10_1016_j_biortech_2024_131381
crossref_primary_10_1016_j_biortech_2024_130530
crossref_primary_10_1016_j_ijhydene_2025_01_226
crossref_primary_10_3390_microorganisms13020249
crossref_primary_10_1016_j_biortech_2024_130896
crossref_primary_10_1016_j_jpowsour_2025_236499
crossref_primary_10_1016_j_biortech_2022_128259
crossref_primary_10_1039_D3SE00876B
crossref_primary_10_1016_j_biortech_2025_132280
crossref_primary_10_1016_j_psep_2024_07_030
crossref_primary_10_1016_j_cej_2022_140200
crossref_primary_10_1016_j_biotechadv_2023_108098
crossref_primary_10_1016_j_ijhydene_2025_01_279
crossref_primary_10_20517_energymater_2023_60
crossref_primary_10_1021_acsestengg_4c00077
Cites_doi 10.1021/sc400520x
10.2166/wst.2020.234
10.1016/j.copbio.2020.02.017
10.1016/j.biortech.2018.02.087
10.1016/j.rser.2019.04.070
10.1016/j.procbio.2020.11.017
10.1016/j.biortech.2011.03.047
10.1016/j.biortech.2015.05.077
10.1128/AEM.02401-12
10.1016/j.procbio.2020.11.005
10.1016/j.cej.2021.132093
10.1021/bi9615598
10.1016/j.biortech.2016.11.124
10.1016/j.chemosphere.2020.128649
10.1002/elsc.201600105
10.1007/s00253-017-8124-9
10.1002/fuce.201900152
10.1016/j.biortech.2019.122296
10.1111/1751-7915.13663
10.1016/j.jece.2021.106189
10.1016/j.cej.2019.123689
10.1016/j.jpowsour.2017.04.024
10.1016/j.copbio.2015.03.008
10.1016/j.copbio.2013.02.017
10.1039/c3cc42570c
10.1016/j.rser.2015.11.015
10.1016/j.biortech.2020.124573
10.1007/s00203-003-0523-x
10.1016/j.renene.2020.05.099
10.3389/fenrg.2018.00007
10.1016/j.biortech.2014.06.034
10.3390/en6083987
10.1016/j.copbio.2007.03.008
10.1016/j.biortech.2014.01.058
10.1016/j.seppur.2016.06.014
10.1126/science.aad6452
10.1039/D0EE03679J
10.1007/s11356-016-7196-x
10.1016/j.ijhydene.2007.02.035
10.3390/pr8091075
10.1016/j.scitotenv.2021.145677
10.1016/j.bej.2016.07.020
10.3389/fmicb.2016.00694
10.1016/j.biortech.2020.122863
10.1002/adfm.201804860
10.1038/s41598-017-09841-7
10.1016/j.apenergy.2019.02.076
10.1016/j.biombioe.2013.01.034
10.1016/j.electacta.2016.09.063
10.1128/AEM.00355-11
10.1016/j.biortech.2020.123115
10.1021/acs.nanolett.5b01254
10.1016/j.biortech.2020.124177
10.1016/j.biortech.2018.02.058
10.1039/C2EE23350A
10.3389/fmicb.2015.00468
10.1111/1751-7915.13270
10.1016/j.chemosphere.2020.126105
10.1039/C5RA24254A
10.1021/acs.est.6b02101
10.1039/C5EE03088A
10.1039/C9CC00208A
10.1021/es3027659
10.3390/en12173297
10.1002/adma.202004051
10.1038/s41929-017-0005-1
10.1016/j.apenergy.2016.02.021
10.1039/C7FD00050B
10.1016/j.envres.2020.110093
10.1039/C8TA05322G
10.1016/j.jechem.2019.04.020
10.1016/j.joule.2020.03.001
10.1016/j.cej.2018.05.003
10.1016/j.biombioe.2019.03.011
10.1016/j.biortech.2017.08.183
10.1021/es400341b
10.1016/j.jcou.2021.101640
10.1039/C4TA03101F
10.1128/mBio.00103-10
10.1016/j.biortech.2015.05.081
10.1128/AEM.00675-15
10.1016/j.bbapap.2008.08.012
10.1016/j.rser.2011.07.124
10.1016/j.biortech.2018.08.103
10.1016/j.cej.2016.08.049
10.1016/j.cej.2020.127103
10.1016/j.bej.2009.09.004
10.1039/C7RA13546G
10.1016/j.biortech.2016.03.094
10.1016/j.bioelechem.2019.03.011
10.3389/fmicb.2017.00756
10.1007/s00253-015-7238-1
10.1007/s00449-015-1397-4
10.1021/acs.estlett.5b00212
10.1016/j.jclepro.2018.08.162
10.3389/fmicb.2020.00416
10.1002/bit.25827
10.1038/s41929-019-0264-0
10.1016/j.ces.2018.08.056
10.1016/j.jclepro.2018.03.193
10.1016/j.biortech.2017.03.091
10.1196/annals.1419.016
10.1016/j.cej.2019.122687
10.1038/srep16168
10.1073/pnas.1516867113
10.1016/S2095-4956(14)60136-4
10.3389/fenrg.2019.00093
10.1016/j.apenergy.2020.115684
10.3389/fenrg.2019.00098
10.1039/D0EE01281E
10.1016/j.bej.2014.01.010
10.1016/j.biortech.2017.08.088
10.1016/j.biortech.2017.09.069
10.1039/C4CC10121A
10.1021/acs.est.5b04431
10.1016/j.biortech.2011.03.020
10.1016/j.copbio.2019.08.014
10.1142/q0102
10.1016/j.jbiotec.2015.07.020
10.1002/adma.201707072
10.1039/c3cp52697f
10.1021/acs.est.5b03821
10.1016/j.watres.2018.06.013
10.1039/C6TA02036D
10.1021/acs.accounts.9b00523
10.1111/1751-7915.12431
10.1016/j.chemosphere.2021.131138
10.1021/acscatal.8b04143
10.1002/cplu.202100119
10.1016/j.biotechadv.2020.107675
10.1002/bbb.1912
10.1016/j.biortech.2018.02.109
10.1016/j.scitotenv.2020.142440
10.1016/j.biortech.2017.02.104
10.1186/s13068-020-1670-x
ContentType Journal Article
Copyright 2022 The Authors
Copyright © 2022 The Authors. Published by Elsevier Ltd.. All rights reserved.
Copyright_xml – notice: 2022 The Authors
– notice: Copyright © 2022 The Authors. Published by Elsevier Ltd.. All rights reserved.
DBID 6I.
AAFTH
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7S9
L.6
ADTPV
AOWAS
D8T
ZZAVC
DOI 10.1016/j.biortech.2022.127178
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
SwePub
SwePub Articles
SWEPUB Freely available online
SwePub Articles full text
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList MEDLINE - Academic
AGRICOLA


MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Chemistry
Agriculture
EISSN 1873-2976
ExternalDocumentID oai_DiVA_org_ltu_90331
35436538
10_1016_j_biortech_2022_127178
S0960852422005077
Genre Journal Article
Review
GroupedDBID ---
--K
--M
.~1
0R~
1B1
1RT
1~.
1~5
23N
4.4
457
4G.
53G
5GY
5VS
6I.
7-5
71M
8P~
9JM
9JN
AAAJQ
AABNK
AACTN
AAEDT
AAEDW
AAFTH
AAHBH
AAHCO
AAIKJ
AAKOC
AALCJ
AALRI
AAOAW
AAQFI
AAQXK
AARJD
AARKO
AATLK
AAXKI
AAXUO
ABFNM
ABFYP
ABGRD
ABGSF
ABJNI
ABLST
ABMAC
ABNUV
ABUDA
ABWVN
ABXDB
ACDAQ
ACGFS
ACIUM
ACRLP
ACRPL
ADBBV
ADEWK
ADEZE
ADMUD
ADNMO
ADQTV
ADUVX
AEBSH
AEGFY
AEHWI
AEIPS
AEKER
AENEX
AEQOU
AFJKZ
AFKWA
AFTJW
AFXIZ
AGEKW
AGHFR
AGRDE
AGUBO
AGYEJ
AHEUO
AHHHB
AHIDL
AHPOS
AI.
AIEXJ
AIKHN
AITUG
AJOXV
AKIFW
AKRWK
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BELTK
BKOJK
BLECG
BLXMC
CJTIS
CS3
DU5
EBS
EFJIC
EJD
ENUVR
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HLV
HMC
HVGLF
HZ~
IHE
J1W
JARJE
KCYFY
KOM
LUGTX
LW9
LY6
LY9
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
PC.
Q38
R2-
RIG
ROL
RPZ
SAB
SAC
SDF
SDG
SDP
SEN
SES
SEW
SPC
SPCBC
SSA
SSG
SSI
SSJ
SSR
SSU
SSZ
T5K
VH1
WUQ
Y6R
~02
~G-
~KM
AATTM
AAYWO
AAYXX
ACVFH
ADCNI
AEUPX
AFPUW
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7S9
EFKBS
L.6
ADTPV
AOWAS
D8T
ZZAVC
ID FETCH-LOGICAL-c416t-3c0b6bf3d4884b99cf3ece99d75741bcc983ff9269c2dacb0d57a55ef3d0962a3
IEDL.DBID .~1
ISSN 0960-8524
1873-2976
IngestDate Thu Aug 21 07:19:01 EDT 2025
Tue Aug 05 10:11:01 EDT 2025
Fri Jul 11 09:28:21 EDT 2025
Thu Apr 03 07:00:13 EDT 2025
Tue Jul 01 03:19:04 EDT 2025
Thu Apr 24 22:53:01 EDT 2025
Sat Jan 18 16:09:38 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Cathode-design
Microbial Electrosynthesis
CO2 utilization
Gas Electro-fermentation
Syngas
CO utilization
Language English
License This is an open access article under the CC BY-NC-ND license.
Copyright © 2022 The Authors. Published by Elsevier Ltd.. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c416t-3c0b6bf3d4884b99cf3ece99d75741bcc983ff9269c2dacb0d57a55ef3d0962a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
ObjectType-Review-3
content type line 23
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S0960852422005077
PMID 35436538
PQID 2652583734
PQPubID 23479
ParticipantIDs swepub_primary_oai_DiVA_org_ltu_90331
proquest_miscellaneous_2661032712
proquest_miscellaneous_2652583734
pubmed_primary_35436538
crossref_primary_10_1016_j_biortech_2022_127178
crossref_citationtrail_10_1016_j_biortech_2022_127178
elsevier_sciencedirect_doi_10_1016_j_biortech_2022_127178
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-06-01
PublicationDateYYYYMMDD 2022-06-01
PublicationDate_xml – month: 06
  year: 2022
  text: 2022-06-01
  day: 01
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Bioresource technology
PublicationTitleAlternate Bioresour Technol
PublicationYear 2022
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Köpke, Mihalcea, Liew, Tizard, Ali, Conolly, Al-Sinawi, Simpson (bib625) 2011; 77
Maddipati, Atiyeh, Bellmer, Huhnke (b0365) 2011; 102
Sharma, Aryal, Sarma, Vanbroekhoven, Lal, Benetton, Pant (b0490) 2013; 49
Bajracharya, Srikanth, Mohanakrishna, Zacharia, Strik, Pant (b0055) 2017; 356
Jourdin, Grieger, Monetti, Flexer, Freguia, Lu, Chen, Romano, Wallace, Keller (bib634) 2015; 49
Haas, Krause, Weber, Demler, Schmid (bib626) 2018; 1
Jourdin, Freguia, Flexer, Keller (b0290) 2016; 50
Li, Luo, He (b0335) 2016; 169
UNFCCC (b0555) 2015
Flexer, Jourdin (b0220) 2020; 53
Monir, Aziz, Khatun, Yousuf (bib618) 2020; 157
Sadhukhan, Lloyd, Scott, Premier, Yu, Curtis, Head (b0475) 2016; 56
Abubackar, Bengelsdorf, Dürre, Veiga, Kennes (b0005) 2016; 169
Strübing, Huber, Lebuhn, Drewes, Koch (b0525) 2017; 245
Mateos, Sotres, Alonso, Morán, Escapa (b0390) 2019; 12
Kundiyana, Huhnke, Wilkins (b0325) 2011; 102
Zhao, Zhang, Wang, Guo (b0610) 2014; 23
Marshall, Ross, Fichot, Norman, May (b0370) 2013; 47
Bian, Bajracharya, Xu, Pant, Saikaly (b0100) 2020; 302
Xia, Tokash, Zhang, Liang, Huang, Logan (b0580) 2013; 47
Hu, Chakraborty, Kumar, Woolston, Liu, Emerson, Stephanopoulos (bib627) 2016; 113
Wang, Dai, Xia, Wang, Zeng, Zhang (bib628) 2018; 187
Marshall, Ross, Fichot, Norman, May (b0375) 2012; 78
He, Cassarini, Marciano, Lens (b0245) 2021; 265
Alfaro, Fdz-Polanco, Fdz-Polanco, Díaz (b0010) 2018; 258
.
Rodrigues, Guan, Iñiguez, Estabrook, Chapman, Huang, Sletten, Liu (b0455) 2019; 2
Poznansky, Cleary, Thompson, Reeve, Vincent (b0430) 2021
Weber (b0575) 2018; 9
Ramió-Pujol, Ganigué, Bañeras, Colprim (b0445) 2015; 192
Corral, Feaster, Sobhani, Deotte, Lee, Wong, Hamilton, Beck, Sarkar, Hahn, Jaramillo, Baker, Duoss (b0165) 2021; 14
Molitor, Richter, Martin, Jensen, Juminaga, Mihalcea, Angenent (b0405) 2016; 215
Richter, Martin, Angenent (b0450) 2013; 6
Asimakopoulos, Gavala, Skiadas (b0045) 2018; 348
Kougias, Treu, Benavente, Boe, Campanaro, Angelidaki (b0310) 2017; 225
Mier, Olvera-Vargas, Mejía-López, Longoria, Verea, Sebastian, Arias (b0400) 2021; 283
Shi, Tremblay, Wan, Zhang (bib631) 2021; 754
Tahir, Miran, Jang, Maile, Shahzad, Moztahida, Ghani, Kim, Jeon, Lee (b0535) 2021; 773
LaBelle, May (bib635) 2017; 8
Das, Das, Ghangrekar (b0175) 2021; 101
Nie, Zhang, Cui, Lu, Lovley, Russell (bib633) 2013; 15
Sarkar, Kumar, Dahiya, Krishna, Yeruva, Mohan (b0480) 2016; 6
Bardone, Marzocchella, Keshavarz, Stoll, Herbig, Zwick, Boukis, Sauer, Neumann, Oswald (bib622) 2018; 64
Ragsdale, Pierce (b0440) 2008; 1784
Menon, Ragsdale (b0395) 1996; 35
Ditzig, Liu, Logan (b0185) 2007; 32
Xu, Zhai, Cheng, Guadie, Wang, Han, Liu, Wang (b0590) 2020; 191
Blanchet, Duquenne, Rafrafi, Etcheverry, Erable, Bergel (b0115) 2015; 8
Martin, Richter, Saha, Angenent (b0380) 2016; 113
Xiang, Liu, Zhang, Lu, Luo (b0585) 2017; 233
Li, Ge, He (b0330) 2014; 167
Siegert, Yates, Call, Zhu, Spormann, Logan (b0505) 2014; 2
Li, Angelidaki, Zhang (b0345) 2018; 142
Jack, Lo, Maness, Ren (b0280) 2019; 124
Schwarz, Ciurus, Jain, Baum, Wiechmann, Basen, Müller (bib623) 2020; 13
Zhu, Liu, Zhou, Yi, Lun, Wang, Tang, Li (b0615) 2020; 11
Rosa, Hunger, Zschernitz, Strehlitz, Harnisch (b0470) 2019; 7
Huggins, Wang, Kearns, Jenkins, Ren (b0255) 2014; 157
Aryal, Halder, Tremblay, Chi, Zhang (b0025) 2016; 217
Cui, Wang, Wang, Zhang, Han, Li, Sun, Shen, Wang (b0170) 2020; 306
Prévoteau, Carvajal-Arroyo, Ganigué, Rabaey (b0435) 2020; 62
Tahir, Miran, Jang, Shahzad, Moztahida, Kim, Lee (bib619) 2020; 381
Li, Wang, He, Luo, Su, Jiang, Zhou, Xu (b0350) 2020; 295
Enzmann, Mayer, Stöckl, Mangold, Hommel, Holtmann (b0210) 2019; 193
Zhang, Jiang, Wang, Li, Hua, Wang (b0595) 2021; 51
Dürre (b0200) 2017; 10
Beuth, Pfeiffer, Schröder (b0085) 2020; 13
Shen, Brown, Wen (b0500) 2014; 85
Fernández-Naveira, Abubackar, Veiga, Kennes (b0215) 2016; 100
Chakraborty, Rene, Lens, Rintala, Veiga, Kennes (b0140) 2020; 250
Giddings, Nevin, Woodward, Lovley, Butler (b0230) 2015; 6
Gildemyn, Verbeeck, Slabbinck, Andersen, Prévoteau, Rabaey (b0235) 2015; 2
Bian, Shi, Katuri, Xu, Wang, Saikaly (b0110) 2020; 278
IEA (b0265) 2019
Shen, Dai, Xia, Zeng, Zhang (b0495) 2018; 202
Baransi-Karkaby, Hassanin, Muhsein, Massalha, Sabbah (b0080) 2020; 81
Bian, Alqahtani, Katuri, Liu, Bajracharya, Lai, Rabaey, Saikaly (b0095) 2018; 6
Bajracharya, Vanbroekhoven, Buisman, Pant, Strik (b0065) 2016; 23
Bhatia, Bhatia, Jeon, Kumar, Yang (b0090) 2019; 110
Vassilev, Kracke, Freguia, Keller, Krömer, Ledezma, Virdis (b0560) 2019; 55
Ganigué, Puig, Batlle-Vilanova, Balaguer, Colprim (b0225) 2015; 51
Chatzipanagiotou, Soekhoe, Jourdin, Buisman, Bitter, Strik (b0145) 2021; 86
Rojas, Zaiat, González, De Wever, Pant (b0460) 2021; 101
Dong, Z., Wang, H., Tian, S., Yang, Y., Yuan, H., Huang, Q., Song, T. shun, Xie, J., 2018. Fluidized granular activated carbon electrode for efficient microbial electrosynthesis of acetate from carbon dioxide. Bioresour. Technol. 269, 203–209. https://doi.org/10.1016/J.BIORTECH.2018.08.103.
Campani, Ribeiro, Horta, Giordano, Badino, Zangirolami (b0135) 2015; 38
Ojeda, Bakonyi, Buitrón (b0425) 2017; 245
Alqahtani, Katuri, Bajracharya, Yu, Lai, Saikaly (b0020) 2018; 28
Skidmore, Baker, Banjade, Bray, Tree, Lewis (b0510) 2013; 55
Drake, Gößner, Daniel (b0195) 2008; 1125
Chen, Tremblay, Mohanty, Xu, Zhang (b0150) 2016; 4
Stoll, I., Boukis, N., Sauer, J., 2019. Syngas Fermentation at Elevated Pressure - Experimental Results, in: 27th European Biomass Conference and Exhibition. Lisbon, pp. 1255–1261. https://doi.org/10.5071/27theubce2019-3cv.3.4.
Viggi, Colantoni, Falzetti, Bacaloni, Montecchio, Aulenta (b0565) 2020; 20
Izadi, Fontmorin, Fernández, Cheng, Head, Yu (b0275) 2019; 7
Kantzow, Mayer, Weuster-Botz (bib620) 2015; 212
Mourato, Martins, da Silva, Pereira (b0410) 2017; 235
Dürre, Eikmanns (b0205) 2015; 35
Krige, A., Rova, U., Christakopoulos, P., 2021. 3D bioprinting on cathodes in microbial electrosynthesis for increased acetate production rate using Sporomusa ovata. J. Environ. Chem. Eng. 9, 106189. https://doi.org/10.1016/J.JECE.2021.106189.
Henstra, Sipma, Rinzema, Stams (bib637) 2007; 18
Su, Cestellos-Blanco, Kim, Shen, Kong, Lu, Liu, Zhang, Cao, Yang (b0530) 2020; 4
Wang, Yu, Zhang, Xia, Zeng (bib629) 2017; 101
IPCC, 2014. IPCC, 2014: Summary for Policymakers, in: Edenhofer, O., Pichs-Madruga, R., Sokona, Youba, Agrawala, S., Alexeyevich Bashmakov, I., Blanco, G., Broome, J., Bruckner, T., Brunner, Steffen, Bustamante, M., Baiocchi, G., Sokona, Y, Farahani, E., Kadner, S., Seyboth, K., Adler, A., Baum, I., Brunner, S, Eickemeier, P., Kriemann, B., Savolainen, J., Schlömer, S., von Stechow, C., Zwickel, T., Minx, J. (Eds.), Climate Change 2014: Mitigation of Climate Change. Contribution of Working Group III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA.
Mohammadi, Najafpour, Younesi, Lahijani, Uzir, Mohamed (bib638) 2011
Krieg, Madjarov, Rosa, Enzmann, Harnisch, Holtmann, Rabaey (b0315) 2018; 167
Alqahtani, Bajracharya, Katuri, Ali, Xu, Alarawi, Saikaly (b0015) 2020; 766
Bajracharya, Krige, Matsakas, Rova, Christakopoulos (b0050) 2021; 287
Hawkins, McTernan, Lian, Kelly, Adams (b0240) 2013; 24
Asensio, Llorente, Fernández, Tejedor-Sanz, Ortiz, Ciriza, Monsalvo, Rogalla, Esteve-Núñez (b0040) 2021; 406
Hintermayer, Yu, Krömer, Weuster-Botz (b0250) 2016; 115
Lanzillo, Ruggiero, Raganati, Russo, Marzocchella (bib621) 2020; 8
Burkhardt, Jordan, Heinrich, Behrens, Ziesche, Busch (b0125) 2019; 240
Wang, Li, Sun, Zhang, Jiao, Wang, Liu (b0570) 2021; 33
Balk, Weijma, Friedrich, Stams (b0075) 2003; 179
Dessì, Rovira-Alsina, Sánchez, Dinesh, Tong, Chatterjee, Tedesco, Farràs, Hamelers, Puig (b0180) 2021; 46
Tremblay, Höglund, Koza, Bonde, Zhang (bib630) 2015; 5
Hurst, Lewis (b0260) 2010; 48
Lindsey (b0360) 2020
Schwarz, F.M., Müller, V., 2020. Whole-cell biocatalysis for hydrogen storage and syngas conversion to formate using a thermophilic acetogen. Biotechnol. Biofuels, 2020, 131, 13, 1–11.
Aryal, Wan, Overgaard, Stoot, Chen, Tremblay, Zhang (b0035) 2019; 128
Christodoulou, Velasquez-Orta (b0160) 2016; 50
Jourdin, Raes, Buisman, Strik (b0295) 2018; 6
Zhang (b0600) 2015; 350
Bian, Xu, Katuri, Saikaly (bib636) 2021; 319
Katuri, Kalathil, Ragab, Bian, Alqahtani, Pant, Saikaly (b0300) 2018; 30
Savvas, Donnelly, Patterson, Chong, Esteves (b0485) 2018; 257
Bajracharya, Ter Heijne, Dominguez Benetton, Vanbroekhoven, Buisman, Strik, Pant (b0060) 2015; 15
Brun, Flexer (b0120) 2017
Ullrich, Lindner, Bär, Mörs, Graf, Lemmer (b0550) 2018; 247
Jeong, Bertsch, Hess, Choi, Choi, Chang, Müller (bib624) 2015; 81
Teixeira, Moutinho, Romão-Dumaresq (b0545) 2018; 12
Jourdin, Freguia, Donose, Chen, Wallace, Keller, Flexer (b0285) 2014; 2
Liew, Martin, Tappel, Heijstra, Mihalcea, Köpke (b0355) 2016; 7
Aryal, Halder, Zhang, Whelan, Tremblay, Chi, Zhang (b0030) 2017; 7
Srikanth, Singh, Vanbroekhoven, Pant, Kumar, Puri, Ramakumar (b0515) 2018; 265
Zhang, Nie, Bain, Lu, Cui, Snoeyenbos-West, Franks, Nevin, Russell, Lovley (b0605) 2013; 6
Cai, Cui, Liu, Jin, Chen, Guo, Wang (b0130) 2022; 428
Bajracharya, Vanbroekhoven, Buisman, Strik, Pant (b0070) 2017; 202
Takors, Kopf, Mampel, Bluemke, Blombach, Eikmanns, Bengelsdorf, Weuster-Botz, Dürre (b0540) 2018; 11
Noori, Vu, Ali, Min (b0420) 2020; 392
Mateos, Escapa, San-Martín, De Wever, Sotres, Pant (b0385) 2020; 41
Li, Wang, Jiang, Zhu, Liu, Guo, Song (b0340) 2018; 8
Köpke, Simpson (b0305) 2020; 65
Novak (bib616) 2021; 323
Chen, Ni (b0155) 2016; 306
Nevin, K.P., Woodard, T.L., Franks, A.E., Summers, Z.M., Lovley, D.R., 2010. Microbial Electrosynthesis : Feeding Microbes Electricity To Convert Carbon Dioxide and Water to Multicarbon Extracellular Organic. MBio 1, e00103-10-. https://doi.org/10.1128/mBio.00103-10.Editor.
Rosa, Hunger, Gimkiewicz, Zehnsdorf, Harnisch (b0465) 2017; 17
Liu, Gallagher, Sakimoto, Nichols, Chang, Chang, Yang (bib632) 2015; 15
Maddipati (10.1016/j.biortech.2022.127178_b0365) 2011; 102
Bajracharya (10.1016/j.biortech.2022.127178_b0070) 2017; 202
10.1016/j.biortech.2022.127178_b0520
Alqahtani (10.1016/j.biortech.2022.127178_b0020) 2018; 28
Zhang (10.1016/j.biortech.2022.127178_b0600) 2015; 350
Ragsdale (10.1016/j.biortech.2022.127178_b0440) 2008; 1784
Skidmore (10.1016/j.biortech.2022.127178_b0510) 2013; 55
Jourdin (10.1016/j.biortech.2022.127178_bib634) 2015; 49
Bian (10.1016/j.biortech.2022.127178_bib636) 2021; 319
Xu (10.1016/j.biortech.2022.127178_b0590) 2020; 191
Bian (10.1016/j.biortech.2022.127178_b0095) 2018; 6
Hurst (10.1016/j.biortech.2022.127178_b0260) 2010; 48
Sarkar (10.1016/j.biortech.2022.127178_b0480) 2016; 6
10.1016/j.biortech.2022.127178_bib617
Jourdin (10.1016/j.biortech.2022.127178_b0295) 2018; 6
Zhang (10.1016/j.biortech.2022.127178_b0595) 2021; 51
Ojeda (10.1016/j.biortech.2022.127178_b0425) 2017; 245
Kougias (10.1016/j.biortech.2022.127178_b0310) 2017; 225
Giddings (10.1016/j.biortech.2022.127178_b0230) 2015; 6
Rosa (10.1016/j.biortech.2022.127178_b0470) 2019; 7
He (10.1016/j.biortech.2022.127178_b0245) 2021; 265
Asimakopoulos (10.1016/j.biortech.2022.127178_b0045) 2018; 348
Katuri (10.1016/j.biortech.2022.127178_b0300) 2018; 30
UNFCCC (10.1016/j.biortech.2022.127178_b0555)
Chatzipanagiotou (10.1016/j.biortech.2022.127178_b0145) 2021; 86
Wang (10.1016/j.biortech.2022.127178_bib628) 2018; 187
Ditzig (10.1016/j.biortech.2022.127178_b0185) 2007; 32
Köpke (10.1016/j.biortech.2022.127178_bib625) 2011; 77
IEA (10.1016/j.biortech.2022.127178_b0265) 2019
Li (10.1016/j.biortech.2022.127178_b0345) 2018; 142
Weber (10.1016/j.biortech.2022.127178_b0575) 2018; 9
Cui (10.1016/j.biortech.2022.127178_b0170) 2020; 306
Krieg (10.1016/j.biortech.2022.127178_b0315) 2018; 167
Kantzow (10.1016/j.biortech.2022.127178_bib620) 2015; 212
Mohammadi (10.1016/j.biortech.2022.127178_bib638) 2011
Sadhukhan (10.1016/j.biortech.2022.127178_b0475) 2016; 56
Bardone (10.1016/j.biortech.2022.127178_bib622) 2018; 64
Tahir (10.1016/j.biortech.2022.127178_b0535) 2021; 773
Jourdin (10.1016/j.biortech.2022.127178_b0290) 2016; 50
Bajracharya (10.1016/j.biortech.2022.127178_b0055) 2017; 356
Baransi-Karkaby (10.1016/j.biortech.2022.127178_b0080) 2020; 81
Mourato (10.1016/j.biortech.2022.127178_b0410) 2017; 235
10.1016/j.biortech.2022.127178_b0190
Jack (10.1016/j.biortech.2022.127178_b0280) 2019; 124
Prévoteau (10.1016/j.biortech.2022.127178_b0435) 2020; 62
Rodrigues (10.1016/j.biortech.2022.127178_b0455) 2019; 2
Marshall (10.1016/j.biortech.2022.127178_b0375) 2012; 78
Wang (10.1016/j.biortech.2022.127178_b0570) 2021; 33
Liew (10.1016/j.biortech.2022.127178_b0355) 2016; 7
Das (10.1016/j.biortech.2022.127178_b0175) 2021; 101
Menon (10.1016/j.biortech.2022.127178_b0395) 1996; 35
Campani (10.1016/j.biortech.2022.127178_b0135) 2015; 38
Chakraborty (10.1016/j.biortech.2022.127178_b0140) 2020; 250
Beuth (10.1016/j.biortech.2022.127178_b0085) 2020; 13
Teixeira (10.1016/j.biortech.2022.127178_b0545) 2018; 12
Dürre (10.1016/j.biortech.2022.127178_b0200) 2017; 10
Marshall (10.1016/j.biortech.2022.127178_b0370) 2013; 47
Lindsey (10.1016/j.biortech.2022.127178_b0360) 2020
Köpke (10.1016/j.biortech.2022.127178_b0305) 2020; 65
Hu (10.1016/j.biortech.2022.127178_bib627) 2016; 113
Bian (10.1016/j.biortech.2022.127178_b0110) 2020; 278
Fernández-Naveira (10.1016/j.biortech.2022.127178_b0215) 2016; 100
Bhatia (10.1016/j.biortech.2022.127178_b0090) 2019; 110
Blanchet (10.1016/j.biortech.2022.127178_b0115) 2015; 8
10.1016/j.biortech.2022.127178_b0320
Xia (10.1016/j.biortech.2022.127178_b0580) 2013; 47
Chen (10.1016/j.biortech.2022.127178_b0155) 2016; 306
Strübing (10.1016/j.biortech.2022.127178_b0525) 2017; 245
Bajracharya (10.1016/j.biortech.2022.127178_b0065) 2016; 23
Zhao (10.1016/j.biortech.2022.127178_b0610) 2014; 23
Bajracharya (10.1016/j.biortech.2022.127178_b0060) 2015; 15
Jeong (10.1016/j.biortech.2022.127178_bib624) 2015; 81
Li (10.1016/j.biortech.2022.127178_b0330) 2014; 167
Wang (10.1016/j.biortech.2022.127178_bib629) 2017; 101
Izadi (10.1016/j.biortech.2022.127178_b0275) 2019; 7
Srikanth (10.1016/j.biortech.2022.127178_b0515) 2018; 265
Zhu (10.1016/j.biortech.2022.127178_b0615) 2020; 11
Aryal (10.1016/j.biortech.2022.127178_b0025) 2016; 217
Mateos (10.1016/j.biortech.2022.127178_b0390) 2019; 12
Richter (10.1016/j.biortech.2022.127178_b0450) 2013; 6
Nie (10.1016/j.biortech.2022.127178_bib633) 2013; 15
Dürre (10.1016/j.biortech.2022.127178_b0205) 2015; 35
Tremblay (10.1016/j.biortech.2022.127178_bib630) 2015; 5
Sharma (10.1016/j.biortech.2022.127178_b0490) 2013; 49
Xiang (10.1016/j.biortech.2022.127178_b0585) 2017; 233
Bian (10.1016/j.biortech.2022.127178_b0100) 2020; 302
Flexer (10.1016/j.biortech.2022.127178_b0220) 2020; 53
Tahir (10.1016/j.biortech.2022.127178_bib619) 2020; 381
Dessì (10.1016/j.biortech.2022.127178_b0180) 2021; 46
Huggins (10.1016/j.biortech.2022.127178_b0255) 2014; 157
Mateos (10.1016/j.biortech.2022.127178_b0385) 2020; 41
Noori (10.1016/j.biortech.2022.127178_b0420) 2020; 392
Ganigué (10.1016/j.biortech.2022.127178_b0225) 2015; 51
Zhang (10.1016/j.biortech.2022.127178_b0605) 2013; 6
Ramió-Pujol (10.1016/j.biortech.2022.127178_b0445) 2015; 192
Christodoulou (10.1016/j.biortech.2022.127178_b0160) 2016; 50
Drake (10.1016/j.biortech.2022.127178_b0195) 2008; 1125
Henstra (10.1016/j.biortech.2022.127178_bib637) 2007; 18
Viggi (10.1016/j.biortech.2022.127178_b0565) 2020; 20
Kundiyana (10.1016/j.biortech.2022.127178_b0325) 2011; 102
Mier (10.1016/j.biortech.2022.127178_b0400) 2021; 283
Aryal (10.1016/j.biortech.2022.127178_b0035) 2019; 128
Su (10.1016/j.biortech.2022.127178_b0530) 2020; 4
Alfaro (10.1016/j.biortech.2022.127178_b0010) 2018; 258
Vassilev (10.1016/j.biortech.2022.127178_b0560) 2019; 55
Li (10.1016/j.biortech.2022.127178_b0350) 2020; 295
Abubackar (10.1016/j.biortech.2022.127178_b0005) 2016; 169
Aryal (10.1016/j.biortech.2022.127178_b0030) 2017; 7
Lanzillo (10.1016/j.biortech.2022.127178_bib621) 2020; 8
Liu (10.1016/j.biortech.2022.127178_bib632) 2015; 15
Asensio (10.1016/j.biortech.2022.127178_b0040) 2021; 406
Savvas (10.1016/j.biortech.2022.127178_b0485) 2018; 257
Martin (10.1016/j.biortech.2022.127178_b0380) 2016; 113
Ullrich (10.1016/j.biortech.2022.127178_b0550) 2018; 247
Enzmann (10.1016/j.biortech.2022.127178_b0210) 2019; 193
Monir (10.1016/j.biortech.2022.127178_bib618) 2020; 157
Shen (10.1016/j.biortech.2022.127178_b0500) 2014; 85
Corral (10.1016/j.biortech.2022.127178_b0165) 2021; 14
Rojas (10.1016/j.biortech.2022.127178_b0460) 2021; 101
Li (10.1016/j.biortech.2022.127178_b0335) 2016; 169
Brun (10.1016/j.biortech.2022.127178_b0120) 2017
Gildemyn (10.1016/j.biortech.2022.127178_b0235) 2015; 2
Schwarz (10.1016/j.biortech.2022.127178_bib623) 2020; 13
10.1016/j.biortech.2022.127178_b0270
Shi (10.1016/j.biortech.2022.127178_bib631) 2021; 754
LaBelle (10.1016/j.biortech.2022.127178_bib635) 2017; 8
Rosa (10.1016/j.biortech.2022.127178_b0465) 2017; 17
Novak (10.1016/j.biortech.2022.127178_bib616) 2021; 323
Molitor (10.1016/j.biortech.2022.127178_b0405) 2016; 215
Bajracharya (10.1016/j.biortech.2022.127178_b0050) 2021; 287
Balk (10.1016/j.biortech.2022.127178_b0075) 2003; 179
Burkhardt (10.1016/j.biortech.2022.127178_b0125) 2019; 240
10.1016/j.biortech.2022.127178_b0415
Siegert (10.1016/j.biortech.2022.127178_b0505) 2014; 2
Shen (10.1016/j.biortech.2022.127178_b0495) 2018; 202
Alqahtani (10.1016/j.biortech.2022.127178_b0015) 2020; 766
Hintermayer (10.1016/j.biortech.2022.127178_b0250) 2016; 115
Hawkins (10.1016/j.biortech.2022.127178_b0240) 2013; 24
Li (10.1016/j.biortech.2022.127178_b0340) 2018; 8
Cai (10.1016/j.biortech.2022.127178_b0130) 2022; 428
Haas (10.1016/j.biortech.2022.127178_bib626) 2018; 1
Poznansky (10.1016/j.biortech.2022.127178_b0430) 2021
Chen (10.1016/j.biortech.2022.127178_b0150) 2016; 4
Jourdin (10.1016/j.biortech.2022.127178_b0285) 2014; 2
Takors (10.1016/j.biortech.2022.127178_b0540) 2018; 11
References_xml – volume: 6
  start-page: 217
  year: 2013
  end-page: 224
  ident: b0605
  article-title: Improved cathode materials for microbial electrosynthesis
  publication-title: Energy Environ. Sci.
– volume: 350
  start-page: 738
  year: 2015
  end-page: 739
  ident: b0600
  article-title: More efficient together
  publication-title: Science
– volume: 10
  start-page: 14
  year: 2017
  end-page: 16
  ident: b0200
  article-title: Gas fermentation - a biotechnological solution for today’s challenges
  publication-title: Microb. Biotechnol.
– volume: 51
  start-page: 3235
  year: 2015
  end-page: 3238
  ident: b0225
  article-title: Microbial electrosynthesis of butyrate from carbon dioxide
  publication-title: Chem. Commun.
– year: 2011
  ident: bib638
  article-title: Bioconversion of synthesis gas to second generation biofuels: A review
  publication-title: Renew. Sustain. Energy Rev.
– volume: 102
  start-page: 6494
  year: 2011
  end-page: 6501
  ident: b0365
  article-title: Ethanol production from syngas by Clostridium strain P11 using corn steep liquor as a nutrient replacement to yeast extract
  publication-title: Bioresour. Technol.
– volume: 157
  start-page: 114
  year: 2014
  end-page: 119
  ident: b0255
  article-title: Biochar as a sustainable electrode material for electricity production in microbial fuel cells
  publication-title: Bioresour. Technol.
– volume: 766
  year: 2020
  ident: b0015
  article-title: Enrichment of salt-tolerant CO
  publication-title: Sci. Total Environ.
– volume: 110
  start-page: 143
  year: 2019
  end-page: 158
  ident: b0090
  article-title: Carbon dioxide capture and bioenergy production using biological system – A review
  publication-title: Renew. Sustain. Energy Rev.
– volume: 101
  start-page: 237
  year: 2021
  end-page: 246
  ident: b0175
  article-title: Application of TiO2 and Rh as cathode catalyst to boost the microbial electrosynthesis of organic compounds through CO2 sequestration
  publication-title: Process Biochem
– year: 2019
  ident: b0265
  article-title: World Energy Statistics 2019
– volume: 250
  year: 2020
  ident: b0140
  article-title: Effect of tungsten and selenium on C1 gas bioconversion by an enriched anaerobic sludge and microbial community analysis
  publication-title: Chemosphere
– year: 2020
  ident: b0360
  article-title: Climate Change: Atmospheric Carbon Dioxide [WWW Document]
  publication-title: Climate.gov.
– volume: 47
  start-page: 6023
  year: 2013
  end-page: 6029
  ident: b0370
  article-title: Long-term operation of microbial electrosynthesis systems improves acetate production by autotrophic microbiomes
  publication-title: Environ. Sci. Technol.
– volume: 247
  start-page: 7
  year: 2018
  end-page: 13
  ident: b0550
  article-title: Influence of operating pressure on the biological hydrogen methanation in trickle-bed reactors
  publication-title: Bioresour. Technol.
– volume: 202
  start-page: 433
  year: 2017
  end-page: 449
  ident: b0070
  article-title: Bioelectrochemical conversion of CO2 to chemicals: CO2 as a next generation feedstock for electricity-driven bioproduction in batch and continuous modes
  publication-title: Faraday Discuss.
– volume: 48
  start-page: 159
  year: 2010
  end-page: 165
  ident: b0260
  article-title: Carbon monoxide partial pressure effects on the metabolic process of syngas fermentation
  publication-title: Biochem. Eng. J.
– volume: 6
  start-page: 18641
  year: 2016
  end-page: 18653
  ident: b0480
  article-title: Regulation of acidogenic metabolism towards enhanced short chain fatty acid biosynthesis from waste: Metagenomic profiling
  publication-title: RSC Adv.
– reference: Dong, Z., Wang, H., Tian, S., Yang, Y., Yuan, H., Huang, Q., Song, T. shun, Xie, J., 2018. Fluidized granular activated carbon electrode for efficient microbial electrosynthesis of acetate from carbon dioxide. Bioresour. Technol. 269, 203–209. https://doi.org/10.1016/J.BIORTECH.2018.08.103.
– volume: 50
  start-page: 1982
  year: 2016
  end-page: 1989
  ident: b0290
  article-title: Bringing High-Rate, CO2 -Based Microbial Electrosynthesis Closer to Practical Implementation through Improved Electrode Design and Operating Conditions
  publication-title: Environ. Sci. Technol.
– volume: 225
  start-page: 429
  year: 2017
  end-page: 437
  ident: b0310
  article-title: Ex-situ biogas upgrading and enhancement in different reactor systems
  publication-title: Bioresour. Technol.
– volume: 62
  start-page: 48
  year: 2020
  end-page: 57
  ident: b0435
  article-title: Microbial electrosynthesis from CO2: forever a promise?
  publication-title: Curr. Opin. Biotechnol.
– volume: 212
  start-page: 11
  year: 2015
  end-page: 18
  ident: bib620
  article-title: Continuous gas fermentation by Acetobacterium woodii in a submerged membrane reactor with full cell retention
  publication-title: J. Biotechnol.
– volume: 8
  start-page: 3731
  year: 2015
  end-page: 3744
  ident: b0115
  article-title: Importance of the hydrogen route in up-scaling electrosynthesis for microbial CO2 reduction
  publication-title: Energy Environ. Sci.
– volume: 7
  start-page: 93
  year: 2019
  ident: b0275
  article-title: High Performing Gas Diffusion Biocathode for Microbial Fuel Cells Using Acidophilic Iron Oxidizing Bacteria
  publication-title: Front. Energy Res.
– volume: 101
  start-page: 50
  year: 2021
  end-page: 58
  ident: b0460
  article-title: Enhancing the gas–liquid mass transfer during microbial electrosynthesis by the variation of CO2 flow rate
  publication-title: Process Biochem.
– volume: 41
  start-page: 3
  year: 2020
  end-page: 6
  ident: b0385
  article-title: Long-term open circuit microbial electrosynthesis system promotes methanogenesis
  publication-title: J. Energy Chem.
– reference: IPCC, 2014. IPCC, 2014: Summary for Policymakers, in: Edenhofer, O., Pichs-Madruga, R., Sokona, Youba, Agrawala, S., Alexeyevich Bashmakov, I., Blanco, G., Broome, J., Bruckner, T., Brunner, Steffen, Bustamante, M., Baiocchi, G., Sokona, Y, Farahani, E., Kadner, S., Seyboth, K., Adler, A., Baum, I., Brunner, S, Eickemeier, P., Kriemann, B., Savolainen, J., Schlömer, S., von Stechow, C., Zwickel, T., Minx, J. (Eds.), Climate Change 2014: Mitigation of Climate Change. Contribution of Working Group III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA.
– volume: 55
  start-page: 4351
  year: 2019
  end-page: 4354
  ident: b0560
  article-title: Microbial electrosynthesis system with dual biocathode arrangement for simultaneous acetogenesis, solventogenesis and carbon chain elongation
  publication-title: Chem. Commun.
– volume: 18
  start-page: 200
  year: 2007
  end-page: 206
  ident: bib637
  article-title: Microbiology of synthesis gas fermentation for biofuel production
  publication-title: Curr. Opin. Biotechnol.
– volume: 302
  year: 2020
  ident: b0100
  article-title: Microbial electrosynthesis from CO2: Challenges, opportunities and perspectives in the context of circular bioeconomy
  publication-title: Bioresour. Technol.
– volume: 406
  year: 2021
  ident: b0040
  article-title: Upgrading fluidized bed bioelectrochemical reactors for treating brewery wastewater by using a fluid-like electrode
  publication-title: Chem. Eng. J.
– volume: 4
  start-page: 800
  year: 2020
  end-page: 811
  ident: b0530
  article-title: Close-Packed Nanowire-Bacteria Hybrids for Efficient Solar-Driven CO2 Fixation
  publication-title: Joule
– volume: 81
  start-page: 4782
  year: 2015
  end-page: 4790
  ident: bib624
  article-title: Energy conservation model based on genomic and experimental analyses of a carbon monoxide-utilizing, butyrate-forming acetogen,
  publication-title: Appl. Environ. Microbiol.
– volume: 157
  start-page: 1116
  year: 2020
  end-page: 1123
  ident: bib618
  article-title: Bioethanol production through syngas fermentation in a tar free bioreactor using Clostridium butyricum
  publication-title: Renew. Energy
– volume: 1125
  start-page: 100
  year: 2008
  ident: b0195
  article-title: Old Acetogens, New Light
  publication-title: Ann. N. Y. Acad. Sci.
– volume: 64
  year: 2018
  ident: bib622
  article-title: Fermentation of H
  publication-title: Chem. Eng. Trans.
– volume: 11
  start-page: 416
  year: 2020
  ident: b0615
  article-title: Energy Conservation and Carbon Flux Distribution During Fermentation of CO or H2/CO2 by Clostridium ljungdahlii
  publication-title: Front. Microbiol.
– volume: 7
  start-page: 694
  year: 2016
  ident: b0355
  article-title: Gas Fermentation-A flexible platform for commercial scale production of low-carbon-fuels and chemicals from waste and renewable feedstocks
  publication-title: Front. Microbiol.
– volume: 169
  start-page: 241
  year: 2016
  end-page: 246
  ident: b0335
  article-title: Cathodic fluidized granular activated carbon assisted-membrane bioelectrochemical reactor for wastewater treatment
  publication-title: Sep. Purif. Technol.
– volume: 6
  start-page: 3987
  year: 2013
  end-page: 4000
  ident: b0450
  article-title: A Two-Stage Continuous Fermentation System for Conversion of Syngas into Ethanol
  publication-title: Energies
– volume: 53
  start-page: 311
  year: 2020
  end-page: 321
  ident: b0220
  article-title: Purposely Designed Hierarchical Porous Electrodes for High Rate Microbial Electrosynthesis of Acetate from Carbon Dioxide
  publication-title: Acc. Chem. Res.
– volume: 215
  start-page: 386
  year: 2016
  end-page: 396
  ident: b0405
  article-title: Carbon recovery by fermentation of CO-rich off gases – Turning steel mills into biorefineries
  publication-title: Bioresour. Technol.
– volume: 49
  start-page: 6495
  year: 2013
  end-page: 6497
  ident: b0490
  article-title: Bioelectrocatalyzed reduction of acetic and butyric acids via direct electron transfer using a mixed culture of sulfate-reducers drives electrosynthesis of alcohols and acetone
  publication-title: Chem. Commun. (Camb)
– volume: 6
  start-page: 1
  year: 2015
  end-page: 6
  ident: b0230
  article-title: Simplifying microbial electrosynthesis reactor design
  publication-title: Front. Microbiol.
– volume: 6
  start-page: 17201
  year: 2018
  end-page: 17211
  ident: b0095
  article-title: Porous Nickel Hollow Fiber Cathodes Coated with CNTs for Efficient Microbial Electrosynthesis of Acetate from CO
  publication-title: J. Mater. Chem. A
– volume: 283
  year: 2021
  ident: b0400
  article-title: A review of recent advances in electrode materials for emerging bioelectrochemical systems: From biofilm-bearing anodes to specialized cathodes
  publication-title: Chemosphere
– volume: 348
  start-page: 732
  year: 2018
  end-page: 744
  ident: b0045
  article-title: Reactor systems for syngas fermentation processes: A review
  publication-title: Chem. Eng. J.
– volume: 65
  start-page: 180
  year: 2020
  end-page: 189
  ident: b0305
  article-title: Pollution to products: recycling of ‘above ground’ carbon by gas fermentation
  publication-title: Curr. Opin. Biotechnol.
– volume: 17
  start-page: 77
  year: 2017
  end-page: 85
  ident: b0465
  article-title: Paving the way for bioelectrotechnology: Integrating electrochemistry into bioreactors
  publication-title: Eng. Life Sci.
– volume: 8
  start-page: 756
  year: 2017
  ident: bib635
  article-title: Energy Efficiency and Productivity Enhancement of Microbial Electrosynthesis of Acetate
  publication-title: Front. Microbiol.
– volume: 14
  start-page: 3064
  year: 2021
  end-page: 3074
  ident: b0165
  article-title: Advanced manufacturing for electrosynthesis of fuels and chemicals from CO2
  publication-title: Energy Environ. Sci.
– year: 2021
  ident: b0430
  article-title: Boosting the Productivity of H2-Driven Biocatalysis in a Commercial Hydrogenation Flow Reactor Using H2 From Water Electrolysis
– volume: 101
  start-page: 2619
  year: 2017
  end-page: 2627
  ident: bib629
  article-title: Enhancement of acetate productivity in a thermophilic (55 °C) hollow-fiber membrane biofilm reactor with mixed culture syngas (H
  publication-title: Appl. Microbiol. Biotechnol.
– volume: 773
  year: 2021
  ident: b0535
  article-title: MXene-coated biochar as potential biocathode for improved microbial electrosynthesis system
  publication-title: Sci. Total Environ.
– volume: 265
  year: 2021
  ident: b0245
  article-title: Homoacetogenesis and solventogenesis from H2/CO2 by granular sludge at 25, 37 and 55 °C
  publication-title: Chemosphere
– volume: 124
  start-page: 95
  year: 2019
  end-page: 101
  ident: b0280
  article-title: Directing Clostridium ljungdahlii fermentation products via hydrogen to carbon monoxide ratio in syngas
  publication-title: Biomass Bioenergy
– volume: 257
  start-page: 164
  year: 2018
  end-page: 171
  ident: b0485
  article-title: Methanogenic capacity and robustness of hydrogenotrophic cultures based on closed nutrient recycling via microbial catabolism: Impact of temperature and microbial attachment
  publication-title: Bioresour. Technol.
– volume: 2
  start-page: 910
  year: 2014
  end-page: 917
  ident: b0505
  article-title: Comparison of Nonprecious Metal Cathode Materials for Methane Production by Electromethanogenesis
  publication-title: ACS Sustain. Chem. Eng.
– volume: 167
  start-page: 310
  year: 2014
  end-page: 315
  ident: b0330
  article-title: A fluidized bed membrane bioelectrochemical reactor for energy-efficient wastewater treatment
  publication-title: Bioresour. Technol.
– volume: 202
  start-page: 536
  year: 2018
  end-page: 542
  ident: b0495
  article-title: Conversion of syngas (CO and H2) to biochemicals by mixed culture fermentation in mesophilic and thermophilic hollow-fiber membrane biofilm reactors
  publication-title: J. Clean. Prod.
– volume: 193
  start-page: 133
  year: 2019
  end-page: 143
  ident: b0210
  article-title: Transferring bioelectrochemical processes from H-cells to a scalable bubble column reactor
  publication-title: Chem. Eng. Sci.
– volume: 115
  start-page: 1
  year: 2016
  end-page: 13
  ident: b0250
  article-title: Anodic respiration of Pseudomonas putida KT2440 in a stirred-tank bioreactor
  publication-title: Biochem. Eng. J.
– volume: 15
  start-page: 14290
  year: 2013
  end-page: 14294
  ident: bib633
  article-title: Improved cathode for high efficient microbial-catalyzed reduction in microbial electrosynthesis cells
  publication-title: Phys. Chem. Chem. Phys.
– volume: 47
  start-page: 2085
  year: 2013
  end-page: 2091
  ident: b0580
  article-title: Oxygen-reducing biocathodes operating with passive oxygen transfer in microbial fuel cells
  publication-title: Environ. Sci. Technol.
– volume: 287
  year: 2021
  ident: b0050
  article-title: Dual cathode configuration and headspace gas recirculation for enhancing microbial electrosynthesis using Sporomusa ovata
  publication-title: Chemosphere
– volume: 8
  start-page: 1075
  year: 2020
  ident: bib621
  article-title: Batch Syngas Fermentation by Clostridium carboxidivorans for Production of Acids and Alcohols
  publication-title: Processes
– volume: 191
  year: 2020
  ident: b0590
  article-title: Wire-drawing process with graphite lubricant as an industrializable approach to prepare graphite coated stainless-steel anode for bioelectrochemical systems
  publication-title: Environ. Res.
– volume: 179
  start-page: 315
  year: 2003
  end-page: 320
  ident: b0075
  article-title: Methanol utilization by a novel thermophilic homoacetogenic bacterium,
  publication-title: Arch. Microbiol.
– volume: 50
  year: 2016
  ident: b0160
  article-title: Microbial Electrosynthesis and Anaerobic Fermentation: An Economic Evaluation for Acetic Acid Production from CO<inf>2</inf> and CO
  publication-title: Environ. Sci. Technol.
– volume: 35
  start-page: 15814
  year: 1996
  end-page: 15821
  ident: b0395
  article-title: Unleashing Hydrogenase Activity in Carbon Monoxide Dehydrogenase/Acetyl-CoA Synthase and Pyruvate: Ferredoxin Oxidoreductase
  publication-title: Biochemistry
– volume: 86
  start-page: 763
  year: 2021
  end-page: 777
  ident: b0145
  article-title: Catalytic Cooperation between a Copper Oxide Electrocatalyst and a Microbial Community for Microbial Electrosynthesis
  publication-title: Chempluschem
– volume: 258
  start-page: 142
  year: 2018
  end-page: 150
  ident: b0010
  article-title: Evaluation of process performance, energy consumption and microbiota characterization in a ceramic membrane bioreactor for ex-situ biomethanation of H
  publication-title: Bioresour. Technol.
– volume: 167
  start-page: 231
  year: 2018
  end-page: 271
  ident: b0315
  article-title: Reactors for Microbial Electrobiotechnology
  publication-title: Adv. Biochem. Eng. Biotechnol.
– volume: 5
  start-page: 16168
  year: 2015
  ident: bib630
  article-title: Adaptation of the autotrophic acetogen
  publication-title: Sci. Rep.
– volume: 381
  start-page: 122687
  year: 2020
  ident: bib619
  article-title: A novel MXene-coated biocathode for enhanced microbial electrosynthesis performance
  publication-title: Chem. Eng. J.
– year: 2017
  ident: b0120
  article-title: Functional electrodes for enzymatic and microbial electrochemical systems
  publication-title: Functional Electrodes for Enzymatic and Microbial Electrochemical Systems
– volume: 113
  start-page: 531
  year: 2016
  end-page: 539
  ident: b0380
  article-title: Traits of selected Clostridium strains for syngas fermentation to ethanol
  publication-title: Biotechnol. Bioeng.
– volume: 33
  start-page: 2004051
  year: 2021
  ident: b0570
  article-title: Nanomaterials Facilitating Microbial Extracellular Electron Transfer at Interfaces
  publication-title: Adv. Mater.
– volume: 356
  start-page: 256
  year: 2017
  end-page: 273
  ident: b0055
  article-title: Biotransformation of carbon dioxide in bioelectrochemical systems: State of the art and future prospects
  publication-title: J. Power Sources
– volume: 240
  start-page: 818
  year: 2019
  end-page: 826
  ident: b0125
  article-title: Long term and demand-oriented biocatalytic synthesis of highly concentrated methane in a trickle bed reactor
  publication-title: Appl. Energy
– volume: 77
  start-page: 5467
  year: 2011
  end-page: 5475
  ident: bib625
  article-title: 2,3-Butanediol Production By Acetogenic Bacteria, an Alternative Route To Chemical Synthesis, Using Industrial Waste Gas
  publication-title: Appl. Environ. Microbiol.
– volume: 2
  start-page: 13093
  year: 2014
  end-page: 13102
  ident: b0285
  article-title: A novel carbon nanotube modified scaffold as an efficient biocathode material for improved microbial electrosynthesis
  publication-title: J. Mater. Chem. A
– volume: 306
  start-page: 1092
  year: 2016
  end-page: 1098
  ident: b0155
  article-title: Anaerobic conversion of hydrogen and carbon dioxide to fatty acids production in a membrane biofilm reactor: A modeling approach
  publication-title: Chem. Eng. J.
– volume: 32
  start-page: 2296
  year: 2007
  end-page: 2304
  ident: b0185
  article-title: Production of hydrogen from domestic wastewater using a bioelectrochemically assisted microbial reactor (BEAMR)
  publication-title: Int. J. Hydrogen Energy
– volume: 51
  year: 2021
  ident: b0595
  article-title: A review of microbial electrosynthesis applied to carbon dioxide capture and conversion: The basic principles, electrode materials, and bioproducts
  publication-title: J. CO2 Util.
– volume: 306
  year: 2020
  ident: b0170
  article-title: Enhanced isophthalonitrile complexation-reduction removal using a novel anaerobic fluidized bed reactor in a bioelectrochemical system based on electric field activation (AFBR-EFA)
  publication-title: Bioresour. Technol.
– volume: 13
  start-page: 2044
  year: 2020
  end-page: 2056
  ident: bib623
  article-title: Revealing formate production from carbon monoxide in wild type and mutants of Rnf- and Ech-containing acetogens,
  publication-title: Microb. Biotechnol.
– volume: 24
  start-page: 376
  year: 2013
  end-page: 384
  ident: b0240
  article-title: Biological conversion of carbon dioxide and hydrogen into liquid fuels and industrial chemicals
  publication-title: Curr. Opin. Biotechnol.
– volume: 28
  start-page: 1804860
  year: 2018
  ident: b0020
  article-title: Porous Hollow Fiber Nickel Electrodes for Effective Supply and Reduction of Carbon Dioxide to Methane through Microbial Electrosynthesis
  publication-title: Adv. Funct. Mater.
– year: 2015
  ident: b0555
  article-title: The Paris Agreement [WWW Document]
– reference: Stoll, I., Boukis, N., Sauer, J., 2019. Syngas Fermentation at Elevated Pressure - Experimental Results, in: 27th European Biomass Conference and Exhibition. Lisbon, pp. 1255–1261. https://doi.org/10.5071/27theubce2019-3cv.3.4.
– volume: 11
  start-page: 606
  year: 2018
  end-page: 625
  ident: b0540
  article-title: Using gas mixtures of CO, CO2 and H2 as microbial substrates: the do’s and don’ts of successful technology transfer from laboratory to production scale
  publication-title: Microb. Biotechnol.
– volume: 30
  start-page: 1707072
  year: 2018
  ident: b0300
  article-title: Dual-Function Electrocatalytic and Macroporous Hollow-Fiber Cathode for Converting Waste Streams to Valuable Resources Using Microbial Electrochemical Systems
  publication-title: Adv. Mater.
– volume: 245
  start-page: 1294
  year: 2017
  end-page: 1298
  ident: b0425
  article-title: Improvement of methane content in a hydrogenotrophic anaerobic digester via the proper operation of membrane module integrated into an external-loop
  publication-title: Bioresour. Technol.
– volume: 1784
  start-page: 1873
  year: 2008
  end-page: 1898
  ident: b0440
  article-title: Acetogenesis and the Wood-Ljungdahl pathway of CO2 fixation
  publication-title: Biochimica et Biophysica Acta (BBA) - Proteins and Proteomics
– volume: 392
  year: 2020
  ident: b0420
  article-title: Recent advances in cathode materials and configurations for upgrading methane in bioelectrochemical systems integrated with anaerobic digestion
  publication-title: Chem. Eng. J.
– reference: Krige, A., Rova, U., Christakopoulos, P., 2021. 3D bioprinting on cathodes in microbial electrosynthesis for increased acetate production rate using Sporomusa ovata. J. Environ. Chem. Eng. 9, 106189. https://doi.org/10.1016/J.JECE.2021.106189.
– volume: 7
  start-page: 98
  year: 2019
  ident: b0470
  article-title: Integrating Electrochemistry Into Bioreactors: Effect of the Upgrade Kit on Mass Transfer, Mixing Time and Sterilizability
  publication-title: Front. Energy Res.
– volume: 754
  start-page: 142440
  year: 2021
  ident: bib631
  article-title: Improved robustness of microbial electrosynthesis by adaptation of a strict anaerobic microbial catalyst to molecular oxygen
  publication-title: Sci. Total Environ.
– volume: 46
  start-page: 107675
  year: 2021
  ident: b0180
  article-title: Microbial electrosynthesis: Towards sustainable biorefineries for production of green chemicals from CO2 emissions
  publication-title: Biotechnol. Adv.
– volume: 245
  start-page: 1176
  year: 2017
  end-page: 1183
  ident: b0525
  article-title: High performance biological methanation in a thermophilic anaerobic trickle bed reactor
  publication-title: Bioresour. Technol.
– volume: 55
  start-page: 156
  year: 2013
  end-page: 162
  ident: b0510
  article-title: Syngas fermentation to biofuels: Effects of hydrogen partial pressure on hydrogenase efficiency
  publication-title: Biomass Bioenergy
– volume: 20
  start-page: 98
  year: 2020
  end-page: 106
  ident: b0565
  article-title: Conductive Magnetite Nanoparticles Enhance the Microbial Electrosynthesis of Acetate from CO2 while Diverting Electrons away from Methanogenesis
  publication-title: Fuel Cells
– volume: 15
  start-page: 14
  year: 2015
  end-page: 24
  ident: b0060
  article-title: CO
  publication-title: Bioresour. Technol.
– volume: 142
  start-page: 396
  year: 2018
  end-page: 404
  ident: b0345
  article-title: Salinity-gradient energy driven microbial electrosynthesis of value-added chemicals from CO2 reduction
  publication-title: Water Res.
– reference: Nevin, K.P., Woodard, T.L., Franks, A.E., Summers, Z.M., Lovley, D.R., 2010. Microbial Electrosynthesis : Feeding Microbes Electricity To Convert Carbon Dioxide and Water to Multicarbon Extracellular Organic. MBio 1, e00103-10-. https://doi.org/10.1128/mBio.00103-10.Editor.
– volume: 187
  start-page: 165
  year: 2018
  end-page: 170
  ident: bib628
  article-title: Tunable production of ethanol and acetate from synthesis gas by mesophilic mixed culture fermentation in a hollow fiber membrane biofilm reactor
  publication-title: J. Clean. Prod.
– volume: 81
  start-page: 1319
  year: 2020
  end-page: 1328
  ident: b0080
  article-title: Innovative ex-situ biological biogas upgrading using immobilized biomethanation bioreactor (IBBR)
  publication-title: Water Sci. Technol.
– volume: 113
  start-page: 3773
  year: 2016
  end-page: 3778
  ident: bib627
  article-title: Integrated bioprocess for conversion of gaseous substrates to liquids
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– volume: 323
  start-page: 124573
  year: 2021
  ident: bib616
  article-title: Blending industrial blast furnace gas with H
  publication-title: Bioresour. Technol.
– volume: 128
  start-page: 83
  year: 2019
  end-page: 93
  ident: b0035
  article-title: Increased carbon dioxide reduction to acetate in a microbial electrosynthesis reactor with a reduced graphene oxide-coated copper foam composite cathode
  publication-title: Bioelectrochemistry
– volume: 233
  start-page: 227
  year: 2017
  end-page: 235
  ident: b0585
  article-title: High-efficient acetate production from carbon dioxide using a bioanode microbial electrosynthesis system with bipolar membrane
  publication-title: Bioresour. Technol.
– volume: 217
  start-page: 117
  year: 2016
  end-page: 122
  ident: b0025
  article-title: Enhanced microbial electrosynthesis with three-dimensional graphene functionalized cathodes fabricated via solvothermal synthesis
  publication-title: Electrochim. Acta
– volume: 6
  start-page: 7
  year: 2018
  ident: b0295
  article-title: Critical Biofilm Growth throughout Unmodified Carbon Felts Allows Continuous Bioelectrochemical Chain Elongation from CO2 up to Caproate at High Current Density
  publication-title: Front. Energy Res.
– volume: 23
  start-page: 22292
  year: 2016
  end-page: 22308
  ident: b0065
  article-title: Application of Gas Diffusion Biocathode in Microbial Electrosynthesis from Carbon dioxide
  publication-title: Environ. Sci. Pollut. Res.
– volume: 15
  start-page: 3634
  year: 2015
  end-page: 3639
  ident: bib632
  article-title: Nanowire–Bacteria Hybrids for Unassisted Solar Carbon Dioxide Fixation to Value-Added Chemicals
  publication-title: Nano Lett
– volume: 12
  start-page: 1103
  year: 2018
  end-page: 1117
  ident: b0545
  article-title: Gas fermentation of C1 feedstocks: commercialization status and future prospects. Biofuels
  publication-title: Bioprod. Biorefining
– volume: 38
  start-page: 1559
  year: 2015
  end-page: 1567
  ident: b0135
  article-title: Oxygen transfer in a pressurized airlift bioreactor
  publication-title: Bioprocess Biosyst. Eng.
– volume: 2
  start-page: 325
  year: 2015
  end-page: 328
  ident: b0235
  article-title: Integrated Production, Extraction, and Concentration of Acetic Acid from CO2 through Microbial Electrosynthesis
  publication-title: Environ. Sci. Technol. Lett.
– volume: 2
  start-page: 407
  year: 2019
  end-page: 414
  ident: b0455
  article-title: Perfluorocarbon nanoemulsion promotes the delivery of reducing equivalents for electricity-driven microbial CO2 reduction
  publication-title: Nat. Catal.
– volume: 100
  start-page: 3361
  year: 2016
  end-page: 3370
  ident: b0215
  article-title: Efficient butanol-ethanol (B-E) production from carbon monoxide fermentation by Clostridium carboxidivorans
  publication-title: Appl Microbiol Biotechnol
– volume: 295
  year: 2020
  ident: b0350
  article-title: Effects of temperature, hydrogen/carbon monoxide ratio and trace element addition on methane production performance from syngas biomethanation
  publication-title: Bioresour. Technol.
– volume: 428
  year: 2022
  ident: b0130
  article-title: An electrolytic-hydrogen-fed moving bed biofilm reactor for efficient microbial electrosynthesis of methane from CO2
  publication-title: Chem. Eng. J.
– volume: 4
  start-page: 8395
  year: 2016
  end-page: 8401
  ident: b0150
  article-title: Electrosynthesis of acetate from CO2 by a highly structured biofilm assembled with reduced graphene oxide–tetraethylene pentamine
  publication-title: J. Mater. Chem. A
– volume: 235
  start-page: 149
  year: 2017
  end-page: 156
  ident: b0410
  article-title: A continuous system for biocatalytic hydrogenation of CO2 to formate
  publication-title: Bioresour. Technol.
– volume: 102
  start-page: 6058
  year: 2011
  end-page: 6064
  ident: b0325
  article-title: Effect of nutrient limitation and two-stage continuous fermentor design on productivities during “Clostridium ragsdalei” syngas fermentation
  publication-title: Bioresour. Technol.
– volume: 8
  start-page: 7651
  year: 2018
  end-page: 7669
  ident: b0340
  article-title: A short review of recent advances in CO2 hydrogenation to hydrocarbons over heterogeneous catalysts
  publication-title: RSC Adv.
– volume: 49
  start-page: 13566
  year: 2015
  end-page: 13574
  ident: bib634
  article-title: High Acetic Acid Production Rate Obtained by Microbial Electrosynthesis from Carbon Dioxide
  publication-title: Environ. Sci. Technol.
– volume: 169
  start-page: 210
  year: 2016
  end-page: 217
  ident: b0005
  article-title: Improved operating strategy for continuous fermentation of carbon monoxide to fuel-ethanol by clostridia
  publication-title: Appl. Energy
– volume: 56
  start-page: 116
  year: 2016
  end-page: 132
  ident: b0475
  article-title: A critical review of integration analysis of microbial electrosynthesis (MES) systems with waste biorefineries for the production of biofuel and chemical from reuse of CO2
  publication-title: Renew. Sustain. Energy Rev.
– volume: 278
  year: 2020
  ident: b0110
  article-title: Efficient solar-to-acetate conversion from CO2 through microbial electrosynthesis coupled with stable photoanode
  publication-title: Appl. Energy
– volume: 35
  start-page: 63
  year: 2015
  end-page: 72
  ident: b0205
  article-title: C1-carbon sources for chemical and fuel production by microbial gas fermentation
  publication-title: Curr. Opin. Biotechnol.
– volume: 1
  start-page: 32
  year: 2018
  end-page: 39
  ident: bib626
  article-title: Technical photosynthesis involving CO
  publication-title: Nat. Catal.
– volume: 78
  start-page: 8412
  year: 2012
  end-page: 8420
  ident: b0375
  article-title: Electrosynthesis of commodity chemicals by an autotrophic microbial community
  publication-title: Appl. Environ. Microbiol.
– reference: .
– volume: 9
  start-page: 946
  year: 2018
  end-page: 950
  ident: b0575
  article-title: Effective Use of Renewable Electricity for Making Renewable Fuels and Chemicals
  publication-title: ACS Catal.
– volume: 23
  start-page: 201
  year: 2014
  end-page: 206
  ident: b0610
  article-title: Methane formation route in the conversion of methanol to hydrocarbons
  publication-title: J. Energy Chem.
– volume: 85
  start-page: 21
  year: 2014
  end-page: 29
  ident: b0500
  article-title: Syngas fermentation of Clostridium carboxidivoran P7 in a hollow fiber membrane biofilm reactor: Evaluating the mass transfer coefficient and ethanol production performance
  publication-title: Biochem. Eng. J.
– volume: 319
  start-page: 124177
  year: 2021
  ident: bib636
  article-title: Resistance assessment of microbial electrosynthesis for biochemical production to changes in delivery methods and CO
  publication-title: Bioresour. Technol.
– volume: 265
  start-page: 45
  year: 2018
  end-page: 51
  ident: b0515
  article-title: Electro-biocatalytic conversion of carbon dioxide to alcohols using gas diffusion electrode
  publication-title: Bioresour. Technol.
– volume: 13
  start-page: 3102
  year: 2020
  end-page: 3109
  ident: b0085
  article-title: Copper-bottomed: electrochemically active bacteria exploit conductive sulphide networks for enhanced electrogeneity
  publication-title: Energy Environ. Sci.
– volume: 7
  start-page: 1
  year: 2017
  end-page: 8
  ident: b0030
  article-title: Freestanding and flexible graphene papers as bioelectrochemical cathode for selective and efficient CO2 conversion
  publication-title: Sci. Rep.
– volume: 12
  start-page: 3297
  year: 2019
  ident: b0390
  article-title: Enhanced CO2 conversion to acetate through microbial electrosynthesis (MES) by continuous headspace gas recirculation
  publication-title: Energies
– volume: 192
  start-page: 296
  year: 2015
  end-page: 303
  ident: b0445
  article-title: Incubation at 25 °C prevents acid crash and enhances alcohol production in Clostridium carboxidivorans P7
  publication-title: Bioresour. Technol.
– reference: Schwarz, F.M., Müller, V., 2020. Whole-cell biocatalysis for hydrogen storage and syngas conversion to formate using a thermophilic acetogen. Biotechnol. Biofuels, 2020, 131, 13, 1–11.
– volume: 2
  start-page: 910
  year: 2014
  ident: 10.1016/j.biortech.2022.127178_b0505
  article-title: Comparison of Nonprecious Metal Cathode Materials for Methane Production by Electromethanogenesis
  publication-title: ACS Sustain. Chem. Eng.
  doi: 10.1021/sc400520x
– volume: 81
  start-page: 1319
  year: 2020
  ident: 10.1016/j.biortech.2022.127178_b0080
  article-title: Innovative ex-situ biological biogas upgrading using immobilized biomethanation bioreactor (IBBR)
  publication-title: Water Sci. Technol.
  doi: 10.2166/wst.2020.234
– volume: 65
  start-page: 180
  year: 2020
  ident: 10.1016/j.biortech.2022.127178_b0305
  article-title: Pollution to products: recycling of ‘above ground’ carbon by gas fermentation
  publication-title: Curr. Opin. Biotechnol.
  doi: 10.1016/j.copbio.2020.02.017
– volume: 258
  start-page: 142
  year: 2018
  ident: 10.1016/j.biortech.2022.127178_b0010
  article-title: Evaluation of process performance, energy consumption and microbiota characterization in a ceramic membrane bioreactor for ex-situ biomethanation of H2 and CO2
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2018.02.087
– volume: 110
  start-page: 143
  year: 2019
  ident: 10.1016/j.biortech.2022.127178_b0090
  article-title: Carbon dioxide capture and bioenergy production using biological system – A review
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2019.04.070
– year: 2021
  ident: 10.1016/j.biortech.2022.127178_b0430
– volume: 101
  start-page: 237
  year: 2021
  ident: 10.1016/j.biortech.2022.127178_b0175
  article-title: Application of TiO2 and Rh as cathode catalyst to boost the microbial electrosynthesis of organic compounds through CO2 sequestration
  publication-title: Process Biochem
  doi: 10.1016/j.procbio.2020.11.017
– volume: 64
  year: 2018
  ident: 10.1016/j.biortech.2022.127178_bib622
  article-title: Fermentation of H2 and CO2 with Clostridium ljungdahlii at Elevated Process Pressure-First Experimental Results
  publication-title: Chem. Eng. Trans.
– volume: 102
  start-page: 6494
  year: 2011
  ident: 10.1016/j.biortech.2022.127178_b0365
  article-title: Ethanol production from syngas by Clostridium strain P11 using corn steep liquor as a nutrient replacement to yeast extract
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2011.03.047
– volume: 192
  start-page: 296
  year: 2015
  ident: 10.1016/j.biortech.2022.127178_b0445
  article-title: Incubation at 25 °C prevents acid crash and enhances alcohol production in Clostridium carboxidivorans P7
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2015.05.077
– volume: 78
  start-page: 8412
  year: 2012
  ident: 10.1016/j.biortech.2022.127178_b0375
  article-title: Electrosynthesis of commodity chemicals by an autotrophic microbial community
  publication-title: Appl. Environ. Microbiol.
  doi: 10.1128/AEM.02401-12
– volume: 101
  start-page: 50
  year: 2021
  ident: 10.1016/j.biortech.2022.127178_b0460
  article-title: Enhancing the gas–liquid mass transfer during microbial electrosynthesis by the variation of CO2 flow rate
  publication-title: Process Biochem.
  doi: 10.1016/j.procbio.2020.11.005
– volume: 428
  year: 2022
  ident: 10.1016/j.biortech.2022.127178_b0130
  article-title: An electrolytic-hydrogen-fed moving bed biofilm reactor for efficient microbial electrosynthesis of methane from CO2
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2021.132093
– volume: 35
  start-page: 15814
  year: 1996
  ident: 10.1016/j.biortech.2022.127178_b0395
  article-title: Unleashing Hydrogenase Activity in Carbon Monoxide Dehydrogenase/Acetyl-CoA Synthase and Pyruvate: Ferredoxin Oxidoreductase
  publication-title: Biochemistry
  doi: 10.1021/bi9615598
– volume: 225
  start-page: 429
  year: 2017
  ident: 10.1016/j.biortech.2022.127178_b0310
  article-title: Ex-situ biogas upgrading and enhancement in different reactor systems
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2016.11.124
– volume: 265
  year: 2021
  ident: 10.1016/j.biortech.2022.127178_b0245
  article-title: Homoacetogenesis and solventogenesis from H2/CO2 by granular sludge at 25, 37 and 55 °C
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2020.128649
– volume: 17
  start-page: 77
  year: 2017
  ident: 10.1016/j.biortech.2022.127178_b0465
  article-title: Paving the way for bioelectrotechnology: Integrating electrochemistry into bioreactors
  publication-title: Eng. Life Sci.
  doi: 10.1002/elsc.201600105
– volume: 101
  start-page: 2619
  year: 2017
  ident: 10.1016/j.biortech.2022.127178_bib629
  article-title: Enhancement of acetate productivity in a thermophilic (55 °C) hollow-fiber membrane biofilm reactor with mixed culture syngas (H2/CO2) fermentation
  publication-title: Appl. Microbiol. Biotechnol.
  doi: 10.1007/s00253-017-8124-9
– volume: 20
  start-page: 98
  year: 2020
  ident: 10.1016/j.biortech.2022.127178_b0565
  article-title: Conductive Magnetite Nanoparticles Enhance the Microbial Electrosynthesis of Acetate from CO2 while Diverting Electrons away from Methanogenesis
  publication-title: Fuel Cells
  doi: 10.1002/fuce.201900152
– volume: 295
  year: 2020
  ident: 10.1016/j.biortech.2022.127178_b0350
  article-title: Effects of temperature, hydrogen/carbon monoxide ratio and trace element addition on methane production performance from syngas biomethanation
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2019.122296
– volume: 13
  start-page: 2044
  year: 2020
  ident: 10.1016/j.biortech.2022.127178_bib623
  article-title: Revealing formate production from carbon monoxide in wild type and mutants of Rnf- and Ech-containing acetogens, Acetobacterium woodii and Thermoanaerobacter kivui
  publication-title: Microb. Biotechnol.
  doi: 10.1111/1751-7915.13663
– ident: 10.1016/j.biortech.2022.127178_b0320
  doi: 10.1016/j.jece.2021.106189
– volume: 392
  year: 2020
  ident: 10.1016/j.biortech.2022.127178_b0420
  article-title: Recent advances in cathode materials and configurations for upgrading methane in bioelectrochemical systems integrated with anaerobic digestion
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2019.123689
– volume: 356
  start-page: 256
  year: 2017
  ident: 10.1016/j.biortech.2022.127178_b0055
  article-title: Biotransformation of carbon dioxide in bioelectrochemical systems: State of the art and future prospects
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2017.04.024
– volume: 35
  start-page: 63
  year: 2015
  ident: 10.1016/j.biortech.2022.127178_b0205
  article-title: C1-carbon sources for chemical and fuel production by microbial gas fermentation
  publication-title: Curr. Opin. Biotechnol.
  doi: 10.1016/j.copbio.2015.03.008
– volume: 24
  start-page: 376
  year: 2013
  ident: 10.1016/j.biortech.2022.127178_b0240
  article-title: Biological conversion of carbon dioxide and hydrogen into liquid fuels and industrial chemicals
  publication-title: Curr. Opin. Biotechnol.
  doi: 10.1016/j.copbio.2013.02.017
– volume: 49
  start-page: 6495
  year: 2013
  ident: 10.1016/j.biortech.2022.127178_b0490
  article-title: Bioelectrocatalyzed reduction of acetic and butyric acids via direct electron transfer using a mixed culture of sulfate-reducers drives electrosynthesis of alcohols and acetone
  publication-title: Chem. Commun. (Camb)
  doi: 10.1039/c3cc42570c
– ident: 10.1016/j.biortech.2022.127178_b0520
– volume: 56
  start-page: 116
  year: 2016
  ident: 10.1016/j.biortech.2022.127178_b0475
  article-title: A critical review of integration analysis of microbial electrosynthesis (MES) systems with waste biorefineries for the production of biofuel and chemical from reuse of CO2
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2015.11.015
– volume: 323
  start-page: 124573
  year: 2021
  ident: 10.1016/j.biortech.2022.127178_bib616
  article-title: Blending industrial blast furnace gas with H2 enables Acetobacterium woodii to efficiently co-utilize CO, CO2 and H2
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2020.124573
– volume: 179
  start-page: 315
  year: 2003
  ident: 10.1016/j.biortech.2022.127178_b0075
  article-title: Methanol utilization by a novel thermophilic homoacetogenic bacterium, Moorella mulderi sp. nov., isolated from a bioreactor
  publication-title: Arch. Microbiol.
  doi: 10.1007/s00203-003-0523-x
– volume: 157
  start-page: 1116
  year: 2020
  ident: 10.1016/j.biortech.2022.127178_bib618
  article-title: Bioethanol production through syngas fermentation in a tar free bioreactor using Clostridium butyricum
  publication-title: Renew. Energy
  doi: 10.1016/j.renene.2020.05.099
– volume: 6
  start-page: 7
  year: 2018
  ident: 10.1016/j.biortech.2022.127178_b0295
  article-title: Critical Biofilm Growth throughout Unmodified Carbon Felts Allows Continuous Bioelectrochemical Chain Elongation from CO2 up to Caproate at High Current Density
  publication-title: Front. Energy Res.
  doi: 10.3389/fenrg.2018.00007
– volume: 167
  start-page: 310
  year: 2014
  ident: 10.1016/j.biortech.2022.127178_b0330
  article-title: A fluidized bed membrane bioelectrochemical reactor for energy-efficient wastewater treatment
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2014.06.034
– volume: 6
  start-page: 3987
  issue: 8
  year: 2013
  ident: 10.1016/j.biortech.2022.127178_b0450
  article-title: A Two-Stage Continuous Fermentation System for Conversion of Syngas into Ethanol
  publication-title: Energies
  doi: 10.3390/en6083987
– volume: 18
  start-page: 200
  year: 2007
  ident: 10.1016/j.biortech.2022.127178_bib637
  article-title: Microbiology of synthesis gas fermentation for biofuel production
  publication-title: Curr. Opin. Biotechnol.
  doi: 10.1016/j.copbio.2007.03.008
– volume: 157
  start-page: 114
  year: 2014
  ident: 10.1016/j.biortech.2022.127178_b0255
  article-title: Biochar as a sustainable electrode material for electricity production in microbial fuel cells
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2014.01.058
– volume: 169
  start-page: 241
  year: 2016
  ident: 10.1016/j.biortech.2022.127178_b0335
  article-title: Cathodic fluidized granular activated carbon assisted-membrane bioelectrochemical reactor for wastewater treatment
  publication-title: Sep. Purif. Technol.
  doi: 10.1016/j.seppur.2016.06.014
– volume: 350
  start-page: 738
  issue: 6262
  year: 2015
  ident: 10.1016/j.biortech.2022.127178_b0600
  article-title: More efficient together
  publication-title: Science
  doi: 10.1126/science.aad6452
– volume: 14
  start-page: 3064
  year: 2021
  ident: 10.1016/j.biortech.2022.127178_b0165
  article-title: Advanced manufacturing for electrosynthesis of fuels and chemicals from CO2
  publication-title: Energy Environ. Sci.
  doi: 10.1039/D0EE03679J
– volume: 23
  start-page: 22292
  year: 2016
  ident: 10.1016/j.biortech.2022.127178_b0065
  article-title: Application of Gas Diffusion Biocathode in Microbial Electrosynthesis from Carbon dioxide
  publication-title: Environ. Sci. Pollut. Res.
  doi: 10.1007/s11356-016-7196-x
– volume: 32
  start-page: 2296
  year: 2007
  ident: 10.1016/j.biortech.2022.127178_b0185
  article-title: Production of hydrogen from domestic wastewater using a bioelectrochemically assisted microbial reactor (BEAMR)
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2007.02.035
– volume: 8
  start-page: 1075
  year: 2020
  ident: 10.1016/j.biortech.2022.127178_bib621
  article-title: Batch Syngas Fermentation by Clostridium carboxidivorans for Production of Acids and Alcohols
  publication-title: Processes
  doi: 10.3390/pr8091075
– volume: 773
  year: 2021
  ident: 10.1016/j.biortech.2022.127178_b0535
  article-title: MXene-coated biochar as potential biocathode for improved microbial electrosynthesis system
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2021.145677
– volume: 115
  start-page: 1
  year: 2016
  ident: 10.1016/j.biortech.2022.127178_b0250
  article-title: Anodic respiration of Pseudomonas putida KT2440 in a stirred-tank bioreactor
  publication-title: Biochem. Eng. J.
  doi: 10.1016/j.bej.2016.07.020
– volume: 7
  start-page: 694
  year: 2016
  ident: 10.1016/j.biortech.2022.127178_b0355
  article-title: Gas Fermentation-A flexible platform for commercial scale production of low-carbon-fuels and chemicals from waste and renewable feedstocks
  publication-title: Front. Microbiol.
  doi: 10.3389/fmicb.2016.00694
– volume: 302
  year: 2020
  ident: 10.1016/j.biortech.2022.127178_b0100
  article-title: Microbial electrosynthesis from CO2: Challenges, opportunities and perspectives in the context of circular bioeconomy
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2020.122863
– year: 2020
  ident: 10.1016/j.biortech.2022.127178_b0360
  article-title: Climate Change: Atmospheric Carbon Dioxide [WWW Document]
  publication-title: Climate.gov.
– volume: 28
  start-page: 1804860
  year: 2018
  ident: 10.1016/j.biortech.2022.127178_b0020
  article-title: Porous Hollow Fiber Nickel Electrodes for Effective Supply and Reduction of Carbon Dioxide to Methane through Microbial Electrosynthesis
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201804860
– volume: 7
  start-page: 1
  year: 2017
  ident: 10.1016/j.biortech.2022.127178_b0030
  article-title: Freestanding and flexible graphene papers as bioelectrochemical cathode for selective and efficient CO2 conversion
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-017-09841-7
– volume: 240
  start-page: 818
  year: 2019
  ident: 10.1016/j.biortech.2022.127178_b0125
  article-title: Long term and demand-oriented biocatalytic synthesis of highly concentrated methane in a trickle bed reactor
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2019.02.076
– volume: 55
  start-page: 156
  year: 2013
  ident: 10.1016/j.biortech.2022.127178_b0510
  article-title: Syngas fermentation to biofuels: Effects of hydrogen partial pressure on hydrogenase efficiency
  publication-title: Biomass Bioenergy
  doi: 10.1016/j.biombioe.2013.01.034
– volume: 217
  start-page: 117
  year: 2016
  ident: 10.1016/j.biortech.2022.127178_b0025
  article-title: Enhanced microbial electrosynthesis with three-dimensional graphene functionalized cathodes fabricated via solvothermal synthesis
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2016.09.063
– ident: 10.1016/j.biortech.2022.127178_b0270
– volume: 77
  start-page: 5467
  year: 2011
  ident: 10.1016/j.biortech.2022.127178_bib625
  article-title: 2,3-Butanediol Production By Acetogenic Bacteria, an Alternative Route To Chemical Synthesis, Using Industrial Waste Gas
  publication-title: Appl. Environ. Microbiol.
  doi: 10.1128/AEM.00355-11
– volume: 306
  year: 2020
  ident: 10.1016/j.biortech.2022.127178_b0170
  article-title: Enhanced isophthalonitrile complexation-reduction removal using a novel anaerobic fluidized bed reactor in a bioelectrochemical system based on electric field activation (AFBR-EFA)
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2020.123115
– volume: 15
  start-page: 3634
  year: 2015
  ident: 10.1016/j.biortech.2022.127178_bib632
  article-title: Nanowire–Bacteria Hybrids for Unassisted Solar Carbon Dioxide Fixation to Value-Added Chemicals
  publication-title: Nano Lett
  doi: 10.1021/acs.nanolett.5b01254
– volume: 319
  start-page: 124177
  year: 2021
  ident: 10.1016/j.biortech.2022.127178_bib636
  article-title: Resistance assessment of microbial electrosynthesis for biochemical production to changes in delivery methods and CO2 flow rates
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2020.124177
– volume: 265
  start-page: 45
  year: 2018
  ident: 10.1016/j.biortech.2022.127178_b0515
  article-title: Electro-biocatalytic conversion of carbon dioxide to alcohols using gas diffusion electrode
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2018.02.058
– volume: 167
  start-page: 231
  year: 2018
  ident: 10.1016/j.biortech.2022.127178_b0315
  article-title: Reactors for Microbial Electrobiotechnology
  publication-title: Adv. Biochem. Eng. Biotechnol.
– volume: 6
  start-page: 217
  issue: 1
  year: 2013
  ident: 10.1016/j.biortech.2022.127178_b0605
  article-title: Improved cathode materials for microbial electrosynthesis
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C2EE23350A
– volume: 6
  start-page: 1
  year: 2015
  ident: 10.1016/j.biortech.2022.127178_b0230
  article-title: Simplifying microbial electrosynthesis reactor design
  publication-title: Front. Microbiol.
  doi: 10.3389/fmicb.2015.00468
– volume: 287
  year: 2021
  ident: 10.1016/j.biortech.2022.127178_b0050
  article-title: Dual cathode configuration and headspace gas recirculation for enhancing microbial electrosynthesis using Sporomusa ovata
  publication-title: Chemosphere
– volume: 11
  start-page: 606
  year: 2018
  ident: 10.1016/j.biortech.2022.127178_b0540
  article-title: Using gas mixtures of CO, CO2 and H2 as microbial substrates: the do’s and don’ts of successful technology transfer from laboratory to production scale
  publication-title: Microb. Biotechnol.
  doi: 10.1111/1751-7915.13270
– volume: 250
  year: 2020
  ident: 10.1016/j.biortech.2022.127178_b0140
  article-title: Effect of tungsten and selenium on C1 gas bioconversion by an enriched anaerobic sludge and microbial community analysis
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2020.126105
– volume: 6
  start-page: 18641
  year: 2016
  ident: 10.1016/j.biortech.2022.127178_b0480
  article-title: Regulation of acidogenic metabolism towards enhanced short chain fatty acid biosynthesis from waste: Metagenomic profiling
  publication-title: RSC Adv.
  doi: 10.1039/C5RA24254A
– volume: 50
  year: 2016
  ident: 10.1016/j.biortech.2022.127178_b0160
  article-title: Microbial Electrosynthesis and Anaerobic Fermentation: An Economic Evaluation for Acetic Acid Production from CO2 and CO
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.6b02101
– volume: 8
  start-page: 3731
  year: 2015
  ident: 10.1016/j.biortech.2022.127178_b0115
  article-title: Importance of the hydrogen route in up-scaling electrosynthesis for microbial CO2 reduction
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C5EE03088A
– volume: 55
  start-page: 4351
  year: 2019
  ident: 10.1016/j.biortech.2022.127178_b0560
  article-title: Microbial electrosynthesis system with dual biocathode arrangement for simultaneous acetogenesis, solventogenesis and carbon chain elongation
  publication-title: Chem. Commun.
  doi: 10.1039/C9CC00208A
– volume: 47
  start-page: 2085
  year: 2013
  ident: 10.1016/j.biortech.2022.127178_b0580
  article-title: Oxygen-reducing biocathodes operating with passive oxygen transfer in microbial fuel cells
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es3027659
– volume: 12
  start-page: 3297
  issue: 17
  year: 2019
  ident: 10.1016/j.biortech.2022.127178_b0390
  article-title: Enhanced CO2 conversion to acetate through microbial electrosynthesis (MES) by continuous headspace gas recirculation
  publication-title: Energies
  doi: 10.3390/en12173297
– volume: 33
  start-page: 2004051
  year: 2021
  ident: 10.1016/j.biortech.2022.127178_b0570
  article-title: Nanomaterials Facilitating Microbial Extracellular Electron Transfer at Interfaces
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202004051
– volume: 1
  start-page: 32
  year: 2018
  ident: 10.1016/j.biortech.2022.127178_bib626
  article-title: Technical photosynthesis involving CO2 electrolysis and fermentation
  publication-title: Nat. Catal.
  doi: 10.1038/s41929-017-0005-1
– volume: 169
  start-page: 210
  year: 2016
  ident: 10.1016/j.biortech.2022.127178_b0005
  article-title: Improved operating strategy for continuous fermentation of carbon monoxide to fuel-ethanol by clostridia
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2016.02.021
– volume: 202
  start-page: 433
  year: 2017
  ident: 10.1016/j.biortech.2022.127178_b0070
  article-title: Bioelectrochemical conversion of CO2 to chemicals: CO2 as a next generation feedstock for electricity-driven bioproduction in batch and continuous modes
  publication-title: Faraday Discuss.
  doi: 10.1039/C7FD00050B
– volume: 191
  year: 2020
  ident: 10.1016/j.biortech.2022.127178_b0590
  article-title: Wire-drawing process with graphite lubricant as an industrializable approach to prepare graphite coated stainless-steel anode for bioelectrochemical systems
  publication-title: Environ. Res.
  doi: 10.1016/j.envres.2020.110093
– volume: 6
  start-page: 17201
  year: 2018
  ident: 10.1016/j.biortech.2022.127178_b0095
  article-title: Porous Nickel Hollow Fiber Cathodes Coated with CNTs for Efficient Microbial Electrosynthesis of Acetate from CO2 using Sporomusa ovata
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C8TA05322G
– volume: 41
  start-page: 3
  year: 2020
  ident: 10.1016/j.biortech.2022.127178_b0385
  article-title: Long-term open circuit microbial electrosynthesis system promotes methanogenesis
  publication-title: J. Energy Chem.
  doi: 10.1016/j.jechem.2019.04.020
– volume: 4
  start-page: 800
  issue: 4
  year: 2020
  ident: 10.1016/j.biortech.2022.127178_b0530
  article-title: Close-Packed Nanowire-Bacteria Hybrids for Efficient Solar-Driven CO2 Fixation
  publication-title: Joule
  doi: 10.1016/j.joule.2020.03.001
– volume: 348
  start-page: 732
  year: 2018
  ident: 10.1016/j.biortech.2022.127178_b0045
  article-title: Reactor systems for syngas fermentation processes: A review
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2018.05.003
– volume: 124
  start-page: 95
  year: 2019
  ident: 10.1016/j.biortech.2022.127178_b0280
  article-title: Directing Clostridium ljungdahlii fermentation products via hydrogen to carbon monoxide ratio in syngas
  publication-title: Biomass Bioenergy
  doi: 10.1016/j.biombioe.2019.03.011
– volume: 245
  start-page: 1294
  year: 2017
  ident: 10.1016/j.biortech.2022.127178_b0425
  article-title: Improvement of methane content in a hydrogenotrophic anaerobic digester via the proper operation of membrane module integrated into an external-loop
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2017.08.183
– volume: 47
  start-page: 6023
  year: 2013
  ident: 10.1016/j.biortech.2022.127178_b0370
  article-title: Long-term operation of microbial electrosynthesis systems improves acetate production by autotrophic microbiomes
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es400341b
– volume: 766
  year: 2020
  ident: 10.1016/j.biortech.2022.127178_b0015
  article-title: Enrichment of salt-tolerant CO2–fixing communities in microbial electrosynthesis systems using porous ceramic hollow tube wrapped with carbon cloth as cathode and for CO2 supply
  publication-title: Sci. Total Environ.
– volume: 51
  year: 2021
  ident: 10.1016/j.biortech.2022.127178_b0595
  article-title: A review of microbial electrosynthesis applied to carbon dioxide capture and conversion: The basic principles, electrode materials, and bioproducts
  publication-title: J. CO2 Util.
  doi: 10.1016/j.jcou.2021.101640
– volume: 2
  start-page: 13093
  year: 2014
  ident: 10.1016/j.biortech.2022.127178_b0285
  article-title: A novel carbon nanotube modified scaffold as an efficient biocathode material for improved microbial electrosynthesis
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C4TA03101F
– ident: 10.1016/j.biortech.2022.127178_b0415
  doi: 10.1128/mBio.00103-10
– volume: 15
  start-page: 14
  year: 2015
  ident: 10.1016/j.biortech.2022.127178_b0060
  article-title: CO2 Reduction by Mixed and Pure Cultures in Microbial Electrosynthesis Using an Assembly of Graphite Felt and Stainless Steel as a Cathode
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2015.05.081
– volume: 81
  start-page: 4782
  year: 2015
  ident: 10.1016/j.biortech.2022.127178_bib624
  article-title: Energy conservation model based on genomic and experimental analyses of a carbon monoxide-utilizing, butyrate-forming acetogen, Eubacterium limosum KIST612
  publication-title: Appl. Environ. Microbiol.
  doi: 10.1128/AEM.00675-15
– volume: 1784
  start-page: 1873
  issue: 12
  year: 2008
  ident: 10.1016/j.biortech.2022.127178_b0440
  article-title: Acetogenesis and the Wood-Ljungdahl pathway of CO2 fixation
  publication-title: Biochimica et Biophysica Acta (BBA) - Proteins and Proteomics
  doi: 10.1016/j.bbapap.2008.08.012
– year: 2011
  ident: 10.1016/j.biortech.2022.127178_bib638
  article-title: Bioconversion of synthesis gas to second generation biofuels: A review
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2011.07.124
– ident: 10.1016/j.biortech.2022.127178_b0190
  doi: 10.1016/j.biortech.2018.08.103
– volume: 306
  start-page: 1092
  year: 2016
  ident: 10.1016/j.biortech.2022.127178_b0155
  article-title: Anaerobic conversion of hydrogen and carbon dioxide to fatty acids production in a membrane biofilm reactor: A modeling approach
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2016.08.049
– volume: 406
  year: 2021
  ident: 10.1016/j.biortech.2022.127178_b0040
  article-title: Upgrading fluidized bed bioelectrochemical reactors for treating brewery wastewater by using a fluid-like electrode
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2020.127103
– volume: 48
  start-page: 159
  year: 2010
  ident: 10.1016/j.biortech.2022.127178_b0260
  article-title: Carbon monoxide partial pressure effects on the metabolic process of syngas fermentation
  publication-title: Biochem. Eng. J.
  doi: 10.1016/j.bej.2009.09.004
– volume: 8
  start-page: 7651
  year: 2018
  ident: 10.1016/j.biortech.2022.127178_b0340
  article-title: A short review of recent advances in CO2 hydrogenation to hydrocarbons over heterogeneous catalysts
  publication-title: RSC Adv.
  doi: 10.1039/C7RA13546G
– volume: 215
  start-page: 386
  year: 2016
  ident: 10.1016/j.biortech.2022.127178_b0405
  article-title: Carbon recovery by fermentation of CO-rich off gases – Turning steel mills into biorefineries
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2016.03.094
– volume: 128
  start-page: 83
  year: 2019
  ident: 10.1016/j.biortech.2022.127178_b0035
  article-title: Increased carbon dioxide reduction to acetate in a microbial electrosynthesis reactor with a reduced graphene oxide-coated copper foam composite cathode
  publication-title: Bioelectrochemistry
  doi: 10.1016/j.bioelechem.2019.03.011
– volume: 8
  start-page: 756
  year: 2017
  ident: 10.1016/j.biortech.2022.127178_bib635
  article-title: Energy Efficiency and Productivity Enhancement of Microbial Electrosynthesis of Acetate
  publication-title: Front. Microbiol.
  doi: 10.3389/fmicb.2017.00756
– volume: 100
  start-page: 3361
  year: 2016
  ident: 10.1016/j.biortech.2022.127178_b0215
  article-title: Efficient butanol-ethanol (B-E) production from carbon monoxide fermentation by Clostridium carboxidivorans
  publication-title: Appl Microbiol Biotechnol
  doi: 10.1007/s00253-015-7238-1
– volume: 38
  start-page: 1559
  year: 2015
  ident: 10.1016/j.biortech.2022.127178_b0135
  article-title: Oxygen transfer in a pressurized airlift bioreactor
  publication-title: Bioprocess Biosyst. Eng.
  doi: 10.1007/s00449-015-1397-4
– volume: 2
  start-page: 325
  year: 2015
  ident: 10.1016/j.biortech.2022.127178_b0235
  article-title: Integrated Production, Extraction, and Concentration of Acetic Acid from CO2 through Microbial Electrosynthesis
  publication-title: Environ. Sci. Technol. Lett.
  doi: 10.1021/acs.estlett.5b00212
– ident: 10.1016/j.biortech.2022.127178_b0555
– year: 2019
  ident: 10.1016/j.biortech.2022.127178_b0265
– volume: 202
  start-page: 536
  year: 2018
  ident: 10.1016/j.biortech.2022.127178_b0495
  article-title: Conversion of syngas (CO and H2) to biochemicals by mixed culture fermentation in mesophilic and thermophilic hollow-fiber membrane biofilm reactors
  publication-title: J. Clean. Prod.
  doi: 10.1016/j.jclepro.2018.08.162
– volume: 11
  start-page: 416
  year: 2020
  ident: 10.1016/j.biortech.2022.127178_b0615
  article-title: Energy Conservation and Carbon Flux Distribution During Fermentation of CO or H2/CO2 by Clostridium ljungdahlii
  publication-title: Front. Microbiol.
  doi: 10.3389/fmicb.2020.00416
– volume: 113
  start-page: 531
  year: 2016
  ident: 10.1016/j.biortech.2022.127178_b0380
  article-title: Traits of selected Clostridium strains for syngas fermentation to ethanol
  publication-title: Biotechnol. Bioeng.
  doi: 10.1002/bit.25827
– volume: 2
  start-page: 407
  year: 2019
  ident: 10.1016/j.biortech.2022.127178_b0455
  article-title: Perfluorocarbon nanoemulsion promotes the delivery of reducing equivalents for electricity-driven microbial CO2 reduction
  publication-title: Nat. Catal.
  doi: 10.1038/s41929-019-0264-0
– volume: 193
  start-page: 133
  year: 2019
  ident: 10.1016/j.biortech.2022.127178_b0210
  article-title: Transferring bioelectrochemical processes from H-cells to a scalable bubble column reactor
  publication-title: Chem. Eng. Sci.
  doi: 10.1016/j.ces.2018.08.056
– volume: 187
  start-page: 165
  year: 2018
  ident: 10.1016/j.biortech.2022.127178_bib628
  article-title: Tunable production of ethanol and acetate from synthesis gas by mesophilic mixed culture fermentation in a hollow fiber membrane biofilm reactor
  publication-title: J. Clean. Prod.
  doi: 10.1016/j.jclepro.2018.03.193
– volume: 235
  start-page: 149
  year: 2017
  ident: 10.1016/j.biortech.2022.127178_b0410
  article-title: A continuous system for biocatalytic hydrogenation of CO2 to formate
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2017.03.091
– volume: 1125
  start-page: 100
  year: 2008
  ident: 10.1016/j.biortech.2022.127178_b0195
  article-title: Old Acetogens, New Light
  publication-title: Ann. N. Y. Acad. Sci.
  doi: 10.1196/annals.1419.016
– volume: 381
  start-page: 122687
  year: 2020
  ident: 10.1016/j.biortech.2022.127178_bib619
  article-title: A novel MXene-coated biocathode for enhanced microbial electrosynthesis performance
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2019.122687
– volume: 5
  start-page: 16168
  year: 2015
  ident: 10.1016/j.biortech.2022.127178_bib630
  article-title: Adaptation of the autotrophic acetogen Sporomusa ovata to methanol accelerates the conversion of CO2 to organic products
  publication-title: Sci. Rep.
  doi: 10.1038/srep16168
– volume: 113
  start-page: 3773
  year: 2016
  ident: 10.1016/j.biortech.2022.127178_bib627
  article-title: Integrated bioprocess for conversion of gaseous substrates to liquids
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.1516867113
– volume: 23
  start-page: 201
  year: 2014
  ident: 10.1016/j.biortech.2022.127178_b0610
  article-title: Methane formation route in the conversion of methanol to hydrocarbons
  publication-title: J. Energy Chem.
  doi: 10.1016/S2095-4956(14)60136-4
– volume: 7
  start-page: 93
  year: 2019
  ident: 10.1016/j.biortech.2022.127178_b0275
  article-title: High Performing Gas Diffusion Biocathode for Microbial Fuel Cells Using Acidophilic Iron Oxidizing Bacteria
  publication-title: Front. Energy Res.
  doi: 10.3389/fenrg.2019.00093
– volume: 278
  year: 2020
  ident: 10.1016/j.biortech.2022.127178_b0110
  article-title: Efficient solar-to-acetate conversion from CO2 through microbial electrosynthesis coupled with stable photoanode
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2020.115684
– volume: 7
  start-page: 98
  year: 2019
  ident: 10.1016/j.biortech.2022.127178_b0470
  article-title: Integrating Electrochemistry Into Bioreactors: Effect of the Upgrade Kit on Mass Transfer, Mixing Time and Sterilizability
  publication-title: Front. Energy Res.
  doi: 10.3389/fenrg.2019.00098
– volume: 13
  start-page: 3102
  issue: 9
  year: 2020
  ident: 10.1016/j.biortech.2022.127178_b0085
  article-title: Copper-bottomed: electrochemically active bacteria exploit conductive sulphide networks for enhanced electrogeneity
  publication-title: Energy Environ. Sci.
  doi: 10.1039/D0EE01281E
– volume: 85
  start-page: 21
  year: 2014
  ident: 10.1016/j.biortech.2022.127178_b0500
  article-title: Syngas fermentation of Clostridium carboxidivoran P7 in a hollow fiber membrane biofilm reactor: Evaluating the mass transfer coefficient and ethanol production performance
  publication-title: Biochem. Eng. J.
  doi: 10.1016/j.bej.2014.01.010
– volume: 245
  start-page: 1176
  year: 2017
  ident: 10.1016/j.biortech.2022.127178_b0525
  article-title: High performance biological methanation in a thermophilic anaerobic trickle bed reactor
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2017.08.088
– volume: 247
  start-page: 7
  year: 2018
  ident: 10.1016/j.biortech.2022.127178_b0550
  article-title: Influence of operating pressure on the biological hydrogen methanation in trickle-bed reactors
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2017.09.069
– volume: 51
  start-page: 3235
  year: 2015
  ident: 10.1016/j.biortech.2022.127178_b0225
  article-title: Microbial electrosynthesis of butyrate from carbon dioxide
  publication-title: Chem. Commun.
  doi: 10.1039/C4CC10121A
– volume: 50
  start-page: 1982
  year: 2016
  ident: 10.1016/j.biortech.2022.127178_b0290
  article-title: Bringing High-Rate, CO2 -Based Microbial Electrosynthesis Closer to Practical Implementation through Improved Electrode Design and Operating Conditions
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.5b04431
– volume: 102
  start-page: 6058
  year: 2011
  ident: 10.1016/j.biortech.2022.127178_b0325
  article-title: Effect of nutrient limitation and two-stage continuous fermentor design on productivities during “Clostridium ragsdalei” syngas fermentation
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2011.03.020
– volume: 62
  start-page: 48
  year: 2020
  ident: 10.1016/j.biortech.2022.127178_b0435
  article-title: Microbial electrosynthesis from CO2: forever a promise?
  publication-title: Curr. Opin. Biotechnol.
  doi: 10.1016/j.copbio.2019.08.014
– year: 2017
  ident: 10.1016/j.biortech.2022.127178_b0120
  article-title: Functional electrodes for enzymatic and microbial electrochemical systems
  publication-title: Functional Electrodes for Enzymatic and Microbial Electrochemical Systems
  doi: 10.1142/q0102
– volume: 212
  start-page: 11
  year: 2015
  ident: 10.1016/j.biortech.2022.127178_bib620
  article-title: Continuous gas fermentation by Acetobacterium woodii in a submerged membrane reactor with full cell retention
  publication-title: J. Biotechnol.
  doi: 10.1016/j.jbiotec.2015.07.020
– volume: 30
  start-page: 1707072
  year: 2018
  ident: 10.1016/j.biortech.2022.127178_b0300
  article-title: Dual-Function Electrocatalytic and Macroporous Hollow-Fiber Cathode for Converting Waste Streams to Valuable Resources Using Microbial Electrochemical Systems
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201707072
– volume: 15
  start-page: 14290
  year: 2013
  ident: 10.1016/j.biortech.2022.127178_bib633
  article-title: Improved cathode for high efficient microbial-catalyzed reduction in microbial electrosynthesis cells
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/c3cp52697f
– volume: 49
  start-page: 13566
  year: 2015
  ident: 10.1016/j.biortech.2022.127178_bib634
  article-title: High Acetic Acid Production Rate Obtained by Microbial Electrosynthesis from Carbon Dioxide
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.5b03821
– volume: 142
  start-page: 396
  year: 2018
  ident: 10.1016/j.biortech.2022.127178_b0345
  article-title: Salinity-gradient energy driven microbial electrosynthesis of value-added chemicals from CO2 reduction
  publication-title: Water Res.
  doi: 10.1016/j.watres.2018.06.013
– volume: 4
  start-page: 8395
  year: 2016
  ident: 10.1016/j.biortech.2022.127178_b0150
  article-title: Electrosynthesis of acetate from CO2 by a highly structured biofilm assembled with reduced graphene oxide–tetraethylene pentamine
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C6TA02036D
– volume: 53
  start-page: 311
  year: 2020
  ident: 10.1016/j.biortech.2022.127178_b0220
  article-title: Purposely Designed Hierarchical Porous Electrodes for High Rate Microbial Electrosynthesis of Acetate from Carbon Dioxide
  publication-title: Acc. Chem. Res.
  doi: 10.1021/acs.accounts.9b00523
– volume: 10
  start-page: 14
  year: 2017
  ident: 10.1016/j.biortech.2022.127178_b0200
  article-title: Gas fermentation - a biotechnological solution for today’s challenges
  publication-title: Microb. Biotechnol.
  doi: 10.1111/1751-7915.12431
– volume: 283
  year: 2021
  ident: 10.1016/j.biortech.2022.127178_b0400
  article-title: A review of recent advances in electrode materials for emerging bioelectrochemical systems: From biofilm-bearing anodes to specialized cathodes
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2021.131138
– volume: 9
  start-page: 946
  year: 2018
  ident: 10.1016/j.biortech.2022.127178_b0575
  article-title: Effective Use of Renewable Electricity for Making Renewable Fuels and Chemicals
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.8b04143
– volume: 86
  start-page: 763
  year: 2021
  ident: 10.1016/j.biortech.2022.127178_b0145
  article-title: Catalytic Cooperation between a Copper Oxide Electrocatalyst and a Microbial Community for Microbial Electrosynthesis
  publication-title: Chempluschem
  doi: 10.1002/cplu.202100119
– volume: 46
  start-page: 107675
  year: 2021
  ident: 10.1016/j.biortech.2022.127178_b0180
  article-title: Microbial electrosynthesis: Towards sustainable biorefineries for production of green chemicals from CO2 emissions
  publication-title: Biotechnol. Adv.
  doi: 10.1016/j.biotechadv.2020.107675
– volume: 12
  start-page: 1103
  year: 2018
  ident: 10.1016/j.biortech.2022.127178_b0545
  article-title: Gas fermentation of C1 feedstocks: commercialization status and future prospects. Biofuels
  publication-title: Bioprod. Biorefining
  doi: 10.1002/bbb.1912
– volume: 257
  start-page: 164
  year: 2018
  ident: 10.1016/j.biortech.2022.127178_b0485
  article-title: Methanogenic capacity and robustness of hydrogenotrophic cultures based on closed nutrient recycling via microbial catabolism: Impact of temperature and microbial attachment
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2018.02.109
– volume: 754
  start-page: 142440
  year: 2021
  ident: 10.1016/j.biortech.2022.127178_bib631
  article-title: Improved robustness of microbial electrosynthesis by adaptation of a strict anaerobic microbial catalyst to molecular oxygen
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2020.142440
– volume: 233
  start-page: 227
  year: 2017
  ident: 10.1016/j.biortech.2022.127178_b0585
  article-title: High-efficient acetate production from carbon dioxide using a bioanode microbial electrosynthesis system with bipolar membrane
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2017.02.104
– ident: 10.1016/j.biortech.2022.127178_bib617
  doi: 10.1186/s13068-020-1670-x
SSID ssj0003172
Score 2.5403295
SecondaryResourceType review_article
Snippet [Display omitted] •MES integration with gas fermentation is promising to sustain bioproduction.•Various cathode materials and their performances in MES are...
In gas fermentation, a range of chemolithoautotrophs fix single-carbon (C1) gases (CO and CO) when H or other reductants are available. Microbial...
In gas fermentation, a range of chemolithoautotrophs fix single-carbon (C1) gases (CO2 and CO) when H2 or other reductants are available. Microbial...
In gas fermentation, a range of chemolithoautotrophs fix single-carbon (C1) gases (CO₂ and CO) when H₂ or other reductants are available. Microbial...
SourceID swepub
proquest
pubmed
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 127178
SubjectTerms acetates
Biochemical Process Engineering
biofilm
Biofuels
Biokemisk processteknik
biomass
bioplastics
butanol
butyrates
carbon dioxide
Carbon Dioxide - chemistry
Cathode-design
cathodes
CO utilization
CO2 utilization
Electrodes
electrosynthesis
ethanol
Fermentation
Gas Electro-fermentation
Gases
hexanoic acid
mass transfer
Microbial Electrosynthesis
reducing agents
renewable electricity
Syngas
Title Advances in cathode designs and reactor configurations of microbial electrosynthesis systems to facilitate gas electro-fermentation
URI https://dx.doi.org/10.1016/j.biortech.2022.127178
https://www.ncbi.nlm.nih.gov/pubmed/35436538
https://www.proquest.com/docview/2652583734
https://www.proquest.com/docview/2661032712
https://urn.kb.se/resolve?urn=urn:nbn:se:ltu:diva-90331
Volume 354
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELaqcgAOCMprC1RGgmN2k_iR9TFaqBYQvUBRb1b8WqUqSbXePXDphT_OOHaWAoIeOCaeURzPjGdsz3xG6JUGk1FEV1lVhK0bzkUmTOmyoiCGVHnRWBdqhz-e8OUpfX_GzvbQYqyFCWmVae6Pc_owW6c3szSas8u2nX0KwfecgYsJGyN5FSrKKa2Clk-vfqZ5gH8cThKAOAvU16qEz6eqDRmtw6FEWU6LEtY28785qD8D0N_QRQePdHwf3UuhJK5jbx-gPdsdoLv1ap3gNOwBur0Y73ODlmvQgw_R9zoe_nvcdjhgt_bGYjOkc3jcdAZDMBn28zGsl1272kZF8bh3-Gs7gDfBp9MdOv5bB2Gkbz2OuNAeb3rsGh0BwC1eNX4kzRx4glTu1D1Cp8dvPy-WWbqQIdMQt20yonPFlSMGrJ4qIbQjVlshTMUgMFFaizlxTpRc6NI0WuWGVQ1jFjhg_MuGPEb7Xd_ZpwgT4zh1nBDTKFo4NeeOUlCngC9nlconiI1SkDqhlYdLMy7kmJZ2LkfpySA9GaU3QbMd32XE67iRQ4xClr9ongSnciPvy1ErJEgznLU0ne23XpaclQwW_4T-i4YHOEOwkgl6ElVq12fCKOHgjCboddSxXUvAA3_Tfqllv15J0CYpckKKw__4i2foTniKCXDP0f5mvbUvINTaqKPBlo7Qrfrdh-XJD--HLbY
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKORQOCMpreRqJHrOb2ImzPnBYtVRb-rjQot5M_FqlgqRa7wr1woWfxB9kHDtLAUEPqNc4Ezuez56xPf4GodcKhoykqkzKzG_dMMYTrolNsoxqWqZZZay_O3x4xKYn-bvT4nQNfe_vwviwyjj3hzm9m63jk1HszdF5XY_ee-d7XICJ8RsjaVnGyMp9c_EF1m3uzd4OKHmLkN23x9vTJKYWSBR4IIuEqlQyaakG_OaSc2WpUYZzXRZgYqVSfEyt5YRxRXSlZKqLsioKAxJQLakofPcGupnDdOHTJgy__owrAYPcHV1A6xLfvEvXks-GsvYhtN0pCCHDjMBiavw3i_inx_sbnWlnAnfvojvRd8WT0D330JppNtHtyWwe-TvMJtrY7hPIQcklrsP76NskRBs4XDfYk8W22mDdxY84XDUag_fqDxAwLNBtPVsGZDrcWvy57tiioOqYtMddNOC3utrhQETt8KLFtlKBcdzgWeX6VxMLpifer2oeoJNrUdNDtN60jXmMMNWW5ZZRqiuZZ1aOmc1zwK8ntDNSpgNU9FoQKtKj-ywdn0QfB3cmeu0Jrz0RtDdAo5XceSAIuVKC90oWv0BdgBW7UvZVjwoB2vSHO1Vj2qUThBWkGNOS5v96h3n-RBiWA_QoQGrVZlrklAGcB2grYGxV4gnId-oPE9HOZwLQJHhKafbkP_7iJdqYHh8eiIO9o_2n6JYvCdF3z9D6Yr40z8HPW8gX3bjC6ON1D-Qfou5q0A
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Advances+in+cathode+designs+and+reactor+configurations+of+microbial+electrosynthesis+systems+to+facilitate+gas+electro-fermentation&rft.jtitle=Bioresource+technology&rft.au=Bajracharya%2C+Suman&rft.au=Krige%2C+Adolf&rft.au=Matsakas%2C+Leonidas&rft.au=Rova%2C+Ulrika&rft.date=2022-06-01&rft.pub=Elsevier+Ltd&rft.issn=0960-8524&rft.volume=354&rft_id=info:doi/10.1016%2Fj.biortech.2022.127178&rft.externalDocID=S0960852422005077
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0960-8524&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0960-8524&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0960-8524&client=summon