Advances in cathode designs and reactor configurations of microbial electrosynthesis systems to facilitate gas electro-fermentation
[Display omitted] •MES integration with gas fermentation is promising to sustain bioproduction.•Various cathode materials and their performances in MES are reviewed.•Different aspects of effective cathode and reactor design are explored.•Strategies are offered for future research on gas electro-ferm...
Saved in:
Published in | Bioresource technology Vol. 354; p. 127178 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
England
Elsevier Ltd
01.06.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | [Display omitted]
•MES integration with gas fermentation is promising to sustain bioproduction.•Various cathode materials and their performances in MES are reviewed.•Different aspects of effective cathode and reactor design are explored.•Strategies are offered for future research on gas electro-fermentation in MES.
In gas fermentation, a range of chemolithoautotrophs fix single-carbon (C1) gases (CO2 and CO) when H2 or other reductants are available. Microbial electrosynthesis (MES) enables CO2 reduction by generating H2 or reducing equivalents with the sole input of renewable electricity. A combined approach as gas electro-fermentation is attractive for the sustainable production of biofuels and biochemicals utilizing C1 gases. Various platform compounds such as acetate, butyrate, caproate, ethanol, butanol and bioplastics can be produced. However, technological challenges pertaining to the microbe-material interactions such as poor gas–liquid mass transfer, low biomass and biofilm coverage on cathode, low productivities still exist. We are presenting a review on latest developments in MES focusing on the configuration and design of cathodes that can address the challenges and support the gas electro-fermentation. Overall, the opportunities for advancing CO and CO2-based biochemicals and biofuels production in MES with suitable cathode/reactor design are prospected. |
---|---|
AbstractList | In gas fermentation, a range of chemolithoautotrophs fix single-carbon (C1) gases (CO2 and CO) when H2 or other reductants are available. Microbial electrosynthesis (MES) enables CO2 reduction by generating H2 or reducing equivalents with the sole input of renewable electricity. A combined approach as gas electro-fermentation is attractive for the sustainable production of biofuels and biochemicals utilizing C1 gases. Various platform compounds such as acetate, butyrate, caproate, ethanol, butanol and bioplastics can be produced. However, technological challenges pertaining to the microbe-material interactions such as poor gas-liquid mass transfer, low biomass and biofilm coverage on cathode, low productivities still exist. We are presenting a review on latest developments in MES focusing on the configuration and design of cathodes that can address the challenges and support the gas electro-fermentation. Overall, the opportunities for advancing CO and CO2-based biochemicals and biofuels production in MES with suitable cathode/reactor design are prospected.In gas fermentation, a range of chemolithoautotrophs fix single-carbon (C1) gases (CO2 and CO) when H2 or other reductants are available. Microbial electrosynthesis (MES) enables CO2 reduction by generating H2 or reducing equivalents with the sole input of renewable electricity. A combined approach as gas electro-fermentation is attractive for the sustainable production of biofuels and biochemicals utilizing C1 gases. Various platform compounds such as acetate, butyrate, caproate, ethanol, butanol and bioplastics can be produced. However, technological challenges pertaining to the microbe-material interactions such as poor gas-liquid mass transfer, low biomass and biofilm coverage on cathode, low productivities still exist. We are presenting a review on latest developments in MES focusing on the configuration and design of cathodes that can address the challenges and support the gas electro-fermentation. Overall, the opportunities for advancing CO and CO2-based biochemicals and biofuels production in MES with suitable cathode/reactor design are prospected. In gas fermentation, a range of chemolithoautotrophs fix single-carbon (C1) gases (CO₂ and CO) when H₂ or other reductants are available. Microbial electrosynthesis (MES) enables CO₂ reduction by generating H₂ or reducing equivalents with the sole input of renewable electricity. A combined approach as gas electro-fermentation is attractive for the sustainable production of biofuels and biochemicals utilizing C1 gases. Various platform compounds such as acetate, butyrate, caproate, ethanol, butanol and bioplastics can be produced. However, technological challenges pertaining to the microbe-material interactions such as poor gas–liquid mass transfer, low biomass and biofilm coverage on cathode, low productivities still exist. We are presenting a review on latest developments in MES focusing on the configuration and design of cathodes that can address the challenges and support the gas electro-fermentation. Overall, the opportunities for advancing CO and CO₂-based biochemicals and biofuels production in MES with suitable cathode/reactor design are prospected. [Display omitted] •MES integration with gas fermentation is promising to sustain bioproduction.•Various cathode materials and their performances in MES are reviewed.•Different aspects of effective cathode and reactor design are explored.•Strategies are offered for future research on gas electro-fermentation in MES. In gas fermentation, a range of chemolithoautotrophs fix single-carbon (C1) gases (CO2 and CO) when H2 or other reductants are available. Microbial electrosynthesis (MES) enables CO2 reduction by generating H2 or reducing equivalents with the sole input of renewable electricity. A combined approach as gas electro-fermentation is attractive for the sustainable production of biofuels and biochemicals utilizing C1 gases. Various platform compounds such as acetate, butyrate, caproate, ethanol, butanol and bioplastics can be produced. However, technological challenges pertaining to the microbe-material interactions such as poor gas–liquid mass transfer, low biomass and biofilm coverage on cathode, low productivities still exist. We are presenting a review on latest developments in MES focusing on the configuration and design of cathodes that can address the challenges and support the gas electro-fermentation. Overall, the opportunities for advancing CO and CO2-based biochemicals and biofuels production in MES with suitable cathode/reactor design are prospected. In gas fermentation, a range of chemolithoautotrophs fix single-carbon (C1) gases (CO2 and CO) when H2 or other reductants are available. Microbial electrosynthesis (MES) enables CO2 reduction by generating H2 or reducing equivalents with the sole input of renewable electricity. A combined approach as gas electro-fermentation is attractive for the sustainable production of biofuels and biochemicals utilizing C1 gases. Various platform compounds such as acetate, butyrate, caproate, ethanol, butanol and bioplastics can be produced. However, technological challenges pertaining to the microbe-material interactions such as poor gas-liquid mass transfer, low biomass and biofilm coverage on cathode, low productivities still exist. We are presenting a review on latest developments in MES focusing on the configuration and design of cathodes that can address the challenges and support the gas electro-fermentation. Overall, the opportunities for advancing CO and CO2-based biochemicals and biofuels production in MES with suitable cathode/reactor design are prospected. In gas fermentation, a range of chemolithoautotrophs fix single-carbon (C1) gases (CO and CO) when H or other reductants are available. Microbial electrosynthesis (MES) enables CO reduction by generating H or reducing equivalents with the sole input of renewable electricity. A combined approach as gas electro-fermentation is attractive for the sustainable production of biofuels and biochemicals utilizing C1 gases. Various platform compounds such as acetate, butyrate, caproate, ethanol, butanol and bioplastics can be produced. However, technological challenges pertaining to the microbe-material interactions such as poor gas-liquid mass transfer, low biomass and biofilm coverage on cathode, low productivities still exist. We are presenting a review on latest developments in MES focusing on the configuration and design of cathodes that can address the challenges and support the gas electro-fermentation. Overall, the opportunities for advancing CO and CO -based biochemicals and biofuels production in MES with suitable cathode/reactor design are prospected. |
ArticleNumber | 127178 |
Author | Krige, Adolf Bajracharya, Suman Matsakas, Leonidas Christakopoulos, Paul Rova, Ulrika |
Author_xml | – sequence: 1 givenname: Suman surname: Bajracharya fullname: Bajracharya, Suman email: suman.bajracharya@ltu.se – sequence: 2 givenname: Adolf surname: Krige fullname: Krige, Adolf – sequence: 3 givenname: Leonidas surname: Matsakas fullname: Matsakas, Leonidas – sequence: 4 givenname: Ulrika surname: Rova fullname: Rova, Ulrika – sequence: 5 givenname: Paul surname: Christakopoulos fullname: Christakopoulos, Paul |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/35436538$$D View this record in MEDLINE/PubMed https://urn.kb.se/resolve?urn=urn:nbn:se:ltu:diva-90331$$DView record from Swedish Publication Index |
BookMark | eNqNkktv1DAYRS1URKeFv1B5yYIMfiROLLFgVJ5SJTbA1nLsLzMeJfZgO61mzR_HJZ0u2JSVFz73yrrHF-jMBw8IXVGypoSKt_t170LMYHZrRhhbU9bStnuGVrRrecVkK87QikhBqq5h9Tm6SGlPCOG0ZS_QOW9qLhrerdDvjb3V3kDCzmOj8y5YwBaS2_qEtbc4gjY5RGyCH9x2jjq7UK7CgCdnYuidHjGMYHIM6ejzrkQTTseUYUo4Bzxo40aXdQa81emEVgPECXz-2_YSPR_0mODVw3mJfnz6-P36S3Xz7fPX681NZWoqcsUN6UU_cFt3Xd1LaQYOBqS0bdPWtDdGdnwYJBPSMKtNT2zT6qaBkihDMM0v0ZulN93BYe7VIbpJx6MK2qkP7udGhbhVY56VJJzTgr9e8EMMv2ZIWU0uGRhH7SHMSTEhKOFld_YfaMOajre8LujVAzr3E9jHR5yUFEAsQFk3pQjDI0KJunev9urkXt27V4v7Enz3T9C4ZeActRufjr9f4lAU3DqIKhkH5WtYF4szZYN7quIPWvrSwg |
CitedBy_id | crossref_primary_10_1016_j_apenergy_2023_121609 crossref_primary_10_1016_j_biortech_2023_130124 crossref_primary_10_3390_pr11030766 crossref_primary_10_1016_j_biortech_2022_128040 crossref_primary_10_1007_s10973_023_12861_3 crossref_primary_10_1016_j_jece_2024_113063 crossref_primary_10_1039_D3GC00471F crossref_primary_10_1111_1751_7915_14383 crossref_primary_10_1016_j_rser_2024_114704 crossref_primary_10_1016_j_scitotenv_2023_169766 crossref_primary_10_1016_j_ijhydene_2024_09_450 crossref_primary_10_1016_j_bej_2022_108745 crossref_primary_10_1021_acssuschemeng_4c06214 crossref_primary_10_1016_j_engmic_2024_100141 crossref_primary_10_1016_j_biotechadv_2024_108369 crossref_primary_10_1016_j_biortech_2024_131380 crossref_primary_10_1016_j_biortech_2024_131381 crossref_primary_10_1016_j_biortech_2024_130530 crossref_primary_10_1016_j_ijhydene_2025_01_226 crossref_primary_10_3390_microorganisms13020249 crossref_primary_10_1016_j_biortech_2024_130896 crossref_primary_10_1016_j_jpowsour_2025_236499 crossref_primary_10_1016_j_biortech_2022_128259 crossref_primary_10_1039_D3SE00876B crossref_primary_10_1016_j_biortech_2025_132280 crossref_primary_10_1016_j_psep_2024_07_030 crossref_primary_10_1016_j_cej_2022_140200 crossref_primary_10_1016_j_biotechadv_2023_108098 crossref_primary_10_1016_j_ijhydene_2025_01_279 crossref_primary_10_20517_energymater_2023_60 crossref_primary_10_1021_acsestengg_4c00077 |
Cites_doi | 10.1021/sc400520x 10.2166/wst.2020.234 10.1016/j.copbio.2020.02.017 10.1016/j.biortech.2018.02.087 10.1016/j.rser.2019.04.070 10.1016/j.procbio.2020.11.017 10.1016/j.biortech.2011.03.047 10.1016/j.biortech.2015.05.077 10.1128/AEM.02401-12 10.1016/j.procbio.2020.11.005 10.1016/j.cej.2021.132093 10.1021/bi9615598 10.1016/j.biortech.2016.11.124 10.1016/j.chemosphere.2020.128649 10.1002/elsc.201600105 10.1007/s00253-017-8124-9 10.1002/fuce.201900152 10.1016/j.biortech.2019.122296 10.1111/1751-7915.13663 10.1016/j.jece.2021.106189 10.1016/j.cej.2019.123689 10.1016/j.jpowsour.2017.04.024 10.1016/j.copbio.2015.03.008 10.1016/j.copbio.2013.02.017 10.1039/c3cc42570c 10.1016/j.rser.2015.11.015 10.1016/j.biortech.2020.124573 10.1007/s00203-003-0523-x 10.1016/j.renene.2020.05.099 10.3389/fenrg.2018.00007 10.1016/j.biortech.2014.06.034 10.3390/en6083987 10.1016/j.copbio.2007.03.008 10.1016/j.biortech.2014.01.058 10.1016/j.seppur.2016.06.014 10.1126/science.aad6452 10.1039/D0EE03679J 10.1007/s11356-016-7196-x 10.1016/j.ijhydene.2007.02.035 10.3390/pr8091075 10.1016/j.scitotenv.2021.145677 10.1016/j.bej.2016.07.020 10.3389/fmicb.2016.00694 10.1016/j.biortech.2020.122863 10.1002/adfm.201804860 10.1038/s41598-017-09841-7 10.1016/j.apenergy.2019.02.076 10.1016/j.biombioe.2013.01.034 10.1016/j.electacta.2016.09.063 10.1128/AEM.00355-11 10.1016/j.biortech.2020.123115 10.1021/acs.nanolett.5b01254 10.1016/j.biortech.2020.124177 10.1016/j.biortech.2018.02.058 10.1039/C2EE23350A 10.3389/fmicb.2015.00468 10.1111/1751-7915.13270 10.1016/j.chemosphere.2020.126105 10.1039/C5RA24254A 10.1021/acs.est.6b02101 10.1039/C5EE03088A 10.1039/C9CC00208A 10.1021/es3027659 10.3390/en12173297 10.1002/adma.202004051 10.1038/s41929-017-0005-1 10.1016/j.apenergy.2016.02.021 10.1039/C7FD00050B 10.1016/j.envres.2020.110093 10.1039/C8TA05322G 10.1016/j.jechem.2019.04.020 10.1016/j.joule.2020.03.001 10.1016/j.cej.2018.05.003 10.1016/j.biombioe.2019.03.011 10.1016/j.biortech.2017.08.183 10.1021/es400341b 10.1016/j.jcou.2021.101640 10.1039/C4TA03101F 10.1128/mBio.00103-10 10.1016/j.biortech.2015.05.081 10.1128/AEM.00675-15 10.1016/j.bbapap.2008.08.012 10.1016/j.rser.2011.07.124 10.1016/j.biortech.2018.08.103 10.1016/j.cej.2016.08.049 10.1016/j.cej.2020.127103 10.1016/j.bej.2009.09.004 10.1039/C7RA13546G 10.1016/j.biortech.2016.03.094 10.1016/j.bioelechem.2019.03.011 10.3389/fmicb.2017.00756 10.1007/s00253-015-7238-1 10.1007/s00449-015-1397-4 10.1021/acs.estlett.5b00212 10.1016/j.jclepro.2018.08.162 10.3389/fmicb.2020.00416 10.1002/bit.25827 10.1038/s41929-019-0264-0 10.1016/j.ces.2018.08.056 10.1016/j.jclepro.2018.03.193 10.1016/j.biortech.2017.03.091 10.1196/annals.1419.016 10.1016/j.cej.2019.122687 10.1038/srep16168 10.1073/pnas.1516867113 10.1016/S2095-4956(14)60136-4 10.3389/fenrg.2019.00093 10.1016/j.apenergy.2020.115684 10.3389/fenrg.2019.00098 10.1039/D0EE01281E 10.1016/j.bej.2014.01.010 10.1016/j.biortech.2017.08.088 10.1016/j.biortech.2017.09.069 10.1039/C4CC10121A 10.1021/acs.est.5b04431 10.1016/j.biortech.2011.03.020 10.1016/j.copbio.2019.08.014 10.1142/q0102 10.1016/j.jbiotec.2015.07.020 10.1002/adma.201707072 10.1039/c3cp52697f 10.1021/acs.est.5b03821 10.1016/j.watres.2018.06.013 10.1039/C6TA02036D 10.1021/acs.accounts.9b00523 10.1111/1751-7915.12431 10.1016/j.chemosphere.2021.131138 10.1021/acscatal.8b04143 10.1002/cplu.202100119 10.1016/j.biotechadv.2020.107675 10.1002/bbb.1912 10.1016/j.biortech.2018.02.109 10.1016/j.scitotenv.2020.142440 10.1016/j.biortech.2017.02.104 10.1186/s13068-020-1670-x |
ContentType | Journal Article |
Copyright | 2022 The Authors Copyright © 2022 The Authors. Published by Elsevier Ltd.. All rights reserved. |
Copyright_xml | – notice: 2022 The Authors – notice: Copyright © 2022 The Authors. Published by Elsevier Ltd.. All rights reserved. |
DBID | 6I. AAFTH AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 7S9 L.6 ADTPV AOWAS D8T ZZAVC |
DOI | 10.1016/j.biortech.2022.127178 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic SwePub SwePub Articles SWEPUB Freely available online SwePub Articles full text |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | MEDLINE - Academic AGRICOLA MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Chemistry Agriculture |
EISSN | 1873-2976 |
ExternalDocumentID | oai_DiVA_org_ltu_90331 35436538 10_1016_j_biortech_2022_127178 S0960852422005077 |
Genre | Journal Article Review |
GroupedDBID | --- --K --M .~1 0R~ 1B1 1RT 1~. 1~5 23N 4.4 457 4G. 53G 5GY 5VS 6I. 7-5 71M 8P~ 9JM 9JN AAAJQ AABNK AACTN AAEDT AAEDW AAFTH AAHBH AAHCO AAIKJ AAKOC AALCJ AALRI AAOAW AAQFI AAQXK AARJD AARKO AATLK AAXKI AAXUO ABFNM ABFYP ABGRD ABGSF ABJNI ABLST ABMAC ABNUV ABUDA ABWVN ABXDB ACDAQ ACGFS ACIUM ACRLP ACRPL ADBBV ADEWK ADEZE ADMUD ADNMO ADQTV ADUVX AEBSH AEGFY AEHWI AEIPS AEKER AENEX AEQOU AFJKZ AFKWA AFTJW AFXIZ AGEKW AGHFR AGRDE AGUBO AGYEJ AHEUO AHHHB AHIDL AHPOS AI. AIEXJ AIKHN AITUG AJOXV AKIFW AKRWK AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BELTK BKOJK BLECG BLXMC CJTIS CS3 DU5 EBS EFJIC EJD ENUVR EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HLV HMC HVGLF HZ~ IHE J1W JARJE KCYFY KOM LUGTX LW9 LY6 LY9 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 PC. Q38 R2- RIG ROL RPZ SAB SAC SDF SDG SDP SEN SES SEW SPC SPCBC SSA SSG SSI SSJ SSR SSU SSZ T5K VH1 WUQ Y6R ~02 ~G- ~KM AATTM AAYWO AAYXX ACVFH ADCNI AEUPX AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKYEP ANKPU APXCP BNPGV CITATION SSH CGR CUY CVF ECM EIF NPM 7X8 7S9 EFKBS L.6 ADTPV AOWAS D8T ZZAVC |
ID | FETCH-LOGICAL-c416t-3c0b6bf3d4884b99cf3ece99d75741bcc983ff9269c2dacb0d57a55ef3d0962a3 |
IEDL.DBID | .~1 |
ISSN | 0960-8524 1873-2976 |
IngestDate | Thu Aug 21 07:19:01 EDT 2025 Tue Aug 05 10:11:01 EDT 2025 Fri Jul 11 09:28:21 EDT 2025 Thu Apr 03 07:00:13 EDT 2025 Tue Jul 01 03:19:04 EDT 2025 Thu Apr 24 22:53:01 EDT 2025 Sat Jan 18 16:09:38 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Cathode-design Microbial Electrosynthesis CO2 utilization Gas Electro-fermentation Syngas CO utilization |
Language | English |
License | This is an open access article under the CC BY-NC-ND license. Copyright © 2022 The Authors. Published by Elsevier Ltd.. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c416t-3c0b6bf3d4884b99cf3ece99d75741bcc983ff9269c2dacb0d57a55ef3d0962a3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 ObjectType-Review-3 content type line 23 |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S0960852422005077 |
PMID | 35436538 |
PQID | 2652583734 |
PQPubID | 23479 |
ParticipantIDs | swepub_primary_oai_DiVA_org_ltu_90331 proquest_miscellaneous_2661032712 proquest_miscellaneous_2652583734 pubmed_primary_35436538 crossref_primary_10_1016_j_biortech_2022_127178 crossref_citationtrail_10_1016_j_biortech_2022_127178 elsevier_sciencedirect_doi_10_1016_j_biortech_2022_127178 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-06-01 |
PublicationDateYYYYMMDD | 2022-06-01 |
PublicationDate_xml | – month: 06 year: 2022 text: 2022-06-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | England |
PublicationPlace_xml | – name: England |
PublicationTitle | Bioresource technology |
PublicationTitleAlternate | Bioresour Technol |
PublicationYear | 2022 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Köpke, Mihalcea, Liew, Tizard, Ali, Conolly, Al-Sinawi, Simpson (bib625) 2011; 77 Maddipati, Atiyeh, Bellmer, Huhnke (b0365) 2011; 102 Sharma, Aryal, Sarma, Vanbroekhoven, Lal, Benetton, Pant (b0490) 2013; 49 Bajracharya, Srikanth, Mohanakrishna, Zacharia, Strik, Pant (b0055) 2017; 356 Jourdin, Grieger, Monetti, Flexer, Freguia, Lu, Chen, Romano, Wallace, Keller (bib634) 2015; 49 Haas, Krause, Weber, Demler, Schmid (bib626) 2018; 1 Jourdin, Freguia, Flexer, Keller (b0290) 2016; 50 Li, Luo, He (b0335) 2016; 169 UNFCCC (b0555) 2015 Flexer, Jourdin (b0220) 2020; 53 Monir, Aziz, Khatun, Yousuf (bib618) 2020; 157 Sadhukhan, Lloyd, Scott, Premier, Yu, Curtis, Head (b0475) 2016; 56 Abubackar, Bengelsdorf, Dürre, Veiga, Kennes (b0005) 2016; 169 Strübing, Huber, Lebuhn, Drewes, Koch (b0525) 2017; 245 Mateos, Sotres, Alonso, Morán, Escapa (b0390) 2019; 12 Kundiyana, Huhnke, Wilkins (b0325) 2011; 102 Zhao, Zhang, Wang, Guo (b0610) 2014; 23 Marshall, Ross, Fichot, Norman, May (b0370) 2013; 47 Bian, Bajracharya, Xu, Pant, Saikaly (b0100) 2020; 302 Xia, Tokash, Zhang, Liang, Huang, Logan (b0580) 2013; 47 Hu, Chakraborty, Kumar, Woolston, Liu, Emerson, Stephanopoulos (bib627) 2016; 113 Wang, Dai, Xia, Wang, Zeng, Zhang (bib628) 2018; 187 Marshall, Ross, Fichot, Norman, May (b0375) 2012; 78 He, Cassarini, Marciano, Lens (b0245) 2021; 265 Alfaro, Fdz-Polanco, Fdz-Polanco, Díaz (b0010) 2018; 258 . Rodrigues, Guan, Iñiguez, Estabrook, Chapman, Huang, Sletten, Liu (b0455) 2019; 2 Poznansky, Cleary, Thompson, Reeve, Vincent (b0430) 2021 Weber (b0575) 2018; 9 Ramió-Pujol, Ganigué, Bañeras, Colprim (b0445) 2015; 192 Corral, Feaster, Sobhani, Deotte, Lee, Wong, Hamilton, Beck, Sarkar, Hahn, Jaramillo, Baker, Duoss (b0165) 2021; 14 Molitor, Richter, Martin, Jensen, Juminaga, Mihalcea, Angenent (b0405) 2016; 215 Richter, Martin, Angenent (b0450) 2013; 6 Asimakopoulos, Gavala, Skiadas (b0045) 2018; 348 Kougias, Treu, Benavente, Boe, Campanaro, Angelidaki (b0310) 2017; 225 Mier, Olvera-Vargas, Mejía-López, Longoria, Verea, Sebastian, Arias (b0400) 2021; 283 Shi, Tremblay, Wan, Zhang (bib631) 2021; 754 Tahir, Miran, Jang, Maile, Shahzad, Moztahida, Ghani, Kim, Jeon, Lee (b0535) 2021; 773 LaBelle, May (bib635) 2017; 8 Das, Das, Ghangrekar (b0175) 2021; 101 Nie, Zhang, Cui, Lu, Lovley, Russell (bib633) 2013; 15 Sarkar, Kumar, Dahiya, Krishna, Yeruva, Mohan (b0480) 2016; 6 Bardone, Marzocchella, Keshavarz, Stoll, Herbig, Zwick, Boukis, Sauer, Neumann, Oswald (bib622) 2018; 64 Ragsdale, Pierce (b0440) 2008; 1784 Menon, Ragsdale (b0395) 1996; 35 Ditzig, Liu, Logan (b0185) 2007; 32 Xu, Zhai, Cheng, Guadie, Wang, Han, Liu, Wang (b0590) 2020; 191 Blanchet, Duquenne, Rafrafi, Etcheverry, Erable, Bergel (b0115) 2015; 8 Martin, Richter, Saha, Angenent (b0380) 2016; 113 Xiang, Liu, Zhang, Lu, Luo (b0585) 2017; 233 Li, Ge, He (b0330) 2014; 167 Siegert, Yates, Call, Zhu, Spormann, Logan (b0505) 2014; 2 Li, Angelidaki, Zhang (b0345) 2018; 142 Jack, Lo, Maness, Ren (b0280) 2019; 124 Schwarz, Ciurus, Jain, Baum, Wiechmann, Basen, Müller (bib623) 2020; 13 Zhu, Liu, Zhou, Yi, Lun, Wang, Tang, Li (b0615) 2020; 11 Rosa, Hunger, Zschernitz, Strehlitz, Harnisch (b0470) 2019; 7 Huggins, Wang, Kearns, Jenkins, Ren (b0255) 2014; 157 Aryal, Halder, Tremblay, Chi, Zhang (b0025) 2016; 217 Cui, Wang, Wang, Zhang, Han, Li, Sun, Shen, Wang (b0170) 2020; 306 Prévoteau, Carvajal-Arroyo, Ganigué, Rabaey (b0435) 2020; 62 Tahir, Miran, Jang, Shahzad, Moztahida, Kim, Lee (bib619) 2020; 381 Li, Wang, He, Luo, Su, Jiang, Zhou, Xu (b0350) 2020; 295 Enzmann, Mayer, Stöckl, Mangold, Hommel, Holtmann (b0210) 2019; 193 Zhang, Jiang, Wang, Li, Hua, Wang (b0595) 2021; 51 Dürre (b0200) 2017; 10 Beuth, Pfeiffer, Schröder (b0085) 2020; 13 Shen, Brown, Wen (b0500) 2014; 85 Fernández-Naveira, Abubackar, Veiga, Kennes (b0215) 2016; 100 Chakraborty, Rene, Lens, Rintala, Veiga, Kennes (b0140) 2020; 250 Giddings, Nevin, Woodward, Lovley, Butler (b0230) 2015; 6 Gildemyn, Verbeeck, Slabbinck, Andersen, Prévoteau, Rabaey (b0235) 2015; 2 Bian, Shi, Katuri, Xu, Wang, Saikaly (b0110) 2020; 278 IEA (b0265) 2019 Shen, Dai, Xia, Zeng, Zhang (b0495) 2018; 202 Baransi-Karkaby, Hassanin, Muhsein, Massalha, Sabbah (b0080) 2020; 81 Bian, Alqahtani, Katuri, Liu, Bajracharya, Lai, Rabaey, Saikaly (b0095) 2018; 6 Bajracharya, Vanbroekhoven, Buisman, Pant, Strik (b0065) 2016; 23 Bhatia, Bhatia, Jeon, Kumar, Yang (b0090) 2019; 110 Vassilev, Kracke, Freguia, Keller, Krömer, Ledezma, Virdis (b0560) 2019; 55 Ganigué, Puig, Batlle-Vilanova, Balaguer, Colprim (b0225) 2015; 51 Chatzipanagiotou, Soekhoe, Jourdin, Buisman, Bitter, Strik (b0145) 2021; 86 Rojas, Zaiat, González, De Wever, Pant (b0460) 2021; 101 Dong, Z., Wang, H., Tian, S., Yang, Y., Yuan, H., Huang, Q., Song, T. shun, Xie, J., 2018. Fluidized granular activated carbon electrode for efficient microbial electrosynthesis of acetate from carbon dioxide. Bioresour. Technol. 269, 203–209. https://doi.org/10.1016/J.BIORTECH.2018.08.103. Campani, Ribeiro, Horta, Giordano, Badino, Zangirolami (b0135) 2015; 38 Ojeda, Bakonyi, Buitrón (b0425) 2017; 245 Alqahtani, Katuri, Bajracharya, Yu, Lai, Saikaly (b0020) 2018; 28 Skidmore, Baker, Banjade, Bray, Tree, Lewis (b0510) 2013; 55 Drake, Gößner, Daniel (b0195) 2008; 1125 Chen, Tremblay, Mohanty, Xu, Zhang (b0150) 2016; 4 Stoll, I., Boukis, N., Sauer, J., 2019. Syngas Fermentation at Elevated Pressure - Experimental Results, in: 27th European Biomass Conference and Exhibition. Lisbon, pp. 1255–1261. https://doi.org/10.5071/27theubce2019-3cv.3.4. Viggi, Colantoni, Falzetti, Bacaloni, Montecchio, Aulenta (b0565) 2020; 20 Izadi, Fontmorin, Fernández, Cheng, Head, Yu (b0275) 2019; 7 Kantzow, Mayer, Weuster-Botz (bib620) 2015; 212 Mourato, Martins, da Silva, Pereira (b0410) 2017; 235 Dürre, Eikmanns (b0205) 2015; 35 Krige, A., Rova, U., Christakopoulos, P., 2021. 3D bioprinting on cathodes in microbial electrosynthesis for increased acetate production rate using Sporomusa ovata. J. Environ. Chem. Eng. 9, 106189. https://doi.org/10.1016/J.JECE.2021.106189. Henstra, Sipma, Rinzema, Stams (bib637) 2007; 18 Su, Cestellos-Blanco, Kim, Shen, Kong, Lu, Liu, Zhang, Cao, Yang (b0530) 2020; 4 Wang, Yu, Zhang, Xia, Zeng (bib629) 2017; 101 IPCC, 2014. IPCC, 2014: Summary for Policymakers, in: Edenhofer, O., Pichs-Madruga, R., Sokona, Youba, Agrawala, S., Alexeyevich Bashmakov, I., Blanco, G., Broome, J., Bruckner, T., Brunner, Steffen, Bustamante, M., Baiocchi, G., Sokona, Y, Farahani, E., Kadner, S., Seyboth, K., Adler, A., Baum, I., Brunner, S, Eickemeier, P., Kriemann, B., Savolainen, J., Schlömer, S., von Stechow, C., Zwickel, T., Minx, J. (Eds.), Climate Change 2014: Mitigation of Climate Change. Contribution of Working Group III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA. Mohammadi, Najafpour, Younesi, Lahijani, Uzir, Mohamed (bib638) 2011 Krieg, Madjarov, Rosa, Enzmann, Harnisch, Holtmann, Rabaey (b0315) 2018; 167 Alqahtani, Bajracharya, Katuri, Ali, Xu, Alarawi, Saikaly (b0015) 2020; 766 Bajracharya, Krige, Matsakas, Rova, Christakopoulos (b0050) 2021; 287 Hawkins, McTernan, Lian, Kelly, Adams (b0240) 2013; 24 Asensio, Llorente, Fernández, Tejedor-Sanz, Ortiz, Ciriza, Monsalvo, Rogalla, Esteve-Núñez (b0040) 2021; 406 Hintermayer, Yu, Krömer, Weuster-Botz (b0250) 2016; 115 Lanzillo, Ruggiero, Raganati, Russo, Marzocchella (bib621) 2020; 8 Burkhardt, Jordan, Heinrich, Behrens, Ziesche, Busch (b0125) 2019; 240 Wang, Li, Sun, Zhang, Jiao, Wang, Liu (b0570) 2021; 33 Balk, Weijma, Friedrich, Stams (b0075) 2003; 179 Dessì, Rovira-Alsina, Sánchez, Dinesh, Tong, Chatterjee, Tedesco, Farràs, Hamelers, Puig (b0180) 2021; 46 Tremblay, Höglund, Koza, Bonde, Zhang (bib630) 2015; 5 Hurst, Lewis (b0260) 2010; 48 Lindsey (b0360) 2020 Schwarz, F.M., Müller, V., 2020. Whole-cell biocatalysis for hydrogen storage and syngas conversion to formate using a thermophilic acetogen. Biotechnol. Biofuels, 2020, 131, 13, 1–11. Aryal, Wan, Overgaard, Stoot, Chen, Tremblay, Zhang (b0035) 2019; 128 Christodoulou, Velasquez-Orta (b0160) 2016; 50 Jourdin, Raes, Buisman, Strik (b0295) 2018; 6 Zhang (b0600) 2015; 350 Bian, Xu, Katuri, Saikaly (bib636) 2021; 319 Katuri, Kalathil, Ragab, Bian, Alqahtani, Pant, Saikaly (b0300) 2018; 30 Savvas, Donnelly, Patterson, Chong, Esteves (b0485) 2018; 257 Bajracharya, Ter Heijne, Dominguez Benetton, Vanbroekhoven, Buisman, Strik, Pant (b0060) 2015; 15 Brun, Flexer (b0120) 2017 Ullrich, Lindner, Bär, Mörs, Graf, Lemmer (b0550) 2018; 247 Jeong, Bertsch, Hess, Choi, Choi, Chang, Müller (bib624) 2015; 81 Teixeira, Moutinho, Romão-Dumaresq (b0545) 2018; 12 Jourdin, Freguia, Donose, Chen, Wallace, Keller, Flexer (b0285) 2014; 2 Liew, Martin, Tappel, Heijstra, Mihalcea, Köpke (b0355) 2016; 7 Aryal, Halder, Zhang, Whelan, Tremblay, Chi, Zhang (b0030) 2017; 7 Srikanth, Singh, Vanbroekhoven, Pant, Kumar, Puri, Ramakumar (b0515) 2018; 265 Zhang, Nie, Bain, Lu, Cui, Snoeyenbos-West, Franks, Nevin, Russell, Lovley (b0605) 2013; 6 Cai, Cui, Liu, Jin, Chen, Guo, Wang (b0130) 2022; 428 Bajracharya, Vanbroekhoven, Buisman, Strik, Pant (b0070) 2017; 202 Takors, Kopf, Mampel, Bluemke, Blombach, Eikmanns, Bengelsdorf, Weuster-Botz, Dürre (b0540) 2018; 11 Noori, Vu, Ali, Min (b0420) 2020; 392 Mateos, Escapa, San-Martín, De Wever, Sotres, Pant (b0385) 2020; 41 Li, Wang, Jiang, Zhu, Liu, Guo, Song (b0340) 2018; 8 Köpke, Simpson (b0305) 2020; 65 Novak (bib616) 2021; 323 Chen, Ni (b0155) 2016; 306 Nevin, K.P., Woodard, T.L., Franks, A.E., Summers, Z.M., Lovley, D.R., 2010. Microbial Electrosynthesis : Feeding Microbes Electricity To Convert Carbon Dioxide and Water to Multicarbon Extracellular Organic. MBio 1, e00103-10-. https://doi.org/10.1128/mBio.00103-10.Editor. Rosa, Hunger, Gimkiewicz, Zehnsdorf, Harnisch (b0465) 2017; 17 Liu, Gallagher, Sakimoto, Nichols, Chang, Chang, Yang (bib632) 2015; 15 Maddipati (10.1016/j.biortech.2022.127178_b0365) 2011; 102 Bajracharya (10.1016/j.biortech.2022.127178_b0070) 2017; 202 10.1016/j.biortech.2022.127178_b0520 Alqahtani (10.1016/j.biortech.2022.127178_b0020) 2018; 28 Zhang (10.1016/j.biortech.2022.127178_b0600) 2015; 350 Ragsdale (10.1016/j.biortech.2022.127178_b0440) 2008; 1784 Skidmore (10.1016/j.biortech.2022.127178_b0510) 2013; 55 Jourdin (10.1016/j.biortech.2022.127178_bib634) 2015; 49 Bian (10.1016/j.biortech.2022.127178_bib636) 2021; 319 Xu (10.1016/j.biortech.2022.127178_b0590) 2020; 191 Bian (10.1016/j.biortech.2022.127178_b0095) 2018; 6 Hurst (10.1016/j.biortech.2022.127178_b0260) 2010; 48 Sarkar (10.1016/j.biortech.2022.127178_b0480) 2016; 6 10.1016/j.biortech.2022.127178_bib617 Jourdin (10.1016/j.biortech.2022.127178_b0295) 2018; 6 Zhang (10.1016/j.biortech.2022.127178_b0595) 2021; 51 Ojeda (10.1016/j.biortech.2022.127178_b0425) 2017; 245 Kougias (10.1016/j.biortech.2022.127178_b0310) 2017; 225 Giddings (10.1016/j.biortech.2022.127178_b0230) 2015; 6 Rosa (10.1016/j.biortech.2022.127178_b0470) 2019; 7 He (10.1016/j.biortech.2022.127178_b0245) 2021; 265 Asimakopoulos (10.1016/j.biortech.2022.127178_b0045) 2018; 348 Katuri (10.1016/j.biortech.2022.127178_b0300) 2018; 30 UNFCCC (10.1016/j.biortech.2022.127178_b0555) Chatzipanagiotou (10.1016/j.biortech.2022.127178_b0145) 2021; 86 Wang (10.1016/j.biortech.2022.127178_bib628) 2018; 187 Ditzig (10.1016/j.biortech.2022.127178_b0185) 2007; 32 Köpke (10.1016/j.biortech.2022.127178_bib625) 2011; 77 IEA (10.1016/j.biortech.2022.127178_b0265) 2019 Li (10.1016/j.biortech.2022.127178_b0345) 2018; 142 Weber (10.1016/j.biortech.2022.127178_b0575) 2018; 9 Cui (10.1016/j.biortech.2022.127178_b0170) 2020; 306 Krieg (10.1016/j.biortech.2022.127178_b0315) 2018; 167 Kantzow (10.1016/j.biortech.2022.127178_bib620) 2015; 212 Mohammadi (10.1016/j.biortech.2022.127178_bib638) 2011 Sadhukhan (10.1016/j.biortech.2022.127178_b0475) 2016; 56 Bardone (10.1016/j.biortech.2022.127178_bib622) 2018; 64 Tahir (10.1016/j.biortech.2022.127178_b0535) 2021; 773 Jourdin (10.1016/j.biortech.2022.127178_b0290) 2016; 50 Bajracharya (10.1016/j.biortech.2022.127178_b0055) 2017; 356 Baransi-Karkaby (10.1016/j.biortech.2022.127178_b0080) 2020; 81 Mourato (10.1016/j.biortech.2022.127178_b0410) 2017; 235 10.1016/j.biortech.2022.127178_b0190 Jack (10.1016/j.biortech.2022.127178_b0280) 2019; 124 Prévoteau (10.1016/j.biortech.2022.127178_b0435) 2020; 62 Rodrigues (10.1016/j.biortech.2022.127178_b0455) 2019; 2 Marshall (10.1016/j.biortech.2022.127178_b0375) 2012; 78 Wang (10.1016/j.biortech.2022.127178_b0570) 2021; 33 Liew (10.1016/j.biortech.2022.127178_b0355) 2016; 7 Das (10.1016/j.biortech.2022.127178_b0175) 2021; 101 Menon (10.1016/j.biortech.2022.127178_b0395) 1996; 35 Campani (10.1016/j.biortech.2022.127178_b0135) 2015; 38 Chakraborty (10.1016/j.biortech.2022.127178_b0140) 2020; 250 Beuth (10.1016/j.biortech.2022.127178_b0085) 2020; 13 Teixeira (10.1016/j.biortech.2022.127178_b0545) 2018; 12 Dürre (10.1016/j.biortech.2022.127178_b0200) 2017; 10 Marshall (10.1016/j.biortech.2022.127178_b0370) 2013; 47 Lindsey (10.1016/j.biortech.2022.127178_b0360) 2020 Köpke (10.1016/j.biortech.2022.127178_b0305) 2020; 65 Hu (10.1016/j.biortech.2022.127178_bib627) 2016; 113 Bian (10.1016/j.biortech.2022.127178_b0110) 2020; 278 Fernández-Naveira (10.1016/j.biortech.2022.127178_b0215) 2016; 100 Bhatia (10.1016/j.biortech.2022.127178_b0090) 2019; 110 Blanchet (10.1016/j.biortech.2022.127178_b0115) 2015; 8 10.1016/j.biortech.2022.127178_b0320 Xia (10.1016/j.biortech.2022.127178_b0580) 2013; 47 Chen (10.1016/j.biortech.2022.127178_b0155) 2016; 306 Strübing (10.1016/j.biortech.2022.127178_b0525) 2017; 245 Bajracharya (10.1016/j.biortech.2022.127178_b0065) 2016; 23 Zhao (10.1016/j.biortech.2022.127178_b0610) 2014; 23 Bajracharya (10.1016/j.biortech.2022.127178_b0060) 2015; 15 Jeong (10.1016/j.biortech.2022.127178_bib624) 2015; 81 Li (10.1016/j.biortech.2022.127178_b0330) 2014; 167 Wang (10.1016/j.biortech.2022.127178_bib629) 2017; 101 Izadi (10.1016/j.biortech.2022.127178_b0275) 2019; 7 Srikanth (10.1016/j.biortech.2022.127178_b0515) 2018; 265 Zhu (10.1016/j.biortech.2022.127178_b0615) 2020; 11 Aryal (10.1016/j.biortech.2022.127178_b0025) 2016; 217 Mateos (10.1016/j.biortech.2022.127178_b0390) 2019; 12 Richter (10.1016/j.biortech.2022.127178_b0450) 2013; 6 Nie (10.1016/j.biortech.2022.127178_bib633) 2013; 15 Dürre (10.1016/j.biortech.2022.127178_b0205) 2015; 35 Tremblay (10.1016/j.biortech.2022.127178_bib630) 2015; 5 Sharma (10.1016/j.biortech.2022.127178_b0490) 2013; 49 Xiang (10.1016/j.biortech.2022.127178_b0585) 2017; 233 Bian (10.1016/j.biortech.2022.127178_b0100) 2020; 302 Flexer (10.1016/j.biortech.2022.127178_b0220) 2020; 53 Tahir (10.1016/j.biortech.2022.127178_bib619) 2020; 381 Dessì (10.1016/j.biortech.2022.127178_b0180) 2021; 46 Huggins (10.1016/j.biortech.2022.127178_b0255) 2014; 157 Mateos (10.1016/j.biortech.2022.127178_b0385) 2020; 41 Noori (10.1016/j.biortech.2022.127178_b0420) 2020; 392 Ganigué (10.1016/j.biortech.2022.127178_b0225) 2015; 51 Zhang (10.1016/j.biortech.2022.127178_b0605) 2013; 6 Ramió-Pujol (10.1016/j.biortech.2022.127178_b0445) 2015; 192 Christodoulou (10.1016/j.biortech.2022.127178_b0160) 2016; 50 Drake (10.1016/j.biortech.2022.127178_b0195) 2008; 1125 Henstra (10.1016/j.biortech.2022.127178_bib637) 2007; 18 Viggi (10.1016/j.biortech.2022.127178_b0565) 2020; 20 Kundiyana (10.1016/j.biortech.2022.127178_b0325) 2011; 102 Mier (10.1016/j.biortech.2022.127178_b0400) 2021; 283 Aryal (10.1016/j.biortech.2022.127178_b0035) 2019; 128 Su (10.1016/j.biortech.2022.127178_b0530) 2020; 4 Alfaro (10.1016/j.biortech.2022.127178_b0010) 2018; 258 Vassilev (10.1016/j.biortech.2022.127178_b0560) 2019; 55 Li (10.1016/j.biortech.2022.127178_b0350) 2020; 295 Abubackar (10.1016/j.biortech.2022.127178_b0005) 2016; 169 Aryal (10.1016/j.biortech.2022.127178_b0030) 2017; 7 Lanzillo (10.1016/j.biortech.2022.127178_bib621) 2020; 8 Liu (10.1016/j.biortech.2022.127178_bib632) 2015; 15 Asensio (10.1016/j.biortech.2022.127178_b0040) 2021; 406 Savvas (10.1016/j.biortech.2022.127178_b0485) 2018; 257 Martin (10.1016/j.biortech.2022.127178_b0380) 2016; 113 Ullrich (10.1016/j.biortech.2022.127178_b0550) 2018; 247 Enzmann (10.1016/j.biortech.2022.127178_b0210) 2019; 193 Monir (10.1016/j.biortech.2022.127178_bib618) 2020; 157 Shen (10.1016/j.biortech.2022.127178_b0500) 2014; 85 Corral (10.1016/j.biortech.2022.127178_b0165) 2021; 14 Rojas (10.1016/j.biortech.2022.127178_b0460) 2021; 101 Li (10.1016/j.biortech.2022.127178_b0335) 2016; 169 Brun (10.1016/j.biortech.2022.127178_b0120) 2017 Gildemyn (10.1016/j.biortech.2022.127178_b0235) 2015; 2 Schwarz (10.1016/j.biortech.2022.127178_bib623) 2020; 13 10.1016/j.biortech.2022.127178_b0270 Shi (10.1016/j.biortech.2022.127178_bib631) 2021; 754 LaBelle (10.1016/j.biortech.2022.127178_bib635) 2017; 8 Rosa (10.1016/j.biortech.2022.127178_b0465) 2017; 17 Novak (10.1016/j.biortech.2022.127178_bib616) 2021; 323 Molitor (10.1016/j.biortech.2022.127178_b0405) 2016; 215 Bajracharya (10.1016/j.biortech.2022.127178_b0050) 2021; 287 Balk (10.1016/j.biortech.2022.127178_b0075) 2003; 179 Burkhardt (10.1016/j.biortech.2022.127178_b0125) 2019; 240 10.1016/j.biortech.2022.127178_b0415 Siegert (10.1016/j.biortech.2022.127178_b0505) 2014; 2 Shen (10.1016/j.biortech.2022.127178_b0495) 2018; 202 Alqahtani (10.1016/j.biortech.2022.127178_b0015) 2020; 766 Hintermayer (10.1016/j.biortech.2022.127178_b0250) 2016; 115 Hawkins (10.1016/j.biortech.2022.127178_b0240) 2013; 24 Li (10.1016/j.biortech.2022.127178_b0340) 2018; 8 Cai (10.1016/j.biortech.2022.127178_b0130) 2022; 428 Haas (10.1016/j.biortech.2022.127178_bib626) 2018; 1 Poznansky (10.1016/j.biortech.2022.127178_b0430) 2021 Chen (10.1016/j.biortech.2022.127178_b0150) 2016; 4 Jourdin (10.1016/j.biortech.2022.127178_b0285) 2014; 2 Takors (10.1016/j.biortech.2022.127178_b0540) 2018; 11 |
References_xml | – volume: 6 start-page: 217 year: 2013 end-page: 224 ident: b0605 article-title: Improved cathode materials for microbial electrosynthesis publication-title: Energy Environ. Sci. – volume: 350 start-page: 738 year: 2015 end-page: 739 ident: b0600 article-title: More efficient together publication-title: Science – volume: 10 start-page: 14 year: 2017 end-page: 16 ident: b0200 article-title: Gas fermentation - a biotechnological solution for today’s challenges publication-title: Microb. Biotechnol. – volume: 51 start-page: 3235 year: 2015 end-page: 3238 ident: b0225 article-title: Microbial electrosynthesis of butyrate from carbon dioxide publication-title: Chem. Commun. – year: 2011 ident: bib638 article-title: Bioconversion of synthesis gas to second generation biofuels: A review publication-title: Renew. Sustain. Energy Rev. – volume: 102 start-page: 6494 year: 2011 end-page: 6501 ident: b0365 article-title: Ethanol production from syngas by Clostridium strain P11 using corn steep liquor as a nutrient replacement to yeast extract publication-title: Bioresour. Technol. – volume: 157 start-page: 114 year: 2014 end-page: 119 ident: b0255 article-title: Biochar as a sustainable electrode material for electricity production in microbial fuel cells publication-title: Bioresour. Technol. – volume: 766 year: 2020 ident: b0015 article-title: Enrichment of salt-tolerant CO publication-title: Sci. Total Environ. – volume: 110 start-page: 143 year: 2019 end-page: 158 ident: b0090 article-title: Carbon dioxide capture and bioenergy production using biological system – A review publication-title: Renew. Sustain. Energy Rev. – volume: 101 start-page: 237 year: 2021 end-page: 246 ident: b0175 article-title: Application of TiO2 and Rh as cathode catalyst to boost the microbial electrosynthesis of organic compounds through CO2 sequestration publication-title: Process Biochem – year: 2019 ident: b0265 article-title: World Energy Statistics 2019 – volume: 250 year: 2020 ident: b0140 article-title: Effect of tungsten and selenium on C1 gas bioconversion by an enriched anaerobic sludge and microbial community analysis publication-title: Chemosphere – year: 2020 ident: b0360 article-title: Climate Change: Atmospheric Carbon Dioxide [WWW Document] publication-title: Climate.gov. – volume: 47 start-page: 6023 year: 2013 end-page: 6029 ident: b0370 article-title: Long-term operation of microbial electrosynthesis systems improves acetate production by autotrophic microbiomes publication-title: Environ. Sci. Technol. – volume: 247 start-page: 7 year: 2018 end-page: 13 ident: b0550 article-title: Influence of operating pressure on the biological hydrogen methanation in trickle-bed reactors publication-title: Bioresour. Technol. – volume: 202 start-page: 433 year: 2017 end-page: 449 ident: b0070 article-title: Bioelectrochemical conversion of CO2 to chemicals: CO2 as a next generation feedstock for electricity-driven bioproduction in batch and continuous modes publication-title: Faraday Discuss. – volume: 48 start-page: 159 year: 2010 end-page: 165 ident: b0260 article-title: Carbon monoxide partial pressure effects on the metabolic process of syngas fermentation publication-title: Biochem. Eng. J. – volume: 6 start-page: 18641 year: 2016 end-page: 18653 ident: b0480 article-title: Regulation of acidogenic metabolism towards enhanced short chain fatty acid biosynthesis from waste: Metagenomic profiling publication-title: RSC Adv. – reference: Dong, Z., Wang, H., Tian, S., Yang, Y., Yuan, H., Huang, Q., Song, T. shun, Xie, J., 2018. Fluidized granular activated carbon electrode for efficient microbial electrosynthesis of acetate from carbon dioxide. Bioresour. Technol. 269, 203–209. https://doi.org/10.1016/J.BIORTECH.2018.08.103. – volume: 50 start-page: 1982 year: 2016 end-page: 1989 ident: b0290 article-title: Bringing High-Rate, CO2 -Based Microbial Electrosynthesis Closer to Practical Implementation through Improved Electrode Design and Operating Conditions publication-title: Environ. Sci. Technol. – volume: 225 start-page: 429 year: 2017 end-page: 437 ident: b0310 article-title: Ex-situ biogas upgrading and enhancement in different reactor systems publication-title: Bioresour. Technol. – volume: 62 start-page: 48 year: 2020 end-page: 57 ident: b0435 article-title: Microbial electrosynthesis from CO2: forever a promise? publication-title: Curr. Opin. Biotechnol. – volume: 212 start-page: 11 year: 2015 end-page: 18 ident: bib620 article-title: Continuous gas fermentation by Acetobacterium woodii in a submerged membrane reactor with full cell retention publication-title: J. Biotechnol. – volume: 8 start-page: 3731 year: 2015 end-page: 3744 ident: b0115 article-title: Importance of the hydrogen route in up-scaling electrosynthesis for microbial CO2 reduction publication-title: Energy Environ. Sci. – volume: 7 start-page: 93 year: 2019 ident: b0275 article-title: High Performing Gas Diffusion Biocathode for Microbial Fuel Cells Using Acidophilic Iron Oxidizing Bacteria publication-title: Front. Energy Res. – volume: 101 start-page: 50 year: 2021 end-page: 58 ident: b0460 article-title: Enhancing the gas–liquid mass transfer during microbial electrosynthesis by the variation of CO2 flow rate publication-title: Process Biochem. – volume: 41 start-page: 3 year: 2020 end-page: 6 ident: b0385 article-title: Long-term open circuit microbial electrosynthesis system promotes methanogenesis publication-title: J. Energy Chem. – reference: IPCC, 2014. IPCC, 2014: Summary for Policymakers, in: Edenhofer, O., Pichs-Madruga, R., Sokona, Youba, Agrawala, S., Alexeyevich Bashmakov, I., Blanco, G., Broome, J., Bruckner, T., Brunner, Steffen, Bustamante, M., Baiocchi, G., Sokona, Y, Farahani, E., Kadner, S., Seyboth, K., Adler, A., Baum, I., Brunner, S, Eickemeier, P., Kriemann, B., Savolainen, J., Schlömer, S., von Stechow, C., Zwickel, T., Minx, J. (Eds.), Climate Change 2014: Mitigation of Climate Change. Contribution of Working Group III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA. – volume: 55 start-page: 4351 year: 2019 end-page: 4354 ident: b0560 article-title: Microbial electrosynthesis system with dual biocathode arrangement for simultaneous acetogenesis, solventogenesis and carbon chain elongation publication-title: Chem. Commun. – volume: 18 start-page: 200 year: 2007 end-page: 206 ident: bib637 article-title: Microbiology of synthesis gas fermentation for biofuel production publication-title: Curr. Opin. Biotechnol. – volume: 302 year: 2020 ident: b0100 article-title: Microbial electrosynthesis from CO2: Challenges, opportunities and perspectives in the context of circular bioeconomy publication-title: Bioresour. Technol. – volume: 406 year: 2021 ident: b0040 article-title: Upgrading fluidized bed bioelectrochemical reactors for treating brewery wastewater by using a fluid-like electrode publication-title: Chem. Eng. J. – volume: 4 start-page: 800 year: 2020 end-page: 811 ident: b0530 article-title: Close-Packed Nanowire-Bacteria Hybrids for Efficient Solar-Driven CO2 Fixation publication-title: Joule – volume: 81 start-page: 4782 year: 2015 end-page: 4790 ident: bib624 article-title: Energy conservation model based on genomic and experimental analyses of a carbon monoxide-utilizing, butyrate-forming acetogen, publication-title: Appl. Environ. Microbiol. – volume: 157 start-page: 1116 year: 2020 end-page: 1123 ident: bib618 article-title: Bioethanol production through syngas fermentation in a tar free bioreactor using Clostridium butyricum publication-title: Renew. Energy – volume: 1125 start-page: 100 year: 2008 ident: b0195 article-title: Old Acetogens, New Light publication-title: Ann. N. Y. Acad. Sci. – volume: 64 year: 2018 ident: bib622 article-title: Fermentation of H publication-title: Chem. Eng. Trans. – volume: 11 start-page: 416 year: 2020 ident: b0615 article-title: Energy Conservation and Carbon Flux Distribution During Fermentation of CO or H2/CO2 by Clostridium ljungdahlii publication-title: Front. Microbiol. – volume: 7 start-page: 694 year: 2016 ident: b0355 article-title: Gas Fermentation-A flexible platform for commercial scale production of low-carbon-fuels and chemicals from waste and renewable feedstocks publication-title: Front. Microbiol. – volume: 169 start-page: 241 year: 2016 end-page: 246 ident: b0335 article-title: Cathodic fluidized granular activated carbon assisted-membrane bioelectrochemical reactor for wastewater treatment publication-title: Sep. Purif. Technol. – volume: 6 start-page: 3987 year: 2013 end-page: 4000 ident: b0450 article-title: A Two-Stage Continuous Fermentation System for Conversion of Syngas into Ethanol publication-title: Energies – volume: 53 start-page: 311 year: 2020 end-page: 321 ident: b0220 article-title: Purposely Designed Hierarchical Porous Electrodes for High Rate Microbial Electrosynthesis of Acetate from Carbon Dioxide publication-title: Acc. Chem. Res. – volume: 215 start-page: 386 year: 2016 end-page: 396 ident: b0405 article-title: Carbon recovery by fermentation of CO-rich off gases – Turning steel mills into biorefineries publication-title: Bioresour. Technol. – volume: 49 start-page: 6495 year: 2013 end-page: 6497 ident: b0490 article-title: Bioelectrocatalyzed reduction of acetic and butyric acids via direct electron transfer using a mixed culture of sulfate-reducers drives electrosynthesis of alcohols and acetone publication-title: Chem. Commun. (Camb) – volume: 6 start-page: 1 year: 2015 end-page: 6 ident: b0230 article-title: Simplifying microbial electrosynthesis reactor design publication-title: Front. Microbiol. – volume: 6 start-page: 17201 year: 2018 end-page: 17211 ident: b0095 article-title: Porous Nickel Hollow Fiber Cathodes Coated with CNTs for Efficient Microbial Electrosynthesis of Acetate from CO publication-title: J. Mater. Chem. A – volume: 283 year: 2021 ident: b0400 article-title: A review of recent advances in electrode materials for emerging bioelectrochemical systems: From biofilm-bearing anodes to specialized cathodes publication-title: Chemosphere – volume: 348 start-page: 732 year: 2018 end-page: 744 ident: b0045 article-title: Reactor systems for syngas fermentation processes: A review publication-title: Chem. Eng. J. – volume: 65 start-page: 180 year: 2020 end-page: 189 ident: b0305 article-title: Pollution to products: recycling of ‘above ground’ carbon by gas fermentation publication-title: Curr. Opin. Biotechnol. – volume: 17 start-page: 77 year: 2017 end-page: 85 ident: b0465 article-title: Paving the way for bioelectrotechnology: Integrating electrochemistry into bioreactors publication-title: Eng. Life Sci. – volume: 8 start-page: 756 year: 2017 ident: bib635 article-title: Energy Efficiency and Productivity Enhancement of Microbial Electrosynthesis of Acetate publication-title: Front. Microbiol. – volume: 14 start-page: 3064 year: 2021 end-page: 3074 ident: b0165 article-title: Advanced manufacturing for electrosynthesis of fuels and chemicals from CO2 publication-title: Energy Environ. Sci. – year: 2021 ident: b0430 article-title: Boosting the Productivity of H2-Driven Biocatalysis in a Commercial Hydrogenation Flow Reactor Using H2 From Water Electrolysis – volume: 101 start-page: 2619 year: 2017 end-page: 2627 ident: bib629 article-title: Enhancement of acetate productivity in a thermophilic (55 °C) hollow-fiber membrane biofilm reactor with mixed culture syngas (H publication-title: Appl. Microbiol. Biotechnol. – volume: 773 year: 2021 ident: b0535 article-title: MXene-coated biochar as potential biocathode for improved microbial electrosynthesis system publication-title: Sci. Total Environ. – volume: 265 year: 2021 ident: b0245 article-title: Homoacetogenesis and solventogenesis from H2/CO2 by granular sludge at 25, 37 and 55 °C publication-title: Chemosphere – volume: 124 start-page: 95 year: 2019 end-page: 101 ident: b0280 article-title: Directing Clostridium ljungdahlii fermentation products via hydrogen to carbon monoxide ratio in syngas publication-title: Biomass Bioenergy – volume: 257 start-page: 164 year: 2018 end-page: 171 ident: b0485 article-title: Methanogenic capacity and robustness of hydrogenotrophic cultures based on closed nutrient recycling via microbial catabolism: Impact of temperature and microbial attachment publication-title: Bioresour. Technol. – volume: 2 start-page: 910 year: 2014 end-page: 917 ident: b0505 article-title: Comparison of Nonprecious Metal Cathode Materials for Methane Production by Electromethanogenesis publication-title: ACS Sustain. Chem. Eng. – volume: 167 start-page: 310 year: 2014 end-page: 315 ident: b0330 article-title: A fluidized bed membrane bioelectrochemical reactor for energy-efficient wastewater treatment publication-title: Bioresour. Technol. – volume: 202 start-page: 536 year: 2018 end-page: 542 ident: b0495 article-title: Conversion of syngas (CO and H2) to biochemicals by mixed culture fermentation in mesophilic and thermophilic hollow-fiber membrane biofilm reactors publication-title: J. Clean. Prod. – volume: 193 start-page: 133 year: 2019 end-page: 143 ident: b0210 article-title: Transferring bioelectrochemical processes from H-cells to a scalable bubble column reactor publication-title: Chem. Eng. Sci. – volume: 115 start-page: 1 year: 2016 end-page: 13 ident: b0250 article-title: Anodic respiration of Pseudomonas putida KT2440 in a stirred-tank bioreactor publication-title: Biochem. Eng. J. – volume: 15 start-page: 14290 year: 2013 end-page: 14294 ident: bib633 article-title: Improved cathode for high efficient microbial-catalyzed reduction in microbial electrosynthesis cells publication-title: Phys. Chem. Chem. Phys. – volume: 47 start-page: 2085 year: 2013 end-page: 2091 ident: b0580 article-title: Oxygen-reducing biocathodes operating with passive oxygen transfer in microbial fuel cells publication-title: Environ. Sci. Technol. – volume: 287 year: 2021 ident: b0050 article-title: Dual cathode configuration and headspace gas recirculation for enhancing microbial electrosynthesis using Sporomusa ovata publication-title: Chemosphere – volume: 8 start-page: 1075 year: 2020 ident: bib621 article-title: Batch Syngas Fermentation by Clostridium carboxidivorans for Production of Acids and Alcohols publication-title: Processes – volume: 191 year: 2020 ident: b0590 article-title: Wire-drawing process with graphite lubricant as an industrializable approach to prepare graphite coated stainless-steel anode for bioelectrochemical systems publication-title: Environ. Res. – volume: 179 start-page: 315 year: 2003 end-page: 320 ident: b0075 article-title: Methanol utilization by a novel thermophilic homoacetogenic bacterium, publication-title: Arch. Microbiol. – volume: 50 year: 2016 ident: b0160 article-title: Microbial Electrosynthesis and Anaerobic Fermentation: An Economic Evaluation for Acetic Acid Production from CO<inf>2</inf> and CO publication-title: Environ. Sci. Technol. – volume: 35 start-page: 15814 year: 1996 end-page: 15821 ident: b0395 article-title: Unleashing Hydrogenase Activity in Carbon Monoxide Dehydrogenase/Acetyl-CoA Synthase and Pyruvate: Ferredoxin Oxidoreductase publication-title: Biochemistry – volume: 86 start-page: 763 year: 2021 end-page: 777 ident: b0145 article-title: Catalytic Cooperation between a Copper Oxide Electrocatalyst and a Microbial Community for Microbial Electrosynthesis publication-title: Chempluschem – volume: 258 start-page: 142 year: 2018 end-page: 150 ident: b0010 article-title: Evaluation of process performance, energy consumption and microbiota characterization in a ceramic membrane bioreactor for ex-situ biomethanation of H publication-title: Bioresour. Technol. – volume: 167 start-page: 231 year: 2018 end-page: 271 ident: b0315 article-title: Reactors for Microbial Electrobiotechnology publication-title: Adv. Biochem. Eng. Biotechnol. – volume: 5 start-page: 16168 year: 2015 ident: bib630 article-title: Adaptation of the autotrophic acetogen publication-title: Sci. Rep. – volume: 381 start-page: 122687 year: 2020 ident: bib619 article-title: A novel MXene-coated biocathode for enhanced microbial electrosynthesis performance publication-title: Chem. Eng. J. – year: 2017 ident: b0120 article-title: Functional electrodes for enzymatic and microbial electrochemical systems publication-title: Functional Electrodes for Enzymatic and Microbial Electrochemical Systems – volume: 113 start-page: 531 year: 2016 end-page: 539 ident: b0380 article-title: Traits of selected Clostridium strains for syngas fermentation to ethanol publication-title: Biotechnol. Bioeng. – volume: 33 start-page: 2004051 year: 2021 ident: b0570 article-title: Nanomaterials Facilitating Microbial Extracellular Electron Transfer at Interfaces publication-title: Adv. Mater. – volume: 356 start-page: 256 year: 2017 end-page: 273 ident: b0055 article-title: Biotransformation of carbon dioxide in bioelectrochemical systems: State of the art and future prospects publication-title: J. Power Sources – volume: 240 start-page: 818 year: 2019 end-page: 826 ident: b0125 article-title: Long term and demand-oriented biocatalytic synthesis of highly concentrated methane in a trickle bed reactor publication-title: Appl. Energy – volume: 77 start-page: 5467 year: 2011 end-page: 5475 ident: bib625 article-title: 2,3-Butanediol Production By Acetogenic Bacteria, an Alternative Route To Chemical Synthesis, Using Industrial Waste Gas publication-title: Appl. Environ. Microbiol. – volume: 2 start-page: 13093 year: 2014 end-page: 13102 ident: b0285 article-title: A novel carbon nanotube modified scaffold as an efficient biocathode material for improved microbial electrosynthesis publication-title: J. Mater. Chem. A – volume: 306 start-page: 1092 year: 2016 end-page: 1098 ident: b0155 article-title: Anaerobic conversion of hydrogen and carbon dioxide to fatty acids production in a membrane biofilm reactor: A modeling approach publication-title: Chem. Eng. J. – volume: 32 start-page: 2296 year: 2007 end-page: 2304 ident: b0185 article-title: Production of hydrogen from domestic wastewater using a bioelectrochemically assisted microbial reactor (BEAMR) publication-title: Int. J. Hydrogen Energy – volume: 51 year: 2021 ident: b0595 article-title: A review of microbial electrosynthesis applied to carbon dioxide capture and conversion: The basic principles, electrode materials, and bioproducts publication-title: J. CO2 Util. – volume: 306 year: 2020 ident: b0170 article-title: Enhanced isophthalonitrile complexation-reduction removal using a novel anaerobic fluidized bed reactor in a bioelectrochemical system based on electric field activation (AFBR-EFA) publication-title: Bioresour. Technol. – volume: 13 start-page: 2044 year: 2020 end-page: 2056 ident: bib623 article-title: Revealing formate production from carbon monoxide in wild type and mutants of Rnf- and Ech-containing acetogens, publication-title: Microb. Biotechnol. – volume: 24 start-page: 376 year: 2013 end-page: 384 ident: b0240 article-title: Biological conversion of carbon dioxide and hydrogen into liquid fuels and industrial chemicals publication-title: Curr. Opin. Biotechnol. – volume: 28 start-page: 1804860 year: 2018 ident: b0020 article-title: Porous Hollow Fiber Nickel Electrodes for Effective Supply and Reduction of Carbon Dioxide to Methane through Microbial Electrosynthesis publication-title: Adv. Funct. Mater. – year: 2015 ident: b0555 article-title: The Paris Agreement [WWW Document] – reference: Stoll, I., Boukis, N., Sauer, J., 2019. Syngas Fermentation at Elevated Pressure - Experimental Results, in: 27th European Biomass Conference and Exhibition. Lisbon, pp. 1255–1261. https://doi.org/10.5071/27theubce2019-3cv.3.4. – volume: 11 start-page: 606 year: 2018 end-page: 625 ident: b0540 article-title: Using gas mixtures of CO, CO2 and H2 as microbial substrates: the do’s and don’ts of successful technology transfer from laboratory to production scale publication-title: Microb. Biotechnol. – volume: 30 start-page: 1707072 year: 2018 ident: b0300 article-title: Dual-Function Electrocatalytic and Macroporous Hollow-Fiber Cathode for Converting Waste Streams to Valuable Resources Using Microbial Electrochemical Systems publication-title: Adv. Mater. – volume: 245 start-page: 1294 year: 2017 end-page: 1298 ident: b0425 article-title: Improvement of methane content in a hydrogenotrophic anaerobic digester via the proper operation of membrane module integrated into an external-loop publication-title: Bioresour. Technol. – volume: 1784 start-page: 1873 year: 2008 end-page: 1898 ident: b0440 article-title: Acetogenesis and the Wood-Ljungdahl pathway of CO2 fixation publication-title: Biochimica et Biophysica Acta (BBA) - Proteins and Proteomics – volume: 392 year: 2020 ident: b0420 article-title: Recent advances in cathode materials and configurations for upgrading methane in bioelectrochemical systems integrated with anaerobic digestion publication-title: Chem. Eng. J. – reference: Krige, A., Rova, U., Christakopoulos, P., 2021. 3D bioprinting on cathodes in microbial electrosynthesis for increased acetate production rate using Sporomusa ovata. J. Environ. Chem. Eng. 9, 106189. https://doi.org/10.1016/J.JECE.2021.106189. – volume: 7 start-page: 98 year: 2019 ident: b0470 article-title: Integrating Electrochemistry Into Bioreactors: Effect of the Upgrade Kit on Mass Transfer, Mixing Time and Sterilizability publication-title: Front. Energy Res. – volume: 754 start-page: 142440 year: 2021 ident: bib631 article-title: Improved robustness of microbial electrosynthesis by adaptation of a strict anaerobic microbial catalyst to molecular oxygen publication-title: Sci. Total Environ. – volume: 46 start-page: 107675 year: 2021 ident: b0180 article-title: Microbial electrosynthesis: Towards sustainable biorefineries for production of green chemicals from CO2 emissions publication-title: Biotechnol. Adv. – volume: 245 start-page: 1176 year: 2017 end-page: 1183 ident: b0525 article-title: High performance biological methanation in a thermophilic anaerobic trickle bed reactor publication-title: Bioresour. Technol. – volume: 55 start-page: 156 year: 2013 end-page: 162 ident: b0510 article-title: Syngas fermentation to biofuels: Effects of hydrogen partial pressure on hydrogenase efficiency publication-title: Biomass Bioenergy – volume: 20 start-page: 98 year: 2020 end-page: 106 ident: b0565 article-title: Conductive Magnetite Nanoparticles Enhance the Microbial Electrosynthesis of Acetate from CO2 while Diverting Electrons away from Methanogenesis publication-title: Fuel Cells – volume: 15 start-page: 14 year: 2015 end-page: 24 ident: b0060 article-title: CO publication-title: Bioresour. Technol. – volume: 142 start-page: 396 year: 2018 end-page: 404 ident: b0345 article-title: Salinity-gradient energy driven microbial electrosynthesis of value-added chemicals from CO2 reduction publication-title: Water Res. – reference: Nevin, K.P., Woodard, T.L., Franks, A.E., Summers, Z.M., Lovley, D.R., 2010. Microbial Electrosynthesis : Feeding Microbes Electricity To Convert Carbon Dioxide and Water to Multicarbon Extracellular Organic. MBio 1, e00103-10-. https://doi.org/10.1128/mBio.00103-10.Editor. – volume: 187 start-page: 165 year: 2018 end-page: 170 ident: bib628 article-title: Tunable production of ethanol and acetate from synthesis gas by mesophilic mixed culture fermentation in a hollow fiber membrane biofilm reactor publication-title: J. Clean. Prod. – volume: 81 start-page: 1319 year: 2020 end-page: 1328 ident: b0080 article-title: Innovative ex-situ biological biogas upgrading using immobilized biomethanation bioreactor (IBBR) publication-title: Water Sci. Technol. – volume: 113 start-page: 3773 year: 2016 end-page: 3778 ident: bib627 article-title: Integrated bioprocess for conversion of gaseous substrates to liquids publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 323 start-page: 124573 year: 2021 ident: bib616 article-title: Blending industrial blast furnace gas with H publication-title: Bioresour. Technol. – volume: 128 start-page: 83 year: 2019 end-page: 93 ident: b0035 article-title: Increased carbon dioxide reduction to acetate in a microbial electrosynthesis reactor with a reduced graphene oxide-coated copper foam composite cathode publication-title: Bioelectrochemistry – volume: 233 start-page: 227 year: 2017 end-page: 235 ident: b0585 article-title: High-efficient acetate production from carbon dioxide using a bioanode microbial electrosynthesis system with bipolar membrane publication-title: Bioresour. Technol. – volume: 217 start-page: 117 year: 2016 end-page: 122 ident: b0025 article-title: Enhanced microbial electrosynthesis with three-dimensional graphene functionalized cathodes fabricated via solvothermal synthesis publication-title: Electrochim. Acta – volume: 6 start-page: 7 year: 2018 ident: b0295 article-title: Critical Biofilm Growth throughout Unmodified Carbon Felts Allows Continuous Bioelectrochemical Chain Elongation from CO2 up to Caproate at High Current Density publication-title: Front. Energy Res. – volume: 23 start-page: 22292 year: 2016 end-page: 22308 ident: b0065 article-title: Application of Gas Diffusion Biocathode in Microbial Electrosynthesis from Carbon dioxide publication-title: Environ. Sci. Pollut. Res. – volume: 15 start-page: 3634 year: 2015 end-page: 3639 ident: bib632 article-title: Nanowire–Bacteria Hybrids for Unassisted Solar Carbon Dioxide Fixation to Value-Added Chemicals publication-title: Nano Lett – volume: 12 start-page: 1103 year: 2018 end-page: 1117 ident: b0545 article-title: Gas fermentation of C1 feedstocks: commercialization status and future prospects. Biofuels publication-title: Bioprod. Biorefining – volume: 38 start-page: 1559 year: 2015 end-page: 1567 ident: b0135 article-title: Oxygen transfer in a pressurized airlift bioreactor publication-title: Bioprocess Biosyst. Eng. – volume: 2 start-page: 325 year: 2015 end-page: 328 ident: b0235 article-title: Integrated Production, Extraction, and Concentration of Acetic Acid from CO2 through Microbial Electrosynthesis publication-title: Environ. Sci. Technol. Lett. – volume: 2 start-page: 407 year: 2019 end-page: 414 ident: b0455 article-title: Perfluorocarbon nanoemulsion promotes the delivery of reducing equivalents for electricity-driven microbial CO2 reduction publication-title: Nat. Catal. – volume: 100 start-page: 3361 year: 2016 end-page: 3370 ident: b0215 article-title: Efficient butanol-ethanol (B-E) production from carbon monoxide fermentation by Clostridium carboxidivorans publication-title: Appl Microbiol Biotechnol – volume: 295 year: 2020 ident: b0350 article-title: Effects of temperature, hydrogen/carbon monoxide ratio and trace element addition on methane production performance from syngas biomethanation publication-title: Bioresour. Technol. – volume: 428 year: 2022 ident: b0130 article-title: An electrolytic-hydrogen-fed moving bed biofilm reactor for efficient microbial electrosynthesis of methane from CO2 publication-title: Chem. Eng. J. – volume: 4 start-page: 8395 year: 2016 end-page: 8401 ident: b0150 article-title: Electrosynthesis of acetate from CO2 by a highly structured biofilm assembled with reduced graphene oxide–tetraethylene pentamine publication-title: J. Mater. Chem. A – volume: 235 start-page: 149 year: 2017 end-page: 156 ident: b0410 article-title: A continuous system for biocatalytic hydrogenation of CO2 to formate publication-title: Bioresour. Technol. – volume: 102 start-page: 6058 year: 2011 end-page: 6064 ident: b0325 article-title: Effect of nutrient limitation and two-stage continuous fermentor design on productivities during “Clostridium ragsdalei” syngas fermentation publication-title: Bioresour. Technol. – volume: 8 start-page: 7651 year: 2018 end-page: 7669 ident: b0340 article-title: A short review of recent advances in CO2 hydrogenation to hydrocarbons over heterogeneous catalysts publication-title: RSC Adv. – volume: 49 start-page: 13566 year: 2015 end-page: 13574 ident: bib634 article-title: High Acetic Acid Production Rate Obtained by Microbial Electrosynthesis from Carbon Dioxide publication-title: Environ. Sci. Technol. – volume: 169 start-page: 210 year: 2016 end-page: 217 ident: b0005 article-title: Improved operating strategy for continuous fermentation of carbon monoxide to fuel-ethanol by clostridia publication-title: Appl. Energy – volume: 56 start-page: 116 year: 2016 end-page: 132 ident: b0475 article-title: A critical review of integration analysis of microbial electrosynthesis (MES) systems with waste biorefineries for the production of biofuel and chemical from reuse of CO2 publication-title: Renew. Sustain. Energy Rev. – volume: 278 year: 2020 ident: b0110 article-title: Efficient solar-to-acetate conversion from CO2 through microbial electrosynthesis coupled with stable photoanode publication-title: Appl. Energy – volume: 35 start-page: 63 year: 2015 end-page: 72 ident: b0205 article-title: C1-carbon sources for chemical and fuel production by microbial gas fermentation publication-title: Curr. Opin. Biotechnol. – volume: 1 start-page: 32 year: 2018 end-page: 39 ident: bib626 article-title: Technical photosynthesis involving CO publication-title: Nat. Catal. – volume: 78 start-page: 8412 year: 2012 end-page: 8420 ident: b0375 article-title: Electrosynthesis of commodity chemicals by an autotrophic microbial community publication-title: Appl. Environ. Microbiol. – reference: . – volume: 9 start-page: 946 year: 2018 end-page: 950 ident: b0575 article-title: Effective Use of Renewable Electricity for Making Renewable Fuels and Chemicals publication-title: ACS Catal. – volume: 23 start-page: 201 year: 2014 end-page: 206 ident: b0610 article-title: Methane formation route in the conversion of methanol to hydrocarbons publication-title: J. Energy Chem. – volume: 85 start-page: 21 year: 2014 end-page: 29 ident: b0500 article-title: Syngas fermentation of Clostridium carboxidivoran P7 in a hollow fiber membrane biofilm reactor: Evaluating the mass transfer coefficient and ethanol production performance publication-title: Biochem. Eng. J. – volume: 319 start-page: 124177 year: 2021 ident: bib636 article-title: Resistance assessment of microbial electrosynthesis for biochemical production to changes in delivery methods and CO publication-title: Bioresour. Technol. – volume: 265 start-page: 45 year: 2018 end-page: 51 ident: b0515 article-title: Electro-biocatalytic conversion of carbon dioxide to alcohols using gas diffusion electrode publication-title: Bioresour. Technol. – volume: 13 start-page: 3102 year: 2020 end-page: 3109 ident: b0085 article-title: Copper-bottomed: electrochemically active bacteria exploit conductive sulphide networks for enhanced electrogeneity publication-title: Energy Environ. Sci. – volume: 7 start-page: 1 year: 2017 end-page: 8 ident: b0030 article-title: Freestanding and flexible graphene papers as bioelectrochemical cathode for selective and efficient CO2 conversion publication-title: Sci. Rep. – volume: 12 start-page: 3297 year: 2019 ident: b0390 article-title: Enhanced CO2 conversion to acetate through microbial electrosynthesis (MES) by continuous headspace gas recirculation publication-title: Energies – volume: 192 start-page: 296 year: 2015 end-page: 303 ident: b0445 article-title: Incubation at 25 °C prevents acid crash and enhances alcohol production in Clostridium carboxidivorans P7 publication-title: Bioresour. Technol. – reference: Schwarz, F.M., Müller, V., 2020. Whole-cell biocatalysis for hydrogen storage and syngas conversion to formate using a thermophilic acetogen. Biotechnol. Biofuels, 2020, 131, 13, 1–11. – volume: 2 start-page: 910 year: 2014 ident: 10.1016/j.biortech.2022.127178_b0505 article-title: Comparison of Nonprecious Metal Cathode Materials for Methane Production by Electromethanogenesis publication-title: ACS Sustain. Chem. Eng. doi: 10.1021/sc400520x – volume: 81 start-page: 1319 year: 2020 ident: 10.1016/j.biortech.2022.127178_b0080 article-title: Innovative ex-situ biological biogas upgrading using immobilized biomethanation bioreactor (IBBR) publication-title: Water Sci. Technol. doi: 10.2166/wst.2020.234 – volume: 65 start-page: 180 year: 2020 ident: 10.1016/j.biortech.2022.127178_b0305 article-title: Pollution to products: recycling of ‘above ground’ carbon by gas fermentation publication-title: Curr. Opin. Biotechnol. doi: 10.1016/j.copbio.2020.02.017 – volume: 258 start-page: 142 year: 2018 ident: 10.1016/j.biortech.2022.127178_b0010 article-title: Evaluation of process performance, energy consumption and microbiota characterization in a ceramic membrane bioreactor for ex-situ biomethanation of H2 and CO2 publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2018.02.087 – volume: 110 start-page: 143 year: 2019 ident: 10.1016/j.biortech.2022.127178_b0090 article-title: Carbon dioxide capture and bioenergy production using biological system – A review publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2019.04.070 – year: 2021 ident: 10.1016/j.biortech.2022.127178_b0430 – volume: 101 start-page: 237 year: 2021 ident: 10.1016/j.biortech.2022.127178_b0175 article-title: Application of TiO2 and Rh as cathode catalyst to boost the microbial electrosynthesis of organic compounds through CO2 sequestration publication-title: Process Biochem doi: 10.1016/j.procbio.2020.11.017 – volume: 64 year: 2018 ident: 10.1016/j.biortech.2022.127178_bib622 article-title: Fermentation of H2 and CO2 with Clostridium ljungdahlii at Elevated Process Pressure-First Experimental Results publication-title: Chem. Eng. Trans. – volume: 102 start-page: 6494 year: 2011 ident: 10.1016/j.biortech.2022.127178_b0365 article-title: Ethanol production from syngas by Clostridium strain P11 using corn steep liquor as a nutrient replacement to yeast extract publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2011.03.047 – volume: 192 start-page: 296 year: 2015 ident: 10.1016/j.biortech.2022.127178_b0445 article-title: Incubation at 25 °C prevents acid crash and enhances alcohol production in Clostridium carboxidivorans P7 publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2015.05.077 – volume: 78 start-page: 8412 year: 2012 ident: 10.1016/j.biortech.2022.127178_b0375 article-title: Electrosynthesis of commodity chemicals by an autotrophic microbial community publication-title: Appl. Environ. Microbiol. doi: 10.1128/AEM.02401-12 – volume: 101 start-page: 50 year: 2021 ident: 10.1016/j.biortech.2022.127178_b0460 article-title: Enhancing the gas–liquid mass transfer during microbial electrosynthesis by the variation of CO2 flow rate publication-title: Process Biochem. doi: 10.1016/j.procbio.2020.11.005 – volume: 428 year: 2022 ident: 10.1016/j.biortech.2022.127178_b0130 article-title: An electrolytic-hydrogen-fed moving bed biofilm reactor for efficient microbial electrosynthesis of methane from CO2 publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2021.132093 – volume: 35 start-page: 15814 year: 1996 ident: 10.1016/j.biortech.2022.127178_b0395 article-title: Unleashing Hydrogenase Activity in Carbon Monoxide Dehydrogenase/Acetyl-CoA Synthase and Pyruvate: Ferredoxin Oxidoreductase publication-title: Biochemistry doi: 10.1021/bi9615598 – volume: 225 start-page: 429 year: 2017 ident: 10.1016/j.biortech.2022.127178_b0310 article-title: Ex-situ biogas upgrading and enhancement in different reactor systems publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2016.11.124 – volume: 265 year: 2021 ident: 10.1016/j.biortech.2022.127178_b0245 article-title: Homoacetogenesis and solventogenesis from H2/CO2 by granular sludge at 25, 37 and 55 °C publication-title: Chemosphere doi: 10.1016/j.chemosphere.2020.128649 – volume: 17 start-page: 77 year: 2017 ident: 10.1016/j.biortech.2022.127178_b0465 article-title: Paving the way for bioelectrotechnology: Integrating electrochemistry into bioreactors publication-title: Eng. Life Sci. doi: 10.1002/elsc.201600105 – volume: 101 start-page: 2619 year: 2017 ident: 10.1016/j.biortech.2022.127178_bib629 article-title: Enhancement of acetate productivity in a thermophilic (55 °C) hollow-fiber membrane biofilm reactor with mixed culture syngas (H2/CO2) fermentation publication-title: Appl. Microbiol. Biotechnol. doi: 10.1007/s00253-017-8124-9 – volume: 20 start-page: 98 year: 2020 ident: 10.1016/j.biortech.2022.127178_b0565 article-title: Conductive Magnetite Nanoparticles Enhance the Microbial Electrosynthesis of Acetate from CO2 while Diverting Electrons away from Methanogenesis publication-title: Fuel Cells doi: 10.1002/fuce.201900152 – volume: 295 year: 2020 ident: 10.1016/j.biortech.2022.127178_b0350 article-title: Effects of temperature, hydrogen/carbon monoxide ratio and trace element addition on methane production performance from syngas biomethanation publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2019.122296 – volume: 13 start-page: 2044 year: 2020 ident: 10.1016/j.biortech.2022.127178_bib623 article-title: Revealing formate production from carbon monoxide in wild type and mutants of Rnf- and Ech-containing acetogens, Acetobacterium woodii and Thermoanaerobacter kivui publication-title: Microb. Biotechnol. doi: 10.1111/1751-7915.13663 – ident: 10.1016/j.biortech.2022.127178_b0320 doi: 10.1016/j.jece.2021.106189 – volume: 392 year: 2020 ident: 10.1016/j.biortech.2022.127178_b0420 article-title: Recent advances in cathode materials and configurations for upgrading methane in bioelectrochemical systems integrated with anaerobic digestion publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2019.123689 – volume: 356 start-page: 256 year: 2017 ident: 10.1016/j.biortech.2022.127178_b0055 article-title: Biotransformation of carbon dioxide in bioelectrochemical systems: State of the art and future prospects publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2017.04.024 – volume: 35 start-page: 63 year: 2015 ident: 10.1016/j.biortech.2022.127178_b0205 article-title: C1-carbon sources for chemical and fuel production by microbial gas fermentation publication-title: Curr. Opin. Biotechnol. doi: 10.1016/j.copbio.2015.03.008 – volume: 24 start-page: 376 year: 2013 ident: 10.1016/j.biortech.2022.127178_b0240 article-title: Biological conversion of carbon dioxide and hydrogen into liquid fuels and industrial chemicals publication-title: Curr. Opin. Biotechnol. doi: 10.1016/j.copbio.2013.02.017 – volume: 49 start-page: 6495 year: 2013 ident: 10.1016/j.biortech.2022.127178_b0490 article-title: Bioelectrocatalyzed reduction of acetic and butyric acids via direct electron transfer using a mixed culture of sulfate-reducers drives electrosynthesis of alcohols and acetone publication-title: Chem. Commun. (Camb) doi: 10.1039/c3cc42570c – ident: 10.1016/j.biortech.2022.127178_b0520 – volume: 56 start-page: 116 year: 2016 ident: 10.1016/j.biortech.2022.127178_b0475 article-title: A critical review of integration analysis of microbial electrosynthesis (MES) systems with waste biorefineries for the production of biofuel and chemical from reuse of CO2 publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2015.11.015 – volume: 323 start-page: 124573 year: 2021 ident: 10.1016/j.biortech.2022.127178_bib616 article-title: Blending industrial blast furnace gas with H2 enables Acetobacterium woodii to efficiently co-utilize CO, CO2 and H2 publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2020.124573 – volume: 179 start-page: 315 year: 2003 ident: 10.1016/j.biortech.2022.127178_b0075 article-title: Methanol utilization by a novel thermophilic homoacetogenic bacterium, Moorella mulderi sp. nov., isolated from a bioreactor publication-title: Arch. Microbiol. doi: 10.1007/s00203-003-0523-x – volume: 157 start-page: 1116 year: 2020 ident: 10.1016/j.biortech.2022.127178_bib618 article-title: Bioethanol production through syngas fermentation in a tar free bioreactor using Clostridium butyricum publication-title: Renew. Energy doi: 10.1016/j.renene.2020.05.099 – volume: 6 start-page: 7 year: 2018 ident: 10.1016/j.biortech.2022.127178_b0295 article-title: Critical Biofilm Growth throughout Unmodified Carbon Felts Allows Continuous Bioelectrochemical Chain Elongation from CO2 up to Caproate at High Current Density publication-title: Front. Energy Res. doi: 10.3389/fenrg.2018.00007 – volume: 167 start-page: 310 year: 2014 ident: 10.1016/j.biortech.2022.127178_b0330 article-title: A fluidized bed membrane bioelectrochemical reactor for energy-efficient wastewater treatment publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2014.06.034 – volume: 6 start-page: 3987 issue: 8 year: 2013 ident: 10.1016/j.biortech.2022.127178_b0450 article-title: A Two-Stage Continuous Fermentation System for Conversion of Syngas into Ethanol publication-title: Energies doi: 10.3390/en6083987 – volume: 18 start-page: 200 year: 2007 ident: 10.1016/j.biortech.2022.127178_bib637 article-title: Microbiology of synthesis gas fermentation for biofuel production publication-title: Curr. Opin. Biotechnol. doi: 10.1016/j.copbio.2007.03.008 – volume: 157 start-page: 114 year: 2014 ident: 10.1016/j.biortech.2022.127178_b0255 article-title: Biochar as a sustainable electrode material for electricity production in microbial fuel cells publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2014.01.058 – volume: 169 start-page: 241 year: 2016 ident: 10.1016/j.biortech.2022.127178_b0335 article-title: Cathodic fluidized granular activated carbon assisted-membrane bioelectrochemical reactor for wastewater treatment publication-title: Sep. Purif. Technol. doi: 10.1016/j.seppur.2016.06.014 – volume: 350 start-page: 738 issue: 6262 year: 2015 ident: 10.1016/j.biortech.2022.127178_b0600 article-title: More efficient together publication-title: Science doi: 10.1126/science.aad6452 – volume: 14 start-page: 3064 year: 2021 ident: 10.1016/j.biortech.2022.127178_b0165 article-title: Advanced manufacturing for electrosynthesis of fuels and chemicals from CO2 publication-title: Energy Environ. Sci. doi: 10.1039/D0EE03679J – volume: 23 start-page: 22292 year: 2016 ident: 10.1016/j.biortech.2022.127178_b0065 article-title: Application of Gas Diffusion Biocathode in Microbial Electrosynthesis from Carbon dioxide publication-title: Environ. Sci. Pollut. Res. doi: 10.1007/s11356-016-7196-x – volume: 32 start-page: 2296 year: 2007 ident: 10.1016/j.biortech.2022.127178_b0185 article-title: Production of hydrogen from domestic wastewater using a bioelectrochemically assisted microbial reactor (BEAMR) publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2007.02.035 – volume: 8 start-page: 1075 year: 2020 ident: 10.1016/j.biortech.2022.127178_bib621 article-title: Batch Syngas Fermentation by Clostridium carboxidivorans for Production of Acids and Alcohols publication-title: Processes doi: 10.3390/pr8091075 – volume: 773 year: 2021 ident: 10.1016/j.biortech.2022.127178_b0535 article-title: MXene-coated biochar as potential biocathode for improved microbial electrosynthesis system publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2021.145677 – volume: 115 start-page: 1 year: 2016 ident: 10.1016/j.biortech.2022.127178_b0250 article-title: Anodic respiration of Pseudomonas putida KT2440 in a stirred-tank bioreactor publication-title: Biochem. Eng. J. doi: 10.1016/j.bej.2016.07.020 – volume: 7 start-page: 694 year: 2016 ident: 10.1016/j.biortech.2022.127178_b0355 article-title: Gas Fermentation-A flexible platform for commercial scale production of low-carbon-fuels and chemicals from waste and renewable feedstocks publication-title: Front. Microbiol. doi: 10.3389/fmicb.2016.00694 – volume: 302 year: 2020 ident: 10.1016/j.biortech.2022.127178_b0100 article-title: Microbial electrosynthesis from CO2: Challenges, opportunities and perspectives in the context of circular bioeconomy publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2020.122863 – year: 2020 ident: 10.1016/j.biortech.2022.127178_b0360 article-title: Climate Change: Atmospheric Carbon Dioxide [WWW Document] publication-title: Climate.gov. – volume: 28 start-page: 1804860 year: 2018 ident: 10.1016/j.biortech.2022.127178_b0020 article-title: Porous Hollow Fiber Nickel Electrodes for Effective Supply and Reduction of Carbon Dioxide to Methane through Microbial Electrosynthesis publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201804860 – volume: 7 start-page: 1 year: 2017 ident: 10.1016/j.biortech.2022.127178_b0030 article-title: Freestanding and flexible graphene papers as bioelectrochemical cathode for selective and efficient CO2 conversion publication-title: Sci. Rep. doi: 10.1038/s41598-017-09841-7 – volume: 240 start-page: 818 year: 2019 ident: 10.1016/j.biortech.2022.127178_b0125 article-title: Long term and demand-oriented biocatalytic synthesis of highly concentrated methane in a trickle bed reactor publication-title: Appl. Energy doi: 10.1016/j.apenergy.2019.02.076 – volume: 55 start-page: 156 year: 2013 ident: 10.1016/j.biortech.2022.127178_b0510 article-title: Syngas fermentation to biofuels: Effects of hydrogen partial pressure on hydrogenase efficiency publication-title: Biomass Bioenergy doi: 10.1016/j.biombioe.2013.01.034 – volume: 217 start-page: 117 year: 2016 ident: 10.1016/j.biortech.2022.127178_b0025 article-title: Enhanced microbial electrosynthesis with three-dimensional graphene functionalized cathodes fabricated via solvothermal synthesis publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2016.09.063 – ident: 10.1016/j.biortech.2022.127178_b0270 – volume: 77 start-page: 5467 year: 2011 ident: 10.1016/j.biortech.2022.127178_bib625 article-title: 2,3-Butanediol Production By Acetogenic Bacteria, an Alternative Route To Chemical Synthesis, Using Industrial Waste Gas publication-title: Appl. Environ. Microbiol. doi: 10.1128/AEM.00355-11 – volume: 306 year: 2020 ident: 10.1016/j.biortech.2022.127178_b0170 article-title: Enhanced isophthalonitrile complexation-reduction removal using a novel anaerobic fluidized bed reactor in a bioelectrochemical system based on electric field activation (AFBR-EFA) publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2020.123115 – volume: 15 start-page: 3634 year: 2015 ident: 10.1016/j.biortech.2022.127178_bib632 article-title: Nanowire–Bacteria Hybrids for Unassisted Solar Carbon Dioxide Fixation to Value-Added Chemicals publication-title: Nano Lett doi: 10.1021/acs.nanolett.5b01254 – volume: 319 start-page: 124177 year: 2021 ident: 10.1016/j.biortech.2022.127178_bib636 article-title: Resistance assessment of microbial electrosynthesis for biochemical production to changes in delivery methods and CO2 flow rates publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2020.124177 – volume: 265 start-page: 45 year: 2018 ident: 10.1016/j.biortech.2022.127178_b0515 article-title: Electro-biocatalytic conversion of carbon dioxide to alcohols using gas diffusion electrode publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2018.02.058 – volume: 167 start-page: 231 year: 2018 ident: 10.1016/j.biortech.2022.127178_b0315 article-title: Reactors for Microbial Electrobiotechnology publication-title: Adv. Biochem. Eng. Biotechnol. – volume: 6 start-page: 217 issue: 1 year: 2013 ident: 10.1016/j.biortech.2022.127178_b0605 article-title: Improved cathode materials for microbial electrosynthesis publication-title: Energy Environ. Sci. doi: 10.1039/C2EE23350A – volume: 6 start-page: 1 year: 2015 ident: 10.1016/j.biortech.2022.127178_b0230 article-title: Simplifying microbial electrosynthesis reactor design publication-title: Front. Microbiol. doi: 10.3389/fmicb.2015.00468 – volume: 287 year: 2021 ident: 10.1016/j.biortech.2022.127178_b0050 article-title: Dual cathode configuration and headspace gas recirculation for enhancing microbial electrosynthesis using Sporomusa ovata publication-title: Chemosphere – volume: 11 start-page: 606 year: 2018 ident: 10.1016/j.biortech.2022.127178_b0540 article-title: Using gas mixtures of CO, CO2 and H2 as microbial substrates: the do’s and don’ts of successful technology transfer from laboratory to production scale publication-title: Microb. Biotechnol. doi: 10.1111/1751-7915.13270 – volume: 250 year: 2020 ident: 10.1016/j.biortech.2022.127178_b0140 article-title: Effect of tungsten and selenium on C1 gas bioconversion by an enriched anaerobic sludge and microbial community analysis publication-title: Chemosphere doi: 10.1016/j.chemosphere.2020.126105 – volume: 6 start-page: 18641 year: 2016 ident: 10.1016/j.biortech.2022.127178_b0480 article-title: Regulation of acidogenic metabolism towards enhanced short chain fatty acid biosynthesis from waste: Metagenomic profiling publication-title: RSC Adv. doi: 10.1039/C5RA24254A – volume: 50 year: 2016 ident: 10.1016/j.biortech.2022.127178_b0160 article-title: Microbial Electrosynthesis and Anaerobic Fermentation: An Economic Evaluation for Acetic Acid Production from CO2 and CO publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.6b02101 – volume: 8 start-page: 3731 year: 2015 ident: 10.1016/j.biortech.2022.127178_b0115 article-title: Importance of the hydrogen route in up-scaling electrosynthesis for microbial CO2 reduction publication-title: Energy Environ. Sci. doi: 10.1039/C5EE03088A – volume: 55 start-page: 4351 year: 2019 ident: 10.1016/j.biortech.2022.127178_b0560 article-title: Microbial electrosynthesis system with dual biocathode arrangement for simultaneous acetogenesis, solventogenesis and carbon chain elongation publication-title: Chem. Commun. doi: 10.1039/C9CC00208A – volume: 47 start-page: 2085 year: 2013 ident: 10.1016/j.biortech.2022.127178_b0580 article-title: Oxygen-reducing biocathodes operating with passive oxygen transfer in microbial fuel cells publication-title: Environ. Sci. Technol. doi: 10.1021/es3027659 – volume: 12 start-page: 3297 issue: 17 year: 2019 ident: 10.1016/j.biortech.2022.127178_b0390 article-title: Enhanced CO2 conversion to acetate through microbial electrosynthesis (MES) by continuous headspace gas recirculation publication-title: Energies doi: 10.3390/en12173297 – volume: 33 start-page: 2004051 year: 2021 ident: 10.1016/j.biortech.2022.127178_b0570 article-title: Nanomaterials Facilitating Microbial Extracellular Electron Transfer at Interfaces publication-title: Adv. Mater. doi: 10.1002/adma.202004051 – volume: 1 start-page: 32 year: 2018 ident: 10.1016/j.biortech.2022.127178_bib626 article-title: Technical photosynthesis involving CO2 electrolysis and fermentation publication-title: Nat. Catal. doi: 10.1038/s41929-017-0005-1 – volume: 169 start-page: 210 year: 2016 ident: 10.1016/j.biortech.2022.127178_b0005 article-title: Improved operating strategy for continuous fermentation of carbon monoxide to fuel-ethanol by clostridia publication-title: Appl. Energy doi: 10.1016/j.apenergy.2016.02.021 – volume: 202 start-page: 433 year: 2017 ident: 10.1016/j.biortech.2022.127178_b0070 article-title: Bioelectrochemical conversion of CO2 to chemicals: CO2 as a next generation feedstock for electricity-driven bioproduction in batch and continuous modes publication-title: Faraday Discuss. doi: 10.1039/C7FD00050B – volume: 191 year: 2020 ident: 10.1016/j.biortech.2022.127178_b0590 article-title: Wire-drawing process with graphite lubricant as an industrializable approach to prepare graphite coated stainless-steel anode for bioelectrochemical systems publication-title: Environ. Res. doi: 10.1016/j.envres.2020.110093 – volume: 6 start-page: 17201 year: 2018 ident: 10.1016/j.biortech.2022.127178_b0095 article-title: Porous Nickel Hollow Fiber Cathodes Coated with CNTs for Efficient Microbial Electrosynthesis of Acetate from CO2 using Sporomusa ovata publication-title: J. Mater. Chem. A doi: 10.1039/C8TA05322G – volume: 41 start-page: 3 year: 2020 ident: 10.1016/j.biortech.2022.127178_b0385 article-title: Long-term open circuit microbial electrosynthesis system promotes methanogenesis publication-title: J. Energy Chem. doi: 10.1016/j.jechem.2019.04.020 – volume: 4 start-page: 800 issue: 4 year: 2020 ident: 10.1016/j.biortech.2022.127178_b0530 article-title: Close-Packed Nanowire-Bacteria Hybrids for Efficient Solar-Driven CO2 Fixation publication-title: Joule doi: 10.1016/j.joule.2020.03.001 – volume: 348 start-page: 732 year: 2018 ident: 10.1016/j.biortech.2022.127178_b0045 article-title: Reactor systems for syngas fermentation processes: A review publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2018.05.003 – volume: 124 start-page: 95 year: 2019 ident: 10.1016/j.biortech.2022.127178_b0280 article-title: Directing Clostridium ljungdahlii fermentation products via hydrogen to carbon monoxide ratio in syngas publication-title: Biomass Bioenergy doi: 10.1016/j.biombioe.2019.03.011 – volume: 245 start-page: 1294 year: 2017 ident: 10.1016/j.biortech.2022.127178_b0425 article-title: Improvement of methane content in a hydrogenotrophic anaerobic digester via the proper operation of membrane module integrated into an external-loop publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2017.08.183 – volume: 47 start-page: 6023 year: 2013 ident: 10.1016/j.biortech.2022.127178_b0370 article-title: Long-term operation of microbial electrosynthesis systems improves acetate production by autotrophic microbiomes publication-title: Environ. Sci. Technol. doi: 10.1021/es400341b – volume: 766 year: 2020 ident: 10.1016/j.biortech.2022.127178_b0015 article-title: Enrichment of salt-tolerant CO2–fixing communities in microbial electrosynthesis systems using porous ceramic hollow tube wrapped with carbon cloth as cathode and for CO2 supply publication-title: Sci. Total Environ. – volume: 51 year: 2021 ident: 10.1016/j.biortech.2022.127178_b0595 article-title: A review of microbial electrosynthesis applied to carbon dioxide capture and conversion: The basic principles, electrode materials, and bioproducts publication-title: J. CO2 Util. doi: 10.1016/j.jcou.2021.101640 – volume: 2 start-page: 13093 year: 2014 ident: 10.1016/j.biortech.2022.127178_b0285 article-title: A novel carbon nanotube modified scaffold as an efficient biocathode material for improved microbial electrosynthesis publication-title: J. Mater. Chem. A doi: 10.1039/C4TA03101F – ident: 10.1016/j.biortech.2022.127178_b0415 doi: 10.1128/mBio.00103-10 – volume: 15 start-page: 14 year: 2015 ident: 10.1016/j.biortech.2022.127178_b0060 article-title: CO2 Reduction by Mixed and Pure Cultures in Microbial Electrosynthesis Using an Assembly of Graphite Felt and Stainless Steel as a Cathode publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2015.05.081 – volume: 81 start-page: 4782 year: 2015 ident: 10.1016/j.biortech.2022.127178_bib624 article-title: Energy conservation model based on genomic and experimental analyses of a carbon monoxide-utilizing, butyrate-forming acetogen, Eubacterium limosum KIST612 publication-title: Appl. Environ. Microbiol. doi: 10.1128/AEM.00675-15 – volume: 1784 start-page: 1873 issue: 12 year: 2008 ident: 10.1016/j.biortech.2022.127178_b0440 article-title: Acetogenesis and the Wood-Ljungdahl pathway of CO2 fixation publication-title: Biochimica et Biophysica Acta (BBA) - Proteins and Proteomics doi: 10.1016/j.bbapap.2008.08.012 – year: 2011 ident: 10.1016/j.biortech.2022.127178_bib638 article-title: Bioconversion of synthesis gas to second generation biofuels: A review publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2011.07.124 – ident: 10.1016/j.biortech.2022.127178_b0190 doi: 10.1016/j.biortech.2018.08.103 – volume: 306 start-page: 1092 year: 2016 ident: 10.1016/j.biortech.2022.127178_b0155 article-title: Anaerobic conversion of hydrogen and carbon dioxide to fatty acids production in a membrane biofilm reactor: A modeling approach publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2016.08.049 – volume: 406 year: 2021 ident: 10.1016/j.biortech.2022.127178_b0040 article-title: Upgrading fluidized bed bioelectrochemical reactors for treating brewery wastewater by using a fluid-like electrode publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2020.127103 – volume: 48 start-page: 159 year: 2010 ident: 10.1016/j.biortech.2022.127178_b0260 article-title: Carbon monoxide partial pressure effects on the metabolic process of syngas fermentation publication-title: Biochem. Eng. J. doi: 10.1016/j.bej.2009.09.004 – volume: 8 start-page: 7651 year: 2018 ident: 10.1016/j.biortech.2022.127178_b0340 article-title: A short review of recent advances in CO2 hydrogenation to hydrocarbons over heterogeneous catalysts publication-title: RSC Adv. doi: 10.1039/C7RA13546G – volume: 215 start-page: 386 year: 2016 ident: 10.1016/j.biortech.2022.127178_b0405 article-title: Carbon recovery by fermentation of CO-rich off gases – Turning steel mills into biorefineries publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2016.03.094 – volume: 128 start-page: 83 year: 2019 ident: 10.1016/j.biortech.2022.127178_b0035 article-title: Increased carbon dioxide reduction to acetate in a microbial electrosynthesis reactor with a reduced graphene oxide-coated copper foam composite cathode publication-title: Bioelectrochemistry doi: 10.1016/j.bioelechem.2019.03.011 – volume: 8 start-page: 756 year: 2017 ident: 10.1016/j.biortech.2022.127178_bib635 article-title: Energy Efficiency and Productivity Enhancement of Microbial Electrosynthesis of Acetate publication-title: Front. Microbiol. doi: 10.3389/fmicb.2017.00756 – volume: 100 start-page: 3361 year: 2016 ident: 10.1016/j.biortech.2022.127178_b0215 article-title: Efficient butanol-ethanol (B-E) production from carbon monoxide fermentation by Clostridium carboxidivorans publication-title: Appl Microbiol Biotechnol doi: 10.1007/s00253-015-7238-1 – volume: 38 start-page: 1559 year: 2015 ident: 10.1016/j.biortech.2022.127178_b0135 article-title: Oxygen transfer in a pressurized airlift bioreactor publication-title: Bioprocess Biosyst. Eng. doi: 10.1007/s00449-015-1397-4 – volume: 2 start-page: 325 year: 2015 ident: 10.1016/j.biortech.2022.127178_b0235 article-title: Integrated Production, Extraction, and Concentration of Acetic Acid from CO2 through Microbial Electrosynthesis publication-title: Environ. Sci. Technol. Lett. doi: 10.1021/acs.estlett.5b00212 – ident: 10.1016/j.biortech.2022.127178_b0555 – year: 2019 ident: 10.1016/j.biortech.2022.127178_b0265 – volume: 202 start-page: 536 year: 2018 ident: 10.1016/j.biortech.2022.127178_b0495 article-title: Conversion of syngas (CO and H2) to biochemicals by mixed culture fermentation in mesophilic and thermophilic hollow-fiber membrane biofilm reactors publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2018.08.162 – volume: 11 start-page: 416 year: 2020 ident: 10.1016/j.biortech.2022.127178_b0615 article-title: Energy Conservation and Carbon Flux Distribution During Fermentation of CO or H2/CO2 by Clostridium ljungdahlii publication-title: Front. Microbiol. doi: 10.3389/fmicb.2020.00416 – volume: 113 start-page: 531 year: 2016 ident: 10.1016/j.biortech.2022.127178_b0380 article-title: Traits of selected Clostridium strains for syngas fermentation to ethanol publication-title: Biotechnol. Bioeng. doi: 10.1002/bit.25827 – volume: 2 start-page: 407 year: 2019 ident: 10.1016/j.biortech.2022.127178_b0455 article-title: Perfluorocarbon nanoemulsion promotes the delivery of reducing equivalents for electricity-driven microbial CO2 reduction publication-title: Nat. Catal. doi: 10.1038/s41929-019-0264-0 – volume: 193 start-page: 133 year: 2019 ident: 10.1016/j.biortech.2022.127178_b0210 article-title: Transferring bioelectrochemical processes from H-cells to a scalable bubble column reactor publication-title: Chem. Eng. Sci. doi: 10.1016/j.ces.2018.08.056 – volume: 187 start-page: 165 year: 2018 ident: 10.1016/j.biortech.2022.127178_bib628 article-title: Tunable production of ethanol and acetate from synthesis gas by mesophilic mixed culture fermentation in a hollow fiber membrane biofilm reactor publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2018.03.193 – volume: 235 start-page: 149 year: 2017 ident: 10.1016/j.biortech.2022.127178_b0410 article-title: A continuous system for biocatalytic hydrogenation of CO2 to formate publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2017.03.091 – volume: 1125 start-page: 100 year: 2008 ident: 10.1016/j.biortech.2022.127178_b0195 article-title: Old Acetogens, New Light publication-title: Ann. N. Y. Acad. Sci. doi: 10.1196/annals.1419.016 – volume: 381 start-page: 122687 year: 2020 ident: 10.1016/j.biortech.2022.127178_bib619 article-title: A novel MXene-coated biocathode for enhanced microbial electrosynthesis performance publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2019.122687 – volume: 5 start-page: 16168 year: 2015 ident: 10.1016/j.biortech.2022.127178_bib630 article-title: Adaptation of the autotrophic acetogen Sporomusa ovata to methanol accelerates the conversion of CO2 to organic products publication-title: Sci. Rep. doi: 10.1038/srep16168 – volume: 113 start-page: 3773 year: 2016 ident: 10.1016/j.biortech.2022.127178_bib627 article-title: Integrated bioprocess for conversion of gaseous substrates to liquids publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.1516867113 – volume: 23 start-page: 201 year: 2014 ident: 10.1016/j.biortech.2022.127178_b0610 article-title: Methane formation route in the conversion of methanol to hydrocarbons publication-title: J. Energy Chem. doi: 10.1016/S2095-4956(14)60136-4 – volume: 7 start-page: 93 year: 2019 ident: 10.1016/j.biortech.2022.127178_b0275 article-title: High Performing Gas Diffusion Biocathode for Microbial Fuel Cells Using Acidophilic Iron Oxidizing Bacteria publication-title: Front. Energy Res. doi: 10.3389/fenrg.2019.00093 – volume: 278 year: 2020 ident: 10.1016/j.biortech.2022.127178_b0110 article-title: Efficient solar-to-acetate conversion from CO2 through microbial electrosynthesis coupled with stable photoanode publication-title: Appl. Energy doi: 10.1016/j.apenergy.2020.115684 – volume: 7 start-page: 98 year: 2019 ident: 10.1016/j.biortech.2022.127178_b0470 article-title: Integrating Electrochemistry Into Bioreactors: Effect of the Upgrade Kit on Mass Transfer, Mixing Time and Sterilizability publication-title: Front. Energy Res. doi: 10.3389/fenrg.2019.00098 – volume: 13 start-page: 3102 issue: 9 year: 2020 ident: 10.1016/j.biortech.2022.127178_b0085 article-title: Copper-bottomed: electrochemically active bacteria exploit conductive sulphide networks for enhanced electrogeneity publication-title: Energy Environ. Sci. doi: 10.1039/D0EE01281E – volume: 85 start-page: 21 year: 2014 ident: 10.1016/j.biortech.2022.127178_b0500 article-title: Syngas fermentation of Clostridium carboxidivoran P7 in a hollow fiber membrane biofilm reactor: Evaluating the mass transfer coefficient and ethanol production performance publication-title: Biochem. Eng. J. doi: 10.1016/j.bej.2014.01.010 – volume: 245 start-page: 1176 year: 2017 ident: 10.1016/j.biortech.2022.127178_b0525 article-title: High performance biological methanation in a thermophilic anaerobic trickle bed reactor publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2017.08.088 – volume: 247 start-page: 7 year: 2018 ident: 10.1016/j.biortech.2022.127178_b0550 article-title: Influence of operating pressure on the biological hydrogen methanation in trickle-bed reactors publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2017.09.069 – volume: 51 start-page: 3235 year: 2015 ident: 10.1016/j.biortech.2022.127178_b0225 article-title: Microbial electrosynthesis of butyrate from carbon dioxide publication-title: Chem. Commun. doi: 10.1039/C4CC10121A – volume: 50 start-page: 1982 year: 2016 ident: 10.1016/j.biortech.2022.127178_b0290 article-title: Bringing High-Rate, CO2 -Based Microbial Electrosynthesis Closer to Practical Implementation through Improved Electrode Design and Operating Conditions publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.5b04431 – volume: 102 start-page: 6058 year: 2011 ident: 10.1016/j.biortech.2022.127178_b0325 article-title: Effect of nutrient limitation and two-stage continuous fermentor design on productivities during “Clostridium ragsdalei” syngas fermentation publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2011.03.020 – volume: 62 start-page: 48 year: 2020 ident: 10.1016/j.biortech.2022.127178_b0435 article-title: Microbial electrosynthesis from CO2: forever a promise? publication-title: Curr. Opin. Biotechnol. doi: 10.1016/j.copbio.2019.08.014 – year: 2017 ident: 10.1016/j.biortech.2022.127178_b0120 article-title: Functional electrodes for enzymatic and microbial electrochemical systems publication-title: Functional Electrodes for Enzymatic and Microbial Electrochemical Systems doi: 10.1142/q0102 – volume: 212 start-page: 11 year: 2015 ident: 10.1016/j.biortech.2022.127178_bib620 article-title: Continuous gas fermentation by Acetobacterium woodii in a submerged membrane reactor with full cell retention publication-title: J. Biotechnol. doi: 10.1016/j.jbiotec.2015.07.020 – volume: 30 start-page: 1707072 year: 2018 ident: 10.1016/j.biortech.2022.127178_b0300 article-title: Dual-Function Electrocatalytic and Macroporous Hollow-Fiber Cathode for Converting Waste Streams to Valuable Resources Using Microbial Electrochemical Systems publication-title: Adv. Mater. doi: 10.1002/adma.201707072 – volume: 15 start-page: 14290 year: 2013 ident: 10.1016/j.biortech.2022.127178_bib633 article-title: Improved cathode for high efficient microbial-catalyzed reduction in microbial electrosynthesis cells publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/c3cp52697f – volume: 49 start-page: 13566 year: 2015 ident: 10.1016/j.biortech.2022.127178_bib634 article-title: High Acetic Acid Production Rate Obtained by Microbial Electrosynthesis from Carbon Dioxide publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.5b03821 – volume: 142 start-page: 396 year: 2018 ident: 10.1016/j.biortech.2022.127178_b0345 article-title: Salinity-gradient energy driven microbial electrosynthesis of value-added chemicals from CO2 reduction publication-title: Water Res. doi: 10.1016/j.watres.2018.06.013 – volume: 4 start-page: 8395 year: 2016 ident: 10.1016/j.biortech.2022.127178_b0150 article-title: Electrosynthesis of acetate from CO2 by a highly structured biofilm assembled with reduced graphene oxide–tetraethylene pentamine publication-title: J. Mater. Chem. A doi: 10.1039/C6TA02036D – volume: 53 start-page: 311 year: 2020 ident: 10.1016/j.biortech.2022.127178_b0220 article-title: Purposely Designed Hierarchical Porous Electrodes for High Rate Microbial Electrosynthesis of Acetate from Carbon Dioxide publication-title: Acc. Chem. Res. doi: 10.1021/acs.accounts.9b00523 – volume: 10 start-page: 14 year: 2017 ident: 10.1016/j.biortech.2022.127178_b0200 article-title: Gas fermentation - a biotechnological solution for today’s challenges publication-title: Microb. Biotechnol. doi: 10.1111/1751-7915.12431 – volume: 283 year: 2021 ident: 10.1016/j.biortech.2022.127178_b0400 article-title: A review of recent advances in electrode materials for emerging bioelectrochemical systems: From biofilm-bearing anodes to specialized cathodes publication-title: Chemosphere doi: 10.1016/j.chemosphere.2021.131138 – volume: 9 start-page: 946 year: 2018 ident: 10.1016/j.biortech.2022.127178_b0575 article-title: Effective Use of Renewable Electricity for Making Renewable Fuels and Chemicals publication-title: ACS Catal. doi: 10.1021/acscatal.8b04143 – volume: 86 start-page: 763 year: 2021 ident: 10.1016/j.biortech.2022.127178_b0145 article-title: Catalytic Cooperation between a Copper Oxide Electrocatalyst and a Microbial Community for Microbial Electrosynthesis publication-title: Chempluschem doi: 10.1002/cplu.202100119 – volume: 46 start-page: 107675 year: 2021 ident: 10.1016/j.biortech.2022.127178_b0180 article-title: Microbial electrosynthesis: Towards sustainable biorefineries for production of green chemicals from CO2 emissions publication-title: Biotechnol. Adv. doi: 10.1016/j.biotechadv.2020.107675 – volume: 12 start-page: 1103 year: 2018 ident: 10.1016/j.biortech.2022.127178_b0545 article-title: Gas fermentation of C1 feedstocks: commercialization status and future prospects. Biofuels publication-title: Bioprod. Biorefining doi: 10.1002/bbb.1912 – volume: 257 start-page: 164 year: 2018 ident: 10.1016/j.biortech.2022.127178_b0485 article-title: Methanogenic capacity and robustness of hydrogenotrophic cultures based on closed nutrient recycling via microbial catabolism: Impact of temperature and microbial attachment publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2018.02.109 – volume: 754 start-page: 142440 year: 2021 ident: 10.1016/j.biortech.2022.127178_bib631 article-title: Improved robustness of microbial electrosynthesis by adaptation of a strict anaerobic microbial catalyst to molecular oxygen publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2020.142440 – volume: 233 start-page: 227 year: 2017 ident: 10.1016/j.biortech.2022.127178_b0585 article-title: High-efficient acetate production from carbon dioxide using a bioanode microbial electrosynthesis system with bipolar membrane publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2017.02.104 – ident: 10.1016/j.biortech.2022.127178_bib617 doi: 10.1186/s13068-020-1670-x |
SSID | ssj0003172 |
Score | 2.5403295 |
SecondaryResourceType | review_article |
Snippet | [Display omitted]
•MES integration with gas fermentation is promising to sustain bioproduction.•Various cathode materials and their performances in MES are... In gas fermentation, a range of chemolithoautotrophs fix single-carbon (C1) gases (CO and CO) when H or other reductants are available. Microbial... In gas fermentation, a range of chemolithoautotrophs fix single-carbon (C1) gases (CO2 and CO) when H2 or other reductants are available. Microbial... In gas fermentation, a range of chemolithoautotrophs fix single-carbon (C1) gases (CO₂ and CO) when H₂ or other reductants are available. Microbial... |
SourceID | swepub proquest pubmed crossref elsevier |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 127178 |
SubjectTerms | acetates Biochemical Process Engineering biofilm Biofuels Biokemisk processteknik biomass bioplastics butanol butyrates carbon dioxide Carbon Dioxide - chemistry Cathode-design cathodes CO utilization CO2 utilization Electrodes electrosynthesis ethanol Fermentation Gas Electro-fermentation Gases hexanoic acid mass transfer Microbial Electrosynthesis reducing agents renewable electricity Syngas |
Title | Advances in cathode designs and reactor configurations of microbial electrosynthesis systems to facilitate gas electro-fermentation |
URI | https://dx.doi.org/10.1016/j.biortech.2022.127178 https://www.ncbi.nlm.nih.gov/pubmed/35436538 https://www.proquest.com/docview/2652583734 https://www.proquest.com/docview/2661032712 https://urn.kb.se/resolve?urn=urn:nbn:se:ltu:diva-90331 |
Volume | 354 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELaqcgAOCMprC1RGgmN2k_iR9TFaqBYQvUBRb1b8WqUqSbXePXDphT_OOHaWAoIeOCaeURzPjGdsz3xG6JUGk1FEV1lVhK0bzkUmTOmyoiCGVHnRWBdqhz-e8OUpfX_GzvbQYqyFCWmVae6Pc_owW6c3szSas8u2nX0KwfecgYsJGyN5FSrKKa2Clk-vfqZ5gH8cThKAOAvU16qEz6eqDRmtw6FEWU6LEtY28785qD8D0N_QRQePdHwf3UuhJK5jbx-gPdsdoLv1ap3gNOwBur0Y73ODlmvQgw_R9zoe_nvcdjhgt_bGYjOkc3jcdAZDMBn28zGsl1272kZF8bh3-Gs7gDfBp9MdOv5bB2Gkbz2OuNAeb3rsGh0BwC1eNX4kzRx4glTu1D1Cp8dvPy-WWbqQIdMQt20yonPFlSMGrJ4qIbQjVlshTMUgMFFaizlxTpRc6NI0WuWGVQ1jFjhg_MuGPEb7Xd_ZpwgT4zh1nBDTKFo4NeeOUlCngC9nlconiI1SkDqhlYdLMy7kmJZ2LkfpySA9GaU3QbMd32XE67iRQ4xClr9ongSnciPvy1ErJEgznLU0ne23XpaclQwW_4T-i4YHOEOwkgl6ElVq12fCKOHgjCboddSxXUvAA3_Tfqllv15J0CYpckKKw__4i2foTniKCXDP0f5mvbUvINTaqKPBlo7Qrfrdh-XJD--HLbY |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKORQOCMpreRqJHrOb2ImzPnBYtVRb-rjQot5M_FqlgqRa7wr1woWfxB9kHDtLAUEPqNc4Ezuez56xPf4GodcKhoykqkzKzG_dMMYTrolNsoxqWqZZZay_O3x4xKYn-bvT4nQNfe_vwviwyjj3hzm9m63jk1HszdF5XY_ee-d7XICJ8RsjaVnGyMp9c_EF1m3uzd4OKHmLkN23x9vTJKYWSBR4IIuEqlQyaakG_OaSc2WpUYZzXRZgYqVSfEyt5YRxRXSlZKqLsioKAxJQLakofPcGupnDdOHTJgy__owrAYPcHV1A6xLfvEvXks-GsvYhtN0pCCHDjMBiavw3i_inx_sbnWlnAnfvojvRd8WT0D330JppNtHtyWwe-TvMJtrY7hPIQcklrsP76NskRBs4XDfYk8W22mDdxY84XDUag_fqDxAwLNBtPVsGZDrcWvy57tiioOqYtMddNOC3utrhQETt8KLFtlKBcdzgWeX6VxMLpifer2oeoJNrUdNDtN60jXmMMNWW5ZZRqiuZZ1aOmc1zwK8ntDNSpgNU9FoQKtKj-ywdn0QfB3cmeu0Jrz0RtDdAo5XceSAIuVKC90oWv0BdgBW7UvZVjwoB2vSHO1Vj2qUThBWkGNOS5v96h3n-RBiWA_QoQGrVZlrklAGcB2grYGxV4gnId-oPE9HOZwLQJHhKafbkP_7iJdqYHh8eiIO9o_2n6JYvCdF3z9D6Yr40z8HPW8gX3bjC6ON1D-Qfou5q0A |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Advances+in+cathode+designs+and+reactor+configurations+of+microbial+electrosynthesis+systems+to+facilitate+gas+electro-fermentation&rft.jtitle=Bioresource+technology&rft.au=Bajracharya%2C+Suman&rft.au=Krige%2C+Adolf&rft.au=Matsakas%2C+Leonidas&rft.au=Rova%2C+Ulrika&rft.date=2022-06-01&rft.pub=Elsevier+Ltd&rft.issn=0960-8524&rft.volume=354&rft_id=info:doi/10.1016%2Fj.biortech.2022.127178&rft.externalDocID=S0960852422005077 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0960-8524&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0960-8524&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0960-8524&client=summon |