Mammalian Alkaline Phosphatases Are Allosteric Enzymes

Mammalian alkaline phosphatases (APs) are zinc-containing metalloenzymes encoded by a multigene family and functional as dimeric molecules. Using human placental AP (PLAP) as a paradigm, we have investigated whether the monomers in a given PLAP dimer are subject to cooperativity during catalysis fol...

Full description

Saved in:
Bibliographic Details
Published inThe Journal of biological chemistry Vol. 272; no. 36; pp. 22781 - 22787
Main Authors Hoylaerts, Marc F., Manes, Thomas, Millán, José Luis
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 05.09.1997
American Society for Biochemistry and Molecular Biology
Subjects
Online AccessGet full text
ISSN0021-9258
1083-351X
DOI10.1074/jbc.272.36.22781

Cover

Loading…
Abstract Mammalian alkaline phosphatases (APs) are zinc-containing metalloenzymes encoded by a multigene family and functional as dimeric molecules. Using human placental AP (PLAP) as a paradigm, we have investigated whether the monomers in a given PLAP dimer are subject to cooperativity during catalysis following an allosteric model or act via a half-of-sites model, in which at any time only one single monomer is operative. Wild type and mutant PLAP homodimers and heterodimers were produced by stably transfecting Chinese hamster ovary cells with mutagenized PLAP cDNAs followed by enzyme extraction, purification, and characterization. [Gly429]PLAP manifested negative cooperativity when partially metalated as a consequence of the reduced affinity of the incompletely metalated AP monomers for the substrate. Upon full metalation with Zn2+, however, the negative cooperativity disappeared. To distinguish between an allosteric and a half-of-sites model, a [Gly429]PLAP-[Ser84]PLAP heterodimer was produced by combining monomers displaying high and low sensitivity to the uncompetitive inhibitor l-Leu as well as a [Gly429]PLAP-[Ala92]PLAP heterodimer combining a catalytically active and inactive monomer, respectively. The l-Leu inhibition profile of the [Gly429]PLAP-[Ser84]PLAP heterodimer was intermediate to that for each homodimer as predicted by the allosteric model. Likewise, the [Gly429]PLAP-[Ala92]PLAP heterodimer was catalytically active, confirming that AP monomers act independently of each other. Although heterodimers are structurally asymmetrical, they migrate in starch gels with a smaller than expected weighted electrophoretic mobility, are more stable to heat denaturation than expected, and are more sensitive to l-Leu inhibition than predicted by a strict noncooperative model. We conclude that fully metalated mammalian APs are noncooperative allosteric enzymes but that the stability and catalytic properties of each monomer are controlled by the conformation of the second AP subunit.
AbstractList Mammalian alkaline phosphatases (APs) are zinc-containing metalloenzymes encoded by a multigene family and functional as dimeric molecules. Using human placental AP (PLAP) as a paradigm, we have investigated whether the monomers in a given PLAP dimer are subject to cooperativity during catalysis following an allosteric model or act via a half-of-sites model, in which at any time only one single monomer is operative. Wild type and mutant PLAP homodimers and heterodimers were produced by stably transfecting Chinese hamster ovary cells with mutagenized PLAP cDNAs followed by enzyme extraction, purification, and characterization. [Gly429]PLAP manifested negative cooperativity when partially metalated as a consequence of the reduced affinity of the incompletely metalated AP monomers for the substrate. Upon full metalation with Zn2+, however, the negative cooperativity disappeared. To distinguish between an allosteric and a half-of-sites model, a [Gly429]PLAP-[Ser84]PLAP heterodimer was produced by combining monomers displaying high and low sensitivity to the uncompetitive inhibitor L-Leu as well as a [Gly429]PLAP-[Ala92]PLAP heterodimer combining a catalytically active and inactive monomer, respectively. The L-Leu inhibition profile of the [Gly429]PLAP-[Ser84]PLAP heterodimer was intermediate to that for each homodimer as predicted by the allosteric model. Likewise, the [Gly429]PLAP-[Ala92]PLAP heterodimer was catalytically active, confirming that AP monomers act independently of each other. Although heterodimers are structurally asymmetrical, they migrate in starch gels with a smaller than expected weighted electrophoretic mobility, are more stable to heat denaturation than expected, and are more sensitive to L-Leu inhibition than predicted by a strict noncooperative model. We conclude that fully metalated mammalian APs are noncooperative allosteric enzymes but that the stability and catalytic properties of each monomer are controlled by the conformation of the second AP subunit.Mammalian alkaline phosphatases (APs) are zinc-containing metalloenzymes encoded by a multigene family and functional as dimeric molecules. Using human placental AP (PLAP) as a paradigm, we have investigated whether the monomers in a given PLAP dimer are subject to cooperativity during catalysis following an allosteric model or act via a half-of-sites model, in which at any time only one single monomer is operative. Wild type and mutant PLAP homodimers and heterodimers were produced by stably transfecting Chinese hamster ovary cells with mutagenized PLAP cDNAs followed by enzyme extraction, purification, and characterization. [Gly429]PLAP manifested negative cooperativity when partially metalated as a consequence of the reduced affinity of the incompletely metalated AP monomers for the substrate. Upon full metalation with Zn2+, however, the negative cooperativity disappeared. To distinguish between an allosteric and a half-of-sites model, a [Gly429]PLAP-[Ser84]PLAP heterodimer was produced by combining monomers displaying high and low sensitivity to the uncompetitive inhibitor L-Leu as well as a [Gly429]PLAP-[Ala92]PLAP heterodimer combining a catalytically active and inactive monomer, respectively. The L-Leu inhibition profile of the [Gly429]PLAP-[Ser84]PLAP heterodimer was intermediate to that for each homodimer as predicted by the allosteric model. Likewise, the [Gly429]PLAP-[Ala92]PLAP heterodimer was catalytically active, confirming that AP monomers act independently of each other. Although heterodimers are structurally asymmetrical, they migrate in starch gels with a smaller than expected weighted electrophoretic mobility, are more stable to heat denaturation than expected, and are more sensitive to L-Leu inhibition than predicted by a strict noncooperative model. We conclude that fully metalated mammalian APs are noncooperative allosteric enzymes but that the stability and catalytic properties of each monomer are controlled by the conformation of the second AP subunit.
Mammalian alkaline phosphatases (APs) are zinc-containing metalloenzymes encoded by a multigene family and functional as dimeric molecules. Using human placental AP (PLAP) as a paradigm, we have investigated whether the monomers in a given PLAP dimer are subject to cooperativity during catalysis following an allosteric model or act via a half-of-sites model, in which at any time only one single monomer is operative. Wild type and mutant PLAP homodimers and heterodimers were produced by stably transfecting Chinese hamster ovary cells with mutagenized PLAP cDNAs followed by enzyme extraction, purification, and characterization. [Gly429]PLAP manifested negative cooperativity when partially metalated as a consequence of the reduced affinity of the incompletely metalated AP monomers for the substrate. Upon full metalation with Zn2+, however, the negative cooperativity disappeared. To distinguish between an allosteric and a half-of-sites model, a [Gly429]PLAP-[Ser84]PLAP heterodimer was produced by combining monomers displaying high and low sensitivity to the uncompetitive inhibitor L-Leu as well as a [Gly429]PLAP-[Ala92]PLAP heterodimer combining a catalytically active and inactive monomer, respectively. The L-Leu inhibition profile of the [Gly429]PLAP-[Ser84]PLAP heterodimer was intermediate to that for each homodimer as predicted by the allosteric model. Likewise, the [Gly429]PLAP-[Ala92]PLAP heterodimer was catalytically active, confirming that AP monomers act independently of each other. Although heterodimers are structurally asymmetrical, they migrate in starch gels with a smaller than expected weighted electrophoretic mobility, are more stable to heat denaturation than expected, and are more sensitive to L-Leu inhibition than predicted by a strict noncooperative model. We conclude that fully metalated mammalian APs are noncooperative allosteric enzymes but that the stability and catalytic properties of each monomer are controlled by the conformation of the second AP subunit.
Mammalian alkaline phosphatases (APs) are zinc-containing metalloenzymes encoded by a multigene family and functional as dimeric molecules. Using human placental AP (PLAP) as a paradigm, we have investigated whether the monomers in a given PLAP dimer are subject to cooperativity during catalysis following an allosteric model or act via a half-of-sites model, in which at any time only one single monomer is operative. Wild type and mutant PLAP homodimers and heterodimers were produced by stably transfecting Chinese hamster ovary cells with mutagenized PLAP cDNAs followed by enzyme extraction, purification, and characterization. [Gly 429 ]PLAP manifested negative cooperativity when partially metalated as a consequence of the reduced affinity of the incompletely metalated AP monomers for the substrate. Upon full metalation with Zn 2+ , however, the negative cooperativity disappeared. To distinguish between an allosteric and a half-of-sites model, a [Gly 429 ]PLAP-[Ser 84 ]PLAP heterodimer was produced by combining monomers displaying high and low sensitivity to the uncompetitive inhibitor l -Leu as well as a [Gly 429 ]PLAP-[Ala 92 ]PLAP heterodimer combining a catalytically active and inactive monomer, respectively. The l -Leu inhibition profile of the [Gly 429 ]PLAP-[Ser 84 ]PLAP heterodimer was intermediate to that for each homodimer as predicted by the allosteric model. Likewise, the [Gly 429 ]PLAP-[Ala 92 ]PLAP heterodimer was catalytically active, confirming that AP monomers act independently of each other. Although heterodimers are structurally asymmetrical, they migrate in starch gels with a smaller than expected weighted electrophoretic mobility, are more stable to heat denaturation than expected, and are more sensitive to l -Leu inhibition than predicted by a strict noncooperative model. We conclude that fully metalated mammalian APs are noncooperative allosteric enzymes but that the stability and catalytic properties of each monomer are controlled by the conformation of the second AP subunit.
Author Manes, Thomas
Millán, José Luis
Hoylaerts, Marc F.
Author_xml – sequence: 1
  givenname: Marc F.
  surname: Hoylaerts
  fullname: Hoylaerts, Marc F.
  organization: Center for Molecular and Vascular Biology, Katholicke Universiteit Leuven, Leuven, Belgium
– sequence: 2
  givenname: Thomas
  surname: Manes
  fullname: Manes, Thomas
  organization: Burnham Institute, La Jolla Cancer Research Center, La Jolla, California 92037
– sequence: 3
  givenname: José Luis
  surname: Millán
  fullname: Millán, José Luis
  email: millan@ljcrf.edu
  organization: Burnham Institute, La Jolla Cancer Research Center, La Jolla, California 92037
BackLink https://www.ncbi.nlm.nih.gov/pubmed/9278439$$D View this record in MEDLINE/PubMed
BookMark eNp9kDtLBDEURoMouj56G2ELsZs1r3nEbhFfoGhhYRfuJHed6MxkTWYV_fVGd7EQNE0ufOfkkm-brPe-R0L2GZ0wWsrjp9pMeMknophwXlZsjYwYrUQmcvawTkaUcpYpnldbZDvGJ5qOVGyTbKoES6FGpLiBroPWQT-ets9p6HF81_g4b2CAiHE8DZiS1scBgzPjs_7jvcO4SzZm0EbcW9075P787P70Mru-vbg6nV5nRrJiyIRCVgHwOsca8lLQ3FCJALK0UKtK2RqtLGSuLGV2RgXWMpcFWJpGwVHskKPls_PgXxYYB925aLBtoUe_iLpUXJZUyAQerMBF3aHV8-A6CO969c-U02Vugo8x4OyHYFR_NalTkzo1qUWhv5tMSvFLMW6Awfl-CODa_8TDpdi4x-bNBdS186bB7jd2ssQw9ffqMOhoHPYGbVLMoK13f-_4BGDxlxM
CitedBy_id crossref_primary_10_1016_j_bbapap_2016_03_016
crossref_primary_10_2147_IJN_S389819
crossref_primary_10_1016_j_jmgm_2020_107801
crossref_primary_10_1242_jcs_00909
crossref_primary_10_1007_s11270_013_1625_y
crossref_primary_10_1007_s12013_009_9073_4
crossref_primary_10_1021_acssensors_6b00607
crossref_primary_10_1080_03007995_2021_2000715
crossref_primary_10_1134_S0022093007040011
crossref_primary_10_1016_j_jece_2024_114742
crossref_primary_10_1074_jbc_M009250200
crossref_primary_10_1152_ajpgi_00244_2002
crossref_primary_10_1529_biophysj_103_034116
crossref_primary_10_1073_pnas_0601805103
crossref_primary_10_1016_j_bbadis_2013_07_016
crossref_primary_10_1007_s10930_005_7643_x
crossref_primary_10_1016_j_placenta_2011_06_029
crossref_primary_10_1016_j_bbapap_2008_09_020
crossref_primary_10_1096_fasebj_14_1_137
crossref_primary_10_1016_j_snb_2017_11_190
crossref_primary_10_1371_journal_pone_0119874
crossref_primary_10_1152_ajpcell_00430_2020
crossref_primary_10_1371_journal_pcbi_1010009
crossref_primary_10_1016_j_bbagen_2012_12_011
crossref_primary_10_1016_j_jmb_2006_11_079
crossref_primary_10_1074_jbc_273_36_23353
crossref_primary_10_1007_s13762_017_1421_0
crossref_primary_10_1021_ac5031418
crossref_primary_10_1016_j_autneu_2014_05_010
crossref_primary_10_3390_ijms222312957
crossref_primary_10_1080_10934529_2012_707851
crossref_primary_10_1016_j_bbrep_2020_100830
crossref_primary_10_1021_acs_nanolett_4c05766
crossref_primary_10_3390_coatings9120781
crossref_primary_10_1093_cvr_cvaa299
crossref_primary_10_3724_SP_J_1231_2010_06263
crossref_primary_10_1039_b515789g
crossref_primary_10_1002_humu_10052
crossref_primary_10_1007_s13762_014_0749_y
crossref_primary_10_1007_s12291_013_0408_y
crossref_primary_10_1016_j_jmb_2010_04_057
crossref_primary_10_1016_j_jfca_2015_04_005
crossref_primary_10_1007_s12035_024_04104_9
crossref_primary_10_1016_j_bej_2020_107625
crossref_primary_10_1074_jbc_M207394200
crossref_primary_10_1002_pro_4102
crossref_primary_10_3390_ijms232113262
crossref_primary_10_1042_BJ20050509
crossref_primary_10_1016_S0167_4838_01_00239_4
crossref_primary_10_1111_j_1742_4658_2005_04668_x
crossref_primary_10_3390_biomedicines10030658
crossref_primary_10_1177_002215540205000312
crossref_primary_10_1016_j_jmb_2005_04_068
crossref_primary_10_3109_08982104_2013_850593
crossref_primary_10_1007_s13167_020_00228_9
crossref_primary_10_1021_jp0119983
crossref_primary_10_3390_ijms24010043
crossref_primary_10_1088_1361_6463_ab2524
crossref_primary_10_1359_jbmr_2002_17_8_1383
crossref_primary_10_1016_j_colsurfb_2018_12_051
crossref_primary_10_1016_j_jcis_2019_12_097
crossref_primary_10_1110_ps_35201
crossref_primary_10_1016_j_berh_2007_11_003
crossref_primary_10_1016_j_jsb_2013_09_017
crossref_primary_10_1074_jbc_275_6_3781
crossref_primary_10_1039_D3RA01888A
crossref_primary_10_1016_S0304_4165_02_00145_9
crossref_primary_10_1021_bi052471
crossref_primary_10_1016_j_jinorgbio_2004_01_009
crossref_primary_10_1007_s00439_008_0480_1
crossref_primary_10_1002_pro_741
crossref_primary_10_1002_pd_2088
crossref_primary_10_1007_s11033_019_04650_9
crossref_primary_10_1128_MCB_00535_06
crossref_primary_10_1021_acsomega_1c03243
crossref_primary_10_1042_BSR20171377
crossref_primary_10_1074_jbc_M102788200
crossref_primary_10_1016_j_ejpb_2019_09_007
crossref_primary_10_1002_jbt_22660
crossref_primary_10_1007_s11302_012_9309_4
crossref_primary_10_1021_acs_chemrev_9b00460
crossref_primary_10_1016_j_cca_2019_11_012
crossref_primary_10_1007_s11302_005_5435_6
crossref_primary_10_1074_jbc_M109_079830
crossref_primary_10_1016_j_bone_2023_116956
crossref_primary_10_1016_j_jembe_2004_01_018
crossref_primary_10_1074_jbc_M202298200
crossref_primary_10_1007_s00223_015_0079_1
crossref_primary_10_1110_ps_062123806
crossref_primary_10_3177_jnsv_68_284
crossref_primary_10_1107_S1744309110019767
crossref_primary_10_1016_j_bone_2013_06_010
crossref_primary_10_1021_cr020057z
crossref_primary_10_1002_hep_27715
crossref_primary_10_1021_acs_analchem_2c01593
crossref_primary_10_1371_journal_pone_0089374
crossref_primary_10_1194_jlr_M034421
crossref_primary_10_1007_s10695_010_9441_4
Cites_doi 10.1016/S0021-9258(19)42853-6
10.1093/clinchem/38.12.2493
10.1016/S0021-9258(17)43384-9
10.1093/clinchem/36.10.1793
10.1042/bj2740091
10.1083/jcb.105.6.2905
10.1016/0005-2795(75)90040-9
10.1042/bj2540623
10.1042/bj2860023
10.1111/j.1432-1033.1972.tb01975.x
10.1016/S0021-9258(17)33822-X
10.1111/j.1432-1033.1991.tb16414.x
10.1016/0022-2836(91)90724-K
10.1111/j.1432-1033.1989.tb15152.x
10.1016/S0021-9258(18)54836-5
10.1016/S0021-9258(18)91992-7
10.1021/bi00806a035
10.1042/bj0800324
10.1016/S0021-9258(18)83775-9
10.1016/S0021-9258(18)63900-6
10.1016/0009-8981(90)90031-M
10.1016/S0021-9258(19)74407-X
10.1093/nar/18.6.1656
10.1016/S0021-9258(19)67750-1
10.1016/S0021-9258(17)42944-9
ContentType Journal Article
Copyright 1997 © 1997 ASBMB. Currently published by Elsevier Inc; originally published by American Society for Biochemistry and Molecular Biology.
Copyright_xml – notice: 1997 © 1997 ASBMB. Currently published by Elsevier Inc; originally published by American Society for Biochemistry and Molecular Biology.
DBID 6I.
AAFTH
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1074/jbc.272.36.22781
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
MEDLINE


Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
Chemistry
EISSN 1083-351X
EndPage 22787
ExternalDocumentID 9278439
10_1074_jbc_272_36_22781
272_36_22781
S0021925819659594
Genre Research Support, Non-U.S. Gov't
Research Support, U.S. Gov't, P.H.S
Journal Article
GrantInformation_xml – fundername: NCI NIH HHS
  grantid: CA42595
GroupedDBID ---
-DZ
-ET
-~X
.55
.GJ
0SF
186
18M
2WC
3O-
53G
5BI
5GY
5RE
5VS
6I.
6TJ
79B
85S
AAEDW
AAFTH
AAFWJ
AARDX
AAXUO
AAYOK
ABDNZ
ABOCM
ABPPZ
ABRJW
ABTAH
ACGFO
ACNCT
ADBBV
ADIYS
AENEX
AEXQZ
AFFNX
AFMIJ
AFOSN
AFPKN
AHPSJ
AI.
ALMA_UNASSIGNED_HOLDINGS
BTFSW
C1A
CJ0
CS3
DIK
DU5
E3Z
EBS
EJD
F20
F5P
FA8
FDB
FRP
GROUPED_DOAJ
GX1
HH5
IH2
KQ8
L7B
MVM
N9A
NHB
OHT
OK1
P-O
P0W
P2P
R.V
RHF
RHI
RNS
ROL
RPM
SJN
TBC
TN5
TR2
UHB
UPT
UQL
VH1
VQA
W8F
WH7
WHG
WOQ
X7M
XFK
XJT
XSW
Y6R
YQT
YSK
YWH
YYP
YZZ
ZA5
ZGI
ZY4
~02
~KM
-
02
08R
55
AAWZA
ABFLS
ABPTK
ABUFD
ABZEH
ACDCL
ADACO
ADBIT
ADCOW
AEILP
AIZTS
DL
DZ
ET
FH7
GJ
H13
KM
LI
MYA
O0-
OHM
X
XHC
.7T
0R~
29J
34G
39C
4.4
41~
AALRI
AAYJJ
AAYWO
AAYXX
ABFSI
ACSFO
ACVFH
ACYGS
ADCNI
ADNWM
ADVLN
ADXHL
AEUPX
AFPUW
AIGII
AITUG
AKBMS
AKRWK
AKYEP
AMRAJ
AOIJS
BAWUL
CITATION
E.L
HYE
J5H
QZG
UKR
ZE2
CGR
CUY
CVF
ECM
EIF
NPM
PKN
Z5M
7X8
ID FETCH-LOGICAL-c416t-39e18aa2b5eba57305c04eaa47dab989dbed46459d01df03eb4546ad003e32e3
ISSN 0021-9258
IngestDate Fri Jul 11 02:11:47 EDT 2025
Wed Feb 19 02:29:29 EST 2025
Tue Jul 01 00:22:40 EDT 2025
Thu Apr 24 22:58:30 EDT 2025
Tue Jan 05 14:51:57 EST 2021
Fri Feb 23 02:46:09 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 36
Language English
License This is an open access article under the CC BY license.
http://creativecommons.org/licenses/by/4.0
https://www.elsevier.com/tdm/userlicense/1.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c416t-39e18aa2b5eba57305c04eaa47dab989dbed46459d01df03eb4546ad003e32e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://dx.doi.org/10.1074/jbc.272.36.22781
PMID 9278439
PQID 79247034
PQPubID 23479
PageCount 7
ParticipantIDs proquest_miscellaneous_79247034
pubmed_primary_9278439
crossref_primary_10_1074_jbc_272_36_22781
crossref_citationtrail_10_1074_jbc_272_36_22781
highwire_biochem_272_36_22781
elsevier_sciencedirect_doi_10_1074_jbc_272_36_22781
ProviderPackageCode RHF
RHI
CITATION
AAYXX
PublicationCentury 1900
PublicationDate 1997-09-05
PublicationDateYYYYMMDD 1997-09-05
PublicationDate_xml – month: 09
  year: 1997
  text: 1997-09-05
  day: 05
PublicationDecade 1990
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle The Journal of biological chemistry
PublicationTitleAlternate J Biol Chem
PublicationYear 1997
Publisher Elsevier Inc
American Society for Biochemistry and Molecular Biology
Publisher_xml – name: Elsevier Inc
– name: American Society for Biochemistry and Molecular Biology
References Coleman, Gettins (bib4) 1983; 5
Olafsdottir, Chlebowski (bib14) 1989; 264
Hummer, Millán (bib19) 1991; 274
Cioni, Piras, Strambini (bib6) 1989; 185
Hendrix, Hoylaerts, Nouwen, De Broe (bib31) 1990; 36
Gorman, Moffat, Howard (bib23) 1982; 2
Byers, Fernley, Walker (bib27) 1972; 29
Millán (bib2) 1988; 8
Hoylaerts, Millán (bib16) 1991; 202
Tsonis, Argraves, Millán (bib15) 1988; 254
Bloch, Schlesinger (bib12) 1974; 249
Watanabe, Wada, Kim, Wyckoff, Chou (bib20) 1991; 266
Hoylaerts, Manes, Millán (bib18) 1992; 286
Kim, Wyckoff (bib5) 1991; 218
Harris, Coleman (bib8) 1968; 243
Chlebowski, Armitage, Tusa, Coleman (bib9) 1976; 251
Simpson, Vallee (bib10) 1970; 9
Hoylaerts, Manes, Millán (bib25) 1992; 38
Bird, Gething, Sambrook (bib22) 1987; 105
Coleman, Gettins (bib7) 1986; 1
Wilkinson (bib26) 1961; 80
Rao, Nagaraj (bib29) 1991; 266
McComb, Bowers, Posen (bib1) 1979
Gettins, Coleman (bib11) 1984; 259
Watanabe, Watanabe, Li, Soong, Chou (bib30) 1989; 264
Meighen, Yue (bib13) 1975; 412
Tomic, Sunjevaric, Savtchenko, Blumenberg (bib21) 1990; 18
Ito, Chou (bib24) 1984; 259
Segel (bib28) 1975
Harris (bib3) 1989; 186
Bossi, Hoylaerts, Millán (bib17) 1993; 268
Tomic (10.1074/jbc.272.36.22781_bib21) 1990; 18
Coleman (10.1074/jbc.272.36.22781_bib7) 1986; 1
Gorman (10.1074/jbc.272.36.22781_bib23) 1982; 2
Wilkinson (10.1074/jbc.272.36.22781_bib26) 1961; 80
Hummer (10.1074/jbc.272.36.22781_bib19) 1991; 274
Hoylaerts (10.1074/jbc.272.36.22781_bib25) 1992; 38
Rao (10.1074/jbc.272.36.22781_bib29) 1991; 266
McComb (10.1074/jbc.272.36.22781_bib1) 1979
Hoylaerts (10.1074/jbc.272.36.22781_bib16) 1991; 202
Kim (10.1074/jbc.272.36.22781_bib5) 1991; 218
Chlebowski (10.1074/jbc.272.36.22781_bib9) 1976; 251
Bird (10.1074/jbc.272.36.22781_bib22) 1987; 105
Bossi (10.1074/jbc.272.36.22781_bib17) 1993; 268
Harris (10.1074/jbc.272.36.22781_bib8) 1968; 243
Bloch (10.1074/jbc.272.36.22781_bib12) 1974; 249
Gettins (10.1074/jbc.272.36.22781_bib11) 1984; 259
Olafsdottir (10.1074/jbc.272.36.22781_bib14) 1989; 264
Hendrix (10.1074/jbc.272.36.22781_bib31) 1990; 36
Coleman (10.1074/jbc.272.36.22781_bib4) 1983; 5
Simpson (10.1074/jbc.272.36.22781_bib10) 1970; 9
Byers (10.1074/jbc.272.36.22781_bib27) 1972; 29
Harris (10.1074/jbc.272.36.22781_bib3) 1989; 186
Cioni (10.1074/jbc.272.36.22781_bib6) 1989; 185
Ito (10.1074/jbc.272.36.22781_bib24) 1984; 259
Hoylaerts (10.1074/jbc.272.36.22781_bib18) 1992; 286
Watanabe (10.1074/jbc.272.36.22781_bib20) 1991; 266
Segel (10.1074/jbc.272.36.22781_bib28) 1975
Tsonis (10.1074/jbc.272.36.22781_bib15) 1988; 254
Millán (10.1074/jbc.272.36.22781_bib2) 1988; 8
Meighen (10.1074/jbc.272.36.22781_bib13) 1975; 412
Watanabe (10.1074/jbc.272.36.22781_bib30) 1989; 264
References_xml – volume: 249
  start-page: 1760
  year: 1974
  end-page: 1768
  ident: bib12
  publication-title: J. Biol. Chem.
– volume: 274
  start-page: 91
  year: 1991
  end-page: 95
  ident: bib19
  publication-title: Biochem. J.
– year: 1979
  ident: bib1
  article-title: Alkaline Phosphatases
– volume: 185
  start-page: 573
  year: 1989
  end-page: 579
  ident: bib6
  publication-title: Eur. J. Biochem.
– volume: 264
  start-page: 12611
  year: 1989
  end-page: 12619
  ident: bib30
  publication-title: J. Biol. Chem.
– volume: 9
  start-page: 953
  year: 1970
  end-page: 958
  ident: bib10
  publication-title: Biochemistry
– volume: 1
  start-page: 77
  year: 1986
  end-page: 99
  ident: bib7
  publication-title: Progress in Inorganic Biochemistry and Biophysics: Zn Enzymes
– volume: 243
  start-page: 5063
  year: 1968
  end-page: 5073
  ident: bib8
  publication-title: J. Biol. Chem
– volume: 251
  start-page: 1207
  year: 1976
  end-page: 1216
  ident: bib9
  publication-title: J. Biol. Chem.
– volume: 259
  start-page: 4991
  year: 1984
  end-page: 4997
  ident: bib11
  publication-title: J. Biol. Chem.
– volume: 412
  start-page: 262
  year: 1975
  end-page: 272
  ident: bib13
  publication-title: Biochim. Biophys. Acta
– volume: 268
  start-page: 25409
  year: 1993
  end-page: 25416
  ident: bib17
  publication-title: J. Biol. Chem.
– volume: 218
  start-page: 449
  year: 1991
  end-page: 464
  ident: bib5
  publication-title: J. Mol. Biol.
– volume: 36
  start-page: 1793
  year: 1990
  end-page: 1799
  ident: bib31
  publication-title: Clin. Chem.
– volume: 186
  start-page: 133
  year: 1989
  end-page: 150
  ident: bib3
  publication-title: Clin. Chim. Acta
– volume: 286
  start-page: 23
  year: 1992
  end-page: 30
  ident: bib18
  publication-title: Biochem. J.
– volume: 266
  start-page: 21174
  year: 1991
  end-page: 21178
  ident: bib20
  publication-title: J. Biol. Chem.
– volume: 202
  start-page: 605
  year: 1991
  end-page: 616
  ident: bib16
  publication-title: Eur. J. Biochem.
– volume: 105
  start-page: 2905
  year: 1987
  end-page: 2914
  ident: bib22
  publication-title: J. Cell. Biol.
– volume: 18
  start-page: 1656
  year: 1990
  ident: bib21
  publication-title: Nucleic Acids Res.
– volume: 8
  start-page: 995
  year: 1988
  end-page: 1004
  ident: bib2
  publication-title: Anticancer Res.
– volume: 29
  start-page: 197
  year: 1972
  end-page: 204
  ident: bib27
  publication-title: Eur. J. Biochem.
– year: 1975
  ident: bib28
  article-title: Enzyme Kinetics
– volume: 264
  start-page: 4529
  year: 1989
  end-page: 4535
  ident: bib14
  publication-title: J. Biol. Chem.
– volume: 80
  start-page: 324
  year: 1961
  end-page: 332
  ident: bib26
  publication-title: Biochem. J.
– volume: 266
  start-page: 5018
  year: 1991
  end-page: 5024
  ident: bib29
  publication-title: J. Biol. Chem.
– volume: 5
  start-page: 153
  year: 1983
  end-page: 217
  ident: bib4
  publication-title: Metal Ions in Biology
– volume: 254
  start-page: 623
  year: 1988
  end-page: 624
  ident: bib15
  publication-title: Biochem. J.
– volume: 38
  start-page: 2493
  year: 1992
  end-page: 2500
  ident: bib25
  publication-title: Clin. Chem.
– volume: 2
  start-page: 1044
  year: 1982
  end-page: 1051
  ident: bib23
  publication-title: Mol. Cell. Biol.
– volume: 259
  start-page: 2526
  year: 1984
  end-page: 2530
  ident: bib24
  publication-title: J. Biol. Chem.
– volume: 249
  start-page: 1760
  year: 1974
  ident: 10.1074/jbc.272.36.22781_bib12
  publication-title: J. Biol. Chem.
  doi: 10.1016/S0021-9258(19)42853-6
– volume: 38
  start-page: 2493
  year: 1992
  ident: 10.1074/jbc.272.36.22781_bib25
  publication-title: Clin. Chem.
  doi: 10.1093/clinchem/38.12.2493
– volume: 5
  start-page: 153
  year: 1983
  ident: 10.1074/jbc.272.36.22781_bib4
– year: 1979
  ident: 10.1074/jbc.272.36.22781_bib1
– volume: 259
  start-page: 2526
  year: 1984
  ident: 10.1074/jbc.272.36.22781_bib24
  publication-title: J. Biol. Chem.
  doi: 10.1016/S0021-9258(17)43384-9
– volume: 36
  start-page: 1793
  year: 1990
  ident: 10.1074/jbc.272.36.22781_bib31
  publication-title: Clin. Chem.
  doi: 10.1093/clinchem/36.10.1793
– volume: 274
  start-page: 91
  year: 1991
  ident: 10.1074/jbc.272.36.22781_bib19
  publication-title: Biochem. J.
  doi: 10.1042/bj2740091
– volume: 105
  start-page: 2905
  year: 1987
  ident: 10.1074/jbc.272.36.22781_bib22
  publication-title: J. Cell. Biol.
  doi: 10.1083/jcb.105.6.2905
– volume: 8
  start-page: 995
  year: 1988
  ident: 10.1074/jbc.272.36.22781_bib2
  publication-title: Anticancer Res.
– volume: 412
  start-page: 262
  year: 1975
  ident: 10.1074/jbc.272.36.22781_bib13
  publication-title: Biochim. Biophys. Acta
  doi: 10.1016/0005-2795(75)90040-9
– year: 1975
  ident: 10.1074/jbc.272.36.22781_bib28
– volume: 254
  start-page: 623
  year: 1988
  ident: 10.1074/jbc.272.36.22781_bib15
  publication-title: Biochem. J.
  doi: 10.1042/bj2540623
– volume: 286
  start-page: 23
  year: 1992
  ident: 10.1074/jbc.272.36.22781_bib18
  publication-title: Biochem. J.
  doi: 10.1042/bj2860023
– volume: 29
  start-page: 197
  year: 1972
  ident: 10.1074/jbc.272.36.22781_bib27
  publication-title: Eur. J. Biochem.
  doi: 10.1111/j.1432-1033.1972.tb01975.x
– volume: 251
  start-page: 1207
  year: 1976
  ident: 10.1074/jbc.272.36.22781_bib9
  publication-title: J. Biol. Chem.
  doi: 10.1016/S0021-9258(17)33822-X
– volume: 202
  start-page: 605
  year: 1991
  ident: 10.1074/jbc.272.36.22781_bib16
  publication-title: Eur. J. Biochem.
  doi: 10.1111/j.1432-1033.1991.tb16414.x
– volume: 218
  start-page: 449
  year: 1991
  ident: 10.1074/jbc.272.36.22781_bib5
  publication-title: J. Mol. Biol.
  doi: 10.1016/0022-2836(91)90724-K
– volume: 2
  start-page: 1044
  year: 1982
  ident: 10.1074/jbc.272.36.22781_bib23
  publication-title: Mol. Cell. Biol.
– volume: 185
  start-page: 573
  year: 1989
  ident: 10.1074/jbc.272.36.22781_bib6
  publication-title: Eur. J. Biochem.
  doi: 10.1111/j.1432-1033.1989.tb15152.x
– volume: 1
  start-page: 77
  year: 1986
  ident: 10.1074/jbc.272.36.22781_bib7
– volume: 266
  start-page: 21174
  year: 1991
  ident: 10.1074/jbc.272.36.22781_bib20
  publication-title: J. Biol. Chem.
  doi: 10.1016/S0021-9258(18)54836-5
– volume: 243
  start-page: 5063
  year: 1968
  ident: 10.1074/jbc.272.36.22781_bib8
  publication-title: J. Biol. Chem
  doi: 10.1016/S0021-9258(18)91992-7
– volume: 9
  start-page: 953
  year: 1970
  ident: 10.1074/jbc.272.36.22781_bib10
  publication-title: Biochemistry
  doi: 10.1021/bi00806a035
– volume: 80
  start-page: 324
  year: 1961
  ident: 10.1074/jbc.272.36.22781_bib26
  publication-title: Biochem. J.
  doi: 10.1042/bj0800324
– volume: 264
  start-page: 4529
  year: 1989
  ident: 10.1074/jbc.272.36.22781_bib14
  publication-title: J. Biol. Chem.
  doi: 10.1016/S0021-9258(18)83775-9
– volume: 264
  start-page: 12611
  year: 1989
  ident: 10.1074/jbc.272.36.22781_bib30
  publication-title: J. Biol. Chem.
  doi: 10.1016/S0021-9258(18)63900-6
– volume: 186
  start-page: 133
  year: 1989
  ident: 10.1074/jbc.272.36.22781_bib3
  publication-title: Clin. Chim. Acta
  doi: 10.1016/0009-8981(90)90031-M
– volume: 268
  start-page: 25409
  year: 1993
  ident: 10.1074/jbc.272.36.22781_bib17
  publication-title: J. Biol. Chem.
  doi: 10.1016/S0021-9258(19)74407-X
– volume: 18
  start-page: 1656
  year: 1990
  ident: 10.1074/jbc.272.36.22781_bib21
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/18.6.1656
– volume: 266
  start-page: 5018
  year: 1991
  ident: 10.1074/jbc.272.36.22781_bib29
  publication-title: J. Biol. Chem.
  doi: 10.1016/S0021-9258(19)67750-1
– volume: 259
  start-page: 4991
  year: 1984
  ident: 10.1074/jbc.272.36.22781_bib11
  publication-title: J. Biol. Chem.
  doi: 10.1016/S0021-9258(17)42944-9
SSID ssj0000491
Score 1.896185
Snippet Mammalian alkaline phosphatases (APs) are zinc-containing metalloenzymes encoded by a multigene family and functional as dimeric molecules. Using human...
Mammalian alkaline phosphatases (APs) are zinc-containing metalloenzymes encoded by a multigene family and functional as dimeric molecules. Using human...
SourceID proquest
pubmed
crossref
highwire
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 22781
SubjectTerms Alkaline Phosphatase - chemistry
Alkaline Phosphatase - genetics
Alkaline Phosphatase - metabolism
Allosteric Regulation
Animals
Binding Sites
CHO Cells
Cricetinae
Dimerization
Humans
Kinetics
Mutagenesis, Site-Directed
Protein Conformation
Zinc - metabolism
Title Mammalian Alkaline Phosphatases Are Allosteric Enzymes
URI https://dx.doi.org/10.1074/jbc.272.36.22781
http://www.jbc.org/content/272/36/22781.abstract
https://www.ncbi.nlm.nih.gov/pubmed/9278439
https://www.proquest.com/docview/79247034
Volume 272
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLZgPMALgo2JAoM8ICRUJUt8SeLHato0AUMgFalvlp142qBNpjZ96H49x5dcOm0T7CVqc3Ecf8fnHJ-bEfrIYpnrQqqQJSoNqTrXoeQJCfMSg7TkICG1sUOefU9Pf9EvMzbrTdk2u6RRUXF9a17JQ1CFc4CryZL9D2S7RuEE_AZ84QgIw_GfMD6Ti4WzU0zmf6RVGH9c1KurC9mAcFqNJ0sNV-Ymj8MEzB9X15s24eN3TyUDndSVZHJFQ9qd4Drg681c6mWz8ik-xfgk6u3ZvuL_IN7IJxpaT3xSeW-D88uPv60vB_YGV6uVhzHrjWBtIsxWnKaL9MCuCnukHS8F7c4kCsyGzBZneEBVZIt34szt3uIFsfmf3crlQe0xXF4VETQXkTQaPLpVO9u4ohPTLVc3kdPH6AmG9YTh4F9_9mXlYZnktlb0X-H92fCew5tvuUt_6cpL371UsSrL9AV67nENJo5wXqJHutpFe5NKNvViE3wKbPSvdavsoqdHLd57KO3oKmjpKhjSFbSog56uAk9Xr9D05Hh6dBr6_TXCAtTwJiRcJ7mUWDGtJANWz4qYailpVkoF07RUujSOb17GSXkeE60oo6ksQRBogjXZRztVXenXKACdUGZZLhnXGu7AeU4TWRCcp7A6YDIbocN20ETha8-bLVDmwsZAZFTAMAsYZkFSYYd5hD53T1y5uiv33EtaHITXG50-KIBg7nnqoIVMwOwys-rG9Q8tjgLG3_jRYC7V65XIOKYgKOkI7Tt4ux5y48Yn_M2DOvQWPevn2zu00yzX-gA03ka9t9T6F2jvpLY
linkProvider Colorado Alliance of Research Libraries
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Mammalian+Alkaline+Phosphatases+Are+Allosteric+Enzymes&rft.jtitle=The+Journal+of+biological+chemistry&rft.au=Hoylaerts%2C+Marc+F.&rft.au=Manes%2C+Thomas&rft.au=Mill%C3%A1n%2C+Jos%C3%A9+Luis&rft.date=1997-09-05&rft.pub=Elsevier+Inc&rft.issn=0021-9258&rft.eissn=1083-351X&rft.volume=272&rft.issue=36&rft.spage=22781&rft.epage=22787&rft_id=info:doi/10.1074%2Fjbc.272.36.22781&rft.externalDocID=S0021925819659594
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-9258&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-9258&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-9258&client=summon