Mammalian Alkaline Phosphatases Are Allosteric Enzymes
Mammalian alkaline phosphatases (APs) are zinc-containing metalloenzymes encoded by a multigene family and functional as dimeric molecules. Using human placental AP (PLAP) as a paradigm, we have investigated whether the monomers in a given PLAP dimer are subject to cooperativity during catalysis fol...
Saved in:
Published in | The Journal of biological chemistry Vol. 272; no. 36; pp. 22781 - 22787 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Inc
05.09.1997
American Society for Biochemistry and Molecular Biology |
Subjects | |
Online Access | Get full text |
ISSN | 0021-9258 1083-351X |
DOI | 10.1074/jbc.272.36.22781 |
Cover
Loading…
Abstract | Mammalian alkaline phosphatases (APs) are zinc-containing metalloenzymes encoded by a multigene family and functional as dimeric molecules. Using human placental AP (PLAP) as a paradigm, we have investigated whether the monomers in a given PLAP dimer are subject to cooperativity during catalysis following an allosteric model or act via a half-of-sites model, in which at any time only one single monomer is operative. Wild type and mutant PLAP homodimers and heterodimers were produced by stably transfecting Chinese hamster ovary cells with mutagenized PLAP cDNAs followed by enzyme extraction, purification, and characterization. [Gly429]PLAP manifested negative cooperativity when partially metalated as a consequence of the reduced affinity of the incompletely metalated AP monomers for the substrate. Upon full metalation with Zn2+, however, the negative cooperativity disappeared. To distinguish between an allosteric and a half-of-sites model, a [Gly429]PLAP-[Ser84]PLAP heterodimer was produced by combining monomers displaying high and low sensitivity to the uncompetitive inhibitor l-Leu as well as a [Gly429]PLAP-[Ala92]PLAP heterodimer combining a catalytically active and inactive monomer, respectively. The l-Leu inhibition profile of the [Gly429]PLAP-[Ser84]PLAP heterodimer was intermediate to that for each homodimer as predicted by the allosteric model. Likewise, the [Gly429]PLAP-[Ala92]PLAP heterodimer was catalytically active, confirming that AP monomers act independently of each other. Although heterodimers are structurally asymmetrical, they migrate in starch gels with a smaller than expected weighted electrophoretic mobility, are more stable to heat denaturation than expected, and are more sensitive to l-Leu inhibition than predicted by a strict noncooperative model. We conclude that fully metalated mammalian APs are noncooperative allosteric enzymes but that the stability and catalytic properties of each monomer are controlled by the conformation of the second AP subunit. |
---|---|
AbstractList | Mammalian alkaline phosphatases (APs) are zinc-containing metalloenzymes encoded by a multigene family and functional as dimeric molecules. Using human placental AP (PLAP) as a paradigm, we have investigated whether the monomers in a given PLAP dimer are subject to cooperativity during catalysis following an allosteric model or act via a half-of-sites model, in which at any time only one single monomer is operative. Wild type and mutant PLAP homodimers and heterodimers were produced by stably transfecting Chinese hamster ovary cells with mutagenized PLAP cDNAs followed by enzyme extraction, purification, and characterization. [Gly429]PLAP manifested negative cooperativity when partially metalated as a consequence of the reduced affinity of the incompletely metalated AP monomers for the substrate. Upon full metalation with Zn2+, however, the negative cooperativity disappeared. To distinguish between an allosteric and a half-of-sites model, a [Gly429]PLAP-[Ser84]PLAP heterodimer was produced by combining monomers displaying high and low sensitivity to the uncompetitive inhibitor L-Leu as well as a [Gly429]PLAP-[Ala92]PLAP heterodimer combining a catalytically active and inactive monomer, respectively. The L-Leu inhibition profile of the [Gly429]PLAP-[Ser84]PLAP heterodimer was intermediate to that for each homodimer as predicted by the allosteric model. Likewise, the [Gly429]PLAP-[Ala92]PLAP heterodimer was catalytically active, confirming that AP monomers act independently of each other. Although heterodimers are structurally asymmetrical, they migrate in starch gels with a smaller than expected weighted electrophoretic mobility, are more stable to heat denaturation than expected, and are more sensitive to L-Leu inhibition than predicted by a strict noncooperative model. We conclude that fully metalated mammalian APs are noncooperative allosteric enzymes but that the stability and catalytic properties of each monomer are controlled by the conformation of the second AP subunit.Mammalian alkaline phosphatases (APs) are zinc-containing metalloenzymes encoded by a multigene family and functional as dimeric molecules. Using human placental AP (PLAP) as a paradigm, we have investigated whether the monomers in a given PLAP dimer are subject to cooperativity during catalysis following an allosteric model or act via a half-of-sites model, in which at any time only one single monomer is operative. Wild type and mutant PLAP homodimers and heterodimers were produced by stably transfecting Chinese hamster ovary cells with mutagenized PLAP cDNAs followed by enzyme extraction, purification, and characterization. [Gly429]PLAP manifested negative cooperativity when partially metalated as a consequence of the reduced affinity of the incompletely metalated AP monomers for the substrate. Upon full metalation with Zn2+, however, the negative cooperativity disappeared. To distinguish between an allosteric and a half-of-sites model, a [Gly429]PLAP-[Ser84]PLAP heterodimer was produced by combining monomers displaying high and low sensitivity to the uncompetitive inhibitor L-Leu as well as a [Gly429]PLAP-[Ala92]PLAP heterodimer combining a catalytically active and inactive monomer, respectively. The L-Leu inhibition profile of the [Gly429]PLAP-[Ser84]PLAP heterodimer was intermediate to that for each homodimer as predicted by the allosteric model. Likewise, the [Gly429]PLAP-[Ala92]PLAP heterodimer was catalytically active, confirming that AP monomers act independently of each other. Although heterodimers are structurally asymmetrical, they migrate in starch gels with a smaller than expected weighted electrophoretic mobility, are more stable to heat denaturation than expected, and are more sensitive to L-Leu inhibition than predicted by a strict noncooperative model. We conclude that fully metalated mammalian APs are noncooperative allosteric enzymes but that the stability and catalytic properties of each monomer are controlled by the conformation of the second AP subunit. Mammalian alkaline phosphatases (APs) are zinc-containing metalloenzymes encoded by a multigene family and functional as dimeric molecules. Using human placental AP (PLAP) as a paradigm, we have investigated whether the monomers in a given PLAP dimer are subject to cooperativity during catalysis following an allosteric model or act via a half-of-sites model, in which at any time only one single monomer is operative. Wild type and mutant PLAP homodimers and heterodimers were produced by stably transfecting Chinese hamster ovary cells with mutagenized PLAP cDNAs followed by enzyme extraction, purification, and characterization. [Gly429]PLAP manifested negative cooperativity when partially metalated as a consequence of the reduced affinity of the incompletely metalated AP monomers for the substrate. Upon full metalation with Zn2+, however, the negative cooperativity disappeared. To distinguish between an allosteric and a half-of-sites model, a [Gly429]PLAP-[Ser84]PLAP heterodimer was produced by combining monomers displaying high and low sensitivity to the uncompetitive inhibitor L-Leu as well as a [Gly429]PLAP-[Ala92]PLAP heterodimer combining a catalytically active and inactive monomer, respectively. The L-Leu inhibition profile of the [Gly429]PLAP-[Ser84]PLAP heterodimer was intermediate to that for each homodimer as predicted by the allosteric model. Likewise, the [Gly429]PLAP-[Ala92]PLAP heterodimer was catalytically active, confirming that AP monomers act independently of each other. Although heterodimers are structurally asymmetrical, they migrate in starch gels with a smaller than expected weighted electrophoretic mobility, are more stable to heat denaturation than expected, and are more sensitive to L-Leu inhibition than predicted by a strict noncooperative model. We conclude that fully metalated mammalian APs are noncooperative allosteric enzymes but that the stability and catalytic properties of each monomer are controlled by the conformation of the second AP subunit. Mammalian alkaline phosphatases (APs) are zinc-containing metalloenzymes encoded by a multigene family and functional as dimeric molecules. Using human placental AP (PLAP) as a paradigm, we have investigated whether the monomers in a given PLAP dimer are subject to cooperativity during catalysis following an allosteric model or act via a half-of-sites model, in which at any time only one single monomer is operative. Wild type and mutant PLAP homodimers and heterodimers were produced by stably transfecting Chinese hamster ovary cells with mutagenized PLAP cDNAs followed by enzyme extraction, purification, and characterization. [Gly 429 ]PLAP manifested negative cooperativity when partially metalated as a consequence of the reduced affinity of the incompletely metalated AP monomers for the substrate. Upon full metalation with Zn 2+ , however, the negative cooperativity disappeared. To distinguish between an allosteric and a half-of-sites model, a [Gly 429 ]PLAP-[Ser 84 ]PLAP heterodimer was produced by combining monomers displaying high and low sensitivity to the uncompetitive inhibitor l -Leu as well as a [Gly 429 ]PLAP-[Ala 92 ]PLAP heterodimer combining a catalytically active and inactive monomer, respectively. The l -Leu inhibition profile of the [Gly 429 ]PLAP-[Ser 84 ]PLAP heterodimer was intermediate to that for each homodimer as predicted by the allosteric model. Likewise, the [Gly 429 ]PLAP-[Ala 92 ]PLAP heterodimer was catalytically active, confirming that AP monomers act independently of each other. Although heterodimers are structurally asymmetrical, they migrate in starch gels with a smaller than expected weighted electrophoretic mobility, are more stable to heat denaturation than expected, and are more sensitive to l -Leu inhibition than predicted by a strict noncooperative model. We conclude that fully metalated mammalian APs are noncooperative allosteric enzymes but that the stability and catalytic properties of each monomer are controlled by the conformation of the second AP subunit. |
Author | Manes, Thomas Millán, José Luis Hoylaerts, Marc F. |
Author_xml | – sequence: 1 givenname: Marc F. surname: Hoylaerts fullname: Hoylaerts, Marc F. organization: Center for Molecular and Vascular Biology, Katholicke Universiteit Leuven, Leuven, Belgium – sequence: 2 givenname: Thomas surname: Manes fullname: Manes, Thomas organization: Burnham Institute, La Jolla Cancer Research Center, La Jolla, California 92037 – sequence: 3 givenname: José Luis surname: Millán fullname: Millán, José Luis email: millan@ljcrf.edu organization: Burnham Institute, La Jolla Cancer Research Center, La Jolla, California 92037 |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/9278439$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kDtLBDEURoMouj56G2ELsZs1r3nEbhFfoGhhYRfuJHed6MxkTWYV_fVGd7EQNE0ufOfkkm-brPe-R0L2GZ0wWsrjp9pMeMknophwXlZsjYwYrUQmcvawTkaUcpYpnldbZDvGJ5qOVGyTbKoES6FGpLiBroPWQT-ets9p6HF81_g4b2CAiHE8DZiS1scBgzPjs_7jvcO4SzZm0EbcW9075P787P70Mru-vbg6nV5nRrJiyIRCVgHwOsca8lLQ3FCJALK0UKtK2RqtLGSuLGV2RgXWMpcFWJpGwVHskKPls_PgXxYYB925aLBtoUe_iLpUXJZUyAQerMBF3aHV8-A6CO969c-U02Vugo8x4OyHYFR_NalTkzo1qUWhv5tMSvFLMW6Awfl-CODa_8TDpdi4x-bNBdS186bB7jd2ssQw9ffqMOhoHPYGbVLMoK13f-_4BGDxlxM |
CitedBy_id | crossref_primary_10_1016_j_bbapap_2016_03_016 crossref_primary_10_2147_IJN_S389819 crossref_primary_10_1016_j_jmgm_2020_107801 crossref_primary_10_1242_jcs_00909 crossref_primary_10_1007_s11270_013_1625_y crossref_primary_10_1007_s12013_009_9073_4 crossref_primary_10_1021_acssensors_6b00607 crossref_primary_10_1080_03007995_2021_2000715 crossref_primary_10_1134_S0022093007040011 crossref_primary_10_1016_j_jece_2024_114742 crossref_primary_10_1074_jbc_M009250200 crossref_primary_10_1152_ajpgi_00244_2002 crossref_primary_10_1529_biophysj_103_034116 crossref_primary_10_1073_pnas_0601805103 crossref_primary_10_1016_j_bbadis_2013_07_016 crossref_primary_10_1007_s10930_005_7643_x crossref_primary_10_1016_j_placenta_2011_06_029 crossref_primary_10_1016_j_bbapap_2008_09_020 crossref_primary_10_1096_fasebj_14_1_137 crossref_primary_10_1016_j_snb_2017_11_190 crossref_primary_10_1371_journal_pone_0119874 crossref_primary_10_1152_ajpcell_00430_2020 crossref_primary_10_1371_journal_pcbi_1010009 crossref_primary_10_1016_j_bbagen_2012_12_011 crossref_primary_10_1016_j_jmb_2006_11_079 crossref_primary_10_1074_jbc_273_36_23353 crossref_primary_10_1007_s13762_017_1421_0 crossref_primary_10_1021_ac5031418 crossref_primary_10_1016_j_autneu_2014_05_010 crossref_primary_10_3390_ijms222312957 crossref_primary_10_1080_10934529_2012_707851 crossref_primary_10_1016_j_bbrep_2020_100830 crossref_primary_10_1021_acs_nanolett_4c05766 crossref_primary_10_3390_coatings9120781 crossref_primary_10_1093_cvr_cvaa299 crossref_primary_10_3724_SP_J_1231_2010_06263 crossref_primary_10_1039_b515789g crossref_primary_10_1002_humu_10052 crossref_primary_10_1007_s13762_014_0749_y crossref_primary_10_1007_s12291_013_0408_y crossref_primary_10_1016_j_jmb_2010_04_057 crossref_primary_10_1016_j_jfca_2015_04_005 crossref_primary_10_1007_s12035_024_04104_9 crossref_primary_10_1016_j_bej_2020_107625 crossref_primary_10_1074_jbc_M207394200 crossref_primary_10_1002_pro_4102 crossref_primary_10_3390_ijms232113262 crossref_primary_10_1042_BJ20050509 crossref_primary_10_1016_S0167_4838_01_00239_4 crossref_primary_10_1111_j_1742_4658_2005_04668_x crossref_primary_10_3390_biomedicines10030658 crossref_primary_10_1177_002215540205000312 crossref_primary_10_1016_j_jmb_2005_04_068 crossref_primary_10_3109_08982104_2013_850593 crossref_primary_10_1007_s13167_020_00228_9 crossref_primary_10_1021_jp0119983 crossref_primary_10_3390_ijms24010043 crossref_primary_10_1088_1361_6463_ab2524 crossref_primary_10_1359_jbmr_2002_17_8_1383 crossref_primary_10_1016_j_colsurfb_2018_12_051 crossref_primary_10_1016_j_jcis_2019_12_097 crossref_primary_10_1110_ps_35201 crossref_primary_10_1016_j_berh_2007_11_003 crossref_primary_10_1016_j_jsb_2013_09_017 crossref_primary_10_1074_jbc_275_6_3781 crossref_primary_10_1039_D3RA01888A crossref_primary_10_1016_S0304_4165_02_00145_9 crossref_primary_10_1021_bi052471 crossref_primary_10_1016_j_jinorgbio_2004_01_009 crossref_primary_10_1007_s00439_008_0480_1 crossref_primary_10_1002_pro_741 crossref_primary_10_1002_pd_2088 crossref_primary_10_1007_s11033_019_04650_9 crossref_primary_10_1128_MCB_00535_06 crossref_primary_10_1021_acsomega_1c03243 crossref_primary_10_1042_BSR20171377 crossref_primary_10_1074_jbc_M102788200 crossref_primary_10_1016_j_ejpb_2019_09_007 crossref_primary_10_1002_jbt_22660 crossref_primary_10_1007_s11302_012_9309_4 crossref_primary_10_1021_acs_chemrev_9b00460 crossref_primary_10_1016_j_cca_2019_11_012 crossref_primary_10_1007_s11302_005_5435_6 crossref_primary_10_1074_jbc_M109_079830 crossref_primary_10_1016_j_bone_2023_116956 crossref_primary_10_1016_j_jembe_2004_01_018 crossref_primary_10_1074_jbc_M202298200 crossref_primary_10_1007_s00223_015_0079_1 crossref_primary_10_1110_ps_062123806 crossref_primary_10_3177_jnsv_68_284 crossref_primary_10_1107_S1744309110019767 crossref_primary_10_1016_j_bone_2013_06_010 crossref_primary_10_1021_cr020057z crossref_primary_10_1002_hep_27715 crossref_primary_10_1021_acs_analchem_2c01593 crossref_primary_10_1371_journal_pone_0089374 crossref_primary_10_1194_jlr_M034421 crossref_primary_10_1007_s10695_010_9441_4 |
Cites_doi | 10.1016/S0021-9258(19)42853-6 10.1093/clinchem/38.12.2493 10.1016/S0021-9258(17)43384-9 10.1093/clinchem/36.10.1793 10.1042/bj2740091 10.1083/jcb.105.6.2905 10.1016/0005-2795(75)90040-9 10.1042/bj2540623 10.1042/bj2860023 10.1111/j.1432-1033.1972.tb01975.x 10.1016/S0021-9258(17)33822-X 10.1111/j.1432-1033.1991.tb16414.x 10.1016/0022-2836(91)90724-K 10.1111/j.1432-1033.1989.tb15152.x 10.1016/S0021-9258(18)54836-5 10.1016/S0021-9258(18)91992-7 10.1021/bi00806a035 10.1042/bj0800324 10.1016/S0021-9258(18)83775-9 10.1016/S0021-9258(18)63900-6 10.1016/0009-8981(90)90031-M 10.1016/S0021-9258(19)74407-X 10.1093/nar/18.6.1656 10.1016/S0021-9258(19)67750-1 10.1016/S0021-9258(17)42944-9 |
ContentType | Journal Article |
Copyright | 1997 © 1997 ASBMB. Currently published by Elsevier Inc; originally published by American Society for Biochemistry and Molecular Biology. |
Copyright_xml | – notice: 1997 © 1997 ASBMB. Currently published by Elsevier Inc; originally published by American Society for Biochemistry and Molecular Biology. |
DBID | 6I. AAFTH AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 |
DOI | 10.1074/jbc.272.36.22781 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology Chemistry |
EISSN | 1083-351X |
EndPage | 22787 |
ExternalDocumentID | 9278439 10_1074_jbc_272_36_22781 272_36_22781 S0021925819659594 |
Genre | Research Support, Non-U.S. Gov't Research Support, U.S. Gov't, P.H.S Journal Article |
GrantInformation_xml | – fundername: NCI NIH HHS grantid: CA42595 |
GroupedDBID | --- -DZ -ET -~X .55 .GJ 0SF 186 18M 2WC 3O- 53G 5BI 5GY 5RE 5VS 6I. 6TJ 79B 85S AAEDW AAFTH AAFWJ AARDX AAXUO AAYOK ABDNZ ABOCM ABPPZ ABRJW ABTAH ACGFO ACNCT ADBBV ADIYS AENEX AEXQZ AFFNX AFMIJ AFOSN AFPKN AHPSJ AI. ALMA_UNASSIGNED_HOLDINGS BTFSW C1A CJ0 CS3 DIK DU5 E3Z EBS EJD F20 F5P FA8 FDB FRP GROUPED_DOAJ GX1 HH5 IH2 KQ8 L7B MVM N9A NHB OHT OK1 P-O P0W P2P R.V RHF RHI RNS ROL RPM SJN TBC TN5 TR2 UHB UPT UQL VH1 VQA W8F WH7 WHG WOQ X7M XFK XJT XSW Y6R YQT YSK YWH YYP YZZ ZA5 ZGI ZY4 ~02 ~KM - 02 08R 55 AAWZA ABFLS ABPTK ABUFD ABZEH ACDCL ADACO ADBIT ADCOW AEILP AIZTS DL DZ ET FH7 GJ H13 KM LI MYA O0- OHM X XHC .7T 0R~ 29J 34G 39C 4.4 41~ AALRI AAYJJ AAYWO AAYXX ABFSI ACSFO ACVFH ACYGS ADCNI ADNWM ADVLN ADXHL AEUPX AFPUW AIGII AITUG AKBMS AKRWK AKYEP AMRAJ AOIJS BAWUL CITATION E.L HYE J5H QZG UKR ZE2 CGR CUY CVF ECM EIF NPM PKN Z5M 7X8 |
ID | FETCH-LOGICAL-c416t-39e18aa2b5eba57305c04eaa47dab989dbed46459d01df03eb4546ad003e32e3 |
ISSN | 0021-9258 |
IngestDate | Fri Jul 11 02:11:47 EDT 2025 Wed Feb 19 02:29:29 EST 2025 Tue Jul 01 00:22:40 EDT 2025 Thu Apr 24 22:58:30 EDT 2025 Tue Jan 05 14:51:57 EST 2021 Fri Feb 23 02:46:09 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 36 |
Language | English |
License | This is an open access article under the CC BY license. http://creativecommons.org/licenses/by/4.0 https://www.elsevier.com/tdm/userlicense/1.0 |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c416t-39e18aa2b5eba57305c04eaa47dab989dbed46459d01df03eb4546ad003e32e3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | https://dx.doi.org/10.1074/jbc.272.36.22781 |
PMID | 9278439 |
PQID | 79247034 |
PQPubID | 23479 |
PageCount | 7 |
ParticipantIDs | proquest_miscellaneous_79247034 pubmed_primary_9278439 crossref_primary_10_1074_jbc_272_36_22781 crossref_citationtrail_10_1074_jbc_272_36_22781 highwire_biochem_272_36_22781 elsevier_sciencedirect_doi_10_1074_jbc_272_36_22781 |
ProviderPackageCode | RHF RHI CITATION AAYXX |
PublicationCentury | 1900 |
PublicationDate | 1997-09-05 |
PublicationDateYYYYMMDD | 1997-09-05 |
PublicationDate_xml | – month: 09 year: 1997 text: 1997-09-05 day: 05 |
PublicationDecade | 1990 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | The Journal of biological chemistry |
PublicationTitleAlternate | J Biol Chem |
PublicationYear | 1997 |
Publisher | Elsevier Inc American Society for Biochemistry and Molecular Biology |
Publisher_xml | – name: Elsevier Inc – name: American Society for Biochemistry and Molecular Biology |
References | Coleman, Gettins (bib4) 1983; 5 Olafsdottir, Chlebowski (bib14) 1989; 264 Hummer, Millán (bib19) 1991; 274 Cioni, Piras, Strambini (bib6) 1989; 185 Hendrix, Hoylaerts, Nouwen, De Broe (bib31) 1990; 36 Gorman, Moffat, Howard (bib23) 1982; 2 Byers, Fernley, Walker (bib27) 1972; 29 Millán (bib2) 1988; 8 Hoylaerts, Millán (bib16) 1991; 202 Tsonis, Argraves, Millán (bib15) 1988; 254 Bloch, Schlesinger (bib12) 1974; 249 Watanabe, Wada, Kim, Wyckoff, Chou (bib20) 1991; 266 Hoylaerts, Manes, Millán (bib18) 1992; 286 Kim, Wyckoff (bib5) 1991; 218 Harris, Coleman (bib8) 1968; 243 Chlebowski, Armitage, Tusa, Coleman (bib9) 1976; 251 Simpson, Vallee (bib10) 1970; 9 Hoylaerts, Manes, Millán (bib25) 1992; 38 Bird, Gething, Sambrook (bib22) 1987; 105 Coleman, Gettins (bib7) 1986; 1 Wilkinson (bib26) 1961; 80 Rao, Nagaraj (bib29) 1991; 266 McComb, Bowers, Posen (bib1) 1979 Gettins, Coleman (bib11) 1984; 259 Watanabe, Watanabe, Li, Soong, Chou (bib30) 1989; 264 Meighen, Yue (bib13) 1975; 412 Tomic, Sunjevaric, Savtchenko, Blumenberg (bib21) 1990; 18 Ito, Chou (bib24) 1984; 259 Segel (bib28) 1975 Harris (bib3) 1989; 186 Bossi, Hoylaerts, Millán (bib17) 1993; 268 Tomic (10.1074/jbc.272.36.22781_bib21) 1990; 18 Coleman (10.1074/jbc.272.36.22781_bib7) 1986; 1 Gorman (10.1074/jbc.272.36.22781_bib23) 1982; 2 Wilkinson (10.1074/jbc.272.36.22781_bib26) 1961; 80 Hummer (10.1074/jbc.272.36.22781_bib19) 1991; 274 Hoylaerts (10.1074/jbc.272.36.22781_bib25) 1992; 38 Rao (10.1074/jbc.272.36.22781_bib29) 1991; 266 McComb (10.1074/jbc.272.36.22781_bib1) 1979 Hoylaerts (10.1074/jbc.272.36.22781_bib16) 1991; 202 Kim (10.1074/jbc.272.36.22781_bib5) 1991; 218 Chlebowski (10.1074/jbc.272.36.22781_bib9) 1976; 251 Bird (10.1074/jbc.272.36.22781_bib22) 1987; 105 Bossi (10.1074/jbc.272.36.22781_bib17) 1993; 268 Harris (10.1074/jbc.272.36.22781_bib8) 1968; 243 Bloch (10.1074/jbc.272.36.22781_bib12) 1974; 249 Gettins (10.1074/jbc.272.36.22781_bib11) 1984; 259 Olafsdottir (10.1074/jbc.272.36.22781_bib14) 1989; 264 Hendrix (10.1074/jbc.272.36.22781_bib31) 1990; 36 Coleman (10.1074/jbc.272.36.22781_bib4) 1983; 5 Simpson (10.1074/jbc.272.36.22781_bib10) 1970; 9 Byers (10.1074/jbc.272.36.22781_bib27) 1972; 29 Harris (10.1074/jbc.272.36.22781_bib3) 1989; 186 Cioni (10.1074/jbc.272.36.22781_bib6) 1989; 185 Ito (10.1074/jbc.272.36.22781_bib24) 1984; 259 Hoylaerts (10.1074/jbc.272.36.22781_bib18) 1992; 286 Watanabe (10.1074/jbc.272.36.22781_bib20) 1991; 266 Segel (10.1074/jbc.272.36.22781_bib28) 1975 Tsonis (10.1074/jbc.272.36.22781_bib15) 1988; 254 Millán (10.1074/jbc.272.36.22781_bib2) 1988; 8 Meighen (10.1074/jbc.272.36.22781_bib13) 1975; 412 Watanabe (10.1074/jbc.272.36.22781_bib30) 1989; 264 |
References_xml | – volume: 249 start-page: 1760 year: 1974 end-page: 1768 ident: bib12 publication-title: J. Biol. Chem. – volume: 274 start-page: 91 year: 1991 end-page: 95 ident: bib19 publication-title: Biochem. J. – year: 1979 ident: bib1 article-title: Alkaline Phosphatases – volume: 185 start-page: 573 year: 1989 end-page: 579 ident: bib6 publication-title: Eur. J. Biochem. – volume: 264 start-page: 12611 year: 1989 end-page: 12619 ident: bib30 publication-title: J. Biol. Chem. – volume: 9 start-page: 953 year: 1970 end-page: 958 ident: bib10 publication-title: Biochemistry – volume: 1 start-page: 77 year: 1986 end-page: 99 ident: bib7 publication-title: Progress in Inorganic Biochemistry and Biophysics: Zn Enzymes – volume: 243 start-page: 5063 year: 1968 end-page: 5073 ident: bib8 publication-title: J. Biol. Chem – volume: 251 start-page: 1207 year: 1976 end-page: 1216 ident: bib9 publication-title: J. Biol. Chem. – volume: 259 start-page: 4991 year: 1984 end-page: 4997 ident: bib11 publication-title: J. Biol. Chem. – volume: 412 start-page: 262 year: 1975 end-page: 272 ident: bib13 publication-title: Biochim. Biophys. Acta – volume: 268 start-page: 25409 year: 1993 end-page: 25416 ident: bib17 publication-title: J. Biol. Chem. – volume: 218 start-page: 449 year: 1991 end-page: 464 ident: bib5 publication-title: J. Mol. Biol. – volume: 36 start-page: 1793 year: 1990 end-page: 1799 ident: bib31 publication-title: Clin. Chem. – volume: 186 start-page: 133 year: 1989 end-page: 150 ident: bib3 publication-title: Clin. Chim. Acta – volume: 286 start-page: 23 year: 1992 end-page: 30 ident: bib18 publication-title: Biochem. J. – volume: 266 start-page: 21174 year: 1991 end-page: 21178 ident: bib20 publication-title: J. Biol. Chem. – volume: 202 start-page: 605 year: 1991 end-page: 616 ident: bib16 publication-title: Eur. J. Biochem. – volume: 105 start-page: 2905 year: 1987 end-page: 2914 ident: bib22 publication-title: J. Cell. Biol. – volume: 18 start-page: 1656 year: 1990 ident: bib21 publication-title: Nucleic Acids Res. – volume: 8 start-page: 995 year: 1988 end-page: 1004 ident: bib2 publication-title: Anticancer Res. – volume: 29 start-page: 197 year: 1972 end-page: 204 ident: bib27 publication-title: Eur. J. Biochem. – year: 1975 ident: bib28 article-title: Enzyme Kinetics – volume: 264 start-page: 4529 year: 1989 end-page: 4535 ident: bib14 publication-title: J. Biol. Chem. – volume: 80 start-page: 324 year: 1961 end-page: 332 ident: bib26 publication-title: Biochem. J. – volume: 266 start-page: 5018 year: 1991 end-page: 5024 ident: bib29 publication-title: J. Biol. Chem. – volume: 5 start-page: 153 year: 1983 end-page: 217 ident: bib4 publication-title: Metal Ions in Biology – volume: 254 start-page: 623 year: 1988 end-page: 624 ident: bib15 publication-title: Biochem. J. – volume: 38 start-page: 2493 year: 1992 end-page: 2500 ident: bib25 publication-title: Clin. Chem. – volume: 2 start-page: 1044 year: 1982 end-page: 1051 ident: bib23 publication-title: Mol. Cell. Biol. – volume: 259 start-page: 2526 year: 1984 end-page: 2530 ident: bib24 publication-title: J. Biol. Chem. – volume: 249 start-page: 1760 year: 1974 ident: 10.1074/jbc.272.36.22781_bib12 publication-title: J. Biol. Chem. doi: 10.1016/S0021-9258(19)42853-6 – volume: 38 start-page: 2493 year: 1992 ident: 10.1074/jbc.272.36.22781_bib25 publication-title: Clin. Chem. doi: 10.1093/clinchem/38.12.2493 – volume: 5 start-page: 153 year: 1983 ident: 10.1074/jbc.272.36.22781_bib4 – year: 1979 ident: 10.1074/jbc.272.36.22781_bib1 – volume: 259 start-page: 2526 year: 1984 ident: 10.1074/jbc.272.36.22781_bib24 publication-title: J. Biol. Chem. doi: 10.1016/S0021-9258(17)43384-9 – volume: 36 start-page: 1793 year: 1990 ident: 10.1074/jbc.272.36.22781_bib31 publication-title: Clin. Chem. doi: 10.1093/clinchem/36.10.1793 – volume: 274 start-page: 91 year: 1991 ident: 10.1074/jbc.272.36.22781_bib19 publication-title: Biochem. J. doi: 10.1042/bj2740091 – volume: 105 start-page: 2905 year: 1987 ident: 10.1074/jbc.272.36.22781_bib22 publication-title: J. Cell. Biol. doi: 10.1083/jcb.105.6.2905 – volume: 8 start-page: 995 year: 1988 ident: 10.1074/jbc.272.36.22781_bib2 publication-title: Anticancer Res. – volume: 412 start-page: 262 year: 1975 ident: 10.1074/jbc.272.36.22781_bib13 publication-title: Biochim. Biophys. Acta doi: 10.1016/0005-2795(75)90040-9 – year: 1975 ident: 10.1074/jbc.272.36.22781_bib28 – volume: 254 start-page: 623 year: 1988 ident: 10.1074/jbc.272.36.22781_bib15 publication-title: Biochem. J. doi: 10.1042/bj2540623 – volume: 286 start-page: 23 year: 1992 ident: 10.1074/jbc.272.36.22781_bib18 publication-title: Biochem. J. doi: 10.1042/bj2860023 – volume: 29 start-page: 197 year: 1972 ident: 10.1074/jbc.272.36.22781_bib27 publication-title: Eur. J. Biochem. doi: 10.1111/j.1432-1033.1972.tb01975.x – volume: 251 start-page: 1207 year: 1976 ident: 10.1074/jbc.272.36.22781_bib9 publication-title: J. Biol. Chem. doi: 10.1016/S0021-9258(17)33822-X – volume: 202 start-page: 605 year: 1991 ident: 10.1074/jbc.272.36.22781_bib16 publication-title: Eur. J. Biochem. doi: 10.1111/j.1432-1033.1991.tb16414.x – volume: 218 start-page: 449 year: 1991 ident: 10.1074/jbc.272.36.22781_bib5 publication-title: J. Mol. Biol. doi: 10.1016/0022-2836(91)90724-K – volume: 2 start-page: 1044 year: 1982 ident: 10.1074/jbc.272.36.22781_bib23 publication-title: Mol. Cell. Biol. – volume: 185 start-page: 573 year: 1989 ident: 10.1074/jbc.272.36.22781_bib6 publication-title: Eur. J. Biochem. doi: 10.1111/j.1432-1033.1989.tb15152.x – volume: 1 start-page: 77 year: 1986 ident: 10.1074/jbc.272.36.22781_bib7 – volume: 266 start-page: 21174 year: 1991 ident: 10.1074/jbc.272.36.22781_bib20 publication-title: J. Biol. Chem. doi: 10.1016/S0021-9258(18)54836-5 – volume: 243 start-page: 5063 year: 1968 ident: 10.1074/jbc.272.36.22781_bib8 publication-title: J. Biol. Chem doi: 10.1016/S0021-9258(18)91992-7 – volume: 9 start-page: 953 year: 1970 ident: 10.1074/jbc.272.36.22781_bib10 publication-title: Biochemistry doi: 10.1021/bi00806a035 – volume: 80 start-page: 324 year: 1961 ident: 10.1074/jbc.272.36.22781_bib26 publication-title: Biochem. J. doi: 10.1042/bj0800324 – volume: 264 start-page: 4529 year: 1989 ident: 10.1074/jbc.272.36.22781_bib14 publication-title: J. Biol. Chem. doi: 10.1016/S0021-9258(18)83775-9 – volume: 264 start-page: 12611 year: 1989 ident: 10.1074/jbc.272.36.22781_bib30 publication-title: J. Biol. Chem. doi: 10.1016/S0021-9258(18)63900-6 – volume: 186 start-page: 133 year: 1989 ident: 10.1074/jbc.272.36.22781_bib3 publication-title: Clin. Chim. Acta doi: 10.1016/0009-8981(90)90031-M – volume: 268 start-page: 25409 year: 1993 ident: 10.1074/jbc.272.36.22781_bib17 publication-title: J. Biol. Chem. doi: 10.1016/S0021-9258(19)74407-X – volume: 18 start-page: 1656 year: 1990 ident: 10.1074/jbc.272.36.22781_bib21 publication-title: Nucleic Acids Res. doi: 10.1093/nar/18.6.1656 – volume: 266 start-page: 5018 year: 1991 ident: 10.1074/jbc.272.36.22781_bib29 publication-title: J. Biol. Chem. doi: 10.1016/S0021-9258(19)67750-1 – volume: 259 start-page: 4991 year: 1984 ident: 10.1074/jbc.272.36.22781_bib11 publication-title: J. Biol. Chem. doi: 10.1016/S0021-9258(17)42944-9 |
SSID | ssj0000491 |
Score | 1.896185 |
Snippet | Mammalian alkaline phosphatases (APs) are zinc-containing metalloenzymes encoded by a multigene family and functional as dimeric molecules. Using human... Mammalian alkaline phosphatases (APs) are zinc-containing metalloenzymes encoded by a multigene family and functional as dimeric molecules. Using human... |
SourceID | proquest pubmed crossref highwire elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 22781 |
SubjectTerms | Alkaline Phosphatase - chemistry Alkaline Phosphatase - genetics Alkaline Phosphatase - metabolism Allosteric Regulation Animals Binding Sites CHO Cells Cricetinae Dimerization Humans Kinetics Mutagenesis, Site-Directed Protein Conformation Zinc - metabolism |
Title | Mammalian Alkaline Phosphatases Are Allosteric Enzymes |
URI | https://dx.doi.org/10.1074/jbc.272.36.22781 http://www.jbc.org/content/272/36/22781.abstract https://www.ncbi.nlm.nih.gov/pubmed/9278439 https://www.proquest.com/docview/79247034 |
Volume | 272 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLZgPMALgo2JAoM8ICRUJUt8SeLHato0AUMgFalvlp142qBNpjZ96H49x5dcOm0T7CVqc3Ecf8fnHJ-bEfrIYpnrQqqQJSoNqTrXoeQJCfMSg7TkICG1sUOefU9Pf9EvMzbrTdk2u6RRUXF9a17JQ1CFc4CryZL9D2S7RuEE_AZ84QgIw_GfMD6Ti4WzU0zmf6RVGH9c1KurC9mAcFqNJ0sNV-Ymj8MEzB9X15s24eN3TyUDndSVZHJFQ9qd4Drg681c6mWz8ik-xfgk6u3ZvuL_IN7IJxpaT3xSeW-D88uPv60vB_YGV6uVhzHrjWBtIsxWnKaL9MCuCnukHS8F7c4kCsyGzBZneEBVZIt34szt3uIFsfmf3crlQe0xXF4VETQXkTQaPLpVO9u4ohPTLVc3kdPH6AmG9YTh4F9_9mXlYZnktlb0X-H92fCew5tvuUt_6cpL371UsSrL9AV67nENJo5wXqJHutpFe5NKNvViE3wKbPSvdavsoqdHLd57KO3oKmjpKhjSFbSog56uAk9Xr9D05Hh6dBr6_TXCAtTwJiRcJ7mUWDGtJANWz4qYailpVkoF07RUujSOb17GSXkeE60oo6ksQRBogjXZRztVXenXKACdUGZZLhnXGu7AeU4TWRCcp7A6YDIbocN20ETha8-bLVDmwsZAZFTAMAsYZkFSYYd5hD53T1y5uiv33EtaHITXG50-KIBg7nnqoIVMwOwys-rG9Q8tjgLG3_jRYC7V65XIOKYgKOkI7Tt4ux5y48Yn_M2DOvQWPevn2zu00yzX-gA03ka9t9T6F2jvpLY |
linkProvider | Colorado Alliance of Research Libraries |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Mammalian+Alkaline+Phosphatases+Are+Allosteric+Enzymes&rft.jtitle=The+Journal+of+biological+chemistry&rft.au=Hoylaerts%2C+Marc+F.&rft.au=Manes%2C+Thomas&rft.au=Mill%C3%A1n%2C+Jos%C3%A9+Luis&rft.date=1997-09-05&rft.pub=Elsevier+Inc&rft.issn=0021-9258&rft.eissn=1083-351X&rft.volume=272&rft.issue=36&rft.spage=22781&rft.epage=22787&rft_id=info:doi/10.1074%2Fjbc.272.36.22781&rft.externalDocID=S0021925819659594 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-9258&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-9258&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-9258&client=summon |