Quasiperiodic Oscillations in GRB 210514A: a Case of a Newborn Supramassive Precessing Magnetar Collapsing into a Black Hole?
Magnetar is proposed as one of the possible central engines for a gamma-ray burst (GRB). Recent studies show that if a magnetar has a rotational axis misaligned from the magnetic one, a periodic lightcurve pattern is expected with a period of seconds to minutes. Inspired by this unique feature, in t...
Saved in:
Published in | The Astrophysical journal Vol. 973; no. 2; pp. 126 - 133 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Philadelphia
The American Astronomical Society
01.10.2024
IOP Publishing |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Magnetar is proposed as one of the possible central engines for a gamma-ray burst (GRB). Recent studies show that if a magnetar has a rotational axis misaligned from the magnetic one, a periodic lightcurve pattern is expected with a period of seconds to minutes. Inspired by this unique feature, in this paper, we search for the quasiperiodic oscillation (QPO) signals in the Swift observations of GRBs. Using the Lomb–Scargle periodogram and the weighted wavelet Z-transform algorithms, we find that the Swift Burst Alert Telescope data of GRB 210514A has a QPO signal with a period ∼11 s. The estimated confidence level of the signal is over 3
σ
. The global lightcurve of this GRB exhibits a double-plateau structure with a sharp decay segment between plateaus. The lightcurve feature resembles those of GRBs that were reported to have internal plateaus. We explain the observations of GRB 210514A with a supramassive magnetar (SMM) model, where the QPO signal in the first plateau is produced via the dipole radiation of the SMM experiencing a precession motion, the sharp decay is due to the collapse of the SMM into a black hole (BH), and the second plateau could be produced via the fallback accretion of the newborn BH. We fit the precession model to the observations using the Bayesian statistic and the best-fit magnetar parameters are discussed. Alternative models concerning a BH central engine may also provide reasonable explanations for this burst, only in this case the QPO signal could merely be a coincidence. |
---|---|
AbstractList | Magnetar is proposed as one of the possible central engines for a gamma-ray burst (GRB). Recent studies show that if a magnetar has a rotational axis misaligned from the magnetic one, a periodic lightcurve pattern is expected with a period of seconds to minutes. Inspired by this unique feature, in this paper, we search for the quasiperiodic oscillation (QPO) signals in the Swift observations of GRBs. Using the Lomb–Scargle periodogram and the weighted wavelet Z-transform algorithms, we find that the Swift Burst Alert Telescope data of GRB 210514A has a QPO signal with a period ∼11 s. The estimated confidence level of the signal is over 3
σ
. The global lightcurve of this GRB exhibits a double-plateau structure with a sharp decay segment between plateaus. The lightcurve feature resembles those of GRBs that were reported to have internal plateaus. We explain the observations of GRB 210514A with a supramassive magnetar (SMM) model, where the QPO signal in the first plateau is produced via the dipole radiation of the SMM experiencing a precession motion, the sharp decay is due to the collapse of the SMM into a black hole (BH), and the second plateau could be produced via the fallback accretion of the newborn BH. We fit the precession model to the observations using the Bayesian statistic and the best-fit magnetar parameters are discussed. Alternative models concerning a BH central engine may also provide reasonable explanations for this burst, only in this case the QPO signal could merely be a coincidence. Magnetar is proposed as one of the possible central engines for a gamma-ray burst (GRB). Recent studies show that if a magnetar has a rotational axis misaligned from the magnetic one, a periodic lightcurve pattern is expected with a period of seconds to minutes. Inspired by this unique feature, in this paper, we search for the quasiperiodic oscillation (QPO) signals in the Swift observations of GRBs. Using the Lomb–Scargle periodogram and the weighted wavelet Z-transform algorithms, we find that the Swift Burst Alert Telescope data of GRB 210514A has a QPO signal with a period ∼11 s. The estimated confidence level of the signal is over 3σ. The global lightcurve of this GRB exhibits a double-plateau structure with a sharp decay segment between plateaus. The lightcurve feature resembles those of GRBs that were reported to have internal plateaus. We explain the observations of GRB 210514A with a supramassive magnetar (SMM) model, where the QPO signal in the first plateau is produced via the dipole radiation of the SMM experiencing a precession motion, the sharp decay is due to the collapse of the SMM into a black hole (BH), and the second plateau could be produced via the fallback accretion of the newborn BH. We fit the precession model to the observations using the Bayesian statistic and the best-fit magnetar parameters are discussed. Alternative models concerning a BH central engine may also provide reasonable explanations for this burst, only in this case the QPO signal could merely be a coincidence. Magnetar is proposed as one of the possible central engines for a gamma-ray burst (GRB). Recent studies show that if a magnetar has a rotational axis misaligned from the magnetic one, a periodic lightcurve pattern is expected with a period of seconds to minutes. Inspired by this unique feature, in this paper, we search for the quasiperiodic oscillation (QPO) signals in the Swift observations of GRBs. Using the Lomb–Scargle periodogram and the weighted wavelet Z-transform algorithms, we find that the Swift Burst Alert Telescope data of GRB 210514A has a QPO signal with a period ∼11 s. The estimated confidence level of the signal is over 3 σ . The global lightcurve of this GRB exhibits a double-plateau structure with a sharp decay segment between plateaus. The lightcurve feature resembles those of GRBs that were reported to have internal plateaus. We explain the observations of GRB 210514A with a supramassive magnetar (SMM) model, where the QPO signal in the first plateau is produced via the dipole radiation of the SMM experiencing a precession motion, the sharp decay is due to the collapse of the SMM into a black hole (BH), and the second plateau could be produced via the fallback accretion of the newborn BH. We fit the precession model to the observations using the Bayesian statistic and the best-fit magnetar parameters are discussed. Alternative models concerning a BH central engine may also provide reasonable explanations for this burst, only in this case the QPO signal could merely be a coincidence. |
Author | Cheng, Ji-Gui Zou, Le |
Author_xml | – sequence: 1 givenname: Le orcidid: 0000-0003-4639-5397 surname: Zou fullname: Zou, Le organization: Xiangtan University Key Laboratory of Stars and Interstellar Medium, Xiangtan, Hunan 411105, People's Republic of China – sequence: 2 givenname: Ji-Gui orcidid: 0000-0002-2585-442X surname: Cheng fullname: Cheng, Ji-Gui organization: Hunan University of Science and Technology School of Physics and Electronics, Xiangtan, Hunan 411201, People's Republic of China |
BookMark | eNp9UU1v1DAUtFCR2BbuHC1xJdSOY8fhgtoVtJUK5VPiZr3YzysvaRzsLIgD_x3vBhUJCU7vvdHMvJHmmByNcURCHnP2TOimPeVS6KoRsj0Fp5zr7pHVHXREVoyxplKi_fyAHOe83Z91163Iz3c7yGHCFKILlt5kG4YB5hDHTMNIL96f05ozyZuz5xToGjLS6Mv2Br_3MY30w25KcAs5h29I3ya0WNZxQ1_DZsQZEl3H4jcdsDDOsUjPB7Bf6GUc8MVDct_DkPHR73lCPr16-XF9WV3fXFytz64r23A1Vxwb9NLJTnfSth4Uas24EIIzBb3uW9-r2tZC160SXWt7QATvm84LyZ0U4oRcLb4uwtZMKdxC-mEiBHMAYtoYSHOwAxrueo1WSKlU0whne9853XsmOt2y8rp4PVm8phS_7jDPZht3aSzxjeCciZKR6cJiC8ummHNCf_eVM7MvzOzbMft2zFJYkai_JDbMhyrmBGH4n_DpIgxx-hPmn_Rf4n-p9w |
CitedBy_id | crossref_primary_10_3847_1538_4357_ad9005 crossref_primary_10_1093_mnrasl_slaf016 crossref_primary_10_3390_universe10120438 crossref_primary_10_1103_PhysRevD_111_023038 |
Cites_doi | 10.3847/1538-4357/ab8f91 10.1093/mnras/stx3229 10.1088/2041-8205/772/1/L8 10.1086/307790 10.1086/118137 10.3847/2041-8213/aa91c9 10.48550/arXiv.astro-ph/9810402 10.1088/0004-637X/806/2/205 10.1086/521870 10.1051/0004-6361/201321996 10.1086/498685 10.1051/0004-6361/200913447 10.1103/PhysRevD.89.047302 10.1093/mnras/stab2766 10.1051/0004-6361:20020722 10.3847/1538-4357/ad234c 10.1093/mnras/stt262 10.1086/421285 10.1051/0004-6361/201630288 10.1088/0004-637X/761/2/147 10.1086/519450 10.1111/j.1365-2966.2010.17354.x 10.1111/j.1365-2966.2009.15868.x 10.1038/46744 10.1088/0004-637X/785/1/74 10.1051/0004-6361/201014819 10.1103/PhysRevD.93.044065 10.1086/519837 10.1086/311244 10.3847/1538-4357/ab17dc 10.1086/322267 10.1111/j.1365-2966.2011.18280.x 10.1051/0004-6361:20077530 10.1086/670067 10.1086/150119 10.1086/186493 10.1086/312905 10.1086/317328 10.3847/2041-8213/ac2ee4 10.1038/s41586-022-05497-0 10.1086/589820 10.1093/mnras/sts683 10.1051/0004-6361:200810281 10.1093/mnras/stu591 10.1093/mnras/stv1818 10.1086/321093 10.1088/0004-637X/807/2/148 10.1093/mnras/270.3.480 10.1093/mnras/stv955 10.1111/j.1365-2966.2007.12243.x 10.1088/0004-637X/805/2/89 10.1093/mnras/sty2176 10.1086/510110 10.3847/1538-4357/acaefd 10.1103/PhysRevLett.119.161101 10.1088/0004-637X/808/1/33 10.1086/309055 10.1103/PhysRevLett.81.4301 10.1038/357472a0 10.3847/1538-4357/ab8302 10.1086/507518 10.1007/s10509-007-9323-0 10.1086/499432 10.3847/2041-8213/ab8296 10.1086/180513 10.1088/0004-637X/809/1/39 10.1007/BF00648343 10.3847/2041-8213/aa991c 10.1086/505457 10.1088/2041-8205/780/2/L21 10.1086/320255 10.1051/0004-6361:20030958 10.1086/160554 10.1088/0004-637X/730/2/135 10.3847/1538-4357/ab498c 10.1088/2041-8205/781/1/L19 10.1093/mnras/179.3.433 10.1086/524701 10.1093/mnras/267.4.1035 10.1111/j.1365-2966.2009.14913.x 10.1093/mnrasl/slac040 10.1086/491594 10.1016/j.physrep.2014.09.008 |
ContentType | Journal Article |
Copyright | 2024. The Author(s). Published by the American Astronomical Society. 2024. The Author(s). Published by the American Astronomical Society. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2024. The Author(s). Published by the American Astronomical Society. – notice: 2024. The Author(s). Published by the American Astronomical Society. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | O3W TSCCA AAYXX CITATION 7TG 8FD H8D KL. L7M DOA |
DOI | 10.3847/1538-4357/ad6dd9 |
DatabaseName | Institute of Physics Open Access Journal Titles IOPscience (Open Access) CrossRef Meteorological & Geoastrophysical Abstracts Technology Research Database Aerospace Database Meteorological & Geoastrophysical Abstracts - Academic Advanced Technologies Database with Aerospace DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Aerospace Database Meteorological & Geoastrophysical Abstracts Technology Research Database Advanced Technologies Database with Aerospace Meteorological & Geoastrophysical Abstracts - Academic |
DatabaseTitleList | CrossRef Aerospace Database |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: O3W name: Institute of Physics Open Access Journal Titles url: http://iopscience.iop.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Astronomy & Astrophysics Physics |
EISSN | 1538-4357 |
ExternalDocumentID | oai_doaj_org_article_1db8ec35566443dcbf9d8bf039870fa6 10_3847_1538_4357_ad6dd9 apjad6dd9 |
GroupedDBID | -DZ -~X 123 1JI 23N 2FS 4.4 6J9 85S AAFWJ AAGCD AAJIO ABHWH ACBEA ACGFS ACHIP ACNCT ADACN AEFHF AENEX AFPKN AKPSB ALMA_UNASSIGNED_HOLDINGS ASPBG ATQHT AVWKF AZFZN CJUJL CRLBU CS3 EBS F5P FRP GROUPED_DOAJ IJHAN IOP KOT M~E N5L O3W O43 OK1 PJBAE RIN RNS ROL SJN SY9 T37 TN5 TR2 TSCCA WH7 XSW AAYXX CITATION 7TG 8FD AEINN H8D KL. L7M |
ID | FETCH-LOGICAL-c416t-1e4ef5d59895c7fa6e8801333106ab8b7fb62c238276397cbaeeaff49f351d533 |
IEDL.DBID | O3W |
ISSN | 0004-637X |
IngestDate | Wed Aug 27 01:30:14 EDT 2025 Wed Aug 13 08:45:35 EDT 2025 Thu Apr 24 23:06:14 EDT 2025 Tue Jul 01 03:40:00 EDT 2025 Tue Oct 01 22:21:01 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Language | English |
License | Original content from this work may be used under the terms of the Creative Commons Attribution 4.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c416t-1e4ef5d59895c7fa6e8801333106ab8b7fb62c238276397cbaeeaff49f351d533 |
Notes | AAS52376 High-Energy Phenomena and Fundamental Physics ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-2585-442X 0000-0003-4639-5397 |
OpenAccessLink | https://iopscience.iop.org/article/10.3847/1538-4357/ad6dd9 |
PQID | 3110389508 |
PQPubID | 4562441 |
PageCount | 8 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_1db8ec35566443dcbf9d8bf039870fa6 iop_journals_10_3847_1538_4357_ad6dd9 crossref_primary_10_3847_1538_4357_ad6dd9 crossref_citationtrail_10_3847_1538_4357_ad6dd9 proquest_journals_3110389508 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-10-01 |
PublicationDateYYYYMMDD | 2024-10-01 |
PublicationDate_xml | – month: 10 year: 2024 text: 2024-10-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Philadelphia |
PublicationPlace_xml | – name: Philadelphia |
PublicationTitle | The Astrophysical journal |
PublicationTitleAbbrev | APJ |
PublicationTitleAlternate | Astrophys. J |
PublicationYear | 2024 |
Publisher | The American Astronomical Society IOP Publishing |
Publisher_xml | – name: The American Astronomical Society – name: IOP Publishing |
References | Evans (apjad6dd9bib20) 2010; 519 Abbott (apjad6dd9bib1) 2017a; 848 Dai (apjad6dd9bib12) 1998a; 81 Rowlinson (apjad6dd9bib54) 2010; 409 Sacahui (apjad6dd9bib56) 2019 Zou (apjad6dd9bib84) 2021a; 508 Narayan (apjad6dd9bib49) 2001; 557 Rees (apjad6dd9bib52) 1998; 496 Evans (apjad6dd9bib19) 2009; 397 Troja (apjad6dd9bib64) 2007; 665 Giacomazzo (apjad6dd9bib26) 2015; 809 Bloom (apjad6dd9bib10) 1999; 401 Falcke (apjad6dd9bib21) 2014; 562 Kumar (apjad6dd9bib32) 2000; 541 Dai (apjad6dd9bib13) 1998b; 333 Liang (apjad6dd9bib37) 2007; 670 Zhao (apjad6dd9bib81) 2020; 896 Foster (apjad6dd9bib23) 1996; 112 Goldreich (apjad6dd9bib28) 1969; 157 Thompson (apjad6dd9bib63) 1994; 270 Zou (apjad6dd9bib86) 2019; 877 Barthelmy (apjad6dd9bib7) 2005; 635 Philippov (apjad6dd9bib51) 2014; 441 Hou (apjad6dd9bib30) 2014; 781 Usov (apjad6dd9bib69) 1992; 357 Tan (apjad6dd9bib62) 2013; 772 Zheng (apjad6dd9bib82) 2024; 964 Rowlinson (apjad6dd9bib53) 2013; 430 Dall’Osso (apjad6dd9bib15) 2007; 308 Lü (apjad6dd9bib41) 2014; 785 Zhang (apjad6dd9bib77) 2007; 655 Metzger (apjad6dd9bib47) 2011; 413 Usov (apjad6dd9bib70) 1994; 267 Bloom (apjad6dd9bib9) 2001; 121 Neil Gehrels Swift Observatory Team (apjad6dd9bib38) 2021 Foreman-Mackey (apjad6dd9bib22) 2013; 125 Lasky (apjad6dd9bib34) 2014; 89 Kumar (apjad6dd9bib33) 2015; 561 Markwardt (apjad6dd9bib46) 2021 MacFadyen (apjad6dd9bib44) 1999; 524 Şaşmaz Muş (apjad6dd9bib55) 2019; 886 Tsutsui (apjad6dd9bib65) 2013; 431 Kalapotharakos (apjad6dd9bib31) 2009; 496 Spitkovsky (apjad6dd9bib59) 2006; 648 Liang (apjad6dd9bib35) 2005; 633 Gao (apjad6dd9bib24) 2016; 93 Suvorov (apjad6dd9bib61) 2020; 892 Yonetoku (apjad6dd9bib74) 2004; 609 Zhang (apjad6dd9bib78) 2001; 552 Lü (apjad6dd9bib43) 2018; 480 Chirenti (apjad6dd9bib11) 2023; 613 Stella (apjad6dd9bib60) 2005; 634 Blandford (apjad6dd9bib8) 1977; 179 Scargle (apjad6dd9bib58) 1982; 263 Amati (apjad6dd9bib3) 2002; 390 Dainotti (apjad6dd9bib14) 2011; 730 Duffell (apjad6dd9bib17) 2015; 806 Zanazzi (apjad6dd9bib75) 2015; 451 Deng (apjad6dd9bib16) 2023; 943 Evans (apjad6dd9bib18) 2007; 469 Sandrinelli (apjad6dd9bib57) 2017; 600 Uhm (apjad6dd9bib66) 2007; 665 O’Brien (apjad6dd9bib50) 2006; 647 Wheeler (apjad6dd9bib72) 2000; 537 Abbott (apjad6dd9bib2) 2017b; 119 Zou (apjad6dd9bib85) 2021b; 921 Guiriec (apjad6dd9bib29) 2015; 807 Zhang (apjad6dd9bib76) 2014; 780 Genet (apjad6dd9bib25) 2007; 381 Goldreich (apjad6dd9bib27) 1970; 160 Arzamasskiy (apjad6dd9bib5) 2015; 453 Lü (apjad6dd9bib42) 2015; 805 Liu (apjad6dd9bib39) 2010; 516 Lomb (apjad6dd9bib40) 1976; 39 Zou (apjad6dd9bib83) 2022; 513 Xie (apjad6dd9bib73) 2020; 894 Narayan (apjad6dd9bib48) 1992; 395 Zhang (apjad6dd9bib79) 2008; 683 Margalit (apjad6dd9bib45) 2017; 850 Uhm (apjad6dd9bib67) 2015; 808 Antonelli (apjad6dd9bib4) 2000; 545 Atteia (apjad6dd9bib6) 2003; 407 Uhm (apjad6dd9bib68) 2012; 761 Vaughan (apjad6dd9bib71) 2010; 402 Liang (apjad6dd9bib36) 2008; 675 Zhang (apjad6dd9bib80) 2018; 475 |
References_xml | – volume: 896 start-page: 42 year: 2020 ident: apjad6dd9bib81 publication-title: ApJ doi: 10.3847/1538-4357/ab8f91 – volume: 475 start-page: 266 year: 2018 ident: apjad6dd9bib80 publication-title: MNRAS doi: 10.1093/mnras/stx3229 – volume: 772 start-page: L8 year: 2013 ident: apjad6dd9bib62 publication-title: ApJL doi: 10.1088/2041-8205/772/1/L8 – volume: 524 start-page: 262 year: 1999 ident: apjad6dd9bib44 publication-title: ApJ doi: 10.1086/307790 – volume: 112 start-page: 1709 year: 1996 ident: apjad6dd9bib23 publication-title: AJ doi: 10.1086/118137 – volume: 848 start-page: L12 year: 2017a ident: apjad6dd9bib1 publication-title: ApJL doi: 10.3847/2041-8213/aa91c9 – volume: 333 start-page: L87 year: 1998b ident: apjad6dd9bib13 publication-title: A&A doi: 10.48550/arXiv.astro-ph/9810402 – volume: 806 start-page: 205 year: 2015 ident: apjad6dd9bib17 publication-title: ApJ doi: 10.1088/0004-637X/806/2/205 – volume: 670 start-page: 565 year: 2007 ident: apjad6dd9bib37 publication-title: ApJ doi: 10.1086/521870 – volume: 562 start-page: A137 year: 2014 ident: apjad6dd9bib21 publication-title: A&A doi: 10.1051/0004-6361/201321996 – year: 2021 ident: apjad6dd9bib46 – volume: 634 start-page: L165 year: 2005 ident: apjad6dd9bib60 publication-title: ApJL doi: 10.1086/498685 – volume: 516 start-page: 16 year: 2010 ident: apjad6dd9bib39 publication-title: A&A doi: 10.1051/0004-6361/200913447 – volume: 89 start-page: 047302 year: 2014 ident: apjad6dd9bib34 publication-title: PhRvD doi: 10.1103/PhysRevD.89.047302 – volume: 508 start-page: 2505 year: 2021a ident: apjad6dd9bib84 publication-title: MNRAS doi: 10.1093/mnras/stab2766 – volume: 390 start-page: 81 year: 2002 ident: apjad6dd9bib3 publication-title: A&A doi: 10.1051/0004-6361:20020722 – volume: 964 start-page: 169 year: 2024 ident: apjad6dd9bib82 publication-title: ApJ doi: 10.3847/1538-4357/ad234c – volume: 431 start-page: 1398 year: 2013 ident: apjad6dd9bib65 publication-title: MNRAS doi: 10.1093/mnras/stt262 – volume: 609 start-page: 935 year: 2004 ident: apjad6dd9bib74 publication-title: ApJ doi: 10.1086/421285 – volume: 600 start-page: A132 year: 2017 ident: apjad6dd9bib57 publication-title: A&A doi: 10.1051/0004-6361/201630288 – volume: 761 start-page: 147 year: 2012 ident: apjad6dd9bib68 publication-title: ApJ doi: 10.1088/0004-637X/761/2/147 – volume: 665 start-page: 599 year: 2007 ident: apjad6dd9bib64 publication-title: ApJ doi: 10.1086/519450 – volume: 409 start-page: 531 year: 2010 ident: apjad6dd9bib54 publication-title: MNRAS doi: 10.1111/j.1365-2966.2010.17354.x – volume: 402 start-page: 307 year: 2010 ident: apjad6dd9bib71 publication-title: MNRAS doi: 10.1111/j.1365-2966.2009.15868.x – volume: 401 start-page: 453 year: 1999 ident: apjad6dd9bib10 publication-title: Natur doi: 10.1038/46744 – volume: 785 start-page: 74 year: 2014 ident: apjad6dd9bib41 publication-title: ApJ doi: 10.1088/0004-637X/785/1/74 – volume: 519 start-page: A102 year: 2010 ident: apjad6dd9bib20 publication-title: A&A doi: 10.1051/0004-6361/201014819 – volume: 93 start-page: 044065 year: 2016 ident: apjad6dd9bib24 publication-title: PhRvD doi: 10.1103/PhysRevD.93.044065 – volume: 665 start-page: L93 year: 2007 ident: apjad6dd9bib66 publication-title: ApJL doi: 10.1086/519837 – volume: 496 start-page: L1 year: 1998 ident: apjad6dd9bib52 publication-title: ApJL doi: 10.1086/311244 – volume: 877 start-page: 153 year: 2019 ident: apjad6dd9bib86 publication-title: ApJ doi: 10.3847/1538-4357/ab17dc – volume: 557 start-page: 949 year: 2001 ident: apjad6dd9bib49 publication-title: ApJ doi: 10.1086/322267 – volume: 413 start-page: 2031 year: 2011 ident: apjad6dd9bib47 publication-title: MNRAS doi: 10.1111/j.1365-2966.2011.18280.x – volume: 469 start-page: 379 year: 2007 ident: apjad6dd9bib18 publication-title: A&A doi: 10.1051/0004-6361:20077530 – volume: 125 start-page: 306 year: 2013 ident: apjad6dd9bib22 publication-title: PASP doi: 10.1086/670067 – volume: 157 start-page: 869 year: 1969 ident: apjad6dd9bib28 publication-title: ApJ doi: 10.1086/150119 – volume: 395 start-page: L83 year: 1992 ident: apjad6dd9bib48 publication-title: ApJL doi: 10.1086/186493 – volume: 541 start-page: L51 year: 2000 ident: apjad6dd9bib32 publication-title: ApJL doi: 10.1086/312905 – volume: 545 start-page: L39 year: 2000 ident: apjad6dd9bib4 publication-title: ApJL doi: 10.1086/317328 – volume: 921 start-page: L1 year: 2021b ident: apjad6dd9bib85 publication-title: ApJL doi: 10.3847/2041-8213/ac2ee4 – volume: 613 start-page: 253 year: 2023 ident: apjad6dd9bib11 publication-title: Natur doi: 10.1038/s41586-022-05497-0 – volume: 683 start-page: 329 year: 2008 ident: apjad6dd9bib79 publication-title: ApJ doi: 10.1086/589820 – volume: 430 start-page: 1061 year: 2013 ident: apjad6dd9bib53 publication-title: MNRAS doi: 10.1093/mnras/sts683 – volume: 496 start-page: 495 year: 2009 ident: apjad6dd9bib31 publication-title: A&A doi: 10.1051/0004-6361:200810281 – volume: 441 start-page: 1879 year: 2014 ident: apjad6dd9bib51 publication-title: MNRAS doi: 10.1093/mnras/stu591 – volume: 453 start-page: 3540 year: 2015 ident: apjad6dd9bib5 publication-title: MNRAS doi: 10.1093/mnras/stv1818 – year: 2021 ident: apjad6dd9bib38 – volume: 121 start-page: 2879 year: 2001 ident: apjad6dd9bib9 publication-title: AJ doi: 10.1086/321093 – volume: 807 start-page: 148 year: 2015 ident: apjad6dd9bib29 publication-title: ApJ doi: 10.1088/0004-637X/807/2/148 – volume: 270 start-page: 480 year: 1994 ident: apjad6dd9bib63 publication-title: MNRAS doi: 10.1093/mnras/270.3.480 – volume: 451 start-page: 695 year: 2015 ident: apjad6dd9bib75 publication-title: MNRAS doi: 10.1093/mnras/stv955 – volume: 381 start-page: 732 year: 2007 ident: apjad6dd9bib25 publication-title: MNRAS doi: 10.1111/j.1365-2966.2007.12243.x – volume: 805 start-page: 89 year: 2015 ident: apjad6dd9bib42 publication-title: ApJ doi: 10.1088/0004-637X/805/2/89 – volume: 480 start-page: 4402 year: 2018 ident: apjad6dd9bib43 publication-title: MNRAS doi: 10.1093/mnras/sty2176 – volume: 655 start-page: 989 year: 2007 ident: apjad6dd9bib77 publication-title: ApJ doi: 10.1086/510110 – volume: 943 start-page: 126 year: 2023 ident: apjad6dd9bib16 publication-title: ApJ doi: 10.3847/1538-4357/acaefd – volume: 119 start-page: 161101 year: 2017b ident: apjad6dd9bib2 publication-title: PhRvL doi: 10.1103/PhysRevLett.119.161101 – volume: 808 start-page: 33 year: 2015 ident: apjad6dd9bib67 publication-title: ApJ doi: 10.1088/0004-637X/808/1/33 – volume: 537 start-page: 810 year: 2000 ident: apjad6dd9bib72 publication-title: ApJ doi: 10.1086/309055 – volume: 81 start-page: 4301 year: 1998a ident: apjad6dd9bib12 publication-title: PhRvL doi: 10.1103/PhysRevLett.81.4301 – volume: 357 start-page: 472 year: 1992 ident: apjad6dd9bib69 publication-title: Natur doi: 10.1038/357472a0 – volume: 894 start-page: 52 year: 2020 ident: apjad6dd9bib73 publication-title: ApJ doi: 10.3847/1538-4357/ab8302 – volume: 648 start-page: L51 year: 2006 ident: apjad6dd9bib59 publication-title: ApJL doi: 10.1086/507518 – volume: 308 start-page: 119 year: 2007 ident: apjad6dd9bib15 publication-title: Ap&SS doi: 10.1007/s10509-007-9323-0 – volume: 635 start-page: L133 year: 2005 ident: apjad6dd9bib7 publication-title: ApJL doi: 10.1086/499432 – volume: 892 start-page: L34 year: 2020 ident: apjad6dd9bib61 publication-title: ApJL doi: 10.3847/2041-8213/ab8296 – volume: 160 start-page: L11 year: 1970 ident: apjad6dd9bib27 publication-title: ApJL doi: 10.1086/180513 – volume: 809 start-page: 39 year: 2015 ident: apjad6dd9bib26 publication-title: ApJ doi: 10.1088/0004-637X/809/1/39 – volume: 39 start-page: 447 year: 1976 ident: apjad6dd9bib40 publication-title: Ap&SS doi: 10.1007/BF00648343 – volume: 850 start-page: L19 year: 2017 ident: apjad6dd9bib45 publication-title: ApJL doi: 10.3847/2041-8213/aa991c – volume: 647 start-page: 1213 year: 2006 ident: apjad6dd9bib50 publication-title: ApJ doi: 10.1086/505457 – volume: 780 start-page: L21 year: 2014 ident: apjad6dd9bib76 publication-title: ApJL doi: 10.1088/2041-8205/780/2/L21 – volume: 552 start-page: L35 year: 2001 ident: apjad6dd9bib78 publication-title: ApJL doi: 10.1086/320255 – volume: 407 start-page: L1 year: 2003 ident: apjad6dd9bib6 publication-title: A&A doi: 10.1051/0004-6361:20030958 – volume: 263 start-page: 835 year: 1982 ident: apjad6dd9bib58 publication-title: ApJ doi: 10.1086/160554 – year: 2019 ident: apjad6dd9bib56 – volume: 730 start-page: 135 year: 2011 ident: apjad6dd9bib14 publication-title: ApJ doi: 10.1088/0004-637X/730/2/135 – volume: 886 start-page: 5 year: 2019 ident: apjad6dd9bib55 publication-title: ApJ doi: 10.3847/1538-4357/ab498c – volume: 781 start-page: L19 year: 2014 ident: apjad6dd9bib30 publication-title: ApJL doi: 10.1088/2041-8205/781/1/L19 – volume: 179 start-page: 433 year: 1977 ident: apjad6dd9bib8 publication-title: MNRAS doi: 10.1093/mnras/179.3.433 – volume: 675 start-page: 528 year: 2008 ident: apjad6dd9bib36 publication-title: ApJ doi: 10.1086/524701 – volume: 267 start-page: 1035 year: 1994 ident: apjad6dd9bib70 publication-title: MNRAS doi: 10.1093/mnras/267.4.1035 – volume: 397 start-page: 1177 year: 2009 ident: apjad6dd9bib19 publication-title: MNRAS doi: 10.1111/j.1365-2966.2009.14913.x – volume: 513 start-page: L89 year: 2022 ident: apjad6dd9bib83 publication-title: MNRAS doi: 10.1093/mnrasl/slac040 – volume: 633 start-page: 611 year: 2005 ident: apjad6dd9bib35 publication-title: ApJ doi: 10.1086/491594 – volume: 561 start-page: 1 year: 2015 ident: apjad6dd9bib33 publication-title: PhR doi: 10.1016/j.physrep.2014.09.008 |
SSID | ssj0004299 |
Score | 2.4770725 |
Snippet | Magnetar is proposed as one of the possible central engines for a gamma-ray burst (GRB). Recent studies show that if a magnetar has a rotational axis... |
SourceID | doaj proquest crossref iop |
SourceType | Open Website Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 126 |
SubjectTerms | Algorithms Axes of rotation Black holes Confidence intervals Decay Dipoles Gamma ray bursts Gamma rays Magnetars Plateaus Precession Statistical analysis Z transforms |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LaxsxEBYlEMiltHkQNw90SAo9LN73I5fghDim4NZpEsht0TMsOLvGXh96yH_PJ2ntNhTSS25CSOyiGc33zUiaIeQkFxJST3xP-1J4cSEDD2KWXqRYaOCdR_a52PhHOrqPvz8kD3-V-jJ3wlx6YLdw_UDyXAmgYgrkjqTgupA5134EZ9nXzCbbBuatnKnVi0hYWXcoGcH89u22BjHI-kymUhavQMjm6ge0VM3sH4NsUWb4iXzs6CEduN_6TD6oepvsDxYmYN08_aZfqW27eMRim2xOXGuHPN8s2aIyeYsbWQn6E9A27e650aqm178uKPwuEJfBGWX0EuBFG40WrBzUoKa3y9mcPYFKw_zRCeyguR9bP9Ixe6xVy-bUhBjYzPZVddtgqg3-0VEzVee75H54dXc58rraCp4ABWu9QMVKJzIp8iIRGdZRYSPDXwXbSxnPeaZ5GgrgeZiZoz_BmVJM67jQURJIcMQ9slE3tdonNMiVjtOQgcnwWEmMjnjImBaJZlke-D3SXy12KbrE46b-xbSEA2LEUxrxlEY8pRNPj3xbz5i5pBtvjL0w8luPM-mybQeUqOyUqPyfEvXIKaRfdtt38cbHDlf68WdwFJgk86aa7pf3-JcDshWCOLkLg4dko50v1RGIT8uPrY6_AMn5_iA priority: 102 providerName: Directory of Open Access Journals |
Title | Quasiperiodic Oscillations in GRB 210514A: a Case of a Newborn Supramassive Precessing Magnetar Collapsing into a Black Hole? |
URI | https://iopscience.iop.org/article/10.3847/1538-4357/ad6dd9 https://www.proquest.com/docview/3110389508 https://doaj.org/article/1db8ec35566443dcbf9d8bf039870fa6 |
Volume | 973 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LbxMxELZKERIXBAXUQFv5AEgclmTX-_C2B5RWLQGpJDwqclv5WUVKd6Nkc-iB_85ne5sKFVVcVpblx9oznvlmbI8JecOVBtWzQWQHWkVpqeMIZNYRMyJx6l0yf13s_Gs-uki_TLPpFjna3IVpFp3o_4BkCBQcptCtbwZZ2vdrFFq-6Auda10-IA8Zz7mzvMbs1-2lyKTssG8a5ayYhj3Kf7bwl07yofuhadD9Hfnslc7ZU_KkQ4t0GP7tGdky9Q7ZHa6c_7q5uqbvqE8H98RqhzyahNRz8vvbWqxmLoxxo2eKjjHceXfsjc5q-un7MYUZBhwzPKSCnkCX0cYiBaEHrqjpj_ViKa6ArCEN6QRi0R2XrS_pubisTSuW1HkcxMLnzeq2QVXvC6SjZm4-viAXZ6c_T0ZR99RCpIDI2ig2qbGZzkpeZqqwIjdY1zBfAf5yIbksrMwTBfWeFG4nUElhjLA2LS3LYg3I-JJs101tdgmNubFpnggAG5kajdJMJkJYlVlR8HjQI_2bya5UF4fcPYcxr2CPOPJUjjyVI08VyNMj7zc1FiEGxz1ljx39NuVc9GyfAU6qOk6qYi25UUBaOdAg00raUnNpB6yE9MLge-QtqF91q3l1T2d7N_xxW5jFLua8e1z31X8285o8TgCVwhHBPbLdLtdmH1CnlQfeRYDv5_HkwLP3HwIe974 |
linkProvider | IOP Publishing |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB5BEYgLggLqQgEfAIlD2E2cOAkXtC0sy6Pt8qi6N8vPaqVtEu1mDxz474wfbYVAFTfLsp3Y8_o8tmcAnldKI9WLUWJHWiV5rdMEyawTakTmzLuk_rnYwSGbHuef5sU85jn1b2HaLqr-11gMgYLDEjr5pqhLh15G0cqXQ6GZ1vWw0_Y63CgoYy53wxE9uXwYmdUR_-YJo-U8nFP-c5Q_7JIP34_WBn_hLx3tDc_kLtyJiJGMw__dg2um2Yad8dr5sNuzn-Ql8eXgolhvw81ZKN2HX183Yr1woYxbvVDkCKe8jFffyKIhH77tEdyKIZYZvyGC7KM9I63FEio-5IyGfN90K3GG6Bo1IpmhanRXZptTciBOG9OLFXFeB9H5ukXTt9jV-wPJtF2atw_gePL-x_40iekWEoWorE9Skxtb6KKu6kKVVjCDso1bWASATMhKllayTKGJz0p3GqikMEZYm9eWFqlG2PgQtpq2MTtA0srYnGUCwY3MjcbWVGZCWFVYUVbpaADD88XmKsYidykxlhz3JI483JGHO_LwQJ4BvLro0YU4HFe03XP0u2jnImj7CuQmHrmJp1pWRiHaYogIqVbS1rqSdkRr1GA4-QG8QOrzKNHrKz62e84fl41p6uLOuwS7j_5zmGdwa_Zuwr98PPz8GG5niJzCjcFd2OpXG_MEkU8vn3ru_g2iUvmv |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Quasiperiodic+Oscillations+in+GRB+210514A%3A+a+Case+of+a+Newborn+Supramassive+Precessing+Magnetar+Collapsing+into+a+Black+Hole%3F&rft.jtitle=The+Astrophysical+journal&rft.au=Zou%2C+Le&rft.au=Cheng%2C+Ji-Gui&rft.date=2024-10-01&rft.issn=0004-637X&rft.eissn=1538-4357&rft.volume=973&rft.issue=2&rft.spage=126&rft_id=info:doi/10.3847%2F1538-4357%2Fad6dd9&rft.externalDBID=n%2Fa&rft.externalDocID=10_3847_1538_4357_ad6dd9 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0004-637X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0004-637X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0004-637X&client=summon |