Quasiperiodic Oscillations in GRB 210514A: a Case of a Newborn Supramassive Precessing Magnetar Collapsing into a Black Hole?

Magnetar is proposed as one of the possible central engines for a gamma-ray burst (GRB). Recent studies show that if a magnetar has a rotational axis misaligned from the magnetic one, a periodic lightcurve pattern is expected with a period of seconds to minutes. Inspired by this unique feature, in t...

Full description

Saved in:
Bibliographic Details
Published inThe Astrophysical journal Vol. 973; no. 2; pp. 126 - 133
Main Authors Zou, Le, Cheng, Ji-Gui
Format Journal Article
LanguageEnglish
Published Philadelphia The American Astronomical Society 01.10.2024
IOP Publishing
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Magnetar is proposed as one of the possible central engines for a gamma-ray burst (GRB). Recent studies show that if a magnetar has a rotational axis misaligned from the magnetic one, a periodic lightcurve pattern is expected with a period of seconds to minutes. Inspired by this unique feature, in this paper, we search for the quasiperiodic oscillation (QPO) signals in the Swift observations of GRBs. Using the Lomb–Scargle periodogram and the weighted wavelet Z-transform algorithms, we find that the Swift Burst Alert Telescope data of GRB 210514A has a QPO signal with a period ∼11 s. The estimated confidence level of the signal is over 3 σ . The global lightcurve of this GRB exhibits a double-plateau structure with a sharp decay segment between plateaus. The lightcurve feature resembles those of GRBs that were reported to have internal plateaus. We explain the observations of GRB 210514A with a supramassive magnetar (SMM) model, where the QPO signal in the first plateau is produced via the dipole radiation of the SMM experiencing a precession motion, the sharp decay is due to the collapse of the SMM into a black hole (BH), and the second plateau could be produced via the fallback accretion of the newborn BH. We fit the precession model to the observations using the Bayesian statistic and the best-fit magnetar parameters are discussed. Alternative models concerning a BH central engine may also provide reasonable explanations for this burst, only in this case the QPO signal could merely be a coincidence.
AbstractList Magnetar is proposed as one of the possible central engines for a gamma-ray burst (GRB). Recent studies show that if a magnetar has a rotational axis misaligned from the magnetic one, a periodic lightcurve pattern is expected with a period of seconds to minutes. Inspired by this unique feature, in this paper, we search for the quasiperiodic oscillation (QPO) signals in the Swift observations of GRBs. Using the Lomb–Scargle periodogram and the weighted wavelet Z-transform algorithms, we find that the Swift Burst Alert Telescope data of GRB 210514A has a QPO signal with a period ∼11 s. The estimated confidence level of the signal is over 3 σ . The global lightcurve of this GRB exhibits a double-plateau structure with a sharp decay segment between plateaus. The lightcurve feature resembles those of GRBs that were reported to have internal plateaus. We explain the observations of GRB 210514A with a supramassive magnetar (SMM) model, where the QPO signal in the first plateau is produced via the dipole radiation of the SMM experiencing a precession motion, the sharp decay is due to the collapse of the SMM into a black hole (BH), and the second plateau could be produced via the fallback accretion of the newborn BH. We fit the precession model to the observations using the Bayesian statistic and the best-fit magnetar parameters are discussed. Alternative models concerning a BH central engine may also provide reasonable explanations for this burst, only in this case the QPO signal could merely be a coincidence.
Magnetar is proposed as one of the possible central engines for a gamma-ray burst (GRB). Recent studies show that if a magnetar has a rotational axis misaligned from the magnetic one, a periodic lightcurve pattern is expected with a period of seconds to minutes. Inspired by this unique feature, in this paper, we search for the quasiperiodic oscillation (QPO) signals in the Swift observations of GRBs. Using the Lomb–Scargle periodogram and the weighted wavelet Z-transform algorithms, we find that the Swift Burst Alert Telescope data of GRB 210514A has a QPO signal with a period ∼11 s. The estimated confidence level of the signal is over 3σ. The global lightcurve of this GRB exhibits a double-plateau structure with a sharp decay segment between plateaus. The lightcurve feature resembles those of GRBs that were reported to have internal plateaus. We explain the observations of GRB 210514A with a supramassive magnetar (SMM) model, where the QPO signal in the first plateau is produced via the dipole radiation of the SMM experiencing a precession motion, the sharp decay is due to the collapse of the SMM into a black hole (BH), and the second plateau could be produced via the fallback accretion of the newborn BH. We fit the precession model to the observations using the Bayesian statistic and the best-fit magnetar parameters are discussed. Alternative models concerning a BH central engine may also provide reasonable explanations for this burst, only in this case the QPO signal could merely be a coincidence.
Magnetar is proposed as one of the possible central engines for a gamma-ray burst (GRB). Recent studies show that if a magnetar has a rotational axis misaligned from the magnetic one, a periodic lightcurve pattern is expected with a period of seconds to minutes. Inspired by this unique feature, in this paper, we search for the quasiperiodic oscillation (QPO) signals in the Swift observations of GRBs. Using the Lomb–Scargle periodogram and the weighted wavelet Z-transform algorithms, we find that the Swift Burst Alert Telescope data of GRB 210514A has a QPO signal with a period ∼11 s. The estimated confidence level of the signal is over 3 σ . The global lightcurve of this GRB exhibits a double-plateau structure with a sharp decay segment between plateaus. The lightcurve feature resembles those of GRBs that were reported to have internal plateaus. We explain the observations of GRB 210514A with a supramassive magnetar (SMM) model, where the QPO signal in the first plateau is produced via the dipole radiation of the SMM experiencing a precession motion, the sharp decay is due to the collapse of the SMM into a black hole (BH), and the second plateau could be produced via the fallback accretion of the newborn BH. We fit the precession model to the observations using the Bayesian statistic and the best-fit magnetar parameters are discussed. Alternative models concerning a BH central engine may also provide reasonable explanations for this burst, only in this case the QPO signal could merely be a coincidence.
Author Cheng, Ji-Gui
Zou, Le
Author_xml – sequence: 1
  givenname: Le
  orcidid: 0000-0003-4639-5397
  surname: Zou
  fullname: Zou, Le
  organization: Xiangtan University Key Laboratory of Stars and Interstellar Medium, Xiangtan, Hunan 411105, People's Republic of China
– sequence: 2
  givenname: Ji-Gui
  orcidid: 0000-0002-2585-442X
  surname: Cheng
  fullname: Cheng, Ji-Gui
  organization: Hunan University of Science and Technology School of Physics and Electronics, Xiangtan, Hunan 411201, People's Republic of China
BookMark eNp9UU1v1DAUtFCR2BbuHC1xJdSOY8fhgtoVtJUK5VPiZr3YzysvaRzsLIgD_x3vBhUJCU7vvdHMvJHmmByNcURCHnP2TOimPeVS6KoRsj0Fp5zr7pHVHXREVoyxplKi_fyAHOe83Z91163Iz3c7yGHCFKILlt5kG4YB5hDHTMNIL96f05ozyZuz5xToGjLS6Mv2Br_3MY30w25KcAs5h29I3ya0WNZxQ1_DZsQZEl3H4jcdsDDOsUjPB7Bf6GUc8MVDct_DkPHR73lCPr16-XF9WV3fXFytz64r23A1Vxwb9NLJTnfSth4Uas24EIIzBb3uW9-r2tZC160SXWt7QATvm84LyZ0U4oRcLb4uwtZMKdxC-mEiBHMAYtoYSHOwAxrueo1WSKlU0whne9853XsmOt2y8rp4PVm8phS_7jDPZht3aSzxjeCciZKR6cJiC8ummHNCf_eVM7MvzOzbMft2zFJYkai_JDbMhyrmBGH4n_DpIgxx-hPmn_Rf4n-p9w
CitedBy_id crossref_primary_10_3847_1538_4357_ad9005
crossref_primary_10_1093_mnrasl_slaf016
crossref_primary_10_3390_universe10120438
crossref_primary_10_1103_PhysRevD_111_023038
Cites_doi 10.3847/1538-4357/ab8f91
10.1093/mnras/stx3229
10.1088/2041-8205/772/1/L8
10.1086/307790
10.1086/118137
10.3847/2041-8213/aa91c9
10.48550/arXiv.astro-ph/9810402
10.1088/0004-637X/806/2/205
10.1086/521870
10.1051/0004-6361/201321996
10.1086/498685
10.1051/0004-6361/200913447
10.1103/PhysRevD.89.047302
10.1093/mnras/stab2766
10.1051/0004-6361:20020722
10.3847/1538-4357/ad234c
10.1093/mnras/stt262
10.1086/421285
10.1051/0004-6361/201630288
10.1088/0004-637X/761/2/147
10.1086/519450
10.1111/j.1365-2966.2010.17354.x
10.1111/j.1365-2966.2009.15868.x
10.1038/46744
10.1088/0004-637X/785/1/74
10.1051/0004-6361/201014819
10.1103/PhysRevD.93.044065
10.1086/519837
10.1086/311244
10.3847/1538-4357/ab17dc
10.1086/322267
10.1111/j.1365-2966.2011.18280.x
10.1051/0004-6361:20077530
10.1086/670067
10.1086/150119
10.1086/186493
10.1086/312905
10.1086/317328
10.3847/2041-8213/ac2ee4
10.1038/s41586-022-05497-0
10.1086/589820
10.1093/mnras/sts683
10.1051/0004-6361:200810281
10.1093/mnras/stu591
10.1093/mnras/stv1818
10.1086/321093
10.1088/0004-637X/807/2/148
10.1093/mnras/270.3.480
10.1093/mnras/stv955
10.1111/j.1365-2966.2007.12243.x
10.1088/0004-637X/805/2/89
10.1093/mnras/sty2176
10.1086/510110
10.3847/1538-4357/acaefd
10.1103/PhysRevLett.119.161101
10.1088/0004-637X/808/1/33
10.1086/309055
10.1103/PhysRevLett.81.4301
10.1038/357472a0
10.3847/1538-4357/ab8302
10.1086/507518
10.1007/s10509-007-9323-0
10.1086/499432
10.3847/2041-8213/ab8296
10.1086/180513
10.1088/0004-637X/809/1/39
10.1007/BF00648343
10.3847/2041-8213/aa991c
10.1086/505457
10.1088/2041-8205/780/2/L21
10.1086/320255
10.1051/0004-6361:20030958
10.1086/160554
10.1088/0004-637X/730/2/135
10.3847/1538-4357/ab498c
10.1088/2041-8205/781/1/L19
10.1093/mnras/179.3.433
10.1086/524701
10.1093/mnras/267.4.1035
10.1111/j.1365-2966.2009.14913.x
10.1093/mnrasl/slac040
10.1086/491594
10.1016/j.physrep.2014.09.008
ContentType Journal Article
Copyright 2024. The Author(s). Published by the American Astronomical Society.
2024. The Author(s). Published by the American Astronomical Society. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2024. The Author(s). Published by the American Astronomical Society.
– notice: 2024. The Author(s). Published by the American Astronomical Society. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID O3W
TSCCA
AAYXX
CITATION
7TG
8FD
H8D
KL.
L7M
DOA
DOI 10.3847/1538-4357/ad6dd9
DatabaseName Institute of Physics Open Access Journal Titles
IOPscience (Open Access)
CrossRef
Meteorological & Geoastrophysical Abstracts
Technology Research Database
Aerospace Database
Meteorological & Geoastrophysical Abstracts - Academic
Advanced Technologies Database with Aerospace
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Aerospace Database
Meteorological & Geoastrophysical Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
Meteorological & Geoastrophysical Abstracts - Academic
DatabaseTitleList CrossRef
Aerospace Database

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: O3W
  name: Institute of Physics Open Access Journal Titles
  url: http://iopscience.iop.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Astronomy & Astrophysics
Physics
EISSN 1538-4357
ExternalDocumentID oai_doaj_org_article_1db8ec35566443dcbf9d8bf039870fa6
10_3847_1538_4357_ad6dd9
apjad6dd9
GroupedDBID -DZ
-~X
123
1JI
23N
2FS
4.4
6J9
85S
AAFWJ
AAGCD
AAJIO
ABHWH
ACBEA
ACGFS
ACHIP
ACNCT
ADACN
AEFHF
AENEX
AFPKN
AKPSB
ALMA_UNASSIGNED_HOLDINGS
ASPBG
ATQHT
AVWKF
AZFZN
CJUJL
CRLBU
CS3
EBS
F5P
FRP
GROUPED_DOAJ
IJHAN
IOP
KOT
M~E
N5L
O3W
O43
OK1
PJBAE
RIN
RNS
ROL
SJN
SY9
T37
TN5
TR2
TSCCA
WH7
XSW
AAYXX
CITATION
7TG
8FD
AEINN
H8D
KL.
L7M
ID FETCH-LOGICAL-c416t-1e4ef5d59895c7fa6e8801333106ab8b7fb62c238276397cbaeeaff49f351d533
IEDL.DBID O3W
ISSN 0004-637X
IngestDate Wed Aug 27 01:30:14 EDT 2025
Wed Aug 13 08:45:35 EDT 2025
Thu Apr 24 23:06:14 EDT 2025
Tue Jul 01 03:40:00 EDT 2025
Tue Oct 01 22:21:01 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
License Original content from this work may be used under the terms of the Creative Commons Attribution 4.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c416t-1e4ef5d59895c7fa6e8801333106ab8b7fb62c238276397cbaeeaff49f351d533
Notes AAS52376
High-Energy Phenomena and Fundamental Physics
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-2585-442X
0000-0003-4639-5397
OpenAccessLink https://iopscience.iop.org/article/10.3847/1538-4357/ad6dd9
PQID 3110389508
PQPubID 4562441
PageCount 8
ParticipantIDs doaj_primary_oai_doaj_org_article_1db8ec35566443dcbf9d8bf039870fa6
iop_journals_10_3847_1538_4357_ad6dd9
crossref_primary_10_3847_1538_4357_ad6dd9
crossref_citationtrail_10_3847_1538_4357_ad6dd9
proquest_journals_3110389508
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-10-01
PublicationDateYYYYMMDD 2024-10-01
PublicationDate_xml – month: 10
  year: 2024
  text: 2024-10-01
  day: 01
PublicationDecade 2020
PublicationPlace Philadelphia
PublicationPlace_xml – name: Philadelphia
PublicationTitle The Astrophysical journal
PublicationTitleAbbrev APJ
PublicationTitleAlternate Astrophys. J
PublicationYear 2024
Publisher The American Astronomical Society
IOP Publishing
Publisher_xml – name: The American Astronomical Society
– name: IOP Publishing
References Evans (apjad6dd9bib20) 2010; 519
Abbott (apjad6dd9bib1) 2017a; 848
Dai (apjad6dd9bib12) 1998a; 81
Rowlinson (apjad6dd9bib54) 2010; 409
Sacahui (apjad6dd9bib56) 2019
Zou (apjad6dd9bib84) 2021a; 508
Narayan (apjad6dd9bib49) 2001; 557
Rees (apjad6dd9bib52) 1998; 496
Evans (apjad6dd9bib19) 2009; 397
Troja (apjad6dd9bib64) 2007; 665
Giacomazzo (apjad6dd9bib26) 2015; 809
Bloom (apjad6dd9bib10) 1999; 401
Falcke (apjad6dd9bib21) 2014; 562
Kumar (apjad6dd9bib32) 2000; 541
Dai (apjad6dd9bib13) 1998b; 333
Liang (apjad6dd9bib37) 2007; 670
Zhao (apjad6dd9bib81) 2020; 896
Foster (apjad6dd9bib23) 1996; 112
Goldreich (apjad6dd9bib28) 1969; 157
Thompson (apjad6dd9bib63) 1994; 270
Zou (apjad6dd9bib86) 2019; 877
Barthelmy (apjad6dd9bib7) 2005; 635
Philippov (apjad6dd9bib51) 2014; 441
Hou (apjad6dd9bib30) 2014; 781
Usov (apjad6dd9bib69) 1992; 357
Tan (apjad6dd9bib62) 2013; 772
Zheng (apjad6dd9bib82) 2024; 964
Rowlinson (apjad6dd9bib53) 2013; 430
Dall’Osso (apjad6dd9bib15) 2007; 308
Lü (apjad6dd9bib41) 2014; 785
Zhang (apjad6dd9bib77) 2007; 655
Metzger (apjad6dd9bib47) 2011; 413
Usov (apjad6dd9bib70) 1994; 267
Bloom (apjad6dd9bib9) 2001; 121
Neil Gehrels Swift Observatory Team (apjad6dd9bib38) 2021
Foreman-Mackey (apjad6dd9bib22) 2013; 125
Lasky (apjad6dd9bib34) 2014; 89
Kumar (apjad6dd9bib33) 2015; 561
Markwardt (apjad6dd9bib46) 2021
MacFadyen (apjad6dd9bib44) 1999; 524
Şaşmaz Muş (apjad6dd9bib55) 2019; 886
Tsutsui (apjad6dd9bib65) 2013; 431
Kalapotharakos (apjad6dd9bib31) 2009; 496
Spitkovsky (apjad6dd9bib59) 2006; 648
Liang (apjad6dd9bib35) 2005; 633
Gao (apjad6dd9bib24) 2016; 93
Suvorov (apjad6dd9bib61) 2020; 892
Yonetoku (apjad6dd9bib74) 2004; 609
Zhang (apjad6dd9bib78) 2001; 552
Lü (apjad6dd9bib43) 2018; 480
Chirenti (apjad6dd9bib11) 2023; 613
Stella (apjad6dd9bib60) 2005; 634
Blandford (apjad6dd9bib8) 1977; 179
Scargle (apjad6dd9bib58) 1982; 263
Amati (apjad6dd9bib3) 2002; 390
Dainotti (apjad6dd9bib14) 2011; 730
Duffell (apjad6dd9bib17) 2015; 806
Zanazzi (apjad6dd9bib75) 2015; 451
Deng (apjad6dd9bib16) 2023; 943
Evans (apjad6dd9bib18) 2007; 469
Sandrinelli (apjad6dd9bib57) 2017; 600
Uhm (apjad6dd9bib66) 2007; 665
O’Brien (apjad6dd9bib50) 2006; 647
Wheeler (apjad6dd9bib72) 2000; 537
Abbott (apjad6dd9bib2) 2017b; 119
Zou (apjad6dd9bib85) 2021b; 921
Guiriec (apjad6dd9bib29) 2015; 807
Zhang (apjad6dd9bib76) 2014; 780
Genet (apjad6dd9bib25) 2007; 381
Goldreich (apjad6dd9bib27) 1970; 160
Arzamasskiy (apjad6dd9bib5) 2015; 453
Lü (apjad6dd9bib42) 2015; 805
Liu (apjad6dd9bib39) 2010; 516
Lomb (apjad6dd9bib40) 1976; 39
Zou (apjad6dd9bib83) 2022; 513
Xie (apjad6dd9bib73) 2020; 894
Narayan (apjad6dd9bib48) 1992; 395
Zhang (apjad6dd9bib79) 2008; 683
Margalit (apjad6dd9bib45) 2017; 850
Uhm (apjad6dd9bib67) 2015; 808
Antonelli (apjad6dd9bib4) 2000; 545
Atteia (apjad6dd9bib6) 2003; 407
Uhm (apjad6dd9bib68) 2012; 761
Vaughan (apjad6dd9bib71) 2010; 402
Liang (apjad6dd9bib36) 2008; 675
Zhang (apjad6dd9bib80) 2018; 475
References_xml – volume: 896
  start-page: 42
  year: 2020
  ident: apjad6dd9bib81
  publication-title: ApJ
  doi: 10.3847/1538-4357/ab8f91
– volume: 475
  start-page: 266
  year: 2018
  ident: apjad6dd9bib80
  publication-title: MNRAS
  doi: 10.1093/mnras/stx3229
– volume: 772
  start-page: L8
  year: 2013
  ident: apjad6dd9bib62
  publication-title: ApJL
  doi: 10.1088/2041-8205/772/1/L8
– volume: 524
  start-page: 262
  year: 1999
  ident: apjad6dd9bib44
  publication-title: ApJ
  doi: 10.1086/307790
– volume: 112
  start-page: 1709
  year: 1996
  ident: apjad6dd9bib23
  publication-title: AJ
  doi: 10.1086/118137
– volume: 848
  start-page: L12
  year: 2017a
  ident: apjad6dd9bib1
  publication-title: ApJL
  doi: 10.3847/2041-8213/aa91c9
– volume: 333
  start-page: L87
  year: 1998b
  ident: apjad6dd9bib13
  publication-title: A&A
  doi: 10.48550/arXiv.astro-ph/9810402
– volume: 806
  start-page: 205
  year: 2015
  ident: apjad6dd9bib17
  publication-title: ApJ
  doi: 10.1088/0004-637X/806/2/205
– volume: 670
  start-page: 565
  year: 2007
  ident: apjad6dd9bib37
  publication-title: ApJ
  doi: 10.1086/521870
– volume: 562
  start-page: A137
  year: 2014
  ident: apjad6dd9bib21
  publication-title: A&A
  doi: 10.1051/0004-6361/201321996
– year: 2021
  ident: apjad6dd9bib46
– volume: 634
  start-page: L165
  year: 2005
  ident: apjad6dd9bib60
  publication-title: ApJL
  doi: 10.1086/498685
– volume: 516
  start-page: 16
  year: 2010
  ident: apjad6dd9bib39
  publication-title: A&A
  doi: 10.1051/0004-6361/200913447
– volume: 89
  start-page: 047302
  year: 2014
  ident: apjad6dd9bib34
  publication-title: PhRvD
  doi: 10.1103/PhysRevD.89.047302
– volume: 508
  start-page: 2505
  year: 2021a
  ident: apjad6dd9bib84
  publication-title: MNRAS
  doi: 10.1093/mnras/stab2766
– volume: 390
  start-page: 81
  year: 2002
  ident: apjad6dd9bib3
  publication-title: A&A
  doi: 10.1051/0004-6361:20020722
– volume: 964
  start-page: 169
  year: 2024
  ident: apjad6dd9bib82
  publication-title: ApJ
  doi: 10.3847/1538-4357/ad234c
– volume: 431
  start-page: 1398
  year: 2013
  ident: apjad6dd9bib65
  publication-title: MNRAS
  doi: 10.1093/mnras/stt262
– volume: 609
  start-page: 935
  year: 2004
  ident: apjad6dd9bib74
  publication-title: ApJ
  doi: 10.1086/421285
– volume: 600
  start-page: A132
  year: 2017
  ident: apjad6dd9bib57
  publication-title: A&A
  doi: 10.1051/0004-6361/201630288
– volume: 761
  start-page: 147
  year: 2012
  ident: apjad6dd9bib68
  publication-title: ApJ
  doi: 10.1088/0004-637X/761/2/147
– volume: 665
  start-page: 599
  year: 2007
  ident: apjad6dd9bib64
  publication-title: ApJ
  doi: 10.1086/519450
– volume: 409
  start-page: 531
  year: 2010
  ident: apjad6dd9bib54
  publication-title: MNRAS
  doi: 10.1111/j.1365-2966.2010.17354.x
– volume: 402
  start-page: 307
  year: 2010
  ident: apjad6dd9bib71
  publication-title: MNRAS
  doi: 10.1111/j.1365-2966.2009.15868.x
– volume: 401
  start-page: 453
  year: 1999
  ident: apjad6dd9bib10
  publication-title: Natur
  doi: 10.1038/46744
– volume: 785
  start-page: 74
  year: 2014
  ident: apjad6dd9bib41
  publication-title: ApJ
  doi: 10.1088/0004-637X/785/1/74
– volume: 519
  start-page: A102
  year: 2010
  ident: apjad6dd9bib20
  publication-title: A&A
  doi: 10.1051/0004-6361/201014819
– volume: 93
  start-page: 044065
  year: 2016
  ident: apjad6dd9bib24
  publication-title: PhRvD
  doi: 10.1103/PhysRevD.93.044065
– volume: 665
  start-page: L93
  year: 2007
  ident: apjad6dd9bib66
  publication-title: ApJL
  doi: 10.1086/519837
– volume: 496
  start-page: L1
  year: 1998
  ident: apjad6dd9bib52
  publication-title: ApJL
  doi: 10.1086/311244
– volume: 877
  start-page: 153
  year: 2019
  ident: apjad6dd9bib86
  publication-title: ApJ
  doi: 10.3847/1538-4357/ab17dc
– volume: 557
  start-page: 949
  year: 2001
  ident: apjad6dd9bib49
  publication-title: ApJ
  doi: 10.1086/322267
– volume: 413
  start-page: 2031
  year: 2011
  ident: apjad6dd9bib47
  publication-title: MNRAS
  doi: 10.1111/j.1365-2966.2011.18280.x
– volume: 469
  start-page: 379
  year: 2007
  ident: apjad6dd9bib18
  publication-title: A&A
  doi: 10.1051/0004-6361:20077530
– volume: 125
  start-page: 306
  year: 2013
  ident: apjad6dd9bib22
  publication-title: PASP
  doi: 10.1086/670067
– volume: 157
  start-page: 869
  year: 1969
  ident: apjad6dd9bib28
  publication-title: ApJ
  doi: 10.1086/150119
– volume: 395
  start-page: L83
  year: 1992
  ident: apjad6dd9bib48
  publication-title: ApJL
  doi: 10.1086/186493
– volume: 541
  start-page: L51
  year: 2000
  ident: apjad6dd9bib32
  publication-title: ApJL
  doi: 10.1086/312905
– volume: 545
  start-page: L39
  year: 2000
  ident: apjad6dd9bib4
  publication-title: ApJL
  doi: 10.1086/317328
– volume: 921
  start-page: L1
  year: 2021b
  ident: apjad6dd9bib85
  publication-title: ApJL
  doi: 10.3847/2041-8213/ac2ee4
– volume: 613
  start-page: 253
  year: 2023
  ident: apjad6dd9bib11
  publication-title: Natur
  doi: 10.1038/s41586-022-05497-0
– volume: 683
  start-page: 329
  year: 2008
  ident: apjad6dd9bib79
  publication-title: ApJ
  doi: 10.1086/589820
– volume: 430
  start-page: 1061
  year: 2013
  ident: apjad6dd9bib53
  publication-title: MNRAS
  doi: 10.1093/mnras/sts683
– volume: 496
  start-page: 495
  year: 2009
  ident: apjad6dd9bib31
  publication-title: A&A
  doi: 10.1051/0004-6361:200810281
– volume: 441
  start-page: 1879
  year: 2014
  ident: apjad6dd9bib51
  publication-title: MNRAS
  doi: 10.1093/mnras/stu591
– volume: 453
  start-page: 3540
  year: 2015
  ident: apjad6dd9bib5
  publication-title: MNRAS
  doi: 10.1093/mnras/stv1818
– year: 2021
  ident: apjad6dd9bib38
– volume: 121
  start-page: 2879
  year: 2001
  ident: apjad6dd9bib9
  publication-title: AJ
  doi: 10.1086/321093
– volume: 807
  start-page: 148
  year: 2015
  ident: apjad6dd9bib29
  publication-title: ApJ
  doi: 10.1088/0004-637X/807/2/148
– volume: 270
  start-page: 480
  year: 1994
  ident: apjad6dd9bib63
  publication-title: MNRAS
  doi: 10.1093/mnras/270.3.480
– volume: 451
  start-page: 695
  year: 2015
  ident: apjad6dd9bib75
  publication-title: MNRAS
  doi: 10.1093/mnras/stv955
– volume: 381
  start-page: 732
  year: 2007
  ident: apjad6dd9bib25
  publication-title: MNRAS
  doi: 10.1111/j.1365-2966.2007.12243.x
– volume: 805
  start-page: 89
  year: 2015
  ident: apjad6dd9bib42
  publication-title: ApJ
  doi: 10.1088/0004-637X/805/2/89
– volume: 480
  start-page: 4402
  year: 2018
  ident: apjad6dd9bib43
  publication-title: MNRAS
  doi: 10.1093/mnras/sty2176
– volume: 655
  start-page: 989
  year: 2007
  ident: apjad6dd9bib77
  publication-title: ApJ
  doi: 10.1086/510110
– volume: 943
  start-page: 126
  year: 2023
  ident: apjad6dd9bib16
  publication-title: ApJ
  doi: 10.3847/1538-4357/acaefd
– volume: 119
  start-page: 161101
  year: 2017b
  ident: apjad6dd9bib2
  publication-title: PhRvL
  doi: 10.1103/PhysRevLett.119.161101
– volume: 808
  start-page: 33
  year: 2015
  ident: apjad6dd9bib67
  publication-title: ApJ
  doi: 10.1088/0004-637X/808/1/33
– volume: 537
  start-page: 810
  year: 2000
  ident: apjad6dd9bib72
  publication-title: ApJ
  doi: 10.1086/309055
– volume: 81
  start-page: 4301
  year: 1998a
  ident: apjad6dd9bib12
  publication-title: PhRvL
  doi: 10.1103/PhysRevLett.81.4301
– volume: 357
  start-page: 472
  year: 1992
  ident: apjad6dd9bib69
  publication-title: Natur
  doi: 10.1038/357472a0
– volume: 894
  start-page: 52
  year: 2020
  ident: apjad6dd9bib73
  publication-title: ApJ
  doi: 10.3847/1538-4357/ab8302
– volume: 648
  start-page: L51
  year: 2006
  ident: apjad6dd9bib59
  publication-title: ApJL
  doi: 10.1086/507518
– volume: 308
  start-page: 119
  year: 2007
  ident: apjad6dd9bib15
  publication-title: Ap&SS
  doi: 10.1007/s10509-007-9323-0
– volume: 635
  start-page: L133
  year: 2005
  ident: apjad6dd9bib7
  publication-title: ApJL
  doi: 10.1086/499432
– volume: 892
  start-page: L34
  year: 2020
  ident: apjad6dd9bib61
  publication-title: ApJL
  doi: 10.3847/2041-8213/ab8296
– volume: 160
  start-page: L11
  year: 1970
  ident: apjad6dd9bib27
  publication-title: ApJL
  doi: 10.1086/180513
– volume: 809
  start-page: 39
  year: 2015
  ident: apjad6dd9bib26
  publication-title: ApJ
  doi: 10.1088/0004-637X/809/1/39
– volume: 39
  start-page: 447
  year: 1976
  ident: apjad6dd9bib40
  publication-title: Ap&SS
  doi: 10.1007/BF00648343
– volume: 850
  start-page: L19
  year: 2017
  ident: apjad6dd9bib45
  publication-title: ApJL
  doi: 10.3847/2041-8213/aa991c
– volume: 647
  start-page: 1213
  year: 2006
  ident: apjad6dd9bib50
  publication-title: ApJ
  doi: 10.1086/505457
– volume: 780
  start-page: L21
  year: 2014
  ident: apjad6dd9bib76
  publication-title: ApJL
  doi: 10.1088/2041-8205/780/2/L21
– volume: 552
  start-page: L35
  year: 2001
  ident: apjad6dd9bib78
  publication-title: ApJL
  doi: 10.1086/320255
– volume: 407
  start-page: L1
  year: 2003
  ident: apjad6dd9bib6
  publication-title: A&A
  doi: 10.1051/0004-6361:20030958
– volume: 263
  start-page: 835
  year: 1982
  ident: apjad6dd9bib58
  publication-title: ApJ
  doi: 10.1086/160554
– year: 2019
  ident: apjad6dd9bib56
– volume: 730
  start-page: 135
  year: 2011
  ident: apjad6dd9bib14
  publication-title: ApJ
  doi: 10.1088/0004-637X/730/2/135
– volume: 886
  start-page: 5
  year: 2019
  ident: apjad6dd9bib55
  publication-title: ApJ
  doi: 10.3847/1538-4357/ab498c
– volume: 781
  start-page: L19
  year: 2014
  ident: apjad6dd9bib30
  publication-title: ApJL
  doi: 10.1088/2041-8205/781/1/L19
– volume: 179
  start-page: 433
  year: 1977
  ident: apjad6dd9bib8
  publication-title: MNRAS
  doi: 10.1093/mnras/179.3.433
– volume: 675
  start-page: 528
  year: 2008
  ident: apjad6dd9bib36
  publication-title: ApJ
  doi: 10.1086/524701
– volume: 267
  start-page: 1035
  year: 1994
  ident: apjad6dd9bib70
  publication-title: MNRAS
  doi: 10.1093/mnras/267.4.1035
– volume: 397
  start-page: 1177
  year: 2009
  ident: apjad6dd9bib19
  publication-title: MNRAS
  doi: 10.1111/j.1365-2966.2009.14913.x
– volume: 513
  start-page: L89
  year: 2022
  ident: apjad6dd9bib83
  publication-title: MNRAS
  doi: 10.1093/mnrasl/slac040
– volume: 633
  start-page: 611
  year: 2005
  ident: apjad6dd9bib35
  publication-title: ApJ
  doi: 10.1086/491594
– volume: 561
  start-page: 1
  year: 2015
  ident: apjad6dd9bib33
  publication-title: PhR
  doi: 10.1016/j.physrep.2014.09.008
SSID ssj0004299
Score 2.4770725
Snippet Magnetar is proposed as one of the possible central engines for a gamma-ray burst (GRB). Recent studies show that if a magnetar has a rotational axis...
SourceID doaj
proquest
crossref
iop
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 126
SubjectTerms Algorithms
Axes of rotation
Black holes
Confidence intervals
Decay
Dipoles
Gamma ray bursts
Gamma rays
Magnetars
Plateaus
Precession
Statistical analysis
Z transforms
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LaxsxEBYlEMiltHkQNw90SAo9LN73I5fghDim4NZpEsht0TMsOLvGXh96yH_PJ2ntNhTSS25CSOyiGc33zUiaIeQkFxJST3xP-1J4cSEDD2KWXqRYaOCdR_a52PhHOrqPvz8kD3-V-jJ3wlx6YLdw_UDyXAmgYgrkjqTgupA5134EZ9nXzCbbBuatnKnVi0hYWXcoGcH89u22BjHI-kymUhavQMjm6ge0VM3sH4NsUWb4iXzs6CEduN_6TD6oepvsDxYmYN08_aZfqW27eMRim2xOXGuHPN8s2aIyeYsbWQn6E9A27e650aqm178uKPwuEJfBGWX0EuBFG40WrBzUoKa3y9mcPYFKw_zRCeyguR9bP9Ixe6xVy-bUhBjYzPZVddtgqg3-0VEzVee75H54dXc58rraCp4ABWu9QMVKJzIp8iIRGdZRYSPDXwXbSxnPeaZ5GgrgeZiZoz_BmVJM67jQURJIcMQ9slE3tdonNMiVjtOQgcnwWEmMjnjImBaJZlke-D3SXy12KbrE46b-xbSEA2LEUxrxlEY8pRNPj3xbz5i5pBtvjL0w8luPM-mybQeUqOyUqPyfEvXIKaRfdtt38cbHDlf68WdwFJgk86aa7pf3-JcDshWCOLkLg4dko50v1RGIT8uPrY6_AMn5_iA
  priority: 102
  providerName: Directory of Open Access Journals
Title Quasiperiodic Oscillations in GRB 210514A: a Case of a Newborn Supramassive Precessing Magnetar Collapsing into a Black Hole?
URI https://iopscience.iop.org/article/10.3847/1538-4357/ad6dd9
https://www.proquest.com/docview/3110389508
https://doaj.org/article/1db8ec35566443dcbf9d8bf039870fa6
Volume 973
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LbxMxELZKERIXBAXUQFv5AEgclmTX-_C2B5RWLQGpJDwqclv5WUVKd6Nkc-iB_85ne5sKFVVcVpblx9oznvlmbI8JecOVBtWzQWQHWkVpqeMIZNYRMyJx6l0yf13s_Gs-uki_TLPpFjna3IVpFp3o_4BkCBQcptCtbwZZ2vdrFFq-6Auda10-IA8Zz7mzvMbs1-2lyKTssG8a5ayYhj3Kf7bwl07yofuhadD9Hfnslc7ZU_KkQ4t0GP7tGdky9Q7ZHa6c_7q5uqbvqE8H98RqhzyahNRz8vvbWqxmLoxxo2eKjjHceXfsjc5q-un7MYUZBhwzPKSCnkCX0cYiBaEHrqjpj_ViKa6ArCEN6QRi0R2XrS_pubisTSuW1HkcxMLnzeq2QVXvC6SjZm4-viAXZ6c_T0ZR99RCpIDI2ig2qbGZzkpeZqqwIjdY1zBfAf5yIbksrMwTBfWeFG4nUElhjLA2LS3LYg3I-JJs101tdgmNubFpnggAG5kajdJMJkJYlVlR8HjQI_2bya5UF4fcPYcxr2CPOPJUjjyVI08VyNMj7zc1FiEGxz1ljx39NuVc9GyfAU6qOk6qYi25UUBaOdAg00raUnNpB6yE9MLge-QtqF91q3l1T2d7N_xxW5jFLua8e1z31X8285o8TgCVwhHBPbLdLtdmH1CnlQfeRYDv5_HkwLP3HwIe974
linkProvider IOP Publishing
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB5BEYgLggLqQgEfAIlD2E2cOAkXtC0sy6Pt8qi6N8vPaqVtEu1mDxz474wfbYVAFTfLsp3Y8_o8tmcAnldKI9WLUWJHWiV5rdMEyawTakTmzLuk_rnYwSGbHuef5sU85jn1b2HaLqr-11gMgYLDEjr5pqhLh15G0cqXQ6GZ1vWw0_Y63CgoYy53wxE9uXwYmdUR_-YJo-U8nFP-c5Q_7JIP34_WBn_hLx3tDc_kLtyJiJGMw__dg2um2Yad8dr5sNuzn-Ql8eXgolhvw81ZKN2HX183Yr1woYxbvVDkCKe8jFffyKIhH77tEdyKIZYZvyGC7KM9I63FEio-5IyGfN90K3GG6Bo1IpmhanRXZptTciBOG9OLFXFeB9H5ukXTt9jV-wPJtF2atw_gePL-x_40iekWEoWorE9Skxtb6KKu6kKVVjCDso1bWASATMhKllayTKGJz0p3GqikMEZYm9eWFqlG2PgQtpq2MTtA0srYnGUCwY3MjcbWVGZCWFVYUVbpaADD88XmKsYidykxlhz3JI483JGHO_LwQJ4BvLro0YU4HFe03XP0u2jnImj7CuQmHrmJp1pWRiHaYogIqVbS1rqSdkRr1GA4-QG8QOrzKNHrKz62e84fl41p6uLOuwS7j_5zmGdwa_Zuwr98PPz8GG5niJzCjcFd2OpXG_MEkU8vn3ru_g2iUvmv
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Quasiperiodic+Oscillations+in+GRB+210514A%3A+a+Case+of+a+Newborn+Supramassive+Precessing+Magnetar+Collapsing+into+a+Black+Hole%3F&rft.jtitle=The+Astrophysical+journal&rft.au=Zou%2C+Le&rft.au=Cheng%2C+Ji-Gui&rft.date=2024-10-01&rft.issn=0004-637X&rft.eissn=1538-4357&rft.volume=973&rft.issue=2&rft.spage=126&rft_id=info:doi/10.3847%2F1538-4357%2Fad6dd9&rft.externalDBID=n%2Fa&rft.externalDocID=10_3847_1538_4357_ad6dd9
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0004-637X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0004-637X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0004-637X&client=summon