Characterization of EEG signals revealing covert cognition in the injured brain

See Boly and Laureys (doi:10.1093/brain/awy080) for a scientific commentary on this article. Detecting preserved cognition in patients with disorders of consciousness and limited or no motor function is challenging. Curley et al. characterize the use of electroencephalographic signals to indicate co...

Full description

Saved in:
Bibliographic Details
Published inBrain (London, England : 1878) Vol. 141; no. 5; pp. 1404 - 1421
Main Authors Curley, William H, Forgacs, Peter B, Voss, Henning U, Conte, Mary M, Schiff, Nicholas D
Format Journal Article
LanguageEnglish
Published England Oxford University Press 01.05.2018
Subjects
Online AccessGet full text
ISSN0006-8950
1460-2156
1460-2156
DOI10.1093/brain/awy070

Cover

Loading…
Abstract See Boly and Laureys (doi:10.1093/brain/awy080) for a scientific commentary on this article. Detecting preserved cognition in patients with disorders of consciousness and limited or no motor function is challenging. Curley et al. characterize the use of electroencephalographic signals to indicate cognition in patients with severe brain injuries, and examine their potential reliability for use in reestablishing communication via brain-computer interfaces. Abstract See Boly and Laureys (doi:10.1093/brain/awy080) for a scientific commentary on this article. Patients with severe brain injury are difficult to assess and frequently subject to misdiagnosis. 'Cognitive motor dissociation' is a term used to describe a subset of such patients with preserved cognition as detected with neuroimaging methods but not evident in behavioural assessments. Unlike the locked-in state, cognitive motor dissociation after severe brain injury is prominently marked by concomitant injuries across the cerebrum in addition to limited or no motoric function. In the present study, we sought to characterize the EEG signals used as indicators of cognition in patients with disorders of consciousness and examine their reliability for potential future use to re-establish communication. We compared EEG-based assessments to the results of using similar methods with functional MRI. Using power spectral density analysis to detect EEG evidence of task performance (Two Group Test, P ≤ 0.05, with false discovery rate correction), we found evidence of the capacity to follow commands in 21 of 28 patients with severe brain injury and all 15 healthy individuals studied. We found substantial variability in the temporal and spatial characteristics of significant EEG signals among the patients in contrast to only modest variation in these domains across healthy controls; the majority of healthy controls showed suppression of either 8-12 Hz 'alpha' or 13-40 Hz 'beta' power during task performance, or both. Nine of the 21 patients with EEG evidence of command-following also demonstrated functional MRI evidence of command-following. Nine of the patients with command-following capacity demonstrated by EEG showed no behavioural evidence of a communication channel as detected by a standardized behavioural assessment, the Coma Recovery Scale - Revised. We further examined the potential contributions of fluctuations in arousal that appeared to co-vary with some patients' ability to reliably generate EEG signals in response to command. Five of nine patients with statistically indeterminate responses to one task tested showed a positive response after accounting for variations in overall background state (as visualized in the qualitative shape of the power spectrum) and grouping of trial runs with similar background state characteristics. Our findings reveal signal variations of EEG responses in patients with severe brain injuries and provide insight into the underlying physiology of cognitive motor dissociation. These results can help guide future efforts aimed at re-establishment of communication in such patients who will need customization for brain-computer interfaces.
AbstractList See Boly and Laureys (doi:10.1093/brain/awy080) for a scientific commentary on this article. Detecting preserved cognition in patients with disorders of consciousness and limited or no motor function is challenging. Curley et al. characterize the use of electroencephalographic signals to indicate cognition in patients with severe brain injuries, and examine their potential reliability for use in reestablishing communication via brain-computer interfaces. Abstract See Boly and Laureys (doi:10.1093/brain/awy080) for a scientific commentary on this article. Patients with severe brain injury are difficult to assess and frequently subject to misdiagnosis. 'Cognitive motor dissociation' is a term used to describe a subset of such patients with preserved cognition as detected with neuroimaging methods but not evident in behavioural assessments. Unlike the locked-in state, cognitive motor dissociation after severe brain injury is prominently marked by concomitant injuries across the cerebrum in addition to limited or no motoric function. In the present study, we sought to characterize the EEG signals used as indicators of cognition in patients with disorders of consciousness and examine their reliability for potential future use to re-establish communication. We compared EEG-based assessments to the results of using similar methods with functional MRI. Using power spectral density analysis to detect EEG evidence of task performance (Two Group Test, P ≤ 0.05, with false discovery rate correction), we found evidence of the capacity to follow commands in 21 of 28 patients with severe brain injury and all 15 healthy individuals studied. We found substantial variability in the temporal and spatial characteristics of significant EEG signals among the patients in contrast to only modest variation in these domains across healthy controls; the majority of healthy controls showed suppression of either 8-12 Hz 'alpha' or 13-40 Hz 'beta' power during task performance, or both. Nine of the 21 patients with EEG evidence of command-following also demonstrated functional MRI evidence of command-following. Nine of the patients with command-following capacity demonstrated by EEG showed no behavioural evidence of a communication channel as detected by a standardized behavioural assessment, the Coma Recovery Scale - Revised. We further examined the potential contributions of fluctuations in arousal that appeared to co-vary with some patients' ability to reliably generate EEG signals in response to command. Five of nine patients with statistically indeterminate responses to one task tested showed a positive response after accounting for variations in overall background state (as visualized in the qualitative shape of the power spectrum) and grouping of trial runs with similar background state characteristics. Our findings reveal signal variations of EEG responses in patients with severe brain injuries and provide insight into the underlying physiology of cognitive motor dissociation. These results can help guide future efforts aimed at re-establishment of communication in such patients who will need customization for brain-computer interfaces.
See Boly and Laureys (doi:10.1093/brain/awy080) for a scientific commentary on this article.Patients with severe brain injury are difficult to assess and frequently subject to misdiagnosis. 'Cognitive motor dissociation' is a term used to describe a subset of such patients with preserved cognition as detected with neuroimaging methods but not evident in behavioural assessments. Unlike the locked-in state, cognitive motor dissociation after severe brain injury is prominently marked by concomitant injuries across the cerebrum in addition to limited or no motoric function. In the present study, we sought to characterize the EEG signals used as indicators of cognition in patients with disorders of consciousness and examine their reliability for potential future use to re-establish communication. We compared EEG-based assessments to the results of using similar methods with functional MRI. Using power spectral density analysis to detect EEG evidence of task performance (Two Group Test, P ≤ 0.05, with false discovery rate correction), we found evidence of the capacity to follow commands in 21 of 28 patients with severe brain injury and all 15 healthy individuals studied. We found substantial variability in the temporal and spatial characteristics of significant EEG signals among the patients in contrast to only modest variation in these domains across healthy controls; the majority of healthy controls showed suppression of either 8-12 Hz 'alpha' or 13-40 Hz 'beta' power during task performance, or both. Nine of the 21 patients with EEG evidence of command-following also demonstrated functional MRI evidence of command-following. Nine of the patients with command-following capacity demonstrated by EEG showed no behavioural evidence of a communication channel as detected by a standardized behavioural assessment, the Coma Recovery Scale - Revised. We further examined the potential contributions of fluctuations in arousal that appeared to co-vary with some patients' ability to reliably generate EEG signals in response to command. Five of nine patients with statistically indeterminate responses to one task tested showed a positive response after accounting for variations in overall background state (as visualized in the qualitative shape of the power spectrum) and grouping of trial runs with similar background state characteristics. Our findings reveal signal variations of EEG responses in patients with severe brain injuries and provide insight into the underlying physiology of cognitive motor dissociation. These results can help guide future efforts aimed at re-establishment of communication in such patients who will need customization for brain-computer interfaces.
See Boly and Laureys (doi:10.1093/brain/awy080) for a scientific commentary on this article.Patients with severe brain injury are difficult to assess and frequently subject to misdiagnosis. 'Cognitive motor dissociation' is a term used to describe a subset of such patients with preserved cognition as detected with neuroimaging methods but not evident in behavioural assessments. Unlike the locked-in state, cognitive motor dissociation after severe brain injury is prominently marked by concomitant injuries across the cerebrum in addition to limited or no motoric function. In the present study, we sought to characterize the EEG signals used as indicators of cognition in patients with disorders of consciousness and examine their reliability for potential future use to re-establish communication. We compared EEG-based assessments to the results of using similar methods with functional MRI. Using power spectral density analysis to detect EEG evidence of task performance (Two Group Test, P ≤ 0.05, with false discovery rate correction), we found evidence of the capacity to follow commands in 21 of 28 patients with severe brain injury and all 15 healthy individuals studied. We found substantial variability in the temporal and spatial characteristics of significant EEG signals among the patients in contrast to only modest variation in these domains across healthy controls; the majority of healthy controls showed suppression of either 8-12 Hz 'alpha' or 13-40 Hz 'beta' power during task performance, or both. Nine of the 21 patients with EEG evidence of command-following also demonstrated functional MRI evidence of command-following. Nine of the patients with command-following capacity demonstrated by EEG showed no behavioural evidence of a communication channel as detected by a standardized behavioural assessment, the Coma Recovery Scale - Revised. We further examined the potential contributions of fluctuations in arousal that appeared to co-vary with some patients' ability to reliably generate EEG signals in response to command. Five of nine patients with statistically indeterminate responses to one task tested showed a positive response after accounting for variations in overall background state (as visualized in the qualitative shape of the power spectrum) and grouping of trial runs with similar background state characteristics. Our findings reveal signal variations of EEG responses in patients with severe brain injuries and provide insight into the underlying physiology of cognitive motor dissociation. These results can help guide future efforts aimed at re-establishment of communication in such patients who will need customization for brain-computer interfaces.See Boly and Laureys (doi:10.1093/brain/awy080) for a scientific commentary on this article.Patients with severe brain injury are difficult to assess and frequently subject to misdiagnosis. 'Cognitive motor dissociation' is a term used to describe a subset of such patients with preserved cognition as detected with neuroimaging methods but not evident in behavioural assessments. Unlike the locked-in state, cognitive motor dissociation after severe brain injury is prominently marked by concomitant injuries across the cerebrum in addition to limited or no motoric function. In the present study, we sought to characterize the EEG signals used as indicators of cognition in patients with disorders of consciousness and examine their reliability for potential future use to re-establish communication. We compared EEG-based assessments to the results of using similar methods with functional MRI. Using power spectral density analysis to detect EEG evidence of task performance (Two Group Test, P ≤ 0.05, with false discovery rate correction), we found evidence of the capacity to follow commands in 21 of 28 patients with severe brain injury and all 15 healthy individuals studied. We found substantial variability in the temporal and spatial characteristics of significant EEG signals among the patients in contrast to only modest variation in these domains across healthy controls; the majority of healthy controls showed suppression of either 8-12 Hz 'alpha' or 13-40 Hz 'beta' power during task performance, or both. Nine of the 21 patients with EEG evidence of command-following also demonstrated functional MRI evidence of command-following. Nine of the patients with command-following capacity demonstrated by EEG showed no behavioural evidence of a communication channel as detected by a standardized behavioural assessment, the Coma Recovery Scale - Revised. We further examined the potential contributions of fluctuations in arousal that appeared to co-vary with some patients' ability to reliably generate EEG signals in response to command. Five of nine patients with statistically indeterminate responses to one task tested showed a positive response after accounting for variations in overall background state (as visualized in the qualitative shape of the power spectrum) and grouping of trial runs with similar background state characteristics. Our findings reveal signal variations of EEG responses in patients with severe brain injuries and provide insight into the underlying physiology of cognitive motor dissociation. These results can help guide future efforts aimed at re-establishment of communication in such patients who will need customization for brain-computer interfaces.
See Boly and Laureys (doi: 10.1093/brain/awy080 ) for a scientific commentary on this article. Detecting preserved cognition in patients with disorders of consciousness and limited or no motor function is challenging. Curley et al. characterize the use of electroencephalographic signals to indicate cognition in patients with severe brain injuries, and examine their potential reliability for use in reestablishing communication via brain-computer interfaces. See Boly and Laureys (doi: 10.1093/brain/awy080 ) for a scientific commentary on this article. Patients with severe brain injury are difficult to assess and frequently subject to misdiagnosis. ‘Cognitive motor dissociation’ is a term used to describe a subset of such patients with preserved cognition as detected with neuroimaging methods but not evident in behavioural assessments. Unlike the locked-in state, cognitive motor dissociation after severe brain injury is prominently marked by concomitant injuries across the cerebrum in addition to limited or no motoric function. In the present study, we sought to characterize the EEG signals used as indicators of cognition in patients with disorders of consciousness and examine their reliability for potential future use to re-establish communication. We compared EEG-based assessments to the results of using similar methods with functional MRI. Using power spectral density analysis to detect EEG evidence of task performance (Two Group Test, P ≤ 0.05, with false discovery rate correction), we found evidence of the capacity to follow commands in 21 of 28 patients with severe brain injury and all 15 healthy individuals studied. We found substantial variability in the temporal and spatial characteristics of significant EEG signals among the patients in contrast to only modest variation in these domains across healthy controls; the majority of healthy controls showed suppression of either 8–12 Hz ‘alpha’ or 13–40 Hz ‘beta’ power during task performance, or both. Nine of the 21 patients with EEG evidence of command-following also demonstrated functional MRI evidence of command-following. Nine of the patients with command-following capacity demonstrated by EEG showed no behavioural evidence of a communication channel as detected by a standardized behavioural assessment, the Coma Recovery Scale – Revised. We further examined the potential contributions of fluctuations in arousal that appeared to co-vary with some patients’ ability to reliably generate EEG signals in response to command. Five of nine patients with statistically indeterminate responses to one task tested showed a positive response after accounting for variations in overall background state (as visualized in the qualitative shape of the power spectrum) and grouping of trial runs with similar background state characteristics. Our findings reveal signal variations of EEG responses in patients with severe brain injuries and provide insight into the underlying physiology of cognitive motor dissociation. These results can help guide future efforts aimed at re-establishment of communication in such patients who will need customization for brain–computer interfaces.
Author Forgacs, Peter B
Voss, Henning U
Conte, Mary M
Curley, William H
Schiff, Nicholas D
AuthorAffiliation 5 Department of Radiology and Citigroup Biomedical Imaging Center, Weill Cornell Medicine, NY, USA
1 Harvard Medical School, MA, USA
2 Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, NY, USA
4 The Rockefeller University, NY, USA
3 Department of Neurology, Weill Cornell Medicine, NY, USA
AuthorAffiliation_xml – name: 1 Harvard Medical School, MA, USA
– name: 3 Department of Neurology, Weill Cornell Medicine, NY, USA
– name: 5 Department of Radiology and Citigroup Biomedical Imaging Center, Weill Cornell Medicine, NY, USA
– name: 4 The Rockefeller University, NY, USA
– name: 2 Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, NY, USA
Author_xml – sequence: 1
  givenname: William H
  orcidid: 0000-0002-0393-4998
  surname: Curley
  fullname: Curley, William H
  organization: Harvard Medical School, MA, USA
– sequence: 2
  givenname: Peter B
  surname: Forgacs
  fullname: Forgacs, Peter B
  organization: Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, NY, USA
– sequence: 3
  givenname: Henning U
  surname: Voss
  fullname: Voss, Henning U
  organization: Department of Radiology and Citigroup Biomedical Imaging Center, Weill Cornell Medicine, NY, USA
– sequence: 4
  givenname: Mary M
  surname: Conte
  fullname: Conte, Mary M
  organization: Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, NY, USA
– sequence: 5
  givenname: Nicholas D
  surname: Schiff
  fullname: Schiff, Nicholas D
  email: nds2001@med.cornell.edu
  organization: Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, NY, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29562312$$D View this record in MEDLINE/PubMed
BookMark eNp9kc1LAzEQxYMotlVvnmVvenB1ks2HexGk1CoIXvQcstlsm7JNarJbqX-921ZFBT1NIL_33vBmgHaddwahYwwXGPLssgjKukv1ugIBO6iPKYeUYMZ3UR8AeHqVM-ihQYwzAEwzwvdRj-SMkwyTPnocTlVQujHBvqnGepf4KhmNxkm0E6fqmASzNKq2bpJovzSh6cbE2Q1pXdJMTTdmbTBlslnkEO1VncwcfcwD9Hw7ehrepQ-P4_vhzUOqKeZNigtmeCmYAqqgyBTojGZYU614TqCgYCqyfvKq1LikVAgi8kpXV7pgtMpFdoCut76LtpibUhvXBFXLRbBzFVbSKyt__jg7lRO_lCzHQgjoDM4-DIJ_aU1s5NxGbepaOePbKAlgAYwBXqMn37O-Qj5b7ACyBXTwMQZTSW2bTZtdtK0lBrk-ldw0JLen6kTnv0Sfvn_gp1vct4v_yXfxf6a7
CitedBy_id crossref_primary_10_1056_NEJMoa2400645
crossref_primary_10_1093_braincomms_fcad094
crossref_primary_10_1186_s40560_024_00749_9
crossref_primary_10_1212_WNL_0000000000200038
crossref_primary_10_3390_brainsci10100748
crossref_primary_10_1097_MD_0000000000031808
crossref_primary_10_31857_S0044467723030048
crossref_primary_10_1016_j_clinph_2020_07_015
crossref_primary_10_1111_ejn_15994
crossref_primary_10_1007_s12028_024_02086_z
crossref_primary_10_1007_s12028_021_01260_x
crossref_primary_10_1364_BOE_482127
crossref_primary_10_7717_peerj_6575
crossref_primary_10_1007_s40120_024_00672_z
crossref_primary_10_1016_j_cub_2018_10_057
crossref_primary_10_1016_j_lpm_2022_104161
crossref_primary_10_3390_biology12070967
crossref_primary_10_1212_WNL_0000000000210208
crossref_primary_10_3389_fneur_2020_588233
crossref_primary_10_1093_brain_awaa056
crossref_primary_10_1212_CPJ_0000000000001169
crossref_primary_10_3233_NRE_192692
crossref_primary_10_1007_s12028_019_00904_3
crossref_primary_10_1055_s_0042_1755561
crossref_primary_10_1073_pnas_2402723121
crossref_primary_10_1109_TNSRE_2022_3176354
crossref_primary_10_1007_s12028_021_01227_y
crossref_primary_10_1016_j_neuron_2024_04_027
crossref_primary_10_1055_a_1892_1715
crossref_primary_10_1186_s13054_019_2370_4
crossref_primary_10_1016_j_rehab_2019_02_005
crossref_primary_10_1038_s41582_020_00428_x
crossref_primary_10_1093_brain_awy080
crossref_primary_10_1007_s00701_022_05378_5
crossref_primary_10_1111_ejn_16299
crossref_primary_10_1055_a_1883_0701
crossref_primary_10_1097_HTR_0000000000000448
crossref_primary_10_3390_jcm13206227
crossref_primary_10_1109_TBME_2021_3090027
crossref_primary_10_4103_ATN_ATN_D_24_00006
crossref_primary_10_1371_journal_pone_0228474
crossref_primary_10_1007_s40141_023_00384_9
crossref_primary_10_1016_j_neubiorev_2021_12_001
crossref_primary_10_1177_02692155221099704
crossref_primary_10_1007_s12028_023_01769_3
crossref_primary_10_1007_s12008_020_00715_3
crossref_primary_10_1007_s11055_023_01533_2
crossref_primary_10_1093_brain_awad197
crossref_primary_10_3390_brainsci10120930
crossref_primary_10_1016_j_ijchp_2022_100347
crossref_primary_10_1038_s41562_025_02121_9
crossref_primary_10_3389_fnhum_2022_1040816
crossref_primary_10_1002_brb3_70249
crossref_primary_10_1016_j_neuarg_2024_11_004
crossref_primary_10_1093_brain_awab290
crossref_primary_10_1016_j_nicl_2019_101940
crossref_primary_10_1038_s41598_018_31436_z
crossref_primary_10_1007_s00134_019_05820_w
crossref_primary_10_1111_ejn_16149
crossref_primary_10_1152_jn_00462_2021
crossref_primary_10_1016_j_cortex_2022_04_007
crossref_primary_10_1016_j_neurol_2021_12_004
crossref_primary_10_1038_s41598_019_39812_z
crossref_primary_10_1016_S1474_4422_24_00209_6
crossref_primary_10_1109_TNSRE_2024_3435016
crossref_primary_10_1111_ene_14151
crossref_primary_10_1177_1550147719895960
crossref_primary_10_1016_j_neunet_2024_106792
crossref_primary_10_1212_CPJ_0000000000200066
crossref_primary_10_1093_brain_awaa159
crossref_primary_10_1055_a_1883_1021
crossref_primary_10_1007_s12152_019_09428_1
crossref_primary_10_1056_NEJMoa1812757
crossref_primary_10_1055_s_0042_1755220
crossref_primary_10_54101_ACEN_2021_3_6
crossref_primary_10_1055_a_1900_7261
crossref_primary_10_14412_2074_2711_2019_3S_46_51
crossref_primary_10_1007_s00415_020_10095_z
crossref_primary_10_1016_j_brainres_2024_149133
crossref_primary_10_1063_5_0047237
crossref_primary_10_1038_s41591_025_03578_x
crossref_primary_10_1016_j_cub_2018_10_022
crossref_primary_10_1093_brain_awy251
crossref_primary_10_1007_s00134_022_06854_3
crossref_primary_10_1038_s41598_020_67234_9
crossref_primary_10_1080_02699052_2019_1656821
crossref_primary_10_3233_NRE_230123
crossref_primary_10_1002_ana_25417
crossref_primary_10_1080_15265161_2023_2237453
crossref_primary_10_1007_s00415_020_10125_w
crossref_primary_10_1093_brain_awaa026
crossref_primary_10_1186_s12883_023_03167_w
crossref_primary_10_1016_j_wneu_2024_04_011
crossref_primary_10_1097_WCO_0000000000000951
Cites_doi 10.1126/science.1135583
10.1212/WNL.54.1.135
10.1038/nrneurol.2013.279
10.1017/CBO9780511622762
10.1016/S0140-6736(13)60125-7
10.1016/S0140-6736(11)61224-5
10.1002/ana.24962
10.1371/journal.pbio.1002593
10.1016/0168-5597(84)90045-5
10.1016/S1388-2457(99)00141-8
10.1016/j.jneumeth.2010.06.020
10.1093/brain/awr005
10.1080/02699050601081802
10.1016/j.artmed.2013.07.003
10.1017/CBO9781139051279
10.1186/1471-2377-9-35
10.1002/ana.24726
10.1016/j.tins.2009.11.002
10.1088/1741-2560/5/1/003
10.1212/01.wnl.0000252376.43779.96
10.1080/00029238.1980.11080015
10.1371/journal.pone.0023839
10.1016/j.conb.2013.10.007
10.7554/eLife.01157
10.1038/nature06041
10.1126/scitranslmed.aaf6113
10.3389/fnhum.2014.00950
10.1093/brain/awx176
10.1212/WNL.0b013e3181feb259
10.1001/jamaneurol.2015.2614
10.1214/aos/1013699998
10.1126/scitranslmed.3006294
10.1126/science.1130197
10.1016/S0140-6736(14)60042-8
10.1109/PROC.1982.12433
10.1016/j.clinph.2012.04.030
10.1001/jamaneurol.2015.2899
10.1016/j.neuroimage.2011.12.041
10.1098/rstb.2001.0915
10.1001/archneurol.2011.892
10.1016/j.cub.2016.04.024
10.1155/2015/145913
10.1016/S0304-3940(97)00889-6
10.1371/journal.pone.0156882
10.1016/j.jneumeth.2003.10.009
10.1073/pnas.1320969111
10.1007/s00702-016-1547-0
10.1016/j.clinph.2011.03.022
10.1016/0013-4694(75)90056-5
10.1002/ana.24283
10.1016/j.apmr.2004.02.033
10.1016/j.neuroimage.2007.02.047
10.1056/NEJMoa0905370
10.1111/j.2517-6161.1995.tb02031.x
ContentType Journal Article
Copyright The Author(s) (2018). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For Permissions, please email: journals.permissions@oup.com 2018
Copyright_xml – notice: The Author(s) (2018). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For Permissions, please email: journals.permissions@oup.com 2018
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
DOI 10.1093/brain/awy070
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList
MEDLINE
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1460-2156
EndPage 1421
ExternalDocumentID PMC5917770
29562312
10_1093_brain_awy070
10.1093/brain/awy070
Genre Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: Jerold B. Katz Foundation
  sequence: 0
  funderid: 10.13039/100009720
– fundername: NIH
  sequence: 0
  grantid: HD51912
  funderid: 10.13039/100000002
– fundername: James S. McDonnell Foundation
  sequence: 0
  funderid: 10.13039/100000913
– fundername: NCATS NIH HHS
  grantid: UL1 TR000043
– fundername: NINDS NIH HHS
  grantid: K23 NS096222
– fundername: NCATS NIH HHS
  grantid: UL1 TR002384
– fundername: NCATS NIH HHS
  grantid: UL1 TR000457
– fundername: ; ; ;
– fundername: ; ; ;
  grantid: HD51912
GroupedDBID ---
-E4
-~X
.2P
.I3
.XZ
.ZR
0R~
1TH
23N
2WC
4.4
482
48X
53G
5GY
5RE
5VS
5WA
5WD
6PF
70D
AABZA
AACZT
AAIMJ
AAJKP
AAJQQ
AAMDB
AAMVS
AAOGV
AAPNW
AAPQZ
AAPXW
AARHZ
AAUAY
AAUQX
AAVAP
AAVLN
AAWTL
ABEJV
ABEUO
ABIVO
ABIXL
ABJNI
ABKDP
ABLJU
ABMNT
ABNHQ
ABNKS
ABPTD
ABQLI
ABQNK
ABWST
ABXVV
ABZBJ
ACGFS
ACIWK
ACPRK
ACUFI
ACUTJ
ACUTO
ACYHN
ADBBV
ADEYI
ADEZT
ADGKP
ADGZP
ADHKW
ADHZD
ADIPN
ADJQC
ADOCK
ADQBN
ADRIX
ADRTK
ADVEK
ADYVW
ADZXQ
AEGPL
AEJOX
AEKSI
AELWJ
AEMDU
AENEX
AENZO
AEPUE
AETBJ
AEWNT
AFFZL
AFGWE
AFIYH
AFOFC
AFXAL
AFXEN
AGINJ
AGKEF
AGQXC
AGSYK
AGUTN
AHMBA
AHMMS
AHXPO
AIJHB
AJEEA
AKWXX
ALMA_UNASSIGNED_HOLDINGS
ALUQC
APIBT
APWMN
ARIXL
ATGXG
AXUDD
AYOIW
BAWUL
BAYMD
BCRHZ
BEYMZ
BHONS
BQDIO
BR6
BSWAC
BTRTY
BVRKM
C45
CDBKE
COF
CS3
CZ4
DAKXR
DIK
DILTD
DU5
D~K
E3Z
EBS
EE~
EJD
EMOBN
ENERS
F5P
F9B
FECEO
FHSFR
FLUFQ
FOEOM
FOTVD
FQBLK
GAUVT
GJXCC
GX1
H13
H5~
HAR
HW0
HZ~
IOX
J21
J5H
JXSIZ
KAQDR
KBUDW
KOP
KQ8
KSI
KSN
L7B
M-Z
M49
MHKGH
ML0
N9A
NGC
NLBLG
NOMLY
NOYVH
NU-
O9-
OAUYM
OAWHX
OBOKY
OCZFY
ODMLO
OHH
OJQWA
OJZSN
OK1
OPAEJ
OVD
OWPYF
P2P
PAFKI
PEELM
PQQKQ
Q1.
Q5Y
R44
RD5
RIG
ROL
ROX
ROZ
RUSNO
RW1
RXO
TCURE
TEORI
TJX
TLC
TR2
VVN
W8F
WH7
WOQ
X7H
YAYTL
YKOAZ
YSK
YXANX
ZKX
~91
AAYXX
ABDFA
ABGNP
ABPQP
ABVGC
ABXZS
ADNBA
AEMQT
AFYAG
AGORE
AJBYB
AJNCP
ALXQX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
ID FETCH-LOGICAL-c416t-1b5e6d75a04a0b3a0c3431c4ca6920b40ef2a6926fdc1d4477279fcf8cb54f973
ISSN 0006-8950
1460-2156
IngestDate Thu Aug 21 18:08:24 EDT 2025
Fri Jul 11 07:20:20 EDT 2025
Mon Jul 21 06:04:26 EDT 2025
Thu Apr 24 23:11:55 EDT 2025
Tue Jul 01 00:46:09 EDT 2025
Fri Dec 06 10:16:16 EST 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords electroencephalography (EEG)
traumatic brain injury (TBI)
consciousness
brain-computer interface (BCI)
arousal
Language English
License This article is published and distributed under the terms of the Oxford University Press, Standard Journals Publication Model (https://academic.oup.com/journals/pages/about_us/legal/notices)
https://academic.oup.com/journals/pages/about_us/legal/notices
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c416t-1b5e6d75a04a0b3a0c3431c4ca6920b40ef2a6926fdc1d4477279fcf8cb54f973
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
See Boly and Laureys (doi:10.1093/brain/awy080) for a scientific commentary on this article.
ORCID 0000-0002-0393-4998
OpenAccessLink https://academic.oup.com/brain/article-pdf/141/5/1404/25083247/awy070.pdf
PMID 29562312
PQID 2017055010
PQPubID 23479
PageCount 18
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_5917770
proquest_miscellaneous_2017055010
pubmed_primary_29562312
crossref_citationtrail_10_1093_brain_awy070
crossref_primary_10_1093_brain_awy070
oup_primary_10_1093_brain_awy070
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-05-01
PublicationDateYYYYMMDD 2018-05-01
PublicationDate_xml – month: 05
  year: 2018
  text: 2018-05-01
  day: 01
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Brain (London, England : 1878)
PublicationTitleAlternate Brain
PublicationYear 2018
Publisher Oxford University Press
Publisher_xml – sequence: 0
  name: Oxford University Press
– name: Oxford University Press
References Monti ( key 20180625113928_awy070-B37) 2010; 362
Owen ( key 20180625113928_awy070-B38) 2007; 315
Cruse ( key 20180625113928_awy070-B12) 2011; 378
Laureys ( key 20180625113928_awy070-B33) 2012; 61
Stender ( key 20180625113928_awy070-B52) 2014; 384
Stender ( key 20180625113928_awy070-B53) 2016; 26
Schiff ( key 20180625113928_awy070-B48) 2016; 123
Fridman ( key 20180625113928_awy070-B20) 2014; 111
Delorme ( key 20180625113928_awy070-B13) 2004; 134
Pignat ( key 20180625113928_awy070-B43) 2016; 11
Bardin ( key 20180625113928_awy070-B4) 2011; 134 (Pt 3)
Edlow ( key 20180625113928_awy070-B14) 2017; 140
Bokil ( key 20180625113928_awy070-B8) 2010; 192
Boly ( key 20180625113928_awy070-B9) 2007; 36
Bardin ( key 20180625113928_awy070-B5) 2012; 69
Adapa ( key 20180625113928_awy070-B1) 2012
Jasper ( key 20180625113928_awy070-B32) 1958; 10
Giacino ( key 20180625113928_awy070-B22) 2014; 10
Hauger ( key 20180625113928_awy070-B29) 2015; 2015
Friston ( key 20180625113928_awy070-B21) 2008
Casali ( key 20180625113928_awy070-B10) 2013; 5
Gill-Thwaites ( key 20180625113928_awy070-B26) 2006; 20
Schiff ( key 20180625113928_awy070-B46) 2010; 33
Pfurtscheller ( key 20180625113928_awy070-B42) 1997; 239
Owen ( key 20180625113928_awy070-B39) 2006; 313
Fins ( key 20180625113928_awy070-B17) 2016
Williams ( key 20180625113928_awy070-B58) 2013; 2
Liu ( key 20180625113928_awy070-B34) 2011; 6
Bai ( key 20180625113928_awy070-B3) 2008; 5
Chaudhary ( key 20180625113928_awy070-B11) 2017; 15
Schiff ( key 20180625113928_awy070-B49) 2007; 448
Rodriguez Moreno ( key 20180625113928_awy070-B45) 2010; 75
Lule ( key 20180625113928_awy070-B35) 2013; 124
Pfurtscheller ( key 20180625113928_awy070-B41) 1999; 110
Schiff ( key 20180625113928_awy070-B47) 2015; 72
Goldfine ( key 20180625113928_awy070-B28) 2011; 122
Pokorny ( key 20180625113928_awy070-B44) 2013; 59
Thomson ( key 20180625113928_awy070-B56) 1982; 70
Gibson ( key 20180625113928_awy070-B25) 2014; 8
Mazziotta ( key 20180625113928_awy070-B36) 2001; 356
Giacino ( key 20180625113928_awy070-B23) 2004; 85
Thickbroom ( key 20180625113928_awy070-B55) 1984; 59
Percival ( key 20180625113928_awy070-B40) 1993
Wannez ( key 20180625113928_awy070-B57) 2017; 81
Schnakers ( key 20180625113928_awy070-B51) 2009; 9
Fernández-Espejo ( key 20180625113928_awy070-B15) 2015; 72
Schiff ( key 20180625113928_awy070-B50) 2014; 25
Fins ( key 20180625113928_awy070-B16) 2015
Benjamini ( key 20180625113928_awy070-B6) 1995; 57
Fins ( key 20180625113928_awy070-B18) 2007; 68
Allison ( key 20180625113928_awy070-B2) 2000; 54
Gibson ( key 20180625113928_awy070-B24) 2016; 80
Benjamini ( key 20180625113928_awy070-B7) 2001; 29
Hjorth ( key 20180625113928_awy070-B31) 1980; 20
Hjorth ( key 20180625113928_awy070-B30) 1975; 39
Goldfine ( key 20180625113928_awy070-B27) 2013; 381
Forgacs ( key 20180625113928_awy070-B19) 2014; 76
Thengone ( key 20180625113928_awy070-B54) 2016; 8
29701789 - Brain. 2018 May 1;141(5):1239-1241. doi: 10.1093/brain/awy080
References_xml – volume: 315
  start-page: 1221
  year: 2007
  ident: key 20180625113928_awy070-B38
  article-title: Response to comments on “detecting awareness in the vegetative state”
  publication-title: Science
  doi: 10.1126/science.1135583
– volume: 54
  start-page: 135
  year: 2000
  ident: key 20180625113928_awy070-B2
  article-title: Functional MRI cerebral activation and deactivation during finger movement
  publication-title: Neurology
  doi: 10.1212/WNL.54.1.135
– start-page: 44
  volume-title: In search of hidden minds
  year: 2016
  ident: key 20180625113928_awy070-B17
– volume: 10
  start-page: 99
  year: 2014
  ident: key 20180625113928_awy070-B22
  article-title: Disorders of consciousness after acquired brain injury: the state of the science
  publication-title: Nat Rev Neurol
  doi: 10.1038/nrneurol.2013.279
– volume-title: Spectral Analysis for Physical Applications
  year: 1993
  ident: key 20180625113928_awy070-B40
  doi: 10.1017/CBO9780511622762
– volume: 381
  start-page: 289
  year: 2013
  ident: key 20180625113928_awy070-B27
  article-title: Reanalysis of “bedside detection of awareness in the vegetative state: a cohort study”
  publication-title: Lancet
  doi: 10.1016/S0140-6736(13)60125-7
– volume: 378
  start-page: 2088
  year: 2011
  ident: key 20180625113928_awy070-B12
  article-title: Bedside detection of awareness in the vegetative state: a cohort study
  publication-title: Lancet
  doi: 10.1016/S0140-6736(11)61224-5
– volume: 81
  start-page: 883
  year: 2017
  ident: key 20180625113928_awy070-B57
  article-title: The repetition of behavioral assessments in diagnosis of disorders of consciousness
  publication-title: Ann Neurol
  doi: 10.1002/ana.24962
– volume: 15
  start-page: e1002593
  year: 2017
  ident: key 20180625113928_awy070-B11
  article-title: Brain-computer interface-based communication in the completely locked-in state
  publication-title: PLoS Biol
  doi: 10.1371/journal.pbio.1002593
– volume: 59
  start-page: 279
  year: 1984
  ident: key 20180625113928_awy070-B55
  article-title: Source derivation: application to topographic mapping of visual evoked potentials
  publication-title: Electroencephalogr Clin Neurophysiol
  doi: 10.1016/0168-5597(84)90045-5
– volume: 110
  start-page: 1842
  year: 1999
  ident: key 20180625113928_awy070-B41
  article-title: Event-related EEG/MEG synchronization and desynchronization: Basic principles
  publication-title: Clinical Neurophysiology
  doi: 10.1016/S1388-2457(99)00141-8
– volume: 192
  start-page: 146
  year: 2010
  ident: key 20180625113928_awy070-B8
  article-title: Chronux: a platform for analyzing neural signals
  publication-title: J Neurosci Methods
  doi: 10.1016/j.jneumeth.2010.06.020
– volume: 134 (Pt 3)
  start-page: 769
  year: 2011
  ident: key 20180625113928_awy070-B4
  article-title: Dissociations between behavioural and functional magnetic resonance imaging-based evaluations of cognitive function after brain injury
  publication-title: Brain
  doi: 10.1093/brain/awr005
– volume: 10
  start-page: 371
  year: 1958
  ident: key 20180625113928_awy070-B32
  article-title: The ten-twenty electrode system of the International Federation
  publication-title: Electroencephalogr Clin Neurophysiol
– volume: 20
  start-page: 1321
  year: 2006
  ident: key 20180625113928_awy070-B26
  article-title: Lotteries, loopholes and luck: misdiagnosis in the vegetative state patient
  publication-title: Brain Inj
  doi: 10.1080/02699050601081802
– volume: 59
  start-page: 81
  year: 2013
  ident: key 20180625113928_awy070-B44
  article-title: The auditory P300-based single-switch brain-computer interface: paradigm transition from healthy subjects to minimally conscious patients
  publication-title: Artif Intell Med
  doi: 10.1016/j.artmed.2013.07.003
– volume-title: Rights come to mind: brain injury, ethics, and the struggle for consciousness
  year: 2015
  ident: key 20180625113928_awy070-B16
  doi: 10.1017/CBO9781139051279
– volume: 9
  start-page: 35
  year: 2009
  ident: key 20180625113928_awy070-B51
  article-title: Diagnostic accuracy of the vegetative and minimally conscious state: clinical consensus versus standardized neurobehavioral assessment
  publication-title: BMC Neurol
  doi: 10.1186/1471-2377-9-35
– volume: 80
  start-page: 412
  year: 2016
  ident: key 20180625113928_awy070-B24
  article-title: Somatosensory attention identifies both overt and covert awareness in disorders of consciousness
  publication-title: Ann Neurol
  doi: 10.1002/ana.24726
– volume: 33
  start-page: 1
  year: 2010
  ident: key 20180625113928_awy070-B46
  article-title: Recovery of consciousness after brain injury: a mesocircuit hypothesis
  publication-title: Trends Neurosci
  doi: 10.1016/j.tins.2009.11.002
– volume: 5
  start-page: 24
  year: 2008
  ident: key 20180625113928_awy070-B3
  article-title: A high performance sensorimotor beta rhythm-based brain-computer interface associated with human natural motor behavior
  publication-title: J Neural Eng
  doi: 10.1088/1741-2560/5/1/003
– volume: 68
  start-page: 304
  year: 2007
  ident: key 20180625113928_awy070-B18
  article-title: Late recovery from the minimally conscious state: ethical and policy implications
  publication-title: Neurology
  doi: 10.1212/01.wnl.0000252376.43779.96
– volume: 20
  start-page: 121
  year: 1980
  ident: key 20180625113928_awy070-B31
  article-title: Source derivation simplifies topographical EEG interpretation
  publication-title: Am J EEG Technol
  doi: 10.1080/00029238.1980.11080015
– volume: 6
  start-page: e23839
  year: 2011
  ident: key 20180625113928_awy070-B34
  article-title: Sustained negative BOLD response in human fMRI finger tapping task
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0023839
– volume: 25
  start-page: 7
  year: 2014
  ident: key 20180625113928_awy070-B50
  article-title: Large-scale brain dynamics in disorders of consciousness
  publication-title: Curr Opin Neurobiol
  doi: 10.1016/j.conb.2013.10.007
– volume: 2
  start-page: e01157
  year: 2013
  ident: key 20180625113928_awy070-B58
  article-title: Common resting brain dynamics indicate a possible mechanism underlying zolpidem response in severe brain injury
  publication-title: Elife
  doi: 10.7554/eLife.01157
– volume: 448
  start-page: 600
  year: 2007
  ident: key 20180625113928_awy070-B49
  article-title: Behavioural improvements with thalamic stimulation after severe traumatic brain injury
  publication-title: Nature
  doi: 10.1038/nature06041
– volume: 8
  start-page: 368re5
  year: 2016
  ident: key 20180625113928_awy070-B54
  article-title: Local changes in network structure contribute to late communication recovery after severe brain injury
  publication-title: Sci Transl Med
  doi: 10.1126/scitranslmed.aaf6113
– volume: 8
  start-page: 950
  year: 2014
  ident: key 20180625113928_awy070-B25
  article-title: Multiple tasks and neuroimaging modalities increase the likelihood of detecting covert awareness in patients with disorders of consciousness
  publication-title: Front Hum Neurosci
  doi: 10.3389/fnhum.2014.00950
– volume: 140
  start-page: 2399
  year: 2017
  ident: key 20180625113928_awy070-B14
  article-title: Early detection of consciousness in patients with acute severe traumatic brain injury
  publication-title: Brain
  doi: 10.1093/brain/awx176
– volume: 75
  start-page: 1871
  year: 2010
  ident: key 20180625113928_awy070-B45
  article-title: A network approach to assessing cognition in disorders of consciousness
  publication-title: Neurology
  doi: 10.1212/WNL.0b013e3181feb259
– volume: 72
  start-page: 1442
  year: 2015
  ident: key 20180625113928_awy070-B15
  article-title: A thalamocortical mechanism for the absence of overt motor behavior in covertly aware patients
  publication-title: JAMA Neurol
  doi: 10.1001/jamaneurol.2015.2614
– volume: 29
  start-page: 1165
  year: 2001
  ident: key 20180625113928_awy070-B7
  article-title: The control of the false discovery rate in multiple testing under dependency
  publication-title: Ann Stat
  doi: 10.1214/aos/1013699998
– volume-title: 18th Annual Meeting of the Organization for Human Brain Mapping
  year: 2012
  ident: key 20180625113928_awy070-B1
  article-title: Assessment of hierarchy of motor function under sedation—using continuous arterial spin labeling
– volume: 5
  start-page: 198ra05
  year: 2013
  ident: key 20180625113928_awy070-B10
  article-title: A theoretically based index of consciousness independent of sensory processing and behavior
  publication-title: Sci Transl Med
  doi: 10.1126/scitranslmed.3006294
– volume: 313
  start-page: 1402
  year: 2006
  ident: key 20180625113928_awy070-B39
  article-title: Detecting awareness in the vegetative state
  publication-title: Science
  doi: 10.1126/science.1130197
– volume: 384
  start-page: 514
  year: 2014
  ident: key 20180625113928_awy070-B52
  article-title: Diagnostic precision of PET imaging and functional MRI in disorders of consciousness: a clinical validation study
  publication-title: Lancet
  doi: 10.1016/S0140-6736(14)60042-8
– volume: 70
  start-page: 1055
  year: 1982
  ident: key 20180625113928_awy070-B56
  article-title: Spectrum estimation and harmonic analysis
  publication-title: Proc IEEE
  doi: 10.1109/PROC.1982.12433
– volume: 124
  start-page: 101
  year: 2013
  ident: key 20180625113928_awy070-B35
  article-title: Probing command-following in patients with disorders of consciousness using a brain-computer interface
  publication-title: Clin Neurophysiol
  doi: 10.1016/j.clinph.2012.04.030
– volume: 72
  start-page: 1413
  year: 2015
  ident: key 20180625113928_awy070-B47
  article-title: Cognitive motor dissociation following severe brain injuries
  publication-title: JAMA Neurol
  doi: 10.1001/jamaneurol.2015.2899
– volume: 61
  start-page: 478
  year: 2012
  ident: key 20180625113928_awy070-B33
  article-title: Coma and consciousness: paradigms (re)framed by neuroimaging
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2011.12.041
– volume: 356
  start-page: 1293
  year: 2001
  ident: key 20180625113928_awy070-B36
  article-title: A probabilistic atlas and reference system for the human brain: International Consortium for Brain Mapping (ICBM)
  publication-title: Philos Trans R Soc Lond B Biol Sci
  doi: 10.1098/rstb.2001.0915
– volume: 69
  start-page: 176
  year: 2012
  ident: key 20180625113928_awy070-B5
  article-title: Pattern classification of volitional functional magnetic resonance imaging responses in patients with severe brain injury
  publication-title: Arch Neurol
  doi: 10.1001/archneurol.2011.892
– volume: 26
  start-page: 1494
  year: 2016
  ident: key 20180625113928_awy070-B53
  article-title: The minimal energetic requirement of sustained awareness after brain injury
  publication-title: Curr Biol
  doi: 10.1016/j.cub.2016.04.024
– volume: 2015
  start-page: 145913
  year: 2015
  ident: key 20180625113928_awy070-B29
  article-title: Neurophysiological indicators of residual cognitive capacity in the minimally conscious state
  publication-title: Behav Neurol
  doi: 10.1155/2015/145913
– volume: 239
  start-page: 65
  year: 1997
  ident: key 20180625113928_awy070-B42
  article-title: Motor imagery activates primary sensorimotor area in humans
  publication-title: Neurosci Lett
  doi: 10.1016/S0304-3940(97)00889-6
– volume: 11
  start-page: e0156882
  year: 2016
  ident: key 20180625113928_awy070-B43
  article-title: Outcome prediction of consciousness disorders in the acute stage based on a complementary motor behavioural tool
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0156882
– volume: 134
  start-page: 9
  year: 2004
  ident: key 20180625113928_awy070-B13
  article-title: EEGLAB: an open source toolbox for analysis of single-trial EEG dynamics including independent component analysis
  publication-title: J Neurosci Methods
  doi: 10.1016/j.jneumeth.2003.10.009
– volume-title: Statistical parametric mapping: the analysis of functional brain images
  year: 2008
  ident: key 20180625113928_awy070-B21
– volume: 111
  start-page: 6473
  year: 2014
  ident: key 20180625113928_awy070-B20
  article-title: Regional cerebral metabolic patterns demonstrate the role of anterior forebrain mesocircuit dysfunction in the severely injured brain
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.1320969111
– volume: 123
  start-page: 797
  year: 2016
  ident: key 20180625113928_awy070-B48
  article-title: Central thalamic deep brain stimulation to support anterior forebrain mesocircuit function in the severely injured brain
  publication-title: J Neural Transm
  doi: 10.1007/s00702-016-1547-0
– volume: 122
  start-page: 2157
  year: 2011
  ident: key 20180625113928_awy070-B28
  article-title: Determination of awareness in patients with severe brain injury using EEG power spectral analysis
  publication-title: Clin Neurophysiol
  doi: 10.1016/j.clinph.2011.03.022
– volume: 39
  start-page: 526
  year: 1975
  ident: key 20180625113928_awy070-B30
  article-title: An on-line transformation of EEG scalp potentials into orthogonal source derivations
  publication-title: Electroencephalogr Clin Neurophysiol
  doi: 10.1016/0013-4694(75)90056-5
– volume: 76
  start-page: 869
  year: 2014
  ident: key 20180625113928_awy070-B19
  article-title: Preservation of electroencephalographic organization in patients with impaired consciousness and imaging-based evidence of command-following
  publication-title: Ann Neurol
  doi: 10.1002/ana.24283
– volume: 85
  start-page: 2020
  year: 2004
  ident: key 20180625113928_awy070-B23
  article-title: The JFK coma recovery scale-revised: measurement characteristics and diagnostic utility
  publication-title: Arch Phys Med Rehabil
  doi: 10.1016/j.apmr.2004.02.033
– volume: 36
  start-page: 979
  year: 2007
  ident: key 20180625113928_awy070-B9
  article-title: When thoughts become action: an fMRI paradigm to study volitional brain activity in non-communicative brain injured patients
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2007.02.047
– volume: 362
  start-page: 579
  year: 2010
  ident: key 20180625113928_awy070-B37
  article-title: Willful modulation of brain activity in disorders of consciousness
  publication-title: N Eng J Med
  doi: 10.1056/NEJMoa0905370
– volume: 57
  start-page: 289
  year: 1995
  ident: key 20180625113928_awy070-B6
  article-title: Controlling the false discovery rate: a practical and powerful approach to multiple testing
  publication-title: J R Stat Soc Series B Methodol
  doi: 10.1111/j.2517-6161.1995.tb02031.x
– reference: 29701789 - Brain. 2018 May 1;141(5):1239-1241. doi: 10.1093/brain/awy080
SSID ssj0014326
Score 2.5531058
Snippet See Boly and Laureys (doi:10.1093/brain/awy080) for a scientific commentary on this article. Detecting preserved cognition in patients with disorders of...
See Boly and Laureys (doi:10.1093/brain/awy080) for a scientific commentary on this article.Patients with severe brain injury are difficult to assess and...
See Boly and Laureys (doi: 10.1093/brain/awy080 ) for a scientific commentary on this article. Detecting preserved cognition in patients with disorders of...
SourceID pubmedcentral
proquest
pubmed
crossref
oup
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1404
SubjectTerms Adolescent
Adult
Brain - diagnostic imaging
Brain - physiopathology
Brain Injuries - complications
Brain Injuries - diagnostic imaging
Brain Waves - physiology
Child
Cognition Disorders - etiology
Cognition Disorders - physiopathology
Electroencephalography
Female
Fourier Analysis
Humans
Image Processing, Computer-Assisted
Magnetic Resonance Imaging
Male
Middle Aged
Original
Oxygen - blood
Young Adult
Title Characterization of EEG signals revealing covert cognition in the injured brain
URI https://www.ncbi.nlm.nih.gov/pubmed/29562312
https://www.proquest.com/docview/2017055010
https://pubmed.ncbi.nlm.nih.gov/PMC5917770
Volume 141
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLbKkBAviDvlJiPBU5XNSZw4eURVtwqpwMOK-hbZbiyKRjqNRmj7T_xHzrFdNxnjtpc0Sl278fliHzvnfB8hrxXM8VwpHpVK6IinOosKnRs4i0stJTjoVods9j6fzvm7RbYYDH50opbajdrXF1fmlVzHqnAN7IpZsv9h2VApXIBzsC8cwcJw_CcbjwPb8kXw_CaToxEGZSAtMtIzyROXVou6yyMfLLQLb1w1X1qMQFeoFNF7wYsXrtT7cJsIhSg6mwjj9szvffv9m13OwyHqRrlgJBsLvJN5_uQF26e1lU0azUNtyJjlE4nO_Xat35iIi10Y4J8SHnuDcR4VpeOd3a_d-MtzFoEXkvcGaEeN5ZGYdYZb5AbqTN0xd9nWv0wLjjLLdiXOfd_PmVMr6WDk9KsFSVKiQ-gju_tE3B9n4wwWt0KwG-RmAqsSFMw4WoSIIvA8rbpfuC-fZwGNH9imD1zDyD_tW-k5Q70Ey84653K4bsf_Ob5L7viFC33rUHiPDOrmPrk186EZD8iHy2Cka0MBjNSDkQYwUgdGGsBIVw0FMFIPRmpv4yGZH06Ox9PIq3VEGpz6TRSrrM6XIpOMS6ZSyXQKD7zmWuZlwhRntUnwNDdLHS85hw4UpdGm0CrjphTpI7LXrJv6CaEiVUbxOlsK-BBJLDOmYyNlqnJw6UwxJKNtt1XaU9mjospJ5UIq0sr-0cr195C8CaVPHYXLb8pRsMBfirzamqeCYRjfrcmmXrffqsTxUrEYyjx25go1ba09JKJnyFAAKd773zSrz5bq3QPu6bV_-Yzc3j2bz8ne5qytX4AbvVEvLXh_AirAzD8
linkProvider Geneva Foundation for Medical Education and Research
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Characterization+of+EEG+signals+revealing+covert+cognition+in+the+injured+brain&rft.jtitle=Brain+%28London%2C+England+%3A+1878%29&rft.au=Curley%2C+William+H&rft.au=Forgacs%2C+Peter+B&rft.au=Voss%2C+Henning+U&rft.au=Conte%2C+Mary+M&rft.date=2018-05-01&rft.pub=Oxford+University+Press&rft.issn=0006-8950&rft.eissn=1460-2156&rft.volume=141&rft.issue=5&rft.spage=1404&rft.epage=1421&rft_id=info:doi/10.1093%2Fbrain%2Fawy070&rft_id=info%3Apmid%2F29562312&rft.externalDocID=PMC5917770
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0006-8950&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0006-8950&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0006-8950&client=summon