Local versus global master equation with common and separate baths: superiority of the global approach in partial secular approximation

Open systems of coupled qubits are ubiquitous in quantum physics. Finding a suitable master equation to describe their dynamics is therefore a crucial task that must be addressed with utmost attention. In the recent past, many efforts have been made toward the possibility of employing local master e...

Full description

Saved in:
Bibliographic Details
Published inNew journal of physics Vol. 21; no. 11; pp. 113045 - 113067
Main Authors Cattaneo, Marco, Giorgi, Gian Luca, Maniscalco, Sabrina, Zambrini, Roberta
Format Journal Article
LanguageEnglish
Published Bristol IOP Publishing 01.11.2019
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Open systems of coupled qubits are ubiquitous in quantum physics. Finding a suitable master equation to describe their dynamics is therefore a crucial task that must be addressed with utmost attention. In the recent past, many efforts have been made toward the possibility of employing local master equations, which compute the interaction with the environment neglecting the direct coupling between the qubits, and for this reason may be easier to solve. Here, we provide a detailed derivation of the Markovian master equation for two coupled qubits interacting with common and separate baths, considering pure dephasing as well as dissipation. Then, we explore the differences between the local and global master equation, showing that they intrinsically depend on the way we apply the secular approximation. Our results prove that the global approach with partial secular approximation always provides the most accurate choice for the master equation when Born-Markov approximations hold, even for small inter-system coupling constants. Using different master equations we compute the stationary heat current between two separate baths, the entanglement dynamics generated by a common bath, and the emergence of spontaneous synchronization, showing the importance of the accurate choice of approach.
AbstractList Open systems of coupled qubits are ubiquitous in quantum physics. Finding a suitable master equation to describe their dynamics is therefore a crucial task that must be addressed with utmost attention. In the recent past, many efforts have been made toward the possibility of employing local master equations, which compute the interaction with the environment neglecting the direct coupling between the qubits, and for this reason may be easier to solve. Here, we provide a detailed derivation of the Markovian master equation for two coupled qubits interacting with common and separate baths, considering pure dephasing as well as dissipation. Then, we explore the differences between the local and global master equation, showing that they intrinsically depend on the way we apply the secular approximation. Our results prove that the global approach with partial secular approximation always provides the most accurate choice for the master equation when Born–Markov approximations hold, even for small inter-system coupling constants. Using different master equations we compute the stationary heat current between two separate baths, the entanglement dynamics generated by a common bath, and the emergence of spontaneous synchronization, showing the importance of the accurate choice of approach.
Author Giorgi, Gian Luca
Cattaneo, Marco
Zambrini, Roberta
Maniscalco, Sabrina
Author_xml – sequence: 1
  givenname: Marco
  orcidid: 0000-0001-6614-5286
  surname: Cattaneo
  fullname: Cattaneo, Marco
  email: marcocattaneo@ifisc.uib-csic.es
  organization: University of Turku QTF Centre of Excellence, Turku Centre for Quantum Physics, Department of Physics and Astronomy, FI-20014 Turun Yliopisto, Finland
– sequence: 2
  givenname: Gian Luca
  surname: Giorgi
  fullname: Giorgi, Gian Luca
  organization: Campus Universitat Illes Balears Instituto de Física Interdisciplinar y Sistemas Complejos IFISC (CSIC-UIB), E-07122 Palma de Mallorca, Spain
– sequence: 3
  givenname: Sabrina
  surname: Maniscalco
  fullname: Maniscalco, Sabrina
  organization: Aalto University QTF Centre of Excellence, Department of Applied Physics, School of Science, FI-00076 Aalto, Finland
– sequence: 4
  givenname: Roberta
  surname: Zambrini
  fullname: Zambrini, Roberta
  organization: Campus Universitat Illes Balears Instituto de Física Interdisciplinar y Sistemas Complejos IFISC (CSIC-UIB), E-07122 Palma de Mallorca, Spain
BookMark eNp9UU1v1DAQtVArtV1679ESV5Z6bNdJuKGKj0orcYGzNf5I16tsnNoO0F_A38a7oYCQQD54ZjzvzRu_C3IyxtETcgXsFbC2vQahmjVXgl2juZFon5HzX6WTP-IzcpHzjjGAlvNz8n0TLQ70i095zvR-iKZme8zFJ-ofZiwhjvRrKFtq435fYxwdzX7ChMVTg2WbX9M8Tz6FmEJ5pLGnZeufmHCaUkS7pWGkFVNCrWVv5wHT8vYt7I8znpPTHofsL3_eK_L53dtPtx_Wm4_v727fbNZWgiprUMikAudMwxrBO2l7K1owgNIy4246bBQA5xxbKZXBxnSWMds0rWTGuk6syN3C6yLu9JTq-PSoIwZ9LMR0rw8y7eC1U8qx-pVNJ5jknLUM0EkhWQ_CQNdXrhcLV93jYfa56F2c01jlay6gBSGgnhVRS5dNMefke21DOe5cEoZBA9MHA_XBIX1wSC8GViD7C_gk9z-QlwskxOm3mH-2_wAGM68v
CODEN NJOPFM
CitedBy_id crossref_primary_10_1103_PhysRevLett_132_060801
crossref_primary_10_1103_PhysRevA_110_023712
crossref_primary_10_3390_e24050644
crossref_primary_10_1103_PhysRevResearch_5_043041
crossref_primary_10_1103_PhysRevA_105_L020401
crossref_primary_10_1103_PhysRevE_109_044144
crossref_primary_10_1103_PhysRevA_103_062226
crossref_primary_10_1103_PhysRevB_111_085427
crossref_primary_10_1103_PhysRevB_104_075442
crossref_primary_10_1103_PhysRevB_107_075440
crossref_primary_10_1103_PhysRevLett_133_136302
crossref_primary_10_1140_epjqt_s40507_022_00148_9
crossref_primary_10_1088_2058_9565_ad57e8
crossref_primary_10_1103_PhysRevLett_134_037101
crossref_primary_10_1103_PhysRevA_101_012122
crossref_primary_10_1103_PhysRevA_103_062217
crossref_primary_10_3390_e23040471
crossref_primary_10_1016_j_optcom_2020_126233
crossref_primary_10_1088_1367_2630_ac57ea
crossref_primary_10_1103_PhysRevA_108_022219
crossref_primary_10_1088_1367_2630_ab9983
crossref_primary_10_1088_2058_9565_adae2c
crossref_primary_10_1016_j_physleta_2021_127651
crossref_primary_10_1103_PhysRevE_107_054115
crossref_primary_10_1088_2058_9565_adaee0
crossref_primary_10_1002_qute_202100054
crossref_primary_10_1080_00018732_2021_1876991
crossref_primary_10_1103_PhysRevE_110_054116
crossref_primary_10_1021_acsphotonics_1c00968
crossref_primary_10_1103_PhysRevA_106_022220
crossref_primary_10_1103_PhysRevX_12_011026
crossref_primary_10_1103_PhysRevA_108_042212
crossref_primary_10_1103_PhysRevE_109_064146
crossref_primary_10_1063_5_0237842
crossref_primary_10_1103_PhysRevA_102_042219
crossref_primary_10_1016_j_physleta_2023_129277
crossref_primary_10_1016_j_physleta_2024_129570
crossref_primary_10_1103_PhysRevResearch_4_013171
crossref_primary_10_22331_q_2022_03_22_672
crossref_primary_10_1088_1751_8121_abd736
crossref_primary_10_1103_PhysRevA_109_052207
crossref_primary_10_1103_PhysRevE_103_032138
crossref_primary_10_1103_PhysRevLett_126_130403
crossref_primary_10_1142_S1230161222500159
crossref_primary_10_22331_q_2022_12_07_869
crossref_primary_10_1140_epjqt_s40507_023_00202_0
crossref_primary_10_1103_RevModPhys_94_045003
crossref_primary_10_1103_PhysRevA_110_063703
crossref_primary_10_1116_5_0073853
crossref_primary_10_1103_PhysRevA_106_042605
crossref_primary_10_1103_PhysRevResearch_4_023221
crossref_primary_10_1103_PhysRevA_102_050203
crossref_primary_10_1098_rspa_2020_0850
crossref_primary_10_1103_PhysRevA_109_033718
crossref_primary_10_3390_e27030243
crossref_primary_10_1088_1751_8121_ac8bb4
crossref_primary_10_1063_5_0040753
crossref_primary_10_1103_PhysRevB_104_115139
crossref_primary_10_1103_PhysRevB_110_085419
crossref_primary_10_1088_1367_2630_acf2bd
crossref_primary_10_1103_PhysRevLett_131_223604
crossref_primary_10_1103_PhysRevA_110_042216
crossref_primary_10_1088_1367_2630_ac3b2f
crossref_primary_10_1088_1361_6633_ac45f9
crossref_primary_10_1103_PhysRevResearch_6_043128
crossref_primary_10_1038_s41598_022_22732_w
crossref_primary_10_1364_JOSAB_499439
crossref_primary_10_1103_PhysRevE_105_064111
crossref_primary_10_1063_5_0213444
crossref_primary_10_1103_PhysRevB_103_214308
crossref_primary_10_1103_PRXQuantum_2_030344
crossref_primary_10_1103_PhysRevE_107_044102
crossref_primary_10_1103_PhysRevA_110_042428
crossref_primary_10_1103_PhysRevE_110_024110
crossref_primary_10_22331_q_2022_04_13_684
crossref_primary_10_1103_PhysRevA_106_022417
crossref_primary_10_1103_PhysRevResearch_6_043091
crossref_primary_10_1016_j_physleta_2023_128826
crossref_primary_10_1002_qute_202000121
crossref_primary_10_1103_PhysRevE_104_054137
crossref_primary_10_1364_JOSAB_522786
crossref_primary_10_1088_1367_2630_abbd6e
crossref_primary_10_1103_PhysRevD_104_083508
crossref_primary_10_1088_1402_4896_ac3c12
crossref_primary_10_1103_PhysRevA_102_052208
crossref_primary_10_1103_PhysRevLett_127_240601
crossref_primary_10_1088_1367_2630_ac6a01
crossref_primary_10_1103_PhysRevA_105_032208
crossref_primary_10_1103_PhysRevA_110_053713
crossref_primary_10_1103_PhysRevE_107_034120
crossref_primary_10_1088_1361_6668_ac4150
crossref_primary_10_1088_2058_9565_acd4e3
crossref_primary_10_1016_j_physleta_2021_127172
crossref_primary_10_22331_q_2024_03_20_1291
crossref_primary_10_1103_PRXQuantum_4_010324
crossref_primary_10_1103_PhysRevResearch_3_023252
crossref_primary_10_1103_PhysRevA_105_062204
crossref_primary_10_1103_PhysRevApplied_22_024069
crossref_primary_10_1103_PhysRevA_110_032605
crossref_primary_10_1063_5_0155213
crossref_primary_10_1103_PhysRevE_107_014108
crossref_primary_10_1007_s10946_023_10116_y
crossref_primary_10_1103_PhysRevResearch_3_013165
crossref_primary_10_1364_OE_417294
crossref_primary_10_1016_j_physrep_2024_07_001
crossref_primary_10_1002_andp_202100038
crossref_primary_10_22331_q_2021_05_01_451
crossref_primary_10_1016_j_physleta_2022_128410
crossref_primary_10_1103_PhysRevA_101_042108
crossref_primary_10_1134_S0021364021130099
crossref_primary_10_1038_s42005_021_00553_z
crossref_primary_10_1103_PhysRevE_109_014142
crossref_primary_10_1103_PhysRevA_103_052209
crossref_primary_10_1103_PhysRevA_110_032219
crossref_primary_10_1103_PhysRevE_111_014137
crossref_primary_10_1103_PhysRevResearch_3_023006
crossref_primary_10_1103_PhysRevResearch_4_033103
crossref_primary_10_1103_PhysRevB_107_195117
crossref_primary_10_1142_S0217751X22430217
crossref_primary_10_3390_e22050525
crossref_primary_10_1103_PhysRevE_107_064125
crossref_primary_10_1002_andp_202200511
crossref_primary_10_1088_1367_2630_ab5c58
crossref_primary_10_1103_PhysRevE_109_024108
crossref_primary_10_1103_PhysRevB_105_L180407
crossref_primary_10_22331_q_2024_11_21_1534
Cites_doi 10.1103/PhysRevA.98.052123
10.1103/PhysRevA.100.012107
10.1103/PhysRevB.82.144423
10.1088/1751-8113/40/48/015
10.1103/PhysRevLett.89.277901
10.1103/PhysRevE.94.062143
10.1143/PTP.20.948
10.1063/1.3155214
10.1103/PhysRevA.67.042319
10.1063/1.1365955
10.1063/1.4907370
10.1209/epl/i2002-00174-3
10.1038/srep14873
10.1103/PhysRevA.93.062114
10.1007/BF01608499
10.1103/PhysRevA.94.052121
10.1088/1367-2630/12/11/113032
10.1016/0378-4371(87)90280-9
10.1103/PhysRevA.97.032133
10.1063/1.479867
10.1038/nature09801
10.1103/PhysRevX.7.021003
10.1103/RevModPhys.59.1
10.1103/PhysRevLett.116.240503
10.1142/S1230161217400017
10.1088/1367-2630/11/11/113020
10.1103/PhysRevA.85.032110
10.1088/1367-2630/aaf360
10.1103/PhysRevLett.91.070402
10.1142/S0217979205032097
10.1038/nature12801
10.1038/srep42050
10.1063/1.522979
10.1007/BF01379602
10.1016/S0370-1573(02)00368-X
10.1038/nature06184
10.1007/978-3-319-53412-1_18
10.1142/9789814317443_0010
10.1209/0295-5075/107/20004
10.1155/2015/615727
10.1103/PhysRev.93.99
10.1088/0305-4470/12/5/007
10.1088/1367-2630/17/11/113029
10.1209/0295-5075/113/30005
10.1142/S1230161217400108
10.1063/1.463831
10.1103/PhysRevLett.89.147902
10.1209/0295-5075/107/50007
10.1088/1367-2630/aab29d
10.1088/1367-2630/18/12/123007
10.1016/j.physleta.2009.10.081
10.1103/PhysRevA.75.013811
10.1063/1.2780165
10.1103/PhysRevE.61.2397
10.1088/1367-2630/aaecee
10.1007/BF01325208
10.1103/PhysRevLett.114.220601
10.1016/j.optcom.2016.10.017
10.1103/PhysRevA.67.042110
10.1103/PhysRevX.7.011016
10.1103/PhysRevA.95.043807
10.1103/PhysRevA.90.063815
10.1088/0034-4885/78/4/042001
10.1103/PhysRevE.99.042135
10.1088/1367-2630/aa964f
10.1103/PhysRevA.89.022128
10.1103/PhysRevA.76.042319
10.1038/s41467-017-01895-5
10.1088/0953-4075/44/7/075503
10.1103/PhysRevA.98.042102
10.1088/1751-8113/41/43/435304
10.1103/PhysRevA.88.042115
10.1103/PhysRevA.81.012105
10.1088/1367-2630/aa9f70
10.1088/1367-2630/14/12/123016
10.1088/0305-4470/6/10/014
10.1140/epjd/e2010-00230-5
10.1063/1.1731409
10.1140/e10051-002-0011-0
10.1103/PhysRevE.98.012131
10.1140/epjst/e2008-00732-9
10.1103/PhysRevLett.105.130401
10.1103/PhysRevE.76.031115
10.1103/PhysRevE.72.026104
10.1103/PhysRevA.67.063813
10.1007/BF01396784
10.1103/PhysRevA.74.024304
10.1103/PhysRevX.7.041009
10.1080/09500349214552211
10.1016/0370-1573(82)90102-8
10.1002/prop.201600067
ContentType Journal Article
Copyright 2019 The Author(s). Published by IOP Publishing Ltd on behalf of the Institute of Physics and Deutsche Physikalische Gesellschaft
2019. This work is published under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2019 The Author(s). Published by IOP Publishing Ltd on behalf of the Institute of Physics and Deutsche Physikalische Gesellschaft
– notice: 2019. This work is published under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID O3W
TSCCA
AAYXX
CITATION
8FD
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
H8D
L7M
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
DOA
DOI 10.1088/1367-2630/ab54ac
DatabaseName Institute of Physics Open Access Journal Titles
IOPscience (Open Access)
CrossRef
Technology Research Database
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One
ProQuest Central Korea
Aerospace Database
Advanced Technologies Database with Aerospace
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest Central China
ProQuest Central
Aerospace Database
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
Advanced Technologies Database with Aerospace
ProQuest One Academic (New)
DatabaseTitleList
Publicly Available Content Database
CrossRef

Database_xml – sequence: 1
  dbid: DOA
  name: Directory of Open Access Journals (DOAJ)
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: O3W
  name: Institute of Physics Open Access Journal Titles
  url: http://iopscience.iop.org/
  sourceTypes: Publisher
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Physics
DocumentTitleAlternate Local versus global master equation with common and separate baths: superiority of the global approach in partial secular approximation
EISSN 1367-2630
ExternalDocumentID oai_doaj_org_article_d66d054a79304220801ad4340f13b19f
10_1088_1367_2630_ab54ac
njpab54ac
GrantInformation_xml – fundername: Ministerio de Econom??a y Competitividad
  funderid: https://doi.org/10.13039/501100003329
GroupedDBID 123
1JI
1PV
29N
2WC
5PX
5VS
7.M
AAFWJ
AAJIO
AAJKP
ABHWH
ACAFW
ACGFO
ACHIP
ADBBV
AEFHF
AEJGL
AENEX
AFKRA
AFPKN
AFYNE
AHSEE
AIYBF
AKPSB
ALMA_UNASSIGNED_HOLDINGS
ASPBG
ATQHT
AVWKF
AZFZN
BCNDV
BENPR
CBCFC
CCPQU
CEBXE
CJUJL
CRLBU
CS3
DU5
E3Z
EBS
EDWGO
EQZZN
F5P
GROUPED_DOAJ
GX1
HH5
IJHAN
IOP
IZVLO
J9A
KNG
KQ8
LAP
M45
M48
M~E
N5L
N9A
O3W
OK1
P2P
PIMPY
PJBAE
RIN
RNS
RO9
ROL
SY9
T37
TR2
TSCCA
UCJ
W28
XPP
XSB
ZMT
AAYXX
CITATION
OVT
PHGZM
PHGZT
8FD
ABUWG
AZQEC
DWQXO
H8D
L7M
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
EJD
PUEGO
ID FETCH-LOGICAL-c416t-16a0461ddb7073294cfc381b1a4c0bd59a7611222a8446ba7b9c00c77840bcd93
IEDL.DBID M48
ISSN 1367-2630
IngestDate Wed Aug 27 01:28:59 EDT 2025
Mon Jun 30 05:29:25 EDT 2025
Thu Apr 24 22:58:18 EDT 2025
Tue Jul 01 01:30:26 EDT 2025
Wed Aug 21 03:34:11 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 11
Language English
License Original content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c416t-16a0461ddb7073294cfc381b1a4c0bd59a7611222a8446ba7b9c00c77840bcd93
Notes NJP-110744.R2
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-6614-5286
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1088/1367-2630/ab54ac
PQID 2318133131
PQPubID 4491272
PageCount 23
ParticipantIDs proquest_journals_2318133131
iop_journals_10_1088_1367_2630_ab54ac
crossref_citationtrail_10_1088_1367_2630_ab54ac
crossref_primary_10_1088_1367_2630_ab54ac
doaj_primary_oai_doaj_org_article_d66d054a79304220801ad4340f13b19f
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-11-01
PublicationDateYYYYMMDD 2019-11-01
PublicationDate_xml – month: 11
  year: 2019
  text: 2019-11-01
  day: 01
PublicationDecade 2010
PublicationPlace Bristol
PublicationPlace_xml – name: Bristol
PublicationTitle New journal of physics
PublicationTitleAbbrev NJP
PublicationTitleAlternate New J. Phys
PublicationYear 2019
Publisher IOP Publishing
Publisher_xml – name: IOP Publishing
References Breuer (njpab54acbib31) 2002
Carmichael (njpab54acbib48) 1973; 6
Suárez (njpab54acbib75) 1992; 97
Alicki (njpab54acbib89) 1979; 12
Čápek (njpab54acbib57) 2002; 25
Henrich (njpab54acbib55) 2005; 72
Manrique (njpab54acbib63) 2015; 2015
Aolita (njpab54acbib84) 2015; 78
Walls (njpab54acbib46) 1970; 234
Albash (njpab54acbib37) 2012; 14
Cresser (njpab54acbib35) 2017
Scala (njpab54acbib19) 2008; 41
Leggett (njpab54acbib92) 1987; 59
Scala (njpab54acbib51) 2007; 40
Wendin (njpab54acbib95) 2007; 33
Storcz (njpab54acbib1) 2003; 67
Brask (njpab54acbib14) 2015; 17
Scala (njpab54acbib50) 2007; 75
Hartmann (njpab54acbib43) 2019
Strasberg (njpab54acbib61) 2017; 7
Haddadfarshi (njpab54acbib3) 2016; 18
Migliore (njpab54acbib52) 2011; 44
Novotný (njpab54acbib58) 2002; 59
Koch (njpab54acbib30) 2007; 76
Manzano (njpab54acbib15) 2019; 99
Schwendimann (njpab54acbib47) 1972; 251
Raja (njpab54acbib71) 2018; 97
Trushechkin (njpab54acbib26) 2016; 113
Gorini (njpab54acbib38) 1976; 17
Argentieri (njpab54acbib80) 2014; 107
Giorgi (njpab54acbib91) 2016; 94
Kimchi-Schwartz (njpab54acbib11) 2016; 116
Joshi (njpab54acbib62) 2014; 90
Li (njpab54acbib20) 2009; 11
Galve (njpab54acbib41) 2017; 7
Stokes (njpab54acbib96) 2018; 20
Fitzpatrick (njpab54acbib12) 2017; 7
Zoubi (njpab54acbib53) 2003; 67
Stockburger (njpab54acbib67) 2017; 65
Sakurai (njpab54acbib82) 1994
Lindblad (njpab54acbib39) 1976; 48
Hofer (njpab54acbib28) 2017; 19
Salmilehto (njpab54acbib90) 2012; 85
Giorgi (njpab54acbib17) 2013; 88
Cresser (njpab54acbib49) 1992; 39
Mitchison (njpab54acbib29) 2018; 20
Wilkie (njpab54acbib77) 2001; 114
Orth (njpab54acbib22) 2010; 82
Benatti (njpab54acbib7) 2003; 91
Deçordi (njpab54acbib66) 2017; 387
Tanaś (njpab54acbib87) 2011
Gross (njpab54acbib44) 1982; 93
Ficek (njpab54acbib86) 2006; 74
Bellomo (njpab54acbib42) 2017; 95
Nielsen (njpab54acbib83) 2010
Barra (njpab54acbib60) 2015; 5
Galve (njpab54acbib88) 2017
Campagnano (njpab54acbib21) 2010; 374
Saito (njpab54acbib54) 2000; 61
Dicke (njpab54acbib16) 1954; 93
Hewgill (njpab54acbib68) 2018; 98
Ficek (njpab54acbib45) 1987; 146
Farina (njpab54acbib36) 2019; 100
Naseem (njpab54acbib69) 2018; 98
Majer (njpab54acbib93) 2007; 449
Benatti (njpab54acbib78) 2003; 67
Ishizaki (njpab54acbib79) 2009; 130
Benatti (njpab54acbib85) 2010; 81
Barreiro (njpab54acbib9) 2011; 470
Lin (njpab54acbib10) 2013; 504
Demkowicz-Dobrzański (njpab54acbib5) 2017; 7
Santos (njpab54acbib24) 2014; 89
Braun (njpab54acbib6) 2002; 89
Seah (njpab54acbib70) 2018; 98
Wichterich (njpab54acbib56) 2007; 76
Ficek (njpab54acbib18) 2002; 372
Purkayastha (njpab54acbib64) 2016; 93
Reiter (njpab54acbib4) 2017; 8
Nakajima (njpab54acbib32) 1958; 20
Benatti (njpab54acbib73) 2005; 19
Jeske (njpab54acbib81) 2015; 142
González (njpab54acbib27) 2017; 24
Cui (njpab54acbib72) 2015; 114
Horn (njpab54acbib8) 2018; 20
Gaspard (njpab54acbib76) 1999; 111
Levy (njpab54acbib2) 2002; 89
Linden (njpab54acbib13) 2010; 105
Santos (njpab54acbib65) 2016; 94
Zwanzig (njpab54acbib33) 1960; 33
Levy (njpab54acbib25) 2014; 107
Rivas (njpab54acbib34) 2010; 12
Scala (njpab54acbib23) 2011; 61
Dümcke (njpab54acbib74) 1979; 34
Chruściński (njpab54acbib40) 2017; 24
De Chiara (njpab54acbib59) 2018; 20
Mastellone (njpab54acbib94) 2008; 160
References_xml – volume: 98
  year: 2018
  ident: njpab54acbib69
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.98.052123
– volume: 100
  year: 2019
  ident: njpab54acbib36
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.100.012107
– volume: 82
  year: 2010
  ident: njpab54acbib22
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.82.144423
– volume: 40
  start-page: 14527
  year: 2007
  ident: njpab54acbib51
  publication-title: J. Phys. A: Math. Theor.
  doi: 10.1088/1751-8113/40/48/015
– volume: 89
  year: 2002
  ident: njpab54acbib6
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.89.277901
– volume: 94
  year: 2016
  ident: njpab54acbib65
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.94.062143
– volume: 20
  start-page: 948
  year: 1958
  ident: njpab54acbib32
  publication-title: Prog. Theor. Phys.
  doi: 10.1143/PTP.20.948
– volume: 130
  year: 2009
  ident: njpab54acbib79
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.3155214
– volume: 67
  year: 2003
  ident: njpab54acbib1
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.67.042319
– volume: 114
  start-page: 7736
  year: 2001
  ident: njpab54acbib77
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.1365955
– volume: 142
  year: 2015
  ident: njpab54acbib81
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.4907370
– volume: 59
  start-page: 648
  year: 2002
  ident: njpab54acbib58
  publication-title: Europhys. Lett.
  doi: 10.1209/epl/i2002-00174-3
– volume: 5
  start-page: 14873
  year: 2015
  ident: njpab54acbib60
  publication-title: Sci. Rep.
  doi: 10.1038/srep14873
– volume: 93
  year: 2016
  ident: njpab54acbib64
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.93.062114
– year: 1994
  ident: njpab54acbib82
– volume: 48
  start-page: 119
  year: 1976
  ident: njpab54acbib39
  publication-title: Commun. Math. Phys.
  doi: 10.1007/BF01608499
– year: 2002
  ident: njpab54acbib31
– volume: 94
  year: 2016
  ident: njpab54acbib91
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.94.052121
– volume: 12
  year: 2010
  ident: njpab54acbib34
  publication-title: New J. Phys.
  doi: 10.1088/1367-2630/12/11/113032
– volume: 146
  start-page: 452
  year: 1987
  ident: njpab54acbib45
  publication-title: Physica A
  doi: 10.1016/0378-4371(87)90280-9
– volume: 97
  year: 2018
  ident: njpab54acbib71
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.97.032133
– volume: 111
  start-page: 5668
  year: 1999
  ident: njpab54acbib76
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.479867
– volume: 470
  start-page: 486
  year: 2011
  ident: njpab54acbib9
  publication-title: Nature
  doi: 10.1038/nature09801
– volume: 7
  year: 2017
  ident: njpab54acbib61
  publication-title: Phys. Rev. X
  doi: 10.1103/PhysRevX.7.021003
– volume: 59
  start-page: 1
  year: 1987
  ident: njpab54acbib92
  publication-title: Rev. Mod. Phys.
  doi: 10.1103/RevModPhys.59.1
– volume: 116
  year: 2016
  ident: njpab54acbib11
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.116.240503
– volume: 24
  year: 2017
  ident: njpab54acbib40
  publication-title: Open Syst. Inf. Dyn.
  doi: 10.1142/S1230161217400017
– year: 2019
  ident: njpab54acbib43
– volume: 11
  year: 2009
  ident: njpab54acbib20
  publication-title: New J. Phys.
  doi: 10.1088/1367-2630/11/11/113020
– volume: 85
  year: 2012
  ident: njpab54acbib90
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.85.032110
– volume: 20
  year: 2018
  ident: njpab54acbib8
  publication-title: New J. Phys.
  doi: 10.1088/1367-2630/aaf360
– volume: 91
  year: 2003
  ident: njpab54acbib7
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.91.070402
– volume: 19
  start-page: 3063
  year: 2005
  ident: njpab54acbib73
  publication-title: Int. J. Mod. Phys. B
  doi: 10.1142/S0217979205032097
– volume: 504
  start-page: 415
  year: 2013
  ident: njpab54acbib10
  publication-title: Nature
  doi: 10.1038/nature12801
– volume: 7
  start-page: 42050
  year: 2017
  ident: njpab54acbib41
  publication-title: Sci. Rep.
  doi: 10.1038/srep42050
– volume: 17
  start-page: 821
  year: 1976
  ident: njpab54acbib38
  publication-title: J. Math. Phys.
  doi: 10.1063/1.522979
– volume: 251
  start-page: 244
  year: 1972
  ident: njpab54acbib47
  publication-title: Z. Phys. A
  doi: 10.1007/BF01379602
– volume: 372
  start-page: 369
  year: 2002
  ident: njpab54acbib18
  publication-title: Phys. Rep.
  doi: 10.1016/S0370-1573(02)00368-X
– volume: 449
  start-page: 443
  year: 2007
  ident: njpab54acbib93
  publication-title: Nature
  doi: 10.1038/nature06184
– start-page: 393
  year: 2017
  ident: njpab54acbib88
  doi: 10.1007/978-3-319-53412-1_18
– start-page: 179
  year: 2011
  ident: njpab54acbib87
  doi: 10.1142/9789814317443_0010
– volume: 107
  start-page: 20004
  year: 2014
  ident: njpab54acbib25
  publication-title: Europhys. Lett.
  doi: 10.1209/0295-5075/107/20004
– volume: 2015
  start-page: 1
  year: 2015
  ident: njpab54acbib63
  publication-title: Adv. Condens. Matter Phys.
  doi: 10.1155/2015/615727
– volume: 93
  start-page: 99
  year: 1954
  ident: njpab54acbib16
  publication-title: Phys. Rev.
  doi: 10.1103/PhysRev.93.99
– volume: 12
  start-page: L103
  year: 1979
  ident: njpab54acbib89
  publication-title: J. Phys. A: Math. Gen.
  doi: 10.1088/0305-4470/12/5/007
– year: 2010
  ident: njpab54acbib83
– volume: 17
  year: 2015
  ident: njpab54acbib14
  publication-title: New J. Phys.
  doi: 10.1088/1367-2630/17/11/113029
– volume: 113
  start-page: 30005
  year: 2016
  ident: njpab54acbib26
  publication-title: Europhys. Lett.
  doi: 10.1209/0295-5075/113/30005
– volume: 24
  year: 2017
  ident: njpab54acbib27
  publication-title: Open Syst. Inf. Dyn.
  doi: 10.1142/S1230161217400108
– volume: 97
  start-page: 5101
  year: 1992
  ident: njpab54acbib75
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.463831
– volume: 89
  year: 2002
  ident: njpab54acbib2
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.89.147902
– volume: 107
  start-page: 50007
  year: 2014
  ident: njpab54acbib80
  publication-title: Europhys. Lett.
  doi: 10.1209/0295-5075/107/50007
– volume: 20
  year: 2018
  ident: njpab54acbib96
  publication-title: New J. Phys.
  doi: 10.1088/1367-2630/aab29d
– volume: 18
  year: 2016
  ident: njpab54acbib3
  publication-title: New J. Phys.
  doi: 10.1088/1367-2630/18/12/123007
– volume: 374
  start-page: 416
  year: 2010
  ident: njpab54acbib21
  publication-title: Phys. Lett. A
  doi: 10.1016/j.physleta.2009.10.081
– volume: 75
  year: 2007
  ident: njpab54acbib50
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.75.013811
– volume: 33
  start-page: 724
  year: 2007
  ident: njpab54acbib95
  publication-title: Low Temp. Phys.
  doi: 10.1063/1.2780165
– volume: 61
  start-page: 2397
  year: 2000
  ident: njpab54acbib54
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.61.2397
– volume: 20
  year: 2018
  ident: njpab54acbib59
  publication-title: New J. Phys.
  doi: 10.1088/1367-2630/aaecee
– volume: 34
  start-page: 419
  year: 1979
  ident: njpab54acbib74
  publication-title: Z. Phys. B
  doi: 10.1007/BF01325208
– volume: 114
  year: 2015
  ident: njpab54acbib72
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.114.220601
– volume: 387
  start-page: 366
  year: 2017
  ident: njpab54acbib66
  publication-title: Opt. Commun.
  doi: 10.1016/j.optcom.2016.10.017
– volume: 67
  year: 2003
  ident: njpab54acbib78
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.67.042110
– volume: 7
  year: 2017
  ident: njpab54acbib12
  publication-title: Phys. Rev. X
  doi: 10.1103/PhysRevX.7.011016
– volume: 95
  year: 2017
  ident: njpab54acbib42
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.95.043807
– volume: 90
  year: 2014
  ident: njpab54acbib62
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.90.063815
– volume: 78
  year: 2015
  ident: njpab54acbib84
  publication-title: Rep. Prog. Phys.
  doi: 10.1088/0034-4885/78/4/042001
– volume: 99
  year: 2019
  ident: njpab54acbib15
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.99.042135
– volume: 19
  year: 2017
  ident: njpab54acbib28
  publication-title: New J. Phys.
  doi: 10.1088/1367-2630/aa964f
– volume: 89
  year: 2014
  ident: njpab54acbib24
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.89.022128
– volume: 76
  year: 2007
  ident: njpab54acbib30
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.76.042319
– volume: 8
  start-page: 1822
  year: 2017
  ident: njpab54acbib4
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-017-01895-5
– volume: 44
  year: 2011
  ident: njpab54acbib52
  publication-title: J. Phys. B: At. Mol. Opt. Phys.
  doi: 10.1088/0953-4075/44/7/075503
– volume: 98
  year: 2018
  ident: njpab54acbib68
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.98.042102
– volume: 41
  year: 2008
  ident: njpab54acbib19
  publication-title: J. Phys. A: Math. Theor.
  doi: 10.1088/1751-8113/41/43/435304
– volume: 88
  year: 2013
  ident: njpab54acbib17
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.88.042115
– volume: 81
  year: 2010
  ident: njpab54acbib85
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.81.012105
– volume: 20
  year: 2018
  ident: njpab54acbib29
  publication-title: New J. Phys.
  doi: 10.1088/1367-2630/aa9f70
– year: 2017
  ident: njpab54acbib35
– volume: 14
  year: 2012
  ident: njpab54acbib37
  publication-title: New J. Phys.
  doi: 10.1088/1367-2630/14/12/123016
– volume: 6
  start-page: 1552
  year: 1973
  ident: njpab54acbib48
  publication-title: J. Phys. A: Math. Gen.
  doi: 10.1088/0305-4470/6/10/014
– volume: 61
  start-page: 199
  year: 2011
  ident: njpab54acbib23
  publication-title: Eur. Phys. J. D
  doi: 10.1140/epjd/e2010-00230-5
– volume: 33
  start-page: 1338
  year: 1960
  ident: njpab54acbib33
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.1731409
– volume: 25
  start-page: 101
  year: 2002
  ident: njpab54acbib57
  publication-title: Eur. Phys. J. B
  doi: 10.1140/e10051-002-0011-0
– volume: 98
  year: 2018
  ident: njpab54acbib70
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.98.012131
– volume: 160
  start-page: 291
  year: 2008
  ident: njpab54acbib94
  publication-title: Eur. Phys. J. Spec. Top.
  doi: 10.1140/epjst/e2008-00732-9
– volume: 105
  year: 2010
  ident: njpab54acbib13
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.105.130401
– volume: 76
  year: 2007
  ident: njpab54acbib56
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.76.031115
– volume: 72
  year: 2005
  ident: njpab54acbib55
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.72.026104
– volume: 67
  year: 2003
  ident: njpab54acbib53
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.67.063813
– volume: 234
  start-page: 231
  year: 1970
  ident: njpab54acbib46
  publication-title: Z. Phys. A
  doi: 10.1007/BF01396784
– volume: 74
  year: 2006
  ident: njpab54acbib86
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.74.024304
– volume: 7
  year: 2017
  ident: njpab54acbib5
  publication-title: Phys. Rev. X
  doi: 10.1103/PhysRevX.7.041009
– volume: 39
  start-page: 2187
  year: 1992
  ident: njpab54acbib49
  publication-title: J. Mod. Opt.
  doi: 10.1080/09500349214552211
– volume: 93
  start-page: 301
  year: 1982
  ident: njpab54acbib44
  publication-title: Phys. Rep.
  doi: 10.1016/0370-1573(82)90102-8
– volume: 65
  year: 2017
  ident: njpab54acbib67
  publication-title: Fortschritte Phys.
  doi: 10.1002/prop.201600067
SSID ssj0011822
Score 2.64829
Snippet Open systems of coupled qubits are ubiquitous in quantum physics. Finding a suitable master equation to describe their dynamics is therefore a crucial task...
SourceID doaj
proquest
crossref
iop
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 113045
SubjectTerms Approximation
common and separate baths
coupled qubits
Coupling
Markovian master equation
Mathematical analysis
Open systems
Physics
Quantum entanglement
Quantum theory
Qubits (quantum computing)
secular approximation
Synchronism
Validity
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEA4iCF7EJ66ukoMePJRNmjRtvKkoIupJwVvJq7Cg3dXugv_Av-1M0_pA0IvXJk1D5kvmmyb5hpADJgRXqSwSwaqQSF2YBEXAExZSZqRCRRO8nHxzqy7v5dVD9vAl1ReeCYvywHHgRl4pD7TCAI5QrgoIDjdeCskqLizXFa6-4PP6YKrbPwDWnHabkjCNRqhLlqRKsJGx0Jb75oRarX5wLePJ9MeC3HqZi1Wy0tFDehK7tUYWQr1Oltpjmq7ZIG_X6HooHqWYNzSKedAng2IHNDxH1W6Kv1YpAAkARk3taRNafe9ALbC95pg2c1Q3nmDWOjqpKDDAvqVeYJyOazrFoYFnTcyeG8tex_Gm4ya5vzi_O7tMulQKiQPGNUu4Mqis7r3NYU6nWrrKga-23EjHrM-0yRUwrzQ1BcSH1uRWO8ZcnkP8Z53XYoss1pM6bBOawZoAhcpUEBlmWmrhBdAOw6vcZSHkAzLqx7Z0nc44prt4LNv97qIo0RolWqOM1hiQo483plFj45e6p2iuj3qojt0-AMyUHWbKvzAzIIdg7LKbrc0vHxv2cPisDIS4gMCeC77zH33ZJcvAwXS83jgki7OXedgDnjOz-y2k3wGT7PZ-
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: IOP Science Platform
  dbid: IOP
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ1Lb9QwEMdHpQiJCy0vsVCQD3DgkF07dpy4PRVEVVXlcaBSD0iRX5EqILuQXanqF-BrdyZOFvFQVfUWJXYefsz8HXt-BnjJpRQ6V1UmeRMzZSqbEQQ84zHnVmkimlBw8vsP-vBEHZ0Wpxuwt46FmS8G0z_FwwQKTkU4LIirZgQZy3It-cy6Qll_C27LCh0nRe99_LSeQkDhnA_zkv_L9Ycf6nH96F3wkf_Y5N7RHGzBl_EV0_qSr9PV0k39xV_0xht-wzbcGwQo209J78NGbB_AnX4hqO8ewq9jcm6MFmusOpZwIey7JZwCiz8SF5zRz1uGTRWbMLNtYF3sCeKROdST3S7rVsRPntO-eGzeMNSY451GhDk7a9mCXhfPdWl_3nTt_CzFUj6Ck4N3n98eZsNmDZlHTbfMhLbEbg_BlWg1cqN841ENOGGV5y4UxpYatV2e2wpHoM6WznjOfVniCNP5YORj2GznbXwCrECrgxe1bXDsWRhlZJAobKxoSl_EWE5gNlZd7QeSOW2o8a3uZ9Srqqbiral461S8E3i9zrFIFI8r0r6h1rBOR_zt_gTWYz3UYx20Dih2LVo3gqih7BY2KKl4I6QTppnAK6z6erAH3RUP2xlb2-_EKLkrgX1IiqfXvM0zuItCzqQYyR3YXP5cxecolpbuRd8pLgE6Uw18
  priority: 102
  providerName: IOP Publishing
– databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1La9wwEBbthkIvpU-6TVJ0aA89iJUsWbZyCUlJCKUNpTSQm9HLZSG1N_Eu9B_0b2fGkjeUwl4l-TmjmW800jeEfOBSCl2omkneRqZMbRmSgDMeC26VRkYTPJz87VJfXKkv1-V1XnAb8rbKySaOhjr0HtfIF4BDaoinhBTHq1uGVaMwu5pLaDwme2CC63pG9k7PLr__2OYRAD0XOTkJ02mB_GSs0JIvrCuV9f84o5GzH1zMsl_9Z5hHb3P-nDzLMJGeJLm-II9i95I8Gbdr-uEV-fsVXRDFLRWbgSZSD_rbIukBjbeJvZviEiuFj4M3p7YLdIgjz3ekDlDfcESHDbIc91i9jvYtBSQ43WkiGqfLjq5Qt6BtSFV0U9-fZTrx-JpcnZ_9_HzBckkF5gF5rZnQFhnWQ3AVzO3CKN968NlOWOW5C6WxlQYEVhS2hjjR2coZz7mvKogDnQ9GviGzru_iW0JLsA3QqW0LEWJplJFBAvywoq18GWM1J4vp3zY-841j2YubZsx713WD0mhQGk2Sxpx82l6xSlwbO8aeori245Ale2zo7341edI1QesAkNSCDUKqMwDHwgYlFW-FdMK0c_IRhN3kWTvseNjBpA4Pgx8U8t3u7n3yFFCWSQcYD8hsfbeJh4Bk1u59Vtd7eGjw1A
  priority: 102
  providerName: ProQuest
Title Local versus global master equation with common and separate baths: superiority of the global approach in partial secular approximation
URI https://iopscience.iop.org/article/10.1088/1367-2630/ab54ac
https://www.proquest.com/docview/2318133131
https://doaj.org/article/d66d054a79304220801ad4340f13b19f
Volume 21
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9wwEBZtQqGX0CfdPBYd2kMP7kqWLFuBUpKSkJbmQenS3IxeLgupvVnvQvoL-rc7Y9lZSkNOveggS7bRjDTfSJpvCHnNhOAqlUUiWBUSqQuTIAl4wkLKjFTIaILByadn6mQqP19ml-vw6H4A2ztdO8wnNV1cvbu5_vUBJvz7eEOumCDrWJIqwSbGZtK4h2QT7FKO-QxO5fpMAZB02h9U3tXrL8PU8feDuZk1838W6c7yHD8hWz1kpAdRxk_Jg1A_I4-6q5uufU5-f0FzRPF6xaqlkeCD_jRIgEDDdWTyprjdSkG5QOmoqT1tQ8f5HagFBNju03aFjMcNZrKjTUUBFQ5vGkjH6aymc9QzqGtjRt347GYWox9fkOnx0bePJ0mfXiFxgMKWCVcG2da9tznM81RLVzmw35Yb6Zj1mTa5AjSWpqYAn9Ga3GrHmMtz8Amt81q8JBt1U4dXhGawTsBDZSrwFjMttfACoIjhVe6yEPIRmQxjW7qeexxTYFyV3Rl4UZQojRKlUUZpjMjb2x7zyLtxT9tDFNdtO2TM7iqaxY-yn4ClV8oDPDWwHiHtGQBlbrwUklVcWK6rEXkDwi4HBbznY7uDOqwbA0guwNnngm__j3_ZIY8Bl-kY8rhLNpaLVdgD7LO0Y7J5eHR28XXc7R1A-en8YtypOZTn4vsf2FkDtA
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1ba9RAFB7KFtGX4hW3rToP9sGHsDOZySQpFLHasrXbRaSFvsW5pSxosm12sf4C_42_0XMyyRYR9q2vmUkC5_qduXyHkLdMCK5imUWClT6SeaYjJAGPmI-ZlgoZTfBy8tlUjS_k58vkcoP86e_C4LHKPia2gdrVFtfIR4BDMqinuODv59cRdo3C3dW-hUYwi1P_6yeUbM3BySfQ714cHx-dfxxHXVeByAL4WERcaSQZd86kYN5xLm1pIW0ZrqVlxiW5hsqeQ9rUGZRKRqcmt4zZNIVSyFiH5EsQ8jelUCwekM3Do-mXr6t9C0DrcbcZCu47Qj60KFaCjbRJpLb_JL-2RwCktFk9_y8RtNnt-DHZ6mAp_RDs6AnZ8NVT8qA9HmqbZ-T3BFMexSMcy4YGEhH6QyPJAvXXgS2c4pIuBWGCpKiuHG18yyvuqQGU2ezTZomsyjV2y6N1SQF59l_qic3prKJztGV41oSuvWHsdhZuWD4nF_ci7BdkUNWVf0loArEIBpUuoSJNcpkLJwDuaF6mNvE-HZJRL9vCdvzm2Gbje9Hus2dZgdooUBtF0MaQvFu9MQ_cHmvmHqK6VvOQlbt9UN9cFZ2TF04pBxBYQ8xDajUA41w7KSQruTA8L4dkD5RddFGiWfOz3d4c7ibfOcD2-uE35OH4_GxSTE6mpzvkESC8PFye3CWDxc3SvwIUtTCvO9Ol5Nt9e8tfNK4sig
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3JbtRAEC1FQSAu7CgDAfpADhw843a3NyQOQBglJIQciJRb05ulCPAMeEYsP8Dn8Ct8ElXu9iAWRVxy4GbZ7a26uuqVXfUK4H4qBC8yWSUibXwi60onRAKepD5LtSyI0YSKk18cFDtH8vlxfrwG31a1MLN5NP1j3AxEwUGEMSGumhDJWJIVIp1ok0ttJ3PXxKzKPf_5I8Zs3aPdbZzgrSybPnv1dCeJbQUSi-hjkfBCE8u4c6ZE_c5qaRuLfstwLW1qXF5rDO05-k1dYaxkdGlqm6a2LDEWMtYR-xLa_HO5QF9NFYMvD1e_LRCsZ_Ff6N-e9Bff17cIQI-Gr_mHH-id2_QyfB_EEnJa3oyXCzO2X35jjPyP5HYFLkWgzR6Hx7sKa769Buf7hFfbXYev--TEGSWlLDsWaFHYO020Ecy_D_znjD5SM1ySuFSZbh3rfM-U7plB3Nw9ZN2SeKJn1P-PzRqGWHq40kDVzk5aNicR4b4u9CEOxz6dhJrRG3B0JlK4CevtrPUbwHK0rniw0A3G2Hkta-EEAjjNm9Lm3pcjmAzqomxkbKfGIW9VnzlQVYqmVNGUqjClI3iwOmMe2EpOGfuENHA1jnjG-x2oOyrqjnJF4RDUa7TiRBaH4QXXTgqZNlwYXjcj2EJ1U9HudafcbHPQ8J-DMbSoONoKwW_942XuwYXD7ana3z3Yuw0XEbvWoSx0E9YXH5b-DuLDhbnbr0kGr89amX8AT1VrRw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Local+versus+global+master+equation+with+common+and+separate+baths%3A+superiority+of+the+global+approach+in+partial+secular+approximation&rft.jtitle=New+journal+of+physics&rft.au=Marco+Cattaneo&rft.au=Gian+Luca+Giorgi&rft.au=Sabrina+Maniscalco&rft.au=Roberta+Zambrini&rft.date=2019-11-01&rft.pub=IOP+Publishing&rft.eissn=1367-2630&rft.volume=21&rft.issue=11&rft.spage=113045&rft_id=info:doi/10.1088%2F1367-2630%2Fab54ac&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_d66d054a79304220801ad4340f13b19f
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1367-2630&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1367-2630&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1367-2630&client=summon