Biomass‐Derived Carbon Materials: Controllable Preparation and Versatile Applications

Biomass‐derived carbon materials (BCMs) are encountering the most flourishing moment because of their versatile properties and wide potential applications. Numerous BCMs, including 0D carbon spheres and dots, 1D carbon fibers and tubes, 2D carbon sheets, 3D carbon aerogel, and hierarchical carbon ma...

Full description

Saved in:
Bibliographic Details
Published inSmall (Weinheim an der Bergstrasse, Germany) Vol. 17; no. 40; pp. e2008079 - n/a
Main Authors Wang, Yiliang, Zhang, Mingchao, Shen, Xinyi, Wang, Huimin, Wang, Haomin, Xia, Kailun, Yin, Zhe, Zhang, Yingying
Format Journal Article
LanguageEnglish
Published Weinheim Wiley Subscription Services, Inc 01.10.2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Biomass‐derived carbon materials (BCMs) are encountering the most flourishing moment because of their versatile properties and wide potential applications. Numerous BCMs, including 0D carbon spheres and dots, 1D carbon fibers and tubes, 2D carbon sheets, 3D carbon aerogel, and hierarchical carbon materials have been prepared. At the same time, their structure–property relationship and applications have been widely studied. This paper aims to present a review on the recent advances in the controllable preparation and potential applications of BCMs, providing a reference for future work. First, the chemical compositions of typical biomass and their thermal degradation mechanisms are presented. Then, the typical preparation methods of BCMs are summarized and the relevant structural management rules are discussed. Besides, the strategies for improving the structural diversity of BCMs are also presented and discussed. Furthermore, the applications of BCMs in energy, sensing, environment, and other areas are reviewed. Finally, the remaining challenges and opportunities in the field of BCMs are discussed. Biomass‐derived carbon materials (BCMs) have wide potential applications due to their diverse structures and properties. In this paper, the recent progress in the preparation and applications of BCMs are reviewed. The key processing factors influencing the obtained BCMs, such as, chemical compositions of biomass, carbonization approaches, pretreatment, and activation, are discussed. Finally, the remaining challenges and future directions are discussed.
AbstractList Biomass‐derived carbon materials (BCMs) are encountering the most flourishing moment because of their versatile properties and wide potential applications. Numerous BCMs, including 0D carbon spheres and dots, 1D carbon fibers and tubes, 2D carbon sheets, 3D carbon aerogel, and hierarchical carbon materials have been prepared. At the same time, their structure–property relationship and applications have been widely studied. This paper aims to present a review on the recent advances in the controllable preparation and potential applications of BCMs, providing a reference for future work. First, the chemical compositions of typical biomass and their thermal degradation mechanisms are presented. Then, the typical preparation methods of BCMs are summarized and the relevant structural management rules are discussed. Besides, the strategies for improving the structural diversity of BCMs are also presented and discussed. Furthermore, the applications of BCMs in energy, sensing, environment, and other areas are reviewed. Finally, the remaining challenges and opportunities in the field of BCMs are discussed. Biomass‐derived carbon materials (BCMs) have wide potential applications due to their diverse structures and properties. In this paper, the recent progress in the preparation and applications of BCMs are reviewed. The key processing factors influencing the obtained BCMs, such as, chemical compositions of biomass, carbonization approaches, pretreatment, and activation, are discussed. Finally, the remaining challenges and future directions are discussed.
Biomass-derived carbon materials (BCMs) are encountering the most flourishing moment because of their versatile properties and wide potential applications. Numerous BCMs, including 0D carbon spheres and dots, 1D carbon fibers and tubes, 2D carbon sheets, 3D carbon aerogel, and hierarchical carbon materials have been prepared. At the same time, their structure-property relationship and applications have been widely studied. This paper aims to present a review on the recent advances in the controllable preparation and potential applications of BCMs, providing a reference for future work. First, the chemical compositions of typical biomass and their thermal degradation mechanisms are presented. Then, the typical preparation methods of BCMs are summarized and the relevant structural management rules are discussed. Besides, the strategies for improving the structural diversity of BCMs are also presented and discussed. Furthermore, the applications of BCMs in energy, sensing, environment, and other areas are reviewed. Finally, the remaining challenges and opportunities in the field of BCMs are discussed.Biomass-derived carbon materials (BCMs) are encountering the most flourishing moment because of their versatile properties and wide potential applications. Numerous BCMs, including 0D carbon spheres and dots, 1D carbon fibers and tubes, 2D carbon sheets, 3D carbon aerogel, and hierarchical carbon materials have been prepared. At the same time, their structure-property relationship and applications have been widely studied. This paper aims to present a review on the recent advances in the controllable preparation and potential applications of BCMs, providing a reference for future work. First, the chemical compositions of typical biomass and their thermal degradation mechanisms are presented. Then, the typical preparation methods of BCMs are summarized and the relevant structural management rules are discussed. Besides, the strategies for improving the structural diversity of BCMs are also presented and discussed. Furthermore, the applications of BCMs in energy, sensing, environment, and other areas are reviewed. Finally, the remaining challenges and opportunities in the field of BCMs are discussed.
Biomass‐derived carbon materials (BCMs) are encountering the most flourishing moment because of their versatile properties and wide potential applications. Numerous BCMs, including 0D carbon spheres and dots, 1D carbon fibers and tubes, 2D carbon sheets, 3D carbon aerogel, and hierarchical carbon materials have been prepared. At the same time, their structure–property relationship and applications have been widely studied. This paper aims to present a review on the recent advances in the controllable preparation and potential applications of BCMs, providing a reference for future work. First, the chemical compositions of typical biomass and their thermal degradation mechanisms are presented. Then, the typical preparation methods of BCMs are summarized and the relevant structural management rules are discussed. Besides, the strategies for improving the structural diversity of BCMs are also presented and discussed. Furthermore, the applications of BCMs in energy, sensing, environment, and other areas are reviewed. Finally, the remaining challenges and opportunities in the field of BCMs are discussed.
Author Wang, Haomin
Yin, Zhe
Wang, Huimin
Zhang, Mingchao
Shen, Xinyi
Zhang, Yingying
Wang, Yiliang
Xia, Kailun
Author_xml – sequence: 1
  givenname: Yiliang
  orcidid: 0000-0003-2039-7132
  surname: Wang
  fullname: Wang, Yiliang
  organization: Karlsruhe Institute of Technology
– sequence: 2
  givenname: Mingchao
  surname: Zhang
  fullname: Zhang, Mingchao
  organization: Tsinghua University
– sequence: 3
  givenname: Xinyi
  surname: Shen
  fullname: Shen, Xinyi
  organization: University of Cambridge
– sequence: 4
  givenname: Huimin
  surname: Wang
  fullname: Wang, Huimin
  organization: Tsinghua University
– sequence: 5
  givenname: Haomin
  surname: Wang
  fullname: Wang, Haomin
  organization: Tsinghua University
– sequence: 6
  givenname: Kailun
  surname: Xia
  fullname: Xia, Kailun
  organization: Tsinghua University
– sequence: 7
  givenname: Zhe
  surname: Yin
  fullname: Yin, Zhe
  organization: Tsinghua University
– sequence: 8
  givenname: Yingying
  orcidid: 0000-0002-8448-3059
  surname: Zhang
  fullname: Zhang, Yingying
  email: yingyingzhang@tsinghua.edu.cn
  organization: Tsinghua University
BookMark eNqFkMlOwzAQhi1UJNrClXMkLlxSvGQztxJWKRVIbMfIcSaSqyQOdgrqjUfgGXkS3BYVCQlx8jLfNx7_IzRodQsIHRI8IRjTE9vU9YRiinGCY76DhiQizI8SygfbPcF7aGTtHGNGaBAP0fOZ0o2w9vP94xyMeoXSS4UpdOvNRO8uRG1PvVS3vdF1LYoavDsDnTCiV44Rbek9gbHu5CrTrquVXFfsPtqtnAsH3-sYPV5ePKTXfnZ7dZNOM18GJOJ-XGIgUoSQhLRglGMcR2VESMXCMsEFJwFjBFgEUgSCsTgC91MhZUxpFRaEszE63vTtjH5ZgO3zRlkJbtYW9MLmNAxYEESutUOPfqFzvTCtm85RMWc4DkPmqMmGkkZba6DKO6MaYZY5wfkq53yVc77N2QnBL0Gqfh1Cb4Sq_9b4Rntz0S3_eSS_n2XZj_sFci6VUg
CitedBy_id crossref_primary_10_1021_acs_energyfuels_4c01935
crossref_primary_10_1021_acs_langmuir_4c02292
crossref_primary_10_1021_acs_iecr_2c03058
crossref_primary_10_1007_s10311_023_01581_7
crossref_primary_10_1039_D4GC05497K
crossref_primary_10_1002_smll_202400107
crossref_primary_10_1016_j_apcatb_2021_120912
crossref_primary_10_1016_j_fuel_2023_128039
crossref_primary_10_1002_batt_202400302
crossref_primary_10_1021_acs_chemmater_3c00271
crossref_primary_10_1016_j_nanoen_2024_110232
crossref_primary_10_1016_j_matpr_2023_05_120
crossref_primary_10_1039_D4SE01393J
crossref_primary_10_1039_D4GC00993B
crossref_primary_10_1016_j_est_2024_114692
crossref_primary_10_1039_D3TB01910A
crossref_primary_10_3390_ma16145081
crossref_primary_10_1039_D1TA06874A
crossref_primary_10_1016_j_est_2023_108338
crossref_primary_10_1002_ente_202400882
crossref_primary_10_3390_catal14090627
crossref_primary_10_1021_acsami_3c04414
crossref_primary_10_1007_s11705_022_2266_8
crossref_primary_10_1002_slct_202404611
crossref_primary_10_1002_cssc_202201543
crossref_primary_10_1002_slct_202401225
crossref_primary_10_1016_j_apenergy_2022_120489
crossref_primary_10_1039_D3GC00323J
crossref_primary_10_1021_acs_energyfuels_4c03842
crossref_primary_10_1016_j_pmatsci_2024_101373
crossref_primary_10_1016_j_apsusc_2023_157010
crossref_primary_10_1016_j_est_2022_105590
crossref_primary_10_3389_fchem_2024_1402502
crossref_primary_10_3390_ma16196454
crossref_primary_10_1016_j_jwpe_2024_105808
crossref_primary_10_1021_acsaem_2c03427
crossref_primary_10_1021_acsnano_3c07300
crossref_primary_10_1016_j_seppur_2024_126752
crossref_primary_10_1039_D3TA00239J
crossref_primary_10_3390_nano13091571
crossref_primary_10_1016_j_catcom_2023_106737
crossref_primary_10_1016_S1872_5805_22_60620_6
crossref_primary_10_1016_j_apsusc_2022_155448
crossref_primary_10_1039_D4IM00069B
crossref_primary_10_1016_j_jallcom_2025_179043
crossref_primary_10_3390_nano12101720
crossref_primary_10_1007_s42823_023_00460_z
crossref_primary_10_1002_app_56894
crossref_primary_10_1016_j_ijhydene_2024_08_225
crossref_primary_10_1039_D4GC05346J
crossref_primary_10_1002_clen_202200284
crossref_primary_10_1016_j_cej_2023_141607
crossref_primary_10_1016_j_ces_2024_120107
crossref_primary_10_1021_acsaem_2c02801
crossref_primary_10_1021_acssuschemeng_4c03600
crossref_primary_10_1007_s10895_024_04131_8
crossref_primary_10_1002_jsfa_13323
crossref_primary_10_1016_j_est_2022_104910
crossref_primary_10_3390_molecules29215172
crossref_primary_10_1016_j_fuel_2025_134802
crossref_primary_10_1016_j_compositesa_2023_107964
crossref_primary_10_3390_nano11123235
crossref_primary_10_1039_D1QM01427G
crossref_primary_10_1016_j_cej_2023_143736
crossref_primary_10_1002_slct_202404918
crossref_primary_10_1016_j_mtsust_2023_100635
crossref_primary_10_1016_j_ijbiomac_2025_140813
crossref_primary_10_1016_j_jcis_2022_09_035
crossref_primary_10_1016_j_polymer_2023_126471
crossref_primary_10_1016_j_cej_2024_152212
crossref_primary_10_1039_D4GC01771D
crossref_primary_10_1021_acs_jpcc_3c04246
crossref_primary_10_1021_acs_est_4c12258
crossref_primary_10_3390_nano12193512
crossref_primary_10_1002_smll_202200010
crossref_primary_10_1016_j_fuproc_2022_107437
crossref_primary_10_1002_cey2_708
crossref_primary_10_1002_adfm_202400522
crossref_primary_10_1002_asia_202400712
crossref_primary_10_1021_acsnano_4c17883
crossref_primary_10_1007_s11356_024_33448_x
crossref_primary_10_1016_j_cej_2024_151345
crossref_primary_10_1016_j_elecom_2023_107557
crossref_primary_10_1021_acs_langmuir_4c01562
crossref_primary_10_1016_j_jece_2024_113903
crossref_primary_10_1016_j_diamond_2023_109956
crossref_primary_10_1016_j_apsusc_2024_160852
crossref_primary_10_1016_j_renene_2024_121372
crossref_primary_10_1002_asia_202400394
crossref_primary_10_1016_j_cej_2024_150370
crossref_primary_10_3390_ma17102419
crossref_primary_10_1007_s40843_022_2397_y
crossref_primary_10_1002_adfm_202204426
crossref_primary_10_1016_j_mser_2022_100672
crossref_primary_10_1016_j_saa_2022_120886
crossref_primary_10_1016_j_diamond_2022_109432
crossref_primary_10_1016_j_jclepro_2023_138711
crossref_primary_10_1016_j_jece_2022_108718
crossref_primary_10_1039_D3EY00265A
crossref_primary_10_1039_D3MA00480E
crossref_primary_10_1002_admt_202300666
crossref_primary_10_3390_catal13020449
crossref_primary_10_1007_s40843_023_2678_5
crossref_primary_10_1016_j_jclepro_2023_139361
crossref_primary_10_1002_adma_202414620
crossref_primary_10_1016_j_jcis_2023_08_041
crossref_primary_10_1021_acs_chemmater_2c01466
crossref_primary_10_1039_D2RA02079C
crossref_primary_10_1016_j_electacta_2022_141770
crossref_primary_10_1039_D3RE00526G
crossref_primary_10_1007_s10854_023_10418_6
crossref_primary_10_1016_j_carbon_2024_118804
crossref_primary_10_1002_smll_202306915
crossref_primary_10_1016_j_flatc_2022_100467
crossref_primary_10_1007_s13399_024_06101_3
crossref_primary_10_1007_s40242_024_3259_6
crossref_primary_10_1021_acsami_2c13000
crossref_primary_10_1016_j_coelec_2021_100860
crossref_primary_10_1039_D2NR06868K
crossref_primary_10_1039_D4NA00362D
crossref_primary_10_1002_cey2_207
crossref_primary_10_1016_j_carbon_2021_10_077
crossref_primary_10_1021_acssuschemeng_2c03702
crossref_primary_10_1007_s10934_022_01408_w
crossref_primary_10_1016_j_jcis_2024_03_177
crossref_primary_10_1039_D4NJ03116D
crossref_primary_10_1016_j_nanoen_2023_108491
crossref_primary_10_1039_D4GC02551B
crossref_primary_10_1021_acsanm_3c04768
crossref_primary_10_1016_j_fuel_2023_128010
crossref_primary_10_1016_j_carbon_2022_02_016
crossref_primary_10_1039_D2MA00596D
crossref_primary_10_1007_s42773_024_00396_1
crossref_primary_10_1016_j_cej_2025_159694
crossref_primary_10_1016_j_diamond_2022_109617
crossref_primary_10_1016_j_seppur_2024_130882
crossref_primary_10_1016_j_est_2024_114430
crossref_primary_10_3390_c9040100
crossref_primary_10_1016_j_est_2023_107466
crossref_primary_10_1007_s11696_022_02590_6
crossref_primary_10_3390_nano13081400
crossref_primary_10_1016_j_fuel_2025_134963
crossref_primary_10_1002_solr_202200270
crossref_primary_10_1016_j_jaap_2024_106731
crossref_primary_10_1007_s42250_024_01179_8
crossref_primary_10_1016_j_apsusc_2022_153571
crossref_primary_10_1016_j_cej_2023_142203
crossref_primary_10_1002_smll_202400179
crossref_primary_10_1039_D2EN00435F
crossref_primary_10_1016_j_renene_2021_12_040
crossref_primary_10_1002_ente_202301436
crossref_primary_10_1016_j_cartre_2024_100335
crossref_primary_10_1016_j_ces_2023_119312
crossref_primary_10_1016_j_diamond_2023_110169
crossref_primary_10_1002_cctc_202201494
crossref_primary_10_1016_j_inoche_2023_110768
Cites_doi 10.1039/C8TA04080J
10.1021/acsami.7b11873
10.1021/acssuschemeng.5b00340
10.1016/j.nantod.2018.02.008
10.1021/ac202166x
10.1021/acsami.7b01599
10.1016/j.carbon.2016.04.036
10.3390/ma7064431
10.1016/j.biortech.2012.05.060
10.1016/j.nantod.2018.12.004
10.1016/j.nanoen.2019.104045
10.1016/j.solidstatesciences.2010.02.038
10.1021/acssuschemeng.8b02299
10.1039/b917807d
10.1016/j.jhazmat.2009.12.032
10.1016/j.jpowsour.2017.06.086
10.1021/cr300367d
10.1039/C4EE02531H
10.1007/s00604-016-2043-9
10.1021/sc500161b
10.1002/adma.201603486
10.1016/j.matlet.2018.01.096
10.1021/cm0707408
10.1021/acsnano.7b08539
10.1002/admt.201800593
10.1016/j.electacta.2015.07.094
10.1016/j.micromeso.2009.02.032
10.1039/c3ta14604a
10.1007/s11157-018-9476-z
10.1002/anie.201209676
10.1002/aenm.201100548
10.1039/C7EE02616A
10.1002/anie.201409290
10.1039/C5GC02122G
10.1016/j.carbpol.2010.04.006
10.1016/j.fuproc.2009.08.021
10.1016/j.apsusc.2009.05.150
10.1039/C5NJ02080H
10.1002/app.11089
10.1039/C8RA06958A
10.1016/j.cbpa.2013.05.004
10.1016/j.nantod.2018.12.003
10.1016/j.electacta.2015.02.019
10.1016/S0167-577X(02)00388-9
10.1038/354056a0
10.1039/c3tb20418a
10.1038/ncomms2586
10.1039/C3EE43979H
10.1021/acs.chemrev.6b00225
10.1063/1.5038125
10.1002/aenm.201801007
10.1021/jacs.7b01942
10.1039/C5NR04603C
10.1039/C4RA08055F
10.1007/s10832-013-9831-y
10.1016/j.carbon.2017.11.064
10.1002/smll.200600047
10.1021/acsami.8b01556
10.1016/j.jechem.2018.01.015
10.1002/inf2.12060
10.1016/j.nanoen.2017.01.045
10.1038/nature07719
10.1016/j.matlet.2013.03.064
10.1039/C5CS00670H
10.1002/adhm.201601371
10.1039/C3EE43111H
10.1016/j.apsusc.2008.12.013
10.1021/cm100139d
10.1039/C7TA07579K
10.1039/b807009a
10.1016/S0008-6223(02)00406-2
10.1016/S0008-6223(00)00027-0
10.1016/j.cej.2012.08.052
10.1021/acsnano.7b01987
10.1016/S0008-6223(98)00333-9
10.1039/C7TA03639F
10.1021/acsami.8b14304
10.1039/C6TA08169J
10.1080/01496395.2014.966204
10.1021/nl401729r
10.1016/j.matchemphys.2016.07.015
10.1039/b907612c
10.1021/acssuschemeng.6b00388
10.1038/318162a0
10.1021/acssuschemeng.5b00904
10.1038/358220a0
10.1039/B819318P
10.1021/acsami.8b13281
10.1016/j.carbon.2010.10.025
10.1016/j.nanoen.2014.11.008
10.1016/j.nanoen.2014.12.014
10.1016/S0960-8524(01)00118-3
10.1039/c3ee42366b
10.1002/anie.201303927
10.1016/j.nantod.2014.09.004
10.1039/C4EE00602J
10.1021/acs.jpcc.5b11280
10.1039/b922733d
10.1016/j.mcat.2017.05.031
10.1002/smll.201202943
10.1038/nature25476
10.1016/j.cap.2009.12.044
10.1016/j.carbon.2017.08.072
10.1039/C4CS00269E
10.1039/C4TA06614F
10.1016/j.nanoen.2017.12.042
10.1021/ie402371n
10.1002/adfm.201504004
10.1002/celc.201500351
10.1002/adma.201801072
10.1038/ncomms6714
10.1002/aenm.201401524
10.3390/en5104209
10.1021/acs.chemrev.8b00325
10.1016/j.fuproc.2010.09.033
10.1021/acs.chemrev.8b00340
10.1002/cssc.201000431
10.1039/C8TA02838A
10.1016/j.dyepig.2007.03.001
10.1039/b822668g
10.1016/j.jece.2013.09.017
10.1038/s41467-020-20628-9
10.1002/adfm.201501524
10.1016/j.jhazmat.2008.09.064
10.1021/nn506394r
10.1021/acssuschemeng.6b01408
10.1016/j.micromeso.2017.03.019
10.1002/ange.201205292
10.1016/j.jhazmat.2008.12.114
10.1016/j.cej.2015.08.014
10.1039/C4GC02185A
10.1016/j.jpowsour.2020.227794
10.1002/adma.201704740
10.1039/C7TA05002J
10.1021/acsami.5b04132
10.1016/j.jcis.2014.02.006
10.1039/C7EE03208K
10.1039/C5CP06970J
10.1016/j.colsurfa.2008.09.021
10.1021/acsami.5b00628
10.1021/nn400566d
10.1039/C7SE00099E
10.1021/es4012977
10.1002/anie.200352386
10.1016/j.biortech.2015.07.100
10.1016/j.fuel.2013.12.026
10.1016/j.marchem.2006.04.003
10.1039/C4EE02986K
10.1038/natrevmats.2017.46
10.1016/j.jaap.2015.12.013
10.1016/j.cherd.2014.03.019
10.1016/j.nanoen.2016.07.034
10.1002/aenm.201801840
10.1002/adma.201604257
10.1039/C7TA05192A
10.1016/j.fuproc.2007.11.030
10.1016/j.jelechem.2016.03.047
10.1016/j.cap.2007.04.038
10.1021/am5081919
10.1002/adfm.201604795
10.1021/acsanm.8b00209
10.1021/acs.accounts.5b00380
10.1002/cctc.201500081
10.1016/j.carbon.2009.03.035
10.1007/s10570-017-1230-0
10.1002/celc.201901829
10.1016/j.matlet.2009.09.049
10.1039/c3ta10650k
10.1039/C6CS00639F
10.1002/er.1804
10.1016/j.electacta.2015.07.077
10.1002/anie.201306129
10.1002/smll.201301770
10.1016/j.nanoen.2016.04.043
10.1016/j.jaap.2013.02.003
10.1016/j.cej.2011.01.067
10.1002/adma.201500472
10.1002/chem.200802097
10.1039/C6TA01314G
10.1016/j.snb.2016.09.130
10.1002/smll.201600412
10.1002/aelm.201700193
10.1039/C7NR00130D
10.1021/nl500859p
10.1016/j.jhazmat.2009.07.138
10.1002/aenm.201600659
10.1002/cplu.201500261
10.1002/adma.200902986
10.1002/smll.201804966
10.1021/acsami.8b03059
10.1021/es5021839
10.1016/j.matlet.2018.12.143
10.1016/j.matlet.2013.02.019
10.1021/acssuschemeng.8b05022
10.1021/acs.chemmater.8b04572
10.1021/ja809265m
10.1002/aenm.201702381
10.1002/smll.201400781
10.1039/C4TA03096F
10.1021/acsaem.8b01690
10.1039/C5GC01054C
10.1002/adma.202000596
10.1016/j.rser.2015.12.185
10.1021/acsami.8b13160
10.1021/am5023682
10.1016/j.biombioe.2011.04.032
10.1039/C7NJ04662F
10.1021/jacs.8b13675
10.1016/j.cej.2009.12.016
10.1021/acs.accounts.8b00084
10.1039/C5RA11179J
10.1039/C5TA09948J
10.1039/C6TA05406D
10.1021/cr500062v
10.1002/cplu.201500293
10.1002/anie.201102070
10.1016/j.msec.2017.07.007
10.1039/C4GC02032D
10.1002/anie.201802753
10.1039/C6TA08742F
10.1016/j.fuel.2006.12.013
10.1002/adfm.201605657
10.1039/C4EE01075B
10.1016/j.carbon.2014.12.001
10.1016/j.jhazmat.2006.01.037
10.1016/j.chempr.2017.12.028
10.1021/acssuschemeng.8b00183
10.1016/j.carbon.2016.08.092
10.1016/j.electacta.2013.05.050
10.1002/adma.201504225
10.1002/aenm.201100191
10.1002/adma.201505326
10.1002/aenm.201700595
10.1002/adma.201800062
10.1002/ente.201901215
10.1039/C5CS00258C
10.1021/acssuschemeng.8b03415
10.1021/cs5008393
10.1021/acscentsci.5b00191
10.1039/C6GC03555H
10.1002/adma.201100984
10.1039/C5TA09043A
10.1021/acsnano.5b05575
10.1126/science.1102896
10.1002/adfm.201900162
10.1038/s41565-018-0325-6
10.1002/adma.201706267
10.1002/smll.201303831
10.1021/acsami.9b04060
10.1021/acsnano.9b07063
10.1021/acsnano.9b08638
10.1002/aenm.201600377
10.1021/acssuschemeng.7b02164
10.1002/adma.201204949
10.1080/21663831.2016.1250834
10.1021/cr900354u
10.1002/advs.201700107
10.1021/acsnano.9b05978
10.1002/adma.201200164
10.1088/2053-1591/aaba00
10.1038/nature09211
10.1039/C4CS00015C
10.1002/adma.201900498
10.1021/acsami.5b02697
10.1016/j.nanoen.2015.10.038
10.1039/C5TC00813A
10.1002/anie.201712453
10.1007/s12274-018-2172-z
10.1002/anie.201204381
10.1002/anie.201406836
10.1039/C6TA05872H
10.1039/C6EE03716J
10.1002/adma.201702211
10.1039/C4TA05810K
10.1016/j.jaap.2013.10.013
10.1021/acsami.7b07746
10.1021/acsnano.6b00043
10.1016/j.catcom.2017.10.014
10.1021/acsami.7b02985
10.1039/C9TA11618D
10.1021/acsnano.5b06022
10.1016/j.mser.2017.04.001
10.1016/j.pecs.2006.12.001
10.1039/C4TA02154A
10.1021/acssuschemeng.8b03763
10.1021/cm2020077
10.1016/j.jece.2013.12.019
10.1016/j.nanoen.2016.12.046
10.1002/jctb.4028
10.1016/j.arabjc.2014.01.020
10.1016/j.jhazmat.2006.07.049
10.1016/j.renene.2015.08.010
10.1021/acssuschemeng.8b04486
10.1039/C6NR08139H
10.1016/j.jhazmat.2011.04.021
10.1016/j.jhazmat.2015.02.026
10.1021/cs300103k
10.1016/j.carbpol.2015.07.005
10.1016/j.cej.2017.02.105
10.1002/adma.201606895
10.1002/aenm.201602898
10.1002/smll.201604290
10.1002/adma.201601572
10.1021/acssuschemeng.8b01292
10.1002/adfm.200801057
10.1002/adma.201901186
10.1021/jp805113y
10.1006/jcis.2000.7171
10.1021/acsami.7b13356
10.1021/ac034415p
10.1002/adma.201503221
10.1016/S1001-0742(10)60515-3
10.1039/C6RA25899A
10.1021/am5075562
10.1039/C7EE03031B
10.1002/adma.200902812
10.1002/adma.201405115
10.1007/s12274-014-0644-3
10.1016/j.carbon.2012.01.024
10.1002/adma.201908214
ContentType Journal Article
Copyright 2021 Wiley‐VCH GmbH
2021 Wiley-VCH GmbH.
Copyright_xml – notice: 2021 Wiley‐VCH GmbH
– notice: 2021 Wiley-VCH GmbH.
DBID AAYXX
CITATION
7SR
7U5
8BQ
8FD
JG9
L7M
7X8
DOI 10.1002/smll.202008079
DatabaseName CrossRef
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
MEDLINE - Academic
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
METADEX
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
CrossRef
Materials Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1613-6829
EndPage n/a
ExternalDocumentID 10_1002_smll_202008079
SMLL202008079
Genre reviewArticle
GrantInformation_xml – fundername: National Natural Science Foundation of China
  funderid: 51672153; 21975141
– fundername: Ministry of Science and Technology of China
  funderid: 2016YFA0200103
GroupedDBID ---
05W
0R~
123
1L6
1OC
33P
3SF
3WU
4.4
50Y
52U
53G
5VS
66C
8-0
8-1
8UM
A00
AAESR
AAEVG
AAHHS
AAHQN
AAIHA
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABCUV
ABIJN
ABJNI
ABLJU
ABRTZ
ACAHQ
ACCFJ
ACCZN
ACFBH
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZVAB
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BOGZA
BRXPI
CS3
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBD
EBS
EMOBN
F5P
G-S
GNP
HBH
HGLYW
HHY
HHZ
HZ~
IX1
KQQ
LATKE
LAW
LEEKS
LITHE
LOXES
LUTES
LYRES
MEWTI
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
MY~
O66
O9-
OIG
P2P
P2W
P4E
QRW
R.K
RIWAO
RNS
ROL
RWI
RX1
RYL
SUPJJ
SV3
V2E
W99
WBKPD
WFSAM
WIH
WIK
WJL
WOHZO
WXSBR
WYISQ
WYJ
XV2
Y6R
ZZTAW
~S-
31~
AANHP
AASGY
AAYOK
AAYXX
ACBWZ
ACRPL
ACYXJ
ADNMO
AGHNM
AGQPQ
AGYGG
ASPBG
AVWKF
AZFZN
BDRZF
CITATION
EJD
FEDTE
GODZA
HVGLF
7SR
7U5
8BQ
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
JG9
L7M
7X8
ID FETCH-LOGICAL-c4169-7d0e1ca5e852b3290076d611f35d80b914331e36eca4a3376e002acc722f5b193
IEDL.DBID DR2
ISSN 1613-6810
1613-6829
IngestDate Fri Jul 11 09:03:49 EDT 2025
Fri Jul 25 12:20:42 EDT 2025
Thu Apr 24 22:51:15 EDT 2025
Tue Jul 01 02:11:05 EDT 2025
Wed Jan 22 16:56:36 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 40
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4169-7d0e1ca5e852b3290076d611f35d80b914331e36eca4a3376e002acc722f5b193
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
ORCID 0000-0002-8448-3059
0000-0003-2039-7132
PQID 2579307553
PQPubID 1046358
PageCount 32
ParticipantIDs proquest_miscellaneous_2543446329
proquest_journals_2579307553
crossref_primary_10_1002_smll_202008079
crossref_citationtrail_10_1002_smll_202008079
wiley_primary_10_1002_smll_202008079_SMLL202008079
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-10-01
PublicationDateYYYYMMDD 2021-10-01
PublicationDate_xml – month: 10
  year: 2021
  text: 2021-10-01
  day: 01
PublicationDecade 2020
PublicationPlace Weinheim
PublicationPlace_xml – name: Weinheim
PublicationTitle Small (Weinheim an der Bergstrasse, Germany)
PublicationYear 2021
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2017; 80
2019; 11
2019; 13
2019; 15
2019; 14
2008; 34
2020; 14
2002; 86
2002; 83
2018; 217
2019; 24
2015; 133
2013; 52
1992; 358
2013; 113
2019; 29
2008; 112
2012; 24
2016; 49
2016; 45
2004; 43
2007; 19
2009; 63
2016; 19
2011; 1
2019; 31
2013; 88
2019; 30
2013; 105
2018; 104
2013; 101
2016; 10
2009; 172
2020; 32
2016; 18
2011; 4
2004; 306
2017; 139
2016; 12
2016; 4
2012; 50
2016; 6
2016; 3
1985; 318
2018; 119
2018; 118
1999; 37
2010; 177
2016; 28
2016; 27
2016; 26
2014; 422
2016; 25
2006; 102
2013; 25
2017; 46
2007; 141
2002; 55
2008; 8
2016; 105
2008; 77
2017; 114
2017; 117
2006; 136
2017; 239
2020; 8
2020; 7
2014; 5
2014; 4
2012; 210
2013; 17
2014; 2
2013; 13
2016; 118
2019; 65
2010; 158
2017; 33
2017; 32
2015; 176
2016; 110
2016; 116
2017; 361
2014; 9
2017; 124
2014; 7
2014; 50
2014; 6
2017; 246
2014; 53
2015; 1
2015; 160
2014; 92
2015; 5
2013; 47
2015; 3
2017; 27
2015; 289
2017; 24
2017; 29
2010; 81
2015; 9
2015; 8
2015; 7
2016; 120
2003; 75
2020
2017; 11
2017; 10
2017; 13
2013; 31
2018; 554
2008; 89
2016
2017; 19
2018; 51
2010; 91
2018; 57
2010; 12
2017; 317
2017; 438
2010; 10
2013; 4
1991; 354
2013; 1
2012; 124
2010; 466
2015; 80
2011; 190
2013; 7
2018; 45
2013; 6
2018; 42
2013; 9
2018; 7
2010; 22
2018; 6
2018; 8
2018; 5
2018; 4
2018; 1
2015; 84
2020; 451
2010; 110
2009; 122
2014; 14
2018; 30
2014; 121
2009; 19
2018; 31
2003; 41
2009; 15
2014; 10
2019; 8
2019; 2
2010; 39
2015; 54
2014; 48
2009; 333
2000; 232
2009; 457
2016; 283
2014; 43
2018; 19
2018; 17
2010; 46
2011; 92
2015; 197
2007; 86
2018; 12
2018; 11
2018; 10
2012; 118
2017; 5
2017; 6
2017; 7
2009; 47
2015; 39
2017; 1
2017; 2
2017; 3
2017; 4
2018; 128
2016; 182
2019; 240
2017; 9
2016; 184
2012; 51
2011; 168
2013; 98
2015; 44
2009; 165
2016; 86
2009; 167
2011; 23
2015; 12
2015; 17
2015; 11
2009; 255
2011; 35
2008; 10
2006; 2
2009; 131
2019; 141
2014; 114
2016; 57
2009; 34
2014; 105
2015; 25
2012; 2
2015; 27
2021; 12
2000; 38
2011; 50
2016; 771
2011; 49
2012; 5
2009; 38
2012; 84
e_1_2_9_79_1
e_1_2_9_254_1
e_1_2_9_94_1
e_1_2_9_10_1
e_1_2_9_56_1
e_1_2_9_239_1
e_1_2_9_277_1
e_1_2_9_33_1
e_1_2_9_216_1
e_1_2_9_71_1
e_1_2_9_231_1
e_1_2_9_292_1
e_1_2_9_107_1
e_1_2_9_122_1
e_1_2_9_145_1
e_1_2_9_168_1
e_1_2_9_314_1
e_1_2_9_18_1
e_1_2_9_183_1
e_1_2_9_160_1
e_1_2_9_265_1
e_1_2_9_22_1
e_1_2_9_45_1
e_1_2_9_68_1
e_1_2_9_83_1
e_1_2_9_204_1
e_1_2_9_227_1
e_1_2_9_288_1
e_1_2_9_6_1
e_1_2_9_119_1
e_1_2_9_60_1
e_1_2_9_242_1
e_1_2_9_280_1
e_1_2_9_111_1
e_1_2_9_134_1
e_1_2_9_157_1
e_1_2_9_195_1
e_1_2_9_302_1
e_1_2_9_172_1
e_1_2_9_232_1
e_1_2_9_255_1
e_1_2_9_72_1
e_1_2_9_11_1
e_1_2_9_34_1
e_1_2_9_57_1
e_1_2_9_95_1
e_1_2_9_217_1
e_1_2_9_278_1
e_1_2_9_270_1
e_1_2_9_293_1
e_1_2_9_129_1
e_1_2_9_144_1
e_1_2_9_167_1
e_1_2_9_106_1
e_1_2_9_315_1
e_1_2_9_121_1
e_1_2_9_19_1
e_1_2_9_182_1
e_1_2_9_61_1
e_1_2_9_243_1
e_1_2_9_46_1
e_1_2_9_84_1
e_1_2_9_228_1
e_1_2_9_266_1
e_1_2_9_289_1
e_1_2_9_23_1
e_1_2_9_205_1
e_1_2_9_5_1
e_1_2_9_220_1
e_1_2_9_281_1
e_1_2_9_118_1
e_1_2_9_133_1
e_1_2_9_156_1
e_1_2_9_179_1
Zhou X. (e_1_2_9_101_1) 2017; 5
e_1_2_9_303_1
e_1_2_9_69_1
e_1_2_9_110_1
e_1_2_9_171_1
e_1_2_9_194_1
e_1_2_9_31_1
e_1_2_9_210_1
e_1_2_9_256_1
e_1_2_9_233_1
e_1_2_9_77_1
e_1_2_9_54_1
e_1_2_9_279_1
e_1_2_9_294_1
e_1_2_9_92_1
e_1_2_9_109_1
e_1_2_9_271_1
e_1_2_9_124_1
e_1_2_9_147_1
e_1_2_9_316_1
e_1_2_9_39_1
e_1_2_9_162_1
e_1_2_9_218_1
e_1_2_9_16_1
e_1_2_9_185_1
e_1_2_9_20_1
e_1_2_9_89_1
e_1_2_9_221_1
e_1_2_9_244_1
e_1_2_9_43_1
e_1_2_9_66_1
e_1_2_9_206_1
e_1_2_9_267_1
e_1_2_9_8_1
e_1_2_9_81_1
e_1_2_9_282_1
e_1_2_9_113_1
e_1_2_9_159_1
e_1_2_9_136_1
e_1_2_9_151_1
e_1_2_9_197_1
e_1_2_9_304_1
e_1_2_9_28_1
e_1_2_9_229_1
e_1_2_9_174_1
Freese B. (e_1_2_9_1_1) 2016
e_1_2_9_211_1
e_1_2_9_234_1
e_1_2_9_257_1
e_1_2_9_78_1
e_1_2_9_32_1
e_1_2_9_55_1
e_1_2_9_317_1
e_1_2_9_272_1
e_1_2_9_295_1
e_1_2_9_93_1
e_1_2_9_108_1
e_1_2_9_70_1
e_1_2_9_100_1
e_1_2_9_123_1
e_1_2_9_169_1
e_1_2_9_146_1
e_1_2_9_219_1
e_1_2_9_17_1
e_1_2_9_184_1
e_1_2_9_161_1
e_1_2_9_222_1
e_1_2_9_21_1
e_1_2_9_67_1
e_1_2_9_44_1
e_1_2_9_268_1
e_1_2_9_260_1
e_1_2_9_283_1
e_1_2_9_7_1
e_1_2_9_82_1
e_1_2_9_320_1
e_1_2_9_112_1
e_1_2_9_135_1
e_1_2_9_158_1
e_1_2_9_305_1
e_1_2_9_207_1
e_1_2_9_173_1
e_1_2_9_196_1
e_1_2_9_29_1
e_1_2_9_150_1
e_1_2_9_75_1
e_1_2_9_98_1
e_1_2_9_190_1
e_1_2_9_52_1
e_1_2_9_235_1
e_1_2_9_212_1
e_1_2_9_318_1
e_1_2_9_258_1
e_1_2_9_90_1
e_1_2_9_273_1
e_1_2_9_296_1
e_1_2_9_250_1
e_1_2_9_103_1
e_1_2_9_126_1
e_1_2_9_149_1
e_1_2_9_14_1
e_1_2_9_141_1
e_1_2_9_187_1
e_1_2_9_37_1
e_1_2_9_164_1
e_1_2_9_310_1
e_1_2_9_41_1
e_1_2_9_64_1
e_1_2_9_87_1
e_1_2_9_200_1
e_1_2_9_223_1
e_1_2_9_246_1
e_1_2_9_269_1
e_1_2_9_306_1
e_1_2_9_284_1
e_1_2_9_2_1
e_1_2_9_261_1
e_1_2_9_138_1
e_1_2_9_321_1
e_1_2_9_115_1
e_1_2_9_199_1
e_1_2_9_26_1
e_1_2_9_49_1
e_1_2_9_208_1
e_1_2_9_130_1
e_1_2_9_176_1
e_1_2_9_153_1
e_1_2_9_191_1
e_1_2_9_30_1
e_1_2_9_53_1
Zhang Y. (e_1_2_9_245_1) 2017; 114
e_1_2_9_99_1
e_1_2_9_213_1
e_1_2_9_319_1
e_1_2_9_236_1
e_1_2_9_259_1
e_1_2_9_76_1
e_1_2_9_91_1
e_1_2_9_274_1
e_1_2_9_297_1
e_1_2_9_251_1
e_1_2_9_102_1
e_1_2_9_148_1
e_1_2_9_125_1
e_1_2_9_15_1
e_1_2_9_38_1
e_1_2_9_140_1
e_1_2_9_163_1
e_1_2_9_186_1
e_1_2_9_311_1
e_1_2_9_42_1
e_1_2_9_88_1
e_1_2_9_224_1
e_1_2_9_201_1
e_1_2_9_307_1
e_1_2_9_65_1
e_1_2_9_247_1
e_1_2_9_80_1
e_1_2_9_285_1
e_1_2_9_262_1
e_1_2_9_114_1
e_1_2_9_137_1
e_1_2_9_322_1
e_1_2_9_9_1
e_1_2_9_152_1
e_1_2_9_175_1
e_1_2_9_198_1
e_1_2_9_27_1
e_1_2_9_209_1
e_1_2_9_50_1
e_1_2_9_73_1
e_1_2_9_35_1
e_1_2_9_214_1
e_1_2_9_298_1
e_1_2_9_96_1
e_1_2_9_12_1
e_1_2_9_237_1
e_1_2_9_275_1
e_1_2_9_252_1
e_1_2_9_290_1
e_1_2_9_128_1
e_1_2_9_166_1
e_1_2_9_105_1
e_1_2_9_189_1
e_1_2_9_120_1
e_1_2_9_58_1
e_1_2_9_143_1
e_1_2_9_312_1
e_1_2_9_181_1
e_1_2_9_62_1
e_1_2_9_202_1
e_1_2_9_308_1
e_1_2_9_24_1
e_1_2_9_85_1
e_1_2_9_225_1
e_1_2_9_248_1
e_1_2_9_286_1
e_1_2_9_4_1
e_1_2_9_263_1
e_1_2_9_240_1
e_1_2_9_323_1
e_1_2_9_117_1
e_1_2_9_155_1
e_1_2_9_178_1
e_1_2_9_47_1
e_1_2_9_132_1
e_1_2_9_193_1
e_1_2_9_300_1
e_1_2_9_170_1
e_1_2_9_74_1
e_1_2_9_51_1
e_1_2_9_215_1
e_1_2_9_238_1
e_1_2_9_276_1
e_1_2_9_299_1
e_1_2_9_13_1
e_1_2_9_97_1
e_1_2_9_230_1
e_1_2_9_253_1
e_1_2_9_291_1
e_1_2_9_127_1
e_1_2_9_188_1
e_1_2_9_104_1
e_1_2_9_36_1
e_1_2_9_59_1
e_1_2_9_142_1
e_1_2_9_165_1
e_1_2_9_313_1
e_1_2_9_180_1
e_1_2_9_63_1
e_1_2_9_40_1
e_1_2_9_287_1
e_1_2_9_309_1
e_1_2_9_203_1
e_1_2_9_249_1
e_1_2_9_86_1
e_1_2_9_226_1
e_1_2_9_264_1
e_1_2_9_3_1
e_1_2_9_241_1
e_1_2_9_139_1
e_1_2_9_116_1
e_1_2_9_177_1
e_1_2_9_25_1
e_1_2_9_131_1
e_1_2_9_154_1
e_1_2_9_48_1
e_1_2_9_301_1
e_1_2_9_192_1
References_xml – volume: 63
  start-page: 2707
  year: 2009
  publication-title: Mater. Lett.
– volume: 84
  start-page: 1281
  year: 2012
  publication-title: Anal. Chem.
– volume: 361
  start-page: 249
  year: 2017
  publication-title: J. Power Sources
– volume: 77
  start-page: 16
  year: 2008
  publication-title: Dyes Pigm.
– volume: 9
  start-page: 590
  year: 2014
  publication-title: Nano Today
– volume: 422
  start-page: 25
  year: 2014
  publication-title: J. Colloid Interface Sci.
– volume: 10
  start-page: 1204
  year: 2008
  publication-title: Green Chem.
– volume: 41
  start-page: 811
  year: 2003
  publication-title: Carbon
– volume: 3
  start-page: 144
  year: 2016
  publication-title: ChemElectroChem
– volume: 23
  start-page: 4882
  year: 2011
  publication-title: Chem. Mater.
– volume: 19
  start-page: 4205
  year: 2007
  publication-title: Chem. Mater.
– volume: 217
  start-page: 167
  year: 2018
  publication-title: Mater. Lett.
– volume: 114
  year: 2014
  publication-title: Chem. Rev.
– volume: 7
  start-page: 858
  year: 2018
  publication-title: ACS Sustainable Chem. Eng.
– volume: 24
  start-page: 103
  year: 2019
  publication-title: Nano Today
– volume: 6
  year: 2017
  publication-title: Adv. Healthcare Mater.
– volume: 45
  start-page: 2378
  year: 2016
  publication-title: Chem. Soc. Rev.
– volume: 7
  start-page: 1608
  year: 2015
  publication-title: ChemCatChem
– volume: 118
  start-page: 1
  year: 2016
  publication-title: J. Anal. Appl. Pyrolysis
– volume: 10
  start-page: 538
  year: 2017
  publication-title: Energy Environ. Sci.
– volume: 128
  start-page: 224
  year: 2018
  publication-title: Carbon
– volume: 1
  start-page: 1265
  year: 2017
  publication-title: Sustainable Energy Fuels
– volume: 34
  start-page: 47
  year: 2008
  publication-title: Prog. Energy Combust. Sci.
– volume: 1
  start-page: 1766
  year: 2018
  publication-title: ACS Appl. Nano Mater.
– volume: 4
  start-page: 7445
  year: 2016
  publication-title: J. Mater. Chem. A
– volume: 29
  year: 2019
  publication-title: Adv. Funct. Mater.
– volume: 27
  start-page: 482
  year: 2016
  publication-title: Nano Energy
– volume: 4
  start-page: 544
  year: 2018
  publication-title: Chem
– volume: 4
  start-page: 3393
  year: 2014
  publication-title: ACS Catal.
– volume: 42
  start-page: 4513
  year: 2018
  publication-title: New J. Chem.
– volume: 197
  start-page: 137
  year: 2015
  publication-title: Bioresour. Technol.
– volume: 6
  year: 2018
  publication-title: ACS Sustainable Chem. Eng.
– volume: 139
  start-page: 8212
  year: 2017
  publication-title: J. Am. Chem. Soc.
– volume: 88
  start-page: 1183
  year: 2013
  publication-title: J. Chem. Technol. Biotechnol.
– volume: 10
  start-page: 3371
  year: 2014
  publication-title: Small
– volume: 7
  start-page: 201
  year: 2020
  publication-title: ChemElectroChem
– volume: 4
  year: 2016
  publication-title: J. Mater. Chem. A
– volume: 5
  start-page: 69
  year: 2017
  publication-title: Mater. Res. Lett.
– volume: 3
  start-page: 2181
  year: 2015
  publication-title: J. Mater. Chem. A
– volume: 105
  start-page: 635
  year: 2013
  publication-title: Electrochim. Acta
– volume: 358
  start-page: 220
  year: 1992
  publication-title: Nature
– volume: 112
  year: 2008
  publication-title: J. Phys. Chem. C
– volume: 11
  start-page: 1240
  year: 2018
  publication-title: Energy Environ. Sci.
– volume: 133
  start-page: 163
  year: 2015
  publication-title: Carbohydr. Polym.
– volume: 117
  start-page: 1
  year: 2017
  publication-title: Mater. Sci. Eng., R
– volume: 7
  start-page: 4431
  year: 2014
  publication-title: Materials
– volume: 167
  start-page: 1
  year: 2009
  publication-title: J. Hazard. Mater.
– volume: 239
  start-page: 1251
  year: 2017
  publication-title: Sens. Actuators, B
– volume: 2
  year: 2017
  publication-title: Nat. Rev. Mater.
– volume: 86
  start-page: 1817
  year: 2002
  publication-title: J. Appl. Polym. Sci.
– volume: 114
  year: 2017
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– volume: 11
  start-page: 6860
  year: 2017
  publication-title: ACS Nano
– volume: 17
  start-page: 1668
  year: 2015
  publication-title: Green Chem.
– volume: 4
  year: 2018
  publication-title: Adv. Mater. Technol.
– volume: 22
  start-page: 813
  year: 2010
  publication-title: Adv. Mater.
– volume: 39
  start-page: 9497
  year: 2015
  publication-title: New J. Chem.
– volume: 7
  year: 2017
  publication-title: Adv. Energy Mater.
– volume: 165
  start-page: 87
  year: 2009
  publication-title: J. Hazard. Mater.
– volume: 86
  start-page: 262
  year: 2016
  publication-title: Renewable Energy
– volume: 17
  start-page: 515
  year: 2013
  publication-title: Curr. Opin. Chem. Biol.
– volume: 3
  year: 2017
  publication-title: Adv. Electron. Mater.
– volume: 18
  start-page: 4095
  year: 2016
  publication-title: Phys. Chem. Chem. Phys.
– volume: 35
  start-page: 3152
  year: 2011
  publication-title: Biomass Bioenergy
– volume: 4
  start-page: 778
  year: 2011
  publication-title: ChemSusChem
– volume: 457
  start-page: 706
  year: 2009
  publication-title: Nature
– volume: 28
  start-page: 6640
  year: 2016
  publication-title: Adv. Mater.
– volume: 110
  start-page: 3552
  year: 2010
  publication-title: Chem. Rev.
– volume: 92
  start-page: 1923
  year: 2014
  publication-title: Chem. Eng. Res. Des.
– volume: 10
  start-page: 889
  year: 2016
  publication-title: ACS Nano
– volume: 13
  year: 2017
  publication-title: Small
– volume: 246
  start-page: 72
  year: 2017
  publication-title: Microporous Mesoporous Mater.
– volume: 10
  start-page: 2552
  year: 2017
  publication-title: Energy Environ. Sci.
– volume: 172
  start-page: 1311
  year: 2009
  publication-title: J. Hazard. Mater.
– volume: 7
  start-page: 3589
  year: 2013
  publication-title: ACS Nano
– volume: 86
  start-page: 1781
  year: 2007
  publication-title: Fuel
– volume: 89
  start-page: 262
  year: 2008
  publication-title: Fuel Process. Technol.
– volume: 37
  start-page: 1379
  year: 1999
  publication-title: Carbon
– volume: 9
  year: 2015
  publication-title: ACS Nano
– volume: 49
  start-page: 838
  year: 2011
  publication-title: Carbon
– volume: 25
  start-page: 120
  year: 2016
  publication-title: Nano Energy
– volume: 14
  start-page: 2225
  year: 2014
  publication-title: Nano Lett.
– volume: 27
  start-page: 1980
  year: 2015
  publication-title: Adv. Mater.
– volume: 102
  start-page: 208
  year: 2006
  publication-title: Mar. Chem.
– volume: 33
  start-page: 334
  year: 2017
  publication-title: Nano Energy
– volume: 98
  start-page: 213
  year: 2013
  publication-title: Mater. Lett.
– volume: 8
  year: 2018
  publication-title: Adv. Energy Mater.
– volume: 184
  start-page: 343
  year: 2016
  publication-title: Microchim. Acta
– volume: 4
  start-page: 4296
  year: 2016
  publication-title: J. Mater. Chem. A
– volume: 176
  start-page: 853
  year: 2015
  publication-title: Electrochim. Acta
– volume: 11
  start-page: 772
  year: 2018
  publication-title: Energy Environ. Sci.
– volume: 182
  start-page: 139
  year: 2016
  publication-title: Mater. Chem. Phys.
– volume: 44
  start-page: 362
  year: 2015
  publication-title: Chem. Soc. Rev.
– volume: 333
  start-page: 19
  year: 2009
  publication-title: Colloids Surf., A
– volume: 120
  start-page: 2079
  year: 2016
  publication-title: J. Phys. Chem. C
– volume: 7
  start-page: 3590
  year: 2015
  publication-title: ACS Appl. Mater. Interfaces
– volume: 1
  start-page: 2868
  year: 2013
  publication-title: J. Mater. Chem. B
– volume: 28
  start-page: 539
  year: 2016
  publication-title: Adv. Mater.
– volume: 7
  start-page: 3574
  year: 2014
  publication-title: Energy Environ. Sci.
– volume: 5
  year: 2015
  publication-title: RSC Adv.
– volume: 255
  start-page: 4650
  year: 2009
  publication-title: Appl. Surf. Sci.
– volume: 6
  year: 2018
  publication-title: J. Mater. Chem. A
– volume: 105
  start-page: 143
  year: 2014
  publication-title: J. Anal. Appl. Pyrolysis
– volume: 101
  start-page: 238
  year: 2013
  publication-title: J. Anal. Appl. Pyrolysis
– volume: 5
  start-page: 2411
  year: 2017
  publication-title: J. Mater. Chem. A
– volume: 9
  start-page: 4445
  year: 2017
  publication-title: Nanoscale
– volume: 306
  start-page: 666
  year: 2004
  publication-title: Science
– volume: 29
  year: 2017
  publication-title: Adv. Mater.
– volume: 119
  start-page: 599
  year: 2018
  publication-title: Chem. Rev.
– volume: 27
  start-page: 4113
  year: 2015
  publication-title: Adv. Mater.
– volume: 10
  start-page: 4410
  year: 2016
  publication-title: ACS Nano
– volume: 3
  start-page: 1419
  year: 2015
  publication-title: ACS Sustainable Chem. Eng.
– volume: 26
  start-page: 111
  year: 2016
  publication-title: Adv. Funct. Mater.
– volume: 317
  start-page: 493
  year: 2017
  publication-title: Chem. Eng. J.
– volume: 3
  start-page: 5976
  year: 2015
  publication-title: J. Mater. Chem. C
– volume: 15
  year: 2019
  publication-title: Small
– volume: 45
  start-page: 517
  year: 2016
  publication-title: Chem. Soc. Rev.
– volume: 50
  start-page: 6799
  year: 2011
  publication-title: Angew. Chem., Int. Ed.
– volume: 2
  start-page: 431
  year: 2012
  publication-title: Adv. Energy Mater.
– volume: 54
  start-page: 4463
  year: 2015
  publication-title: Angew. Chem., Int. Ed.
– volume: 9
  start-page: 1237
  year: 2017
  publication-title: Nanoscale
– volume: 9
  year: 2017
  publication-title: ACS Appl. Mater. Interfaces
– volume: 4
  year: 2014
  publication-title: RSC Adv.
– volume: 124
  start-page: 9730
  year: 2012
  publication-title: Angew. Chem., Int. Ed.
– volume: 31
  start-page: 224
  year: 2013
  publication-title: J. Electroceram.
– volume: 19
  start-page: 165
  year: 2016
  publication-title: Nano Energy
– volume: 131
  start-page: 5026
  year: 2009
  publication-title: J. Am. Chem. Soc.
– volume: 91
  start-page: 1
  year: 2010
  publication-title: Fuel Process. Technol.
– volume: 5
  year: 2015
  publication-title: Adv. Energy Mater.
– volume: 6
  start-page: 5381
  year: 2018
  publication-title: ACS Sustainable Chem. Eng.
– volume: 38
  start-page: 3401
  year: 2009
  publication-title: Chem. Soc. Rev.
– volume: 23
  start-page: 1989
  year: 2011
  publication-title: J. Environ. Sci.
– volume: 53
  start-page: 5262
  year: 2014
  publication-title: Angew. Chem., Int. Ed.
– volume: 31
  start-page: 1023
  year: 2019
  publication-title: Chem. Mater.
– volume: 7
  year: 2015
  publication-title: ACS Appl. Mater. Interfaces
– volume: 4
  year: 2017
  publication-title: Adv. Sci.
– volume: 289
  start-page: 18
  year: 2015
  publication-title: J. Hazard. Mater.
– volume: 6
  year: 2014
  publication-title: ACS Appl. Mater. Interfaces
– volume: 8
  start-page: 814
  year: 2008
  publication-title: Curr. Appl. Phys.
– volume: 7
  start-page: 3684
  year: 2015
  publication-title: ACS Appl. Mater. Interfaces
– volume: 30
  start-page: 121
  year: 2019
  publication-title: J. Energy Chem.
– volume: 27
  year: 2017
  publication-title: Adv. Funct. Mater.
– volume: 92
  start-page: 394
  year: 2011
  publication-title: Fuel Process. Technol.
– volume: 12
  start-page: 1029
  year: 2010
  publication-title: Solid State Sci.
– volume: 255
  start-page: 8443
  year: 2009
  publication-title: Appl. Surf. Sci.
– volume: 8
  start-page: 5773
  year: 2020
  publication-title: J. Mater. Chem. A
– volume: 46
  start-page: 3256
  year: 2010
  publication-title: Chem. Commun.
– volume: 43
  start-page: 5257
  year: 2014
  publication-title: Chem. Soc. Rev.
– volume: 121
  start-page: 216
  year: 2014
  publication-title: Fuel
– volume: 80
  start-page: 1657
  year: 2015
  publication-title: ChemPlusChem
– volume: 49
  start-page: 96
  year: 2016
  publication-title: Acc. Chem. Res.
– volume: 52
  start-page: 2925
  year: 2013
  publication-title: Angew. Chem., Int. Ed.
– volume: 210
  start-page: 26
  year: 2012
  publication-title: Chem. Eng. J.
– volume: 57
  start-page: 7085
  year: 2018
  publication-title: Angew. Chem., Int. Ed.
– volume: 5
  start-page: 52
  year: 2017
  publication-title: EnergyTechnol.
– volume: 4
  start-page: 844
  year: 2016
  publication-title: ACS Sustainable Chem. Eng.
– volume: 4
  start-page: 1637
  year: 2016
  publication-title: J. Mater. Chem. A
– volume: 5
  year: 2018
  publication-title: Mater. Res. Express
– volume: 19
  start-page: 201
  year: 2018
  publication-title: Nano Today
– volume: 105
  start-page: 454
  year: 2016
  publication-title: Carbon
– volume: 116
  start-page: 9305
  year: 2016
  publication-title: Chem. Rev.
– volume: 81
  start-page: 919
  year: 2010
  publication-title: Carbohydr. Polym.
– volume: 28
  start-page: 4306
  year: 2016
  publication-title: Adv. Mater.
– volume: 12
  start-page: 33
  year: 2018
  publication-title: Nano Res.
– volume: 6
  start-page: 177
  year: 2017
  publication-title: ACS Sustainable Chem. Eng.
– volume: 7
  start-page: 379
  year: 2014
  publication-title: Energy Environ. Sci.
– volume: 2
  start-page: 239
  year: 2014
  publication-title: J. Environ. Chem. Eng.
– volume: 1
  start-page: 261
  year: 2015
  publication-title: ACS Cent. Sci.
– volume: 190
  start-page: 848
  year: 2011
  publication-title: J. Hazard. Mater.
– volume: 50
  start-page: 2155
  year: 2012
  publication-title: Carbon
– volume: 7
  start-page: 4095
  year: 2014
  publication-title: Energy Environ. Sci.
– volume: 113
  start-page: 5782
  year: 2013
  publication-title: Chem. Rev.
– volume: 3
  start-page: 6534
  year: 2015
  publication-title: J. Mater. Chem. A
– volume: 35
  start-page: 835
  year: 2011
  publication-title: Int. J. Energy Res.
– volume: 318
  start-page: 162
  year: 1985
  publication-title: Nature
– volume: 46
  start-page: 7176
  year: 2017
  publication-title: Chem. Soc. Rev.
– volume: 13
  start-page: 3385
  year: 2013
  publication-title: Nano Lett.
– volume: 12
  start-page: 268
  year: 2021
  publication-title: Nat. Commun.
– volume: 124
  start-page: 429
  year: 2017
  publication-title: Carbon
– volume: 110
  start-page: 138
  year: 2016
  publication-title: Carbon
– volume: 14
  start-page: 595
  year: 2020
  publication-title: ACS Nano
– volume: 451
  year: 2020
  publication-title: J. Power Sources
– volume: 31
  year: 2018
  publication-title: Adv. Mater.
– volume: 19
  start-page: 1628
  year: 2017
  publication-title: Green Chem.
– volume: 1
  start-page: 658
  year: 2013
  publication-title: J. Environ. Chem. Eng.
– volume: 438
  start-page: 167
  year: 2017
  publication-title: Mol. Catal.
– volume: 24
  start-page: 1669
  year: 2017
  publication-title: Cellulose
– volume: 28
  start-page: 6213
  year: 2016
  publication-title: Adv. Mater.
– volume: 1
  start-page: 6638
  year: 2018
  publication-title: ACS Appl. Energy Mater.
– volume: 771
  start-page: 106
  year: 2016
  publication-title: J. Electroanal. Chem.
– volume: 1
  start-page: 534
  year: 2011
  publication-title: Adv. Energy Mater.
– volume: 17
  start-page: 2373
  year: 2015
  publication-title: Green Chem.
– year: 2016
– volume: 15
  start-page: 4195
  year: 2009
  publication-title: Chem. ‐ Eur. J.
– volume: 158
  start-page: 129
  year: 2010
  publication-title: Chem. Eng. J.
– volume: 31
  year: 2019
  publication-title: Adv. Mater.
– volume: 25
  start-page: 4746
  year: 2013
  publication-title: Adv. Mater.
– volume: 84
  start-page: 399
  year: 2015
  publication-title: Carbon
– volume: 168
  start-page: 722
  year: 2011
  publication-title: Chem. Eng. J.
– volume: 8
  start-page: 941
  year: 2015
  publication-title: Energy Environ. Sci.
– volume: 283
  start-page: 789
  year: 2016
  publication-title: Chem. Eng. J.
– volume: 9
  start-page: 2556
  year: 2015
  publication-title: ACS Nano
– volume: 11
  year: 2019
  publication-title: ACS Appl. Mater. Interfaces
– volume: 12
  start-page: 141
  year: 2015
  publication-title: Nano Energy
– volume: 122
  start-page: 189
  year: 2009
  publication-title: Microporous Mesoporous Mater.
– volume: 43
  start-page: 597
  year: 2004
  publication-title: Angew. Chem., Int. Ed.
– volume: 32
  year: 2020
  publication-title: Adv. Mater.
– volume: 101
  start-page: 29
  year: 2013
  publication-title: Mater. Lett.
– volume: 57
  start-page: 2377
  year: 2018
  publication-title: Angew. Chem., Int. Ed.
– volume: 65
  year: 2019
  publication-title: Nano Energy
– volume: 23
  start-page: 4828
  year: 2011
  publication-title: Adv. Mater.
– volume: 1
  start-page: 5269
  year: 2013
  publication-title: J. Mater. Chem. A
– volume: 22
  start-page: 617
  year: 2010
  publication-title: Adv. Mater.
– volume: 14
  start-page: 3219
  year: 2020
  publication-title: ACS Nano
– volume: 177
  start-page: 300
  year: 2010
  publication-title: J. Hazard. Mater.
– volume: 4
  start-page: 1593
  year: 2013
  publication-title: Nat. Commun.
– volume: 47
  start-page: 1880
  year: 2009
  publication-title: Carbon
– volume: 5
  start-page: 2204
  year: 2017
  publication-title: J. Mater. Chem. A
– volume: 10
  start-page: 1071
  year: 2010
  publication-title: Curr. Appl. Phys.
– volume: 19
  start-page: 1032
  year: 2009
  publication-title: Adv. Funct. Mater.
– volume: 12
  start-page: 2176
  year: 2018
  publication-title: ACS Nano
– volume: 2
  start-page: 184
  year: 2019
  publication-title: InfoMat
– volume: 8
  year: 2018
  publication-title: RSC Adv.
– volume: 57
  start-page: 1126
  year: 2016
  publication-title: Renewable Sustainable Energy Rev.
– volume: 75
  start-page: 5336
  year: 2003
  publication-title: Anal. Chem.
– volume: 2
  start-page: 1492
  year: 2014
  publication-title: ACS Sustainable Chem. Eng.
– volume: 39
  start-page: 103
  year: 2010
  publication-title: Chem. Soc. Rev.
– volume: 11
  start-page: 366
  year: 2015
  publication-title: Nano Energy
– volume: 25
  start-page: 5537
  year: 2015
  publication-title: Adv. Funct. Mater.
– volume: 2
  start-page: 756
  year: 2006
  publication-title: Small
– volume: 54
  start-page: 1759
  year: 2015
  publication-title: Angew. Chem., Int. Ed.
– volume: 10
  start-page: 2625
  year: 2014
  publication-title: Small
– volume: 32
  start-page: 382
  year: 2017
  publication-title: Nano Energy
– volume: 141
  start-page: 6583
  year: 2019
  publication-title: J. Am. Chem. Soc.
– volume: 18
  start-page: 2078
  year: 2016
  publication-title: Green Chem.
– volume: 12
  start-page: 3235
  year: 2016
  publication-title: Small
– volume: 55
  start-page: 334
  year: 2002
  publication-title: Mater. Lett.
– volume: 5
  start-page: 5714
  year: 2014
  publication-title: Nat. Commun.
– volume: 6
  year: 2016
  publication-title: Adv. Energy Mater.
– volume: 3
  start-page: 1127
  year: 2015
  publication-title: J. Mater. Chem. A
– volume: 51
  start-page: 1609
  year: 2018
  publication-title: Acc. Chem. Res.
– volume: 104
  start-page: 41
  year: 2018
  publication-title: Catal. Commun.
– volume: 24
  start-page: 2037
  year: 2012
  publication-title: Adv. Mater.
– volume: 8
  start-page: 355
  year: 2015
  publication-title: Nano Res.
– volume: 6
  start-page: 3331
  year: 2013
  publication-title: Energy Environ. Sci.
– volume: 50
  start-page: 886
  year: 2014
  publication-title: Sep. Sci. Technol.
– volume: 17
  start-page: 4888
  year: 2015
  publication-title: Green Chem.
– volume: 4
  start-page: 3750
  year: 2016
  publication-title: ACS Sustainable Chem. Eng.
– volume: 7
  start-page: 1337
  year: 2018
  publication-title: ACS Sustainable Chem. Eng.
– volume: 232
  start-page: 45
  year: 2000
  publication-title: J. Colloid Interface Sci.
– volume: 7
  start-page: 6889
  year: 2015
  publication-title: ACS Appl. Mater. Interfaces
– volume: 10
  year: 2017
  publication-title: Arabian J. Chem.
– volume: 24
  start-page: 81
  year: 2019
  publication-title: Nano Today
– volume: 466
  start-page: 470
  year: 2010
  publication-title: Nature
– volume: 2
  year: 2014
  publication-title: J. Mater. Chem. A
– volume: 38
  start-page: 1873
  year: 2000
  publication-title: Carbon
– volume: 47
  start-page: 8700
  year: 2013
  publication-title: Environ. Sci. Technol.
– volume: 5
  year: 2017
  publication-title: J. Mater. Chem. A
– volume: 9
  start-page: 1342
  year: 2013
  publication-title: Small
– volume: 2
  start-page: 4391
  year: 2014
  publication-title: J. Mater. Chem. A
– volume: 4
  start-page: 5585
  year: 2016
  publication-title: ACS Sustainable Chem. Eng.
– volume: 12
  start-page: 696
  year: 2010
  publication-title: Green Chem.
– volume: 10
  start-page: 506
  year: 2014
  publication-title: Small
– volume: 118
  start-page: 619
  year: 2012
  publication-title: Bioresour. Technol.
– volume: 22
  start-page: 2178
  year: 2010
  publication-title: Chem. Mater.
– volume: 2
  start-page: 1296
  year: 2012
  publication-title: ACS Catal.
– volume: 240
  start-page: 189
  year: 2019
  publication-title: Mater. Lett.
– volume: 80
  start-page: 616
  year: 2017
  publication-title: Mater. Sci. Eng., C
– volume: 5
  start-page: 4209
  year: 2012
  publication-title: Energies
– volume: 8
  year: 2018
  publication-title: AIP Adv.
– volume: 176
  start-page: 982
  year: 2015
  publication-title: Electrochim. Acta
– volume: 13
  year: 2019
  publication-title: ACS Nano
– volume: 160
  start-page: 244
  year: 2015
  publication-title: Electrochim. Acta
– volume: 354
  start-page: 56
  year: 1991
  publication-title: Nature
– volume: 7
  start-page: 2670
  year: 2014
  publication-title: Energy Environ. Sci.
– volume: 7
  start-page: 1708
  year: 2014
  publication-title: Energy Environ. Sci.
– volume: 52
  start-page: 8151
  year: 2013
  publication-title: Angew. Chem., Int. Ed.
– volume: 141
  start-page: 819
  year: 2007
  publication-title: J. Hazard. Mater.
– volume: 45
  start-page: 220
  year: 2018
  publication-title: Nano Energy
– year: 2020
  publication-title: Adv. Mater.
– volume: 554
  start-page: 224
  year: 2018
  publication-title: Nature
– volume: 30
  year: 2018
  publication-title: Adv. Mater.
– volume: 48
  year: 2014
  publication-title: Environ. Sci. Technol.
– volume: 52
  year: 2013
  publication-title: Ind. Eng. Chem. Res.
– volume: 80
  start-page: 1556
  year: 2015
  publication-title: ChemPlusChem
– volume: 7
  start-page: 1067
  year: 2017
  publication-title: RSC Adv.
– volume: 136
  start-page: 922
  year: 2006
  publication-title: J. Hazard. Mater.
– volume: 6
  start-page: 1244
  year: 2018
  publication-title: J. Mater. Chem. A
– volume: 14
  start-page: 107
  year: 2019
  publication-title: Nat. Nanotechnol.
– volume: 118
  start-page: 9281
  year: 2018
  publication-title: Chem. Rev.
– volume: 7
  year: 2015
  publication-title: Nanoscale
– volume: 34
  start-page: 5118
  year: 2009
  publication-title: Chem. Commun.
– volume: 17
  start-page: 813
  year: 2018
  publication-title: Rev. Environ. Sci. Bio/Technol.
– volume: 8
  year: 2019
  publication-title: Energy Technol.
– volume: 83
  start-page: 37
  year: 2002
  publication-title: Bioresour. Technol.
– volume: 10
  year: 2018
  publication-title: ACS Appl. Mater. Interfaces
– volume: 51
  start-page: 9297
  year: 2012
  publication-title: Angew. Chem., Int. Ed.
– ident: e_1_2_9_217_1
  doi: 10.1039/C8TA04080J
– ident: e_1_2_9_117_1
  doi: 10.1021/acsami.7b11873
– ident: e_1_2_9_116_1
  doi: 10.1021/acssuschemeng.5b00340
– ident: e_1_2_9_304_1
  doi: 10.1016/j.nantod.2018.02.008
– ident: e_1_2_9_110_1
  doi: 10.1021/ac202166x
– ident: e_1_2_9_318_1
  doi: 10.1021/acsami.7b01599
– ident: e_1_2_9_210_1
  doi: 10.1016/j.carbon.2016.04.036
– ident: e_1_2_9_204_1
  doi: 10.3390/ma7064431
– ident: e_1_2_9_109_1
  doi: 10.1016/j.biortech.2012.05.060
– ident: e_1_2_9_62_1
  doi: 10.1016/j.nantod.2018.12.004
– ident: e_1_2_9_258_1
  doi: 10.1016/j.nanoen.2019.104045
– ident: e_1_2_9_296_1
  doi: 10.1016/j.solidstatesciences.2010.02.038
– ident: e_1_2_9_67_1
  doi: 10.1021/acssuschemeng.8b02299
– ident: e_1_2_9_177_1
  doi: 10.1039/b917807d
– ident: e_1_2_9_283_1
  doi: 10.1016/j.jhazmat.2009.12.032
– ident: e_1_2_9_160_1
  doi: 10.1016/j.jpowsour.2017.06.086
– ident: e_1_2_9_12_1
  doi: 10.1021/cr300367d
– ident: e_1_2_9_61_1
  doi: 10.1039/C4EE02531H
– ident: e_1_2_9_71_1
  doi: 10.1007/s00604-016-2043-9
– ident: e_1_2_9_305_1
  doi: 10.1021/sc500161b
– ident: e_1_2_9_8_1
  doi: 10.1002/adma.201603486
– ident: e_1_2_9_92_1
  doi: 10.1016/j.matlet.2018.01.096
– ident: e_1_2_9_115_1
  doi: 10.1021/cm0707408
– ident: e_1_2_9_171_1
  doi: 10.1021/acsnano.7b08539
– ident: e_1_2_9_291_1
  doi: 10.1002/admt.201800593
– ident: e_1_2_9_234_1
  doi: 10.1016/j.electacta.2015.07.094
– ident: e_1_2_9_228_1
  doi: 10.1016/j.micromeso.2009.02.032
– ident: e_1_2_9_195_1
  doi: 10.1039/c3ta14604a
– ident: e_1_2_9_181_1
  doi: 10.1007/s11157-018-9476-z
– ident: e_1_2_9_308_1
  doi: 10.1002/anie.201209676
– ident: e_1_2_9_146_1
  doi: 10.1002/aenm.201100548
– ident: e_1_2_9_87_1
  doi: 10.1039/C7EE02616A
– ident: e_1_2_9_132_1
  doi: 10.1002/anie.201409290
– ident: e_1_2_9_244_1
  doi: 10.1039/C5GC02122G
– ident: e_1_2_9_125_1
  doi: 10.1016/j.carbpol.2010.04.006
– ident: e_1_2_9_174_1
  doi: 10.1016/j.fuproc.2009.08.021
– ident: e_1_2_9_212_1
  doi: 10.1016/j.apsusc.2009.05.150
– ident: e_1_2_9_36_1
  doi: 10.1039/C5NJ02080H
– ident: e_1_2_9_139_1
  doi: 10.1002/app.11089
– ident: e_1_2_9_96_1
  doi: 10.1039/C8RA06958A
– ident: e_1_2_9_79_1
  doi: 10.1016/j.cbpa.2013.05.004
– ident: e_1_2_9_168_1
  doi: 10.1016/j.nantod.2018.12.003
– ident: e_1_2_9_136_1
  doi: 10.1016/j.electacta.2015.02.019
– ident: e_1_2_9_207_1
  doi: 10.1016/S0167-577X(02)00388-9
– ident: e_1_2_9_3_1
  doi: 10.1038/354056a0
– ident: e_1_2_9_93_1
  doi: 10.1039/c3tb20418a
– ident: e_1_2_9_301_1
  doi: 10.1038/ncomms2586
– ident: e_1_2_9_148_1
  doi: 10.1039/C3EE43979H
– ident: e_1_2_9_102_1
  doi: 10.1021/acs.chemrev.6b00225
– ident: e_1_2_9_89_1
  doi: 10.1063/1.5038125
– volume: 114
  year: 2017
  ident: e_1_2_9_245_1
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– ident: e_1_2_9_80_1
  doi: 10.1002/aenm.201801007
– ident: e_1_2_9_20_1
  doi: 10.1021/jacs.7b01942
– ident: e_1_2_9_30_1
  doi: 10.1039/C5NR04603C
– ident: e_1_2_9_218_1
  doi: 10.1039/C4RA08055F
– ident: e_1_2_9_94_1
  doi: 10.1007/s10832-013-9831-y
– ident: e_1_2_9_133_1
  doi: 10.1016/j.carbon.2017.11.064
– ident: e_1_2_9_164_1
  doi: 10.1002/smll.200600047
– ident: e_1_2_9_199_1
  doi: 10.1021/acsami.8b01556
– ident: e_1_2_9_32_1
  doi: 10.1016/j.jechem.2018.01.015
– ident: e_1_2_9_273_1
  doi: 10.1002/inf2.12060
– ident: e_1_2_9_306_1
  doi: 10.1016/j.nanoen.2017.01.045
– ident: e_1_2_9_16_1
  doi: 10.1038/nature07719
– ident: e_1_2_9_72_1
  doi: 10.1016/j.matlet.2013.03.064
– ident: e_1_2_9_240_1
  doi: 10.1039/C5CS00670H
– ident: e_1_2_9_265_1
  doi: 10.1002/adhm.201601371
– ident: e_1_2_9_144_1
  doi: 10.1039/C3EE43111H
– ident: e_1_2_9_159_1
  doi: 10.1016/j.apsusc.2008.12.013
– ident: e_1_2_9_155_1
  doi: 10.1021/cm100139d
– ident: e_1_2_9_196_1
  doi: 10.1039/C7TA07579K
– ident: e_1_2_9_162_1
  doi: 10.1039/b807009a
– ident: e_1_2_9_281_1
  doi: 10.1016/S0008-6223(02)00406-2
– ident: e_1_2_9_223_1
  doi: 10.1016/S0008-6223(00)00027-0
– ident: e_1_2_9_288_1
  doi: 10.1016/j.cej.2012.08.052
– ident: e_1_2_9_88_1
  doi: 10.1021/acsnano.7b01987
– ident: e_1_2_9_86_1
  doi: 10.1016/S0008-6223(98)00333-9
– ident: e_1_2_9_236_1
  doi: 10.1039/C7TA03639F
– ident: e_1_2_9_37_1
  doi: 10.1021/acsami.8b14304
– ident: e_1_2_9_261_1
  doi: 10.1039/C6TA08169J
– ident: e_1_2_9_229_1
  doi: 10.1080/01496395.2014.966204
– ident: e_1_2_9_39_1
  doi: 10.1021/nl401729r
– ident: e_1_2_9_222_1
  doi: 10.1016/j.matchemphys.2016.07.015
– ident: e_1_2_9_43_1
  doi: 10.1039/b907612c
– ident: e_1_2_9_104_1
  doi: 10.1021/acssuschemeng.6b00388
– ident: e_1_2_9_2_1
  doi: 10.1038/318162a0
– ident: e_1_2_9_147_1
  doi: 10.1021/acssuschemeng.5b00904
– ident: e_1_2_9_17_1
  doi: 10.1038/358220a0
– ident: e_1_2_9_108_1
  doi: 10.1039/B819318P
– ident: e_1_2_9_243_1
  doi: 10.1021/acsami.8b13281
– ident: e_1_2_9_29_1
  doi: 10.1016/j.carbon.2010.10.025
– ident: e_1_2_9_255_1
  doi: 10.1016/j.nanoen.2014.11.008
– ident: e_1_2_9_186_1
  doi: 10.1016/j.nanoen.2014.12.014
– ident: e_1_2_9_98_1
  doi: 10.1016/S0960-8524(01)00118-3
– ident: e_1_2_9_158_1
  doi: 10.1039/c3ee42366b
– ident: e_1_2_9_309_1
  doi: 10.1002/anie.201303927
– ident: e_1_2_9_322_1
  doi: 10.1016/j.nantod.2014.09.004
– ident: e_1_2_9_77_1
  doi: 10.1039/C4EE00602J
– ident: e_1_2_9_76_1
  doi: 10.1021/acs.jpcc.5b11280
– ident: e_1_2_9_5_1
  doi: 10.1039/b922733d
– ident: e_1_2_9_297_1
  doi: 10.1016/j.mcat.2017.05.031
– ident: e_1_2_9_241_1
  doi: 10.1002/smll.201202943
– ident: e_1_2_9_100_1
  doi: 10.1038/nature25476
– ident: e_1_2_9_206_1
  doi: 10.1016/j.cap.2009.12.044
– ident: e_1_2_9_49_1
  doi: 10.1016/j.carbon.2017.08.072
– ident: e_1_2_9_323_1
  doi: 10.1039/C4CS00269E
– ident: e_1_2_9_31_1
  doi: 10.1039/C4TA06614F
– ident: e_1_2_9_124_1
  doi: 10.1016/j.nanoen.2017.12.042
– ident: e_1_2_9_73_1
  doi: 10.1021/ie402371n
– ident: e_1_2_9_150_1
  doi: 10.1002/adfm.201504004
– ident: e_1_2_9_268_1
  doi: 10.1002/celc.201500351
– ident: e_1_2_9_10_1
  doi: 10.1002/adma.201801072
– ident: e_1_2_9_18_1
  doi: 10.1038/ncomms6714
– ident: e_1_2_9_60_1
  doi: 10.1002/aenm.201401524
– ident: e_1_2_9_175_1
  doi: 10.3390/en5104209
– ident: e_1_2_9_23_1
  doi: 10.1021/acs.chemrev.8b00325
– ident: e_1_2_9_183_1
  doi: 10.1016/j.fuproc.2010.09.033
– ident: e_1_2_9_9_1
  doi: 10.1021/acs.chemrev.8b00340
– ident: e_1_2_9_295_1
  doi: 10.1002/cssc.201000431
– ident: e_1_2_9_69_1
  doi: 10.1039/C8TA02838A
– ident: e_1_2_9_280_1
  doi: 10.1016/j.dyepig.2007.03.001
– ident: e_1_2_9_197_1
  doi: 10.1039/b822668g
– ident: e_1_2_9_274_1
  doi: 10.1016/j.jece.2013.09.017
– ident: e_1_2_9_154_1
  doi: 10.1038/s41467-020-20628-9
– ident: e_1_2_9_317_1
  doi: 10.1002/adfm.201501524
– ident: e_1_2_9_226_1
  doi: 10.1016/j.jhazmat.2008.09.064
– ident: e_1_2_9_257_1
  doi: 10.1021/nn506394r
– ident: e_1_2_9_52_1
  doi: 10.1021/acssuschemeng.6b01408
– ident: e_1_2_9_129_1
  doi: 10.1016/j.micromeso.2017.03.019
– ident: e_1_2_9_248_1
  doi: 10.1002/ange.201205292
– ident: e_1_2_9_275_1
  doi: 10.1016/j.jhazmat.2008.12.114
– ident: e_1_2_9_78_1
  doi: 10.1016/j.cej.2015.08.014
– ident: e_1_2_9_91_1
  doi: 10.1039/C4GC02185A
– ident: e_1_2_9_239_1
  doi: 10.1016/j.jpowsour.2020.227794
– ident: e_1_2_9_313_1
  doi: 10.1002/adma.201704740
– ident: e_1_2_9_58_1
  doi: 10.1039/C7TA05002J
– ident: e_1_2_9_269_1
  doi: 10.1021/acsami.5b04132
– ident: e_1_2_9_34_1
  doi: 10.1016/j.jcis.2014.02.006
– ident: e_1_2_9_105_1
  doi: 10.1039/C7EE03208K
– ident: e_1_2_9_192_1
  doi: 10.1039/C5CP06970J
– ident: e_1_2_9_208_1
  doi: 10.1016/j.colsurfa.2008.09.021
– ident: e_1_2_9_316_1
  doi: 10.1021/acsami.5b00628
– ident: e_1_2_9_64_1
  doi: 10.1021/nn400566d
– ident: e_1_2_9_201_1
  doi: 10.1039/C7SE00099E
– ident: e_1_2_9_289_1
  doi: 10.1021/es4012977
– ident: e_1_2_9_47_1
  doi: 10.1002/anie.200352386
– ident: e_1_2_9_233_1
  doi: 10.1016/j.biortech.2015.07.100
– ident: e_1_2_9_153_1
  doi: 10.1016/j.fuel.2013.12.026
– ident: e_1_2_9_112_1
  doi: 10.1016/j.marchem.2006.04.003
– ident: e_1_2_9_221_1
  doi: 10.1039/C4EE02986K
– ident: e_1_2_9_15_1
  doi: 10.1038/natrevmats.2017.46
– ident: e_1_2_9_180_1
  doi: 10.1016/j.jaap.2015.12.013
– ident: e_1_2_9_286_1
  doi: 10.1016/j.cherd.2014.03.019
– ident: e_1_2_9_131_1
  doi: 10.1016/j.nanoen.2016.07.034
– ident: e_1_2_9_173_1
  doi: 10.1002/aenm.201801840
– ident: e_1_2_9_28_1
  doi: 10.1002/adma.201604257
– ident: e_1_2_9_128_1
  doi: 10.1039/C7TA05192A
– ident: e_1_2_9_211_1
  doi: 10.1016/j.fuproc.2007.11.030
– ident: e_1_2_9_165_1
  doi: 10.1016/j.jelechem.2016.03.047
– ident: e_1_2_9_166_1
  doi: 10.1016/j.cap.2007.04.038
– ident: e_1_2_9_225_1
  doi: 10.1021/am5081919
– ident: e_1_2_9_263_1
  doi: 10.1002/adfm.201604795
– ident: e_1_2_9_35_1
  doi: 10.1021/acsanm.8b00209
– ident: e_1_2_9_54_1
  doi: 10.1021/acs.accounts.5b00380
– ident: e_1_2_9_198_1
  doi: 10.1002/cctc.201500081
– ident: e_1_2_9_227_1
  doi: 10.1016/j.carbon.2009.03.035
– ident: e_1_2_9_314_1
  doi: 10.1007/s10570-017-1230-0
– ident: e_1_2_9_254_1
  doi: 10.1002/celc.201901829
– ident: e_1_2_9_179_1
  doi: 10.1016/j.matlet.2009.09.049
– ident: e_1_2_9_185_1
  doi: 10.1039/c3ta10650k
– ident: e_1_2_9_246_1
  doi: 10.1039/C6CS00639F
– ident: e_1_2_9_85_1
  doi: 10.1002/er.1804
– ident: e_1_2_9_152_1
  doi: 10.1016/j.electacta.2015.07.077
– ident: e_1_2_9_55_1
  doi: 10.1002/anie.201306129
– ident: e_1_2_9_191_1
  doi: 10.1002/smll.201301770
– ident: e_1_2_9_46_1
  doi: 10.1016/j.nanoen.2016.04.043
– ident: e_1_2_9_176_1
  doi: 10.1016/j.jaap.2013.02.003
– ident: e_1_2_9_282_1
  doi: 10.1016/j.cej.2011.01.067
– ident: e_1_2_9_184_1
  doi: 10.1002/adma.201500472
– ident: e_1_2_9_48_1
  doi: 10.1002/chem.200802097
– ident: e_1_2_9_130_1
  doi: 10.1039/C6TA01314G
– ident: e_1_2_9_267_1
  doi: 10.1016/j.snb.2016.09.130
– ident: e_1_2_9_259_1
  doi: 10.1002/smll.201600412
– ident: e_1_2_9_271_1
  doi: 10.1002/aelm.201700193
– ident: e_1_2_9_66_1
  doi: 10.1039/C7NR00130D
– ident: e_1_2_9_156_1
  doi: 10.1021/nl500859p
– ident: e_1_2_9_277_1
  doi: 10.1016/j.jhazmat.2009.07.138
– ident: e_1_2_9_252_1
  doi: 10.1002/aenm.201600659
– ident: e_1_2_9_299_1
  doi: 10.1002/cplu.201500261
– ident: e_1_2_9_19_1
  doi: 10.1002/adma.200902986
– ident: e_1_2_9_137_1
  doi: 10.1002/smll.201804966
– ident: e_1_2_9_53_1
  doi: 10.1021/acsami.8b03059
– ident: e_1_2_9_300_1
  doi: 10.1021/es5021839
– ident: e_1_2_9_247_1
  doi: 10.1016/j.matlet.2018.12.143
– ident: e_1_2_9_303_1
  doi: 10.1016/j.matlet.2013.02.019
– ident: e_1_2_9_151_1
  doi: 10.1021/acssuschemeng.8b05022
– ident: e_1_2_9_138_1
  doi: 10.1021/acs.chemmater.8b04572
– ident: e_1_2_9_235_1
  doi: 10.1021/ja809265m
– ident: e_1_2_9_260_1
  doi: 10.1002/aenm.201702381
– ident: e_1_2_9_238_1
  doi: 10.1002/smll.201400781
– ident: e_1_2_9_163_1
  doi: 10.1039/C4TA03096F
– ident: e_1_2_9_57_1
  doi: 10.1021/acsaem.8b01690
– ident: e_1_2_9_81_1
  doi: 10.1039/C5GC01054C
– ident: e_1_2_9_315_1
  doi: 10.1002/adma.202000596
– ident: e_1_2_9_84_1
  doi: 10.1016/j.rser.2015.12.185
– ident: e_1_2_9_253_1
  doi: 10.1021/acsami.8b13160
– ident: e_1_2_9_41_1
  doi: 10.1021/am5023682
– ident: e_1_2_9_114_1
  doi: 10.1016/j.biombioe.2011.04.032
– ident: e_1_2_9_242_1
  doi: 10.1039/C7NJ04662F
– ident: e_1_2_9_51_1
  doi: 10.1021/jacs.8b13675
– ident: e_1_2_9_232_1
  doi: 10.1016/j.cej.2009.12.016
– ident: e_1_2_9_172_1
  doi: 10.1021/acs.accounts.8b00084
– ident: e_1_2_9_224_1
  doi: 10.1039/C5RA11179J
– volume-title: Coal: A Human History
  year: 2016
  ident: e_1_2_9_1_1
– ident: e_1_2_9_149_1
  doi: 10.1039/C5TA09948J
– ident: e_1_2_9_68_1
  doi: 10.1039/C6TA05406D
– ident: e_1_2_9_249_1
  doi: 10.1021/cr500062v
– ident: e_1_2_9_126_1
  doi: 10.1002/cplu.201500293
– ident: e_1_2_9_167_1
  doi: 10.1002/anie.201102070
– ident: e_1_2_9_310_1
  doi: 10.1016/j.msec.2017.07.007
– ident: e_1_2_9_145_1
  doi: 10.1039/C4GC02032D
– ident: e_1_2_9_65_1
  doi: 10.1002/anie.201802753
– ident: e_1_2_9_214_1
  doi: 10.1039/C6TA08742F
– ident: e_1_2_9_82_1
  doi: 10.1016/j.fuel.2006.12.013
– ident: e_1_2_9_140_1
  doi: 10.1002/adfm.201605657
– ident: e_1_2_9_189_1
  doi: 10.1039/C4EE01075B
– ident: e_1_2_9_194_1
  doi: 10.1016/j.carbon.2014.12.001
– ident: e_1_2_9_203_1
  doi: 10.1016/j.jhazmat.2006.01.037
– ident: e_1_2_9_123_1
  doi: 10.1016/j.chempr.2017.12.028
– ident: e_1_2_9_142_1
  doi: 10.1021/acssuschemeng.8b00183
– ident: e_1_2_9_231_1
  doi: 10.1016/j.carbon.2016.08.092
– ident: e_1_2_9_230_1
  doi: 10.1016/j.electacta.2013.05.050
– ident: e_1_2_9_6_1
  doi: 10.1002/adma.201504225
– ident: e_1_2_9_262_1
  doi: 10.1002/aenm.201100191
– ident: e_1_2_9_21_1
  doi: 10.1002/adma.201505326
– ident: e_1_2_9_90_1
  doi: 10.1002/aenm.201700595
– ident: e_1_2_9_169_1
  doi: 10.1002/adma.201800062
– ident: e_1_2_9_290_1
  doi: 10.1002/ente.201901215
– ident: e_1_2_9_14_1
  doi: 10.1039/C5CS00258C
– ident: e_1_2_9_302_1
  doi: 10.1021/acssuschemeng.8b03415
– ident: e_1_2_9_11_1
  doi: 10.1021/cs5008393
– ident: e_1_2_9_74_1
  doi: 10.1021/acscentsci.5b00191
– ident: e_1_2_9_106_1
  doi: 10.1039/C6GC03555H
– ident: e_1_2_9_188_1
  doi: 10.1002/adma.201100984
– ident: e_1_2_9_220_1
  doi: 10.1039/C5TA09043A
– ident: e_1_2_9_44_1
  doi: 10.1021/acsnano.5b05575
– ident: e_1_2_9_4_1
  doi: 10.1126/science.1102896
– ident: e_1_2_9_307_1
  doi: 10.1002/adfm.201900162
– ident: e_1_2_9_13_1
  doi: 10.1038/s41565-018-0325-6
– ident: e_1_2_9_45_1
  doi: 10.1002/adma.201706267
– ident: e_1_2_9_143_1
  doi: 10.1002/smll.201303831
– ident: e_1_2_9_63_1
  doi: 10.1021/acsami.9b04060
– ident: e_1_2_9_120_1
  doi: 10.1021/acsnano.9b07063
– ident: e_1_2_9_272_1
  doi: 10.1021/acsnano.9b08638
– ident: e_1_2_9_70_1
  doi: 10.1002/aenm.201600377
– ident: e_1_2_9_134_1
  doi: 10.1021/acssuschemeng.7b02164
– ident: e_1_2_9_42_1
  doi: 10.1002/adma.201204949
– ident: e_1_2_9_237_1
  doi: 10.1080/21663831.2016.1250834
– ident: e_1_2_9_103_1
  doi: 10.1021/cr900354u
– ident: e_1_2_9_119_1
  doi: 10.1002/advs.201700107
– ident: e_1_2_9_157_1
  doi: 10.1021/acsnano.9b05978
– ident: e_1_2_9_25_1
  doi: 10.1002/adma.201200164
– ident: e_1_2_9_107_1
  doi: 10.1088/2053-1591/aaba00
– ident: e_1_2_9_22_1
  doi: 10.1038/nature09211
– ident: e_1_2_9_256_1
  doi: 10.1039/C4CS00015C
– ident: e_1_2_9_292_1
  doi: 10.1002/adma.201900498
– ident: e_1_2_9_202_1
  doi: 10.1021/acsami.5b02697
– ident: e_1_2_9_121_1
  doi: 10.1016/j.nanoen.2015.10.038
– ident: e_1_2_9_320_1
  doi: 10.1039/C5TC00813A
– ident: e_1_2_9_311_1
  doi: 10.1002/anie.201712453
– ident: e_1_2_9_141_1
  doi: 10.1007/s12274-018-2172-z
– ident: e_1_2_9_50_1
  doi: 10.1002/anie.201204381
– ident: e_1_2_9_312_1
  doi: 10.1002/anie.201406836
– ident: e_1_2_9_97_1
  doi: 10.1039/C6TA05872H
– ident: e_1_2_9_122_1
  doi: 10.1039/C6EE03716J
– ident: e_1_2_9_170_1
  doi: 10.1002/adma.201702211
– ident: e_1_2_9_264_1
  doi: 10.1039/C4TA05810K
– ident: e_1_2_9_83_1
  doi: 10.1016/j.jaap.2013.10.013
– ident: e_1_2_9_219_1
  doi: 10.1021/acsami.7b07746
– ident: e_1_2_9_319_1
  doi: 10.1021/acsnano.6b00043
– ident: e_1_2_9_298_1
  doi: 10.1016/j.catcom.2017.10.014
– ident: e_1_2_9_118_1
  doi: 10.1021/acsami.7b02985
– ident: e_1_2_9_276_1
  doi: 10.1039/C9TA11618D
– ident: e_1_2_9_95_1
  doi: 10.1021/acsnano.5b06022
– ident: e_1_2_9_99_1
  doi: 10.1016/j.mser.2017.04.001
– ident: e_1_2_9_113_1
  doi: 10.1016/j.pecs.2006.12.001
– ident: e_1_2_9_193_1
  doi: 10.1039/C4TA02154A
– ident: e_1_2_9_216_1
  doi: 10.1021/acssuschemeng.8b03763
– ident: e_1_2_9_190_1
  doi: 10.1021/cm2020077
– ident: e_1_2_9_285_1
  doi: 10.1016/j.jece.2013.12.019
– ident: e_1_2_9_33_1
  doi: 10.1016/j.nanoen.2016.12.046
– ident: e_1_2_9_187_1
  doi: 10.1002/jctb.4028
– ident: e_1_2_9_279_1
  doi: 10.1016/j.arabjc.2014.01.020
– ident: e_1_2_9_278_1
  doi: 10.1016/j.jhazmat.2006.07.049
– ident: e_1_2_9_294_1
  doi: 10.1016/j.renene.2015.08.010
– ident: e_1_2_9_56_1
  doi: 10.1021/acssuschemeng.8b04486
– ident: e_1_2_9_75_1
  doi: 10.1039/C6NR08139H
– ident: e_1_2_9_287_1
  doi: 10.1016/j.jhazmat.2011.04.021
– ident: e_1_2_9_182_1
  doi: 10.1016/j.jhazmat.2015.02.026
– ident: e_1_2_9_293_1
  doi: 10.1021/cs300103k
– volume: 5
  start-page: 52
  year: 2017
  ident: e_1_2_9_101_1
  publication-title: EnergyTechnol.
– ident: e_1_2_9_127_1
  doi: 10.1016/j.carbpol.2015.07.005
– ident: e_1_2_9_209_1
  doi: 10.1016/j.cej.2017.02.105
– ident: e_1_2_9_38_1
  doi: 10.1002/adma.201606895
– ident: e_1_2_9_251_1
  doi: 10.1002/aenm.201602898
– ident: e_1_2_9_24_1
  doi: 10.1002/smll.201604290
– ident: e_1_2_9_135_1
  doi: 10.1002/adma.201601572
– ident: e_1_2_9_215_1
  doi: 10.1021/acssuschemeng.8b01292
– ident: e_1_2_9_27_1
  doi: 10.1002/adfm.200801057
– ident: e_1_2_9_200_1
  doi: 10.1002/adma.201901186
– ident: e_1_2_9_178_1
  doi: 10.1021/jp805113y
– ident: e_1_2_9_213_1
  doi: 10.1006/jcis.2000.7171
– ident: e_1_2_9_266_1
  doi: 10.1021/acsami.7b13356
– ident: e_1_2_9_111_1
  doi: 10.1021/ac034415p
– ident: e_1_2_9_26_1
  doi: 10.1002/adma.201503221
– ident: e_1_2_9_284_1
  doi: 10.1016/S1001-0742(10)60515-3
– ident: e_1_2_9_59_1
  doi: 10.1039/C6RA25899A
– ident: e_1_2_9_205_1
  doi: 10.1021/am5075562
– ident: e_1_2_9_7_1
  doi: 10.1039/C7EE03031B
– ident: e_1_2_9_40_1
  doi: 10.1002/adma.200902812
– ident: e_1_2_9_250_1
  doi: 10.1002/adma.201405115
– ident: e_1_2_9_321_1
  doi: 10.1007/s12274-014-0644-3
– ident: e_1_2_9_161_1
  doi: 10.1016/j.carbon.2012.01.024
– ident: e_1_2_9_270_1
  doi: 10.1002/adma.201908214
SSID ssj0031247
Score 2.685498
SecondaryResourceType review_article
Snippet Biomass‐derived carbon materials (BCMs) are encountering the most flourishing moment because of their versatile properties and wide potential applications....
Biomass-derived carbon materials (BCMs) are encountering the most flourishing moment because of their versatile properties and wide potential applications....
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage e2008079
SubjectTerms Aerogels
applications
Biomass
biomass‐derived carbon materials
Carbon
Carbon fibers
carbonization
Chemical composition
Nanotechnology
preparation approach
structure–property relationship
Thermal degradation
Tubes
Title Biomass‐Derived Carbon Materials: Controllable Preparation and Versatile Applications
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fsmll.202008079
https://www.proquest.com/docview/2579307553
https://www.proquest.com/docview/2543446329
Volume 17
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1JSxxBFC6CJ3OISwyOGy0IOZV219KLNx0VEScEE4m3ppbXII49MosHT_4Ef6O_xPe6Z3pmhBCIx6p6RXctb6l6733F2J6yysR47uBhYVKuAFKeQqE4oGqJCih0VsEudn7E59fq4kbfzGTx1_gQzYUbcUYlr4nBjR0cTEFDB_ddch2Q_z5MKIOPArbIKrpq8KMkKq_qdRXUWZyAtyaojaE4mO8-r5WmpuaswVppnLMlZib_Wgea3O2PhnbfPb2DcfzIYJbZl7E5GhzV-2eFfYJylX2eASn8yv4c31IM0eD1-eUEqx7BB23Tt70y6JhhvX8Pg3Yd8d6lRKzgZx9qRHGkMaUP6E4OS9hyNOMuX2PXZ6e_2-d8_BwDd2i1ZTzxIUTOaEi1sFJk5MTzcRQVUvs0tFlEyVcgY3BGGYmCC3BsxrlEiEJbNBS_sYWyV8I6C6SIfOKUN9aidtQ-Mwpc4mUWg0lCr1uMT5Yjd2Oscnoyo5vXKMsipwnLmwlrse8N_UON0vFXyq3J6uZjbh3kKLYylHVayxbbbZqRz8h5YkrojYhGSTw647hbTFRL-Y8v5b86l5dNaeN_Om2yRUEhNFXs4BZbGPZHsI020NDuVPv8DZ1O_3c
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3JbtRAEC1F4QAc2BEDAYwE4uTE7sULEocwQzQhMxGCROTmdLvLEmLwoFlAcOIT-BV-hU_gS6jylgkSQkLKgaPdZbW7q2vprupXAA-VVSaifYcfFCbxFWLiJ1goH8m0hAUWOq1gF8f70fBQvTjSR2vwvb0LU-NDdAduLBmVvmYB5wPprRPU0Pn7CccOOIAfxGmTV7mHnz_Rrm3-dHdALH4kxM7zg_7QbwoL-Dn5H6kfuwDD3GhMtLBSpByOclEYFlK7JLBpyNeIUEaYG2UkiSBSjybPYyEKbUPGXyKtf47LiDNc_-BVh1glyVxW9VzISvoM9dXiRAZi6_T_nraDJ87tqotc2bidy_CjnZ06teXd5nJhN_MvvwFH_lfTdwUuNR63t12LyFVYw_IaXFzBYbwOb5695TSp-c-v3wb06iM6r29mdlp6Y7OoRfSJ16-T-id818x7OcMaNJ1oTOk8PnakJ2rZXskIuAGHZzKym7BeTku8BZ4UoYtz5Yy15ABolxqFeexkGqGJA6d74Lf8z_IGjp2rgkyyGkhaZMygrGNQDx539B9qIJI_Um60yylrFNI8I82ckjrXWvbgQddMqoTjQ6bE6ZJplFQqonH3QFRr5y89Za_Ho1H3dPtfProP54cH41E22t3fuwMXBGcMVamSG7C-mC3xLrl8C3uvEjIPjs96Wf4C7claxQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1ZaxRBEC5CBNEHb3E16giKT53M9DGH4EPcdUnMbghqMG9jHzUgrrNhD0Wf_An-FP-Kf8FfYvVc2QgiCHnwcaZr6OmurqO7qr8CeCiN1DHtO1hY6JRJxJSlWEiGZFqiAguVVbCL4_1451C-OFJHa_C9vQtT40N0B25eMip97QX82BVbJ6Ch8w8THzrw8fswyZq0yj38_Ik2bfOnuwPi8CPOh89f93dYU1eAWXI_Mpa4ECOrFaaKG8EzH41ycRQVQrk0NFnkbxGhiNFqqQVJIFKP2tqE80KZyMMvkdI_J-Mw88UiBi87wCpB1rIq50JGknmkrxYmMuRbp__3tBk88W1XPeTKxA0vw492curMlveby4XZtF9-w438n2bvClxq_O1guxaQq7CG5TW4uILCeB3ePHvnk6TmP79-G9Crj-iCvp6ZaRmM9aIW0CdBv07pn_ibZsHBDGvIdKLRpQv8oSM9Ucv2Sj7ADTg8k5HdhPVyWuItCASPXGKl08aQ-Vcu0xJt4kQWo05Cp3rAWvbntgFj9zVBJnkNI81zz6C8Y1APHnf0xzUMyR8pN9rVlDfqaJ6TXs5ImSslevCgayZF4qNDusTp0tNIIWVM4-4Br5bOX3rKX41Ho-7p9r98dB_OHwyG-Wh3f-8OXOA-XajKk9yA9cVsiXfJ31uYe5WIBfD2rFflL10HWXQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Biomass%E2%80%90Derived+Carbon+Materials%3A+Controllable+Preparation+and+Versatile+Applications&rft.jtitle=Small+%28Weinheim+an+der+Bergstrasse%2C+Germany%29&rft.au=Wang%2C+Yiliang&rft.au=Zhang%2C+Mingchao&rft.au=Shen%2C+Xinyi&rft.au=Wang%2C+Huimin&rft.date=2021-10-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=1613-6810&rft.eissn=1613-6829&rft.volume=17&rft.issue=40&rft_id=info:doi/10.1002%2Fsmll.202008079&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1613-6810&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1613-6810&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1613-6810&client=summon