Biomass‐Derived Carbon Materials: Controllable Preparation and Versatile Applications
Biomass‐derived carbon materials (BCMs) are encountering the most flourishing moment because of their versatile properties and wide potential applications. Numerous BCMs, including 0D carbon spheres and dots, 1D carbon fibers and tubes, 2D carbon sheets, 3D carbon aerogel, and hierarchical carbon ma...
Saved in:
Published in | Small (Weinheim an der Bergstrasse, Germany) Vol. 17; no. 40; pp. e2008079 - n/a |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Weinheim
Wiley Subscription Services, Inc
01.10.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Biomass‐derived carbon materials (BCMs) are encountering the most flourishing moment because of their versatile properties and wide potential applications. Numerous BCMs, including 0D carbon spheres and dots, 1D carbon fibers and tubes, 2D carbon sheets, 3D carbon aerogel, and hierarchical carbon materials have been prepared. At the same time, their structure–property relationship and applications have been widely studied. This paper aims to present a review on the recent advances in the controllable preparation and potential applications of BCMs, providing a reference for future work. First, the chemical compositions of typical biomass and their thermal degradation mechanisms are presented. Then, the typical preparation methods of BCMs are summarized and the relevant structural management rules are discussed. Besides, the strategies for improving the structural diversity of BCMs are also presented and discussed. Furthermore, the applications of BCMs in energy, sensing, environment, and other areas are reviewed. Finally, the remaining challenges and opportunities in the field of BCMs are discussed.
Biomass‐derived carbon materials (BCMs) have wide potential applications due to their diverse structures and properties. In this paper, the recent progress in the preparation and applications of BCMs are reviewed. The key processing factors influencing the obtained BCMs, such as, chemical compositions of biomass, carbonization approaches, pretreatment, and activation, are discussed. Finally, the remaining challenges and future directions are discussed. |
---|---|
AbstractList | Biomass‐derived carbon materials (BCMs) are encountering the most flourishing moment because of their versatile properties and wide potential applications. Numerous BCMs, including 0D carbon spheres and dots, 1D carbon fibers and tubes, 2D carbon sheets, 3D carbon aerogel, and hierarchical carbon materials have been prepared. At the same time, their structure–property relationship and applications have been widely studied. This paper aims to present a review on the recent advances in the controllable preparation and potential applications of BCMs, providing a reference for future work. First, the chemical compositions of typical biomass and their thermal degradation mechanisms are presented. Then, the typical preparation methods of BCMs are summarized and the relevant structural management rules are discussed. Besides, the strategies for improving the structural diversity of BCMs are also presented and discussed. Furthermore, the applications of BCMs in energy, sensing, environment, and other areas are reviewed. Finally, the remaining challenges and opportunities in the field of BCMs are discussed.
Biomass‐derived carbon materials (BCMs) have wide potential applications due to their diverse structures and properties. In this paper, the recent progress in the preparation and applications of BCMs are reviewed. The key processing factors influencing the obtained BCMs, such as, chemical compositions of biomass, carbonization approaches, pretreatment, and activation, are discussed. Finally, the remaining challenges and future directions are discussed. Biomass-derived carbon materials (BCMs) are encountering the most flourishing moment because of their versatile properties and wide potential applications. Numerous BCMs, including 0D carbon spheres and dots, 1D carbon fibers and tubes, 2D carbon sheets, 3D carbon aerogel, and hierarchical carbon materials have been prepared. At the same time, their structure-property relationship and applications have been widely studied. This paper aims to present a review on the recent advances in the controllable preparation and potential applications of BCMs, providing a reference for future work. First, the chemical compositions of typical biomass and their thermal degradation mechanisms are presented. Then, the typical preparation methods of BCMs are summarized and the relevant structural management rules are discussed. Besides, the strategies for improving the structural diversity of BCMs are also presented and discussed. Furthermore, the applications of BCMs in energy, sensing, environment, and other areas are reviewed. Finally, the remaining challenges and opportunities in the field of BCMs are discussed.Biomass-derived carbon materials (BCMs) are encountering the most flourishing moment because of their versatile properties and wide potential applications. Numerous BCMs, including 0D carbon spheres and dots, 1D carbon fibers and tubes, 2D carbon sheets, 3D carbon aerogel, and hierarchical carbon materials have been prepared. At the same time, their structure-property relationship and applications have been widely studied. This paper aims to present a review on the recent advances in the controllable preparation and potential applications of BCMs, providing a reference for future work. First, the chemical compositions of typical biomass and their thermal degradation mechanisms are presented. Then, the typical preparation methods of BCMs are summarized and the relevant structural management rules are discussed. Besides, the strategies for improving the structural diversity of BCMs are also presented and discussed. Furthermore, the applications of BCMs in energy, sensing, environment, and other areas are reviewed. Finally, the remaining challenges and opportunities in the field of BCMs are discussed. Biomass‐derived carbon materials (BCMs) are encountering the most flourishing moment because of their versatile properties and wide potential applications. Numerous BCMs, including 0D carbon spheres and dots, 1D carbon fibers and tubes, 2D carbon sheets, 3D carbon aerogel, and hierarchical carbon materials have been prepared. At the same time, their structure–property relationship and applications have been widely studied. This paper aims to present a review on the recent advances in the controllable preparation and potential applications of BCMs, providing a reference for future work. First, the chemical compositions of typical biomass and their thermal degradation mechanisms are presented. Then, the typical preparation methods of BCMs are summarized and the relevant structural management rules are discussed. Besides, the strategies for improving the structural diversity of BCMs are also presented and discussed. Furthermore, the applications of BCMs in energy, sensing, environment, and other areas are reviewed. Finally, the remaining challenges and opportunities in the field of BCMs are discussed. |
Author | Wang, Haomin Yin, Zhe Wang, Huimin Zhang, Mingchao Shen, Xinyi Zhang, Yingying Wang, Yiliang Xia, Kailun |
Author_xml | – sequence: 1 givenname: Yiliang orcidid: 0000-0003-2039-7132 surname: Wang fullname: Wang, Yiliang organization: Karlsruhe Institute of Technology – sequence: 2 givenname: Mingchao surname: Zhang fullname: Zhang, Mingchao organization: Tsinghua University – sequence: 3 givenname: Xinyi surname: Shen fullname: Shen, Xinyi organization: University of Cambridge – sequence: 4 givenname: Huimin surname: Wang fullname: Wang, Huimin organization: Tsinghua University – sequence: 5 givenname: Haomin surname: Wang fullname: Wang, Haomin organization: Tsinghua University – sequence: 6 givenname: Kailun surname: Xia fullname: Xia, Kailun organization: Tsinghua University – sequence: 7 givenname: Zhe surname: Yin fullname: Yin, Zhe organization: Tsinghua University – sequence: 8 givenname: Yingying orcidid: 0000-0002-8448-3059 surname: Zhang fullname: Zhang, Yingying email: yingyingzhang@tsinghua.edu.cn organization: Tsinghua University |
BookMark | eNqFkMlOwzAQhi1UJNrClXMkLlxSvGQztxJWKRVIbMfIcSaSqyQOdgrqjUfgGXkS3BYVCQlx8jLfNx7_IzRodQsIHRI8IRjTE9vU9YRiinGCY76DhiQizI8SygfbPcF7aGTtHGNGaBAP0fOZ0o2w9vP94xyMeoXSS4UpdOvNRO8uRG1PvVS3vdF1LYoavDsDnTCiV44Rbek9gbHu5CrTrquVXFfsPtqtnAsH3-sYPV5ePKTXfnZ7dZNOM18GJOJ-XGIgUoSQhLRglGMcR2VESMXCMsEFJwFjBFgEUgSCsTgC91MhZUxpFRaEszE63vTtjH5ZgO3zRlkJbtYW9MLmNAxYEESutUOPfqFzvTCtm85RMWc4DkPmqMmGkkZba6DKO6MaYZY5wfkq53yVc77N2QnBL0Gqfh1Cb4Sq_9b4Rntz0S3_eSS_n2XZj_sFci6VUg |
CitedBy_id | crossref_primary_10_1021_acs_energyfuels_4c01935 crossref_primary_10_1021_acs_langmuir_4c02292 crossref_primary_10_1021_acs_iecr_2c03058 crossref_primary_10_1007_s10311_023_01581_7 crossref_primary_10_1039_D4GC05497K crossref_primary_10_1002_smll_202400107 crossref_primary_10_1016_j_apcatb_2021_120912 crossref_primary_10_1016_j_fuel_2023_128039 crossref_primary_10_1002_batt_202400302 crossref_primary_10_1021_acs_chemmater_3c00271 crossref_primary_10_1016_j_nanoen_2024_110232 crossref_primary_10_1016_j_matpr_2023_05_120 crossref_primary_10_1039_D4SE01393J crossref_primary_10_1039_D4GC00993B crossref_primary_10_1016_j_est_2024_114692 crossref_primary_10_1039_D3TB01910A crossref_primary_10_3390_ma16145081 crossref_primary_10_1039_D1TA06874A crossref_primary_10_1016_j_est_2023_108338 crossref_primary_10_1002_ente_202400882 crossref_primary_10_3390_catal14090627 crossref_primary_10_1021_acsami_3c04414 crossref_primary_10_1007_s11705_022_2266_8 crossref_primary_10_1002_slct_202404611 crossref_primary_10_1002_cssc_202201543 crossref_primary_10_1002_slct_202401225 crossref_primary_10_1016_j_apenergy_2022_120489 crossref_primary_10_1039_D3GC00323J crossref_primary_10_1021_acs_energyfuels_4c03842 crossref_primary_10_1016_j_pmatsci_2024_101373 crossref_primary_10_1016_j_apsusc_2023_157010 crossref_primary_10_1016_j_est_2022_105590 crossref_primary_10_3389_fchem_2024_1402502 crossref_primary_10_3390_ma16196454 crossref_primary_10_1016_j_jwpe_2024_105808 crossref_primary_10_1021_acsaem_2c03427 crossref_primary_10_1021_acsnano_3c07300 crossref_primary_10_1016_j_seppur_2024_126752 crossref_primary_10_1039_D3TA00239J crossref_primary_10_3390_nano13091571 crossref_primary_10_1016_j_catcom_2023_106737 crossref_primary_10_1016_S1872_5805_22_60620_6 crossref_primary_10_1016_j_apsusc_2022_155448 crossref_primary_10_1039_D4IM00069B crossref_primary_10_1016_j_jallcom_2025_179043 crossref_primary_10_3390_nano12101720 crossref_primary_10_1007_s42823_023_00460_z crossref_primary_10_1002_app_56894 crossref_primary_10_1016_j_ijhydene_2024_08_225 crossref_primary_10_1039_D4GC05346J crossref_primary_10_1002_clen_202200284 crossref_primary_10_1016_j_cej_2023_141607 crossref_primary_10_1016_j_ces_2024_120107 crossref_primary_10_1021_acsaem_2c02801 crossref_primary_10_1021_acssuschemeng_4c03600 crossref_primary_10_1007_s10895_024_04131_8 crossref_primary_10_1002_jsfa_13323 crossref_primary_10_1016_j_est_2022_104910 crossref_primary_10_3390_molecules29215172 crossref_primary_10_1016_j_fuel_2025_134802 crossref_primary_10_1016_j_compositesa_2023_107964 crossref_primary_10_3390_nano11123235 crossref_primary_10_1039_D1QM01427G crossref_primary_10_1016_j_cej_2023_143736 crossref_primary_10_1002_slct_202404918 crossref_primary_10_1016_j_mtsust_2023_100635 crossref_primary_10_1016_j_ijbiomac_2025_140813 crossref_primary_10_1016_j_jcis_2022_09_035 crossref_primary_10_1016_j_polymer_2023_126471 crossref_primary_10_1016_j_cej_2024_152212 crossref_primary_10_1039_D4GC01771D crossref_primary_10_1021_acs_jpcc_3c04246 crossref_primary_10_1021_acs_est_4c12258 crossref_primary_10_3390_nano12193512 crossref_primary_10_1002_smll_202200010 crossref_primary_10_1016_j_fuproc_2022_107437 crossref_primary_10_1002_cey2_708 crossref_primary_10_1002_adfm_202400522 crossref_primary_10_1002_asia_202400712 crossref_primary_10_1021_acsnano_4c17883 crossref_primary_10_1007_s11356_024_33448_x crossref_primary_10_1016_j_cej_2024_151345 crossref_primary_10_1016_j_elecom_2023_107557 crossref_primary_10_1021_acs_langmuir_4c01562 crossref_primary_10_1016_j_jece_2024_113903 crossref_primary_10_1016_j_diamond_2023_109956 crossref_primary_10_1016_j_apsusc_2024_160852 crossref_primary_10_1016_j_renene_2024_121372 crossref_primary_10_1002_asia_202400394 crossref_primary_10_1016_j_cej_2024_150370 crossref_primary_10_3390_ma17102419 crossref_primary_10_1007_s40843_022_2397_y crossref_primary_10_1002_adfm_202204426 crossref_primary_10_1016_j_mser_2022_100672 crossref_primary_10_1016_j_saa_2022_120886 crossref_primary_10_1016_j_diamond_2022_109432 crossref_primary_10_1016_j_jclepro_2023_138711 crossref_primary_10_1016_j_jece_2022_108718 crossref_primary_10_1039_D3EY00265A crossref_primary_10_1039_D3MA00480E crossref_primary_10_1002_admt_202300666 crossref_primary_10_3390_catal13020449 crossref_primary_10_1007_s40843_023_2678_5 crossref_primary_10_1016_j_jclepro_2023_139361 crossref_primary_10_1002_adma_202414620 crossref_primary_10_1016_j_jcis_2023_08_041 crossref_primary_10_1021_acs_chemmater_2c01466 crossref_primary_10_1039_D2RA02079C crossref_primary_10_1016_j_electacta_2022_141770 crossref_primary_10_1039_D3RE00526G crossref_primary_10_1007_s10854_023_10418_6 crossref_primary_10_1016_j_carbon_2024_118804 crossref_primary_10_1002_smll_202306915 crossref_primary_10_1016_j_flatc_2022_100467 crossref_primary_10_1007_s13399_024_06101_3 crossref_primary_10_1007_s40242_024_3259_6 crossref_primary_10_1021_acsami_2c13000 crossref_primary_10_1016_j_coelec_2021_100860 crossref_primary_10_1039_D2NR06868K crossref_primary_10_1039_D4NA00362D crossref_primary_10_1002_cey2_207 crossref_primary_10_1016_j_carbon_2021_10_077 crossref_primary_10_1021_acssuschemeng_2c03702 crossref_primary_10_1007_s10934_022_01408_w crossref_primary_10_1016_j_jcis_2024_03_177 crossref_primary_10_1039_D4NJ03116D crossref_primary_10_1016_j_nanoen_2023_108491 crossref_primary_10_1039_D4GC02551B crossref_primary_10_1021_acsanm_3c04768 crossref_primary_10_1016_j_fuel_2023_128010 crossref_primary_10_1016_j_carbon_2022_02_016 crossref_primary_10_1039_D2MA00596D crossref_primary_10_1007_s42773_024_00396_1 crossref_primary_10_1016_j_cej_2025_159694 crossref_primary_10_1016_j_diamond_2022_109617 crossref_primary_10_1016_j_seppur_2024_130882 crossref_primary_10_1016_j_est_2024_114430 crossref_primary_10_3390_c9040100 crossref_primary_10_1016_j_est_2023_107466 crossref_primary_10_1007_s11696_022_02590_6 crossref_primary_10_3390_nano13081400 crossref_primary_10_1016_j_fuel_2025_134963 crossref_primary_10_1002_solr_202200270 crossref_primary_10_1016_j_jaap_2024_106731 crossref_primary_10_1007_s42250_024_01179_8 crossref_primary_10_1016_j_apsusc_2022_153571 crossref_primary_10_1016_j_cej_2023_142203 crossref_primary_10_1002_smll_202400179 crossref_primary_10_1039_D2EN00435F crossref_primary_10_1016_j_renene_2021_12_040 crossref_primary_10_1002_ente_202301436 crossref_primary_10_1016_j_cartre_2024_100335 crossref_primary_10_1016_j_ces_2023_119312 crossref_primary_10_1016_j_diamond_2023_110169 crossref_primary_10_1002_cctc_202201494 crossref_primary_10_1016_j_inoche_2023_110768 |
Cites_doi | 10.1039/C8TA04080J 10.1021/acsami.7b11873 10.1021/acssuschemeng.5b00340 10.1016/j.nantod.2018.02.008 10.1021/ac202166x 10.1021/acsami.7b01599 10.1016/j.carbon.2016.04.036 10.3390/ma7064431 10.1016/j.biortech.2012.05.060 10.1016/j.nantod.2018.12.004 10.1016/j.nanoen.2019.104045 10.1016/j.solidstatesciences.2010.02.038 10.1021/acssuschemeng.8b02299 10.1039/b917807d 10.1016/j.jhazmat.2009.12.032 10.1016/j.jpowsour.2017.06.086 10.1021/cr300367d 10.1039/C4EE02531H 10.1007/s00604-016-2043-9 10.1021/sc500161b 10.1002/adma.201603486 10.1016/j.matlet.2018.01.096 10.1021/cm0707408 10.1021/acsnano.7b08539 10.1002/admt.201800593 10.1016/j.electacta.2015.07.094 10.1016/j.micromeso.2009.02.032 10.1039/c3ta14604a 10.1007/s11157-018-9476-z 10.1002/anie.201209676 10.1002/aenm.201100548 10.1039/C7EE02616A 10.1002/anie.201409290 10.1039/C5GC02122G 10.1016/j.carbpol.2010.04.006 10.1016/j.fuproc.2009.08.021 10.1016/j.apsusc.2009.05.150 10.1039/C5NJ02080H 10.1002/app.11089 10.1039/C8RA06958A 10.1016/j.cbpa.2013.05.004 10.1016/j.nantod.2018.12.003 10.1016/j.electacta.2015.02.019 10.1016/S0167-577X(02)00388-9 10.1038/354056a0 10.1039/c3tb20418a 10.1038/ncomms2586 10.1039/C3EE43979H 10.1021/acs.chemrev.6b00225 10.1063/1.5038125 10.1002/aenm.201801007 10.1021/jacs.7b01942 10.1039/C5NR04603C 10.1039/C4RA08055F 10.1007/s10832-013-9831-y 10.1016/j.carbon.2017.11.064 10.1002/smll.200600047 10.1021/acsami.8b01556 10.1016/j.jechem.2018.01.015 10.1002/inf2.12060 10.1016/j.nanoen.2017.01.045 10.1038/nature07719 10.1016/j.matlet.2013.03.064 10.1039/C5CS00670H 10.1002/adhm.201601371 10.1039/C3EE43111H 10.1016/j.apsusc.2008.12.013 10.1021/cm100139d 10.1039/C7TA07579K 10.1039/b807009a 10.1016/S0008-6223(02)00406-2 10.1016/S0008-6223(00)00027-0 10.1016/j.cej.2012.08.052 10.1021/acsnano.7b01987 10.1016/S0008-6223(98)00333-9 10.1039/C7TA03639F 10.1021/acsami.8b14304 10.1039/C6TA08169J 10.1080/01496395.2014.966204 10.1021/nl401729r 10.1016/j.matchemphys.2016.07.015 10.1039/b907612c 10.1021/acssuschemeng.6b00388 10.1038/318162a0 10.1021/acssuschemeng.5b00904 10.1038/358220a0 10.1039/B819318P 10.1021/acsami.8b13281 10.1016/j.carbon.2010.10.025 10.1016/j.nanoen.2014.11.008 10.1016/j.nanoen.2014.12.014 10.1016/S0960-8524(01)00118-3 10.1039/c3ee42366b 10.1002/anie.201303927 10.1016/j.nantod.2014.09.004 10.1039/C4EE00602J 10.1021/acs.jpcc.5b11280 10.1039/b922733d 10.1016/j.mcat.2017.05.031 10.1002/smll.201202943 10.1038/nature25476 10.1016/j.cap.2009.12.044 10.1016/j.carbon.2017.08.072 10.1039/C4CS00269E 10.1039/C4TA06614F 10.1016/j.nanoen.2017.12.042 10.1021/ie402371n 10.1002/adfm.201504004 10.1002/celc.201500351 10.1002/adma.201801072 10.1038/ncomms6714 10.1002/aenm.201401524 10.3390/en5104209 10.1021/acs.chemrev.8b00325 10.1016/j.fuproc.2010.09.033 10.1021/acs.chemrev.8b00340 10.1002/cssc.201000431 10.1039/C8TA02838A 10.1016/j.dyepig.2007.03.001 10.1039/b822668g 10.1016/j.jece.2013.09.017 10.1038/s41467-020-20628-9 10.1002/adfm.201501524 10.1016/j.jhazmat.2008.09.064 10.1021/nn506394r 10.1021/acssuschemeng.6b01408 10.1016/j.micromeso.2017.03.019 10.1002/ange.201205292 10.1016/j.jhazmat.2008.12.114 10.1016/j.cej.2015.08.014 10.1039/C4GC02185A 10.1016/j.jpowsour.2020.227794 10.1002/adma.201704740 10.1039/C7TA05002J 10.1021/acsami.5b04132 10.1016/j.jcis.2014.02.006 10.1039/C7EE03208K 10.1039/C5CP06970J 10.1016/j.colsurfa.2008.09.021 10.1021/acsami.5b00628 10.1021/nn400566d 10.1039/C7SE00099E 10.1021/es4012977 10.1002/anie.200352386 10.1016/j.biortech.2015.07.100 10.1016/j.fuel.2013.12.026 10.1016/j.marchem.2006.04.003 10.1039/C4EE02986K 10.1038/natrevmats.2017.46 10.1016/j.jaap.2015.12.013 10.1016/j.cherd.2014.03.019 10.1016/j.nanoen.2016.07.034 10.1002/aenm.201801840 10.1002/adma.201604257 10.1039/C7TA05192A 10.1016/j.fuproc.2007.11.030 10.1016/j.jelechem.2016.03.047 10.1016/j.cap.2007.04.038 10.1021/am5081919 10.1002/adfm.201604795 10.1021/acsanm.8b00209 10.1021/acs.accounts.5b00380 10.1002/cctc.201500081 10.1016/j.carbon.2009.03.035 10.1007/s10570-017-1230-0 10.1002/celc.201901829 10.1016/j.matlet.2009.09.049 10.1039/c3ta10650k 10.1039/C6CS00639F 10.1002/er.1804 10.1016/j.electacta.2015.07.077 10.1002/anie.201306129 10.1002/smll.201301770 10.1016/j.nanoen.2016.04.043 10.1016/j.jaap.2013.02.003 10.1016/j.cej.2011.01.067 10.1002/adma.201500472 10.1002/chem.200802097 10.1039/C6TA01314G 10.1016/j.snb.2016.09.130 10.1002/smll.201600412 10.1002/aelm.201700193 10.1039/C7NR00130D 10.1021/nl500859p 10.1016/j.jhazmat.2009.07.138 10.1002/aenm.201600659 10.1002/cplu.201500261 10.1002/adma.200902986 10.1002/smll.201804966 10.1021/acsami.8b03059 10.1021/es5021839 10.1016/j.matlet.2018.12.143 10.1016/j.matlet.2013.02.019 10.1021/acssuschemeng.8b05022 10.1021/acs.chemmater.8b04572 10.1021/ja809265m 10.1002/aenm.201702381 10.1002/smll.201400781 10.1039/C4TA03096F 10.1021/acsaem.8b01690 10.1039/C5GC01054C 10.1002/adma.202000596 10.1016/j.rser.2015.12.185 10.1021/acsami.8b13160 10.1021/am5023682 10.1016/j.biombioe.2011.04.032 10.1039/C7NJ04662F 10.1021/jacs.8b13675 10.1016/j.cej.2009.12.016 10.1021/acs.accounts.8b00084 10.1039/C5RA11179J 10.1039/C5TA09948J 10.1039/C6TA05406D 10.1021/cr500062v 10.1002/cplu.201500293 10.1002/anie.201102070 10.1016/j.msec.2017.07.007 10.1039/C4GC02032D 10.1002/anie.201802753 10.1039/C6TA08742F 10.1016/j.fuel.2006.12.013 10.1002/adfm.201605657 10.1039/C4EE01075B 10.1016/j.carbon.2014.12.001 10.1016/j.jhazmat.2006.01.037 10.1016/j.chempr.2017.12.028 10.1021/acssuschemeng.8b00183 10.1016/j.carbon.2016.08.092 10.1016/j.electacta.2013.05.050 10.1002/adma.201504225 10.1002/aenm.201100191 10.1002/adma.201505326 10.1002/aenm.201700595 10.1002/adma.201800062 10.1002/ente.201901215 10.1039/C5CS00258C 10.1021/acssuschemeng.8b03415 10.1021/cs5008393 10.1021/acscentsci.5b00191 10.1039/C6GC03555H 10.1002/adma.201100984 10.1039/C5TA09043A 10.1021/acsnano.5b05575 10.1126/science.1102896 10.1002/adfm.201900162 10.1038/s41565-018-0325-6 10.1002/adma.201706267 10.1002/smll.201303831 10.1021/acsami.9b04060 10.1021/acsnano.9b07063 10.1021/acsnano.9b08638 10.1002/aenm.201600377 10.1021/acssuschemeng.7b02164 10.1002/adma.201204949 10.1080/21663831.2016.1250834 10.1021/cr900354u 10.1002/advs.201700107 10.1021/acsnano.9b05978 10.1002/adma.201200164 10.1088/2053-1591/aaba00 10.1038/nature09211 10.1039/C4CS00015C 10.1002/adma.201900498 10.1021/acsami.5b02697 10.1016/j.nanoen.2015.10.038 10.1039/C5TC00813A 10.1002/anie.201712453 10.1007/s12274-018-2172-z 10.1002/anie.201204381 10.1002/anie.201406836 10.1039/C6TA05872H 10.1039/C6EE03716J 10.1002/adma.201702211 10.1039/C4TA05810K 10.1016/j.jaap.2013.10.013 10.1021/acsami.7b07746 10.1021/acsnano.6b00043 10.1016/j.catcom.2017.10.014 10.1021/acsami.7b02985 10.1039/C9TA11618D 10.1021/acsnano.5b06022 10.1016/j.mser.2017.04.001 10.1016/j.pecs.2006.12.001 10.1039/C4TA02154A 10.1021/acssuschemeng.8b03763 10.1021/cm2020077 10.1016/j.jece.2013.12.019 10.1016/j.nanoen.2016.12.046 10.1002/jctb.4028 10.1016/j.arabjc.2014.01.020 10.1016/j.jhazmat.2006.07.049 10.1016/j.renene.2015.08.010 10.1021/acssuschemeng.8b04486 10.1039/C6NR08139H 10.1016/j.jhazmat.2011.04.021 10.1016/j.jhazmat.2015.02.026 10.1021/cs300103k 10.1016/j.carbpol.2015.07.005 10.1016/j.cej.2017.02.105 10.1002/adma.201606895 10.1002/aenm.201602898 10.1002/smll.201604290 10.1002/adma.201601572 10.1021/acssuschemeng.8b01292 10.1002/adfm.200801057 10.1002/adma.201901186 10.1021/jp805113y 10.1006/jcis.2000.7171 10.1021/acsami.7b13356 10.1021/ac034415p 10.1002/adma.201503221 10.1016/S1001-0742(10)60515-3 10.1039/C6RA25899A 10.1021/am5075562 10.1039/C7EE03031B 10.1002/adma.200902812 10.1002/adma.201405115 10.1007/s12274-014-0644-3 10.1016/j.carbon.2012.01.024 10.1002/adma.201908214 |
ContentType | Journal Article |
Copyright | 2021 Wiley‐VCH GmbH 2021 Wiley-VCH GmbH. |
Copyright_xml | – notice: 2021 Wiley‐VCH GmbH – notice: 2021 Wiley-VCH GmbH. |
DBID | AAYXX CITATION 7SR 7U5 8BQ 8FD JG9 L7M 7X8 |
DOI | 10.1002/smll.202008079 |
DatabaseName | CrossRef Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace MEDLINE - Academic |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace METADEX MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic CrossRef Materials Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1613-6829 |
EndPage | n/a |
ExternalDocumentID | 10_1002_smll_202008079 SMLL202008079 |
Genre | reviewArticle |
GrantInformation_xml | – fundername: National Natural Science Foundation of China funderid: 51672153; 21975141 – fundername: Ministry of Science and Technology of China funderid: 2016YFA0200103 |
GroupedDBID | --- 05W 0R~ 123 1L6 1OC 33P 3SF 3WU 4.4 50Y 52U 53G 5VS 66C 8-0 8-1 8UM A00 AAESR AAEVG AAHHS AAHQN AAIHA AAMNL AANLZ AAONW AAXRX AAYCA AAZKR ABCUV ABIJN ABJNI ABLJU ABRTZ ACAHQ ACCFJ ACCZN ACFBH ACGFS ACIWK ACPOU ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZVAB BFHJK BHBCM BMNLL BMXJE BNHUX BOGZA BRXPI CS3 DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBD EBS EMOBN F5P G-S GNP HBH HGLYW HHY HHZ HZ~ IX1 KQQ LATKE LAW LEEKS LITHE LOXES LUTES LYRES MEWTI MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM MY~ O66 O9- OIG P2P P2W P4E QRW R.K RIWAO RNS ROL RWI RX1 RYL SUPJJ SV3 V2E W99 WBKPD WFSAM WIH WIK WJL WOHZO WXSBR WYISQ WYJ XV2 Y6R ZZTAW ~S- 31~ AANHP AASGY AAYOK AAYXX ACBWZ ACRPL ACYXJ ADNMO AGHNM AGQPQ AGYGG ASPBG AVWKF AZFZN BDRZF CITATION EJD FEDTE GODZA HVGLF 7SR 7U5 8BQ 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY JG9 L7M 7X8 |
ID | FETCH-LOGICAL-c4169-7d0e1ca5e852b3290076d611f35d80b914331e36eca4a3376e002acc722f5b193 |
IEDL.DBID | DR2 |
ISSN | 1613-6810 1613-6829 |
IngestDate | Fri Jul 11 09:03:49 EDT 2025 Fri Jul 25 12:20:42 EDT 2025 Thu Apr 24 22:51:15 EDT 2025 Tue Jul 01 02:11:05 EDT 2025 Wed Jan 22 16:56:36 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 40 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4169-7d0e1ca5e852b3290076d611f35d80b914331e36eca4a3376e002acc722f5b193 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
ORCID | 0000-0002-8448-3059 0000-0003-2039-7132 |
PQID | 2579307553 |
PQPubID | 1046358 |
PageCount | 32 |
ParticipantIDs | proquest_miscellaneous_2543446329 proquest_journals_2579307553 crossref_primary_10_1002_smll_202008079 crossref_citationtrail_10_1002_smll_202008079 wiley_primary_10_1002_smll_202008079_SMLL202008079 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-10-01 |
PublicationDateYYYYMMDD | 2021-10-01 |
PublicationDate_xml | – month: 10 year: 2021 text: 2021-10-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Weinheim |
PublicationPlace_xml | – name: Weinheim |
PublicationTitle | Small (Weinheim an der Bergstrasse, Germany) |
PublicationYear | 2021 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2017; 80 2019; 11 2019; 13 2019; 15 2019; 14 2008; 34 2020; 14 2002; 86 2002; 83 2018; 217 2019; 24 2015; 133 2013; 52 1992; 358 2013; 113 2019; 29 2008; 112 2012; 24 2016; 49 2016; 45 2004; 43 2007; 19 2009; 63 2016; 19 2011; 1 2019; 31 2013; 88 2019; 30 2013; 105 2018; 104 2013; 101 2016; 10 2009; 172 2020; 32 2016; 18 2011; 4 2004; 306 2017; 139 2016; 12 2016; 4 2012; 50 2016; 6 2016; 3 1985; 318 2018; 119 2018; 118 1999; 37 2010; 177 2016; 28 2016; 27 2016; 26 2014; 422 2016; 25 2006; 102 2013; 25 2017; 46 2007; 141 2002; 55 2008; 8 2016; 105 2008; 77 2017; 114 2017; 117 2006; 136 2017; 239 2020; 8 2020; 7 2014; 5 2014; 4 2012; 210 2013; 17 2014; 2 2013; 13 2016; 118 2019; 65 2010; 158 2017; 33 2017; 32 2015; 176 2016; 110 2016; 116 2017; 361 2014; 9 2017; 124 2014; 7 2014; 50 2014; 6 2017; 246 2014; 53 2015; 1 2015; 160 2014; 92 2015; 5 2013; 47 2015; 3 2017; 27 2015; 289 2017; 24 2017; 29 2010; 81 2015; 9 2015; 8 2015; 7 2016; 120 2003; 75 2020 2017; 11 2017; 10 2017; 13 2013; 31 2018; 554 2008; 89 2016 2017; 19 2018; 51 2010; 91 2018; 57 2010; 12 2017; 317 2017; 438 2010; 10 2013; 4 1991; 354 2013; 1 2012; 124 2010; 466 2015; 80 2011; 190 2013; 7 2018; 45 2013; 6 2018; 42 2013; 9 2018; 7 2010; 22 2018; 6 2018; 8 2018; 5 2018; 4 2018; 1 2015; 84 2020; 451 2010; 110 2009; 122 2014; 14 2018; 30 2014; 121 2009; 19 2018; 31 2003; 41 2009; 15 2014; 10 2019; 8 2019; 2 2010; 39 2015; 54 2014; 48 2009; 333 2000; 232 2009; 457 2016; 283 2014; 43 2018; 19 2018; 17 2010; 46 2011; 92 2015; 197 2007; 86 2018; 12 2018; 11 2018; 10 2012; 118 2017; 5 2017; 6 2017; 7 2009; 47 2015; 39 2017; 1 2017; 2 2017; 3 2017; 4 2018; 128 2016; 182 2019; 240 2017; 9 2016; 184 2012; 51 2011; 168 2013; 98 2015; 44 2009; 165 2016; 86 2009; 167 2011; 23 2015; 12 2015; 17 2015; 11 2009; 255 2011; 35 2008; 10 2006; 2 2009; 131 2019; 141 2014; 114 2016; 57 2009; 34 2014; 105 2015; 25 2012; 2 2015; 27 2021; 12 2000; 38 2011; 50 2016; 771 2011; 49 2012; 5 2009; 38 2012; 84 e_1_2_9_79_1 e_1_2_9_254_1 e_1_2_9_94_1 e_1_2_9_10_1 e_1_2_9_56_1 e_1_2_9_239_1 e_1_2_9_277_1 e_1_2_9_33_1 e_1_2_9_216_1 e_1_2_9_71_1 e_1_2_9_231_1 e_1_2_9_292_1 e_1_2_9_107_1 e_1_2_9_122_1 e_1_2_9_145_1 e_1_2_9_168_1 e_1_2_9_314_1 e_1_2_9_18_1 e_1_2_9_183_1 e_1_2_9_160_1 e_1_2_9_265_1 e_1_2_9_22_1 e_1_2_9_45_1 e_1_2_9_68_1 e_1_2_9_83_1 e_1_2_9_204_1 e_1_2_9_227_1 e_1_2_9_288_1 e_1_2_9_6_1 e_1_2_9_119_1 e_1_2_9_60_1 e_1_2_9_242_1 e_1_2_9_280_1 e_1_2_9_111_1 e_1_2_9_134_1 e_1_2_9_157_1 e_1_2_9_195_1 e_1_2_9_302_1 e_1_2_9_172_1 e_1_2_9_232_1 e_1_2_9_255_1 e_1_2_9_72_1 e_1_2_9_11_1 e_1_2_9_34_1 e_1_2_9_57_1 e_1_2_9_95_1 e_1_2_9_217_1 e_1_2_9_278_1 e_1_2_9_270_1 e_1_2_9_293_1 e_1_2_9_129_1 e_1_2_9_144_1 e_1_2_9_167_1 e_1_2_9_106_1 e_1_2_9_315_1 e_1_2_9_121_1 e_1_2_9_19_1 e_1_2_9_182_1 e_1_2_9_61_1 e_1_2_9_243_1 e_1_2_9_46_1 e_1_2_9_84_1 e_1_2_9_228_1 e_1_2_9_266_1 e_1_2_9_289_1 e_1_2_9_23_1 e_1_2_9_205_1 e_1_2_9_5_1 e_1_2_9_220_1 e_1_2_9_281_1 e_1_2_9_118_1 e_1_2_9_133_1 e_1_2_9_156_1 e_1_2_9_179_1 Zhou X. (e_1_2_9_101_1) 2017; 5 e_1_2_9_303_1 e_1_2_9_69_1 e_1_2_9_110_1 e_1_2_9_171_1 e_1_2_9_194_1 e_1_2_9_31_1 e_1_2_9_210_1 e_1_2_9_256_1 e_1_2_9_233_1 e_1_2_9_77_1 e_1_2_9_54_1 e_1_2_9_279_1 e_1_2_9_294_1 e_1_2_9_92_1 e_1_2_9_109_1 e_1_2_9_271_1 e_1_2_9_124_1 e_1_2_9_147_1 e_1_2_9_316_1 e_1_2_9_39_1 e_1_2_9_162_1 e_1_2_9_218_1 e_1_2_9_16_1 e_1_2_9_185_1 e_1_2_9_20_1 e_1_2_9_89_1 e_1_2_9_221_1 e_1_2_9_244_1 e_1_2_9_43_1 e_1_2_9_66_1 e_1_2_9_206_1 e_1_2_9_267_1 e_1_2_9_8_1 e_1_2_9_81_1 e_1_2_9_282_1 e_1_2_9_113_1 e_1_2_9_159_1 e_1_2_9_136_1 e_1_2_9_151_1 e_1_2_9_197_1 e_1_2_9_304_1 e_1_2_9_28_1 e_1_2_9_229_1 e_1_2_9_174_1 Freese B. (e_1_2_9_1_1) 2016 e_1_2_9_211_1 e_1_2_9_234_1 e_1_2_9_257_1 e_1_2_9_78_1 e_1_2_9_32_1 e_1_2_9_55_1 e_1_2_9_317_1 e_1_2_9_272_1 e_1_2_9_295_1 e_1_2_9_93_1 e_1_2_9_108_1 e_1_2_9_70_1 e_1_2_9_100_1 e_1_2_9_123_1 e_1_2_9_169_1 e_1_2_9_146_1 e_1_2_9_219_1 e_1_2_9_17_1 e_1_2_9_184_1 e_1_2_9_161_1 e_1_2_9_222_1 e_1_2_9_21_1 e_1_2_9_67_1 e_1_2_9_44_1 e_1_2_9_268_1 e_1_2_9_260_1 e_1_2_9_283_1 e_1_2_9_7_1 e_1_2_9_82_1 e_1_2_9_320_1 e_1_2_9_112_1 e_1_2_9_135_1 e_1_2_9_158_1 e_1_2_9_305_1 e_1_2_9_207_1 e_1_2_9_173_1 e_1_2_9_196_1 e_1_2_9_29_1 e_1_2_9_150_1 e_1_2_9_75_1 e_1_2_9_98_1 e_1_2_9_190_1 e_1_2_9_52_1 e_1_2_9_235_1 e_1_2_9_212_1 e_1_2_9_318_1 e_1_2_9_258_1 e_1_2_9_90_1 e_1_2_9_273_1 e_1_2_9_296_1 e_1_2_9_250_1 e_1_2_9_103_1 e_1_2_9_126_1 e_1_2_9_149_1 e_1_2_9_14_1 e_1_2_9_141_1 e_1_2_9_187_1 e_1_2_9_37_1 e_1_2_9_164_1 e_1_2_9_310_1 e_1_2_9_41_1 e_1_2_9_64_1 e_1_2_9_87_1 e_1_2_9_200_1 e_1_2_9_223_1 e_1_2_9_246_1 e_1_2_9_269_1 e_1_2_9_306_1 e_1_2_9_284_1 e_1_2_9_2_1 e_1_2_9_261_1 e_1_2_9_138_1 e_1_2_9_321_1 e_1_2_9_115_1 e_1_2_9_199_1 e_1_2_9_26_1 e_1_2_9_49_1 e_1_2_9_208_1 e_1_2_9_130_1 e_1_2_9_176_1 e_1_2_9_153_1 e_1_2_9_191_1 e_1_2_9_30_1 e_1_2_9_53_1 Zhang Y. (e_1_2_9_245_1) 2017; 114 e_1_2_9_99_1 e_1_2_9_213_1 e_1_2_9_319_1 e_1_2_9_236_1 e_1_2_9_259_1 e_1_2_9_76_1 e_1_2_9_91_1 e_1_2_9_274_1 e_1_2_9_297_1 e_1_2_9_251_1 e_1_2_9_102_1 e_1_2_9_148_1 e_1_2_9_125_1 e_1_2_9_15_1 e_1_2_9_38_1 e_1_2_9_140_1 e_1_2_9_163_1 e_1_2_9_186_1 e_1_2_9_311_1 e_1_2_9_42_1 e_1_2_9_88_1 e_1_2_9_224_1 e_1_2_9_201_1 e_1_2_9_307_1 e_1_2_9_65_1 e_1_2_9_247_1 e_1_2_9_80_1 e_1_2_9_285_1 e_1_2_9_262_1 e_1_2_9_114_1 e_1_2_9_137_1 e_1_2_9_322_1 e_1_2_9_9_1 e_1_2_9_152_1 e_1_2_9_175_1 e_1_2_9_198_1 e_1_2_9_27_1 e_1_2_9_209_1 e_1_2_9_50_1 e_1_2_9_73_1 e_1_2_9_35_1 e_1_2_9_214_1 e_1_2_9_298_1 e_1_2_9_96_1 e_1_2_9_12_1 e_1_2_9_237_1 e_1_2_9_275_1 e_1_2_9_252_1 e_1_2_9_290_1 e_1_2_9_128_1 e_1_2_9_166_1 e_1_2_9_105_1 e_1_2_9_189_1 e_1_2_9_120_1 e_1_2_9_58_1 e_1_2_9_143_1 e_1_2_9_312_1 e_1_2_9_181_1 e_1_2_9_62_1 e_1_2_9_202_1 e_1_2_9_308_1 e_1_2_9_24_1 e_1_2_9_85_1 e_1_2_9_225_1 e_1_2_9_248_1 e_1_2_9_286_1 e_1_2_9_4_1 e_1_2_9_263_1 e_1_2_9_240_1 e_1_2_9_323_1 e_1_2_9_117_1 e_1_2_9_155_1 e_1_2_9_178_1 e_1_2_9_47_1 e_1_2_9_132_1 e_1_2_9_193_1 e_1_2_9_300_1 e_1_2_9_170_1 e_1_2_9_74_1 e_1_2_9_51_1 e_1_2_9_215_1 e_1_2_9_238_1 e_1_2_9_276_1 e_1_2_9_299_1 e_1_2_9_13_1 e_1_2_9_97_1 e_1_2_9_230_1 e_1_2_9_253_1 e_1_2_9_291_1 e_1_2_9_127_1 e_1_2_9_188_1 e_1_2_9_104_1 e_1_2_9_36_1 e_1_2_9_59_1 e_1_2_9_142_1 e_1_2_9_165_1 e_1_2_9_313_1 e_1_2_9_180_1 e_1_2_9_63_1 e_1_2_9_40_1 e_1_2_9_287_1 e_1_2_9_309_1 e_1_2_9_203_1 e_1_2_9_249_1 e_1_2_9_86_1 e_1_2_9_226_1 e_1_2_9_264_1 e_1_2_9_3_1 e_1_2_9_241_1 e_1_2_9_139_1 e_1_2_9_116_1 e_1_2_9_177_1 e_1_2_9_25_1 e_1_2_9_131_1 e_1_2_9_154_1 e_1_2_9_48_1 e_1_2_9_301_1 e_1_2_9_192_1 |
References_xml | – volume: 63 start-page: 2707 year: 2009 publication-title: Mater. Lett. – volume: 84 start-page: 1281 year: 2012 publication-title: Anal. Chem. – volume: 361 start-page: 249 year: 2017 publication-title: J. Power Sources – volume: 77 start-page: 16 year: 2008 publication-title: Dyes Pigm. – volume: 9 start-page: 590 year: 2014 publication-title: Nano Today – volume: 422 start-page: 25 year: 2014 publication-title: J. Colloid Interface Sci. – volume: 10 start-page: 1204 year: 2008 publication-title: Green Chem. – volume: 41 start-page: 811 year: 2003 publication-title: Carbon – volume: 3 start-page: 144 year: 2016 publication-title: ChemElectroChem – volume: 23 start-page: 4882 year: 2011 publication-title: Chem. Mater. – volume: 19 start-page: 4205 year: 2007 publication-title: Chem. Mater. – volume: 217 start-page: 167 year: 2018 publication-title: Mater. Lett. – volume: 114 year: 2014 publication-title: Chem. Rev. – volume: 7 start-page: 858 year: 2018 publication-title: ACS Sustainable Chem. Eng. – volume: 24 start-page: 103 year: 2019 publication-title: Nano Today – volume: 6 year: 2017 publication-title: Adv. Healthcare Mater. – volume: 45 start-page: 2378 year: 2016 publication-title: Chem. Soc. Rev. – volume: 7 start-page: 1608 year: 2015 publication-title: ChemCatChem – volume: 118 start-page: 1 year: 2016 publication-title: J. Anal. Appl. Pyrolysis – volume: 10 start-page: 538 year: 2017 publication-title: Energy Environ. Sci. – volume: 128 start-page: 224 year: 2018 publication-title: Carbon – volume: 1 start-page: 1265 year: 2017 publication-title: Sustainable Energy Fuels – volume: 34 start-page: 47 year: 2008 publication-title: Prog. Energy Combust. Sci. – volume: 1 start-page: 1766 year: 2018 publication-title: ACS Appl. Nano Mater. – volume: 4 start-page: 7445 year: 2016 publication-title: J. Mater. Chem. A – volume: 29 year: 2019 publication-title: Adv. Funct. Mater. – volume: 27 start-page: 482 year: 2016 publication-title: Nano Energy – volume: 4 start-page: 544 year: 2018 publication-title: Chem – volume: 4 start-page: 3393 year: 2014 publication-title: ACS Catal. – volume: 42 start-page: 4513 year: 2018 publication-title: New J. Chem. – volume: 197 start-page: 137 year: 2015 publication-title: Bioresour. Technol. – volume: 6 year: 2018 publication-title: ACS Sustainable Chem. Eng. – volume: 139 start-page: 8212 year: 2017 publication-title: J. Am. Chem. Soc. – volume: 88 start-page: 1183 year: 2013 publication-title: J. Chem. Technol. Biotechnol. – volume: 10 start-page: 3371 year: 2014 publication-title: Small – volume: 7 start-page: 201 year: 2020 publication-title: ChemElectroChem – volume: 4 year: 2016 publication-title: J. Mater. Chem. A – volume: 5 start-page: 69 year: 2017 publication-title: Mater. Res. Lett. – volume: 3 start-page: 2181 year: 2015 publication-title: J. Mater. Chem. A – volume: 105 start-page: 635 year: 2013 publication-title: Electrochim. Acta – volume: 358 start-page: 220 year: 1992 publication-title: Nature – volume: 112 year: 2008 publication-title: J. Phys. Chem. C – volume: 11 start-page: 1240 year: 2018 publication-title: Energy Environ. Sci. – volume: 133 start-page: 163 year: 2015 publication-title: Carbohydr. Polym. – volume: 117 start-page: 1 year: 2017 publication-title: Mater. Sci. Eng., R – volume: 7 start-page: 4431 year: 2014 publication-title: Materials – volume: 167 start-page: 1 year: 2009 publication-title: J. Hazard. Mater. – volume: 239 start-page: 1251 year: 2017 publication-title: Sens. Actuators, B – volume: 2 year: 2017 publication-title: Nat. Rev. Mater. – volume: 86 start-page: 1817 year: 2002 publication-title: J. Appl. Polym. Sci. – volume: 114 year: 2017 publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 11 start-page: 6860 year: 2017 publication-title: ACS Nano – volume: 17 start-page: 1668 year: 2015 publication-title: Green Chem. – volume: 4 year: 2018 publication-title: Adv. Mater. Technol. – volume: 22 start-page: 813 year: 2010 publication-title: Adv. Mater. – volume: 39 start-page: 9497 year: 2015 publication-title: New J. Chem. – volume: 7 year: 2017 publication-title: Adv. Energy Mater. – volume: 165 start-page: 87 year: 2009 publication-title: J. Hazard. Mater. – volume: 86 start-page: 262 year: 2016 publication-title: Renewable Energy – volume: 17 start-page: 515 year: 2013 publication-title: Curr. Opin. Chem. Biol. – volume: 3 year: 2017 publication-title: Adv. Electron. Mater. – volume: 18 start-page: 4095 year: 2016 publication-title: Phys. Chem. Chem. Phys. – volume: 35 start-page: 3152 year: 2011 publication-title: Biomass Bioenergy – volume: 4 start-page: 778 year: 2011 publication-title: ChemSusChem – volume: 457 start-page: 706 year: 2009 publication-title: Nature – volume: 28 start-page: 6640 year: 2016 publication-title: Adv. Mater. – volume: 110 start-page: 3552 year: 2010 publication-title: Chem. Rev. – volume: 92 start-page: 1923 year: 2014 publication-title: Chem. Eng. Res. Des. – volume: 10 start-page: 889 year: 2016 publication-title: ACS Nano – volume: 13 year: 2017 publication-title: Small – volume: 246 start-page: 72 year: 2017 publication-title: Microporous Mesoporous Mater. – volume: 10 start-page: 2552 year: 2017 publication-title: Energy Environ. Sci. – volume: 172 start-page: 1311 year: 2009 publication-title: J. Hazard. Mater. – volume: 7 start-page: 3589 year: 2013 publication-title: ACS Nano – volume: 86 start-page: 1781 year: 2007 publication-title: Fuel – volume: 89 start-page: 262 year: 2008 publication-title: Fuel Process. Technol. – volume: 37 start-page: 1379 year: 1999 publication-title: Carbon – volume: 9 year: 2015 publication-title: ACS Nano – volume: 49 start-page: 838 year: 2011 publication-title: Carbon – volume: 25 start-page: 120 year: 2016 publication-title: Nano Energy – volume: 14 start-page: 2225 year: 2014 publication-title: Nano Lett. – volume: 27 start-page: 1980 year: 2015 publication-title: Adv. Mater. – volume: 102 start-page: 208 year: 2006 publication-title: Mar. Chem. – volume: 33 start-page: 334 year: 2017 publication-title: Nano Energy – volume: 98 start-page: 213 year: 2013 publication-title: Mater. Lett. – volume: 8 year: 2018 publication-title: Adv. Energy Mater. – volume: 184 start-page: 343 year: 2016 publication-title: Microchim. Acta – volume: 4 start-page: 4296 year: 2016 publication-title: J. Mater. Chem. A – volume: 176 start-page: 853 year: 2015 publication-title: Electrochim. Acta – volume: 11 start-page: 772 year: 2018 publication-title: Energy Environ. Sci. – volume: 182 start-page: 139 year: 2016 publication-title: Mater. Chem. Phys. – volume: 44 start-page: 362 year: 2015 publication-title: Chem. Soc. Rev. – volume: 333 start-page: 19 year: 2009 publication-title: Colloids Surf., A – volume: 120 start-page: 2079 year: 2016 publication-title: J. Phys. Chem. C – volume: 7 start-page: 3590 year: 2015 publication-title: ACS Appl. Mater. Interfaces – volume: 1 start-page: 2868 year: 2013 publication-title: J. Mater. Chem. B – volume: 28 start-page: 539 year: 2016 publication-title: Adv. Mater. – volume: 7 start-page: 3574 year: 2014 publication-title: Energy Environ. Sci. – volume: 5 year: 2015 publication-title: RSC Adv. – volume: 255 start-page: 4650 year: 2009 publication-title: Appl. Surf. Sci. – volume: 6 year: 2018 publication-title: J. Mater. Chem. A – volume: 105 start-page: 143 year: 2014 publication-title: J. Anal. Appl. Pyrolysis – volume: 101 start-page: 238 year: 2013 publication-title: J. Anal. Appl. Pyrolysis – volume: 5 start-page: 2411 year: 2017 publication-title: J. Mater. Chem. A – volume: 9 start-page: 4445 year: 2017 publication-title: Nanoscale – volume: 306 start-page: 666 year: 2004 publication-title: Science – volume: 29 year: 2017 publication-title: Adv. Mater. – volume: 119 start-page: 599 year: 2018 publication-title: Chem. Rev. – volume: 27 start-page: 4113 year: 2015 publication-title: Adv. Mater. – volume: 10 start-page: 4410 year: 2016 publication-title: ACS Nano – volume: 3 start-page: 1419 year: 2015 publication-title: ACS Sustainable Chem. Eng. – volume: 26 start-page: 111 year: 2016 publication-title: Adv. Funct. Mater. – volume: 317 start-page: 493 year: 2017 publication-title: Chem. Eng. J. – volume: 3 start-page: 5976 year: 2015 publication-title: J. Mater. Chem. C – volume: 15 year: 2019 publication-title: Small – volume: 45 start-page: 517 year: 2016 publication-title: Chem. Soc. Rev. – volume: 50 start-page: 6799 year: 2011 publication-title: Angew. Chem., Int. Ed. – volume: 2 start-page: 431 year: 2012 publication-title: Adv. Energy Mater. – volume: 54 start-page: 4463 year: 2015 publication-title: Angew. Chem., Int. Ed. – volume: 9 start-page: 1237 year: 2017 publication-title: Nanoscale – volume: 9 year: 2017 publication-title: ACS Appl. Mater. Interfaces – volume: 4 year: 2014 publication-title: RSC Adv. – volume: 124 start-page: 9730 year: 2012 publication-title: Angew. Chem., Int. Ed. – volume: 31 start-page: 224 year: 2013 publication-title: J. Electroceram. – volume: 19 start-page: 165 year: 2016 publication-title: Nano Energy – volume: 131 start-page: 5026 year: 2009 publication-title: J. Am. Chem. Soc. – volume: 91 start-page: 1 year: 2010 publication-title: Fuel Process. Technol. – volume: 5 year: 2015 publication-title: Adv. Energy Mater. – volume: 6 start-page: 5381 year: 2018 publication-title: ACS Sustainable Chem. Eng. – volume: 38 start-page: 3401 year: 2009 publication-title: Chem. Soc. Rev. – volume: 23 start-page: 1989 year: 2011 publication-title: J. Environ. Sci. – volume: 53 start-page: 5262 year: 2014 publication-title: Angew. Chem., Int. Ed. – volume: 31 start-page: 1023 year: 2019 publication-title: Chem. Mater. – volume: 7 year: 2015 publication-title: ACS Appl. Mater. Interfaces – volume: 4 year: 2017 publication-title: Adv. Sci. – volume: 289 start-page: 18 year: 2015 publication-title: J. Hazard. Mater. – volume: 6 year: 2014 publication-title: ACS Appl. Mater. Interfaces – volume: 8 start-page: 814 year: 2008 publication-title: Curr. Appl. Phys. – volume: 7 start-page: 3684 year: 2015 publication-title: ACS Appl. Mater. Interfaces – volume: 30 start-page: 121 year: 2019 publication-title: J. Energy Chem. – volume: 27 year: 2017 publication-title: Adv. Funct. Mater. – volume: 92 start-page: 394 year: 2011 publication-title: Fuel Process. Technol. – volume: 12 start-page: 1029 year: 2010 publication-title: Solid State Sci. – volume: 255 start-page: 8443 year: 2009 publication-title: Appl. Surf. Sci. – volume: 8 start-page: 5773 year: 2020 publication-title: J. Mater. Chem. A – volume: 46 start-page: 3256 year: 2010 publication-title: Chem. Commun. – volume: 43 start-page: 5257 year: 2014 publication-title: Chem. Soc. Rev. – volume: 121 start-page: 216 year: 2014 publication-title: Fuel – volume: 80 start-page: 1657 year: 2015 publication-title: ChemPlusChem – volume: 49 start-page: 96 year: 2016 publication-title: Acc. Chem. Res. – volume: 52 start-page: 2925 year: 2013 publication-title: Angew. Chem., Int. Ed. – volume: 210 start-page: 26 year: 2012 publication-title: Chem. Eng. J. – volume: 57 start-page: 7085 year: 2018 publication-title: Angew. Chem., Int. Ed. – volume: 5 start-page: 52 year: 2017 publication-title: EnergyTechnol. – volume: 4 start-page: 844 year: 2016 publication-title: ACS Sustainable Chem. Eng. – volume: 4 start-page: 1637 year: 2016 publication-title: J. Mater. Chem. A – volume: 5 year: 2018 publication-title: Mater. Res. Express – volume: 19 start-page: 201 year: 2018 publication-title: Nano Today – volume: 105 start-page: 454 year: 2016 publication-title: Carbon – volume: 116 start-page: 9305 year: 2016 publication-title: Chem. Rev. – volume: 81 start-page: 919 year: 2010 publication-title: Carbohydr. Polym. – volume: 28 start-page: 4306 year: 2016 publication-title: Adv. Mater. – volume: 12 start-page: 33 year: 2018 publication-title: Nano Res. – volume: 6 start-page: 177 year: 2017 publication-title: ACS Sustainable Chem. Eng. – volume: 7 start-page: 379 year: 2014 publication-title: Energy Environ. Sci. – volume: 2 start-page: 239 year: 2014 publication-title: J. Environ. Chem. Eng. – volume: 1 start-page: 261 year: 2015 publication-title: ACS Cent. Sci. – volume: 190 start-page: 848 year: 2011 publication-title: J. Hazard. Mater. – volume: 50 start-page: 2155 year: 2012 publication-title: Carbon – volume: 7 start-page: 4095 year: 2014 publication-title: Energy Environ. Sci. – volume: 113 start-page: 5782 year: 2013 publication-title: Chem. Rev. – volume: 3 start-page: 6534 year: 2015 publication-title: J. Mater. Chem. A – volume: 35 start-page: 835 year: 2011 publication-title: Int. J. Energy Res. – volume: 318 start-page: 162 year: 1985 publication-title: Nature – volume: 46 start-page: 7176 year: 2017 publication-title: Chem. Soc. Rev. – volume: 13 start-page: 3385 year: 2013 publication-title: Nano Lett. – volume: 12 start-page: 268 year: 2021 publication-title: Nat. Commun. – volume: 124 start-page: 429 year: 2017 publication-title: Carbon – volume: 110 start-page: 138 year: 2016 publication-title: Carbon – volume: 14 start-page: 595 year: 2020 publication-title: ACS Nano – volume: 451 year: 2020 publication-title: J. Power Sources – volume: 31 year: 2018 publication-title: Adv. Mater. – volume: 19 start-page: 1628 year: 2017 publication-title: Green Chem. – volume: 1 start-page: 658 year: 2013 publication-title: J. Environ. Chem. Eng. – volume: 438 start-page: 167 year: 2017 publication-title: Mol. Catal. – volume: 24 start-page: 1669 year: 2017 publication-title: Cellulose – volume: 28 start-page: 6213 year: 2016 publication-title: Adv. Mater. – volume: 1 start-page: 6638 year: 2018 publication-title: ACS Appl. Energy Mater. – volume: 771 start-page: 106 year: 2016 publication-title: J. Electroanal. Chem. – volume: 1 start-page: 534 year: 2011 publication-title: Adv. Energy Mater. – volume: 17 start-page: 2373 year: 2015 publication-title: Green Chem. – year: 2016 – volume: 15 start-page: 4195 year: 2009 publication-title: Chem. ‐ Eur. J. – volume: 158 start-page: 129 year: 2010 publication-title: Chem. Eng. J. – volume: 31 year: 2019 publication-title: Adv. Mater. – volume: 25 start-page: 4746 year: 2013 publication-title: Adv. Mater. – volume: 84 start-page: 399 year: 2015 publication-title: Carbon – volume: 168 start-page: 722 year: 2011 publication-title: Chem. Eng. J. – volume: 8 start-page: 941 year: 2015 publication-title: Energy Environ. Sci. – volume: 283 start-page: 789 year: 2016 publication-title: Chem. Eng. J. – volume: 9 start-page: 2556 year: 2015 publication-title: ACS Nano – volume: 11 year: 2019 publication-title: ACS Appl. Mater. Interfaces – volume: 12 start-page: 141 year: 2015 publication-title: Nano Energy – volume: 122 start-page: 189 year: 2009 publication-title: Microporous Mesoporous Mater. – volume: 43 start-page: 597 year: 2004 publication-title: Angew. Chem., Int. Ed. – volume: 32 year: 2020 publication-title: Adv. Mater. – volume: 101 start-page: 29 year: 2013 publication-title: Mater. Lett. – volume: 57 start-page: 2377 year: 2018 publication-title: Angew. Chem., Int. Ed. – volume: 65 year: 2019 publication-title: Nano Energy – volume: 23 start-page: 4828 year: 2011 publication-title: Adv. Mater. – volume: 1 start-page: 5269 year: 2013 publication-title: J. Mater. Chem. A – volume: 22 start-page: 617 year: 2010 publication-title: Adv. Mater. – volume: 14 start-page: 3219 year: 2020 publication-title: ACS Nano – volume: 177 start-page: 300 year: 2010 publication-title: J. Hazard. Mater. – volume: 4 start-page: 1593 year: 2013 publication-title: Nat. Commun. – volume: 47 start-page: 1880 year: 2009 publication-title: Carbon – volume: 5 start-page: 2204 year: 2017 publication-title: J. Mater. Chem. A – volume: 10 start-page: 1071 year: 2010 publication-title: Curr. Appl. Phys. – volume: 19 start-page: 1032 year: 2009 publication-title: Adv. Funct. Mater. – volume: 12 start-page: 2176 year: 2018 publication-title: ACS Nano – volume: 2 start-page: 184 year: 2019 publication-title: InfoMat – volume: 8 year: 2018 publication-title: RSC Adv. – volume: 57 start-page: 1126 year: 2016 publication-title: Renewable Sustainable Energy Rev. – volume: 75 start-page: 5336 year: 2003 publication-title: Anal. Chem. – volume: 2 start-page: 1492 year: 2014 publication-title: ACS Sustainable Chem. Eng. – volume: 39 start-page: 103 year: 2010 publication-title: Chem. Soc. Rev. – volume: 11 start-page: 366 year: 2015 publication-title: Nano Energy – volume: 25 start-page: 5537 year: 2015 publication-title: Adv. Funct. Mater. – volume: 2 start-page: 756 year: 2006 publication-title: Small – volume: 54 start-page: 1759 year: 2015 publication-title: Angew. Chem., Int. Ed. – volume: 10 start-page: 2625 year: 2014 publication-title: Small – volume: 32 start-page: 382 year: 2017 publication-title: Nano Energy – volume: 141 start-page: 6583 year: 2019 publication-title: J. Am. Chem. Soc. – volume: 18 start-page: 2078 year: 2016 publication-title: Green Chem. – volume: 12 start-page: 3235 year: 2016 publication-title: Small – volume: 55 start-page: 334 year: 2002 publication-title: Mater. Lett. – volume: 5 start-page: 5714 year: 2014 publication-title: Nat. Commun. – volume: 6 year: 2016 publication-title: Adv. Energy Mater. – volume: 3 start-page: 1127 year: 2015 publication-title: J. Mater. Chem. A – volume: 51 start-page: 1609 year: 2018 publication-title: Acc. Chem. Res. – volume: 104 start-page: 41 year: 2018 publication-title: Catal. Commun. – volume: 24 start-page: 2037 year: 2012 publication-title: Adv. Mater. – volume: 8 start-page: 355 year: 2015 publication-title: Nano Res. – volume: 6 start-page: 3331 year: 2013 publication-title: Energy Environ. Sci. – volume: 50 start-page: 886 year: 2014 publication-title: Sep. Sci. Technol. – volume: 17 start-page: 4888 year: 2015 publication-title: Green Chem. – volume: 4 start-page: 3750 year: 2016 publication-title: ACS Sustainable Chem. Eng. – volume: 7 start-page: 1337 year: 2018 publication-title: ACS Sustainable Chem. Eng. – volume: 232 start-page: 45 year: 2000 publication-title: J. Colloid Interface Sci. – volume: 7 start-page: 6889 year: 2015 publication-title: ACS Appl. Mater. Interfaces – volume: 10 year: 2017 publication-title: Arabian J. Chem. – volume: 24 start-page: 81 year: 2019 publication-title: Nano Today – volume: 466 start-page: 470 year: 2010 publication-title: Nature – volume: 2 year: 2014 publication-title: J. Mater. Chem. A – volume: 38 start-page: 1873 year: 2000 publication-title: Carbon – volume: 47 start-page: 8700 year: 2013 publication-title: Environ. Sci. Technol. – volume: 5 year: 2017 publication-title: J. Mater. Chem. A – volume: 9 start-page: 1342 year: 2013 publication-title: Small – volume: 2 start-page: 4391 year: 2014 publication-title: J. Mater. Chem. A – volume: 4 start-page: 5585 year: 2016 publication-title: ACS Sustainable Chem. Eng. – volume: 12 start-page: 696 year: 2010 publication-title: Green Chem. – volume: 10 start-page: 506 year: 2014 publication-title: Small – volume: 118 start-page: 619 year: 2012 publication-title: Bioresour. Technol. – volume: 22 start-page: 2178 year: 2010 publication-title: Chem. Mater. – volume: 2 start-page: 1296 year: 2012 publication-title: ACS Catal. – volume: 240 start-page: 189 year: 2019 publication-title: Mater. Lett. – volume: 80 start-page: 616 year: 2017 publication-title: Mater. Sci. Eng., C – volume: 5 start-page: 4209 year: 2012 publication-title: Energies – volume: 8 year: 2018 publication-title: AIP Adv. – volume: 176 start-page: 982 year: 2015 publication-title: Electrochim. Acta – volume: 13 year: 2019 publication-title: ACS Nano – volume: 160 start-page: 244 year: 2015 publication-title: Electrochim. Acta – volume: 354 start-page: 56 year: 1991 publication-title: Nature – volume: 7 start-page: 2670 year: 2014 publication-title: Energy Environ. Sci. – volume: 7 start-page: 1708 year: 2014 publication-title: Energy Environ. Sci. – volume: 52 start-page: 8151 year: 2013 publication-title: Angew. Chem., Int. Ed. – volume: 141 start-page: 819 year: 2007 publication-title: J. Hazard. Mater. – volume: 45 start-page: 220 year: 2018 publication-title: Nano Energy – year: 2020 publication-title: Adv. Mater. – volume: 554 start-page: 224 year: 2018 publication-title: Nature – volume: 30 year: 2018 publication-title: Adv. Mater. – volume: 48 year: 2014 publication-title: Environ. Sci. Technol. – volume: 52 year: 2013 publication-title: Ind. Eng. Chem. Res. – volume: 80 start-page: 1556 year: 2015 publication-title: ChemPlusChem – volume: 7 start-page: 1067 year: 2017 publication-title: RSC Adv. – volume: 136 start-page: 922 year: 2006 publication-title: J. Hazard. Mater. – volume: 6 start-page: 1244 year: 2018 publication-title: J. Mater. Chem. A – volume: 14 start-page: 107 year: 2019 publication-title: Nat. Nanotechnol. – volume: 118 start-page: 9281 year: 2018 publication-title: Chem. Rev. – volume: 7 year: 2015 publication-title: Nanoscale – volume: 34 start-page: 5118 year: 2009 publication-title: Chem. Commun. – volume: 17 start-page: 813 year: 2018 publication-title: Rev. Environ. Sci. Bio/Technol. – volume: 8 year: 2019 publication-title: Energy Technol. – volume: 83 start-page: 37 year: 2002 publication-title: Bioresour. Technol. – volume: 10 year: 2018 publication-title: ACS Appl. Mater. Interfaces – volume: 51 start-page: 9297 year: 2012 publication-title: Angew. Chem., Int. Ed. – ident: e_1_2_9_217_1 doi: 10.1039/C8TA04080J – ident: e_1_2_9_117_1 doi: 10.1021/acsami.7b11873 – ident: e_1_2_9_116_1 doi: 10.1021/acssuschemeng.5b00340 – ident: e_1_2_9_304_1 doi: 10.1016/j.nantod.2018.02.008 – ident: e_1_2_9_110_1 doi: 10.1021/ac202166x – ident: e_1_2_9_318_1 doi: 10.1021/acsami.7b01599 – ident: e_1_2_9_210_1 doi: 10.1016/j.carbon.2016.04.036 – ident: e_1_2_9_204_1 doi: 10.3390/ma7064431 – ident: e_1_2_9_109_1 doi: 10.1016/j.biortech.2012.05.060 – ident: e_1_2_9_62_1 doi: 10.1016/j.nantod.2018.12.004 – ident: e_1_2_9_258_1 doi: 10.1016/j.nanoen.2019.104045 – ident: e_1_2_9_296_1 doi: 10.1016/j.solidstatesciences.2010.02.038 – ident: e_1_2_9_67_1 doi: 10.1021/acssuschemeng.8b02299 – ident: e_1_2_9_177_1 doi: 10.1039/b917807d – ident: e_1_2_9_283_1 doi: 10.1016/j.jhazmat.2009.12.032 – ident: e_1_2_9_160_1 doi: 10.1016/j.jpowsour.2017.06.086 – ident: e_1_2_9_12_1 doi: 10.1021/cr300367d – ident: e_1_2_9_61_1 doi: 10.1039/C4EE02531H – ident: e_1_2_9_71_1 doi: 10.1007/s00604-016-2043-9 – ident: e_1_2_9_305_1 doi: 10.1021/sc500161b – ident: e_1_2_9_8_1 doi: 10.1002/adma.201603486 – ident: e_1_2_9_92_1 doi: 10.1016/j.matlet.2018.01.096 – ident: e_1_2_9_115_1 doi: 10.1021/cm0707408 – ident: e_1_2_9_171_1 doi: 10.1021/acsnano.7b08539 – ident: e_1_2_9_291_1 doi: 10.1002/admt.201800593 – ident: e_1_2_9_234_1 doi: 10.1016/j.electacta.2015.07.094 – ident: e_1_2_9_228_1 doi: 10.1016/j.micromeso.2009.02.032 – ident: e_1_2_9_195_1 doi: 10.1039/c3ta14604a – ident: e_1_2_9_181_1 doi: 10.1007/s11157-018-9476-z – ident: e_1_2_9_308_1 doi: 10.1002/anie.201209676 – ident: e_1_2_9_146_1 doi: 10.1002/aenm.201100548 – ident: e_1_2_9_87_1 doi: 10.1039/C7EE02616A – ident: e_1_2_9_132_1 doi: 10.1002/anie.201409290 – ident: e_1_2_9_244_1 doi: 10.1039/C5GC02122G – ident: e_1_2_9_125_1 doi: 10.1016/j.carbpol.2010.04.006 – ident: e_1_2_9_174_1 doi: 10.1016/j.fuproc.2009.08.021 – ident: e_1_2_9_212_1 doi: 10.1016/j.apsusc.2009.05.150 – ident: e_1_2_9_36_1 doi: 10.1039/C5NJ02080H – ident: e_1_2_9_139_1 doi: 10.1002/app.11089 – ident: e_1_2_9_96_1 doi: 10.1039/C8RA06958A – ident: e_1_2_9_79_1 doi: 10.1016/j.cbpa.2013.05.004 – ident: e_1_2_9_168_1 doi: 10.1016/j.nantod.2018.12.003 – ident: e_1_2_9_136_1 doi: 10.1016/j.electacta.2015.02.019 – ident: e_1_2_9_207_1 doi: 10.1016/S0167-577X(02)00388-9 – ident: e_1_2_9_3_1 doi: 10.1038/354056a0 – ident: e_1_2_9_93_1 doi: 10.1039/c3tb20418a – ident: e_1_2_9_301_1 doi: 10.1038/ncomms2586 – ident: e_1_2_9_148_1 doi: 10.1039/C3EE43979H – ident: e_1_2_9_102_1 doi: 10.1021/acs.chemrev.6b00225 – ident: e_1_2_9_89_1 doi: 10.1063/1.5038125 – volume: 114 year: 2017 ident: e_1_2_9_245_1 publication-title: Proc. Natl. Acad. Sci. U. S. A. – ident: e_1_2_9_80_1 doi: 10.1002/aenm.201801007 – ident: e_1_2_9_20_1 doi: 10.1021/jacs.7b01942 – ident: e_1_2_9_30_1 doi: 10.1039/C5NR04603C – ident: e_1_2_9_218_1 doi: 10.1039/C4RA08055F – ident: e_1_2_9_94_1 doi: 10.1007/s10832-013-9831-y – ident: e_1_2_9_133_1 doi: 10.1016/j.carbon.2017.11.064 – ident: e_1_2_9_164_1 doi: 10.1002/smll.200600047 – ident: e_1_2_9_199_1 doi: 10.1021/acsami.8b01556 – ident: e_1_2_9_32_1 doi: 10.1016/j.jechem.2018.01.015 – ident: e_1_2_9_273_1 doi: 10.1002/inf2.12060 – ident: e_1_2_9_306_1 doi: 10.1016/j.nanoen.2017.01.045 – ident: e_1_2_9_16_1 doi: 10.1038/nature07719 – ident: e_1_2_9_72_1 doi: 10.1016/j.matlet.2013.03.064 – ident: e_1_2_9_240_1 doi: 10.1039/C5CS00670H – ident: e_1_2_9_265_1 doi: 10.1002/adhm.201601371 – ident: e_1_2_9_144_1 doi: 10.1039/C3EE43111H – ident: e_1_2_9_159_1 doi: 10.1016/j.apsusc.2008.12.013 – ident: e_1_2_9_155_1 doi: 10.1021/cm100139d – ident: e_1_2_9_196_1 doi: 10.1039/C7TA07579K – ident: e_1_2_9_162_1 doi: 10.1039/b807009a – ident: e_1_2_9_281_1 doi: 10.1016/S0008-6223(02)00406-2 – ident: e_1_2_9_223_1 doi: 10.1016/S0008-6223(00)00027-0 – ident: e_1_2_9_288_1 doi: 10.1016/j.cej.2012.08.052 – ident: e_1_2_9_88_1 doi: 10.1021/acsnano.7b01987 – ident: e_1_2_9_86_1 doi: 10.1016/S0008-6223(98)00333-9 – ident: e_1_2_9_236_1 doi: 10.1039/C7TA03639F – ident: e_1_2_9_37_1 doi: 10.1021/acsami.8b14304 – ident: e_1_2_9_261_1 doi: 10.1039/C6TA08169J – ident: e_1_2_9_229_1 doi: 10.1080/01496395.2014.966204 – ident: e_1_2_9_39_1 doi: 10.1021/nl401729r – ident: e_1_2_9_222_1 doi: 10.1016/j.matchemphys.2016.07.015 – ident: e_1_2_9_43_1 doi: 10.1039/b907612c – ident: e_1_2_9_104_1 doi: 10.1021/acssuschemeng.6b00388 – ident: e_1_2_9_2_1 doi: 10.1038/318162a0 – ident: e_1_2_9_147_1 doi: 10.1021/acssuschemeng.5b00904 – ident: e_1_2_9_17_1 doi: 10.1038/358220a0 – ident: e_1_2_9_108_1 doi: 10.1039/B819318P – ident: e_1_2_9_243_1 doi: 10.1021/acsami.8b13281 – ident: e_1_2_9_29_1 doi: 10.1016/j.carbon.2010.10.025 – ident: e_1_2_9_255_1 doi: 10.1016/j.nanoen.2014.11.008 – ident: e_1_2_9_186_1 doi: 10.1016/j.nanoen.2014.12.014 – ident: e_1_2_9_98_1 doi: 10.1016/S0960-8524(01)00118-3 – ident: e_1_2_9_158_1 doi: 10.1039/c3ee42366b – ident: e_1_2_9_309_1 doi: 10.1002/anie.201303927 – ident: e_1_2_9_322_1 doi: 10.1016/j.nantod.2014.09.004 – ident: e_1_2_9_77_1 doi: 10.1039/C4EE00602J – ident: e_1_2_9_76_1 doi: 10.1021/acs.jpcc.5b11280 – ident: e_1_2_9_5_1 doi: 10.1039/b922733d – ident: e_1_2_9_297_1 doi: 10.1016/j.mcat.2017.05.031 – ident: e_1_2_9_241_1 doi: 10.1002/smll.201202943 – ident: e_1_2_9_100_1 doi: 10.1038/nature25476 – ident: e_1_2_9_206_1 doi: 10.1016/j.cap.2009.12.044 – ident: e_1_2_9_49_1 doi: 10.1016/j.carbon.2017.08.072 – ident: e_1_2_9_323_1 doi: 10.1039/C4CS00269E – ident: e_1_2_9_31_1 doi: 10.1039/C4TA06614F – ident: e_1_2_9_124_1 doi: 10.1016/j.nanoen.2017.12.042 – ident: e_1_2_9_73_1 doi: 10.1021/ie402371n – ident: e_1_2_9_150_1 doi: 10.1002/adfm.201504004 – ident: e_1_2_9_268_1 doi: 10.1002/celc.201500351 – ident: e_1_2_9_10_1 doi: 10.1002/adma.201801072 – ident: e_1_2_9_18_1 doi: 10.1038/ncomms6714 – ident: e_1_2_9_60_1 doi: 10.1002/aenm.201401524 – ident: e_1_2_9_175_1 doi: 10.3390/en5104209 – ident: e_1_2_9_23_1 doi: 10.1021/acs.chemrev.8b00325 – ident: e_1_2_9_183_1 doi: 10.1016/j.fuproc.2010.09.033 – ident: e_1_2_9_9_1 doi: 10.1021/acs.chemrev.8b00340 – ident: e_1_2_9_295_1 doi: 10.1002/cssc.201000431 – ident: e_1_2_9_69_1 doi: 10.1039/C8TA02838A – ident: e_1_2_9_280_1 doi: 10.1016/j.dyepig.2007.03.001 – ident: e_1_2_9_197_1 doi: 10.1039/b822668g – ident: e_1_2_9_274_1 doi: 10.1016/j.jece.2013.09.017 – ident: e_1_2_9_154_1 doi: 10.1038/s41467-020-20628-9 – ident: e_1_2_9_317_1 doi: 10.1002/adfm.201501524 – ident: e_1_2_9_226_1 doi: 10.1016/j.jhazmat.2008.09.064 – ident: e_1_2_9_257_1 doi: 10.1021/nn506394r – ident: e_1_2_9_52_1 doi: 10.1021/acssuschemeng.6b01408 – ident: e_1_2_9_129_1 doi: 10.1016/j.micromeso.2017.03.019 – ident: e_1_2_9_248_1 doi: 10.1002/ange.201205292 – ident: e_1_2_9_275_1 doi: 10.1016/j.jhazmat.2008.12.114 – ident: e_1_2_9_78_1 doi: 10.1016/j.cej.2015.08.014 – ident: e_1_2_9_91_1 doi: 10.1039/C4GC02185A – ident: e_1_2_9_239_1 doi: 10.1016/j.jpowsour.2020.227794 – ident: e_1_2_9_313_1 doi: 10.1002/adma.201704740 – ident: e_1_2_9_58_1 doi: 10.1039/C7TA05002J – ident: e_1_2_9_269_1 doi: 10.1021/acsami.5b04132 – ident: e_1_2_9_34_1 doi: 10.1016/j.jcis.2014.02.006 – ident: e_1_2_9_105_1 doi: 10.1039/C7EE03208K – ident: e_1_2_9_192_1 doi: 10.1039/C5CP06970J – ident: e_1_2_9_208_1 doi: 10.1016/j.colsurfa.2008.09.021 – ident: e_1_2_9_316_1 doi: 10.1021/acsami.5b00628 – ident: e_1_2_9_64_1 doi: 10.1021/nn400566d – ident: e_1_2_9_201_1 doi: 10.1039/C7SE00099E – ident: e_1_2_9_289_1 doi: 10.1021/es4012977 – ident: e_1_2_9_47_1 doi: 10.1002/anie.200352386 – ident: e_1_2_9_233_1 doi: 10.1016/j.biortech.2015.07.100 – ident: e_1_2_9_153_1 doi: 10.1016/j.fuel.2013.12.026 – ident: e_1_2_9_112_1 doi: 10.1016/j.marchem.2006.04.003 – ident: e_1_2_9_221_1 doi: 10.1039/C4EE02986K – ident: e_1_2_9_15_1 doi: 10.1038/natrevmats.2017.46 – ident: e_1_2_9_180_1 doi: 10.1016/j.jaap.2015.12.013 – ident: e_1_2_9_286_1 doi: 10.1016/j.cherd.2014.03.019 – ident: e_1_2_9_131_1 doi: 10.1016/j.nanoen.2016.07.034 – ident: e_1_2_9_173_1 doi: 10.1002/aenm.201801840 – ident: e_1_2_9_28_1 doi: 10.1002/adma.201604257 – ident: e_1_2_9_128_1 doi: 10.1039/C7TA05192A – ident: e_1_2_9_211_1 doi: 10.1016/j.fuproc.2007.11.030 – ident: e_1_2_9_165_1 doi: 10.1016/j.jelechem.2016.03.047 – ident: e_1_2_9_166_1 doi: 10.1016/j.cap.2007.04.038 – ident: e_1_2_9_225_1 doi: 10.1021/am5081919 – ident: e_1_2_9_263_1 doi: 10.1002/adfm.201604795 – ident: e_1_2_9_35_1 doi: 10.1021/acsanm.8b00209 – ident: e_1_2_9_54_1 doi: 10.1021/acs.accounts.5b00380 – ident: e_1_2_9_198_1 doi: 10.1002/cctc.201500081 – ident: e_1_2_9_227_1 doi: 10.1016/j.carbon.2009.03.035 – ident: e_1_2_9_314_1 doi: 10.1007/s10570-017-1230-0 – ident: e_1_2_9_254_1 doi: 10.1002/celc.201901829 – ident: e_1_2_9_179_1 doi: 10.1016/j.matlet.2009.09.049 – ident: e_1_2_9_185_1 doi: 10.1039/c3ta10650k – ident: e_1_2_9_246_1 doi: 10.1039/C6CS00639F – ident: e_1_2_9_85_1 doi: 10.1002/er.1804 – ident: e_1_2_9_152_1 doi: 10.1016/j.electacta.2015.07.077 – ident: e_1_2_9_55_1 doi: 10.1002/anie.201306129 – ident: e_1_2_9_191_1 doi: 10.1002/smll.201301770 – ident: e_1_2_9_46_1 doi: 10.1016/j.nanoen.2016.04.043 – ident: e_1_2_9_176_1 doi: 10.1016/j.jaap.2013.02.003 – ident: e_1_2_9_282_1 doi: 10.1016/j.cej.2011.01.067 – ident: e_1_2_9_184_1 doi: 10.1002/adma.201500472 – ident: e_1_2_9_48_1 doi: 10.1002/chem.200802097 – ident: e_1_2_9_130_1 doi: 10.1039/C6TA01314G – ident: e_1_2_9_267_1 doi: 10.1016/j.snb.2016.09.130 – ident: e_1_2_9_259_1 doi: 10.1002/smll.201600412 – ident: e_1_2_9_271_1 doi: 10.1002/aelm.201700193 – ident: e_1_2_9_66_1 doi: 10.1039/C7NR00130D – ident: e_1_2_9_156_1 doi: 10.1021/nl500859p – ident: e_1_2_9_277_1 doi: 10.1016/j.jhazmat.2009.07.138 – ident: e_1_2_9_252_1 doi: 10.1002/aenm.201600659 – ident: e_1_2_9_299_1 doi: 10.1002/cplu.201500261 – ident: e_1_2_9_19_1 doi: 10.1002/adma.200902986 – ident: e_1_2_9_137_1 doi: 10.1002/smll.201804966 – ident: e_1_2_9_53_1 doi: 10.1021/acsami.8b03059 – ident: e_1_2_9_300_1 doi: 10.1021/es5021839 – ident: e_1_2_9_247_1 doi: 10.1016/j.matlet.2018.12.143 – ident: e_1_2_9_303_1 doi: 10.1016/j.matlet.2013.02.019 – ident: e_1_2_9_151_1 doi: 10.1021/acssuschemeng.8b05022 – ident: e_1_2_9_138_1 doi: 10.1021/acs.chemmater.8b04572 – ident: e_1_2_9_235_1 doi: 10.1021/ja809265m – ident: e_1_2_9_260_1 doi: 10.1002/aenm.201702381 – ident: e_1_2_9_238_1 doi: 10.1002/smll.201400781 – ident: e_1_2_9_163_1 doi: 10.1039/C4TA03096F – ident: e_1_2_9_57_1 doi: 10.1021/acsaem.8b01690 – ident: e_1_2_9_81_1 doi: 10.1039/C5GC01054C – ident: e_1_2_9_315_1 doi: 10.1002/adma.202000596 – ident: e_1_2_9_84_1 doi: 10.1016/j.rser.2015.12.185 – ident: e_1_2_9_253_1 doi: 10.1021/acsami.8b13160 – ident: e_1_2_9_41_1 doi: 10.1021/am5023682 – ident: e_1_2_9_114_1 doi: 10.1016/j.biombioe.2011.04.032 – ident: e_1_2_9_242_1 doi: 10.1039/C7NJ04662F – ident: e_1_2_9_51_1 doi: 10.1021/jacs.8b13675 – ident: e_1_2_9_232_1 doi: 10.1016/j.cej.2009.12.016 – ident: e_1_2_9_172_1 doi: 10.1021/acs.accounts.8b00084 – ident: e_1_2_9_224_1 doi: 10.1039/C5RA11179J – volume-title: Coal: A Human History year: 2016 ident: e_1_2_9_1_1 – ident: e_1_2_9_149_1 doi: 10.1039/C5TA09948J – ident: e_1_2_9_68_1 doi: 10.1039/C6TA05406D – ident: e_1_2_9_249_1 doi: 10.1021/cr500062v – ident: e_1_2_9_126_1 doi: 10.1002/cplu.201500293 – ident: e_1_2_9_167_1 doi: 10.1002/anie.201102070 – ident: e_1_2_9_310_1 doi: 10.1016/j.msec.2017.07.007 – ident: e_1_2_9_145_1 doi: 10.1039/C4GC02032D – ident: e_1_2_9_65_1 doi: 10.1002/anie.201802753 – ident: e_1_2_9_214_1 doi: 10.1039/C6TA08742F – ident: e_1_2_9_82_1 doi: 10.1016/j.fuel.2006.12.013 – ident: e_1_2_9_140_1 doi: 10.1002/adfm.201605657 – ident: e_1_2_9_189_1 doi: 10.1039/C4EE01075B – ident: e_1_2_9_194_1 doi: 10.1016/j.carbon.2014.12.001 – ident: e_1_2_9_203_1 doi: 10.1016/j.jhazmat.2006.01.037 – ident: e_1_2_9_123_1 doi: 10.1016/j.chempr.2017.12.028 – ident: e_1_2_9_142_1 doi: 10.1021/acssuschemeng.8b00183 – ident: e_1_2_9_231_1 doi: 10.1016/j.carbon.2016.08.092 – ident: e_1_2_9_230_1 doi: 10.1016/j.electacta.2013.05.050 – ident: e_1_2_9_6_1 doi: 10.1002/adma.201504225 – ident: e_1_2_9_262_1 doi: 10.1002/aenm.201100191 – ident: e_1_2_9_21_1 doi: 10.1002/adma.201505326 – ident: e_1_2_9_90_1 doi: 10.1002/aenm.201700595 – ident: e_1_2_9_169_1 doi: 10.1002/adma.201800062 – ident: e_1_2_9_290_1 doi: 10.1002/ente.201901215 – ident: e_1_2_9_14_1 doi: 10.1039/C5CS00258C – ident: e_1_2_9_302_1 doi: 10.1021/acssuschemeng.8b03415 – ident: e_1_2_9_11_1 doi: 10.1021/cs5008393 – ident: e_1_2_9_74_1 doi: 10.1021/acscentsci.5b00191 – ident: e_1_2_9_106_1 doi: 10.1039/C6GC03555H – ident: e_1_2_9_188_1 doi: 10.1002/adma.201100984 – ident: e_1_2_9_220_1 doi: 10.1039/C5TA09043A – ident: e_1_2_9_44_1 doi: 10.1021/acsnano.5b05575 – ident: e_1_2_9_4_1 doi: 10.1126/science.1102896 – ident: e_1_2_9_307_1 doi: 10.1002/adfm.201900162 – ident: e_1_2_9_13_1 doi: 10.1038/s41565-018-0325-6 – ident: e_1_2_9_45_1 doi: 10.1002/adma.201706267 – ident: e_1_2_9_143_1 doi: 10.1002/smll.201303831 – ident: e_1_2_9_63_1 doi: 10.1021/acsami.9b04060 – ident: e_1_2_9_120_1 doi: 10.1021/acsnano.9b07063 – ident: e_1_2_9_272_1 doi: 10.1021/acsnano.9b08638 – ident: e_1_2_9_70_1 doi: 10.1002/aenm.201600377 – ident: e_1_2_9_134_1 doi: 10.1021/acssuschemeng.7b02164 – ident: e_1_2_9_42_1 doi: 10.1002/adma.201204949 – ident: e_1_2_9_237_1 doi: 10.1080/21663831.2016.1250834 – ident: e_1_2_9_103_1 doi: 10.1021/cr900354u – ident: e_1_2_9_119_1 doi: 10.1002/advs.201700107 – ident: e_1_2_9_157_1 doi: 10.1021/acsnano.9b05978 – ident: e_1_2_9_25_1 doi: 10.1002/adma.201200164 – ident: e_1_2_9_107_1 doi: 10.1088/2053-1591/aaba00 – ident: e_1_2_9_22_1 doi: 10.1038/nature09211 – ident: e_1_2_9_256_1 doi: 10.1039/C4CS00015C – ident: e_1_2_9_292_1 doi: 10.1002/adma.201900498 – ident: e_1_2_9_202_1 doi: 10.1021/acsami.5b02697 – ident: e_1_2_9_121_1 doi: 10.1016/j.nanoen.2015.10.038 – ident: e_1_2_9_320_1 doi: 10.1039/C5TC00813A – ident: e_1_2_9_311_1 doi: 10.1002/anie.201712453 – ident: e_1_2_9_141_1 doi: 10.1007/s12274-018-2172-z – ident: e_1_2_9_50_1 doi: 10.1002/anie.201204381 – ident: e_1_2_9_312_1 doi: 10.1002/anie.201406836 – ident: e_1_2_9_97_1 doi: 10.1039/C6TA05872H – ident: e_1_2_9_122_1 doi: 10.1039/C6EE03716J – ident: e_1_2_9_170_1 doi: 10.1002/adma.201702211 – ident: e_1_2_9_264_1 doi: 10.1039/C4TA05810K – ident: e_1_2_9_83_1 doi: 10.1016/j.jaap.2013.10.013 – ident: e_1_2_9_219_1 doi: 10.1021/acsami.7b07746 – ident: e_1_2_9_319_1 doi: 10.1021/acsnano.6b00043 – ident: e_1_2_9_298_1 doi: 10.1016/j.catcom.2017.10.014 – ident: e_1_2_9_118_1 doi: 10.1021/acsami.7b02985 – ident: e_1_2_9_276_1 doi: 10.1039/C9TA11618D – ident: e_1_2_9_95_1 doi: 10.1021/acsnano.5b06022 – ident: e_1_2_9_99_1 doi: 10.1016/j.mser.2017.04.001 – ident: e_1_2_9_113_1 doi: 10.1016/j.pecs.2006.12.001 – ident: e_1_2_9_193_1 doi: 10.1039/C4TA02154A – ident: e_1_2_9_216_1 doi: 10.1021/acssuschemeng.8b03763 – ident: e_1_2_9_190_1 doi: 10.1021/cm2020077 – ident: e_1_2_9_285_1 doi: 10.1016/j.jece.2013.12.019 – ident: e_1_2_9_33_1 doi: 10.1016/j.nanoen.2016.12.046 – ident: e_1_2_9_187_1 doi: 10.1002/jctb.4028 – ident: e_1_2_9_279_1 doi: 10.1016/j.arabjc.2014.01.020 – ident: e_1_2_9_278_1 doi: 10.1016/j.jhazmat.2006.07.049 – ident: e_1_2_9_294_1 doi: 10.1016/j.renene.2015.08.010 – ident: e_1_2_9_56_1 doi: 10.1021/acssuschemeng.8b04486 – ident: e_1_2_9_75_1 doi: 10.1039/C6NR08139H – ident: e_1_2_9_287_1 doi: 10.1016/j.jhazmat.2011.04.021 – ident: e_1_2_9_182_1 doi: 10.1016/j.jhazmat.2015.02.026 – ident: e_1_2_9_293_1 doi: 10.1021/cs300103k – volume: 5 start-page: 52 year: 2017 ident: e_1_2_9_101_1 publication-title: EnergyTechnol. – ident: e_1_2_9_127_1 doi: 10.1016/j.carbpol.2015.07.005 – ident: e_1_2_9_209_1 doi: 10.1016/j.cej.2017.02.105 – ident: e_1_2_9_38_1 doi: 10.1002/adma.201606895 – ident: e_1_2_9_251_1 doi: 10.1002/aenm.201602898 – ident: e_1_2_9_24_1 doi: 10.1002/smll.201604290 – ident: e_1_2_9_135_1 doi: 10.1002/adma.201601572 – ident: e_1_2_9_215_1 doi: 10.1021/acssuschemeng.8b01292 – ident: e_1_2_9_27_1 doi: 10.1002/adfm.200801057 – ident: e_1_2_9_200_1 doi: 10.1002/adma.201901186 – ident: e_1_2_9_178_1 doi: 10.1021/jp805113y – ident: e_1_2_9_213_1 doi: 10.1006/jcis.2000.7171 – ident: e_1_2_9_266_1 doi: 10.1021/acsami.7b13356 – ident: e_1_2_9_111_1 doi: 10.1021/ac034415p – ident: e_1_2_9_26_1 doi: 10.1002/adma.201503221 – ident: e_1_2_9_284_1 doi: 10.1016/S1001-0742(10)60515-3 – ident: e_1_2_9_59_1 doi: 10.1039/C6RA25899A – ident: e_1_2_9_205_1 doi: 10.1021/am5075562 – ident: e_1_2_9_7_1 doi: 10.1039/C7EE03031B – ident: e_1_2_9_40_1 doi: 10.1002/adma.200902812 – ident: e_1_2_9_250_1 doi: 10.1002/adma.201405115 – ident: e_1_2_9_321_1 doi: 10.1007/s12274-014-0644-3 – ident: e_1_2_9_161_1 doi: 10.1016/j.carbon.2012.01.024 – ident: e_1_2_9_270_1 doi: 10.1002/adma.201908214 |
SSID | ssj0031247 |
Score | 2.685498 |
SecondaryResourceType | review_article |
Snippet | Biomass‐derived carbon materials (BCMs) are encountering the most flourishing moment because of their versatile properties and wide potential applications.... Biomass-derived carbon materials (BCMs) are encountering the most flourishing moment because of their versatile properties and wide potential applications.... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | e2008079 |
SubjectTerms | Aerogels applications Biomass biomass‐derived carbon materials Carbon Carbon fibers carbonization Chemical composition Nanotechnology preparation approach structure–property relationship Thermal degradation Tubes |
Title | Biomass‐Derived Carbon Materials: Controllable Preparation and Versatile Applications |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fsmll.202008079 https://www.proquest.com/docview/2579307553 https://www.proquest.com/docview/2543446329 |
Volume | 17 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1JSxxBFC6CJ3OISwyOGy0IOZV219KLNx0VEScEE4m3ppbXII49MosHT_4Ef6O_xPe6Z3pmhBCIx6p6RXctb6l6733F2J6yysR47uBhYVKuAFKeQqE4oGqJCih0VsEudn7E59fq4kbfzGTx1_gQzYUbcUYlr4nBjR0cTEFDB_ddch2Q_z5MKIOPArbIKrpq8KMkKq_qdRXUWZyAtyaojaE4mO8-r5WmpuaswVppnLMlZib_Wgea3O2PhnbfPb2DcfzIYJbZl7E5GhzV-2eFfYJylX2eASn8yv4c31IM0eD1-eUEqx7BB23Tt70y6JhhvX8Pg3Yd8d6lRKzgZx9qRHGkMaUP6E4OS9hyNOMuX2PXZ6e_2-d8_BwDd2i1ZTzxIUTOaEi1sFJk5MTzcRQVUvs0tFlEyVcgY3BGGYmCC3BsxrlEiEJbNBS_sYWyV8I6C6SIfOKUN9aidtQ-Mwpc4mUWg0lCr1uMT5Yjd2Oscnoyo5vXKMsipwnLmwlrse8N_UON0vFXyq3J6uZjbh3kKLYylHVayxbbbZqRz8h5YkrojYhGSTw647hbTFRL-Y8v5b86l5dNaeN_Om2yRUEhNFXs4BZbGPZHsI020NDuVPv8DZ1O_3c |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3JbtRAEC1F4QAc2BEDAYwE4uTE7sULEocwQzQhMxGCROTmdLvLEmLwoFlAcOIT-BV-hU_gS6jylgkSQkLKgaPdZbW7q2vprupXAA-VVSaifYcfFCbxFWLiJ1goH8m0hAUWOq1gF8f70fBQvTjSR2vwvb0LU-NDdAduLBmVvmYB5wPprRPU0Pn7CccOOIAfxGmTV7mHnz_Rrm3-dHdALH4kxM7zg_7QbwoL-Dn5H6kfuwDD3GhMtLBSpByOclEYFlK7JLBpyNeIUEaYG2UkiSBSjybPYyEKbUPGXyKtf47LiDNc_-BVh1glyVxW9VzISvoM9dXiRAZi6_T_nraDJ87tqotc2bidy_CjnZ06teXd5nJhN_MvvwFH_lfTdwUuNR63t12LyFVYw_IaXFzBYbwOb5695TSp-c-v3wb06iM6r29mdlp6Y7OoRfSJ16-T-id818x7OcMaNJ1oTOk8PnakJ2rZXskIuAGHZzKym7BeTku8BZ4UoYtz5Yy15ABolxqFeexkGqGJA6d74Lf8z_IGjp2rgkyyGkhaZMygrGNQDx539B9qIJI_Um60yylrFNI8I82ckjrXWvbgQddMqoTjQ6bE6ZJplFQqonH3QFRr5y89Za_Ho1H3dPtfProP54cH41E22t3fuwMXBGcMVamSG7C-mC3xLrl8C3uvEjIPjs96Wf4C7claxQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1ZaxRBEC5CBNEHb3E16giKT53M9DGH4EPcdUnMbghqMG9jHzUgrrNhD0Wf_An-FP-Kf8FfYvVc2QgiCHnwcaZr6OmurqO7qr8CeCiN1DHtO1hY6JRJxJSlWEiGZFqiAguVVbCL4_1451C-OFJHa_C9vQtT40N0B25eMip97QX82BVbJ6Ch8w8THzrw8fswyZq0yj38_Ik2bfOnuwPi8CPOh89f93dYU1eAWXI_Mpa4ECOrFaaKG8EzH41ycRQVQrk0NFnkbxGhiNFqqQVJIFKP2tqE80KZyMMvkdI_J-Mw88UiBi87wCpB1rIq50JGknmkrxYmMuRbp__3tBk88W1XPeTKxA0vw492curMlveby4XZtF9-w438n2bvClxq_O1guxaQq7CG5TW4uILCeB3ePHvnk6TmP79-G9Crj-iCvp6ZaRmM9aIW0CdBv07pn_ibZsHBDGvIdKLRpQv8oSM9Ucv2Sj7ADTg8k5HdhPVyWuItCASPXGKl08aQ-Vcu0xJt4kQWo05Cp3rAWvbntgFj9zVBJnkNI81zz6C8Y1APHnf0xzUMyR8pN9rVlDfqaJ6TXs5ImSslevCgayZF4qNDusTp0tNIIWVM4-4Br5bOX3rKX41Ho-7p9r98dB_OHwyG-Wh3f-8OXOA-XajKk9yA9cVsiXfJ31uYe5WIBfD2rFflL10HWXQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Biomass%E2%80%90Derived+Carbon+Materials%3A+Controllable+Preparation+and+Versatile+Applications&rft.jtitle=Small+%28Weinheim+an+der+Bergstrasse%2C+Germany%29&rft.au=Wang%2C+Yiliang&rft.au=Zhang%2C+Mingchao&rft.au=Shen%2C+Xinyi&rft.au=Wang%2C+Huimin&rft.date=2021-10-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=1613-6810&rft.eissn=1613-6829&rft.volume=17&rft.issue=40&rft_id=info:doi/10.1002%2Fsmll.202008079&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1613-6810&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1613-6810&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1613-6810&client=summon |