Advances in the Synthesis of 2D MXenes

2D transition metal carbides, nitrides, and carbonitrides, also known as MXenes, are versatile materials due to their adjustable structure and rich surface chemistry. The physical and chemical diversity has recognized MXenes as a potential 2D material with a wide spectrum of application domains. Sin...

Full description

Saved in:
Bibliographic Details
Published inAdvanced materials (Weinheim) Vol. 33; no. 39; pp. e2103148 - n/a
Main Authors Wei, Yi, Zhang, Peng, Soomro, Razium A., Zhu, Qizhen, Xu, Bin
Format Journal Article
LanguageEnglish
Published Weinheim Wiley Subscription Services, Inc 01.10.2021
Subjects
Online AccessGet full text
ISSN0935-9648
1521-4095
1521-4095
DOI10.1002/adma.202103148

Cover

Loading…
Abstract 2D transition metal carbides, nitrides, and carbonitrides, also known as MXenes, are versatile materials due to their adjustable structure and rich surface chemistry. The physical and chemical diversity has recognized MXenes as a potential 2D material with a wide spectrum of application domains. Since the discovery of MXenes in 2011, a wide variety of synthetic routes has been proposed with advancement toward large‐scale preparing methods for MXene nanosheets and derivative products. Herein, the critical synthesis aspects and the operating conditions that influence the physical and chemical characteristics of MXenes are discussed in detail. The emerging etching methods including HF etching methods, in situ HF‐forming etching methods, electrochemical etching methods, alkali etching methods, and molten salt etching methods, as well as delamination strategies are discussed. Considering the future developments and practical applications, the large‐scale synthesis routes and the antioxidation strategies of MXenes are also summarized. In summary, a generalized overview of MXenes synthesis protocols with an outlook for the current challenges and promising technologies for large‐scale preparation and stable storage is provided. The recent progress of MXenes synthesis strategies, including etching, intercalation, and delamination, is summarized. The large‐scale preparation methods for MXenes and their derivates, such as flexible membranes and fibers, are discussed. Moreover, the understanding of the oxidation stability of MXenes and stable storage strategies are also addressed.
AbstractList 2D transition metal carbides, nitrides, and carbonitrides, also known as MXenes, are versatile materials due to their adjustable structure and rich surface chemistry. The physical and chemical diversity has recognized MXenes as a potential 2D material with a wide spectrum of application domains. Since the discovery of MXenes in 2011, a wide variety of synthetic routes has been proposed with advancement toward large‐scale preparing methods for MXene nanosheets and derivative products. Herein, the critical synthesis aspects and the operating conditions that influence the physical and chemical characteristics of MXenes are discussed in detail. The emerging etching methods including HF etching methods, in situ HF‐forming etching methods, electrochemical etching methods, alkali etching methods, and molten salt etching methods, as well as delamination strategies are discussed. Considering the future developments and practical applications, the large‐scale synthesis routes and the antioxidation strategies of MXenes are also summarized. In summary, a generalized overview of MXenes synthesis protocols with an outlook for the current challenges and promising technologies for large‐scale preparation and stable storage is provided. The recent progress of MXenes synthesis strategies, including etching, intercalation, and delamination, is summarized. The large‐scale preparation methods for MXenes and their derivates, such as flexible membranes and fibers, are discussed. Moreover, the understanding of the oxidation stability of MXenes and stable storage strategies are also addressed.
2D transition metal carbides, nitrides, and carbonitrides, also known as MXenes, are versatile materials due to their adjustable structure and rich surface chemistry. The physical and chemical diversity has recognized MXenes as a potential 2D material with a wide spectrum of application domains. Since the discovery of MXenes in 2011, a wide variety of synthetic routes has been proposed with advancement toward large‐scale preparing methods for MXene nanosheets and derivative products. Herein, the critical synthesis aspects and the operating conditions that influence the physical and chemical characteristics of MXenes are discussed in detail. The emerging etching methods including HF etching methods, in situ HF‐forming etching methods, electrochemical etching methods, alkali etching methods, and molten salt etching methods, as well as delamination strategies are discussed. Considering the future developments and practical applications, the large‐scale synthesis routes and the antioxidation strategies of MXenes are also summarized. In summary, a generalized overview of MXenes synthesis protocols with an outlook for the current challenges and promising technologies for large‐scale preparation and stable storage is provided.
2D transition metal carbides, nitrides, and carbonitrides, also known as MXenes, are versatile materials due to their adjustable structure and rich surface chemistry. The physical and chemical diversity has recognized MXenes as a potential 2D material with a wide spectrum of application domains. Since the discovery of MXenes in 2011, a wide variety of synthetic routes has been proposed with advancement toward large-scale preparing methods for MXene nanosheets and derivative products. Herein, the critical synthesis aspects and the operating conditions that influence the physical and chemical characteristics of MXenes are discussed in detail. The emerging etching methods including HF etching methods, in situ HF-forming etching methods, electrochemical etching methods, alkali etching methods, and molten salt etching methods, as well as delamination strategies are discussed. Considering the future developments and practical applications, the large-scale synthesis routes and the antioxidation strategies of MXenes are also summarized. In summary, a generalized overview of MXenes synthesis protocols with an outlook for the current challenges and promising technologies for large-scale preparation and stable storage is provided.2D transition metal carbides, nitrides, and carbonitrides, also known as MXenes, are versatile materials due to their adjustable structure and rich surface chemistry. The physical and chemical diversity has recognized MXenes as a potential 2D material with a wide spectrum of application domains. Since the discovery of MXenes in 2011, a wide variety of synthetic routes has been proposed with advancement toward large-scale preparing methods for MXene nanosheets and derivative products. Herein, the critical synthesis aspects and the operating conditions that influence the physical and chemical characteristics of MXenes are discussed in detail. The emerging etching methods including HF etching methods, in situ HF-forming etching methods, electrochemical etching methods, alkali etching methods, and molten salt etching methods, as well as delamination strategies are discussed. Considering the future developments and practical applications, the large-scale synthesis routes and the antioxidation strategies of MXenes are also summarized. In summary, a generalized overview of MXenes synthesis protocols with an outlook for the current challenges and promising technologies for large-scale preparation and stable storage is provided.
Author Xu, Bin
Soomro, Razium A.
Zhang, Peng
Wei, Yi
Zhu, Qizhen
Author_xml – sequence: 1
  givenname: Yi
  surname: Wei
  fullname: Wei, Yi
  organization: Beijing University of Chemical Technology
– sequence: 2
  givenname: Peng
  surname: Zhang
  fullname: Zhang, Peng
  organization: Beijing University of Chemical Technology
– sequence: 3
  givenname: Razium A.
  surname: Soomro
  fullname: Soomro, Razium A.
  organization: Beijing University of Chemical Technology
– sequence: 4
  givenname: Qizhen
  surname: Zhu
  fullname: Zhu, Qizhen
  organization: Beijing University of Chemical Technology
– sequence: 5
  givenname: Bin
  orcidid: 0000-0001-5177-8929
  surname: Xu
  fullname: Xu, Bin
  email: xubin@mail.buct.edu.cn, binxumail@163.com
  organization: Beijing University of Chemical Technology
BookMark eNqFkM1LwzAYh4NMcJtePRcE8dKZjyZNjmXzCzY8qOAtpOlbzOjSmXTK_ns7JgoD8fS7PM_LyzNCA996QOic4AnBmF6bamUmFFOCGcnkERoSTkmaYcUHaIgV46kSmTxBoxiXGGMlsBiiy6L6MN5CTJxPujdInra-n-hi0tYJnSWLV_AQT9FxbZoIZ987Ri-3N8_T-3T-ePcwLeapzYiQKWe2VmWZY0tzzkByMExRyUpLSpGz3ArJFECdEyJsWVKrqsxQMBlVtqwkZmN0tb-7Du37BmKnVy5aaBrjod1ETblgOcGSsh69OECX7Sb4_rueyiXhXArVU9mesqGNMUCtretM51rfBeMaTbDexdO7ePonXq9NDrR1cCsTtn8Lai98uga2_9C6mC2KX_cLyPKBCQ
CitedBy_id crossref_primary_10_1039_D4NR03050H
crossref_primary_10_1007_s40843_023_2748_8
crossref_primary_10_1039_D3NJ00943B
crossref_primary_10_1088_2053_1583_ac88e2
crossref_primary_10_1016_j_desal_2023_117094
crossref_primary_10_1016_j_nxmate_2025_100485
crossref_primary_10_1016_j_cej_2023_145700
crossref_primary_10_1016_j_cej_2024_150697
crossref_primary_10_1016_j_matre_2022_100080
crossref_primary_10_1039_D3QI00732D
crossref_primary_10_3390_coatings14121564
crossref_primary_10_1021_acsanm_2c04607
crossref_primary_10_3389_fchem_2022_1090905
crossref_primary_10_1002_adfm_202209918
crossref_primary_10_1002_adom_202301761
crossref_primary_10_1016_j_physe_2022_115476
crossref_primary_10_1002_smm2_1238
crossref_primary_10_1016_j_apenergy_2024_122944
crossref_primary_10_1002_smll_202308225
crossref_primary_10_1039_D3TA03069E
crossref_primary_10_1002_smll_202309785
crossref_primary_10_1021_acsanm_3c04491
crossref_primary_10_1002_chem_202303451
crossref_primary_10_1016_j_seppur_2025_132120
crossref_primary_10_1021_acs_energyfuels_3c00589
crossref_primary_10_1002_smll_202311869
crossref_primary_10_3390_molecules29163880
crossref_primary_10_1002_aenm_202202303
crossref_primary_10_1021_acsmaterialslett_3c00397
crossref_primary_10_3390_polym14194094
crossref_primary_10_1002_smll_202400593
crossref_primary_10_3390_diagnostics13040697
crossref_primary_10_1016_j_jcis_2022_06_075
crossref_primary_10_1016_j_mattod_2025_02_004
crossref_primary_10_1021_acsanm_2c03648
crossref_primary_10_1002_advs_202300273
crossref_primary_10_1038_s41467_022_34699_3
crossref_primary_10_1002_cjce_25369
crossref_primary_10_1016_j_ensm_2022_06_044
crossref_primary_10_1002_advs_202304874
crossref_primary_10_1002_aenm_202304106
crossref_primary_10_1016_j_ijhydene_2023_11_167
crossref_primary_10_1016_j_chempr_2023_09_001
crossref_primary_10_1016_j_coco_2022_101474
crossref_primary_10_1002_adts_202400091
crossref_primary_10_1016_j_ccr_2024_216253
crossref_primary_10_1002_adsu_202400844
crossref_primary_10_1016_j_surfin_2023_103426
crossref_primary_10_1021_acsanm_2c00109
crossref_primary_10_1016_j_cjsc_2024_100337
crossref_primary_10_1039_D3QM00783A
crossref_primary_10_1002_smll_202105883
crossref_primary_10_1007_s42864_023_00229_x
crossref_primary_10_1007_s12598_022_02189_6
crossref_primary_10_1016_j_seppur_2024_126982
crossref_primary_10_1016_j_cej_2025_160883
crossref_primary_10_1002_smtd_202301689
crossref_primary_10_1016_j_heliyon_2024_e31155
crossref_primary_10_1016_j_flatc_2022_100439
crossref_primary_10_1016_j_bioactmat_2024_05_023
crossref_primary_10_1007_s10854_023_10146_x
crossref_primary_10_1016_j_mssp_2024_108826
crossref_primary_10_1002_smll_202410160
crossref_primary_10_1007_s11664_023_10722_1
crossref_primary_10_1016_j_jcis_2025_02_121
crossref_primary_10_1002_adfm_202306591
crossref_primary_10_1039_D4TA04996A
crossref_primary_10_1002_admt_202401944
crossref_primary_10_1002_adfm_202308532
crossref_primary_10_1002_smtd_202201525
crossref_primary_10_1016_j_est_2024_113554
crossref_primary_10_1021_acs_analchem_3c03555
crossref_primary_10_1007_s11249_024_01881_1
crossref_primary_10_1002_er_8252
crossref_primary_10_1039_D3NR05723B
crossref_primary_10_1002_asia_202401181
crossref_primary_10_1088_2053_1583_ac8c9f
crossref_primary_10_1002_adma_202305200
crossref_primary_10_1016_j_apsusc_2023_158838
crossref_primary_10_1021_acs_energyfuels_3c01420
crossref_primary_10_1007_s00604_022_05376_5
crossref_primary_10_1016_j_actbio_2023_12_038
crossref_primary_10_1111_jace_19939
crossref_primary_10_1016_j_colsurfa_2023_131312
crossref_primary_10_1186_s12951_022_01428_3
crossref_primary_10_1016_j_cej_2024_149304
crossref_primary_10_1007_s12598_024_03022_y
crossref_primary_10_1016_j_mtcomm_2022_104216
crossref_primary_10_1039_D2TA03050K
crossref_primary_10_1364_OE_479870
crossref_primary_10_1016_j_est_2023_110293
crossref_primary_10_1039_D2TC05150H
crossref_primary_10_1039_D3QM00220A
crossref_primary_10_1039_D4TC04570J
crossref_primary_10_1007_s40820_022_00941_2
crossref_primary_10_1007_s40843_022_2298_0
crossref_primary_10_1149_2162_8777_ac9336
crossref_primary_10_1016_j_jallcom_2024_174573
crossref_primary_10_1016_j_snb_2022_133225
crossref_primary_10_1016_j_cej_2025_160741
crossref_primary_10_1002_adfm_202110267
crossref_primary_10_1016_j_jhazmat_2023_131875
crossref_primary_10_1021_acsami_2c11577
crossref_primary_10_1016_j_cej_2024_149302
crossref_primary_10_1016_j_ijhydene_2024_05_227
crossref_primary_10_15541_jim20230510
crossref_primary_10_1007_s13206_024_00157_z
crossref_primary_10_1002_admt_202202029
crossref_primary_10_1002_smtd_202201651
crossref_primary_10_1021_acs_chemmater_4c01536
crossref_primary_10_1016_j_jece_2024_112762
crossref_primary_10_1038_s41570_024_00680_5
crossref_primary_10_1016_j_pnsc_2024_07_018
crossref_primary_10_1016_j_oceram_2023_100526
crossref_primary_10_1016_j_cej_2024_151510
crossref_primary_10_1002_smll_202311427
crossref_primary_10_1002_smll_202309580
crossref_primary_10_1016_j_ccr_2024_215691
crossref_primary_10_1016_j_jallcom_2023_171902
crossref_primary_10_1016_j_mattod_2021_11_021
crossref_primary_10_1016_j_compositesa_2022_107362
crossref_primary_10_1016_j_cej_2023_142508
crossref_primary_10_1002_smll_202404872
crossref_primary_10_1007_s41664_023_00269_9
crossref_primary_10_1016_j_est_2024_113851
crossref_primary_10_1021_acs_accounts_4c00295
crossref_primary_10_12677_ms_2024_149142
crossref_primary_10_1016_j_apcatb_2024_123827
crossref_primary_10_1016_j_apmt_2023_101908
crossref_primary_10_1016_j_est_2023_109299
crossref_primary_10_1088_1361_648X_ad05fa
crossref_primary_10_1016_j_jallcom_2024_175532
crossref_primary_10_1021_acsmaterialslett_2c00771
crossref_primary_10_1016_j_cej_2024_149555
crossref_primary_10_5004_dwt_2023_29162
crossref_primary_10_1016_j_cis_2025_103441
crossref_primary_10_1002_smll_202201290
crossref_primary_10_1021_acsomega_3c02002
crossref_primary_10_3389_fbioe_2023_1154301
crossref_primary_10_1016_j_jallcom_2023_169836
crossref_primary_10_1016_j_cej_2024_151600
crossref_primary_10_1016_j_cej_2023_141402
crossref_primary_10_1016_S1872_5805_23_60730_9
crossref_primary_10_1016_j_fuel_2025_134859
crossref_primary_10_1039_D4NR00015C
crossref_primary_10_1016_j_cej_2023_144913
crossref_primary_10_1021_acs_energyfuels_4c04303
crossref_primary_10_34133_bmr_0143
crossref_primary_10_1016_j_cej_2024_155098
crossref_primary_10_1016_j_electacta_2024_143787
crossref_primary_10_1016_j_susmat_2025_e01280
crossref_primary_10_1021_acsnano_1c11298
crossref_primary_10_1002_cphc_202400604
crossref_primary_10_1016_j_bios_2021_113943
crossref_primary_10_1002_smtd_202201559
crossref_primary_10_1016_j_jcis_2024_06_115
crossref_primary_10_1002_pssr_202300468
crossref_primary_10_1039_D3GC00787A
crossref_primary_10_1016_j_ijhydene_2024_11_379
crossref_primary_10_1021_acsami_3c09605
crossref_primary_10_1002_adma_202108560
crossref_primary_10_1002_ange_202210828
crossref_primary_10_1002_advs_202409404
crossref_primary_10_1134_S0036023624603568
crossref_primary_10_1039_D3RA02100A
crossref_primary_10_1016_j_compositesa_2023_107640
crossref_primary_10_1016_j_scitotenv_2022_160539
crossref_primary_10_1016_j_jallcom_2024_176408
crossref_primary_10_1002_adfm_202302188
crossref_primary_10_1016_j_cej_2025_160856
crossref_primary_10_1021_acsami_2c21049
crossref_primary_10_1039_D3CC00746D
crossref_primary_10_1088_1361_648X_ad5596
crossref_primary_10_1016_j_carbon_2024_118834
crossref_primary_10_1016_j_est_2024_113806
crossref_primary_10_3390_mi14061273
crossref_primary_10_1002_EXP_20220049
crossref_primary_10_1016_j_saa_2023_123445
crossref_primary_10_1016_j_jechem_2024_01_038
crossref_primary_10_1016_j_carbon_2022_07_021
crossref_primary_10_1007_s40820_022_00880_y
crossref_primary_10_1016_j_elecom_2022_107236
crossref_primary_10_1016_j_jechem_2022_08_023
crossref_primary_10_1021_acsnano_2c10103
crossref_primary_10_1016_j_flatc_2022_100377
crossref_primary_10_3389_fchem_2022_962528
crossref_primary_10_1016_j_apsusc_2022_154809
crossref_primary_10_1016_j_carbpol_2024_122849
crossref_primary_10_1021_accountsmr_2c00025
crossref_primary_10_1002_adfm_202422081
crossref_primary_10_1016_j_trac_2023_117096
crossref_primary_10_1016_j_cej_2023_143481
crossref_primary_10_1039_D4MA00894D
crossref_primary_10_3390_molecules29081731
crossref_primary_10_1007_s40820_023_01039_z
crossref_primary_10_1007_s13391_022_00337_9
crossref_primary_10_1016_j_matt_2023_07_013
crossref_primary_10_1186_s43074_023_00091_7
crossref_primary_10_1016_j_cej_2025_160392
crossref_primary_10_1016_j_desal_2024_118198
crossref_primary_10_1039_D4EN00453A
crossref_primary_10_1016_j_cattod_2022_07_021
crossref_primary_10_1149_1945_7111_ac7bac
crossref_primary_10_1002_aenm_202301349
crossref_primary_10_1016_j_ensm_2024_103568
crossref_primary_10_1002_cplu_202300777
crossref_primary_10_1016_j_jmat_2023_08_013
crossref_primary_10_1002_smll_202404435
crossref_primary_10_1016_j_psep_2022_05_040
crossref_primary_10_1002_elt2_44
crossref_primary_10_1016_j_cej_2024_151396
crossref_primary_10_1080_10408436_2023_2263485
crossref_primary_10_1016_j_est_2024_113810
crossref_primary_10_1016_j_cej_2024_151393
crossref_primary_10_1002_adfm_202412254
crossref_primary_10_1016_j_jcis_2023_04_015
crossref_primary_10_1039_D4TA04211E
crossref_primary_10_1007_s10853_024_09917_6
crossref_primary_10_1016_j_cej_2025_161488
crossref_primary_10_1021_acscatal_4c05247
crossref_primary_10_3390_nano14050447
crossref_primary_10_1007_s40145_022_0624_0
crossref_primary_10_3390_nano13212885
crossref_primary_10_1039_D3CP04977A
crossref_primary_10_1016_j_actbio_2023_01_049
crossref_primary_10_1557_s43578_022_00680_5
crossref_primary_10_1016_j_jmat_2023_08_002
crossref_primary_10_1016_j_snr_2023_100175
crossref_primary_10_1002_chem_202400874
crossref_primary_10_1021_acsapm_4c00521
crossref_primary_10_1016_j_seppur_2024_130962
crossref_primary_10_1021_acsaem_2c00746
crossref_primary_10_1007_s11426_024_2357_5
crossref_primary_10_1088_1361_6463_ac8b1a
crossref_primary_10_1039_D4GC01566E
crossref_primary_10_1016_j_cej_2022_140277
crossref_primary_10_1016_j_cej_2025_161334
crossref_primary_10_1016_j_molstruc_2025_141838
crossref_primary_10_15251_DJNB_2024_191_129
crossref_primary_10_1039_D3DT00124E
crossref_primary_10_3390_nano14070647
crossref_primary_10_1016_j_matchemphys_2023_127787
crossref_primary_10_1002_eom2_12485
crossref_primary_10_1007_s40820_024_01444_y
crossref_primary_10_1016_j_mtla_2024_102089
crossref_primary_10_1016_j_mtsust_2023_100350
crossref_primary_10_1016_j_matlet_2023_135324
crossref_primary_10_1002_adtp_202300268
crossref_primary_10_1002_admi_202101959
crossref_primary_10_1002_adfm_202210184
crossref_primary_10_1039_D3QI02596A
crossref_primary_10_1002_cbdv_202400366
crossref_primary_10_1016_j_checat_2023_100634
crossref_primary_10_1021_acs_jpcc_3c07989
crossref_primary_10_1016_j_microc_2024_111302
crossref_primary_10_1088_2631_7990_ad1573
crossref_primary_10_1021_acsami_4c14775
crossref_primary_10_1021_acsanm_3c00624
crossref_primary_10_1093_nsr_nwae251
crossref_primary_10_1016_j_jiec_2025_03_004
crossref_primary_10_1021_acsami_3c14780
crossref_primary_10_1016_j_cej_2023_147920
crossref_primary_10_1002_adfm_202402543
crossref_primary_10_1016_j_jssc_2022_123731
crossref_primary_10_1016_j_ensm_2024_103257
crossref_primary_10_1021_acsami_2c07741
crossref_primary_10_1016_j_scib_2023_11_008
crossref_primary_10_1016_j_infrared_2023_104987
crossref_primary_10_1021_acsmaterialslett_3c00223
crossref_primary_10_1016_j_scitotenv_2024_173264
crossref_primary_10_1016_j_nxmate_2024_100323
crossref_primary_10_1002_adfm_202402307
crossref_primary_10_1002_inf2_12654
crossref_primary_10_1039_D3TA00072A
crossref_primary_10_1021_acsmaterialslett_4c00034
crossref_primary_10_1021_acsomega_2c05913
crossref_primary_10_1016_j_ceramint_2022_05_137
crossref_primary_10_1016_j_seppur_2023_124265
crossref_primary_10_1038_s41596_024_00969_1
crossref_primary_10_1002_advs_202303998
crossref_primary_10_3390_s23249743
crossref_primary_10_1039_D2NR06625D
crossref_primary_10_3390_membranes14090184
crossref_primary_10_1016_j_cjche_2023_02_028
crossref_primary_10_1016_j_cej_2023_145970
crossref_primary_10_1016_j_molliq_2023_123787
crossref_primary_10_1088_2053_1583_ac9e66
crossref_primary_10_1039_D4SC05097E
crossref_primary_10_1039_D2TB01503J
crossref_primary_10_1002_anbr_202400033
crossref_primary_10_1002_sus2_259
crossref_primary_10_1007_s40820_021_00728_x
crossref_primary_10_1016_j_carbon_2023_118587
crossref_primary_10_1016_j_electacta_2024_143955
crossref_primary_10_1016_j_est_2024_110868
crossref_primary_10_1021_acsanm_4c04164
crossref_primary_10_1021_acsami_4c23060
crossref_primary_10_1002_ange_202411849
crossref_primary_10_1039_D2TA00613H
crossref_primary_10_1016_j_cej_2024_151230
crossref_primary_10_1016_j_jcis_2024_10_145
crossref_primary_10_1021_acsaelm_4c00341
crossref_primary_10_26599_NR_2025_94907091
crossref_primary_10_1021_acsaem_2c01845
crossref_primary_10_1016_j_tifs_2024_104665
crossref_primary_10_1016_j_jece_2022_108663
crossref_primary_10_1016_j_ccr_2022_214518
crossref_primary_10_1016_j_inoche_2023_111793
crossref_primary_10_1109_JSEN_2023_3285594
crossref_primary_10_1002_adma_202401035
crossref_primary_10_1016_j_flatc_2025_100849
crossref_primary_10_1021_acsami_4c14113
crossref_primary_10_1016_j_est_2023_108004
crossref_primary_10_1016_j_scib_2024_07_009
crossref_primary_10_1002_app_55511
crossref_primary_10_3390_nano13081337
crossref_primary_10_1039_D2TA03482D
crossref_primary_10_1002_chem_202404164
crossref_primary_10_20517_energymater_2023_60
crossref_primary_10_1016_j_cej_2023_141370
crossref_primary_10_1016_j_jmmm_2025_172920
crossref_primary_10_1039_D4TA03566F
crossref_primary_10_1016_j_jallcom_2023_168902
crossref_primary_10_1039_D4TA00913D
crossref_primary_10_1007_s40843_022_2413_4
crossref_primary_10_1016_j_jallcom_2022_166647
crossref_primary_10_1021_acsanm_4c05026
crossref_primary_10_3390_nano14010097
crossref_primary_10_1016_j_cej_2023_143429
crossref_primary_10_1016_j_est_2024_110757
crossref_primary_10_3390_bios13050495
crossref_primary_10_3390_nano12213792
crossref_primary_10_1002_slct_202302281
crossref_primary_10_1002_smll_202200829
crossref_primary_10_1016_j_microc_2023_109258
crossref_primary_10_1016_j_seppur_2023_125010
crossref_primary_10_1080_23746149_2023_2288353
crossref_primary_10_1039_D2TA03481F
crossref_primary_10_1002_chem_202401922
crossref_primary_10_20517_energymater_2023_99
crossref_primary_10_1002_smll_202205163
crossref_primary_10_1007_s12613_024_2859_y
crossref_primary_10_1016_j_carbon_2024_119758
crossref_primary_10_1002_adma_202403791
crossref_primary_10_1016_j_cej_2023_141353
crossref_primary_10_1016_j_snb_2023_135078
crossref_primary_10_1002_smll_202206126
crossref_primary_10_1039_D4TA05669H
crossref_primary_10_1016_j_heliyon_2023_e19197
crossref_primary_10_1016_j_ccr_2024_216164
crossref_primary_10_1002_adfm_202211199
crossref_primary_10_1002_adts_202400320
crossref_primary_10_1016_j_jece_2024_114569
crossref_primary_10_1016_j_matchemphys_2023_128714
crossref_primary_10_1016_j_microc_2023_108397
crossref_primary_10_1016_j_progsolidstchem_2023_100392
crossref_primary_10_1002_batt_202400309
crossref_primary_10_1016_j_ccr_2025_216460
crossref_primary_10_1063_5_0215613
crossref_primary_10_1016_j_coco_2024_102056
crossref_primary_10_1016_j_jelechem_2023_117743
crossref_primary_10_1007_s40820_021_00781_6
crossref_primary_10_1039_D4NR04609A
crossref_primary_10_1007_s11581_023_05362_8
crossref_primary_10_1016_j_mtchem_2024_101989
crossref_primary_10_1021_acsnano_2c02841
crossref_primary_10_1016_j_apsusc_2023_158639
crossref_primary_10_1021_acsanm_2c05050
crossref_primary_10_1002_cnl2_169
crossref_primary_10_1016_j_flatc_2023_100493
crossref_primary_10_1016_j_envres_2023_117261
crossref_primary_10_1063_5_0152042
crossref_primary_10_1088_1361_6463_adb594
crossref_primary_10_1016_j_envpol_2022_120695
crossref_primary_10_1021_acs_energyfuels_4c02987
crossref_primary_10_1016_j_ccr_2023_215542
crossref_primary_10_1021_acsanm_3c00220
crossref_primary_10_1039_D2CC06418A
crossref_primary_10_1002_aenm_202403757
crossref_primary_10_1039_D3NA00852E
crossref_primary_10_1063_5_0237852
crossref_primary_10_1016_j_cej_2022_138578
crossref_primary_10_1021_acsnano_3c06105
crossref_primary_10_1002_adfm_202303668
crossref_primary_10_1088_2053_1583_ac9ceb
crossref_primary_10_1002_smll_202304543
crossref_primary_10_1039_D4NJ02800G
crossref_primary_10_1002_smtd_202500028
crossref_primary_10_1016_j_mattod_2023_10_011
crossref_primary_10_3390_molecules29061286
crossref_primary_10_1039_D2TC04583D
crossref_primary_10_1016_j_surfin_2024_105678
crossref_primary_10_1002_anie_202409480
crossref_primary_10_1016_j_jallcom_2024_175172
crossref_primary_10_1016_j_jallcom_2022_164730
crossref_primary_10_1016_j_desal_2022_116295
crossref_primary_10_1039_D4CC05133E
crossref_primary_10_1016_j_mseb_2023_116400
crossref_primary_10_3390_molecules27206939
crossref_primary_10_1016_j_cej_2022_138586
crossref_primary_10_1016_j_mssp_2024_109016
crossref_primary_10_1016_j_cej_2024_154250
crossref_primary_10_1021_acsami_3c01782
crossref_primary_10_1016_j_mtener_2023_101373
crossref_primary_10_1002_cey2_361
crossref_primary_10_1016_j_ijhydene_2025_01_432
crossref_primary_10_1039_D4NA00803K
crossref_primary_10_1021_acsami_2c16277
crossref_primary_10_1007_s11426_023_1826_3
crossref_primary_10_1063_5_0142497
crossref_primary_10_1002_sstr_202300255
crossref_primary_10_1021_acsami_3c19177
crossref_primary_10_1002_smtd_202300708
crossref_primary_10_1021_acs_energyfuels_2c03878
crossref_primary_10_1016_j_ccr_2024_215722
crossref_primary_10_1016_j_ccr_2024_215964
crossref_primary_10_1016_j_porgcoat_2025_109225
crossref_primary_10_1002_adma_202300422
crossref_primary_10_1016_j_mattod_2022_07_011
crossref_primary_10_1039_D4CP03570D
crossref_primary_10_1016_j_ccr_2023_215527
crossref_primary_10_1002_sstr_202200309
crossref_primary_10_1016_j_bios_2022_114847
crossref_primary_10_1002_aenm_202204019
crossref_primary_10_1016_j_ccr_2022_215002
crossref_primary_10_1038_s41378_024_00675_8
crossref_primary_10_1021_acsami_3c10599
crossref_primary_10_1021_acsami_3c01748
crossref_primary_10_1016_j_chemosphere_2024_141838
crossref_primary_10_1002_adem_202400515
crossref_primary_10_1016_j_flatc_2024_100631
crossref_primary_10_1080_10408347_2022_2091921
crossref_primary_10_1016_j_ccr_2024_215953
crossref_primary_10_1039_D4NR04329D
crossref_primary_10_1007_s12274_023_5676_0
crossref_primary_10_1007_s12274_021_3970_2
crossref_primary_10_1016_j_inoche_2024_112362
crossref_primary_10_1002_solr_202100888
crossref_primary_10_1016_j_jece_2024_114088
crossref_primary_10_1103_PhysRevApplied_18_054036
crossref_primary_10_1039_D4NA01013B
crossref_primary_10_1016_j_ultsonch_2022_106024
crossref_primary_10_1021_acsami_2c19681
crossref_primary_10_1002_cphc_202200203
crossref_primary_10_1021_acs_langmuir_4c01431
crossref_primary_10_1016_j_ceramint_2023_12_389
crossref_primary_10_1039_D3QI02205F
crossref_primary_10_1016_j_cplett_2024_141320
crossref_primary_10_1016_j_aej_2025_01_086
crossref_primary_10_1016_j_enchem_2023_100110
crossref_primary_10_1016_j_isci_2024_108906
crossref_primary_10_1002_open_202300313
crossref_primary_10_1016_j_flatc_2025_100825
crossref_primary_10_34133_energymatadv_0033
crossref_primary_10_1002_cctc_202300690
crossref_primary_10_1016_j_est_2024_115176
crossref_primary_10_1016_j_apsusc_2022_152432
crossref_primary_10_1016_j_mtcomm_2023_107012
crossref_primary_10_1002_adma_202413648
crossref_primary_10_1016_j_ensm_2024_103771
crossref_primary_10_1016_j_memsci_2022_120949
crossref_primary_10_1016_j_porgcoat_2024_109046
crossref_primary_10_1002_cmdc_202400329
crossref_primary_10_1002_ange_202409480
crossref_primary_10_1002_anie_202210828
crossref_primary_10_1002_cctc_202401261
crossref_primary_10_1021_acssuschemeng_2c05106
crossref_primary_10_1016_j_ijbiomac_2024_139086
crossref_primary_10_1038_s44160_022_00104_6
crossref_primary_10_1016_j_mseb_2025_118076
crossref_primary_10_1016_j_jallcom_2024_173920
crossref_primary_10_1177_24723444241295415
crossref_primary_10_1016_j_flatc_2024_100734
crossref_primary_10_1002_adfm_202412065
crossref_primary_10_1016_j_pmatsci_2023_101227
crossref_primary_10_1016_j_pmatsci_2023_101105
crossref_primary_10_1021_acsami_3c13207
crossref_primary_10_1088_1361_648X_ac9f93
crossref_primary_10_1002_eem2_12379
crossref_primary_10_1016_j_est_2024_112194
crossref_primary_10_1021_acsomega_4c04849
crossref_primary_10_1134_S0031918X23602640
crossref_primary_10_1016_j_ceramint_2024_04_339
crossref_primary_10_1016_j_susmat_2023_e00814
crossref_primary_10_1002_admt_202201611
crossref_primary_10_1016_j_jece_2024_113059
crossref_primary_10_1039_D3TC02890A
crossref_primary_10_1016_j_cej_2023_144247
crossref_primary_10_1016_j_apmt_2022_101483
crossref_primary_10_1016_j_apsusc_2024_160864
crossref_primary_10_1016_j_eurpolymj_2024_113526
crossref_primary_10_1021_acsnano_3c01913
crossref_primary_10_1002_advs_202205509
crossref_primary_10_1016_j_jcis_2023_09_035
crossref_primary_10_3390_nano12111797
crossref_primary_10_1021_acsapm_4c01225
crossref_primary_10_1002_cey2_200
crossref_primary_10_1080_10407782_2024_2368277
crossref_primary_10_1039_D4TA07436J
crossref_primary_10_1016_j_apcatb_2024_124352
crossref_primary_10_1016_j_snb_2024_135422
crossref_primary_10_1016_j_jclepro_2024_141953
crossref_primary_10_1016_j_mtcata_2024_100054
crossref_primary_10_1016_j_cej_2023_143388
crossref_primary_10_3390_bios14100497
crossref_primary_10_1016_j_ensm_2024_103873
crossref_primary_10_1002_adfm_202407975
crossref_primary_10_1016_j_adna_2023_11_002
crossref_primary_10_1016_j_cplett_2025_141931
crossref_primary_10_1016_j_jallcom_2023_172408
crossref_primary_10_1016_j_mattod_2022_06_006
crossref_primary_10_1149_1945_7111_ac9344
crossref_primary_10_1016_j_esi_2025_03_002
crossref_primary_10_1039_D4TC00111G
crossref_primary_10_1016_j_mser_2025_100975
crossref_primary_10_1016_j_oceram_2024_100596
crossref_primary_10_1016_j_memsci_2024_123685
crossref_primary_10_1039_D3QM01281F
crossref_primary_10_1515_nanoph_2022_0550
crossref_primary_10_3390_ma17225513
crossref_primary_10_1134_S1023193524700010
crossref_primary_10_1021_acsbiomaterials_3c01770
crossref_primary_10_1039_D4DT02127D
crossref_primary_10_1051_e3sconf_202453602013
crossref_primary_10_1002_smll_202304687
crossref_primary_10_1007_s12274_022_4904_3
crossref_primary_10_1002_smll_202410772
crossref_primary_10_1016_j_diamond_2024_111167
crossref_primary_10_1002_adfm_202213416
crossref_primary_10_1016_j_nanoen_2022_107791
crossref_primary_10_1016_j_snb_2024_136625
crossref_primary_10_1039_D2NR05705K
crossref_primary_10_1016_j_matre_2021_100077
crossref_primary_10_1016_j_colsurfa_2022_130014
crossref_primary_10_1016_j_cej_2024_150089
crossref_primary_10_1021_acsnano_2c10065
crossref_primary_10_1016_j_jallcom_2021_163241
crossref_primary_10_1016_j_molliq_2022_120037
crossref_primary_10_1039_D4EN00427B
crossref_primary_10_1016_j_progsolidstchem_2022_100370
crossref_primary_10_1039_D2NR05718B
crossref_primary_10_1016_j_molstruc_2024_139830
crossref_primary_10_1021_acsanm_3c00666
crossref_primary_10_1016_j_flatc_2024_100609
crossref_primary_10_1007_s10965_024_04193_z
crossref_primary_10_1016_j_nanoen_2022_107556
crossref_primary_10_1002_adfm_202112913
crossref_primary_10_1016_j_jechem_2022_09_046
crossref_primary_10_3390_ma17020303
crossref_primary_10_1002_ente_202400081
crossref_primary_10_1021_acsami_4c15073
crossref_primary_10_1016_j_xcrp_2023_101345
crossref_primary_10_59400_esc1920
crossref_primary_10_1016_j_cej_2024_149624
crossref_primary_10_1002_smtd_202300776
crossref_primary_10_1016_j_ssc_2025_115854
crossref_primary_10_1016_j_xcrp_2023_101582
crossref_primary_10_1039_D2TB02367A
crossref_primary_10_1039_D4NR04681A
crossref_primary_10_1021_acsanm_3c01153
crossref_primary_10_1002_smll_202106673
crossref_primary_10_1002_adts_202400900
crossref_primary_10_1016_j_envpol_2023_121777
crossref_primary_10_1039_D4NH00305E
crossref_primary_10_1016_j_pmatsci_2024_101422
crossref_primary_10_1016_j_apcatb_2024_124441
crossref_primary_10_1088_1361_648X_ac8d40
crossref_primary_10_1016_j_apcatb_2024_124444
crossref_primary_10_1002_cey2_639
crossref_primary_10_1016_j_chemosphere_2023_139981
crossref_primary_10_1016_j_desal_2024_117781
crossref_primary_10_3390_bios13010091
crossref_primary_10_3390_bios12110982
crossref_primary_10_1002_smll_202303043
crossref_primary_10_1016_j_matpr_2023_02_435
crossref_primary_10_1016_j_ijhydene_2024_08_412
crossref_primary_10_1149_1945_7111_aca8d5
crossref_primary_10_1016_j_ccr_2023_215394
crossref_primary_10_1016_j_cej_2024_156272
crossref_primary_10_3390_mi13091383
crossref_primary_10_1002_sstr_202300090
crossref_primary_10_1016_j_ccr_2023_215275
crossref_primary_10_1016_j_bioadv_2023_213354
crossref_primary_10_1002_aenm_202103867
crossref_primary_10_1016_j_trac_2024_117820
crossref_primary_10_1021_acsanm_3c05859
crossref_primary_10_1016_j_actamat_2025_120727
crossref_primary_10_1021_acs_jpclett_2c03307
crossref_primary_10_15541_jim20230306
crossref_primary_10_1002_smll_202411752
crossref_primary_10_1016_j_isci_2024_111217
crossref_primary_10_1016_j_nanoen_2022_107177
crossref_primary_10_1021_acsnano_2c09933
crossref_primary_10_1007_s42247_024_00916_6
crossref_primary_10_1016_j_scitotenv_2024_170850
crossref_primary_10_1016_j_mtchem_2024_102088
crossref_primary_10_1039_D4TB02834A
crossref_primary_10_1021_acs_jpcc_4c00779
crossref_primary_10_1002_adma_202410673
crossref_primary_10_1002_advs_202200296
crossref_primary_10_1016_j_enrev_2024_100070
crossref_primary_10_1016_j_ijhydene_2024_11_284
crossref_primary_10_1016_j_nantod_2024_102622
crossref_primary_10_1016_j_cej_2024_158320
crossref_primary_10_1016_j_jece_2024_114812
crossref_primary_10_1080_10408347_2024_2379851
crossref_primary_10_3390_s23218674
crossref_primary_10_1002_adma_202110608
crossref_primary_10_1002_smll_202308600
crossref_primary_10_1016_j_envres_2023_115900
crossref_primary_10_1039_D4CP01255K
crossref_primary_10_1002_adsu_202100507
crossref_primary_10_1149_2754_2726_ac5ac6
crossref_primary_10_1002_advs_202305672
crossref_primary_10_1002_aenm_202301920
crossref_primary_10_1002_adfm_202208320
crossref_primary_10_1016_j_matre_2024_100255
crossref_primary_10_1002_smll_202403920
crossref_primary_10_1021_acsami_3c07589
crossref_primary_10_1016_j_chemosphere_2024_143194
crossref_primary_10_1002_anie_202411849
crossref_primary_10_1002_aenm_202200072
crossref_primary_10_1039_D3TA07682B
crossref_primary_10_1016_j_coelec_2024_101557
crossref_primary_10_1021_acsnano_3c04650
crossref_primary_10_1016_j_ijhydene_2024_03_065
crossref_primary_10_1016_j_jechem_2023_11_031
crossref_primary_10_1039_D3NR03005A
crossref_primary_10_1016_j_jpowsour_2023_232827
crossref_primary_10_3390_ma16206816
crossref_primary_10_1002_smll_202305321
crossref_primary_10_1007_s12274_023_5509_1
crossref_primary_10_1002_smll_202308715
crossref_primary_10_1002_slct_202404885
crossref_primary_10_1002_celc_202400008
crossref_primary_10_1016_j_xinn_2023_100540
crossref_primary_10_1021_acs_langmuir_4c00074
crossref_primary_10_1016_j_pmatsci_2023_101183
crossref_primary_10_1002_smtd_202101537
crossref_primary_10_1021_acs_cgd_4c01404
crossref_primary_10_1002_smll_202205947
crossref_primary_10_1002_aesr_202300103
crossref_primary_10_1016_j_cej_2022_138891
crossref_primary_10_3390_mi15020187
crossref_primary_10_1016_j_mtphys_2023_101291
crossref_primary_10_1002_aesr_202300231
crossref_primary_10_1007_s12274_023_6360_0
crossref_primary_10_1039_D3RA03340F
crossref_primary_10_1039_D4NR03664F
crossref_primary_10_1016_j_apsusc_2024_160583
crossref_primary_10_1016_j_mset_2023_10_002
crossref_primary_10_1039_D3NA00642E
crossref_primary_10_1021_acsanm_2c02594
crossref_primary_10_1016_j_cej_2024_148971
crossref_primary_10_1016_j_jenvman_2024_122673
crossref_primary_10_1016_j_envres_2022_114998
crossref_primary_10_1016_j_enceco_2024_08_005
crossref_primary_10_1002_cctc_202200702
crossref_primary_10_1016_j_jece_2023_110243
crossref_primary_10_1016_S1872_5805_23_60761_9
crossref_primary_10_1016_j_est_2024_111154
crossref_primary_10_1016_j_optlastec_2025_112671
crossref_primary_10_1088_1402_4896_acae43
crossref_primary_10_1016_j_ensm_2022_06_009
crossref_primary_10_1016_j_cej_2024_151909
crossref_primary_10_1039_D3GC04289H
crossref_primary_10_3390_inorganics13020045
crossref_primary_10_1007_s40242_024_4179_1
crossref_primary_10_1080_15583724_2024_2319585
crossref_primary_10_1103_PhysRevB_110_035429
crossref_primary_10_1039_D3TA06032B
crossref_primary_10_1002_cey2_609
crossref_primary_10_1002_ece2_18
crossref_primary_10_1016_j_nantod_2024_102546
crossref_primary_10_1002_adfm_202418230
crossref_primary_10_1063_5_0194976
crossref_primary_10_3390_ma16083139
crossref_primary_10_1016_j_cej_2024_158882
crossref_primary_10_1016_j_est_2024_114434
crossref_primary_10_1016_j_matlet_2023_133979
crossref_primary_10_1007_s11665_025_10984_2
crossref_primary_10_1016_j_ceramint_2022_02_186
crossref_primary_10_15541_jim20230453
crossref_primary_10_1016_j_cej_2022_137466
crossref_primary_10_1016_j_cej_2024_155499
crossref_primary_10_1080_28378083_2024_2386526
crossref_primary_10_1088_2051_672X_ac7f4a
crossref_primary_10_1002_adfm_202410742
crossref_primary_10_1016_j_matdes_2023_112362
crossref_primary_10_1016_j_mtchem_2025_102569
crossref_primary_10_1002_rpm_20240015
crossref_primary_10_1016_j_snb_2023_133444
crossref_primary_10_1016_j_coco_2023_101588
crossref_primary_10_1016_j_inoche_2024_113493
crossref_primary_10_1002_admt_202301897
crossref_primary_10_1002_aenm_202300890
crossref_primary_10_1007_s00604_024_06815_1
crossref_primary_10_1093_oxfmat_itae017
crossref_primary_10_1039_D3DT03176D
crossref_primary_10_1016_j_cocom_2023_e00806
crossref_primary_10_1016_j_ccr_2024_215870
crossref_primary_10_1021_acsami_1c22787
crossref_primary_10_1016_j_vacuum_2022_111476
crossref_primary_10_1016_j_cej_2024_154159
crossref_primary_10_1016_j_heliyon_2024_e30714
crossref_primary_10_1039_D3TA02862C
crossref_primary_10_1002_sstr_202200102
crossref_primary_10_1016_j_jcis_2025_01_252
crossref_primary_10_1002_cey2_501
crossref_primary_10_1016_j_solmat_2024_113086
crossref_primary_10_1016_j_cis_2023_103021
crossref_primary_10_1016_j_cej_2023_144185
crossref_primary_10_1016_j_mee_2023_112013
crossref_primary_10_1021_acsanm_4c05825
crossref_primary_10_1016_j_cis_2023_103027
crossref_primary_10_1016_j_est_2023_107975
crossref_primary_10_1002_smll_202410001
crossref_primary_10_1016_j_jallcom_2024_177575
Cites_doi 10.1039/C8CP07796G
10.1021/acsnano.0c07972
10.1038/s41586-018-0109-z
10.1021/acsnano.7b00030
10.1021/acsnano.0c10255
10.1016/j.chempr.2018.08.037
10.1021/acsnano.6b05240
10.1002/anie.201809662
10.1063/1.4948799
10.1111/jace.13922
10.1021/acsnano.0c10671
10.1002/admi.202000845
10.1021/acsenergylett.6b00247
10.1039/C6CP01699E
10.1002/adma.201702410
10.1039/C8TA09810G
10.1039/C8TA01468J
10.1002/smtd.201900780
10.1002/adem.202001191
10.1038/nmat4374
10.1016/j.cej.2020.125111
10.1002/adfm.202100457
10.1016/j.ceramint.2019.01.148
10.1002/adfm.201202502
10.1039/C8NR03221A
10.1002/adfm.201600771
10.1021/acs.chemmater.0c02026
10.1039/C6NR02253G
10.1039/C7NR06721F
10.1021/acs.chemmater.7b00745
10.1021/acs.chemmater.6b04234
10.1021/acs.jpcc.8b08860
10.1021/acsnano.7b03129
10.1002/anie.201510432
10.1002/adfm.201505328
10.1016/j.susmat.2020.e00156
10.1021/am5074722
10.1016/j.cclet.2020.03.054
10.1021/acs.jpcc.9b03963
10.1038/s41467-020-16671-1
10.1039/C4CP00467A
10.1002/adma.201908486
10.1021/acsami.8b22339
10.1038/s41570-016-0014
10.1149/2.0641704jes
10.1039/C7TA01082F
10.1039/C7CP08645H
10.1016/j.apsusc.2017.04.239
10.1016/j.jechem.2020.06.069
10.1021/acsnano.9b06394
10.1016/j.mtener.2021.100668
10.1016/j.cej.2019.05.037
10.1039/C9NH00571D
10.1021/nn204153h
10.1002/smll.201904293
10.1002/anie.200901678
10.1021/acsaem.8b00652
10.1039/D0CC01042A
10.1088/2053-1583/aacfb3
10.1002/adma.202004469
10.1016/j.jechem.2020.04.015
10.1016/j.trac.2018.05.021
10.1002/anie.201402513
10.1021/cm500641a
10.1016/j.apsusc.2020.147209
10.1109/TNANO.2018.2868672
10.1038/ncomms14949
10.1021/acsnano.8b01774
10.1039/C9NR00084D
10.1007/978-3-030-19026-2
10.1002/anie.201906138
10.1002/anie.202015627
10.1021/acs.chemmater.5b01129
10.1002/adma.201607017
10.1016/j.apsusc.2017.11.101
10.1002/aelm.201600255
10.1021/acsami.8b10729
10.1016/j.cej.2018.11.051
10.1021/acs.chemmater.8b01976
10.1080/10420150.2020.1718142
10.1021/acsnano.0c08357
10.1039/C7CS00838D
10.1002/adma.201805417
10.1021/acs.nanolett.5b03291
10.1039/C7TA05574A
10.1016/j.matchemphys.2013.01.008
10.1021/acsnano.5b03591
10.1021/acsnano.0c07242
10.1038/nmat1849
10.1146/annurev-matsci-062910-100448
10.1002/smll.202005640
10.1021/acsnano.8b06014
10.1021/acs.jpcc.7b05675
10.1126/science.aag2421
10.1016/j.ensm.2020.04.016
10.1021/acs.cgd.7b00642
10.1002/anie.201802232
10.1039/C4CC03366C
10.1002/anie.201916748
10.1021/acs.nanolett.5b00737
10.1016/j.ensm.2019.09.026
10.1038/s41563-020-0657-0
10.1021/acs.langmuir.7b01339
10.1002/adem.201901241
10.1038/nature13970
10.1002/adma.201804779
10.3390/nano8020080
10.1021/acsami.0c06728
10.1002/adma.201102306
10.1039/C8NR09653H
10.1021/ja308463r
10.1021/ja508154e
10.1039/C9CS00822E
10.1038/ncomms2664
10.1021/acsanm.1c00219
10.1021/acs.inorgchem.8b00021
10.1002/adfm.201908075
10.1002/aenm.201801127
10.1016/j.trechm.2019.02.016
10.1021/acs.chemmater.6b04830
10.1016/j.matt.2019.05.020
10.1021/jacs.9b02578
10.1016/j.jpowsour.2016.04.035
10.1016/j.electacta.2018.09.149
10.1021/acsnano.7b06251
10.1016/j.ensm.2020.11.035
10.1021/jp507336x
10.1039/C6SC00077K
10.1039/C5DT01247C
10.1038/natrevmats.2016.98
10.1039/D0CC03189E
10.1016/j.flatc.2019.100128
10.1021/acsnano.8b02379
10.1016/j.jechem.2019.11.029
10.1002/anie.201800887
10.1039/C5NR06513E
10.1021/acs.chemmater.7b02847
10.1007/s12598-020-01488-0
10.1039/C9NR02354B
10.1021/acsnano.9b07708
10.1016/j.cej.2018.05.148
10.1021/acs.inorgchem.8b02890
10.1021/acsami.6b08413
10.1002/adma.202001093
10.1002/adom.201800441
10.1016/j.chempr.2020.01.019
10.1002/adfm.201910048
10.1126/science.aba8311
10.1016/j.cej.2020.125786
10.1016/j.matdes.2016.10.053
10.1002/adfm.202000693
10.1088/2053-1583/aa51b7
10.1039/C4NR02080D
10.1103/PhysRevB.92.075411
10.1021/jacs.9b00574
10.1002/anie.201606643
10.1039/C4TA02638A
10.1021/acsnano.0c08630
10.1002/adfm.201906282
10.1002/aenm.201601873
10.1016/j.cej.2020.127806
10.1021/acs.chemmater.6b01275
10.1021/acs.jpcc.5b11887
10.1021/ja405735d
10.1021/acsnano.7b05559
10.1039/C9TA07036B
ContentType Journal Article
Copyright 2021 Wiley‐VCH GmbH
2021 Wiley-VCH GmbH.
Copyright_xml – notice: 2021 Wiley‐VCH GmbH
– notice: 2021 Wiley-VCH GmbH.
DBID AAYXX
CITATION
7SR
8BQ
8FD
JG9
7X8
DOI 10.1002/adma.202103148
DatabaseName CrossRef
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
MEDLINE - Academic
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
METADEX
MEDLINE - Academic
DatabaseTitleList
Materials Research Database
MEDLINE - Academic
CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1521-4095
EndPage n/a
ExternalDocumentID 10_1002_adma_202103148
ADMA202103148
Genre reviewArticle
GrantInformation_xml – fundername: National Natural Science Foundation of China
  funderid: U2004212; 51802012
GroupedDBID ---
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6P2
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABIJN
ABJNI
ABLJU
ABPVW
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RWM
RX1
RYL
SUPJJ
TN5
UB1
UPT
V2E
W8V
W99
WBKPD
WFSAM
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XV2
YR2
ZZTAW
~02
~IA
~WT
.Y3
31~
6TJ
8WZ
A6W
AANHP
AASGY
AAYOK
AAYXX
ABEML
ACBWZ
ACRPL
ACSCC
ACYXJ
ADMLS
ADNMO
AETEA
AEYWJ
AFFNX
AGHNM
AGQPQ
AGYGG
ASPBG
AVWKF
AZFZN
CITATION
EJD
FEDTE
FOJGT
HF~
HVGLF
LW6
M6K
NDZJH
PALCI
RIWAO
RJQFR
SAMSI
WTY
ZY4
7SR
8BQ
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
JG9
7X8
ID FETCH-LOGICAL-c4168-53cf9bb70c2753e85ea39283bc1b6737c6839eef7116cbb2c9d4a2ea429cbd803
IEDL.DBID DR2
ISSN 0935-9648
1521-4095
IngestDate Fri Jul 11 02:17:12 EDT 2025
Fri Jul 25 04:14:48 EDT 2025
Thu Apr 24 23:12:25 EDT 2025
Tue Jul 01 02:33:06 EDT 2025
Wed Jan 22 16:29:06 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 39
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4168-53cf9bb70c2753e85ea39283bc1b6737c6839eef7116cbb2c9d4a2ea429cbd803
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
ORCID 0000-0001-5177-8929
PQID 2578155869
PQPubID 2045203
PageCount 30
ParticipantIDs proquest_miscellaneous_2563710823
proquest_journals_2578155869
crossref_citationtrail_10_1002_adma_202103148
crossref_primary_10_1002_adma_202103148
wiley_primary_10_1002_adma_202103148_ADMA202103148
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate October 1, 2021
PublicationDateYYYYMMDD 2021-10-01
PublicationDate_xml – month: 10
  year: 2021
  text: October 1, 2021
  day: 01
PublicationDecade 2020
PublicationPlace Weinheim
PublicationPlace_xml – name: Weinheim
PublicationTitle Advanced materials (Weinheim)
PublicationYear 2021
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2013; 4
2019; 11
2019; 13
2019; 15
2019; 17
2014; 26
2020; 14
2019; 18
2020; 12
2020; 11
2014; 136
2018; 47
2020; 19
2018; 6
2018; 8
2018; 292
2018; 5
2012; 134
2020; 175
2018; 1
2019; 21
2014; 16
2007; 6
2019; 29
2018; 30
2017; 164
2017; 416
2019; 7
2019; 5
2019; 31
2018; 105
2019; 1
2018; 349
2020; 39
2016; 10
2020; 35
2016; 326
2020; 32
2016; 18
2018; 20
2016; 99
2016; 4
2016; 6
2016; 7
2016; 1
2016; 2
2021; 55
2020; 31
2020; 30
2020; 395
2019; 45
2020; 25
2020; 22
2018; 12
2021; 60
2016; 28
2018; 10
2016; 26
2016; 8
2020; 29
2017; 5
2017; 7
2018; 122
2017; 8
2021; 408
2017; 1
2017; 2
2021; 20
2021; 23
2013; 23
2019; 58
2020; 369
2020; 401
2020; 59
2020; 56
2017; 114
2017; 9
2009; 48
2019; 123
2020; 8
2020; 7
2020; 6
2020; 5
2020; 4
2021; 31
2021; 33
2014; 2
2020; 52
2017; 33
2015; 44
2020; 49
2016; 353
2020; 47
2020; 530
2011; 23
2019; 359
2017; 121
2014; 50
2014; 6
2014; 53
2014; 118
2015; 15
2021; 4
2014; 516
2015; 92
2017; 29
2015; 9
2019; 141
2015; 7
2016; 120
2016; 55
2021; 15
2015; 27
2018; 557
2018; 435
2017; 17
2017; 11
2021; 17
2013; 139
2011; 41
2013; 135
2012; 6
2015 2019; 14
2019; 373
2018; 57
e_1_2_9_75_1
e_1_2_9_98_1
Zhang P. (e_1_2_9_13_1) 2019; 11
e_1_2_9_52_1
e_1_2_9_79_1
e_1_2_9_94_1
e_1_2_9_10_1
e_1_2_9_56_1
e_1_2_9_33_1
e_1_2_9_90_1
e_1_2_9_71_1
e_1_2_9_103_1
e_1_2_9_126_1
e_1_2_9_149_1
e_1_2_9_107_1
e_1_2_9_122_1
e_1_2_9_145_1
e_1_2_9_168_1
e_1_2_9_14_1
e_1_2_9_141_1
e_1_2_9_37_1
e_1_2_9_164_1
e_1_2_9_18_1
e_1_2_9_160_1
e_1_2_9_41_1
e_1_2_9_64_1
e_1_2_9_87_1
e_1_2_9_22_1
e_1_2_9_45_1
e_1_2_9_68_1
e_1_2_9_83_1
e_1_2_9_64_2
e_1_2_9_6_1
e_1_2_9_119_1
e_1_2_9_60_1
e_1_2_9_2_1
e_1_2_9_138_1
e_1_2_9_111_1
e_1_2_9_134_1
e_1_2_9_115_1
e_1_2_9_157_1
e_1_2_9_26_1
e_1_2_9_49_1
e_1_2_9_130_1
e_1_2_9_153_1
e_1_2_9_30_1
e_1_2_9_53_1
e_1_2_9_99_1
e_1_2_9_72_1
e_1_2_9_11_1
e_1_2_9_34_1
e_1_2_9_57_1
e_1_2_9_95_1
e_1_2_9_76_1
e_1_2_9_91_1
e_1_2_9_102_1
e_1_2_9_148_1
e_1_2_9_129_1
e_1_2_9_144_1
e_1_2_9_167_1
e_1_2_9_106_1
e_1_2_9_125_1
e_1_2_9_15_1
e_1_2_9_38_1
e_1_2_9_140_1
e_1_2_9_163_1
e_1_2_9_121_1
e_1_2_9_19_1
e_1_2_9_42_1
e_1_2_9_61_1
e_1_2_9_46_1
e_1_2_9_84_1
e_1_2_9_23_1
e_1_2_9_65_1
e_1_2_9_80_1
e_1_2_9_5_1
e_1_2_9_1_1
e_1_2_9_114_1
e_1_2_9_137_1
e_1_2_9_118_1
e_1_2_9_133_1
e_1_2_9_156_1
e_1_2_9_9_1
e_1_2_9_152_1
e_1_2_9_27_1
e_1_2_9_69_1
e_1_2_9_110_1
e_1_2_9_171_1
e_1_2_9_31_1
e_1_2_9_50_1
e_1_2_9_73_1
e_1_2_9_35_1
e_1_2_9_77_1
e_1_2_9_96_1
e_1_2_9_12_1
e_1_2_9_54_1
e_1_2_9_92_1
e_1_2_9_109_1
e_1_2_9_101_1
e_1_2_9_128_1
e_1_2_9_166_1
e_1_2_9_105_1
e_1_2_9_124_1
e_1_2_9_147_1
e_1_2_9_39_1
e_1_2_9_162_1
e_1_2_9_120_1
e_1_2_9_16_1
e_1_2_9_58_1
e_1_2_9_143_1
e_1_2_9_20_1
e_1_2_9_62_1
e_1_2_9_89_1
e_1_2_9_24_1
e_1_2_9_43_1
e_1_2_9_66_1
e_1_2_9_85_1
e_1_2_9_8_1
e_1_2_9_81_1
e_1_2_9_4_1
e_1_2_9_113_1
e_1_2_9_159_1
e_1_2_9_117_1
e_1_2_9_155_1
e_1_2_9_136_1
e_1_2_9_151_1
e_1_2_9_28_1
e_1_2_9_47_1
Yang J. (e_1_2_9_88_1) 2016; 99
e_1_2_9_132_1
e_1_2_9_170_1
e_1_2_9_74_1
e_1_2_9_51_1
e_1_2_9_78_1
e_1_2_9_32_1
e_1_2_9_55_1
e_1_2_9_97_1
e_1_2_9_93_1
e_1_2_9_108_1
e_1_2_9_70_1
e_1_2_9_127_1
e_1_2_9_100_1
e_1_2_9_123_1
e_1_2_9_169_1
e_1_2_9_104_1
e_1_2_9_146_1
e_1_2_9_17_1
e_1_2_9_36_1
e_1_2_9_59_1
e_1_2_9_142_1
e_1_2_9_165_1
e_1_2_9_161_1
e_1_2_9_63_1
e_1_2_9_40_1
e_1_2_9_21_1
e_1_2_9_67_1
e_1_2_9_44_1
e_1_2_9_86_1
e_1_2_9_7_1
e_1_2_9_82_1
e_1_2_9_3_1
e_1_2_9_112_1
e_1_2_9_139_1
e_1_2_9_116_1
e_1_2_9_135_1
e_1_2_9_158_1
e_1_2_9_25_1
e_1_2_9_131_1
e_1_2_9_154_1
e_1_2_9_48_1
e_1_2_9_29_1
e_1_2_9_150_1
References_xml – volume: 47
  start-page: 203
  year: 2020
  publication-title: J. Energy Chem.
– volume: 35
  start-page: 630
  year: 2020
  publication-title: Energy Storage Mater.
– volume: 114
  start-page: 161
  year: 2017
  publication-title: Mater. Des.
– volume: 39
  start-page: 1237
  year: 2020
  publication-title: Rare Met.
– volume: 25
  year: 2020
  publication-title: Sustainable Mater. Technol.
– volume: 12
  start-page: 56
  year: 2018
  publication-title: ACS Nano
– volume: 136
  year: 2014
  publication-title: J. Am. Chem. Soc.
– volume: 25
  start-page: 563
  year: 2020
  publication-title: Energy Storage Mater.
– volume: 12
  year: 2020
  publication-title: ACS Appl. Mater. Interfaces
– volume: 1
  start-page: 3908
  year: 2018
  publication-title: ACS Appl. Energy Mater.
– volume: 121
  year: 2017
  publication-title: J. Phys. Chem. C
– volume: 6
  year: 2016
  publication-title: AIP Adv.
– volume: 29
  start-page: 4848
  year: 2017
  publication-title: Chem. Mater.
– volume: 55
  start-page: 5008
  year: 2016
  publication-title: Angew. Chem., Int. Ed.
– volume: 105
  start-page: 424
  year: 2018
  publication-title: TrAC, Trends Anal. Chem.
– volume: 1
  start-page: 589
  year: 2016
  publication-title: ACS Energy Lett.
– volume: 6
  year: 2014
  publication-title: Nanoscale
– volume: 11
  start-page: 8443
  year: 2019
  publication-title: ACS Appl. Mater. Interfaces
– volume: 30
  start-page: 5932
  year: 2018
  publication-title: Chem. Mater.
– volume: 557
  start-page: 409
  year: 2018
  publication-title: Nature
– volume: 18
  year: 2016
  publication-title: Phys. Chem. Chem. Phys.
– volume: 8
  year: 2017
  publication-title: Nat. Commun.
– volume: 30
  year: 2020
  publication-title: Adv. Funct. Mater.
– volume: 29
  year: 2019
  publication-title: Adv. Funct. Mater.
– volume: 14
  start-page: 1135
  year: 2015 2019
  publication-title: Nat. Mater.
– volume: 32
  start-page: 8257
  year: 2020
  publication-title: Chem. Mater.
– volume: 58
  year: 2019
  publication-title: Angew. Chem., Int. Ed.
– volume: 122
  year: 2018
  publication-title: J. Phys. Chem. C
– volume: 7
  year: 2020
  publication-title: Adv. Mater. Interfaces
– volume: 11
  year: 2019
  publication-title: Nanoscale
– volume: 60
  start-page: 8689
  year: 2021
  publication-title: Angew. Chem., Int. Ed.
– volume: 369
  start-page: 979
  year: 2020
  publication-title: Science
– volume: 29
  start-page: 1099
  year: 2017
  publication-title: Chem. Mater.
– volume: 27
  start-page: 3167
  year: 2015
  publication-title: Chem. Mater.
– volume: 530
  year: 2020
  publication-title: Appl. Surf. Sci.
– volume: 395
  year: 2020
  publication-title: Chem. Eng. J.
– volume: 26
  start-page: 2374
  year: 2014
  publication-title: Chem. Mater.
– volume: 6
  start-page: 616
  year: 2020
  publication-title: Chem
– volume: 5
  year: 2018
  publication-title: 2D Mater.
– volume: 164
  start-page: A709
  year: 2017
  publication-title: J. Electrchem. Soc.
– volume: 11
  start-page: 439
  year: 2019
  publication-title: Nano‐Micro Lett.
– volume: 408
  year: 2021
  publication-title: Chem. Eng. J.
– volume: 55
  start-page: 244
  year: 2021
  publication-title: J. Energy Chem.
– volume: 1
  start-page: 0014
  year: 2017
  publication-title: Nat. Rev. Chem.
– volume: 15
  start-page: 642
  year: 2021
  publication-title: ACS Nano
– volume: 17
  year: 2021
  publication-title: Small
– volume: 141
  start-page: 9610
  year: 2019
  publication-title: J. Am. Chem. Soc.
– volume: 8
  year: 2016
  publication-title: Nanoscale
– volume: 15
  start-page: 4287
  year: 2021
  publication-title: ACS Nano
– volume: 2
  year: 2017
  publication-title: Nat. Rev. Mater.
– volume: 120
  start-page: 3550
  year: 2016
  publication-title: J. Phys. Chem. C
– volume: 58
  start-page: 1958
  year: 2019
  publication-title: Inorg. Chem.
– volume: 31
  year: 2019
  publication-title: Adv. Mater.
– volume: 59
  start-page: 6601
  year: 2020
  publication-title: Angew. Chem., Int. Ed.
– volume: 134
  year: 2012
  publication-title: J. Am. Chem. Soc.
– volume: 5
  start-page: 18
  year: 2019
  publication-title: Chem
– volume: 16
  start-page: 7841
  year: 2014
  publication-title: Phys. Chem. Chem. Phys.
– volume: 52
  start-page: 243
  year: 2020
  publication-title: J. Energy Chem.
– volume: 20
  start-page: 8579
  year: 2018
  publication-title: Phys. Chem. Chem. Phys.
– volume: 1
  start-page: 513
  year: 2019
  publication-title: Matter
– volume: 292
  start-page: 31
  year: 2018
  publication-title: Electrochim. Acta
– volume: 23
  year: 2021
  publication-title: Adv. Eng. Mater.
– volume: 12
  start-page: 6109
  year: 2018
  publication-title: ACS Nano
– volume: 7
  year: 2017
  publication-title: Adv. Energy Mater.
– volume: 11
  start-page: 3841
  year: 2017
  publication-title: ACS Nano
– volume: 15
  start-page: 7558
  year: 2015
  publication-title: Nano Lett.
– volume: 99
  start-page: 660
  year: 2016
  publication-title: J. Am. Ceram. Soc.
– volume: 31
  year: 2021
  publication-title: Adv. Funct. Mater.
– volume: 32
  year: 2020
  publication-title: Adv. Mater.
– volume: 57
  start-page: 5444
  year: 2018
  publication-title: Angew. Chem., Int. Ed.
– volume: 8
  start-page: 573
  year: 2020
  publication-title: J. Mater. Chem. A
– volume: 31
  start-page: 919
  year: 2020
  publication-title: Chin. Chem. Lett.
– volume: 359
  start-page: 1265
  year: 2019
  publication-title: Chem. Eng. J.
– volume: 10
  start-page: 9193
  year: 2016
  publication-title: ACS Nano
– volume: 92
  year: 2015
  publication-title: Phys. Rev. B
– volume: 57
  year: 2018
  publication-title: Angew. Chem., Int. Ed.
– volume: 5
  start-page: 235
  year: 2020
  publication-title: Nanoscale Horiz.
– volume: 57
  start-page: 6237
  year: 2018
  publication-title: Inorg. Chem.
– volume: 29
  start-page: 163
  year: 2020
  publication-title: Energy Storage Mater.
– volume: 139
  start-page: 147
  year: 2013
  publication-title: Mater. Chem. Phys.
– volume: 11
  start-page: 8892
  year: 2017
  publication-title: ACS Nano
– volume: 401
  year: 2020
  publication-title: Chem. Eng. J.
– volume: 56
  year: 2020
  publication-title: Chem. Commun.
– volume: 7
  start-page: 3399
  year: 2016
  publication-title: Chem. Sci.
– volume: 56
  start-page: 6090
  year: 2020
  publication-title: Chem. Commun.
– volume: 4
  start-page: 3075
  year: 2021
  publication-title: ACS Appl. Nano Mater.
– volume: 435
  start-page: 210
  year: 2018
  publication-title: Appl. Surf. Sci.
– volume: 26
  start-page: 5328
  year: 2016
  publication-title: Adv. Funct. Mater.
– volume: 7
  start-page: 1795
  year: 2015
  publication-title: ACS Appl. Mater. Interfaces
– volume: 9
  start-page: 9507
  year: 2015
  publication-title: ACS Nano
– volume: 15
  start-page: 5249
  year: 2021
  publication-title: ACS Nano
– volume: 349
  start-page: 748
  year: 2018
  publication-title: Chem. Eng. J.
– volume: 57
  start-page: 6115
  year: 2018
  publication-title: Angew. Chem., Int. Ed.
– volume: 15
  start-page: 4955
  year: 2015
  publication-title: Nano Lett.
– volume: 15
  start-page: 3320
  year: 2021
  publication-title: ACS Nano
– volume: 15
  start-page: 6420
  year: 2021
  publication-title: ACS Nano
– volume: 516
  start-page: 78
  year: 2014
  publication-title: Nature
– volume: 23
  start-page: 4248
  year: 2011
  publication-title: Adv. Mater.
– volume: 41
  start-page: 195
  year: 2011
  publication-title: Annu. Rev. Mater. Res.
– volume: 11
  start-page: 2825
  year: 2020
  publication-title: Nat. Commun.
– volume: 19
  start-page: 894
  year: 2020
  publication-title: Nat. Mater.
– volume: 11
  start-page: 8387
  year: 2019
  publication-title: Nanoscale
– volume: 135
  year: 2013
  publication-title: J. Am. Chem. Soc.
– volume: 29
  start-page: 1632
  year: 2017
  publication-title: Chem. Mater.
– volume: 99
  start-page: 660
  year: 2016
  publication-title: J. Am. Chem. Soc.
– volume: 11
  year: 2017
  publication-title: ACS Nano
– volume: 45
  start-page: 8395
  year: 2019
  publication-title: Ceram. Int.
– volume: 33
  year: 2021
  publication-title: Adv. Mater.
– volume: 8
  year: 2018
  publication-title: Adv. Energy Mater.
– volume: 7
  start-page: 269
  year: 2019
  publication-title: J. Mater. Chem. A
– volume: 2
  year: 2016
  publication-title: Adv. Electron. Mater.
– volume: 15
  start-page: 2771
  year: 2021
  publication-title: ACS Nano
– volume: 416
  start-page: 781
  year: 2017
  publication-title: Appl. Surf. Sci.
– volume: 20
  year: 2021
  publication-title: Mater. Today Energy
– volume: 47
  start-page: 5109
  year: 2018
  publication-title: Chem. Soc. Rev.
– volume: 22
  year: 2020
  publication-title: Adv. Eng. Mater.
– volume: 26
  start-page: 3118
  year: 2016
  publication-title: Adv. Funct. Mater.
– volume: 9
  year: 2017
  publication-title: Nanoscale
– volume: 44
  start-page: 9353
  year: 2015
  publication-title: Dalton Trans.
– volume: 33
  start-page: 9000
  year: 2017
  publication-title: Langmuir
– volume: 7
  year: 2019
  publication-title: Adv. Opt. Mater.
– volume: 48
  start-page: 7752
  year: 2009
  publication-title: Angew. Chem., Int. Ed.
– volume: 11
  start-page: 8442
  year: 2019
  publication-title: Nanoscale
– volume: 53
  start-page: 4877
  year: 2014
  publication-title: Angew. Chem., Int. Ed.
– volume: 8
  start-page: 80
  year: 2018
  publication-title: Nanomaterials
– volume: 50
  start-page: 9517
  year: 2014
  publication-title: Chem. Commun.
– volume: 28
  start-page: 3507
  year: 2016
  publication-title: Chem. Mater.
– volume: 17
  start-page: 5704
  year: 2017
  publication-title: Cryst. Growth Des.
– volume: 2
  year: 2014
  publication-title: J. Mater. Chem. A
– volume: 49
  start-page: 6224
  year: 2020
  publication-title: Chem. Soc. Rev.
– volume: 5
  year: 2017
  publication-title: J. Mater. Chem. A
– volume: 6
  year: 2018
  publication-title: J. Mater. Chem. A
– volume: 13
  start-page: 8491
  year: 2019
  publication-title: ACS Nano
– volume: 29
  year: 2017
  publication-title: Adv. Mater.
– volume: 353
  start-page: 1137
  year: 2016
  publication-title: Science
– volume: 6
  start-page: 183
  year: 2007
  publication-title: Nat. Mater.
– volume: 326
  start-page: 575
  year: 2016
  publication-title: J. Power Sources
– volume: 17
  year: 2019
  publication-title: FlatChem
– volume: 10
  year: 2018
  publication-title: Nanoscale
– volume: 15
  year: 2019
  publication-title: Small
– volume: 12
  year: 2018
  publication-title: ACS Nano
– volume: 23
  start-page: 2185
  year: 2013
  publication-title: Adv. Funct. Mater.
– volume: 55
  year: 2016
  publication-title: Angew. Chem., Int. Ed.
– volume: 141
  start-page: 4730
  year: 2019
  publication-title: J. Am. Chem. Soc.
– volume: 175
  start-page: 177
  year: 2020
  publication-title: Radiat. Eff. Defects Solids
– volume: 29
  start-page: 7633
  year: 2017
  publication-title: Chem. Mater.
– volume: 4
  start-page: 1716
  year: 2013
  publication-title: Nat. Commun.
– volume: 6
  start-page: 1322
  year: 2012
  publication-title: ACS Nano
– volume: 14
  start-page: 204
  year: 2020
  publication-title: ACS Nano
– volume: 30
  year: 2018
  publication-title: Adv. Mater.
– volume: 21
  start-page: 5716
  year: 2019
  publication-title: Phys. Chem. Chem. Phys.
– volume: 4
  year: 2020
  publication-title: Small Methods
– volume: 8
  year: 2016
  publication-title: ACS Appl. Mater. Interfaces
– volume: 12
  start-page: 7761
  year: 2018
  publication-title: ACS Nano
– volume: 18
  start-page: 144
  year: 2019
  publication-title: IEEE Trans. Nano Technol.
– volume: 15
  start-page: 1077
  year: 2021
  publication-title: ACS Nano
– volume: 1
  start-page: 210
  year: 2019
  publication-title: Trends Chem.
– volume: 123
  year: 2019
  publication-title: J. Phys. Chem. C
– volume: 118
  year: 2014
  publication-title: J. Phys. Chem. C
– volume: 373
  start-page: 203
  year: 2019
  publication-title: Chem. Eng. J.
– volume: 7
  year: 2015
  publication-title: Nanoscale
– volume: 10
  year: 2018
  publication-title: ACS Appl. Mater. Interfaces
– volume: 4
  year: 2016
  publication-title: 2D Mater.
– ident: e_1_2_9_142_1
  doi: 10.1039/C8CP07796G
– ident: e_1_2_9_106_1
  doi: 10.1021/acsnano.0c07972
– ident: e_1_2_9_139_1
  doi: 10.1038/s41586-018-0109-z
– ident: e_1_2_9_80_1
  doi: 10.1021/acsnano.7b00030
– ident: e_1_2_9_137_1
  doi: 10.1021/acsnano.0c10255
– ident: e_1_2_9_25_1
  doi: 10.1016/j.chempr.2018.08.037
– ident: e_1_2_9_75_1
  doi: 10.1021/acsnano.6b05240
– ident: e_1_2_9_96_1
  doi: 10.1002/anie.201809662
– ident: e_1_2_9_107_1
  doi: 10.1063/1.4948799
– ident: e_1_2_9_151_1
  doi: 10.1111/jace.13922
– ident: e_1_2_9_162_1
  doi: 10.1021/acsnano.0c10671
– ident: e_1_2_9_158_1
  doi: 10.1002/admi.202000845
– ident: e_1_2_9_35_1
  doi: 10.1021/acsenergylett.6b00247
– ident: e_1_2_9_145_1
  doi: 10.1039/C6CP01699E
– ident: e_1_2_9_136_1
  doi: 10.1002/adma.201702410
– volume: 99
  start-page: 660
  year: 2016
  ident: e_1_2_9_88_1
  publication-title: J. Am. Chem. Soc.
– ident: e_1_2_9_130_1
  doi: 10.1039/C8TA09810G
– ident: e_1_2_9_155_1
  doi: 10.1039/C8TA01468J
– ident: e_1_2_9_16_1
  doi: 10.1002/smtd.201900780
– ident: e_1_2_9_15_1
  doi: 10.1002/adem.202001191
– ident: e_1_2_9_64_1
  doi: 10.1038/nmat4374
– ident: e_1_2_9_112_1
  doi: 10.1016/j.cej.2020.125111
– ident: e_1_2_9_14_1
  doi: 10.1002/adfm.202100457
– ident: e_1_2_9_101_1
  doi: 10.1016/j.ceramint.2019.01.148
– ident: e_1_2_9_42_1
  doi: 10.1002/adfm.201202502
– ident: e_1_2_9_34_1
  doi: 10.1039/C8NR03221A
– ident: e_1_2_9_143_1
  doi: 10.1002/adfm.201600771
– ident: e_1_2_9_85_1
  doi: 10.1021/acs.chemmater.0c02026
– ident: e_1_2_9_63_1
  doi: 10.1039/C6NR02253G
– ident: e_1_2_9_103_1
  doi: 10.1039/C7NR06721F
– ident: e_1_2_9_154_1
  doi: 10.1021/acs.chemmater.7b00745
– ident: e_1_2_9_131_1
  doi: 10.1021/acs.chemmater.6b04234
– ident: e_1_2_9_157_1
  doi: 10.1021/acs.jpcc.8b08860
– ident: e_1_2_9_124_1
  doi: 10.1021/acsnano.7b03129
– volume: 11
  start-page: 439
  year: 2019
  ident: e_1_2_9_13_1
  publication-title: Nano‐Micro Lett.
– ident: e_1_2_9_79_1
  doi: 10.1002/anie.201510432
– ident: e_1_2_9_121_1
  doi: 10.1002/adfm.201505328
– ident: e_1_2_9_110_1
  doi: 10.1016/j.susmat.2020.e00156
– ident: e_1_2_9_71_1
  doi: 10.1021/am5074722
– ident: e_1_2_9_19_1
  doi: 10.1016/j.cclet.2020.03.054
– ident: e_1_2_9_40_1
  doi: 10.1021/acs.jpcc.9b03963
– ident: e_1_2_9_150_1
  doi: 10.1038/s41467-020-16671-1
– ident: e_1_2_9_36_1
  doi: 10.1039/C4CP00467A
– ident: e_1_2_9_140_1
  doi: 10.1002/adma.201908486
– ident: e_1_2_9_126_1
  doi: 10.1021/acsami.8b22339
– ident: e_1_2_9_3_1
  doi: 10.1038/s41570-016-0014
– ident: e_1_2_9_132_1
  doi: 10.1149/2.0641704jes
– ident: e_1_2_9_83_1
  doi: 10.1039/C7TA01082F
– ident: e_1_2_9_48_1
  doi: 10.1039/C7CP08645H
– ident: e_1_2_9_82_1
  doi: 10.1016/j.apsusc.2017.04.239
– ident: e_1_2_9_26_1
  doi: 10.1016/j.jechem.2020.06.069
– ident: e_1_2_9_47_1
  doi: 10.1021/acsnano.9b06394
– ident: e_1_2_9_86_1
  doi: 10.1016/j.mtener.2021.100668
– ident: e_1_2_9_67_1
  doi: 10.1016/j.cej.2019.05.037
– ident: e_1_2_9_28_1
  doi: 10.1039/C9NH00571D
– ident: e_1_2_9_66_1
  doi: 10.1021/nn204153h
– ident: e_1_2_9_23_1
  doi: 10.1002/smll.201904293
– ident: e_1_2_9_2_1
  doi: 10.1002/anie.200901678
– ident: e_1_2_9_152_1
  doi: 10.1021/acsaem.8b00652
– ident: e_1_2_9_78_1
  doi: 10.1039/D0CC01042A
– ident: e_1_2_9_102_1
  doi: 10.1088/2053-1583/aacfb3
– ident: e_1_2_9_7_1
  doi: 10.1002/adma.202004469
– ident: e_1_2_9_21_1
  doi: 10.1016/j.jechem.2020.04.015
– ident: e_1_2_9_31_1
  doi: 10.1016/j.trac.2018.05.021
– ident: e_1_2_9_95_1
  doi: 10.1002/anie.201402513
– ident: e_1_2_9_51_1
  doi: 10.1021/cm500641a
– ident: e_1_2_9_37_1
  doi: 10.1088/2053-1583/aacfb3
– ident: e_1_2_9_84_1
  doi: 10.1016/j.apsusc.2020.147209
– ident: e_1_2_9_141_1
  doi: 10.1109/TNANO.2018.2868672
– ident: e_1_2_9_116_1
  doi: 10.1038/ncomms14949
– ident: e_1_2_9_118_1
  doi: 10.1021/acsnano.8b01774
– ident: e_1_2_9_159_1
  doi: 10.1039/C9NR00084D
– ident: e_1_2_9_64_2
  doi: 10.1007/978-3-030-19026-2
– ident: e_1_2_9_164_1
  doi: 10.1002/anie.201906138
– ident: e_1_2_9_108_1
  doi: 10.1002/anie.202015627
– ident: e_1_2_9_146_1
  doi: 10.1021/acs.chemmater.5b01129
– ident: e_1_2_9_168_1
  doi: 10.1002/adma.201607017
– ident: e_1_2_9_45_1
  doi: 10.1016/j.apsusc.2017.11.101
– ident: e_1_2_9_87_1
  doi: 10.1002/aelm.201600255
– ident: e_1_2_9_20_1
  doi: 10.1021/acsami.8b10729
– ident: e_1_2_9_30_1
  doi: 10.1016/j.cej.2018.11.051
– ident: e_1_2_9_127_1
  doi: 10.1021/acs.chemmater.8b01976
– ident: e_1_2_9_115_1
  doi: 10.1080/10420150.2020.1718142
– ident: e_1_2_9_167_1
  doi: 10.1021/acsnano.0c08357
– ident: e_1_2_9_33_1
  doi: 10.1039/C7CS00838D
– ident: e_1_2_9_5_1
  doi: 10.1002/adma.201805417
– ident: e_1_2_9_4_1
  doi: 10.1021/acs.nanolett.5b03291
– ident: e_1_2_9_62_1
  doi: 10.1039/C7TA05574A
– ident: e_1_2_9_72_1
  doi: 10.1016/j.matchemphys.2013.01.008
– ident: e_1_2_9_69_1
  doi: 10.1021/acsnano.5b03591
– ident: e_1_2_9_111_1
  doi: 10.1021/acsnano.0c07242
– ident: e_1_2_9_1_1
  doi: 10.1038/nmat1849
– ident: e_1_2_9_18_1
  doi: 10.1146/annurev-matsci-062910-100448
– ident: e_1_2_9_8_1
  doi: 10.1002/smll.202005640
– ident: e_1_2_9_129_1
  doi: 10.1021/acsnano.8b06014
– ident: e_1_2_9_41_1
  doi: 10.1021/acs.jpcc.7b05675
– ident: e_1_2_9_77_1
  doi: 10.1126/science.aag2421
– ident: e_1_2_9_169_1
  doi: 10.1016/j.ensm.2020.04.016
– ident: e_1_2_9_119_1
  doi: 10.1021/acs.cgd.7b00642
– ident: e_1_2_9_60_1
  doi: 10.1021/acsnano.6b05240
– ident: e_1_2_9_73_1
  doi: 10.1002/anie.201802232
– ident: e_1_2_9_76_1
  doi: 10.1039/C4CC03366C
– ident: e_1_2_9_113_1
  doi: 10.1002/anie.201916748
– ident: e_1_2_9_90_1
  doi: 10.1021/acs.nanolett.5b00737
– ident: e_1_2_9_163_1
  doi: 10.1016/j.ensm.2019.09.026
– ident: e_1_2_9_54_1
  doi: 10.1038/s41563-020-0657-0
– ident: e_1_2_9_100_1
  doi: 10.1021/acs.langmuir.7b01339
– ident: e_1_2_9_61_1
  doi: 10.1002/adem.201901241
– ident: e_1_2_9_50_1
  doi: 10.1038/nature13970
– ident: e_1_2_9_29_1
  doi: 10.1002/adma.201804779
– ident: e_1_2_9_74_1
  doi: 10.3390/nano8020080
– ident: e_1_2_9_160_1
  doi: 10.1021/acsami.0c06728
– ident: e_1_2_9_57_1
  doi: 10.1002/adma.201102306
– ident: e_1_2_9_12_1
  doi: 10.1039/C8NR09653H
– ident: e_1_2_9_81_1
  doi: 10.1021/ja308463r
– ident: e_1_2_9_38_1
  doi: 10.1021/ja508154e
– ident: e_1_2_9_9_1
  doi: 10.1039/C9CS00822E
– ident: e_1_2_9_55_1
  doi: 10.1038/ncomms2664
– ident: e_1_2_9_171_1
  doi: 10.1021/acsanm.1c00219
– ident: e_1_2_9_120_1
  doi: 10.1021/acs.inorgchem.8b00021
– ident: e_1_2_9_138_1
  doi: 10.1002/adfm.201908075
– ident: e_1_2_9_134_1
  doi: 10.1002/aenm.201801127
– ident: e_1_2_9_17_1
  doi: 10.1016/j.trechm.2019.02.016
– ident: e_1_2_9_133_1
  doi: 10.1021/acs.chemmater.6b04830
– ident: e_1_2_9_161_1
  doi: 10.1016/j.matt.2019.05.020
– ident: e_1_2_9_97_1
  doi: 10.1021/jacs.9b02578
– ident: e_1_2_9_89_1
  doi: 10.1016/j.jpowsour.2016.04.035
– ident: e_1_2_9_135_1
  doi: 10.1016/j.electacta.2018.09.149
– ident: e_1_2_9_32_1
  doi: 10.1021/acsnano.7b06251
– ident: e_1_2_9_11_1
  doi: 10.1016/j.ensm.2020.11.035
– ident: e_1_2_9_39_1
  doi: 10.1021/jp507336x
– ident: e_1_2_9_44_1
  doi: 10.1039/C6SC00077K
– ident: e_1_2_9_59_1
  doi: 10.1039/C5DT01247C
– ident: e_1_2_9_10_1
  doi: 10.1038/natrevmats.2016.98
– ident: e_1_2_9_94_1
  doi: 10.1039/D0CC03189E
– ident: e_1_2_9_165_1
  doi: 10.1016/j.flatc.2019.100128
– ident: e_1_2_9_27_1
  doi: 10.1021/acsnano.8b02379
– ident: e_1_2_9_93_1
  doi: 10.1016/j.jechem.2019.11.029
– ident: e_1_2_9_53_1
  doi: 10.1002/anie.201800887
– ident: e_1_2_9_144_1
  doi: 10.1039/C5NR06513E
– ident: e_1_2_9_70_1
  doi: 10.1021/acs.chemmater.7b02847
– ident: e_1_2_9_46_1
  doi: 10.1007/s12598-020-01488-0
– ident: e_1_2_9_117_1
  doi: 10.1039/C9NR02354B
– ident: e_1_2_9_122_1
  doi: 10.1021/acsnano.9b07708
– ident: e_1_2_9_24_1
  doi: 10.1016/j.cej.2018.05.148
– ident: e_1_2_9_156_1
  doi: 10.1021/acs.inorgchem.8b02890
– ident: e_1_2_9_65_1
  doi: 10.1021/acsami.6b08413
– ident: e_1_2_9_148_1
  doi: 10.1002/adma.202001093
– ident: e_1_2_9_6_1
  doi: 10.1002/adom.201800441
– ident: e_1_2_9_58_1
  doi: 10.1021/nn204153h
– ident: e_1_2_9_92_1
  doi: 10.1016/j.chempr.2020.01.019
– ident: e_1_2_9_52_1
  doi: 10.1002/adfm.201910048
– ident: e_1_2_9_105_1
  doi: 10.1126/science.aba8311
– ident: e_1_2_9_147_1
  doi: 10.1016/j.cej.2020.125786
– ident: e_1_2_9_91_1
  doi: 10.1016/j.matdes.2016.10.053
– ident: e_1_2_9_170_1
  doi: 10.1002/adfm.202000693
– ident: e_1_2_9_114_1
  doi: 10.1088/2053-1583/aa51b7
– ident: e_1_2_9_98_1
  doi: 10.1039/C4NR02080D
– ident: e_1_2_9_56_1
  doi: 10.1021/acsnano.0c08357
– ident: e_1_2_9_43_1
  doi: 10.1103/PhysRevB.92.075411
– ident: e_1_2_9_104_1
  doi: 10.1021/jacs.9b00574
– ident: e_1_2_9_128_1
  doi: 10.1002/anie.201606643
– ident: e_1_2_9_153_1
  doi: 10.1039/C4TA02638A
– ident: e_1_2_9_109_1
  doi: 10.1021/acsnano.0c08630
– ident: e_1_2_9_22_1
  doi: 10.1002/adfm.201906282
– ident: e_1_2_9_123_1
  doi: 10.1002/aenm.201601873
– ident: e_1_2_9_149_1
  doi: 10.1016/j.cej.2020.127806
– ident: e_1_2_9_125_1
  doi: 10.1021/acs.chemmater.6b01275
– ident: e_1_2_9_49_1
  doi: 10.1021/acs.jpcc.5b11887
– ident: e_1_2_9_68_1
  doi: 10.1021/ja405735d
– ident: e_1_2_9_99_1
  doi: 10.1021/acsnano.7b05559
– ident: e_1_2_9_166_1
  doi: 10.1039/C9TA07036B
SSID ssj0009606
Score 2.7363708
SecondaryResourceType review_article
Snippet 2D transition metal carbides, nitrides, and carbonitrides, also known as MXenes, are versatile materials due to their adjustable structure and rich surface...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage e2103148
SubjectTerms antioxidation
Carbon nitride
delamination
Electrochemical etching
Etching
large‐scale synthesis
Materials science
Metal carbides
Molten salts
MXenes
Transition metals
Two dimensional materials
Title Advances in the Synthesis of 2D MXenes
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadma.202103148
https://www.proquest.com/docview/2578155869
https://www.proquest.com/docview/2563710823
Volume 33
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ3PS8MwFMeDeNKDv8XqlAqip2xdknbtsTjHEOZBHexWkjSBoXRit4P-9b7XX9sEEfTUlCa0aX68T9qX7yPkCtY8YPaspSyIDAUTkNIotIYCeQslmOC22BQ2egiGY3E_8Scru_hLfYjmgxuOjGK-xgEuVd5ZiobKtNANYhinQOBuX3TYQip6XOpHIZ4XYnvcp1Egwlq10WOd9eLrVmmJmqvAWlicwS6R9bOWjiYv7cVctfXnNxnH_1Rmj-xUOOrGZf_ZJxsmOyDbKyKFh-Q6Lt0EcneauYCL7tNHBod8mrsz67K-O5rgfHlExoO759shraIrUA0QFlKfaxsp1fM0gyWLCX0jgZVCrnRXYfAaHQA7GWN73W6glWI6SoVkRoIB0yoNPX5MNrNZZk6I60WpwvCE0iqMrS4lJFPDAa6kADzUDqH12010JT2OETBek1I0mSVY_6Spv0NumvxvpejGjzlbdWMl1eDLE5yFAJPCIHLIZXMZhg3-C5GZmS0wT8ABrkLGHcKKlvnlTkncH8XN2elfCp2RLUyXroAtsjl_X5hzQJq5uii67Rem7elp
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3PT8IwFH5RPKgHfxtR1JkYPVVGN0Z3JCJBBQ4KCbel7bqEaIYROOhf73sbG2BiTPS0X226rn19X7vX7wO4xDkPur0oYtzzDUMXEDJfRIYh8naVy10nSjaFdbpeq-8-DKpZNCHthUn5IfIFN7KMZLwmA6cF6fKcNVSGCXEQJ6ECV6zCGsl6k4hB42nOIEUAPaHbc6rM91yR8TbavLycf9kvzcHmImRNfE5zG1T2tmmoycvNdKJu9Oc3Isd_VWcHtmaI1KqnXWgXVky8B5sLPIX7cFVPIwXG1jC2EDFazx8xHsbDsTWKLN6wOgMaMg-g37zr3bbYTGCBacRhglUdHflK1WzNcdZiRNVIhEvCUbqiSL9GewifjIlqlYqnleLaD13JjUQfplUobOcQCvEoNkdg2X6oSKFQRork1aXE09A4iK-kiwhRF4FlnzfQM_ZxEsF4DVLeZB5Q_YO8_kW4ztO_pbwbP6YsZa0VzOxvHNBAhEhJeH4RLvLHaDn0O0TGZjSlNJ6D-Epwpwg8aZpfSgrqjU49vzr-S6ZzWG_1Ou2gfd99PIENup9GBpagMHmfmlNEOBN1lvThL1WS7YM
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ1bS8MwFMcPOkH0wbs4nVpB9CluS7MufSzOMS8bog72VpI0gaF0w20P-uk9abtuE0TQp94S2jQ5Ob-0yf8AnOOYB92eMYR6viboAiLic6MJkjeTjDLXJIvC2h2v1WV3vVpvbhV_qg-Rf3CzlpH019bAh5Epz0RDRZToBlEbp4DxZVhhHlqMxaKnmYCU5fNEbc-tEd9jfCrbWKHlxfyLbmnGmvPEmric5iaI6cOmM01eryZjeaU-v-k4_qc0W7CR8agTpA1oG5Z0vAPrcyqFu3ARpPMERk4_dpAXneePGDej_sgZGIc2nHbPdph70G3evFy3SBZegSikME5qrjK-lPWKojhm0bymBcISd6WqShu9RnkIT1qberXqKSmp8iMmqBbowZSMeMXdh0I8iPUBOBU_kjY-oTDSBlcXAncj7SJdCYZ8qIpApm83VJn2uA2B8Ramqsk0tOUP8_IX4TJPP0xVN35MWZpWVphZ3yi03RByEvf8Ipzll9Fu7M8QEevBxKbxXKQrTt0i0KRmfrlTGDTaQX50-JdMp7D62GiGD7ed-yNYs6fTaYElKIzfJ_oY8WYsT5IW_AWltuw7
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Advances+in+the+Synthesis+of+2D+MXenes&rft.jtitle=Advanced+materials+%28Weinheim%29&rft.au=Wei%2C+Yi&rft.au=Zhang%2C+Peng&rft.au=Soomro%2C+Razium+A&rft.au=Zhu%2C+Qizhen&rft.date=2021-10-01&rft.issn=1521-4095&rft.eissn=1521-4095&rft.volume=33&rft.issue=39&rft.spage=e2103148&rft_id=info:doi/10.1002%2Fadma.202103148&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0935-9648&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0935-9648&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0935-9648&client=summon