Advances in the Synthesis of 2D MXenes
2D transition metal carbides, nitrides, and carbonitrides, also known as MXenes, are versatile materials due to their adjustable structure and rich surface chemistry. The physical and chemical diversity has recognized MXenes as a potential 2D material with a wide spectrum of application domains. Sin...
Saved in:
Published in | Advanced materials (Weinheim) Vol. 33; no. 39; pp. e2103148 - n/a |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Weinheim
Wiley Subscription Services, Inc
01.10.2021
|
Subjects | |
Online Access | Get full text |
ISSN | 0935-9648 1521-4095 1521-4095 |
DOI | 10.1002/adma.202103148 |
Cover
Loading…
Abstract | 2D transition metal carbides, nitrides, and carbonitrides, also known as MXenes, are versatile materials due to their adjustable structure and rich surface chemistry. The physical and chemical diversity has recognized MXenes as a potential 2D material with a wide spectrum of application domains. Since the discovery of MXenes in 2011, a wide variety of synthetic routes has been proposed with advancement toward large‐scale preparing methods for MXene nanosheets and derivative products. Herein, the critical synthesis aspects and the operating conditions that influence the physical and chemical characteristics of MXenes are discussed in detail. The emerging etching methods including HF etching methods, in situ HF‐forming etching methods, electrochemical etching methods, alkali etching methods, and molten salt etching methods, as well as delamination strategies are discussed. Considering the future developments and practical applications, the large‐scale synthesis routes and the antioxidation strategies of MXenes are also summarized. In summary, a generalized overview of MXenes synthesis protocols with an outlook for the current challenges and promising technologies for large‐scale preparation and stable storage is provided.
The recent progress of MXenes synthesis strategies, including etching, intercalation, and delamination, is summarized. The large‐scale preparation methods for MXenes and their derivates, such as flexible membranes and fibers, are discussed. Moreover, the understanding of the oxidation stability of MXenes and stable storage strategies are also addressed. |
---|---|
AbstractList | 2D transition metal carbides, nitrides, and carbonitrides, also known as MXenes, are versatile materials due to their adjustable structure and rich surface chemistry. The physical and chemical diversity has recognized MXenes as a potential 2D material with a wide spectrum of application domains. Since the discovery of MXenes in 2011, a wide variety of synthetic routes has been proposed with advancement toward large‐scale preparing methods for MXene nanosheets and derivative products. Herein, the critical synthesis aspects and the operating conditions that influence the physical and chemical characteristics of MXenes are discussed in detail. The emerging etching methods including HF etching methods, in situ HF‐forming etching methods, electrochemical etching methods, alkali etching methods, and molten salt etching methods, as well as delamination strategies are discussed. Considering the future developments and practical applications, the large‐scale synthesis routes and the antioxidation strategies of MXenes are also summarized. In summary, a generalized overview of MXenes synthesis protocols with an outlook for the current challenges and promising technologies for large‐scale preparation and stable storage is provided.
The recent progress of MXenes synthesis strategies, including etching, intercalation, and delamination, is summarized. The large‐scale preparation methods for MXenes and their derivates, such as flexible membranes and fibers, are discussed. Moreover, the understanding of the oxidation stability of MXenes and stable storage strategies are also addressed. 2D transition metal carbides, nitrides, and carbonitrides, also known as MXenes, are versatile materials due to their adjustable structure and rich surface chemistry. The physical and chemical diversity has recognized MXenes as a potential 2D material with a wide spectrum of application domains. Since the discovery of MXenes in 2011, a wide variety of synthetic routes has been proposed with advancement toward large‐scale preparing methods for MXene nanosheets and derivative products. Herein, the critical synthesis aspects and the operating conditions that influence the physical and chemical characteristics of MXenes are discussed in detail. The emerging etching methods including HF etching methods, in situ HF‐forming etching methods, electrochemical etching methods, alkali etching methods, and molten salt etching methods, as well as delamination strategies are discussed. Considering the future developments and practical applications, the large‐scale synthesis routes and the antioxidation strategies of MXenes are also summarized. In summary, a generalized overview of MXenes synthesis protocols with an outlook for the current challenges and promising technologies for large‐scale preparation and stable storage is provided. 2D transition metal carbides, nitrides, and carbonitrides, also known as MXenes, are versatile materials due to their adjustable structure and rich surface chemistry. The physical and chemical diversity has recognized MXenes as a potential 2D material with a wide spectrum of application domains. Since the discovery of MXenes in 2011, a wide variety of synthetic routes has been proposed with advancement toward large-scale preparing methods for MXene nanosheets and derivative products. Herein, the critical synthesis aspects and the operating conditions that influence the physical and chemical characteristics of MXenes are discussed in detail. The emerging etching methods including HF etching methods, in situ HF-forming etching methods, electrochemical etching methods, alkali etching methods, and molten salt etching methods, as well as delamination strategies are discussed. Considering the future developments and practical applications, the large-scale synthesis routes and the antioxidation strategies of MXenes are also summarized. In summary, a generalized overview of MXenes synthesis protocols with an outlook for the current challenges and promising technologies for large-scale preparation and stable storage is provided.2D transition metal carbides, nitrides, and carbonitrides, also known as MXenes, are versatile materials due to their adjustable structure and rich surface chemistry. The physical and chemical diversity has recognized MXenes as a potential 2D material with a wide spectrum of application domains. Since the discovery of MXenes in 2011, a wide variety of synthetic routes has been proposed with advancement toward large-scale preparing methods for MXene nanosheets and derivative products. Herein, the critical synthesis aspects and the operating conditions that influence the physical and chemical characteristics of MXenes are discussed in detail. The emerging etching methods including HF etching methods, in situ HF-forming etching methods, electrochemical etching methods, alkali etching methods, and molten salt etching methods, as well as delamination strategies are discussed. Considering the future developments and practical applications, the large-scale synthesis routes and the antioxidation strategies of MXenes are also summarized. In summary, a generalized overview of MXenes synthesis protocols with an outlook for the current challenges and promising technologies for large-scale preparation and stable storage is provided. |
Author | Xu, Bin Soomro, Razium A. Zhang, Peng Wei, Yi Zhu, Qizhen |
Author_xml | – sequence: 1 givenname: Yi surname: Wei fullname: Wei, Yi organization: Beijing University of Chemical Technology – sequence: 2 givenname: Peng surname: Zhang fullname: Zhang, Peng organization: Beijing University of Chemical Technology – sequence: 3 givenname: Razium A. surname: Soomro fullname: Soomro, Razium A. organization: Beijing University of Chemical Technology – sequence: 4 givenname: Qizhen surname: Zhu fullname: Zhu, Qizhen organization: Beijing University of Chemical Technology – sequence: 5 givenname: Bin orcidid: 0000-0001-5177-8929 surname: Xu fullname: Xu, Bin email: xubin@mail.buct.edu.cn, binxumail@163.com organization: Beijing University of Chemical Technology |
BookMark | eNqFkM1LwzAYh4NMcJtePRcE8dKZjyZNjmXzCzY8qOAtpOlbzOjSmXTK_ns7JgoD8fS7PM_LyzNCA996QOic4AnBmF6bamUmFFOCGcnkERoSTkmaYcUHaIgV46kSmTxBoxiXGGMlsBiiy6L6MN5CTJxPujdInra-n-hi0tYJnSWLV_AQT9FxbZoIZ987Ri-3N8_T-3T-ePcwLeapzYiQKWe2VmWZY0tzzkByMExRyUpLSpGz3ArJFECdEyJsWVKrqsxQMBlVtqwkZmN0tb-7Du37BmKnVy5aaBrjod1ETblgOcGSsh69OECX7Sb4_rueyiXhXArVU9mesqGNMUCtretM51rfBeMaTbDexdO7ePonXq9NDrR1cCsTtn8Lai98uga2_9C6mC2KX_cLyPKBCQ |
CitedBy_id | crossref_primary_10_1039_D4NR03050H crossref_primary_10_1007_s40843_023_2748_8 crossref_primary_10_1039_D3NJ00943B crossref_primary_10_1088_2053_1583_ac88e2 crossref_primary_10_1016_j_desal_2023_117094 crossref_primary_10_1016_j_nxmate_2025_100485 crossref_primary_10_1016_j_cej_2023_145700 crossref_primary_10_1016_j_cej_2024_150697 crossref_primary_10_1016_j_matre_2022_100080 crossref_primary_10_1039_D3QI00732D crossref_primary_10_3390_coatings14121564 crossref_primary_10_1021_acsanm_2c04607 crossref_primary_10_3389_fchem_2022_1090905 crossref_primary_10_1002_adfm_202209918 crossref_primary_10_1002_adom_202301761 crossref_primary_10_1016_j_physe_2022_115476 crossref_primary_10_1002_smm2_1238 crossref_primary_10_1016_j_apenergy_2024_122944 crossref_primary_10_1002_smll_202308225 crossref_primary_10_1039_D3TA03069E crossref_primary_10_1002_smll_202309785 crossref_primary_10_1021_acsanm_3c04491 crossref_primary_10_1002_chem_202303451 crossref_primary_10_1016_j_seppur_2025_132120 crossref_primary_10_1021_acs_energyfuels_3c00589 crossref_primary_10_1002_smll_202311869 crossref_primary_10_3390_molecules29163880 crossref_primary_10_1002_aenm_202202303 crossref_primary_10_1021_acsmaterialslett_3c00397 crossref_primary_10_3390_polym14194094 crossref_primary_10_1002_smll_202400593 crossref_primary_10_3390_diagnostics13040697 crossref_primary_10_1016_j_jcis_2022_06_075 crossref_primary_10_1016_j_mattod_2025_02_004 crossref_primary_10_1021_acsanm_2c03648 crossref_primary_10_1002_advs_202300273 crossref_primary_10_1038_s41467_022_34699_3 crossref_primary_10_1002_cjce_25369 crossref_primary_10_1016_j_ensm_2022_06_044 crossref_primary_10_1002_advs_202304874 crossref_primary_10_1002_aenm_202304106 crossref_primary_10_1016_j_ijhydene_2023_11_167 crossref_primary_10_1016_j_chempr_2023_09_001 crossref_primary_10_1016_j_coco_2022_101474 crossref_primary_10_1002_adts_202400091 crossref_primary_10_1016_j_ccr_2024_216253 crossref_primary_10_1002_adsu_202400844 crossref_primary_10_1016_j_surfin_2023_103426 crossref_primary_10_1021_acsanm_2c00109 crossref_primary_10_1016_j_cjsc_2024_100337 crossref_primary_10_1039_D3QM00783A crossref_primary_10_1002_smll_202105883 crossref_primary_10_1007_s42864_023_00229_x crossref_primary_10_1007_s12598_022_02189_6 crossref_primary_10_1016_j_seppur_2024_126982 crossref_primary_10_1016_j_cej_2025_160883 crossref_primary_10_1002_smtd_202301689 crossref_primary_10_1016_j_heliyon_2024_e31155 crossref_primary_10_1016_j_flatc_2022_100439 crossref_primary_10_1016_j_bioactmat_2024_05_023 crossref_primary_10_1007_s10854_023_10146_x crossref_primary_10_1016_j_mssp_2024_108826 crossref_primary_10_1002_smll_202410160 crossref_primary_10_1007_s11664_023_10722_1 crossref_primary_10_1016_j_jcis_2025_02_121 crossref_primary_10_1002_adfm_202306591 crossref_primary_10_1039_D4TA04996A crossref_primary_10_1002_admt_202401944 crossref_primary_10_1002_adfm_202308532 crossref_primary_10_1002_smtd_202201525 crossref_primary_10_1016_j_est_2024_113554 crossref_primary_10_1021_acs_analchem_3c03555 crossref_primary_10_1007_s11249_024_01881_1 crossref_primary_10_1002_er_8252 crossref_primary_10_1039_D3NR05723B crossref_primary_10_1002_asia_202401181 crossref_primary_10_1088_2053_1583_ac8c9f crossref_primary_10_1002_adma_202305200 crossref_primary_10_1016_j_apsusc_2023_158838 crossref_primary_10_1021_acs_energyfuels_3c01420 crossref_primary_10_1007_s00604_022_05376_5 crossref_primary_10_1016_j_actbio_2023_12_038 crossref_primary_10_1111_jace_19939 crossref_primary_10_1016_j_colsurfa_2023_131312 crossref_primary_10_1186_s12951_022_01428_3 crossref_primary_10_1016_j_cej_2024_149304 crossref_primary_10_1007_s12598_024_03022_y crossref_primary_10_1016_j_mtcomm_2022_104216 crossref_primary_10_1039_D2TA03050K crossref_primary_10_1364_OE_479870 crossref_primary_10_1016_j_est_2023_110293 crossref_primary_10_1039_D2TC05150H crossref_primary_10_1039_D3QM00220A crossref_primary_10_1039_D4TC04570J crossref_primary_10_1007_s40820_022_00941_2 crossref_primary_10_1007_s40843_022_2298_0 crossref_primary_10_1149_2162_8777_ac9336 crossref_primary_10_1016_j_jallcom_2024_174573 crossref_primary_10_1016_j_snb_2022_133225 crossref_primary_10_1016_j_cej_2025_160741 crossref_primary_10_1002_adfm_202110267 crossref_primary_10_1016_j_jhazmat_2023_131875 crossref_primary_10_1021_acsami_2c11577 crossref_primary_10_1016_j_cej_2024_149302 crossref_primary_10_1016_j_ijhydene_2024_05_227 crossref_primary_10_15541_jim20230510 crossref_primary_10_1007_s13206_024_00157_z crossref_primary_10_1002_admt_202202029 crossref_primary_10_1002_smtd_202201651 crossref_primary_10_1021_acs_chemmater_4c01536 crossref_primary_10_1016_j_jece_2024_112762 crossref_primary_10_1038_s41570_024_00680_5 crossref_primary_10_1016_j_pnsc_2024_07_018 crossref_primary_10_1016_j_oceram_2023_100526 crossref_primary_10_1016_j_cej_2024_151510 crossref_primary_10_1002_smll_202311427 crossref_primary_10_1002_smll_202309580 crossref_primary_10_1016_j_ccr_2024_215691 crossref_primary_10_1016_j_jallcom_2023_171902 crossref_primary_10_1016_j_mattod_2021_11_021 crossref_primary_10_1016_j_compositesa_2022_107362 crossref_primary_10_1016_j_cej_2023_142508 crossref_primary_10_1002_smll_202404872 crossref_primary_10_1007_s41664_023_00269_9 crossref_primary_10_1016_j_est_2024_113851 crossref_primary_10_1021_acs_accounts_4c00295 crossref_primary_10_12677_ms_2024_149142 crossref_primary_10_1016_j_apcatb_2024_123827 crossref_primary_10_1016_j_apmt_2023_101908 crossref_primary_10_1016_j_est_2023_109299 crossref_primary_10_1088_1361_648X_ad05fa crossref_primary_10_1016_j_jallcom_2024_175532 crossref_primary_10_1021_acsmaterialslett_2c00771 crossref_primary_10_1016_j_cej_2024_149555 crossref_primary_10_5004_dwt_2023_29162 crossref_primary_10_1016_j_cis_2025_103441 crossref_primary_10_1002_smll_202201290 crossref_primary_10_1021_acsomega_3c02002 crossref_primary_10_3389_fbioe_2023_1154301 crossref_primary_10_1016_j_jallcom_2023_169836 crossref_primary_10_1016_j_cej_2024_151600 crossref_primary_10_1016_j_cej_2023_141402 crossref_primary_10_1016_S1872_5805_23_60730_9 crossref_primary_10_1016_j_fuel_2025_134859 crossref_primary_10_1039_D4NR00015C crossref_primary_10_1016_j_cej_2023_144913 crossref_primary_10_1021_acs_energyfuels_4c04303 crossref_primary_10_34133_bmr_0143 crossref_primary_10_1016_j_cej_2024_155098 crossref_primary_10_1016_j_electacta_2024_143787 crossref_primary_10_1016_j_susmat_2025_e01280 crossref_primary_10_1021_acsnano_1c11298 crossref_primary_10_1002_cphc_202400604 crossref_primary_10_1016_j_bios_2021_113943 crossref_primary_10_1002_smtd_202201559 crossref_primary_10_1016_j_jcis_2024_06_115 crossref_primary_10_1002_pssr_202300468 crossref_primary_10_1039_D3GC00787A crossref_primary_10_1016_j_ijhydene_2024_11_379 crossref_primary_10_1021_acsami_3c09605 crossref_primary_10_1002_adma_202108560 crossref_primary_10_1002_ange_202210828 crossref_primary_10_1002_advs_202409404 crossref_primary_10_1134_S0036023624603568 crossref_primary_10_1039_D3RA02100A crossref_primary_10_1016_j_compositesa_2023_107640 crossref_primary_10_1016_j_scitotenv_2022_160539 crossref_primary_10_1016_j_jallcom_2024_176408 crossref_primary_10_1002_adfm_202302188 crossref_primary_10_1016_j_cej_2025_160856 crossref_primary_10_1021_acsami_2c21049 crossref_primary_10_1039_D3CC00746D crossref_primary_10_1088_1361_648X_ad5596 crossref_primary_10_1016_j_carbon_2024_118834 crossref_primary_10_1016_j_est_2024_113806 crossref_primary_10_3390_mi14061273 crossref_primary_10_1002_EXP_20220049 crossref_primary_10_1016_j_saa_2023_123445 crossref_primary_10_1016_j_jechem_2024_01_038 crossref_primary_10_1016_j_carbon_2022_07_021 crossref_primary_10_1007_s40820_022_00880_y crossref_primary_10_1016_j_elecom_2022_107236 crossref_primary_10_1016_j_jechem_2022_08_023 crossref_primary_10_1021_acsnano_2c10103 crossref_primary_10_1016_j_flatc_2022_100377 crossref_primary_10_3389_fchem_2022_962528 crossref_primary_10_1016_j_apsusc_2022_154809 crossref_primary_10_1016_j_carbpol_2024_122849 crossref_primary_10_1021_accountsmr_2c00025 crossref_primary_10_1002_adfm_202422081 crossref_primary_10_1016_j_trac_2023_117096 crossref_primary_10_1016_j_cej_2023_143481 crossref_primary_10_1039_D4MA00894D crossref_primary_10_3390_molecules29081731 crossref_primary_10_1007_s40820_023_01039_z crossref_primary_10_1007_s13391_022_00337_9 crossref_primary_10_1016_j_matt_2023_07_013 crossref_primary_10_1186_s43074_023_00091_7 crossref_primary_10_1016_j_cej_2025_160392 crossref_primary_10_1016_j_desal_2024_118198 crossref_primary_10_1039_D4EN00453A crossref_primary_10_1016_j_cattod_2022_07_021 crossref_primary_10_1149_1945_7111_ac7bac crossref_primary_10_1002_aenm_202301349 crossref_primary_10_1016_j_ensm_2024_103568 crossref_primary_10_1002_cplu_202300777 crossref_primary_10_1016_j_jmat_2023_08_013 crossref_primary_10_1002_smll_202404435 crossref_primary_10_1016_j_psep_2022_05_040 crossref_primary_10_1002_elt2_44 crossref_primary_10_1016_j_cej_2024_151396 crossref_primary_10_1080_10408436_2023_2263485 crossref_primary_10_1016_j_est_2024_113810 crossref_primary_10_1016_j_cej_2024_151393 crossref_primary_10_1002_adfm_202412254 crossref_primary_10_1016_j_jcis_2023_04_015 crossref_primary_10_1039_D4TA04211E crossref_primary_10_1007_s10853_024_09917_6 crossref_primary_10_1016_j_cej_2025_161488 crossref_primary_10_1021_acscatal_4c05247 crossref_primary_10_3390_nano14050447 crossref_primary_10_1007_s40145_022_0624_0 crossref_primary_10_3390_nano13212885 crossref_primary_10_1039_D3CP04977A crossref_primary_10_1016_j_actbio_2023_01_049 crossref_primary_10_1557_s43578_022_00680_5 crossref_primary_10_1016_j_jmat_2023_08_002 crossref_primary_10_1016_j_snr_2023_100175 crossref_primary_10_1002_chem_202400874 crossref_primary_10_1021_acsapm_4c00521 crossref_primary_10_1016_j_seppur_2024_130962 crossref_primary_10_1021_acsaem_2c00746 crossref_primary_10_1007_s11426_024_2357_5 crossref_primary_10_1088_1361_6463_ac8b1a crossref_primary_10_1039_D4GC01566E crossref_primary_10_1016_j_cej_2022_140277 crossref_primary_10_1016_j_cej_2025_161334 crossref_primary_10_1016_j_molstruc_2025_141838 crossref_primary_10_15251_DJNB_2024_191_129 crossref_primary_10_1039_D3DT00124E crossref_primary_10_3390_nano14070647 crossref_primary_10_1016_j_matchemphys_2023_127787 crossref_primary_10_1002_eom2_12485 crossref_primary_10_1007_s40820_024_01444_y crossref_primary_10_1016_j_mtla_2024_102089 crossref_primary_10_1016_j_mtsust_2023_100350 crossref_primary_10_1016_j_matlet_2023_135324 crossref_primary_10_1002_adtp_202300268 crossref_primary_10_1002_admi_202101959 crossref_primary_10_1002_adfm_202210184 crossref_primary_10_1039_D3QI02596A crossref_primary_10_1002_cbdv_202400366 crossref_primary_10_1016_j_checat_2023_100634 crossref_primary_10_1021_acs_jpcc_3c07989 crossref_primary_10_1016_j_microc_2024_111302 crossref_primary_10_1088_2631_7990_ad1573 crossref_primary_10_1021_acsami_4c14775 crossref_primary_10_1021_acsanm_3c00624 crossref_primary_10_1093_nsr_nwae251 crossref_primary_10_1016_j_jiec_2025_03_004 crossref_primary_10_1021_acsami_3c14780 crossref_primary_10_1016_j_cej_2023_147920 crossref_primary_10_1002_adfm_202402543 crossref_primary_10_1016_j_jssc_2022_123731 crossref_primary_10_1016_j_ensm_2024_103257 crossref_primary_10_1021_acsami_2c07741 crossref_primary_10_1016_j_scib_2023_11_008 crossref_primary_10_1016_j_infrared_2023_104987 crossref_primary_10_1021_acsmaterialslett_3c00223 crossref_primary_10_1016_j_scitotenv_2024_173264 crossref_primary_10_1016_j_nxmate_2024_100323 crossref_primary_10_1002_adfm_202402307 crossref_primary_10_1002_inf2_12654 crossref_primary_10_1039_D3TA00072A crossref_primary_10_1021_acsmaterialslett_4c00034 crossref_primary_10_1021_acsomega_2c05913 crossref_primary_10_1016_j_ceramint_2022_05_137 crossref_primary_10_1016_j_seppur_2023_124265 crossref_primary_10_1038_s41596_024_00969_1 crossref_primary_10_1002_advs_202303998 crossref_primary_10_3390_s23249743 crossref_primary_10_1039_D2NR06625D crossref_primary_10_3390_membranes14090184 crossref_primary_10_1016_j_cjche_2023_02_028 crossref_primary_10_1016_j_cej_2023_145970 crossref_primary_10_1016_j_molliq_2023_123787 crossref_primary_10_1088_2053_1583_ac9e66 crossref_primary_10_1039_D4SC05097E crossref_primary_10_1039_D2TB01503J crossref_primary_10_1002_anbr_202400033 crossref_primary_10_1002_sus2_259 crossref_primary_10_1007_s40820_021_00728_x crossref_primary_10_1016_j_carbon_2023_118587 crossref_primary_10_1016_j_electacta_2024_143955 crossref_primary_10_1016_j_est_2024_110868 crossref_primary_10_1021_acsanm_4c04164 crossref_primary_10_1021_acsami_4c23060 crossref_primary_10_1002_ange_202411849 crossref_primary_10_1039_D2TA00613H crossref_primary_10_1016_j_cej_2024_151230 crossref_primary_10_1016_j_jcis_2024_10_145 crossref_primary_10_1021_acsaelm_4c00341 crossref_primary_10_26599_NR_2025_94907091 crossref_primary_10_1021_acsaem_2c01845 crossref_primary_10_1016_j_tifs_2024_104665 crossref_primary_10_1016_j_jece_2022_108663 crossref_primary_10_1016_j_ccr_2022_214518 crossref_primary_10_1016_j_inoche_2023_111793 crossref_primary_10_1109_JSEN_2023_3285594 crossref_primary_10_1002_adma_202401035 crossref_primary_10_1016_j_flatc_2025_100849 crossref_primary_10_1021_acsami_4c14113 crossref_primary_10_1016_j_est_2023_108004 crossref_primary_10_1016_j_scib_2024_07_009 crossref_primary_10_1002_app_55511 crossref_primary_10_3390_nano13081337 crossref_primary_10_1039_D2TA03482D crossref_primary_10_1002_chem_202404164 crossref_primary_10_20517_energymater_2023_60 crossref_primary_10_1016_j_cej_2023_141370 crossref_primary_10_1016_j_jmmm_2025_172920 crossref_primary_10_1039_D4TA03566F crossref_primary_10_1016_j_jallcom_2023_168902 crossref_primary_10_1039_D4TA00913D crossref_primary_10_1007_s40843_022_2413_4 crossref_primary_10_1016_j_jallcom_2022_166647 crossref_primary_10_1021_acsanm_4c05026 crossref_primary_10_3390_nano14010097 crossref_primary_10_1016_j_cej_2023_143429 crossref_primary_10_1016_j_est_2024_110757 crossref_primary_10_3390_bios13050495 crossref_primary_10_3390_nano12213792 crossref_primary_10_1002_slct_202302281 crossref_primary_10_1002_smll_202200829 crossref_primary_10_1016_j_microc_2023_109258 crossref_primary_10_1016_j_seppur_2023_125010 crossref_primary_10_1080_23746149_2023_2288353 crossref_primary_10_1039_D2TA03481F crossref_primary_10_1002_chem_202401922 crossref_primary_10_20517_energymater_2023_99 crossref_primary_10_1002_smll_202205163 crossref_primary_10_1007_s12613_024_2859_y crossref_primary_10_1016_j_carbon_2024_119758 crossref_primary_10_1002_adma_202403791 crossref_primary_10_1016_j_cej_2023_141353 crossref_primary_10_1016_j_snb_2023_135078 crossref_primary_10_1002_smll_202206126 crossref_primary_10_1039_D4TA05669H crossref_primary_10_1016_j_heliyon_2023_e19197 crossref_primary_10_1016_j_ccr_2024_216164 crossref_primary_10_1002_adfm_202211199 crossref_primary_10_1002_adts_202400320 crossref_primary_10_1016_j_jece_2024_114569 crossref_primary_10_1016_j_matchemphys_2023_128714 crossref_primary_10_1016_j_microc_2023_108397 crossref_primary_10_1016_j_progsolidstchem_2023_100392 crossref_primary_10_1002_batt_202400309 crossref_primary_10_1016_j_ccr_2025_216460 crossref_primary_10_1063_5_0215613 crossref_primary_10_1016_j_coco_2024_102056 crossref_primary_10_1016_j_jelechem_2023_117743 crossref_primary_10_1007_s40820_021_00781_6 crossref_primary_10_1039_D4NR04609A crossref_primary_10_1007_s11581_023_05362_8 crossref_primary_10_1016_j_mtchem_2024_101989 crossref_primary_10_1021_acsnano_2c02841 crossref_primary_10_1016_j_apsusc_2023_158639 crossref_primary_10_1021_acsanm_2c05050 crossref_primary_10_1002_cnl2_169 crossref_primary_10_1016_j_flatc_2023_100493 crossref_primary_10_1016_j_envres_2023_117261 crossref_primary_10_1063_5_0152042 crossref_primary_10_1088_1361_6463_adb594 crossref_primary_10_1016_j_envpol_2022_120695 crossref_primary_10_1021_acs_energyfuels_4c02987 crossref_primary_10_1016_j_ccr_2023_215542 crossref_primary_10_1021_acsanm_3c00220 crossref_primary_10_1039_D2CC06418A crossref_primary_10_1002_aenm_202403757 crossref_primary_10_1039_D3NA00852E crossref_primary_10_1063_5_0237852 crossref_primary_10_1016_j_cej_2022_138578 crossref_primary_10_1021_acsnano_3c06105 crossref_primary_10_1002_adfm_202303668 crossref_primary_10_1088_2053_1583_ac9ceb crossref_primary_10_1002_smll_202304543 crossref_primary_10_1039_D4NJ02800G crossref_primary_10_1002_smtd_202500028 crossref_primary_10_1016_j_mattod_2023_10_011 crossref_primary_10_3390_molecules29061286 crossref_primary_10_1039_D2TC04583D crossref_primary_10_1016_j_surfin_2024_105678 crossref_primary_10_1002_anie_202409480 crossref_primary_10_1016_j_jallcom_2024_175172 crossref_primary_10_1016_j_jallcom_2022_164730 crossref_primary_10_1016_j_desal_2022_116295 crossref_primary_10_1039_D4CC05133E crossref_primary_10_1016_j_mseb_2023_116400 crossref_primary_10_3390_molecules27206939 crossref_primary_10_1016_j_cej_2022_138586 crossref_primary_10_1016_j_mssp_2024_109016 crossref_primary_10_1016_j_cej_2024_154250 crossref_primary_10_1021_acsami_3c01782 crossref_primary_10_1016_j_mtener_2023_101373 crossref_primary_10_1002_cey2_361 crossref_primary_10_1016_j_ijhydene_2025_01_432 crossref_primary_10_1039_D4NA00803K crossref_primary_10_1021_acsami_2c16277 crossref_primary_10_1007_s11426_023_1826_3 crossref_primary_10_1063_5_0142497 crossref_primary_10_1002_sstr_202300255 crossref_primary_10_1021_acsami_3c19177 crossref_primary_10_1002_smtd_202300708 crossref_primary_10_1021_acs_energyfuels_2c03878 crossref_primary_10_1016_j_ccr_2024_215722 crossref_primary_10_1016_j_ccr_2024_215964 crossref_primary_10_1016_j_porgcoat_2025_109225 crossref_primary_10_1002_adma_202300422 crossref_primary_10_1016_j_mattod_2022_07_011 crossref_primary_10_1039_D4CP03570D crossref_primary_10_1016_j_ccr_2023_215527 crossref_primary_10_1002_sstr_202200309 crossref_primary_10_1016_j_bios_2022_114847 crossref_primary_10_1002_aenm_202204019 crossref_primary_10_1016_j_ccr_2022_215002 crossref_primary_10_1038_s41378_024_00675_8 crossref_primary_10_1021_acsami_3c10599 crossref_primary_10_1021_acsami_3c01748 crossref_primary_10_1016_j_chemosphere_2024_141838 crossref_primary_10_1002_adem_202400515 crossref_primary_10_1016_j_flatc_2024_100631 crossref_primary_10_1080_10408347_2022_2091921 crossref_primary_10_1016_j_ccr_2024_215953 crossref_primary_10_1039_D4NR04329D crossref_primary_10_1007_s12274_023_5676_0 crossref_primary_10_1007_s12274_021_3970_2 crossref_primary_10_1016_j_inoche_2024_112362 crossref_primary_10_1002_solr_202100888 crossref_primary_10_1016_j_jece_2024_114088 crossref_primary_10_1103_PhysRevApplied_18_054036 crossref_primary_10_1039_D4NA01013B crossref_primary_10_1016_j_ultsonch_2022_106024 crossref_primary_10_1021_acsami_2c19681 crossref_primary_10_1002_cphc_202200203 crossref_primary_10_1021_acs_langmuir_4c01431 crossref_primary_10_1016_j_ceramint_2023_12_389 crossref_primary_10_1039_D3QI02205F crossref_primary_10_1016_j_cplett_2024_141320 crossref_primary_10_1016_j_aej_2025_01_086 crossref_primary_10_1016_j_enchem_2023_100110 crossref_primary_10_1016_j_isci_2024_108906 crossref_primary_10_1002_open_202300313 crossref_primary_10_1016_j_flatc_2025_100825 crossref_primary_10_34133_energymatadv_0033 crossref_primary_10_1002_cctc_202300690 crossref_primary_10_1016_j_est_2024_115176 crossref_primary_10_1016_j_apsusc_2022_152432 crossref_primary_10_1016_j_mtcomm_2023_107012 crossref_primary_10_1002_adma_202413648 crossref_primary_10_1016_j_ensm_2024_103771 crossref_primary_10_1016_j_memsci_2022_120949 crossref_primary_10_1016_j_porgcoat_2024_109046 crossref_primary_10_1002_cmdc_202400329 crossref_primary_10_1002_ange_202409480 crossref_primary_10_1002_anie_202210828 crossref_primary_10_1002_cctc_202401261 crossref_primary_10_1021_acssuschemeng_2c05106 crossref_primary_10_1016_j_ijbiomac_2024_139086 crossref_primary_10_1038_s44160_022_00104_6 crossref_primary_10_1016_j_mseb_2025_118076 crossref_primary_10_1016_j_jallcom_2024_173920 crossref_primary_10_1177_24723444241295415 crossref_primary_10_1016_j_flatc_2024_100734 crossref_primary_10_1002_adfm_202412065 crossref_primary_10_1016_j_pmatsci_2023_101227 crossref_primary_10_1016_j_pmatsci_2023_101105 crossref_primary_10_1021_acsami_3c13207 crossref_primary_10_1088_1361_648X_ac9f93 crossref_primary_10_1002_eem2_12379 crossref_primary_10_1016_j_est_2024_112194 crossref_primary_10_1021_acsomega_4c04849 crossref_primary_10_1134_S0031918X23602640 crossref_primary_10_1016_j_ceramint_2024_04_339 crossref_primary_10_1016_j_susmat_2023_e00814 crossref_primary_10_1002_admt_202201611 crossref_primary_10_1016_j_jece_2024_113059 crossref_primary_10_1039_D3TC02890A crossref_primary_10_1016_j_cej_2023_144247 crossref_primary_10_1016_j_apmt_2022_101483 crossref_primary_10_1016_j_apsusc_2024_160864 crossref_primary_10_1016_j_eurpolymj_2024_113526 crossref_primary_10_1021_acsnano_3c01913 crossref_primary_10_1002_advs_202205509 crossref_primary_10_1016_j_jcis_2023_09_035 crossref_primary_10_3390_nano12111797 crossref_primary_10_1021_acsapm_4c01225 crossref_primary_10_1002_cey2_200 crossref_primary_10_1080_10407782_2024_2368277 crossref_primary_10_1039_D4TA07436J crossref_primary_10_1016_j_apcatb_2024_124352 crossref_primary_10_1016_j_snb_2024_135422 crossref_primary_10_1016_j_jclepro_2024_141953 crossref_primary_10_1016_j_mtcata_2024_100054 crossref_primary_10_1016_j_cej_2023_143388 crossref_primary_10_3390_bios14100497 crossref_primary_10_1016_j_ensm_2024_103873 crossref_primary_10_1002_adfm_202407975 crossref_primary_10_1016_j_adna_2023_11_002 crossref_primary_10_1016_j_cplett_2025_141931 crossref_primary_10_1016_j_jallcom_2023_172408 crossref_primary_10_1016_j_mattod_2022_06_006 crossref_primary_10_1149_1945_7111_ac9344 crossref_primary_10_1016_j_esi_2025_03_002 crossref_primary_10_1039_D4TC00111G crossref_primary_10_1016_j_mser_2025_100975 crossref_primary_10_1016_j_oceram_2024_100596 crossref_primary_10_1016_j_memsci_2024_123685 crossref_primary_10_1039_D3QM01281F crossref_primary_10_1515_nanoph_2022_0550 crossref_primary_10_3390_ma17225513 crossref_primary_10_1134_S1023193524700010 crossref_primary_10_1021_acsbiomaterials_3c01770 crossref_primary_10_1039_D4DT02127D crossref_primary_10_1051_e3sconf_202453602013 crossref_primary_10_1002_smll_202304687 crossref_primary_10_1007_s12274_022_4904_3 crossref_primary_10_1002_smll_202410772 crossref_primary_10_1016_j_diamond_2024_111167 crossref_primary_10_1002_adfm_202213416 crossref_primary_10_1016_j_nanoen_2022_107791 crossref_primary_10_1016_j_snb_2024_136625 crossref_primary_10_1039_D2NR05705K crossref_primary_10_1016_j_matre_2021_100077 crossref_primary_10_1016_j_colsurfa_2022_130014 crossref_primary_10_1016_j_cej_2024_150089 crossref_primary_10_1021_acsnano_2c10065 crossref_primary_10_1016_j_jallcom_2021_163241 crossref_primary_10_1016_j_molliq_2022_120037 crossref_primary_10_1039_D4EN00427B crossref_primary_10_1016_j_progsolidstchem_2022_100370 crossref_primary_10_1039_D2NR05718B crossref_primary_10_1016_j_molstruc_2024_139830 crossref_primary_10_1021_acsanm_3c00666 crossref_primary_10_1016_j_flatc_2024_100609 crossref_primary_10_1007_s10965_024_04193_z crossref_primary_10_1016_j_nanoen_2022_107556 crossref_primary_10_1002_adfm_202112913 crossref_primary_10_1016_j_jechem_2022_09_046 crossref_primary_10_3390_ma17020303 crossref_primary_10_1002_ente_202400081 crossref_primary_10_1021_acsami_4c15073 crossref_primary_10_1016_j_xcrp_2023_101345 crossref_primary_10_59400_esc1920 crossref_primary_10_1016_j_cej_2024_149624 crossref_primary_10_1002_smtd_202300776 crossref_primary_10_1016_j_ssc_2025_115854 crossref_primary_10_1016_j_xcrp_2023_101582 crossref_primary_10_1039_D2TB02367A crossref_primary_10_1039_D4NR04681A crossref_primary_10_1021_acsanm_3c01153 crossref_primary_10_1002_smll_202106673 crossref_primary_10_1002_adts_202400900 crossref_primary_10_1016_j_envpol_2023_121777 crossref_primary_10_1039_D4NH00305E crossref_primary_10_1016_j_pmatsci_2024_101422 crossref_primary_10_1016_j_apcatb_2024_124441 crossref_primary_10_1088_1361_648X_ac8d40 crossref_primary_10_1016_j_apcatb_2024_124444 crossref_primary_10_1002_cey2_639 crossref_primary_10_1016_j_chemosphere_2023_139981 crossref_primary_10_1016_j_desal_2024_117781 crossref_primary_10_3390_bios13010091 crossref_primary_10_3390_bios12110982 crossref_primary_10_1002_smll_202303043 crossref_primary_10_1016_j_matpr_2023_02_435 crossref_primary_10_1016_j_ijhydene_2024_08_412 crossref_primary_10_1149_1945_7111_aca8d5 crossref_primary_10_1016_j_ccr_2023_215394 crossref_primary_10_1016_j_cej_2024_156272 crossref_primary_10_3390_mi13091383 crossref_primary_10_1002_sstr_202300090 crossref_primary_10_1016_j_ccr_2023_215275 crossref_primary_10_1016_j_bioadv_2023_213354 crossref_primary_10_1002_aenm_202103867 crossref_primary_10_1016_j_trac_2024_117820 crossref_primary_10_1021_acsanm_3c05859 crossref_primary_10_1016_j_actamat_2025_120727 crossref_primary_10_1021_acs_jpclett_2c03307 crossref_primary_10_15541_jim20230306 crossref_primary_10_1002_smll_202411752 crossref_primary_10_1016_j_isci_2024_111217 crossref_primary_10_1016_j_nanoen_2022_107177 crossref_primary_10_1021_acsnano_2c09933 crossref_primary_10_1007_s42247_024_00916_6 crossref_primary_10_1016_j_scitotenv_2024_170850 crossref_primary_10_1016_j_mtchem_2024_102088 crossref_primary_10_1039_D4TB02834A crossref_primary_10_1021_acs_jpcc_4c00779 crossref_primary_10_1002_adma_202410673 crossref_primary_10_1002_advs_202200296 crossref_primary_10_1016_j_enrev_2024_100070 crossref_primary_10_1016_j_ijhydene_2024_11_284 crossref_primary_10_1016_j_nantod_2024_102622 crossref_primary_10_1016_j_cej_2024_158320 crossref_primary_10_1016_j_jece_2024_114812 crossref_primary_10_1080_10408347_2024_2379851 crossref_primary_10_3390_s23218674 crossref_primary_10_1002_adma_202110608 crossref_primary_10_1002_smll_202308600 crossref_primary_10_1016_j_envres_2023_115900 crossref_primary_10_1039_D4CP01255K crossref_primary_10_1002_adsu_202100507 crossref_primary_10_1149_2754_2726_ac5ac6 crossref_primary_10_1002_advs_202305672 crossref_primary_10_1002_aenm_202301920 crossref_primary_10_1002_adfm_202208320 crossref_primary_10_1016_j_matre_2024_100255 crossref_primary_10_1002_smll_202403920 crossref_primary_10_1021_acsami_3c07589 crossref_primary_10_1016_j_chemosphere_2024_143194 crossref_primary_10_1002_anie_202411849 crossref_primary_10_1002_aenm_202200072 crossref_primary_10_1039_D3TA07682B crossref_primary_10_1016_j_coelec_2024_101557 crossref_primary_10_1021_acsnano_3c04650 crossref_primary_10_1016_j_ijhydene_2024_03_065 crossref_primary_10_1016_j_jechem_2023_11_031 crossref_primary_10_1039_D3NR03005A crossref_primary_10_1016_j_jpowsour_2023_232827 crossref_primary_10_3390_ma16206816 crossref_primary_10_1002_smll_202305321 crossref_primary_10_1007_s12274_023_5509_1 crossref_primary_10_1002_smll_202308715 crossref_primary_10_1002_slct_202404885 crossref_primary_10_1002_celc_202400008 crossref_primary_10_1016_j_xinn_2023_100540 crossref_primary_10_1021_acs_langmuir_4c00074 crossref_primary_10_1016_j_pmatsci_2023_101183 crossref_primary_10_1002_smtd_202101537 crossref_primary_10_1021_acs_cgd_4c01404 crossref_primary_10_1002_smll_202205947 crossref_primary_10_1002_aesr_202300103 crossref_primary_10_1016_j_cej_2022_138891 crossref_primary_10_3390_mi15020187 crossref_primary_10_1016_j_mtphys_2023_101291 crossref_primary_10_1002_aesr_202300231 crossref_primary_10_1007_s12274_023_6360_0 crossref_primary_10_1039_D3RA03340F crossref_primary_10_1039_D4NR03664F crossref_primary_10_1016_j_apsusc_2024_160583 crossref_primary_10_1016_j_mset_2023_10_002 crossref_primary_10_1039_D3NA00642E crossref_primary_10_1021_acsanm_2c02594 crossref_primary_10_1016_j_cej_2024_148971 crossref_primary_10_1016_j_jenvman_2024_122673 crossref_primary_10_1016_j_envres_2022_114998 crossref_primary_10_1016_j_enceco_2024_08_005 crossref_primary_10_1002_cctc_202200702 crossref_primary_10_1016_j_jece_2023_110243 crossref_primary_10_1016_S1872_5805_23_60761_9 crossref_primary_10_1016_j_est_2024_111154 crossref_primary_10_1016_j_optlastec_2025_112671 crossref_primary_10_1088_1402_4896_acae43 crossref_primary_10_1016_j_ensm_2022_06_009 crossref_primary_10_1016_j_cej_2024_151909 crossref_primary_10_1039_D3GC04289H crossref_primary_10_3390_inorganics13020045 crossref_primary_10_1007_s40242_024_4179_1 crossref_primary_10_1080_15583724_2024_2319585 crossref_primary_10_1103_PhysRevB_110_035429 crossref_primary_10_1039_D3TA06032B crossref_primary_10_1002_cey2_609 crossref_primary_10_1002_ece2_18 crossref_primary_10_1016_j_nantod_2024_102546 crossref_primary_10_1002_adfm_202418230 crossref_primary_10_1063_5_0194976 crossref_primary_10_3390_ma16083139 crossref_primary_10_1016_j_cej_2024_158882 crossref_primary_10_1016_j_est_2024_114434 crossref_primary_10_1016_j_matlet_2023_133979 crossref_primary_10_1007_s11665_025_10984_2 crossref_primary_10_1016_j_ceramint_2022_02_186 crossref_primary_10_15541_jim20230453 crossref_primary_10_1016_j_cej_2022_137466 crossref_primary_10_1016_j_cej_2024_155499 crossref_primary_10_1080_28378083_2024_2386526 crossref_primary_10_1088_2051_672X_ac7f4a crossref_primary_10_1002_adfm_202410742 crossref_primary_10_1016_j_matdes_2023_112362 crossref_primary_10_1016_j_mtchem_2025_102569 crossref_primary_10_1002_rpm_20240015 crossref_primary_10_1016_j_snb_2023_133444 crossref_primary_10_1016_j_coco_2023_101588 crossref_primary_10_1016_j_inoche_2024_113493 crossref_primary_10_1002_admt_202301897 crossref_primary_10_1002_aenm_202300890 crossref_primary_10_1007_s00604_024_06815_1 crossref_primary_10_1093_oxfmat_itae017 crossref_primary_10_1039_D3DT03176D crossref_primary_10_1016_j_cocom_2023_e00806 crossref_primary_10_1016_j_ccr_2024_215870 crossref_primary_10_1021_acsami_1c22787 crossref_primary_10_1016_j_vacuum_2022_111476 crossref_primary_10_1016_j_cej_2024_154159 crossref_primary_10_1016_j_heliyon_2024_e30714 crossref_primary_10_1039_D3TA02862C crossref_primary_10_1002_sstr_202200102 crossref_primary_10_1016_j_jcis_2025_01_252 crossref_primary_10_1002_cey2_501 crossref_primary_10_1016_j_solmat_2024_113086 crossref_primary_10_1016_j_cis_2023_103021 crossref_primary_10_1016_j_cej_2023_144185 crossref_primary_10_1016_j_mee_2023_112013 crossref_primary_10_1021_acsanm_4c05825 crossref_primary_10_1016_j_cis_2023_103027 crossref_primary_10_1016_j_est_2023_107975 crossref_primary_10_1002_smll_202410001 crossref_primary_10_1016_j_jallcom_2024_177575 |
Cites_doi | 10.1039/C8CP07796G 10.1021/acsnano.0c07972 10.1038/s41586-018-0109-z 10.1021/acsnano.7b00030 10.1021/acsnano.0c10255 10.1016/j.chempr.2018.08.037 10.1021/acsnano.6b05240 10.1002/anie.201809662 10.1063/1.4948799 10.1111/jace.13922 10.1021/acsnano.0c10671 10.1002/admi.202000845 10.1021/acsenergylett.6b00247 10.1039/C6CP01699E 10.1002/adma.201702410 10.1039/C8TA09810G 10.1039/C8TA01468J 10.1002/smtd.201900780 10.1002/adem.202001191 10.1038/nmat4374 10.1016/j.cej.2020.125111 10.1002/adfm.202100457 10.1016/j.ceramint.2019.01.148 10.1002/adfm.201202502 10.1039/C8NR03221A 10.1002/adfm.201600771 10.1021/acs.chemmater.0c02026 10.1039/C6NR02253G 10.1039/C7NR06721F 10.1021/acs.chemmater.7b00745 10.1021/acs.chemmater.6b04234 10.1021/acs.jpcc.8b08860 10.1021/acsnano.7b03129 10.1002/anie.201510432 10.1002/adfm.201505328 10.1016/j.susmat.2020.e00156 10.1021/am5074722 10.1016/j.cclet.2020.03.054 10.1021/acs.jpcc.9b03963 10.1038/s41467-020-16671-1 10.1039/C4CP00467A 10.1002/adma.201908486 10.1021/acsami.8b22339 10.1038/s41570-016-0014 10.1149/2.0641704jes 10.1039/C7TA01082F 10.1039/C7CP08645H 10.1016/j.apsusc.2017.04.239 10.1016/j.jechem.2020.06.069 10.1021/acsnano.9b06394 10.1016/j.mtener.2021.100668 10.1016/j.cej.2019.05.037 10.1039/C9NH00571D 10.1021/nn204153h 10.1002/smll.201904293 10.1002/anie.200901678 10.1021/acsaem.8b00652 10.1039/D0CC01042A 10.1088/2053-1583/aacfb3 10.1002/adma.202004469 10.1016/j.jechem.2020.04.015 10.1016/j.trac.2018.05.021 10.1002/anie.201402513 10.1021/cm500641a 10.1016/j.apsusc.2020.147209 10.1109/TNANO.2018.2868672 10.1038/ncomms14949 10.1021/acsnano.8b01774 10.1039/C9NR00084D 10.1007/978-3-030-19026-2 10.1002/anie.201906138 10.1002/anie.202015627 10.1021/acs.chemmater.5b01129 10.1002/adma.201607017 10.1016/j.apsusc.2017.11.101 10.1002/aelm.201600255 10.1021/acsami.8b10729 10.1016/j.cej.2018.11.051 10.1021/acs.chemmater.8b01976 10.1080/10420150.2020.1718142 10.1021/acsnano.0c08357 10.1039/C7CS00838D 10.1002/adma.201805417 10.1021/acs.nanolett.5b03291 10.1039/C7TA05574A 10.1016/j.matchemphys.2013.01.008 10.1021/acsnano.5b03591 10.1021/acsnano.0c07242 10.1038/nmat1849 10.1146/annurev-matsci-062910-100448 10.1002/smll.202005640 10.1021/acsnano.8b06014 10.1021/acs.jpcc.7b05675 10.1126/science.aag2421 10.1016/j.ensm.2020.04.016 10.1021/acs.cgd.7b00642 10.1002/anie.201802232 10.1039/C4CC03366C 10.1002/anie.201916748 10.1021/acs.nanolett.5b00737 10.1016/j.ensm.2019.09.026 10.1038/s41563-020-0657-0 10.1021/acs.langmuir.7b01339 10.1002/adem.201901241 10.1038/nature13970 10.1002/adma.201804779 10.3390/nano8020080 10.1021/acsami.0c06728 10.1002/adma.201102306 10.1039/C8NR09653H 10.1021/ja308463r 10.1021/ja508154e 10.1039/C9CS00822E 10.1038/ncomms2664 10.1021/acsanm.1c00219 10.1021/acs.inorgchem.8b00021 10.1002/adfm.201908075 10.1002/aenm.201801127 10.1016/j.trechm.2019.02.016 10.1021/acs.chemmater.6b04830 10.1016/j.matt.2019.05.020 10.1021/jacs.9b02578 10.1016/j.jpowsour.2016.04.035 10.1016/j.electacta.2018.09.149 10.1021/acsnano.7b06251 10.1016/j.ensm.2020.11.035 10.1021/jp507336x 10.1039/C6SC00077K 10.1039/C5DT01247C 10.1038/natrevmats.2016.98 10.1039/D0CC03189E 10.1016/j.flatc.2019.100128 10.1021/acsnano.8b02379 10.1016/j.jechem.2019.11.029 10.1002/anie.201800887 10.1039/C5NR06513E 10.1021/acs.chemmater.7b02847 10.1007/s12598-020-01488-0 10.1039/C9NR02354B 10.1021/acsnano.9b07708 10.1016/j.cej.2018.05.148 10.1021/acs.inorgchem.8b02890 10.1021/acsami.6b08413 10.1002/adma.202001093 10.1002/adom.201800441 10.1016/j.chempr.2020.01.019 10.1002/adfm.201910048 10.1126/science.aba8311 10.1016/j.cej.2020.125786 10.1016/j.matdes.2016.10.053 10.1002/adfm.202000693 10.1088/2053-1583/aa51b7 10.1039/C4NR02080D 10.1103/PhysRevB.92.075411 10.1021/jacs.9b00574 10.1002/anie.201606643 10.1039/C4TA02638A 10.1021/acsnano.0c08630 10.1002/adfm.201906282 10.1002/aenm.201601873 10.1016/j.cej.2020.127806 10.1021/acs.chemmater.6b01275 10.1021/acs.jpcc.5b11887 10.1021/ja405735d 10.1021/acsnano.7b05559 10.1039/C9TA07036B |
ContentType | Journal Article |
Copyright | 2021 Wiley‐VCH GmbH 2021 Wiley-VCH GmbH. |
Copyright_xml | – notice: 2021 Wiley‐VCH GmbH – notice: 2021 Wiley-VCH GmbH. |
DBID | AAYXX CITATION 7SR 8BQ 8FD JG9 7X8 |
DOI | 10.1002/adma.202103148 |
DatabaseName | CrossRef Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database MEDLINE - Academic |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database METADEX MEDLINE - Academic |
DatabaseTitleList | Materials Research Database MEDLINE - Academic CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1521-4095 |
EndPage | n/a |
ExternalDocumentID | 10_1002_adma_202103148 ADMA202103148 |
Genre | reviewArticle |
GrantInformation_xml | – fundername: National Natural Science Foundation of China funderid: U2004212; 51802012 |
GroupedDBID | --- .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 6P2 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AAXRX AAYCA AAZKR ABCQN ABCUV ABIJN ABJNI ABLJU ABPVW ACAHQ ACCFJ ACCZN ACGFS ACIWK ACPOU ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR1 DR2 DRFUL DRSTM EBS F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D Q.N Q11 QB0 QRW R.K RNS ROL RWI RWM RX1 RYL SUPJJ TN5 UB1 UPT V2E W8V W99 WBKPD WFSAM WIB WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XV2 YR2 ZZTAW ~02 ~IA ~WT .Y3 31~ 6TJ 8WZ A6W AANHP AASGY AAYOK AAYXX ABEML ACBWZ ACRPL ACSCC ACYXJ ADMLS ADNMO AETEA AEYWJ AFFNX AGHNM AGQPQ AGYGG ASPBG AVWKF AZFZN CITATION EJD FEDTE FOJGT HF~ HVGLF LW6 M6K NDZJH PALCI RIWAO RJQFR SAMSI WTY ZY4 7SR 8BQ 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY JG9 7X8 |
ID | FETCH-LOGICAL-c4168-53cf9bb70c2753e85ea39283bc1b6737c6839eef7116cbb2c9d4a2ea429cbd803 |
IEDL.DBID | DR2 |
ISSN | 0935-9648 1521-4095 |
IngestDate | Fri Jul 11 02:17:12 EDT 2025 Fri Jul 25 04:14:48 EDT 2025 Thu Apr 24 23:12:25 EDT 2025 Tue Jul 01 02:33:06 EDT 2025 Wed Jan 22 16:29:06 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 39 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4168-53cf9bb70c2753e85ea39283bc1b6737c6839eef7116cbb2c9d4a2ea429cbd803 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
ORCID | 0000-0001-5177-8929 |
PQID | 2578155869 |
PQPubID | 2045203 |
PageCount | 30 |
ParticipantIDs | proquest_miscellaneous_2563710823 proquest_journals_2578155869 crossref_citationtrail_10_1002_adma_202103148 crossref_primary_10_1002_adma_202103148 wiley_primary_10_1002_adma_202103148_ADMA202103148 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | October 1, 2021 |
PublicationDateYYYYMMDD | 2021-10-01 |
PublicationDate_xml | – month: 10 year: 2021 text: October 1, 2021 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Weinheim |
PublicationPlace_xml | – name: Weinheim |
PublicationTitle | Advanced materials (Weinheim) |
PublicationYear | 2021 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2013; 4 2019; 11 2019; 13 2019; 15 2019; 17 2014; 26 2020; 14 2019; 18 2020; 12 2020; 11 2014; 136 2018; 47 2020; 19 2018; 6 2018; 8 2018; 292 2018; 5 2012; 134 2020; 175 2018; 1 2019; 21 2014; 16 2007; 6 2019; 29 2018; 30 2017; 164 2017; 416 2019; 7 2019; 5 2019; 31 2018; 105 2019; 1 2018; 349 2020; 39 2016; 10 2020; 35 2016; 326 2020; 32 2016; 18 2018; 20 2016; 99 2016; 4 2016; 6 2016; 7 2016; 1 2016; 2 2021; 55 2020; 31 2020; 30 2020; 395 2019; 45 2020; 25 2020; 22 2018; 12 2021; 60 2016; 28 2018; 10 2016; 26 2016; 8 2020; 29 2017; 5 2017; 7 2018; 122 2017; 8 2021; 408 2017; 1 2017; 2 2021; 20 2021; 23 2013; 23 2019; 58 2020; 369 2020; 401 2020; 59 2020; 56 2017; 114 2017; 9 2009; 48 2019; 123 2020; 8 2020; 7 2020; 6 2020; 5 2020; 4 2021; 31 2021; 33 2014; 2 2020; 52 2017; 33 2015; 44 2020; 49 2016; 353 2020; 47 2020; 530 2011; 23 2019; 359 2017; 121 2014; 50 2014; 6 2014; 53 2014; 118 2015; 15 2021; 4 2014; 516 2015; 92 2017; 29 2015; 9 2019; 141 2015; 7 2016; 120 2016; 55 2021; 15 2015; 27 2018; 557 2018; 435 2017; 17 2017; 11 2021; 17 2013; 139 2011; 41 2013; 135 2012; 6 2015 2019; 14 2019; 373 2018; 57 e_1_2_9_75_1 e_1_2_9_98_1 Zhang P. (e_1_2_9_13_1) 2019; 11 e_1_2_9_52_1 e_1_2_9_79_1 e_1_2_9_94_1 e_1_2_9_10_1 e_1_2_9_56_1 e_1_2_9_33_1 e_1_2_9_90_1 e_1_2_9_71_1 e_1_2_9_103_1 e_1_2_9_126_1 e_1_2_9_149_1 e_1_2_9_107_1 e_1_2_9_122_1 e_1_2_9_145_1 e_1_2_9_168_1 e_1_2_9_14_1 e_1_2_9_141_1 e_1_2_9_37_1 e_1_2_9_164_1 e_1_2_9_18_1 e_1_2_9_160_1 e_1_2_9_41_1 e_1_2_9_64_1 e_1_2_9_87_1 e_1_2_9_22_1 e_1_2_9_45_1 e_1_2_9_68_1 e_1_2_9_83_1 e_1_2_9_64_2 e_1_2_9_6_1 e_1_2_9_119_1 e_1_2_9_60_1 e_1_2_9_2_1 e_1_2_9_138_1 e_1_2_9_111_1 e_1_2_9_134_1 e_1_2_9_115_1 e_1_2_9_157_1 e_1_2_9_26_1 e_1_2_9_49_1 e_1_2_9_130_1 e_1_2_9_153_1 e_1_2_9_30_1 e_1_2_9_53_1 e_1_2_9_99_1 e_1_2_9_72_1 e_1_2_9_11_1 e_1_2_9_34_1 e_1_2_9_57_1 e_1_2_9_95_1 e_1_2_9_76_1 e_1_2_9_91_1 e_1_2_9_102_1 e_1_2_9_148_1 e_1_2_9_129_1 e_1_2_9_144_1 e_1_2_9_167_1 e_1_2_9_106_1 e_1_2_9_125_1 e_1_2_9_15_1 e_1_2_9_38_1 e_1_2_9_140_1 e_1_2_9_163_1 e_1_2_9_121_1 e_1_2_9_19_1 e_1_2_9_42_1 e_1_2_9_61_1 e_1_2_9_46_1 e_1_2_9_84_1 e_1_2_9_23_1 e_1_2_9_65_1 e_1_2_9_80_1 e_1_2_9_5_1 e_1_2_9_1_1 e_1_2_9_114_1 e_1_2_9_137_1 e_1_2_9_118_1 e_1_2_9_133_1 e_1_2_9_156_1 e_1_2_9_9_1 e_1_2_9_152_1 e_1_2_9_27_1 e_1_2_9_69_1 e_1_2_9_110_1 e_1_2_9_171_1 e_1_2_9_31_1 e_1_2_9_50_1 e_1_2_9_73_1 e_1_2_9_35_1 e_1_2_9_77_1 e_1_2_9_96_1 e_1_2_9_12_1 e_1_2_9_54_1 e_1_2_9_92_1 e_1_2_9_109_1 e_1_2_9_101_1 e_1_2_9_128_1 e_1_2_9_166_1 e_1_2_9_105_1 e_1_2_9_124_1 e_1_2_9_147_1 e_1_2_9_39_1 e_1_2_9_162_1 e_1_2_9_120_1 e_1_2_9_16_1 e_1_2_9_58_1 e_1_2_9_143_1 e_1_2_9_20_1 e_1_2_9_62_1 e_1_2_9_89_1 e_1_2_9_24_1 e_1_2_9_43_1 e_1_2_9_66_1 e_1_2_9_85_1 e_1_2_9_8_1 e_1_2_9_81_1 e_1_2_9_4_1 e_1_2_9_113_1 e_1_2_9_159_1 e_1_2_9_117_1 e_1_2_9_155_1 e_1_2_9_136_1 e_1_2_9_151_1 e_1_2_9_28_1 e_1_2_9_47_1 Yang J. (e_1_2_9_88_1) 2016; 99 e_1_2_9_132_1 e_1_2_9_170_1 e_1_2_9_74_1 e_1_2_9_51_1 e_1_2_9_78_1 e_1_2_9_32_1 e_1_2_9_55_1 e_1_2_9_97_1 e_1_2_9_93_1 e_1_2_9_108_1 e_1_2_9_70_1 e_1_2_9_127_1 e_1_2_9_100_1 e_1_2_9_123_1 e_1_2_9_169_1 e_1_2_9_104_1 e_1_2_9_146_1 e_1_2_9_17_1 e_1_2_9_36_1 e_1_2_9_59_1 e_1_2_9_142_1 e_1_2_9_165_1 e_1_2_9_161_1 e_1_2_9_63_1 e_1_2_9_40_1 e_1_2_9_21_1 e_1_2_9_67_1 e_1_2_9_44_1 e_1_2_9_86_1 e_1_2_9_7_1 e_1_2_9_82_1 e_1_2_9_3_1 e_1_2_9_112_1 e_1_2_9_139_1 e_1_2_9_116_1 e_1_2_9_135_1 e_1_2_9_158_1 e_1_2_9_25_1 e_1_2_9_131_1 e_1_2_9_154_1 e_1_2_9_48_1 e_1_2_9_29_1 e_1_2_9_150_1 |
References_xml | – volume: 47 start-page: 203 year: 2020 publication-title: J. Energy Chem. – volume: 35 start-page: 630 year: 2020 publication-title: Energy Storage Mater. – volume: 114 start-page: 161 year: 2017 publication-title: Mater. Des. – volume: 39 start-page: 1237 year: 2020 publication-title: Rare Met. – volume: 25 year: 2020 publication-title: Sustainable Mater. Technol. – volume: 12 start-page: 56 year: 2018 publication-title: ACS Nano – volume: 136 year: 2014 publication-title: J. Am. Chem. Soc. – volume: 25 start-page: 563 year: 2020 publication-title: Energy Storage Mater. – volume: 12 year: 2020 publication-title: ACS Appl. Mater. Interfaces – volume: 1 start-page: 3908 year: 2018 publication-title: ACS Appl. Energy Mater. – volume: 121 year: 2017 publication-title: J. Phys. Chem. C – volume: 6 year: 2016 publication-title: AIP Adv. – volume: 29 start-page: 4848 year: 2017 publication-title: Chem. Mater. – volume: 55 start-page: 5008 year: 2016 publication-title: Angew. Chem., Int. Ed. – volume: 105 start-page: 424 year: 2018 publication-title: TrAC, Trends Anal. Chem. – volume: 1 start-page: 589 year: 2016 publication-title: ACS Energy Lett. – volume: 6 year: 2014 publication-title: Nanoscale – volume: 11 start-page: 8443 year: 2019 publication-title: ACS Appl. Mater. Interfaces – volume: 30 start-page: 5932 year: 2018 publication-title: Chem. Mater. – volume: 557 start-page: 409 year: 2018 publication-title: Nature – volume: 18 year: 2016 publication-title: Phys. Chem. Chem. Phys. – volume: 8 year: 2017 publication-title: Nat. Commun. – volume: 30 year: 2020 publication-title: Adv. Funct. Mater. – volume: 29 year: 2019 publication-title: Adv. Funct. Mater. – volume: 14 start-page: 1135 year: 2015 2019 publication-title: Nat. Mater. – volume: 32 start-page: 8257 year: 2020 publication-title: Chem. Mater. – volume: 58 year: 2019 publication-title: Angew. Chem., Int. Ed. – volume: 122 year: 2018 publication-title: J. Phys. Chem. C – volume: 7 year: 2020 publication-title: Adv. Mater. Interfaces – volume: 11 year: 2019 publication-title: Nanoscale – volume: 60 start-page: 8689 year: 2021 publication-title: Angew. Chem., Int. Ed. – volume: 369 start-page: 979 year: 2020 publication-title: Science – volume: 29 start-page: 1099 year: 2017 publication-title: Chem. Mater. – volume: 27 start-page: 3167 year: 2015 publication-title: Chem. Mater. – volume: 530 year: 2020 publication-title: Appl. Surf. Sci. – volume: 395 year: 2020 publication-title: Chem. Eng. J. – volume: 26 start-page: 2374 year: 2014 publication-title: Chem. Mater. – volume: 6 start-page: 616 year: 2020 publication-title: Chem – volume: 5 year: 2018 publication-title: 2D Mater. – volume: 164 start-page: A709 year: 2017 publication-title: J. Electrchem. Soc. – volume: 11 start-page: 439 year: 2019 publication-title: Nano‐Micro Lett. – volume: 408 year: 2021 publication-title: Chem. Eng. J. – volume: 55 start-page: 244 year: 2021 publication-title: J. Energy Chem. – volume: 1 start-page: 0014 year: 2017 publication-title: Nat. Rev. Chem. – volume: 15 start-page: 642 year: 2021 publication-title: ACS Nano – volume: 17 year: 2021 publication-title: Small – volume: 141 start-page: 9610 year: 2019 publication-title: J. Am. Chem. Soc. – volume: 8 year: 2016 publication-title: Nanoscale – volume: 15 start-page: 4287 year: 2021 publication-title: ACS Nano – volume: 2 year: 2017 publication-title: Nat. Rev. Mater. – volume: 120 start-page: 3550 year: 2016 publication-title: J. Phys. Chem. C – volume: 58 start-page: 1958 year: 2019 publication-title: Inorg. Chem. – volume: 31 year: 2019 publication-title: Adv. Mater. – volume: 59 start-page: 6601 year: 2020 publication-title: Angew. Chem., Int. Ed. – volume: 134 year: 2012 publication-title: J. Am. Chem. Soc. – volume: 5 start-page: 18 year: 2019 publication-title: Chem – volume: 16 start-page: 7841 year: 2014 publication-title: Phys. Chem. Chem. Phys. – volume: 52 start-page: 243 year: 2020 publication-title: J. Energy Chem. – volume: 20 start-page: 8579 year: 2018 publication-title: Phys. Chem. Chem. Phys. – volume: 1 start-page: 513 year: 2019 publication-title: Matter – volume: 292 start-page: 31 year: 2018 publication-title: Electrochim. Acta – volume: 23 year: 2021 publication-title: Adv. Eng. Mater. – volume: 12 start-page: 6109 year: 2018 publication-title: ACS Nano – volume: 7 year: 2017 publication-title: Adv. Energy Mater. – volume: 11 start-page: 3841 year: 2017 publication-title: ACS Nano – volume: 15 start-page: 7558 year: 2015 publication-title: Nano Lett. – volume: 99 start-page: 660 year: 2016 publication-title: J. Am. Ceram. Soc. – volume: 31 year: 2021 publication-title: Adv. Funct. Mater. – volume: 32 year: 2020 publication-title: Adv. Mater. – volume: 57 start-page: 5444 year: 2018 publication-title: Angew. Chem., Int. Ed. – volume: 8 start-page: 573 year: 2020 publication-title: J. Mater. Chem. A – volume: 31 start-page: 919 year: 2020 publication-title: Chin. Chem. Lett. – volume: 359 start-page: 1265 year: 2019 publication-title: Chem. Eng. J. – volume: 10 start-page: 9193 year: 2016 publication-title: ACS Nano – volume: 92 year: 2015 publication-title: Phys. Rev. B – volume: 57 year: 2018 publication-title: Angew. Chem., Int. Ed. – volume: 5 start-page: 235 year: 2020 publication-title: Nanoscale Horiz. – volume: 57 start-page: 6237 year: 2018 publication-title: Inorg. Chem. – volume: 29 start-page: 163 year: 2020 publication-title: Energy Storage Mater. – volume: 139 start-page: 147 year: 2013 publication-title: Mater. Chem. Phys. – volume: 11 start-page: 8892 year: 2017 publication-title: ACS Nano – volume: 401 year: 2020 publication-title: Chem. Eng. J. – volume: 56 year: 2020 publication-title: Chem. Commun. – volume: 7 start-page: 3399 year: 2016 publication-title: Chem. Sci. – volume: 56 start-page: 6090 year: 2020 publication-title: Chem. Commun. – volume: 4 start-page: 3075 year: 2021 publication-title: ACS Appl. Nano Mater. – volume: 435 start-page: 210 year: 2018 publication-title: Appl. Surf. Sci. – volume: 26 start-page: 5328 year: 2016 publication-title: Adv. Funct. Mater. – volume: 7 start-page: 1795 year: 2015 publication-title: ACS Appl. Mater. Interfaces – volume: 9 start-page: 9507 year: 2015 publication-title: ACS Nano – volume: 15 start-page: 5249 year: 2021 publication-title: ACS Nano – volume: 349 start-page: 748 year: 2018 publication-title: Chem. Eng. J. – volume: 57 start-page: 6115 year: 2018 publication-title: Angew. Chem., Int. Ed. – volume: 15 start-page: 4955 year: 2015 publication-title: Nano Lett. – volume: 15 start-page: 3320 year: 2021 publication-title: ACS Nano – volume: 15 start-page: 6420 year: 2021 publication-title: ACS Nano – volume: 516 start-page: 78 year: 2014 publication-title: Nature – volume: 23 start-page: 4248 year: 2011 publication-title: Adv. Mater. – volume: 41 start-page: 195 year: 2011 publication-title: Annu. Rev. Mater. Res. – volume: 11 start-page: 2825 year: 2020 publication-title: Nat. Commun. – volume: 19 start-page: 894 year: 2020 publication-title: Nat. Mater. – volume: 11 start-page: 8387 year: 2019 publication-title: Nanoscale – volume: 135 year: 2013 publication-title: J. Am. Chem. Soc. – volume: 29 start-page: 1632 year: 2017 publication-title: Chem. Mater. – volume: 99 start-page: 660 year: 2016 publication-title: J. Am. Chem. Soc. – volume: 11 year: 2017 publication-title: ACS Nano – volume: 45 start-page: 8395 year: 2019 publication-title: Ceram. Int. – volume: 33 year: 2021 publication-title: Adv. Mater. – volume: 8 year: 2018 publication-title: Adv. Energy Mater. – volume: 7 start-page: 269 year: 2019 publication-title: J. Mater. Chem. A – volume: 2 year: 2016 publication-title: Adv. Electron. Mater. – volume: 15 start-page: 2771 year: 2021 publication-title: ACS Nano – volume: 416 start-page: 781 year: 2017 publication-title: Appl. Surf. Sci. – volume: 20 year: 2021 publication-title: Mater. Today Energy – volume: 47 start-page: 5109 year: 2018 publication-title: Chem. Soc. Rev. – volume: 22 year: 2020 publication-title: Adv. Eng. Mater. – volume: 26 start-page: 3118 year: 2016 publication-title: Adv. Funct. Mater. – volume: 9 year: 2017 publication-title: Nanoscale – volume: 44 start-page: 9353 year: 2015 publication-title: Dalton Trans. – volume: 33 start-page: 9000 year: 2017 publication-title: Langmuir – volume: 7 year: 2019 publication-title: Adv. Opt. Mater. – volume: 48 start-page: 7752 year: 2009 publication-title: Angew. Chem., Int. Ed. – volume: 11 start-page: 8442 year: 2019 publication-title: Nanoscale – volume: 53 start-page: 4877 year: 2014 publication-title: Angew. Chem., Int. Ed. – volume: 8 start-page: 80 year: 2018 publication-title: Nanomaterials – volume: 50 start-page: 9517 year: 2014 publication-title: Chem. Commun. – volume: 28 start-page: 3507 year: 2016 publication-title: Chem. Mater. – volume: 17 start-page: 5704 year: 2017 publication-title: Cryst. Growth Des. – volume: 2 year: 2014 publication-title: J. Mater. Chem. A – volume: 49 start-page: 6224 year: 2020 publication-title: Chem. Soc. Rev. – volume: 5 year: 2017 publication-title: J. Mater. Chem. A – volume: 6 year: 2018 publication-title: J. Mater. Chem. A – volume: 13 start-page: 8491 year: 2019 publication-title: ACS Nano – volume: 29 year: 2017 publication-title: Adv. Mater. – volume: 353 start-page: 1137 year: 2016 publication-title: Science – volume: 6 start-page: 183 year: 2007 publication-title: Nat. Mater. – volume: 326 start-page: 575 year: 2016 publication-title: J. Power Sources – volume: 17 year: 2019 publication-title: FlatChem – volume: 10 year: 2018 publication-title: Nanoscale – volume: 15 year: 2019 publication-title: Small – volume: 12 year: 2018 publication-title: ACS Nano – volume: 23 start-page: 2185 year: 2013 publication-title: Adv. Funct. Mater. – volume: 55 year: 2016 publication-title: Angew. Chem., Int. Ed. – volume: 141 start-page: 4730 year: 2019 publication-title: J. Am. Chem. Soc. – volume: 175 start-page: 177 year: 2020 publication-title: Radiat. Eff. Defects Solids – volume: 29 start-page: 7633 year: 2017 publication-title: Chem. Mater. – volume: 4 start-page: 1716 year: 2013 publication-title: Nat. Commun. – volume: 6 start-page: 1322 year: 2012 publication-title: ACS Nano – volume: 14 start-page: 204 year: 2020 publication-title: ACS Nano – volume: 30 year: 2018 publication-title: Adv. Mater. – volume: 21 start-page: 5716 year: 2019 publication-title: Phys. Chem. Chem. Phys. – volume: 4 year: 2020 publication-title: Small Methods – volume: 8 year: 2016 publication-title: ACS Appl. Mater. Interfaces – volume: 12 start-page: 7761 year: 2018 publication-title: ACS Nano – volume: 18 start-page: 144 year: 2019 publication-title: IEEE Trans. Nano Technol. – volume: 15 start-page: 1077 year: 2021 publication-title: ACS Nano – volume: 1 start-page: 210 year: 2019 publication-title: Trends Chem. – volume: 123 year: 2019 publication-title: J. Phys. Chem. C – volume: 118 year: 2014 publication-title: J. Phys. Chem. C – volume: 373 start-page: 203 year: 2019 publication-title: Chem. Eng. J. – volume: 7 year: 2015 publication-title: Nanoscale – volume: 10 year: 2018 publication-title: ACS Appl. Mater. Interfaces – volume: 4 year: 2016 publication-title: 2D Mater. – ident: e_1_2_9_142_1 doi: 10.1039/C8CP07796G – ident: e_1_2_9_106_1 doi: 10.1021/acsnano.0c07972 – ident: e_1_2_9_139_1 doi: 10.1038/s41586-018-0109-z – ident: e_1_2_9_80_1 doi: 10.1021/acsnano.7b00030 – ident: e_1_2_9_137_1 doi: 10.1021/acsnano.0c10255 – ident: e_1_2_9_25_1 doi: 10.1016/j.chempr.2018.08.037 – ident: e_1_2_9_75_1 doi: 10.1021/acsnano.6b05240 – ident: e_1_2_9_96_1 doi: 10.1002/anie.201809662 – ident: e_1_2_9_107_1 doi: 10.1063/1.4948799 – ident: e_1_2_9_151_1 doi: 10.1111/jace.13922 – ident: e_1_2_9_162_1 doi: 10.1021/acsnano.0c10671 – ident: e_1_2_9_158_1 doi: 10.1002/admi.202000845 – ident: e_1_2_9_35_1 doi: 10.1021/acsenergylett.6b00247 – ident: e_1_2_9_145_1 doi: 10.1039/C6CP01699E – ident: e_1_2_9_136_1 doi: 10.1002/adma.201702410 – volume: 99 start-page: 660 year: 2016 ident: e_1_2_9_88_1 publication-title: J. Am. Chem. Soc. – ident: e_1_2_9_130_1 doi: 10.1039/C8TA09810G – ident: e_1_2_9_155_1 doi: 10.1039/C8TA01468J – ident: e_1_2_9_16_1 doi: 10.1002/smtd.201900780 – ident: e_1_2_9_15_1 doi: 10.1002/adem.202001191 – ident: e_1_2_9_64_1 doi: 10.1038/nmat4374 – ident: e_1_2_9_112_1 doi: 10.1016/j.cej.2020.125111 – ident: e_1_2_9_14_1 doi: 10.1002/adfm.202100457 – ident: e_1_2_9_101_1 doi: 10.1016/j.ceramint.2019.01.148 – ident: e_1_2_9_42_1 doi: 10.1002/adfm.201202502 – ident: e_1_2_9_34_1 doi: 10.1039/C8NR03221A – ident: e_1_2_9_143_1 doi: 10.1002/adfm.201600771 – ident: e_1_2_9_85_1 doi: 10.1021/acs.chemmater.0c02026 – ident: e_1_2_9_63_1 doi: 10.1039/C6NR02253G – ident: e_1_2_9_103_1 doi: 10.1039/C7NR06721F – ident: e_1_2_9_154_1 doi: 10.1021/acs.chemmater.7b00745 – ident: e_1_2_9_131_1 doi: 10.1021/acs.chemmater.6b04234 – ident: e_1_2_9_157_1 doi: 10.1021/acs.jpcc.8b08860 – ident: e_1_2_9_124_1 doi: 10.1021/acsnano.7b03129 – volume: 11 start-page: 439 year: 2019 ident: e_1_2_9_13_1 publication-title: Nano‐Micro Lett. – ident: e_1_2_9_79_1 doi: 10.1002/anie.201510432 – ident: e_1_2_9_121_1 doi: 10.1002/adfm.201505328 – ident: e_1_2_9_110_1 doi: 10.1016/j.susmat.2020.e00156 – ident: e_1_2_9_71_1 doi: 10.1021/am5074722 – ident: e_1_2_9_19_1 doi: 10.1016/j.cclet.2020.03.054 – ident: e_1_2_9_40_1 doi: 10.1021/acs.jpcc.9b03963 – ident: e_1_2_9_150_1 doi: 10.1038/s41467-020-16671-1 – ident: e_1_2_9_36_1 doi: 10.1039/C4CP00467A – ident: e_1_2_9_140_1 doi: 10.1002/adma.201908486 – ident: e_1_2_9_126_1 doi: 10.1021/acsami.8b22339 – ident: e_1_2_9_3_1 doi: 10.1038/s41570-016-0014 – ident: e_1_2_9_132_1 doi: 10.1149/2.0641704jes – ident: e_1_2_9_83_1 doi: 10.1039/C7TA01082F – ident: e_1_2_9_48_1 doi: 10.1039/C7CP08645H – ident: e_1_2_9_82_1 doi: 10.1016/j.apsusc.2017.04.239 – ident: e_1_2_9_26_1 doi: 10.1016/j.jechem.2020.06.069 – ident: e_1_2_9_47_1 doi: 10.1021/acsnano.9b06394 – ident: e_1_2_9_86_1 doi: 10.1016/j.mtener.2021.100668 – ident: e_1_2_9_67_1 doi: 10.1016/j.cej.2019.05.037 – ident: e_1_2_9_28_1 doi: 10.1039/C9NH00571D – ident: e_1_2_9_66_1 doi: 10.1021/nn204153h – ident: e_1_2_9_23_1 doi: 10.1002/smll.201904293 – ident: e_1_2_9_2_1 doi: 10.1002/anie.200901678 – ident: e_1_2_9_152_1 doi: 10.1021/acsaem.8b00652 – ident: e_1_2_9_78_1 doi: 10.1039/D0CC01042A – ident: e_1_2_9_102_1 doi: 10.1088/2053-1583/aacfb3 – ident: e_1_2_9_7_1 doi: 10.1002/adma.202004469 – ident: e_1_2_9_21_1 doi: 10.1016/j.jechem.2020.04.015 – ident: e_1_2_9_31_1 doi: 10.1016/j.trac.2018.05.021 – ident: e_1_2_9_95_1 doi: 10.1002/anie.201402513 – ident: e_1_2_9_51_1 doi: 10.1021/cm500641a – ident: e_1_2_9_37_1 doi: 10.1088/2053-1583/aacfb3 – ident: e_1_2_9_84_1 doi: 10.1016/j.apsusc.2020.147209 – ident: e_1_2_9_141_1 doi: 10.1109/TNANO.2018.2868672 – ident: e_1_2_9_116_1 doi: 10.1038/ncomms14949 – ident: e_1_2_9_118_1 doi: 10.1021/acsnano.8b01774 – ident: e_1_2_9_159_1 doi: 10.1039/C9NR00084D – ident: e_1_2_9_64_2 doi: 10.1007/978-3-030-19026-2 – ident: e_1_2_9_164_1 doi: 10.1002/anie.201906138 – ident: e_1_2_9_108_1 doi: 10.1002/anie.202015627 – ident: e_1_2_9_146_1 doi: 10.1021/acs.chemmater.5b01129 – ident: e_1_2_9_168_1 doi: 10.1002/adma.201607017 – ident: e_1_2_9_45_1 doi: 10.1016/j.apsusc.2017.11.101 – ident: e_1_2_9_87_1 doi: 10.1002/aelm.201600255 – ident: e_1_2_9_20_1 doi: 10.1021/acsami.8b10729 – ident: e_1_2_9_30_1 doi: 10.1016/j.cej.2018.11.051 – ident: e_1_2_9_127_1 doi: 10.1021/acs.chemmater.8b01976 – ident: e_1_2_9_115_1 doi: 10.1080/10420150.2020.1718142 – ident: e_1_2_9_167_1 doi: 10.1021/acsnano.0c08357 – ident: e_1_2_9_33_1 doi: 10.1039/C7CS00838D – ident: e_1_2_9_5_1 doi: 10.1002/adma.201805417 – ident: e_1_2_9_4_1 doi: 10.1021/acs.nanolett.5b03291 – ident: e_1_2_9_62_1 doi: 10.1039/C7TA05574A – ident: e_1_2_9_72_1 doi: 10.1016/j.matchemphys.2013.01.008 – ident: e_1_2_9_69_1 doi: 10.1021/acsnano.5b03591 – ident: e_1_2_9_111_1 doi: 10.1021/acsnano.0c07242 – ident: e_1_2_9_1_1 doi: 10.1038/nmat1849 – ident: e_1_2_9_18_1 doi: 10.1146/annurev-matsci-062910-100448 – ident: e_1_2_9_8_1 doi: 10.1002/smll.202005640 – ident: e_1_2_9_129_1 doi: 10.1021/acsnano.8b06014 – ident: e_1_2_9_41_1 doi: 10.1021/acs.jpcc.7b05675 – ident: e_1_2_9_77_1 doi: 10.1126/science.aag2421 – ident: e_1_2_9_169_1 doi: 10.1016/j.ensm.2020.04.016 – ident: e_1_2_9_119_1 doi: 10.1021/acs.cgd.7b00642 – ident: e_1_2_9_60_1 doi: 10.1021/acsnano.6b05240 – ident: e_1_2_9_73_1 doi: 10.1002/anie.201802232 – ident: e_1_2_9_76_1 doi: 10.1039/C4CC03366C – ident: e_1_2_9_113_1 doi: 10.1002/anie.201916748 – ident: e_1_2_9_90_1 doi: 10.1021/acs.nanolett.5b00737 – ident: e_1_2_9_163_1 doi: 10.1016/j.ensm.2019.09.026 – ident: e_1_2_9_54_1 doi: 10.1038/s41563-020-0657-0 – ident: e_1_2_9_100_1 doi: 10.1021/acs.langmuir.7b01339 – ident: e_1_2_9_61_1 doi: 10.1002/adem.201901241 – ident: e_1_2_9_50_1 doi: 10.1038/nature13970 – ident: e_1_2_9_29_1 doi: 10.1002/adma.201804779 – ident: e_1_2_9_74_1 doi: 10.3390/nano8020080 – ident: e_1_2_9_160_1 doi: 10.1021/acsami.0c06728 – ident: e_1_2_9_57_1 doi: 10.1002/adma.201102306 – ident: e_1_2_9_12_1 doi: 10.1039/C8NR09653H – ident: e_1_2_9_81_1 doi: 10.1021/ja308463r – ident: e_1_2_9_38_1 doi: 10.1021/ja508154e – ident: e_1_2_9_9_1 doi: 10.1039/C9CS00822E – ident: e_1_2_9_55_1 doi: 10.1038/ncomms2664 – ident: e_1_2_9_171_1 doi: 10.1021/acsanm.1c00219 – ident: e_1_2_9_120_1 doi: 10.1021/acs.inorgchem.8b00021 – ident: e_1_2_9_138_1 doi: 10.1002/adfm.201908075 – ident: e_1_2_9_134_1 doi: 10.1002/aenm.201801127 – ident: e_1_2_9_17_1 doi: 10.1016/j.trechm.2019.02.016 – ident: e_1_2_9_133_1 doi: 10.1021/acs.chemmater.6b04830 – ident: e_1_2_9_161_1 doi: 10.1016/j.matt.2019.05.020 – ident: e_1_2_9_97_1 doi: 10.1021/jacs.9b02578 – ident: e_1_2_9_89_1 doi: 10.1016/j.jpowsour.2016.04.035 – ident: e_1_2_9_135_1 doi: 10.1016/j.electacta.2018.09.149 – ident: e_1_2_9_32_1 doi: 10.1021/acsnano.7b06251 – ident: e_1_2_9_11_1 doi: 10.1016/j.ensm.2020.11.035 – ident: e_1_2_9_39_1 doi: 10.1021/jp507336x – ident: e_1_2_9_44_1 doi: 10.1039/C6SC00077K – ident: e_1_2_9_59_1 doi: 10.1039/C5DT01247C – ident: e_1_2_9_10_1 doi: 10.1038/natrevmats.2016.98 – ident: e_1_2_9_94_1 doi: 10.1039/D0CC03189E – ident: e_1_2_9_165_1 doi: 10.1016/j.flatc.2019.100128 – ident: e_1_2_9_27_1 doi: 10.1021/acsnano.8b02379 – ident: e_1_2_9_93_1 doi: 10.1016/j.jechem.2019.11.029 – ident: e_1_2_9_53_1 doi: 10.1002/anie.201800887 – ident: e_1_2_9_144_1 doi: 10.1039/C5NR06513E – ident: e_1_2_9_70_1 doi: 10.1021/acs.chemmater.7b02847 – ident: e_1_2_9_46_1 doi: 10.1007/s12598-020-01488-0 – ident: e_1_2_9_117_1 doi: 10.1039/C9NR02354B – ident: e_1_2_9_122_1 doi: 10.1021/acsnano.9b07708 – ident: e_1_2_9_24_1 doi: 10.1016/j.cej.2018.05.148 – ident: e_1_2_9_156_1 doi: 10.1021/acs.inorgchem.8b02890 – ident: e_1_2_9_65_1 doi: 10.1021/acsami.6b08413 – ident: e_1_2_9_148_1 doi: 10.1002/adma.202001093 – ident: e_1_2_9_6_1 doi: 10.1002/adom.201800441 – ident: e_1_2_9_58_1 doi: 10.1021/nn204153h – ident: e_1_2_9_92_1 doi: 10.1016/j.chempr.2020.01.019 – ident: e_1_2_9_52_1 doi: 10.1002/adfm.201910048 – ident: e_1_2_9_105_1 doi: 10.1126/science.aba8311 – ident: e_1_2_9_147_1 doi: 10.1016/j.cej.2020.125786 – ident: e_1_2_9_91_1 doi: 10.1016/j.matdes.2016.10.053 – ident: e_1_2_9_170_1 doi: 10.1002/adfm.202000693 – ident: e_1_2_9_114_1 doi: 10.1088/2053-1583/aa51b7 – ident: e_1_2_9_98_1 doi: 10.1039/C4NR02080D – ident: e_1_2_9_56_1 doi: 10.1021/acsnano.0c08357 – ident: e_1_2_9_43_1 doi: 10.1103/PhysRevB.92.075411 – ident: e_1_2_9_104_1 doi: 10.1021/jacs.9b00574 – ident: e_1_2_9_128_1 doi: 10.1002/anie.201606643 – ident: e_1_2_9_153_1 doi: 10.1039/C4TA02638A – ident: e_1_2_9_109_1 doi: 10.1021/acsnano.0c08630 – ident: e_1_2_9_22_1 doi: 10.1002/adfm.201906282 – ident: e_1_2_9_123_1 doi: 10.1002/aenm.201601873 – ident: e_1_2_9_149_1 doi: 10.1016/j.cej.2020.127806 – ident: e_1_2_9_125_1 doi: 10.1021/acs.chemmater.6b01275 – ident: e_1_2_9_49_1 doi: 10.1021/acs.jpcc.5b11887 – ident: e_1_2_9_68_1 doi: 10.1021/ja405735d – ident: e_1_2_9_99_1 doi: 10.1021/acsnano.7b05559 – ident: e_1_2_9_166_1 doi: 10.1039/C9TA07036B |
SSID | ssj0009606 |
Score | 2.7363708 |
SecondaryResourceType | review_article |
Snippet | 2D transition metal carbides, nitrides, and carbonitrides, also known as MXenes, are versatile materials due to their adjustable structure and rich surface... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | e2103148 |
SubjectTerms | antioxidation Carbon nitride delamination Electrochemical etching Etching large‐scale synthesis Materials science Metal carbides Molten salts MXenes Transition metals Two dimensional materials |
Title | Advances in the Synthesis of 2D MXenes |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadma.202103148 https://www.proquest.com/docview/2578155869 https://www.proquest.com/docview/2563710823 |
Volume | 33 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ3PS8MwFMeDeNKDv8XqlAqip2xdknbtsTjHEOZBHexWkjSBoXRit4P-9b7XX9sEEfTUlCa0aX68T9qX7yPkCtY8YPaspSyIDAUTkNIotIYCeQslmOC22BQ2egiGY3E_8Scru_hLfYjmgxuOjGK-xgEuVd5ZiobKtNANYhinQOBuX3TYQip6XOpHIZ4XYnvcp1Egwlq10WOd9eLrVmmJmqvAWlicwS6R9bOWjiYv7cVctfXnNxnH_1Rmj-xUOOrGZf_ZJxsmOyDbKyKFh-Q6Lt0EcneauYCL7tNHBod8mrsz67K-O5rgfHlExoO759shraIrUA0QFlKfaxsp1fM0gyWLCX0jgZVCrnRXYfAaHQA7GWN73W6glWI6SoVkRoIB0yoNPX5MNrNZZk6I60WpwvCE0iqMrS4lJFPDAa6kADzUDqH12010JT2OETBek1I0mSVY_6Spv0NumvxvpejGjzlbdWMl1eDLE5yFAJPCIHLIZXMZhg3-C5GZmS0wT8ABrkLGHcKKlvnlTkncH8XN2elfCp2RLUyXroAtsjl_X5hzQJq5uii67Rem7elp |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3PT8IwFH5RPKgHfxtR1JkYPVVGN0Z3JCJBBQ4KCbel7bqEaIYROOhf73sbG2BiTPS0X226rn19X7vX7wO4xDkPur0oYtzzDUMXEDJfRIYh8naVy10nSjaFdbpeq-8-DKpZNCHthUn5IfIFN7KMZLwmA6cF6fKcNVSGCXEQJ6ECV6zCGsl6k4hB42nOIEUAPaHbc6rM91yR8TbavLycf9kvzcHmImRNfE5zG1T2tmmoycvNdKJu9Oc3Isd_VWcHtmaI1KqnXWgXVky8B5sLPIX7cFVPIwXG1jC2EDFazx8xHsbDsTWKLN6wOgMaMg-g37zr3bbYTGCBacRhglUdHflK1WzNcdZiRNVIhEvCUbqiSL9GewifjIlqlYqnleLaD13JjUQfplUobOcQCvEoNkdg2X6oSKFQRork1aXE09A4iK-kiwhRF4FlnzfQM_ZxEsF4DVLeZB5Q_YO8_kW4ztO_pbwbP6YsZa0VzOxvHNBAhEhJeH4RLvLHaDn0O0TGZjSlNJ6D-Epwpwg8aZpfSgrqjU49vzr-S6ZzWG_1Ou2gfd99PIENup9GBpagMHmfmlNEOBN1lvThL1WS7YM |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ1bS8MwFMcPOkH0wbs4nVpB9CluS7MufSzOMS8bog72VpI0gaF0w20P-uk9abtuE0TQp94S2jQ5Ob-0yf8AnOOYB92eMYR6viboAiLic6MJkjeTjDLXJIvC2h2v1WV3vVpvbhV_qg-Rf3CzlpH019bAh5Epz0RDRZToBlEbp4DxZVhhHlqMxaKnmYCU5fNEbc-tEd9jfCrbWKHlxfyLbmnGmvPEmric5iaI6cOmM01eryZjeaU-v-k4_qc0W7CR8agTpA1oG5Z0vAPrcyqFu3ARpPMERk4_dpAXneePGDej_sgZGIc2nHbPdph70G3evFy3SBZegSikME5qrjK-lPWKojhm0bymBcISd6WqShu9RnkIT1qberXqKSmp8iMmqBbowZSMeMXdh0I8iPUBOBU_kjY-oTDSBlcXAncj7SJdCYZ8qIpApm83VJn2uA2B8Ramqsk0tOUP8_IX4TJPP0xVN35MWZpWVphZ3yi03RByEvf8Ipzll9Fu7M8QEevBxKbxXKQrTt0i0KRmfrlTGDTaQX50-JdMp7D62GiGD7ed-yNYs6fTaYElKIzfJ_oY8WYsT5IW_AWltuw7 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Advances+in+the+Synthesis+of+2D+MXenes&rft.jtitle=Advanced+materials+%28Weinheim%29&rft.au=Wei%2C+Yi&rft.au=Zhang%2C+Peng&rft.au=Soomro%2C+Razium+A&rft.au=Zhu%2C+Qizhen&rft.date=2021-10-01&rft.issn=1521-4095&rft.eissn=1521-4095&rft.volume=33&rft.issue=39&rft.spage=e2103148&rft_id=info:doi/10.1002%2Fadma.202103148&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0935-9648&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0935-9648&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0935-9648&client=summon |