TADF‐Type Organic Afterglow
We report a highly efficient dopant‐matrix afterglow system enabled by TADF mechanism to realize afterglow quantum yields of 60–70 %, which features a moderate rate constant for reverse intersystem crossing (kRISC) to simultaneously improve afterglow quantum yields and maintain afterglow emission li...
Saved in:
Published in | Angewandte Chemie International Edition Vol. 60; no. 31; pp. 17138 - 17147 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Weinheim
Wiley Subscription Services, Inc
26.07.2021
|
Edition | International ed. in English |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | We report a highly efficient dopant‐matrix afterglow system enabled by TADF mechanism to realize afterglow quantum yields of 60–70 %, which features a moderate rate constant for reverse intersystem crossing (kRISC) to simultaneously improve afterglow quantum yields and maintain afterglow emission lifetime. Difluoroboron β‐diketonate (BF2bdk) compounds are designed with multiple electron‐donating groups to possess moderate kRISC values and are selected as luminescent dopants. The matrices with carbonyl functional groups such as phenyl benzoate (PhB) have been found to interact with and perturb BF2bdk excited states by dipole–dipole interactions and thus enhance the intersystem crossing of BF2bdk excited states. Through dopant‐matrix collaboration, the efficient TADF‐type afterglow materials have been achieved to exhibit excellent processability into desired shapes and large‐area films by melt casting, as well as aqueous afterglow dispersions for potential bioimaging applications.
Due to the spin‐forbidden nature, it remains challenging to achieve room‐temperature organic phosphorescence and afterglow materials with high quantum yields. We report a highly efficient dopant‐matrix afterglow system enabled by TADF mechanism to realize afterglow quantum yields of 60–70 %, which features a moderate rate constant for reverse intersystem crossing to simultaneously improve afterglow quantum yields and maintain afterglow emission lifetime. |
---|---|
AbstractList | We report a highly efficient dopant‐matrix afterglow system enabled by TADF mechanism to realize afterglow quantum yields of 60–70 %, which features a moderate rate constant for reverse intersystem crossing (kRISC) to simultaneously improve afterglow quantum yields and maintain afterglow emission lifetime. Difluoroboron β‐diketonate (BF2bdk) compounds are designed with multiple electron‐donating groups to possess moderate kRISC values and are selected as luminescent dopants. The matrices with carbonyl functional groups such as phenyl benzoate (PhB) have been found to interact with and perturb BF2bdk excited states by dipole–dipole interactions and thus enhance the intersystem crossing of BF2bdk excited states. Through dopant‐matrix collaboration, the efficient TADF‐type afterglow materials have been achieved to exhibit excellent processability into desired shapes and large‐area films by melt casting, as well as aqueous afterglow dispersions for potential bioimaging applications. We report a highly efficient dopant-matrix afterglow system enabled by TADF mechanism to realize afterglow quantum yields of 60-70 %, which features a moderate rate constant for reverse intersystem crossing (kRISC ) to simultaneously improve afterglow quantum yields and maintain afterglow emission lifetime. Difluoroboron β-diketonate (BF2 bdk) compounds are designed with multiple electron-donating groups to possess moderate kRISC values and are selected as luminescent dopants. The matrices with carbonyl functional groups such as phenyl benzoate (PhB) have been found to interact with and perturb BF2 bdk excited states by dipole-dipole interactions and thus enhance the intersystem crossing of BF2 bdk excited states. Through dopant-matrix collaboration, the efficient TADF-type afterglow materials have been achieved to exhibit excellent processability into desired shapes and large-area films by melt casting, as well as aqueous afterglow dispersions for potential bioimaging applications.We report a highly efficient dopant-matrix afterglow system enabled by TADF mechanism to realize afterglow quantum yields of 60-70 %, which features a moderate rate constant for reverse intersystem crossing (kRISC ) to simultaneously improve afterglow quantum yields and maintain afterglow emission lifetime. Difluoroboron β-diketonate (BF2 bdk) compounds are designed with multiple electron-donating groups to possess moderate kRISC values and are selected as luminescent dopants. The matrices with carbonyl functional groups such as phenyl benzoate (PhB) have been found to interact with and perturb BF2 bdk excited states by dipole-dipole interactions and thus enhance the intersystem crossing of BF2 bdk excited states. Through dopant-matrix collaboration, the efficient TADF-type afterglow materials have been achieved to exhibit excellent processability into desired shapes and large-area films by melt casting, as well as aqueous afterglow dispersions for potential bioimaging applications. We report a highly efficient dopant‐matrix afterglow system enabled by TADF mechanism to realize afterglow quantum yields of 60–70 %, which features a moderate rate constant for reverse intersystem crossing ( k RISC ) to simultaneously improve afterglow quantum yields and maintain afterglow emission lifetime. Difluoroboron β‐diketonate (BF 2 bdk) compounds are designed with multiple electron‐donating groups to possess moderate k RISC values and are selected as luminescent dopants. The matrices with carbonyl functional groups such as phenyl benzoate (PhB) have been found to interact with and perturb BF 2 bdk excited states by dipole–dipole interactions and thus enhance the intersystem crossing of BF 2 bdk excited states. Through dopant‐matrix collaboration, the efficient TADF‐type afterglow materials have been achieved to exhibit excellent processability into desired shapes and large‐area films by melt casting, as well as aqueous afterglow dispersions for potential bioimaging applications. We report a highly efficient dopant‐matrix afterglow system enabled by TADF mechanism to realize afterglow quantum yields of 60–70 %, which features a moderate rate constant for reverse intersystem crossing (kRISC) to simultaneously improve afterglow quantum yields and maintain afterglow emission lifetime. Difluoroboron β‐diketonate (BF2bdk) compounds are designed with multiple electron‐donating groups to possess moderate kRISC values and are selected as luminescent dopants. The matrices with carbonyl functional groups such as phenyl benzoate (PhB) have been found to interact with and perturb BF2bdk excited states by dipole–dipole interactions and thus enhance the intersystem crossing of BF2bdk excited states. Through dopant‐matrix collaboration, the efficient TADF‐type afterglow materials have been achieved to exhibit excellent processability into desired shapes and large‐area films by melt casting, as well as aqueous afterglow dispersions for potential bioimaging applications. Due to the spin‐forbidden nature, it remains challenging to achieve room‐temperature organic phosphorescence and afterglow materials with high quantum yields. We report a highly efficient dopant‐matrix afterglow system enabled by TADF mechanism to realize afterglow quantum yields of 60–70 %, which features a moderate rate constant for reverse intersystem crossing to simultaneously improve afterglow quantum yields and maintain afterglow emission lifetime. |
Author | Wang, Guangming Li, Xun Zhang, Kaka Sun, Yan Li, Jiuyang Wang, Xuepu |
Author_xml | – sequence: 1 givenname: Xuepu surname: Wang fullname: Wang, Xuepu organization: Chinese Academy of Sciences – sequence: 2 givenname: Yan surname: Sun fullname: Sun, Yan organization: Chinese Academy of Sciences – sequence: 3 givenname: Guangming surname: Wang fullname: Wang, Guangming organization: Chinese Academy of Sciences – sequence: 4 givenname: Jiuyang surname: Li fullname: Li, Jiuyang organization: Chinese Academy of Sciences – sequence: 5 givenname: Xun surname: Li fullname: Li, Xun organization: Chinese Academy of Sciences – sequence: 6 givenname: Kaka orcidid: 0000-0002-8176-6205 surname: Zhang fullname: Zhang, Kaka email: zhangkaka@sioc.ac.cn organization: Chinese Academy of Sciences |
BookMark | eNqFkM9KAzEQh4NUsK1evQkFL1625u9u9rjUVgvFXuo5ZONsSdluarKl9OYj-Iw-iSkVhYI4l8zh-2Ymvx7qNK4BhK4JHhKM6b1uLAwppgSLlMoz1CWCkoRlGevEnjOWZFKQC9QLYRV5KXHaRTeL4mHy-f6x2G9gMPfLOMQMiqoFv6zd7hKdV7oOcPX99tHLZLwYPSWz-eN0VMwSw0kqE8FEjgnnecoA8KvJcaVBYsEMF7GYwSkjvMRV7AylIEhZlVhqwXmZQVqyPro7zt1497aF0Kq1DQbqWjfgtkHRuEHSLBMyorcn6MptfROvi5SgMv6ekEjxI2W8C8FDpYxtdWtd03pta0WwOmSmDpmpn8yiNjzRNt6utd__LeRHYWdr2P9Dq-J5Ov51vwAMI34p |
CitedBy_id | crossref_primary_10_1002_adma_202212064 crossref_primary_10_1021_acs_jpcc_1c08409 crossref_primary_10_1039_D3TC02407E crossref_primary_10_1038_s42004_024_01347_4 crossref_primary_10_1002_adom_202101622 crossref_primary_10_1021_acsmaterialslett_2c00575 crossref_primary_10_1108_PRT_07_2023_0058 crossref_primary_10_1002_ange_202304020 crossref_primary_10_1002_adom_202101909 crossref_primary_10_1016_j_dyepig_2024_112104 crossref_primary_10_1002_anie_202318516 crossref_primary_10_1016_j_dyepig_2024_112227 crossref_primary_10_1002_flm2_24 crossref_primary_10_1002_adom_202301514 crossref_primary_10_1039_D3CC03288D crossref_primary_10_1039_D3SC01500A crossref_primary_10_1126_sciadv_ade2585 crossref_primary_10_1002_anie_202109229 crossref_primary_10_1016_j_ccr_2024_216192 crossref_primary_10_1016_j_cej_2024_158747 crossref_primary_10_1002_adma_202414894 crossref_primary_10_1002_adom_202201502 crossref_primary_10_1021_acs_jpcc_2c07138 crossref_primary_10_1002_ange_202415312 crossref_primary_10_1021_acs_jpcc_2c07499 crossref_primary_10_1002_adfm_202422121 crossref_primary_10_1002_anie_202411588 crossref_primary_10_1016_j_nxmate_2024_100379 crossref_primary_10_1002_adfm_202214960 crossref_primary_10_1038_s41467_021_27914_0 crossref_primary_10_1007_s40843_024_3217_8 crossref_primary_10_3390_molecules29102343 crossref_primary_10_1021_acsmaterialslett_4c00104 crossref_primary_10_1016_j_nxmate_2023_100087 crossref_primary_10_1021_acs_inorgchem_4c05315 crossref_primary_10_1039_D4CP02927E crossref_primary_10_1002_anie_202217547 crossref_primary_10_1039_D2TC02416K crossref_primary_10_1002_adma_202402725 crossref_primary_10_1002_adom_202202540 crossref_primary_10_1002_adfm_202405637 crossref_primary_10_1002_adfm_202403734 crossref_primary_10_1016_j_device_2024_100574 crossref_primary_10_1021_acs_jpclett_2c02057 crossref_primary_10_1002_agt2_638 crossref_primary_10_1039_D1CC06380D crossref_primary_10_1002_advs_202300139 crossref_primary_10_1002_anie_202407135 crossref_primary_10_1016_j_cej_2023_145809 crossref_primary_10_1063_5_0066613 crossref_primary_10_1002_cptc_202200073 crossref_primary_10_1016_j_dyepig_2024_111989 crossref_primary_10_1038_s41467_023_37662_y crossref_primary_10_1002_ange_202217547 crossref_primary_10_1021_acsami_1c20331 crossref_primary_10_1016_j_dyepig_2022_110984 crossref_primary_10_1039_D2TC05261J crossref_primary_10_1002_cphc_202400522 crossref_primary_10_1002_anie_202417426 crossref_primary_10_1002_anie_202215071 crossref_primary_10_1002_anie_202213051 crossref_primary_10_1021_acsanm_3c02770 crossref_primary_10_1002_ange_202407135 crossref_primary_10_1103_PhysRevResearch_4_033147 crossref_primary_10_1002_adma_202206712 crossref_primary_10_1016_j_matt_2023_02_002 crossref_primary_10_1002_anie_202415092 crossref_primary_10_1002_ange_202411588 crossref_primary_10_1016_j_cej_2024_155325 crossref_primary_10_1021_acs_chemmater_4c03482 crossref_primary_10_1021_cbmi_3c00091 crossref_primary_10_1039_D4QM00977K crossref_primary_10_1002_adom_202300284 crossref_primary_10_1021_jacs_3c03681 crossref_primary_10_1016_j_diamond_2024_111910 crossref_primary_10_1021_acsami_2c12778 crossref_primary_10_1002_smtd_202400982 crossref_primary_10_1039_D1CC04094D crossref_primary_10_1021_acs_jpcc_3c04948 crossref_primary_10_1038_s41467_025_55990_z crossref_primary_10_1002_adom_202400359 crossref_primary_10_1021_acs_jpclett_3c01437 crossref_primary_10_1016_j_dyepig_2024_112024 crossref_primary_10_1016_j_cej_2024_151984 crossref_primary_10_1021_acs_chemmater_4c00161 crossref_primary_10_1002_ange_202213051 crossref_primary_10_1002_smll_202310226 crossref_primary_10_1002_anie_202200343 crossref_primary_10_1021_acsanm_2c00208 crossref_primary_10_1002_ange_202215071 crossref_primary_10_1002_adfm_202402428 crossref_primary_10_1002_cjoc_202200354 crossref_primary_10_1002_adma_202211858 crossref_primary_10_1016_j_dyepig_2022_110400 crossref_primary_10_1002_adfm_202108072 crossref_primary_10_1002_anie_202217616 crossref_primary_10_1038_s41467_024_48913_x crossref_primary_10_1021_acs_jpclett_3c03060 crossref_primary_10_1039_D2QI01779B crossref_primary_10_1039_D5TC00309A crossref_primary_10_1039_D2CC04521D crossref_primary_10_1021_acs_jpclett_2c03914 crossref_primary_10_1021_jacs_2c01248 crossref_primary_10_1002_anie_202304020 crossref_primary_10_1016_j_orgel_2024_107128 crossref_primary_10_1002_ange_202415092 crossref_primary_10_1002_anie_202410974 crossref_primary_10_1021_acsnano_4c16160 crossref_primary_10_1002_ange_202310335 crossref_primary_10_1039_D2CC03295C crossref_primary_10_1039_D1SC03420K crossref_primary_10_1016_j_dyepig_2024_112308 crossref_primary_10_1002_adma_202202182 crossref_primary_10_1039_D2CP02288E crossref_primary_10_1002_adom_202302482 crossref_primary_10_1002_ange_202417426 crossref_primary_10_1002_cptc_202400113 crossref_primary_10_1002_agt2_310 crossref_primary_10_1002_adom_202201130 crossref_primary_10_1039_D4TC05193A crossref_primary_10_1039_D3CE00231D crossref_primary_10_1002_anie_202310335 crossref_primary_10_1002_anie_202415312 crossref_primary_10_1016_j_polymer_2021_124449 crossref_primary_10_1021_acsmaterialslett_5c00350 crossref_primary_10_1002_adom_202301619 crossref_primary_10_1039_D1TC04903H crossref_primary_10_1002_smll_202104073 crossref_primary_10_1016_j_cej_2021_134197 crossref_primary_10_1016_j_cej_2025_160718 crossref_primary_10_1016_j_cej_2023_141916 crossref_primary_10_1021_jacs_4c09165 crossref_primary_10_1002_advs_202416853 crossref_primary_10_1002_adom_202301188 crossref_primary_10_1002_adom_202302311 crossref_primary_10_1002_adom_202301101 crossref_primary_10_1016_j_mtbio_2022_100481 crossref_primary_10_1039_D2CC06601G crossref_primary_10_1039_D3CC04012G crossref_primary_10_1002_INMD_20240078 crossref_primary_10_1002_adfm_202110207 crossref_primary_10_1021_acs_jpclett_2c00861 crossref_primary_10_1007_s11426_022_1432_y crossref_primary_10_1016_j_snb_2023_133295 crossref_primary_10_1039_D3TC03553K crossref_primary_10_1002_ange_202200343 crossref_primary_10_1038_s41467_024_46668_z crossref_primary_10_1021_jacs_4c05531 crossref_primary_10_1002_chem_202303834 crossref_primary_10_1002_ange_202318516 crossref_primary_10_1002_cjoc_202300705 crossref_primary_10_1186_s13065_023_00974_7 crossref_primary_10_1016_j_microc_2024_110653 crossref_primary_10_1039_D2CC04544C crossref_primary_10_1002_ange_202109229 crossref_primary_10_1016_j_cej_2021_133530 crossref_primary_10_1002_ange_202410974 crossref_primary_10_1039_D2SC01922A crossref_primary_10_1002_adma_202104125 crossref_primary_10_1016_j_matt_2023_03_004 crossref_primary_10_1039_D1TC04156H crossref_primary_10_1002_adom_202401660 crossref_primary_10_1021_acsmaterialslett_4c00526 crossref_primary_10_1002_adma_202404769 crossref_primary_10_1002_ange_202217616 crossref_primary_10_1039_D2PY00367H crossref_primary_10_1039_D2TC02167F |
Cites_doi | 10.1002/adma.201402532 10.1038/s41563-020-0797-2 10.1002/adma.202007476 10.1002/ange.201607653 10.1021/jp909388y 10.1002/ange.201809945 10.1021/jacs.6b10550 10.1039/C8TC01007B 10.1002/ange.201907572 10.1002/anie.201708606 10.1021/acs.chemrev.5b00263 10.1038/25954 10.1002/ange.201912155 10.1021/jacs.6b12124 10.1039/C5CS00132C 10.1038/nature11687 10.1038/nmat4259 10.1038/s41467-019-14035-y 10.1002/chem.201404784 10.1002/anie.201901882 10.1021/acs.accounts.8b00620 10.1126/sciadv.aao6910 10.1021/acs.jpclett.9b02411 10.1002/adma.201304373 10.1021/acs.accounts.6b00209 10.1021/j100019a026 10.1002/ange.201803947 10.1016/j.matt.2020.05.005 10.1021/acs.chemmater.6b05324 10.1002/anie.201900703 10.1021/jacs.8b04779 10.1038/s41467-020-14669-3 10.1246/cl.180813 10.1021/jacs.7b12519 10.1016/j.chempr.2020.01.021 10.1002/adma.202003911 10.1007/s10068-014-0244-8 10.1002/adfm.201703902 10.1021/ar800211j 10.1073/pnas.1712827114 10.1002/anie.202007343 10.1002/adma.201605444 10.1002/ange.201800762 10.1038/s41467-018-05298-y 10.1021/jacs.8b03867 10.1038/s41566-018-0332-z 10.1002/anie.201607653 10.1038/nmat2509 10.1002/ange.201903332 10.1021/jacs.8b11224 10.1002/ange.201708606 10.1002/adfm.201807243 10.1002/advs.201600080 10.1021/acs.chemrev.5b00074 10.1002/anie.201912155 10.1002/adom.201700116 10.1002/adma.202001348 10.1002/anie.201914513 10.1021/ja306538w 10.1038/s41563-019-0465-6 10.1002/adma.201606665 10.1021/jacs.9b00859 10.1038/natrevmats.2018.20 10.1002/ange.201510946 10.1021/jacs.7b12800 10.1038/nature24010 10.1021/ja0720255 10.1002/anie.201809945 10.1038/nmat4081 10.1002/anie.201500426 10.1038/s41578-020-0223-z 10.1002/anie.201907572 10.1002/anie.201800762 10.1002/adfm.201902503 10.1002/ange.201901882 10.1016/j.ccr.2017.06.026 10.1002/adma.201807222 10.1002/adfm.201802657 10.1002/ange.201500426 10.1002/anie.201903332 10.1002/adma.202001026 10.1002/anie.201803947 10.1021/acs.accounts.0c00060 10.1038/s41467-020-18572-9 10.1002/adfm.201203706 10.1002/ange.201900703 10.1002/ange.201914513 10.1038/nchem.984 10.1016/j.chempr.2017.04.017 10.1021/ja105537j 10.1021/acs.chemrev.7b00425 10.1016/j.chempr.2016.08.010 10.1039/C7TC04751G 10.1002/ange.202007343 10.1038/s41467-019-10033-2 10.1002/anie.201510946 10.1039/C9SC02633A |
ContentType | Journal Article |
Copyright | 2021 Wiley‐VCH GmbH 2021 Wiley-VCH GmbH. |
Copyright_xml | – notice: 2021 Wiley‐VCH GmbH – notice: 2021 Wiley-VCH GmbH. |
DBID | AAYXX CITATION 7TM K9. 7X8 |
DOI | 10.1002/anie.202105628 |
DatabaseName | CrossRef Nucleic Acids Abstracts ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic |
DatabaseTitle | CrossRef ProQuest Health & Medical Complete (Alumni) Nucleic Acids Abstracts MEDLINE - Academic |
DatabaseTitleList | ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1521-3773 |
Edition | International ed. in English |
EndPage | 17147 |
ExternalDocumentID | 10_1002_anie_202105628 ANIE202105628 |
Genre | article |
GrantInformation_xml | – fundername: Shanghai Scientific and Technological Innovation Project funderid: 20QA1411600; 20ZR1469200 – fundername: Shanghai Municipal Human Resources and Social Security Bureau funderid: Y3400419C0 – fundername: Hundred Talents Program from Shanghai Institute of Organic Chemistry funderid: Y121078 |
GroupedDBID | --- -DZ -~X .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5RE 5VS 66C 6TJ 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABLJU ABPPZ ABPVW ACAHQ ACCFJ ACCZN ACFBH ACGFS ACIWK ACNCT ACPOU ACPRK ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AEQDE AEUQT AEUYR AFBPY AFFNX AFFPM AFGKR AFPWT AFRAH AFWVQ AFZJQ AHBTC AHMBA AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BTSUX BY8 CS3 D-E D-F D0L DCZOG DPXWK DR1 DR2 DRFUL DRSTM EBS F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES M53 MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D PQQKQ Q.N Q11 QB0 QRW R.K RNS ROL RWI RX1 RYL SUPJJ TN5 UB1 UPT UQL V2E VQA W8V W99 WBFHL WBKPD WH7 WIB WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XSW XV2 YZZ ZZTAW ~IA ~KM ~WT AAYXX ABDBF ABJNI AEYWJ AGHNM AGYGG CITATION 7TM K9. 7X8 |
ID | FETCH-LOGICAL-c4168-53590144963ee0dc90fae8053c455553c06314b0f3c0c22e51bfb08a544b7e6b3 |
IEDL.DBID | DR2 |
ISSN | 1433-7851 1521-3773 |
IngestDate | Fri Jul 11 04:35:31 EDT 2025 Fri Jul 25 10:26:31 EDT 2025 Thu Apr 24 23:05:24 EDT 2025 Tue Jul 01 01:18:02 EDT 2025 Wed Jan 22 16:28:48 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 31 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4168-53590144963ee0dc90fae8053c455553c06314b0f3c0c22e51bfb08a544b7e6b3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-8176-6205 |
PQID | 2552810511 |
PQPubID | 946352 |
PageCount | 10 |
ParticipantIDs | proquest_miscellaneous_2535827758 proquest_journals_2552810511 crossref_citationtrail_10_1002_anie_202105628 crossref_primary_10_1002_anie_202105628 wiley_primary_10_1002_anie_202105628_ANIE202105628 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | July 26, 2021 |
PublicationDateYYYYMMDD | 2021-07-26 |
PublicationDate_xml | – month: 07 year: 2021 text: July 26, 2021 day: 26 |
PublicationDecade | 2020 |
PublicationPlace | Weinheim |
PublicationPlace_xml | – name: Weinheim |
PublicationTitle | Angewandte Chemie International Edition |
PublicationYear | 2021 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2017; 5 2021; 20 2017; 2 2009; 42 2019; 52 2019; 10 2013; 23 2019; 13 2020 2020; 59 132 2014; 26 2019; 18 2017; 350 2020; 11 2017; 550 2017; 114 2014; 23 1998; 395 2012; 492 2018; 6 2018; 9 2020; 6 2020; 5 2018; 3 2020; 3 2012; 134 2021; 33 2018; 4 2020; 53 2010; 114 2018 2018; 57 130 2015; 44 2015 2015; 54 127 2019; 29 2014; 13 2016; 49 2018; 28 2015; 14 2007; 129 2018; 140 2019; 31 2017; 27 1995; 99 1999; 69 2017; 29 2017 2017; 56 129 2020; 32 2019; 141 2011; 3 2019 2019; 58 131 2017; 139 2016; 1 2016 2016; 55 128 2016; 3 2015; 115 2021 2018; 118 2019; 48 2015; 21 2010; 132 2009; 8 e_1_2_6_53_1 e_1_2_6_76_1 e_1_2_6_30_2 e_1_2_6_30_1 e_1_2_6_72_1 e_1_2_6_19_1 e_1_2_6_11_1 e_1_2_6_34_1 e_1_2_6_38_2 e_1_2_6_15_1 e_1_2_6_38_1 e_1_2_6_57_1 e_1_2_6_64_1 e_1_2_6_41_1 e_1_2_6_60_1 e_1_2_6_83_1 e_1_2_6_9_1 e_1_2_6_5_1 e_1_2_6_1_1 e_1_2_6_49_1 e_1_2_6_22_1 e_1_2_6_45_1 e_1_2_6_26_1 e_1_2_6_68_1 e_1_2_6_73_2 e_1_2_6_73_1 e_1_2_6_54_1 e_1_2_6_31_1 e_1_2_6_50_1 e_1_2_6_35_2 e_1_2_6_35_1 e_1_2_6_12_1 e_1_2_6_39_1 e_1_2_6_77_1 e_1_2_6_16_1 e_1_2_6_58_1 e_1_2_6_84_1 e_1_2_6_42_1 e_1_2_6_42_2 e_1_2_6_65_1 e_1_2_6_80_1 e_1_2_6_61_1 e_1_2_6_6_1 e_1_2_6_23_1 e_1_2_6_2_1 e_1_2_6_27_2 e_1_2_6_27_1 e_1_2_6_51_1 e_1_2_6_74_1 e_1_2_6_32_1 e_1_2_6_70_1 Reutov V. A. (e_1_2_6_69_1) 1999; 69 Gao H. (e_1_2_6_46_1) 2021 e_1_2_6_13_1 e_1_2_6_36_1 e_1_2_6_59_1 e_1_2_6_32_2 e_1_2_6_17_1 e_1_2_6_55_1 e_1_2_6_78_1 e_1_2_6_62_1 e_1_2_6_85_1 e_1_2_6_43_1 e_1_2_6_81_1 e_1_2_6_20_1 e_1_2_6_7_1 e_1_2_6_24_1 e_1_2_6_3_1 e_1_2_6_28_2 e_1_2_6_66_1 e_1_2_6_28_1 e_1_2_6_66_2 e_1_2_6_47_1 e_1_2_6_52_1 e_1_2_6_75_1 e_1_2_6_10_1 e_1_2_6_71_1 e_1_2_6_14_1 e_1_2_6_33_1 e_1_2_6_18_1 e_1_2_6_56_1 e_1_2_6_37_2 e_1_2_6_37_1 e_1_2_6_79_1 e_1_2_6_63_1 e_1_2_6_21_1 e_1_2_6_40_1 e_1_2_6_82_1 e_1_2_6_8_1 e_1_2_6_4_1 e_1_2_6_25_1 e_1_2_6_48_1 e_1_2_6_48_2 e_1_2_6_29_1 e_1_2_6_44_1 e_1_2_6_44_2 e_1_2_6_67_1 e_1_2_6_67_2 e_1_2_6_25_2 |
References_xml | – volume: 27 year: 2017 publication-title: Adv. Funct. Mater. – volume: 9 start-page: 2963 year: 2018 publication-title: Nat. Commun. – volume: 118 start-page: 1770 year: 2018 end-page: 1839 publication-title: Chem. Rev. – volume: 139 start-page: 785 year: 2017 end-page: 791 publication-title: J. Am. Chem. Soc. – volume: 49 start-page: 1691 year: 2016 end-page: 1700 publication-title: Acc. Chem. Res. – volume: 52 start-page: 738 year: 2019 end-page: 748 publication-title: Acc. Chem. Res. – volume: 58 131 start-page: 6028 6089 year: 2019 2019 end-page: 6032 6093 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 114 start-page: 11844 year: 2017 end-page: 11849 publication-title: Proc. Natl. Acad. Sci. USA – volume: 115 start-page: 11718 year: 2015 end-page: 11940 publication-title: Chem. Rev. – volume: 58 131 start-page: 4328 4372 year: 2019 2019 end-page: 4333 4377 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 26 start-page: 10 year: 2014 end-page: 28 publication-title: Adv. Mater. – volume: 20 start-page: 175 year: 2021 end-page: 180 publication-title: Nat. Mater. – volume: 3 year: 2016 publication-title: Adv. Sci. – volume: 13 start-page: 185 year: 2019 end-page: 191 publication-title: Nat. Photonics – volume: 57 130 start-page: 16407 16645 year: 2018 2018 end-page: 16411 16649 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 395 start-page: 151 year: 1998 end-page: 154 publication-title: Nature – volume: 69 start-page: 1603 year: 1999 end-page: 1607 publication-title: Russ. J. Gen. Chem. – volume: 114 start-page: 6090 year: 2010 end-page: 6099 publication-title: J. Phys. Chem. C – volume: 29 start-page: 1946 year: 2017 end-page: 1963 publication-title: Chem. Mater. – volume: 99 start-page: 7416 year: 1995 end-page: 7420 publication-title: J. Phys. Chem. – volume: 350 start-page: 196 year: 2017 end-page: 216 publication-title: Coord. Chem. Rev. – volume: 141 start-page: 5045 year: 2019 end-page: 5050 publication-title: J. Am. Chem. Soc. – volume: 129 start-page: 8942 year: 2007 end-page: 8943 publication-title: J. Am. Chem. Soc. – year: 2021 publication-title: Aggregate – volume: 140 start-page: 9594 year: 2018 end-page: 9605 publication-title: J. Am. Chem. Soc. – volume: 11 start-page: 191 year: 2020 end-page: 197 publication-title: Nat. Commun. – volume: 140 start-page: 1916 year: 2018 end-page: 1923 publication-title: J. Am. Chem. Soc. – volume: 33 year: 2021 publication-title: Adv. Mater. – volume: 56 129 start-page: 16207 16425 year: 2017 2017 end-page: 16211 16429 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 29 year: 2019 publication-title: Adv. Funct. Mater. – volume: 23 start-page: 3386 year: 2013 end-page: 3397 publication-title: Adv. Funct. Mater. – volume: 57 130 start-page: 10854 11020 year: 2018 2018 end-page: 10858 11024 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 140 start-page: 4269 year: 2018 end-page: 4278 publication-title: J. Am. Chem. Soc. – volume: 134 start-page: 14706 year: 2012 end-page: 14709 publication-title: J. Am. Chem. Soc. – volume: 21 start-page: 2182 year: 2015 end-page: 2192 publication-title: Chem. Eur. J. – volume: 55 128 start-page: 15589 15818 year: 2016 2016 end-page: 15593 15822 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 3 start-page: 449 year: 2020 end-page: 463 publication-title: Matter – volume: 10 start-page: 2111 year: 2019 publication-title: Nat. Commun. – volume: 550 start-page: 384 year: 2017 end-page: 387 publication-title: Nature – volume: 28 year: 2018 publication-title: Adv. Funct. Mater. – volume: 58 131 start-page: 14140 14278 year: 2019 2019 end-page: 14145 14283 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 5 start-page: 869 year: 2020 end-page: 885 publication-title: Nat. Rev. Mater. – volume: 139 start-page: 4042 year: 2017 end-page: 4051 publication-title: J. Am. Chem. Soc. – volume: 13 start-page: 938 year: 2014 end-page: 946 publication-title: Nat. Mater. – volume: 26 start-page: 7931 year: 2014 end-page: 7958 publication-title: Adv. Mater. – volume: 132 start-page: 13992 year: 2010 end-page: 13993 publication-title: J. Am. Chem. Soc. – volume: 42 start-page: 542 year: 2009 end-page: 552 publication-title: Acc. Chem. Res. – volume: 1 start-page: 592 year: 2016 end-page: 602 publication-title: Chem – volume: 29 year: 2017 publication-title: Adv. Mater. – volume: 54 127 start-page: 6270 6368 year: 2015 2015 end-page: 6273 6371 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 57 130 start-page: 6449 6559 year: 2018 2018 end-page: 6453 6563 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 3 start-page: 205 year: 2011 end-page: 210 publication-title: Nat. Chem. – volume: 11 start-page: 842 year: 2020 publication-title: Nat. Commun. – volume: 44 start-page: 8786 year: 2015 end-page: 8801 publication-title: Chem. Soc. Rev. – volume: 4 year: 2018 publication-title: Sci. Adv. – volume: 48 start-page: 126 year: 2019 end-page: 129 publication-title: Chem. Lett. – volume: 59 132 start-page: 17451 17604 year: 2020 2020 end-page: 17455 17608 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 55 128 start-page: 3647 3711 year: 2016 2016 end-page: 3651 3715 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 31 year: 2019 publication-title: Adv. Mater. – volume: 8 start-page: 747 year: 2009 end-page: 751 publication-title: Nat. Mater. – volume: 58 131 start-page: 9088 9186 year: 2019 2019 end-page: 9094 9192 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 23 start-page: 1785 year: 2014 end-page: 1791 publication-title: Food Sci. Biotechnol. – volume: 5 start-page: 12538 year: 2017 end-page: 12546 publication-title: J. Mater. Chem. C – volume: 3 start-page: 18020 year: 2018 publication-title: Nat. Rev. Mater. – volume: 14 start-page: 685 year: 2015 end-page: 690 publication-title: Nat. Mater. – volume: 6 start-page: 945 year: 2020 end-page: 967 publication-title: Chem – volume: 2 start-page: 825 year: 2017 end-page: 839 publication-title: Chem – volume: 141 start-page: 1010 year: 2019 end-page: 1015 publication-title: J. Am. Chem. Soc. – volume: 11 start-page: 4802 year: 2020 publication-title: Nat. Commun. – volume: 18 start-page: 1084 year: 2019 end-page: 1090 publication-title: Nat. Mater. – volume: 5 year: 2017 publication-title: Adv. Opt. Mater. – volume: 10 start-page: 7773 year: 2019 end-page: 7778 publication-title: Chem. Sci. – volume: 32 year: 2020 publication-title: Adv. Mater. – volume: 53 start-page: 962 year: 2020 end-page: 973 publication-title: Acc. Chem. Res. – volume: 59 132 start-page: 9928 10014 year: 2020 2020 end-page: 9933 10019 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 59 132 start-page: 9293 9379 year: 2020 2020 end-page: 9298 9384 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 10 start-page: 6019 year: 2019 end-page: 6025 publication-title: J. Phys. Chem. Lett. – volume: 115 start-page: 7589 year: 2015 end-page: 7728 publication-title: Chem. Rev. – volume: 6 start-page: 4603 year: 2018 end-page: 4626 publication-title: J. Mater. Chem. C – volume: 140 start-page: 10734 year: 2018 end-page: 10739 publication-title: J. Am. Chem. Soc. – volume: 492 start-page: 234 year: 2012 end-page: 238 publication-title: Nature – ident: e_1_2_6_62_1 doi: 10.1002/adma.201402532 – ident: e_1_2_6_19_1 doi: 10.1038/s41563-020-0797-2 – ident: e_1_2_6_39_1 doi: 10.1002/adma.202007476 – ident: e_1_2_6_42_2 doi: 10.1002/ange.201607653 – ident: e_1_2_6_21_1 doi: 10.1021/jp909388y – ident: e_1_2_6_67_2 doi: 10.1002/ange.201809945 – ident: e_1_2_6_31_1 doi: 10.1021/jacs.6b10550 – ident: e_1_2_6_15_1 doi: 10.1039/C8TC01007B – ident: e_1_2_6_28_2 doi: 10.1002/ange.201907572 – ident: e_1_2_6_48_1 doi: 10.1002/anie.201708606 – ident: e_1_2_6_2_1 doi: 10.1021/acs.chemrev.5b00263 – ident: e_1_2_6_7_1 doi: 10.1038/25954 – ident: e_1_2_6_38_2 doi: 10.1002/ange.201912155 – ident: e_1_2_6_80_1 doi: 10.1021/jacs.6b12124 – ident: e_1_2_6_3_1 doi: 10.1039/C5CS00132C – ident: e_1_2_6_8_1 doi: 10.1038/nature11687 – ident: e_1_2_6_18_1 doi: 10.1038/nmat4259 – ident: e_1_2_6_74_1 doi: 10.1038/s41467-019-14035-y – ident: e_1_2_6_76_1 doi: 10.1002/chem.201404784 – ident: e_1_2_6_35_1 doi: 10.1002/anie.201901882 – ident: e_1_2_6_13_1 doi: 10.1021/acs.accounts.8b00620 – ident: e_1_2_6_83_1 doi: 10.1126/sciadv.aao6910 – ident: e_1_2_6_60_1 doi: 10.1021/acs.jpclett.9b02411 – ident: e_1_2_6_6_1 doi: 10.1002/adma.201304373 – ident: e_1_2_6_10_1 doi: 10.1021/acs.accounts.6b00209 – ident: e_1_2_6_77_1 doi: 10.1021/j100019a026 – ident: e_1_2_6_27_2 doi: 10.1002/ange.201803947 – ident: e_1_2_6_33_1 doi: 10.1016/j.matt.2020.05.005 – ident: e_1_2_6_65_1 doi: 10.1021/acs.chemmater.6b05324 – ident: e_1_2_6_32_1 doi: 10.1002/anie.201900703 – ident: e_1_2_6_51_1 doi: 10.1021/jacs.8b04779 – ident: e_1_2_6_68_1 doi: 10.1038/s41467-020-14669-3 – ident: e_1_2_6_79_1 doi: 10.1246/cl.180813 – ident: e_1_2_6_52_1 doi: 10.1021/jacs.7b12519 – ident: e_1_2_6_53_1 doi: 10.1016/j.chempr.2020.01.021 – ident: e_1_2_6_61_1 doi: 10.1002/adma.202003911 – ident: e_1_2_6_85_1 doi: 10.1007/s10068-014-0244-8 – ident: e_1_2_6_78_1 doi: 10.1002/adfm.201703902 – ident: e_1_2_6_4_1 doi: 10.1021/ar800211j – ident: e_1_2_6_50_1 doi: 10.1073/pnas.1712827114 – ident: e_1_2_6_25_1 doi: 10.1002/anie.202007343 – ident: e_1_2_6_63_1 doi: 10.1002/adma.201605444 – ident: e_1_2_6_44_2 doi: 10.1002/ange.201800762 – ident: e_1_2_6_26_1 doi: 10.1038/s41467-018-05298-y – ident: e_1_2_6_36_1 doi: 10.1021/jacs.8b03867 – ident: e_1_2_6_9_1 doi: 10.1038/s41566-018-0332-z – ident: e_1_2_6_42_1 doi: 10.1002/anie.201607653 – ident: e_1_2_6_17_1 doi: 10.1038/nmat2509 – ident: e_1_2_6_66_2 doi: 10.1002/ange.201903332 – ident: e_1_2_6_24_1 doi: 10.1021/jacs.8b11224 – ident: e_1_2_6_48_2 doi: 10.1002/ange.201708606 – ident: e_1_2_6_56_1 doi: 10.1002/adfm.201807243 – ident: e_1_2_6_82_1 doi: 10.1002/advs.201600080 – ident: e_1_2_6_1_1 doi: 10.1021/acs.chemrev.5b00074 – ident: e_1_2_6_38_1 doi: 10.1002/anie.201912155 – ident: e_1_2_6_14_1 doi: 10.1002/adom.201700116 – ident: e_1_2_6_57_1 doi: 10.1002/adma.202001348 – ident: e_1_2_6_37_1 doi: 10.1002/anie.201914513 – ident: e_1_2_6_81_1 doi: 10.1021/ja306538w – ident: e_1_2_6_84_1 doi: 10.1038/s41563-019-0465-6 – ident: e_1_2_6_47_1 doi: 10.1002/adma.201606665 – ident: e_1_2_6_20_1 doi: 10.1021/jacs.9b00859 – ident: e_1_2_6_64_1 doi: 10.1038/natrevmats.2018.20 – ident: e_1_2_6_73_2 doi: 10.1002/ange.201510946 – ident: e_1_2_6_34_1 doi: 10.1021/jacs.7b12800 – ident: e_1_2_6_58_1 doi: 10.1038/nature24010 – ident: e_1_2_6_71_1 doi: 10.1021/ja0720255 – ident: e_1_2_6_67_1 doi: 10.1002/anie.201809945 – ident: e_1_2_6_54_1 doi: 10.1038/nmat4081 – ident: e_1_2_6_30_1 doi: 10.1002/anie.201500426 – ident: e_1_2_6_11_1 doi: 10.1038/s41578-020-0223-z – ident: e_1_2_6_28_1 doi: 10.1002/anie.201907572 – ident: e_1_2_6_44_1 doi: 10.1002/anie.201800762 – year: 2021 ident: e_1_2_6_46_1 publication-title: Aggregate – volume: 69 start-page: 1603 year: 1999 ident: e_1_2_6_69_1 publication-title: Russ. J. Gen. Chem. – ident: e_1_2_6_43_1 doi: 10.1002/adfm.201902503 – ident: e_1_2_6_35_2 doi: 10.1002/ange.201901882 – ident: e_1_2_6_72_1 doi: 10.1016/j.ccr.2017.06.026 – ident: e_1_2_6_41_1 doi: 10.1002/adma.201807222 – ident: e_1_2_6_12_1 doi: 10.1002/adfm.201802657 – ident: e_1_2_6_30_2 doi: 10.1002/ange.201500426 – ident: e_1_2_6_66_1 doi: 10.1002/anie.201903332 – ident: e_1_2_6_59_1 doi: 10.1002/adma.202001026 – ident: e_1_2_6_27_1 doi: 10.1002/anie.201803947 – ident: e_1_2_6_29_1 doi: 10.1021/acs.accounts.0c00060 – ident: e_1_2_6_45_1 doi: 10.1038/s41467-020-18572-9 – ident: e_1_2_6_55_1 doi: 10.1002/adfm.201203706 – ident: e_1_2_6_32_2 doi: 10.1002/ange.201900703 – ident: e_1_2_6_37_2 doi: 10.1002/ange.201914513 – ident: e_1_2_6_22_1 doi: 10.1038/nchem.984 – ident: e_1_2_6_49_1 doi: 10.1016/j.chempr.2017.04.017 – ident: e_1_2_6_70_1 doi: 10.1021/ja105537j – ident: e_1_2_6_5_1 doi: 10.1021/acs.chemrev.7b00425 – ident: e_1_2_6_23_1 doi: 10.1016/j.chempr.2016.08.010 – ident: e_1_2_6_75_1 doi: 10.1039/C7TC04751G – ident: e_1_2_6_25_2 doi: 10.1002/ange.202007343 – ident: e_1_2_6_16_1 doi: 10.1038/s41467-019-10033-2 – ident: e_1_2_6_73_1 doi: 10.1002/anie.201510946 – ident: e_1_2_6_40_1 doi: 10.1039/C9SC02633A |
SSID | ssj0028806 |
Score | 2.667757 |
Snippet | We report a highly efficient dopant‐matrix afterglow system enabled by TADF mechanism to realize afterglow quantum yields of 60–70 %, which features a moderate... We report a highly efficient dopant-matrix afterglow system enabled by TADF mechanism to realize afterglow quantum yields of 60-70 %, which features a moderate... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 17138 |
SubjectTerms | afterglow Benzoates Benzoic acid Carbonyl compounds Carbonyls Dipole interactions Dopants Excitation Functional groups Medical imaging organic materials phosphorescence thermally activated delayed fluorescence triplet excited state |
Title | TADF‐Type Organic Afterglow |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fanie.202105628 https://www.proquest.com/docview/2552810511 https://www.proquest.com/docview/2535827758 |
Volume | 60 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEF6kF734FqOtRBA8pU12N69jqC1VsAdpobewu9l4sKRiWwRP_gR_o7_EmbzaCiJoThv2lX1M9pvdnW8IufJkylLPTyxlh9rigfasMGEcQolPVUqDND_RvR96gzG_m7iTNSv-gh-i3nBDycj_1yjgQs47K9JQtMAG_Y6i63iK1r54YQtR0UPNH0VhchbmRYxZ6IW-Ym20aWcz--aqtIKa64A1X3H6e0RU31pcNHlqLxeyrd6-0Tj-pzH7ZLeEo2ZUzJ8DsqWzQ7LdrbzAHZHWKLrpf75_oL5qFoabyozQsfjjdPZ6TMb93qg7sEqXCpYC5BVYLkNbU85B7LS2ExXaqdABCKLiLjxMAWJxuLRTCClKtevIVNqBcDmXvvYkOyGNbJbpU2KGjDlC2kLbIZQNhQOyUywUmkoPBjowiFV1aaxKvnF0ezGNC6ZkGmOj47rRBrmu0z8XTBs_pmxWIxSXEjePQTWiAcQ7jkEu62joLDwAEZmeLTEN2gX7oCIZhObD8UtNcTS87dVvZ3_JdE52MIzbwdRrksbiZalbgGMW8iKfq18Ru-Zy |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT8JAEJ4oHvDi24iC1sTEU7Hd3Zb2SHgEFDgYSLw13WXrQQJGISae_An-Rn-JM30hJsZEe9p2H-0-pvvN7s43ABeujHjk1samsnxtCk-7pj_mAkPjGlMR86J4R7c_cDsjcX3nZKcJyRYm4YfIF9xIMuL_NQk4LUhfLVlDyQQbFTxGvuOZtw4b5Nab6PObtzmDFMPhmRgYcW6SH_qMt9FiV6v5V-elJdj8ClnjOae9DTL72uSoyUN1MZdV9fqNyPFf1dmBrRSRGvVkCO3Cmp7uQbGROYLbh8qw3mx_vL2TymoktpvKqJNv8fvJ7OUARu3WsNExU68KpkLw5ZkOJ3NTIVDytLbGyreiUHsoi0o4eHGFoMUW0oowpBjTji0jaXmhI4SsaVfyQyhMZ1N9BIbPuR1KK9SWj2Vj4QjuFPdDzaSLfe2VwMzaNFAp5Th5vpgECVkyC6jSQV7pElzm6R8Tso0fU5azLgpSoXsOUDtiHsbbdgnO82hsLNoDCad6tqA0ZBpcQy2pBCzuj1_eFNQH3VZ-d_yXTGdQ7Az7vaDXHdycwCY9p9Vh5pahMH9a6ArCmrk8jQfuJ5bg6o4 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bS8MwFD7oBPXFuzjddILgU7c0Sbv2seyC8zJENthbadLUB8c2dEPwyZ_gb_SXeNLbNkEE7VPaXNpcTvKdpOc7ABe2iFhk10NDElcZ3FG24YaMYyisUxlRJ4pPdO-69lWfXw-swYIVf8IPkW-4acmI52st4JMwqs1JQ7UFNup3VLuOp84qrHGbuNp5Q_MhJ5CiODoT-yLGDO2GPqNtJLS2nH95WZpjzUXEGi857W0Iso9N_jR5qs6moirfvvE4_qc2O7CV4tGKlwygXVhRoz3YaGRu4Pah3POa7c_3D62wVhLLTVnxtGfxx-H49QD67VavcWWkPhUMidDLMSymjU05R7lTioTSJVGgHJREyS28mETIYnJBIgxJSpVlikgQJ7A4F3VlC3YIhdF4pI6g4jJmBoIEirhYNhaO0E4yN1BU2NjTThGMrEl9mRKOa78XQz-hSqa-rrSfV7oIl3n6SUK18WPKUtZDfipyLz7qRtTBeNMswnkejY2lT0CCkRrPdBptGFxHHakINO6OX97ke91OK787_kumM1i_b7b920735gQ29WO9NUztEhSmzzNVRkwzFafxsP0C2fTpPQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=TADF%E2%80%90Type+Organic+Afterglow&rft.jtitle=Angewandte+Chemie+International+Edition&rft.au=Wang%2C+Xuepu&rft.au=Sun%2C+Yan&rft.au=Wang%2C+Guangming&rft.au=Li%2C+Jiuyang&rft.date=2021-07-26&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=1433-7851&rft.eissn=1521-3773&rft.volume=60&rft.issue=31&rft.spage=17138&rft.epage=17147&rft_id=info:doi/10.1002%2Fanie.202105628&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1433-7851&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1433-7851&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1433-7851&client=summon |