TADF‐Type Organic Afterglow

We report a highly efficient dopant‐matrix afterglow system enabled by TADF mechanism to realize afterglow quantum yields of 60–70 %, which features a moderate rate constant for reverse intersystem crossing (kRISC) to simultaneously improve afterglow quantum yields and maintain afterglow emission li...

Full description

Saved in:
Bibliographic Details
Published inAngewandte Chemie International Edition Vol. 60; no. 31; pp. 17138 - 17147
Main Authors Wang, Xuepu, Sun, Yan, Wang, Guangming, Li, Jiuyang, Li, Xun, Zhang, Kaka
Format Journal Article
LanguageEnglish
Published Weinheim Wiley Subscription Services, Inc 26.07.2021
EditionInternational ed. in English
Subjects
Online AccessGet full text

Cover

Loading…
Abstract We report a highly efficient dopant‐matrix afterglow system enabled by TADF mechanism to realize afterglow quantum yields of 60–70 %, which features a moderate rate constant for reverse intersystem crossing (kRISC) to simultaneously improve afterglow quantum yields and maintain afterglow emission lifetime. Difluoroboron β‐diketonate (BF2bdk) compounds are designed with multiple electron‐donating groups to possess moderate kRISC values and are selected as luminescent dopants. The matrices with carbonyl functional groups such as phenyl benzoate (PhB) have been found to interact with and perturb BF2bdk excited states by dipole–dipole interactions and thus enhance the intersystem crossing of BF2bdk excited states. Through dopant‐matrix collaboration, the efficient TADF‐type afterglow materials have been achieved to exhibit excellent processability into desired shapes and large‐area films by melt casting, as well as aqueous afterglow dispersions for potential bioimaging applications. Due to the spin‐forbidden nature, it remains challenging to achieve room‐temperature organic phosphorescence and afterglow materials with high quantum yields. We report a highly efficient dopant‐matrix afterglow system enabled by TADF mechanism to realize afterglow quantum yields of 60–70 %, which features a moderate rate constant for reverse intersystem crossing to simultaneously improve afterglow quantum yields and maintain afterglow emission lifetime.
AbstractList We report a highly efficient dopant‐matrix afterglow system enabled by TADF mechanism to realize afterglow quantum yields of 60–70 %, which features a moderate rate constant for reverse intersystem crossing (kRISC) to simultaneously improve afterglow quantum yields and maintain afterglow emission lifetime. Difluoroboron β‐diketonate (BF2bdk) compounds are designed with multiple electron‐donating groups to possess moderate kRISC values and are selected as luminescent dopants. The matrices with carbonyl functional groups such as phenyl benzoate (PhB) have been found to interact with and perturb BF2bdk excited states by dipole–dipole interactions and thus enhance the intersystem crossing of BF2bdk excited states. Through dopant‐matrix collaboration, the efficient TADF‐type afterglow materials have been achieved to exhibit excellent processability into desired shapes and large‐area films by melt casting, as well as aqueous afterglow dispersions for potential bioimaging applications.
We report a highly efficient dopant-matrix afterglow system enabled by TADF mechanism to realize afterglow quantum yields of 60-70 %, which features a moderate rate constant for reverse intersystem crossing (kRISC ) to simultaneously improve afterglow quantum yields and maintain afterglow emission lifetime. Difluoroboron β-diketonate (BF2 bdk) compounds are designed with multiple electron-donating groups to possess moderate kRISC values and are selected as luminescent dopants. The matrices with carbonyl functional groups such as phenyl benzoate (PhB) have been found to interact with and perturb BF2 bdk excited states by dipole-dipole interactions and thus enhance the intersystem crossing of BF2 bdk excited states. Through dopant-matrix collaboration, the efficient TADF-type afterglow materials have been achieved to exhibit excellent processability into desired shapes and large-area films by melt casting, as well as aqueous afterglow dispersions for potential bioimaging applications.We report a highly efficient dopant-matrix afterglow system enabled by TADF mechanism to realize afterglow quantum yields of 60-70 %, which features a moderate rate constant for reverse intersystem crossing (kRISC ) to simultaneously improve afterglow quantum yields and maintain afterglow emission lifetime. Difluoroboron β-diketonate (BF2 bdk) compounds are designed with multiple electron-donating groups to possess moderate kRISC values and are selected as luminescent dopants. The matrices with carbonyl functional groups such as phenyl benzoate (PhB) have been found to interact with and perturb BF2 bdk excited states by dipole-dipole interactions and thus enhance the intersystem crossing of BF2 bdk excited states. Through dopant-matrix collaboration, the efficient TADF-type afterglow materials have been achieved to exhibit excellent processability into desired shapes and large-area films by melt casting, as well as aqueous afterglow dispersions for potential bioimaging applications.
We report a highly efficient dopant‐matrix afterglow system enabled by TADF mechanism to realize afterglow quantum yields of 60–70 %, which features a moderate rate constant for reverse intersystem crossing ( k RISC ) to simultaneously improve afterglow quantum yields and maintain afterglow emission lifetime. Difluoroboron β‐diketonate (BF 2 bdk) compounds are designed with multiple electron‐donating groups to possess moderate k RISC values and are selected as luminescent dopants. The matrices with carbonyl functional groups such as phenyl benzoate (PhB) have been found to interact with and perturb BF 2 bdk excited states by dipole–dipole interactions and thus enhance the intersystem crossing of BF 2 bdk excited states. Through dopant‐matrix collaboration, the efficient TADF‐type afterglow materials have been achieved to exhibit excellent processability into desired shapes and large‐area films by melt casting, as well as aqueous afterglow dispersions for potential bioimaging applications.
We report a highly efficient dopant‐matrix afterglow system enabled by TADF mechanism to realize afterglow quantum yields of 60–70 %, which features a moderate rate constant for reverse intersystem crossing (kRISC) to simultaneously improve afterglow quantum yields and maintain afterglow emission lifetime. Difluoroboron β‐diketonate (BF2bdk) compounds are designed with multiple electron‐donating groups to possess moderate kRISC values and are selected as luminescent dopants. The matrices with carbonyl functional groups such as phenyl benzoate (PhB) have been found to interact with and perturb BF2bdk excited states by dipole–dipole interactions and thus enhance the intersystem crossing of BF2bdk excited states. Through dopant‐matrix collaboration, the efficient TADF‐type afterglow materials have been achieved to exhibit excellent processability into desired shapes and large‐area films by melt casting, as well as aqueous afterglow dispersions for potential bioimaging applications. Due to the spin‐forbidden nature, it remains challenging to achieve room‐temperature organic phosphorescence and afterglow materials with high quantum yields. We report a highly efficient dopant‐matrix afterglow system enabled by TADF mechanism to realize afterglow quantum yields of 60–70 %, which features a moderate rate constant for reverse intersystem crossing to simultaneously improve afterglow quantum yields and maintain afterglow emission lifetime.
Author Wang, Guangming
Li, Xun
Zhang, Kaka
Sun, Yan
Li, Jiuyang
Wang, Xuepu
Author_xml – sequence: 1
  givenname: Xuepu
  surname: Wang
  fullname: Wang, Xuepu
  organization: Chinese Academy of Sciences
– sequence: 2
  givenname: Yan
  surname: Sun
  fullname: Sun, Yan
  organization: Chinese Academy of Sciences
– sequence: 3
  givenname: Guangming
  surname: Wang
  fullname: Wang, Guangming
  organization: Chinese Academy of Sciences
– sequence: 4
  givenname: Jiuyang
  surname: Li
  fullname: Li, Jiuyang
  organization: Chinese Academy of Sciences
– sequence: 5
  givenname: Xun
  surname: Li
  fullname: Li, Xun
  organization: Chinese Academy of Sciences
– sequence: 6
  givenname: Kaka
  orcidid: 0000-0002-8176-6205
  surname: Zhang
  fullname: Zhang, Kaka
  email: zhangkaka@sioc.ac.cn
  organization: Chinese Academy of Sciences
BookMark eNqFkM9KAzEQh4NUsK1evQkFL1625u9u9rjUVgvFXuo5ZONsSdluarKl9OYj-Iw-iSkVhYI4l8zh-2Ymvx7qNK4BhK4JHhKM6b1uLAwppgSLlMoz1CWCkoRlGevEnjOWZFKQC9QLYRV5KXHaRTeL4mHy-f6x2G9gMPfLOMQMiqoFv6zd7hKdV7oOcPX99tHLZLwYPSWz-eN0VMwSw0kqE8FEjgnnecoA8KvJcaVBYsEMF7GYwSkjvMRV7AylIEhZlVhqwXmZQVqyPro7zt1497aF0Kq1DQbqWjfgtkHRuEHSLBMyorcn6MptfROvi5SgMv6ekEjxI2W8C8FDpYxtdWtd03pta0WwOmSmDpmpn8yiNjzRNt6utd__LeRHYWdr2P9Dq-J5Ov51vwAMI34p
CitedBy_id crossref_primary_10_1002_adma_202212064
crossref_primary_10_1021_acs_jpcc_1c08409
crossref_primary_10_1039_D3TC02407E
crossref_primary_10_1038_s42004_024_01347_4
crossref_primary_10_1002_adom_202101622
crossref_primary_10_1021_acsmaterialslett_2c00575
crossref_primary_10_1108_PRT_07_2023_0058
crossref_primary_10_1002_ange_202304020
crossref_primary_10_1002_adom_202101909
crossref_primary_10_1016_j_dyepig_2024_112104
crossref_primary_10_1002_anie_202318516
crossref_primary_10_1016_j_dyepig_2024_112227
crossref_primary_10_1002_flm2_24
crossref_primary_10_1002_adom_202301514
crossref_primary_10_1039_D3CC03288D
crossref_primary_10_1039_D3SC01500A
crossref_primary_10_1126_sciadv_ade2585
crossref_primary_10_1002_anie_202109229
crossref_primary_10_1016_j_ccr_2024_216192
crossref_primary_10_1016_j_cej_2024_158747
crossref_primary_10_1002_adma_202414894
crossref_primary_10_1002_adom_202201502
crossref_primary_10_1021_acs_jpcc_2c07138
crossref_primary_10_1002_ange_202415312
crossref_primary_10_1021_acs_jpcc_2c07499
crossref_primary_10_1002_adfm_202422121
crossref_primary_10_1002_anie_202411588
crossref_primary_10_1016_j_nxmate_2024_100379
crossref_primary_10_1002_adfm_202214960
crossref_primary_10_1038_s41467_021_27914_0
crossref_primary_10_1007_s40843_024_3217_8
crossref_primary_10_3390_molecules29102343
crossref_primary_10_1021_acsmaterialslett_4c00104
crossref_primary_10_1016_j_nxmate_2023_100087
crossref_primary_10_1021_acs_inorgchem_4c05315
crossref_primary_10_1039_D4CP02927E
crossref_primary_10_1002_anie_202217547
crossref_primary_10_1039_D2TC02416K
crossref_primary_10_1002_adma_202402725
crossref_primary_10_1002_adom_202202540
crossref_primary_10_1002_adfm_202405637
crossref_primary_10_1002_adfm_202403734
crossref_primary_10_1016_j_device_2024_100574
crossref_primary_10_1021_acs_jpclett_2c02057
crossref_primary_10_1002_agt2_638
crossref_primary_10_1039_D1CC06380D
crossref_primary_10_1002_advs_202300139
crossref_primary_10_1002_anie_202407135
crossref_primary_10_1016_j_cej_2023_145809
crossref_primary_10_1063_5_0066613
crossref_primary_10_1002_cptc_202200073
crossref_primary_10_1016_j_dyepig_2024_111989
crossref_primary_10_1038_s41467_023_37662_y
crossref_primary_10_1002_ange_202217547
crossref_primary_10_1021_acsami_1c20331
crossref_primary_10_1016_j_dyepig_2022_110984
crossref_primary_10_1039_D2TC05261J
crossref_primary_10_1002_cphc_202400522
crossref_primary_10_1002_anie_202417426
crossref_primary_10_1002_anie_202215071
crossref_primary_10_1002_anie_202213051
crossref_primary_10_1021_acsanm_3c02770
crossref_primary_10_1002_ange_202407135
crossref_primary_10_1103_PhysRevResearch_4_033147
crossref_primary_10_1002_adma_202206712
crossref_primary_10_1016_j_matt_2023_02_002
crossref_primary_10_1002_anie_202415092
crossref_primary_10_1002_ange_202411588
crossref_primary_10_1016_j_cej_2024_155325
crossref_primary_10_1021_acs_chemmater_4c03482
crossref_primary_10_1021_cbmi_3c00091
crossref_primary_10_1039_D4QM00977K
crossref_primary_10_1002_adom_202300284
crossref_primary_10_1021_jacs_3c03681
crossref_primary_10_1016_j_diamond_2024_111910
crossref_primary_10_1021_acsami_2c12778
crossref_primary_10_1002_smtd_202400982
crossref_primary_10_1039_D1CC04094D
crossref_primary_10_1021_acs_jpcc_3c04948
crossref_primary_10_1038_s41467_025_55990_z
crossref_primary_10_1002_adom_202400359
crossref_primary_10_1021_acs_jpclett_3c01437
crossref_primary_10_1016_j_dyepig_2024_112024
crossref_primary_10_1016_j_cej_2024_151984
crossref_primary_10_1021_acs_chemmater_4c00161
crossref_primary_10_1002_ange_202213051
crossref_primary_10_1002_smll_202310226
crossref_primary_10_1002_anie_202200343
crossref_primary_10_1021_acsanm_2c00208
crossref_primary_10_1002_ange_202215071
crossref_primary_10_1002_adfm_202402428
crossref_primary_10_1002_cjoc_202200354
crossref_primary_10_1002_adma_202211858
crossref_primary_10_1016_j_dyepig_2022_110400
crossref_primary_10_1002_adfm_202108072
crossref_primary_10_1002_anie_202217616
crossref_primary_10_1038_s41467_024_48913_x
crossref_primary_10_1021_acs_jpclett_3c03060
crossref_primary_10_1039_D2QI01779B
crossref_primary_10_1039_D5TC00309A
crossref_primary_10_1039_D2CC04521D
crossref_primary_10_1021_acs_jpclett_2c03914
crossref_primary_10_1021_jacs_2c01248
crossref_primary_10_1002_anie_202304020
crossref_primary_10_1016_j_orgel_2024_107128
crossref_primary_10_1002_ange_202415092
crossref_primary_10_1002_anie_202410974
crossref_primary_10_1021_acsnano_4c16160
crossref_primary_10_1002_ange_202310335
crossref_primary_10_1039_D2CC03295C
crossref_primary_10_1039_D1SC03420K
crossref_primary_10_1016_j_dyepig_2024_112308
crossref_primary_10_1002_adma_202202182
crossref_primary_10_1039_D2CP02288E
crossref_primary_10_1002_adom_202302482
crossref_primary_10_1002_ange_202417426
crossref_primary_10_1002_cptc_202400113
crossref_primary_10_1002_agt2_310
crossref_primary_10_1002_adom_202201130
crossref_primary_10_1039_D4TC05193A
crossref_primary_10_1039_D3CE00231D
crossref_primary_10_1002_anie_202310335
crossref_primary_10_1002_anie_202415312
crossref_primary_10_1016_j_polymer_2021_124449
crossref_primary_10_1021_acsmaterialslett_5c00350
crossref_primary_10_1002_adom_202301619
crossref_primary_10_1039_D1TC04903H
crossref_primary_10_1002_smll_202104073
crossref_primary_10_1016_j_cej_2021_134197
crossref_primary_10_1016_j_cej_2025_160718
crossref_primary_10_1016_j_cej_2023_141916
crossref_primary_10_1021_jacs_4c09165
crossref_primary_10_1002_advs_202416853
crossref_primary_10_1002_adom_202301188
crossref_primary_10_1002_adom_202302311
crossref_primary_10_1002_adom_202301101
crossref_primary_10_1016_j_mtbio_2022_100481
crossref_primary_10_1039_D2CC06601G
crossref_primary_10_1039_D3CC04012G
crossref_primary_10_1002_INMD_20240078
crossref_primary_10_1002_adfm_202110207
crossref_primary_10_1021_acs_jpclett_2c00861
crossref_primary_10_1007_s11426_022_1432_y
crossref_primary_10_1016_j_snb_2023_133295
crossref_primary_10_1039_D3TC03553K
crossref_primary_10_1002_ange_202200343
crossref_primary_10_1038_s41467_024_46668_z
crossref_primary_10_1021_jacs_4c05531
crossref_primary_10_1002_chem_202303834
crossref_primary_10_1002_ange_202318516
crossref_primary_10_1002_cjoc_202300705
crossref_primary_10_1186_s13065_023_00974_7
crossref_primary_10_1016_j_microc_2024_110653
crossref_primary_10_1039_D2CC04544C
crossref_primary_10_1002_ange_202109229
crossref_primary_10_1016_j_cej_2021_133530
crossref_primary_10_1002_ange_202410974
crossref_primary_10_1039_D2SC01922A
crossref_primary_10_1002_adma_202104125
crossref_primary_10_1016_j_matt_2023_03_004
crossref_primary_10_1039_D1TC04156H
crossref_primary_10_1002_adom_202401660
crossref_primary_10_1021_acsmaterialslett_4c00526
crossref_primary_10_1002_adma_202404769
crossref_primary_10_1002_ange_202217616
crossref_primary_10_1039_D2PY00367H
crossref_primary_10_1039_D2TC02167F
Cites_doi 10.1002/adma.201402532
10.1038/s41563-020-0797-2
10.1002/adma.202007476
10.1002/ange.201607653
10.1021/jp909388y
10.1002/ange.201809945
10.1021/jacs.6b10550
10.1039/C8TC01007B
10.1002/ange.201907572
10.1002/anie.201708606
10.1021/acs.chemrev.5b00263
10.1038/25954
10.1002/ange.201912155
10.1021/jacs.6b12124
10.1039/C5CS00132C
10.1038/nature11687
10.1038/nmat4259
10.1038/s41467-019-14035-y
10.1002/chem.201404784
10.1002/anie.201901882
10.1021/acs.accounts.8b00620
10.1126/sciadv.aao6910
10.1021/acs.jpclett.9b02411
10.1002/adma.201304373
10.1021/acs.accounts.6b00209
10.1021/j100019a026
10.1002/ange.201803947
10.1016/j.matt.2020.05.005
10.1021/acs.chemmater.6b05324
10.1002/anie.201900703
10.1021/jacs.8b04779
10.1038/s41467-020-14669-3
10.1246/cl.180813
10.1021/jacs.7b12519
10.1016/j.chempr.2020.01.021
10.1002/adma.202003911
10.1007/s10068-014-0244-8
10.1002/adfm.201703902
10.1021/ar800211j
10.1073/pnas.1712827114
10.1002/anie.202007343
10.1002/adma.201605444
10.1002/ange.201800762
10.1038/s41467-018-05298-y
10.1021/jacs.8b03867
10.1038/s41566-018-0332-z
10.1002/anie.201607653
10.1038/nmat2509
10.1002/ange.201903332
10.1021/jacs.8b11224
10.1002/ange.201708606
10.1002/adfm.201807243
10.1002/advs.201600080
10.1021/acs.chemrev.5b00074
10.1002/anie.201912155
10.1002/adom.201700116
10.1002/adma.202001348
10.1002/anie.201914513
10.1021/ja306538w
10.1038/s41563-019-0465-6
10.1002/adma.201606665
10.1021/jacs.9b00859
10.1038/natrevmats.2018.20
10.1002/ange.201510946
10.1021/jacs.7b12800
10.1038/nature24010
10.1021/ja0720255
10.1002/anie.201809945
10.1038/nmat4081
10.1002/anie.201500426
10.1038/s41578-020-0223-z
10.1002/anie.201907572
10.1002/anie.201800762
10.1002/adfm.201902503
10.1002/ange.201901882
10.1016/j.ccr.2017.06.026
10.1002/adma.201807222
10.1002/adfm.201802657
10.1002/ange.201500426
10.1002/anie.201903332
10.1002/adma.202001026
10.1002/anie.201803947
10.1021/acs.accounts.0c00060
10.1038/s41467-020-18572-9
10.1002/adfm.201203706
10.1002/ange.201900703
10.1002/ange.201914513
10.1038/nchem.984
10.1016/j.chempr.2017.04.017
10.1021/ja105537j
10.1021/acs.chemrev.7b00425
10.1016/j.chempr.2016.08.010
10.1039/C7TC04751G
10.1002/ange.202007343
10.1038/s41467-019-10033-2
10.1002/anie.201510946
10.1039/C9SC02633A
ContentType Journal Article
Copyright 2021 Wiley‐VCH GmbH
2021 Wiley-VCH GmbH.
Copyright_xml – notice: 2021 Wiley‐VCH GmbH
– notice: 2021 Wiley-VCH GmbH.
DBID AAYXX
CITATION
7TM
K9.
7X8
DOI 10.1002/anie.202105628
DatabaseName CrossRef
Nucleic Acids Abstracts
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
DatabaseTitle CrossRef
ProQuest Health & Medical Complete (Alumni)
Nucleic Acids Abstracts
MEDLINE - Academic
DatabaseTitleList ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
CrossRef

DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1521-3773
Edition International ed. in English
EndPage 17147
ExternalDocumentID 10_1002_anie_202105628
ANIE202105628
Genre article
GrantInformation_xml – fundername: Shanghai Scientific and Technological Innovation Project
  funderid: 20QA1411600; 20ZR1469200
– fundername: Shanghai Municipal Human Resources and Social Security Bureau
  funderid: Y3400419C0
– fundername: Hundred Talents Program from Shanghai Institute of Organic Chemistry
  funderid: Y121078
GroupedDBID ---
-DZ
-~X
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5RE
5VS
66C
6TJ
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABLJU
ABPPZ
ABPVW
ACAHQ
ACCFJ
ACCZN
ACFBH
ACGFS
ACIWK
ACNCT
ACPOU
ACPRK
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AEQDE
AEUQT
AEUYR
AFBPY
AFFNX
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AFZJQ
AHBTC
AHMBA
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BTSUX
BY8
CS3
D-E
D-F
D0L
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
M53
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RX1
RYL
SUPJJ
TN5
UB1
UPT
UQL
V2E
VQA
W8V
W99
WBFHL
WBKPD
WH7
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XSW
XV2
YZZ
ZZTAW
~IA
~KM
~WT
AAYXX
ABDBF
ABJNI
AEYWJ
AGHNM
AGYGG
CITATION
7TM
K9.
7X8
ID FETCH-LOGICAL-c4168-53590144963ee0dc90fae8053c455553c06314b0f3c0c22e51bfb08a544b7e6b3
IEDL.DBID DR2
ISSN 1433-7851
1521-3773
IngestDate Fri Jul 11 04:35:31 EDT 2025
Fri Jul 25 10:26:31 EDT 2025
Thu Apr 24 23:05:24 EDT 2025
Tue Jul 01 01:18:02 EDT 2025
Wed Jan 22 16:28:48 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 31
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4168-53590144963ee0dc90fae8053c455553c06314b0f3c0c22e51bfb08a544b7e6b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-8176-6205
PQID 2552810511
PQPubID 946352
PageCount 10
ParticipantIDs proquest_miscellaneous_2535827758
proquest_journals_2552810511
crossref_citationtrail_10_1002_anie_202105628
crossref_primary_10_1002_anie_202105628
wiley_primary_10_1002_anie_202105628_ANIE202105628
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate July 26, 2021
PublicationDateYYYYMMDD 2021-07-26
PublicationDate_xml – month: 07
  year: 2021
  text: July 26, 2021
  day: 26
PublicationDecade 2020
PublicationPlace Weinheim
PublicationPlace_xml – name: Weinheim
PublicationTitle Angewandte Chemie International Edition
PublicationYear 2021
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2017; 5
2021; 20
2017; 2
2009; 42
2019; 52
2019; 10
2013; 23
2019; 13
2020 2020; 59 132
2014; 26
2019; 18
2017; 350
2020; 11
2017; 550
2017; 114
2014; 23
1998; 395
2012; 492
2018; 6
2018; 9
2020; 6
2020; 5
2018; 3
2020; 3
2012; 134
2021; 33
2018; 4
2020; 53
2010; 114
2018 2018; 57 130
2015; 44
2015 2015; 54 127
2019; 29
2014; 13
2016; 49
2018; 28
2015; 14
2007; 129
2018; 140
2019; 31
2017; 27
1995; 99
1999; 69
2017; 29
2017 2017; 56 129
2020; 32
2019; 141
2011; 3
2019 2019; 58 131
2017; 139
2016; 1
2016 2016; 55 128
2016; 3
2015; 115
2021
2018; 118
2019; 48
2015; 21
2010; 132
2009; 8
e_1_2_6_53_1
e_1_2_6_76_1
e_1_2_6_30_2
e_1_2_6_30_1
e_1_2_6_72_1
e_1_2_6_19_1
e_1_2_6_11_1
e_1_2_6_34_1
e_1_2_6_38_2
e_1_2_6_15_1
e_1_2_6_38_1
e_1_2_6_57_1
e_1_2_6_64_1
e_1_2_6_41_1
e_1_2_6_60_1
e_1_2_6_83_1
e_1_2_6_9_1
e_1_2_6_5_1
e_1_2_6_1_1
e_1_2_6_49_1
e_1_2_6_22_1
e_1_2_6_45_1
e_1_2_6_26_1
e_1_2_6_68_1
e_1_2_6_73_2
e_1_2_6_73_1
e_1_2_6_54_1
e_1_2_6_31_1
e_1_2_6_50_1
e_1_2_6_35_2
e_1_2_6_35_1
e_1_2_6_12_1
e_1_2_6_39_1
e_1_2_6_77_1
e_1_2_6_16_1
e_1_2_6_58_1
e_1_2_6_84_1
e_1_2_6_42_1
e_1_2_6_42_2
e_1_2_6_65_1
e_1_2_6_80_1
e_1_2_6_61_1
e_1_2_6_6_1
e_1_2_6_23_1
e_1_2_6_2_1
e_1_2_6_27_2
e_1_2_6_27_1
e_1_2_6_51_1
e_1_2_6_74_1
e_1_2_6_32_1
e_1_2_6_70_1
Reutov V. A. (e_1_2_6_69_1) 1999; 69
Gao H. (e_1_2_6_46_1) 2021
e_1_2_6_13_1
e_1_2_6_36_1
e_1_2_6_59_1
e_1_2_6_32_2
e_1_2_6_17_1
e_1_2_6_55_1
e_1_2_6_78_1
e_1_2_6_62_1
e_1_2_6_85_1
e_1_2_6_43_1
e_1_2_6_81_1
e_1_2_6_20_1
e_1_2_6_7_1
e_1_2_6_24_1
e_1_2_6_3_1
e_1_2_6_28_2
e_1_2_6_66_1
e_1_2_6_28_1
e_1_2_6_66_2
e_1_2_6_47_1
e_1_2_6_52_1
e_1_2_6_75_1
e_1_2_6_10_1
e_1_2_6_71_1
e_1_2_6_14_1
e_1_2_6_33_1
e_1_2_6_18_1
e_1_2_6_56_1
e_1_2_6_37_2
e_1_2_6_37_1
e_1_2_6_79_1
e_1_2_6_63_1
e_1_2_6_21_1
e_1_2_6_40_1
e_1_2_6_82_1
e_1_2_6_8_1
e_1_2_6_4_1
e_1_2_6_25_1
e_1_2_6_48_1
e_1_2_6_48_2
e_1_2_6_29_1
e_1_2_6_44_1
e_1_2_6_44_2
e_1_2_6_67_1
e_1_2_6_67_2
e_1_2_6_25_2
References_xml – volume: 27
  year: 2017
  publication-title: Adv. Funct. Mater.
– volume: 9
  start-page: 2963
  year: 2018
  publication-title: Nat. Commun.
– volume: 118
  start-page: 1770
  year: 2018
  end-page: 1839
  publication-title: Chem. Rev.
– volume: 139
  start-page: 785
  year: 2017
  end-page: 791
  publication-title: J. Am. Chem. Soc.
– volume: 49
  start-page: 1691
  year: 2016
  end-page: 1700
  publication-title: Acc. Chem. Res.
– volume: 52
  start-page: 738
  year: 2019
  end-page: 748
  publication-title: Acc. Chem. Res.
– volume: 58 131
  start-page: 6028 6089
  year: 2019 2019
  end-page: 6032 6093
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 114
  start-page: 11844
  year: 2017
  end-page: 11849
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 115
  start-page: 11718
  year: 2015
  end-page: 11940
  publication-title: Chem. Rev.
– volume: 58 131
  start-page: 4328 4372
  year: 2019 2019
  end-page: 4333 4377
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 26
  start-page: 10
  year: 2014
  end-page: 28
  publication-title: Adv. Mater.
– volume: 20
  start-page: 175
  year: 2021
  end-page: 180
  publication-title: Nat. Mater.
– volume: 3
  year: 2016
  publication-title: Adv. Sci.
– volume: 13
  start-page: 185
  year: 2019
  end-page: 191
  publication-title: Nat. Photonics
– volume: 57 130
  start-page: 16407 16645
  year: 2018 2018
  end-page: 16411 16649
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 395
  start-page: 151
  year: 1998
  end-page: 154
  publication-title: Nature
– volume: 69
  start-page: 1603
  year: 1999
  end-page: 1607
  publication-title: Russ. J. Gen. Chem.
– volume: 114
  start-page: 6090
  year: 2010
  end-page: 6099
  publication-title: J. Phys. Chem. C
– volume: 29
  start-page: 1946
  year: 2017
  end-page: 1963
  publication-title: Chem. Mater.
– volume: 99
  start-page: 7416
  year: 1995
  end-page: 7420
  publication-title: J. Phys. Chem.
– volume: 350
  start-page: 196
  year: 2017
  end-page: 216
  publication-title: Coord. Chem. Rev.
– volume: 141
  start-page: 5045
  year: 2019
  end-page: 5050
  publication-title: J. Am. Chem. Soc.
– volume: 129
  start-page: 8942
  year: 2007
  end-page: 8943
  publication-title: J. Am. Chem. Soc.
– year: 2021
  publication-title: Aggregate
– volume: 140
  start-page: 9594
  year: 2018
  end-page: 9605
  publication-title: J. Am. Chem. Soc.
– volume: 11
  start-page: 191
  year: 2020
  end-page: 197
  publication-title: Nat. Commun.
– volume: 140
  start-page: 1916
  year: 2018
  end-page: 1923
  publication-title: J. Am. Chem. Soc.
– volume: 33
  year: 2021
  publication-title: Adv. Mater.
– volume: 56 129
  start-page: 16207 16425
  year: 2017 2017
  end-page: 16211 16429
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 29
  year: 2019
  publication-title: Adv. Funct. Mater.
– volume: 23
  start-page: 3386
  year: 2013
  end-page: 3397
  publication-title: Adv. Funct. Mater.
– volume: 57 130
  start-page: 10854 11020
  year: 2018 2018
  end-page: 10858 11024
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 140
  start-page: 4269
  year: 2018
  end-page: 4278
  publication-title: J. Am. Chem. Soc.
– volume: 134
  start-page: 14706
  year: 2012
  end-page: 14709
  publication-title: J. Am. Chem. Soc.
– volume: 21
  start-page: 2182
  year: 2015
  end-page: 2192
  publication-title: Chem. Eur. J.
– volume: 55 128
  start-page: 15589 15818
  year: 2016 2016
  end-page: 15593 15822
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 3
  start-page: 449
  year: 2020
  end-page: 463
  publication-title: Matter
– volume: 10
  start-page: 2111
  year: 2019
  publication-title: Nat. Commun.
– volume: 550
  start-page: 384
  year: 2017
  end-page: 387
  publication-title: Nature
– volume: 28
  year: 2018
  publication-title: Adv. Funct. Mater.
– volume: 58 131
  start-page: 14140 14278
  year: 2019 2019
  end-page: 14145 14283
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 5
  start-page: 869
  year: 2020
  end-page: 885
  publication-title: Nat. Rev. Mater.
– volume: 139
  start-page: 4042
  year: 2017
  end-page: 4051
  publication-title: J. Am. Chem. Soc.
– volume: 13
  start-page: 938
  year: 2014
  end-page: 946
  publication-title: Nat. Mater.
– volume: 26
  start-page: 7931
  year: 2014
  end-page: 7958
  publication-title: Adv. Mater.
– volume: 132
  start-page: 13992
  year: 2010
  end-page: 13993
  publication-title: J. Am. Chem. Soc.
– volume: 42
  start-page: 542
  year: 2009
  end-page: 552
  publication-title: Acc. Chem. Res.
– volume: 1
  start-page: 592
  year: 2016
  end-page: 602
  publication-title: Chem
– volume: 29
  year: 2017
  publication-title: Adv. Mater.
– volume: 54 127
  start-page: 6270 6368
  year: 2015 2015
  end-page: 6273 6371
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 57 130
  start-page: 6449 6559
  year: 2018 2018
  end-page: 6453 6563
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 3
  start-page: 205
  year: 2011
  end-page: 210
  publication-title: Nat. Chem.
– volume: 11
  start-page: 842
  year: 2020
  publication-title: Nat. Commun.
– volume: 44
  start-page: 8786
  year: 2015
  end-page: 8801
  publication-title: Chem. Soc. Rev.
– volume: 4
  year: 2018
  publication-title: Sci. Adv.
– volume: 48
  start-page: 126
  year: 2019
  end-page: 129
  publication-title: Chem. Lett.
– volume: 59 132
  start-page: 17451 17604
  year: 2020 2020
  end-page: 17455 17608
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 55 128
  start-page: 3647 3711
  year: 2016 2016
  end-page: 3651 3715
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 31
  year: 2019
  publication-title: Adv. Mater.
– volume: 8
  start-page: 747
  year: 2009
  end-page: 751
  publication-title: Nat. Mater.
– volume: 58 131
  start-page: 9088 9186
  year: 2019 2019
  end-page: 9094 9192
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 23
  start-page: 1785
  year: 2014
  end-page: 1791
  publication-title: Food Sci. Biotechnol.
– volume: 5
  start-page: 12538
  year: 2017
  end-page: 12546
  publication-title: J. Mater. Chem. C
– volume: 3
  start-page: 18020
  year: 2018
  publication-title: Nat. Rev. Mater.
– volume: 14
  start-page: 685
  year: 2015
  end-page: 690
  publication-title: Nat. Mater.
– volume: 6
  start-page: 945
  year: 2020
  end-page: 967
  publication-title: Chem
– volume: 2
  start-page: 825
  year: 2017
  end-page: 839
  publication-title: Chem
– volume: 141
  start-page: 1010
  year: 2019
  end-page: 1015
  publication-title: J. Am. Chem. Soc.
– volume: 11
  start-page: 4802
  year: 2020
  publication-title: Nat. Commun.
– volume: 18
  start-page: 1084
  year: 2019
  end-page: 1090
  publication-title: Nat. Mater.
– volume: 5
  year: 2017
  publication-title: Adv. Opt. Mater.
– volume: 10
  start-page: 7773
  year: 2019
  end-page: 7778
  publication-title: Chem. Sci.
– volume: 32
  year: 2020
  publication-title: Adv. Mater.
– volume: 53
  start-page: 962
  year: 2020
  end-page: 973
  publication-title: Acc. Chem. Res.
– volume: 59 132
  start-page: 9928 10014
  year: 2020 2020
  end-page: 9933 10019
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 59 132
  start-page: 9293 9379
  year: 2020 2020
  end-page: 9298 9384
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 10
  start-page: 6019
  year: 2019
  end-page: 6025
  publication-title: J. Phys. Chem. Lett.
– volume: 115
  start-page: 7589
  year: 2015
  end-page: 7728
  publication-title: Chem. Rev.
– volume: 6
  start-page: 4603
  year: 2018
  end-page: 4626
  publication-title: J. Mater. Chem. C
– volume: 140
  start-page: 10734
  year: 2018
  end-page: 10739
  publication-title: J. Am. Chem. Soc.
– volume: 492
  start-page: 234
  year: 2012
  end-page: 238
  publication-title: Nature
– ident: e_1_2_6_62_1
  doi: 10.1002/adma.201402532
– ident: e_1_2_6_19_1
  doi: 10.1038/s41563-020-0797-2
– ident: e_1_2_6_39_1
  doi: 10.1002/adma.202007476
– ident: e_1_2_6_42_2
  doi: 10.1002/ange.201607653
– ident: e_1_2_6_21_1
  doi: 10.1021/jp909388y
– ident: e_1_2_6_67_2
  doi: 10.1002/ange.201809945
– ident: e_1_2_6_31_1
  doi: 10.1021/jacs.6b10550
– ident: e_1_2_6_15_1
  doi: 10.1039/C8TC01007B
– ident: e_1_2_6_28_2
  doi: 10.1002/ange.201907572
– ident: e_1_2_6_48_1
  doi: 10.1002/anie.201708606
– ident: e_1_2_6_2_1
  doi: 10.1021/acs.chemrev.5b00263
– ident: e_1_2_6_7_1
  doi: 10.1038/25954
– ident: e_1_2_6_38_2
  doi: 10.1002/ange.201912155
– ident: e_1_2_6_80_1
  doi: 10.1021/jacs.6b12124
– ident: e_1_2_6_3_1
  doi: 10.1039/C5CS00132C
– ident: e_1_2_6_8_1
  doi: 10.1038/nature11687
– ident: e_1_2_6_18_1
  doi: 10.1038/nmat4259
– ident: e_1_2_6_74_1
  doi: 10.1038/s41467-019-14035-y
– ident: e_1_2_6_76_1
  doi: 10.1002/chem.201404784
– ident: e_1_2_6_35_1
  doi: 10.1002/anie.201901882
– ident: e_1_2_6_13_1
  doi: 10.1021/acs.accounts.8b00620
– ident: e_1_2_6_83_1
  doi: 10.1126/sciadv.aao6910
– ident: e_1_2_6_60_1
  doi: 10.1021/acs.jpclett.9b02411
– ident: e_1_2_6_6_1
  doi: 10.1002/adma.201304373
– ident: e_1_2_6_10_1
  doi: 10.1021/acs.accounts.6b00209
– ident: e_1_2_6_77_1
  doi: 10.1021/j100019a026
– ident: e_1_2_6_27_2
  doi: 10.1002/ange.201803947
– ident: e_1_2_6_33_1
  doi: 10.1016/j.matt.2020.05.005
– ident: e_1_2_6_65_1
  doi: 10.1021/acs.chemmater.6b05324
– ident: e_1_2_6_32_1
  doi: 10.1002/anie.201900703
– ident: e_1_2_6_51_1
  doi: 10.1021/jacs.8b04779
– ident: e_1_2_6_68_1
  doi: 10.1038/s41467-020-14669-3
– ident: e_1_2_6_79_1
  doi: 10.1246/cl.180813
– ident: e_1_2_6_52_1
  doi: 10.1021/jacs.7b12519
– ident: e_1_2_6_53_1
  doi: 10.1016/j.chempr.2020.01.021
– ident: e_1_2_6_61_1
  doi: 10.1002/adma.202003911
– ident: e_1_2_6_85_1
  doi: 10.1007/s10068-014-0244-8
– ident: e_1_2_6_78_1
  doi: 10.1002/adfm.201703902
– ident: e_1_2_6_4_1
  doi: 10.1021/ar800211j
– ident: e_1_2_6_50_1
  doi: 10.1073/pnas.1712827114
– ident: e_1_2_6_25_1
  doi: 10.1002/anie.202007343
– ident: e_1_2_6_63_1
  doi: 10.1002/adma.201605444
– ident: e_1_2_6_44_2
  doi: 10.1002/ange.201800762
– ident: e_1_2_6_26_1
  doi: 10.1038/s41467-018-05298-y
– ident: e_1_2_6_36_1
  doi: 10.1021/jacs.8b03867
– ident: e_1_2_6_9_1
  doi: 10.1038/s41566-018-0332-z
– ident: e_1_2_6_42_1
  doi: 10.1002/anie.201607653
– ident: e_1_2_6_17_1
  doi: 10.1038/nmat2509
– ident: e_1_2_6_66_2
  doi: 10.1002/ange.201903332
– ident: e_1_2_6_24_1
  doi: 10.1021/jacs.8b11224
– ident: e_1_2_6_48_2
  doi: 10.1002/ange.201708606
– ident: e_1_2_6_56_1
  doi: 10.1002/adfm.201807243
– ident: e_1_2_6_82_1
  doi: 10.1002/advs.201600080
– ident: e_1_2_6_1_1
  doi: 10.1021/acs.chemrev.5b00074
– ident: e_1_2_6_38_1
  doi: 10.1002/anie.201912155
– ident: e_1_2_6_14_1
  doi: 10.1002/adom.201700116
– ident: e_1_2_6_57_1
  doi: 10.1002/adma.202001348
– ident: e_1_2_6_37_1
  doi: 10.1002/anie.201914513
– ident: e_1_2_6_81_1
  doi: 10.1021/ja306538w
– ident: e_1_2_6_84_1
  doi: 10.1038/s41563-019-0465-6
– ident: e_1_2_6_47_1
  doi: 10.1002/adma.201606665
– ident: e_1_2_6_20_1
  doi: 10.1021/jacs.9b00859
– ident: e_1_2_6_64_1
  doi: 10.1038/natrevmats.2018.20
– ident: e_1_2_6_73_2
  doi: 10.1002/ange.201510946
– ident: e_1_2_6_34_1
  doi: 10.1021/jacs.7b12800
– ident: e_1_2_6_58_1
  doi: 10.1038/nature24010
– ident: e_1_2_6_71_1
  doi: 10.1021/ja0720255
– ident: e_1_2_6_67_1
  doi: 10.1002/anie.201809945
– ident: e_1_2_6_54_1
  doi: 10.1038/nmat4081
– ident: e_1_2_6_30_1
  doi: 10.1002/anie.201500426
– ident: e_1_2_6_11_1
  doi: 10.1038/s41578-020-0223-z
– ident: e_1_2_6_28_1
  doi: 10.1002/anie.201907572
– ident: e_1_2_6_44_1
  doi: 10.1002/anie.201800762
– year: 2021
  ident: e_1_2_6_46_1
  publication-title: Aggregate
– volume: 69
  start-page: 1603
  year: 1999
  ident: e_1_2_6_69_1
  publication-title: Russ. J. Gen. Chem.
– ident: e_1_2_6_43_1
  doi: 10.1002/adfm.201902503
– ident: e_1_2_6_35_2
  doi: 10.1002/ange.201901882
– ident: e_1_2_6_72_1
  doi: 10.1016/j.ccr.2017.06.026
– ident: e_1_2_6_41_1
  doi: 10.1002/adma.201807222
– ident: e_1_2_6_12_1
  doi: 10.1002/adfm.201802657
– ident: e_1_2_6_30_2
  doi: 10.1002/ange.201500426
– ident: e_1_2_6_66_1
  doi: 10.1002/anie.201903332
– ident: e_1_2_6_59_1
  doi: 10.1002/adma.202001026
– ident: e_1_2_6_27_1
  doi: 10.1002/anie.201803947
– ident: e_1_2_6_29_1
  doi: 10.1021/acs.accounts.0c00060
– ident: e_1_2_6_45_1
  doi: 10.1038/s41467-020-18572-9
– ident: e_1_2_6_55_1
  doi: 10.1002/adfm.201203706
– ident: e_1_2_6_32_2
  doi: 10.1002/ange.201900703
– ident: e_1_2_6_37_2
  doi: 10.1002/ange.201914513
– ident: e_1_2_6_22_1
  doi: 10.1038/nchem.984
– ident: e_1_2_6_49_1
  doi: 10.1016/j.chempr.2017.04.017
– ident: e_1_2_6_70_1
  doi: 10.1021/ja105537j
– ident: e_1_2_6_5_1
  doi: 10.1021/acs.chemrev.7b00425
– ident: e_1_2_6_23_1
  doi: 10.1016/j.chempr.2016.08.010
– ident: e_1_2_6_75_1
  doi: 10.1039/C7TC04751G
– ident: e_1_2_6_25_2
  doi: 10.1002/ange.202007343
– ident: e_1_2_6_16_1
  doi: 10.1038/s41467-019-10033-2
– ident: e_1_2_6_73_1
  doi: 10.1002/anie.201510946
– ident: e_1_2_6_40_1
  doi: 10.1039/C9SC02633A
SSID ssj0028806
Score 2.667757
Snippet We report a highly efficient dopant‐matrix afterglow system enabled by TADF mechanism to realize afterglow quantum yields of 60–70 %, which features a moderate...
We report a highly efficient dopant-matrix afterglow system enabled by TADF mechanism to realize afterglow quantum yields of 60-70 %, which features a moderate...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 17138
SubjectTerms afterglow
Benzoates
Benzoic acid
Carbonyl compounds
Carbonyls
Dipole interactions
Dopants
Excitation
Functional groups
Medical imaging
organic materials
phosphorescence
thermally activated delayed fluorescence
triplet excited state
Title TADF‐Type Organic Afterglow
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fanie.202105628
https://www.proquest.com/docview/2552810511
https://www.proquest.com/docview/2535827758
Volume 60
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEF6kF734FqOtRBA8pU12N69jqC1VsAdpobewu9l4sKRiWwRP_gR_o7_EmbzaCiJoThv2lX1M9pvdnW8IufJkylLPTyxlh9rigfasMGEcQolPVUqDND_RvR96gzG_m7iTNSv-gh-i3nBDycj_1yjgQs47K9JQtMAG_Y6i63iK1r54YQtR0UPNH0VhchbmRYxZ6IW-Ym20aWcz--aqtIKa64A1X3H6e0RU31pcNHlqLxeyrd6-0Tj-pzH7ZLeEo2ZUzJ8DsqWzQ7LdrbzAHZHWKLrpf75_oL5qFoabyozQsfjjdPZ6TMb93qg7sEqXCpYC5BVYLkNbU85B7LS2ExXaqdABCKLiLjxMAWJxuLRTCClKtevIVNqBcDmXvvYkOyGNbJbpU2KGjDlC2kLbIZQNhQOyUywUmkoPBjowiFV1aaxKvnF0ezGNC6ZkGmOj47rRBrmu0z8XTBs_pmxWIxSXEjePQTWiAcQ7jkEu62joLDwAEZmeLTEN2gX7oCIZhObD8UtNcTS87dVvZ3_JdE52MIzbwdRrksbiZalbgGMW8iKfq18Ru-Zy
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT8JAEJ4oHvDi24iC1sTEU7Hd3Zb2SHgEFDgYSLw13WXrQQJGISae_An-Rn-JM30hJsZEe9p2H-0-pvvN7s43ABeujHjk1samsnxtCk-7pj_mAkPjGlMR86J4R7c_cDsjcX3nZKcJyRYm4YfIF9xIMuL_NQk4LUhfLVlDyQQbFTxGvuOZtw4b5Nab6PObtzmDFMPhmRgYcW6SH_qMt9FiV6v5V-elJdj8ClnjOae9DTL72uSoyUN1MZdV9fqNyPFf1dmBrRSRGvVkCO3Cmp7uQbGROYLbh8qw3mx_vL2TymoktpvKqJNv8fvJ7OUARu3WsNExU68KpkLw5ZkOJ3NTIVDytLbGyreiUHsoi0o4eHGFoMUW0oowpBjTji0jaXmhI4SsaVfyQyhMZ1N9BIbPuR1KK9SWj2Vj4QjuFPdDzaSLfe2VwMzaNFAp5Th5vpgECVkyC6jSQV7pElzm6R8Tso0fU5azLgpSoXsOUDtiHsbbdgnO82hsLNoDCad6tqA0ZBpcQy2pBCzuj1_eFNQH3VZ-d_yXTGdQ7Az7vaDXHdycwCY9p9Vh5pahMH9a6ArCmrk8jQfuJ5bg6o4
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bS8MwFD7oBPXFuzjddILgU7c0Sbv2seyC8zJENthbadLUB8c2dEPwyZ_gb_SXeNLbNkEE7VPaXNpcTvKdpOc7ABe2iFhk10NDElcZ3FG24YaMYyisUxlRJ4pPdO-69lWfXw-swYIVf8IPkW-4acmI52st4JMwqs1JQ7UFNup3VLuOp84qrHGbuNp5Q_MhJ5CiODoT-yLGDO2GPqNtJLS2nH95WZpjzUXEGi857W0Iso9N_jR5qs6moirfvvE4_qc2O7CV4tGKlwygXVhRoz3YaGRu4Pah3POa7c_3D62wVhLLTVnxtGfxx-H49QD67VavcWWkPhUMidDLMSymjU05R7lTioTSJVGgHJREyS28mETIYnJBIgxJSpVlikgQJ7A4F3VlC3YIhdF4pI6g4jJmBoIEirhYNhaO0E4yN1BU2NjTThGMrEl9mRKOa78XQz-hSqa-rrSfV7oIl3n6SUK18WPKUtZDfipyLz7qRtTBeNMswnkejY2lT0CCkRrPdBptGFxHHakINO6OX97ke91OK787_kumM1i_b7b920735gQ29WO9NUztEhSmzzNVRkwzFafxsP0C2fTpPQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=TADF%E2%80%90Type+Organic+Afterglow&rft.jtitle=Angewandte+Chemie+International+Edition&rft.au=Wang%2C+Xuepu&rft.au=Sun%2C+Yan&rft.au=Wang%2C+Guangming&rft.au=Li%2C+Jiuyang&rft.date=2021-07-26&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=1433-7851&rft.eissn=1521-3773&rft.volume=60&rft.issue=31&rft.spage=17138&rft.epage=17147&rft_id=info:doi/10.1002%2Fanie.202105628&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1433-7851&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1433-7851&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1433-7851&client=summon