A 3D‐Printed, Freestanding Carbon Lattice for Sodium Ion Batteries
Increasing mass loadings of battery electrodes critically enhances the energy density of an overall battery by eliminating much of the inactive components, while compacting the battery size and lowering the costs of the ingredients. A hard carbon microlattice, digitally designed and fabricated by st...
Saved in:
Published in | Small (Weinheim an der Bergstrasse, Germany) Vol. 18; no. 29; pp. e2202277 - n/a |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Weinheim
Wiley Subscription Services, Inc
01.07.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Increasing mass loadings of battery electrodes critically enhances the energy density of an overall battery by eliminating much of the inactive components, while compacting the battery size and lowering the costs of the ingredients. A hard carbon microlattice, digitally designed and fabricated by stereolithography 3D‐printing and pyrolysis, offers enormous potential for high‐mass‐loading electrodes. In this work, sodium‐ion batteries using hard carbon microlattices produced by an inexpensive 3D printer are demonstrated. Controlled periodic carbon microlattices are created with enhanced ion transport through microchannels. Carbon microlattices with a beam width of 32.8 µm reach a record‐high areal capacity of 21.3 mAh cm−2 at a loading of 98 mg cm−2 without degrading performance, which is much higher than the conventional monolithic electrodes (≈5.2 mAh cm−2 at 92 mg cm−2). Furthermore, binder‐free, pure‐carbon elements of microlattices enable the tracking of structural changes in hard carbon that support the hypothesized intercalation of ions at plateau regions by temporal ex situ X‐ray diffraction measurements. These results will advance the development of high‐performance and low‐cost anodes for sodium‐ion batteries as well as help with understanding the mechanisms of ion intercalations in hard carbon, expanding the utilities of 3D‐printed carbon architectures in both applications and fundamental studies.
A record‐high areal capacity (21.3 mAh cm−2) for sodium‐ion battery carbon anodes is achieved by a 3D‐printed carbon microlattice with an extraordinary high‐mass‐loading (98 mg cm−2). Furthermore, binder‐free, pure‐carbon elements of microlattice enable the tracking of structural changes in hard carbon during charge/discharge, supporting the hypothesized intercalation of ions at plateau regions by ex situ X‐ray diffraction measurements. |
---|---|
AbstractList | Increasing mass loadings of battery electrodes critically enhances the energy density of an overall battery by eliminating much of the inactive components, while compacting the battery size and lowering the costs of the ingredients. A hard carbon microlattice, digitally designed and fabricated by stereolithography 3D-printing and pyrolysis, offers enormous potential for high-mass-loading electrodes. In this work, sodium-ion batteries using hard carbon microlattices produced by an inexpensive 3D printer are demonstrated. Controlled periodic carbon microlattices are created with enhanced ion transport through microchannels. Carbon microlattices with a beam width of 32.8 µm reach a record-high areal capacity of 21.3 mAh cm-2 at a loading of 98 mg cm-2 without degrading performance, which is much higher than the conventional monolithic electrodes (≈5.2 mAh cm-2 at 92 mg cm-2 ). Furthermore, binder-free, pure-carbon elements of microlattices enable the tracking of structural changes in hard carbon that support the hypothesized intercalation of ions at plateau regions by temporal ex situ X-ray diffraction measurements. These results will advance the development of high-performance and low-cost anodes for sodium-ion batteries as well as help with understanding the mechanisms of ion intercalations in hard carbon, expanding the utilities of 3D-printed carbon architectures in both applications and fundamental studies.Increasing mass loadings of battery electrodes critically enhances the energy density of an overall battery by eliminating much of the inactive components, while compacting the battery size and lowering the costs of the ingredients. A hard carbon microlattice, digitally designed and fabricated by stereolithography 3D-printing and pyrolysis, offers enormous potential for high-mass-loading electrodes. In this work, sodium-ion batteries using hard carbon microlattices produced by an inexpensive 3D printer are demonstrated. Controlled periodic carbon microlattices are created with enhanced ion transport through microchannels. Carbon microlattices with a beam width of 32.8 µm reach a record-high areal capacity of 21.3 mAh cm-2 at a loading of 98 mg cm-2 without degrading performance, which is much higher than the conventional monolithic electrodes (≈5.2 mAh cm-2 at 92 mg cm-2 ). Furthermore, binder-free, pure-carbon elements of microlattices enable the tracking of structural changes in hard carbon that support the hypothesized intercalation of ions at plateau regions by temporal ex situ X-ray diffraction measurements. These results will advance the development of high-performance and low-cost anodes for sodium-ion batteries as well as help with understanding the mechanisms of ion intercalations in hard carbon, expanding the utilities of 3D-printed carbon architectures in both applications and fundamental studies. Increasing mass loadings of battery electrodes critically enhances the energy density of an overall battery by eliminating much of the inactive components, while compacting the battery size and lowering the costs of the ingredients. A hard carbon microlattice, digitally designed and fabricated by stereolithography 3D‐printing and pyrolysis, offers enormous potential for high‐mass‐loading electrodes. In this work, sodium‐ion batteries using hard carbon microlattices produced by an inexpensive 3D printer are demonstrated. Controlled periodic carbon microlattices are created with enhanced ion transport through microchannels. Carbon microlattices with a beam width of 32.8 µm reach a record‐high areal capacity of 21.3 mAh cm −2 at a loading of 98 mg cm −2 without degrading performance, which is much higher than the conventional monolithic electrodes (≈5.2 mAh cm −2 at 92 mg cm −2 ). Furthermore, binder‐free, pure‐carbon elements of microlattices enable the tracking of structural changes in hard carbon that support the hypothesized intercalation of ions at plateau regions by temporal ex situ X‐ray diffraction measurements. These results will advance the development of high‐performance and low‐cost anodes for sodium‐ion batteries as well as help with understanding the mechanisms of ion intercalations in hard carbon, expanding the utilities of 3D‐printed carbon architectures in both applications and fundamental studies. Increasing mass loadings of battery electrodes critically enhances the energy density of an overall battery by eliminating much of the inactive components, while compacting the battery size and lowering the costs of the ingredients. A hard carbon microlattice, digitally designed and fabricated by stereolithography 3D‐printing and pyrolysis, offers enormous potential for high‐mass‐loading electrodes. In this work, sodium‐ion batteries using hard carbon microlattices produced by an inexpensive 3D printer are demonstrated. Controlled periodic carbon microlattices are created with enhanced ion transport through microchannels. Carbon microlattices with a beam width of 32.8 µm reach a record‐high areal capacity of 21.3 mAh cm−2 at a loading of 98 mg cm−2 without degrading performance, which is much higher than the conventional monolithic electrodes (≈5.2 mAh cm−2 at 92 mg cm−2). Furthermore, binder‐free, pure‐carbon elements of microlattices enable the tracking of structural changes in hard carbon that support the hypothesized intercalation of ions at plateau regions by temporal ex situ X‐ray diffraction measurements. These results will advance the development of high‐performance and low‐cost anodes for sodium‐ion batteries as well as help with understanding the mechanisms of ion intercalations in hard carbon, expanding the utilities of 3D‐printed carbon architectures in both applications and fundamental studies. A record‐high areal capacity (21.3 mAh cm−2) for sodium‐ion battery carbon anodes is achieved by a 3D‐printed carbon microlattice with an extraordinary high‐mass‐loading (98 mg cm−2). Furthermore, binder‐free, pure‐carbon elements of microlattice enable the tracking of structural changes in hard carbon during charge/discharge, supporting the hypothesized intercalation of ions at plateau regions by ex situ X‐ray diffraction measurements. Increasing mass loadings of battery electrodes critically enhances the energy density of an overall battery by eliminating much of the inactive components, while compacting the battery size and lowering the costs of the ingredients. A hard carbon microlattice, digitally designed and fabricated by stereolithography 3D‐printing and pyrolysis, offers enormous potential for high‐mass‐loading electrodes. In this work, sodium‐ion batteries using hard carbon microlattices produced by an inexpensive 3D printer are demonstrated. Controlled periodic carbon microlattices are created with enhanced ion transport through microchannels. Carbon microlattices with a beam width of 32.8 µm reach a record‐high areal capacity of 21.3 mAh cm−2 at a loading of 98 mg cm−2 without degrading performance, which is much higher than the conventional monolithic electrodes (≈5.2 mAh cm−2 at 92 mg cm−2). Furthermore, binder‐free, pure‐carbon elements of microlattices enable the tracking of structural changes in hard carbon that support the hypothesized intercalation of ions at plateau regions by temporal ex situ X‐ray diffraction measurements. These results will advance the development of high‐performance and low‐cost anodes for sodium‐ion batteries as well as help with understanding the mechanisms of ion intercalations in hard carbon, expanding the utilities of 3D‐printed carbon architectures in both applications and fundamental studies. |
Author | Katsuyama, Yuto Han, Jiuhui Honma, Itaru Kudo, Akira Chen, Mingwei Kaner, Richard B. Kobayashi, Hiroaki |
Author_xml | – sequence: 1 givenname: Yuto orcidid: 0000-0003-3679-2591 surname: Katsuyama fullname: Katsuyama, Yuto organization: University of California Los Angeles – sequence: 2 givenname: Akira orcidid: 0000-0002-0830-5509 surname: Kudo fullname: Kudo, Akira email: akira.kudo.b8@tohoku.ac.jp organization: Tohoku University – sequence: 3 givenname: Hiroaki orcidid: 0000-0001-6705-9515 surname: Kobayashi fullname: Kobayashi, Hiroaki email: h.kobayashi@tohoku.ac.jp organization: Tohoku University – sequence: 4 givenname: Jiuhui orcidid: 0000-0002-9067-9197 surname: Han fullname: Han, Jiuhui organization: Tohoku University – sequence: 5 givenname: Mingwei orcidid: 0000-0002-8274-3099 surname: Chen fullname: Chen, Mingwei organization: Johns Hopkins University – sequence: 6 givenname: Itaru orcidid: 0000-0002-6536-576X surname: Honma fullname: Honma, Itaru organization: Tohoku University – sequence: 7 givenname: Richard B. orcidid: 0000-0003-0345-4924 surname: Kaner fullname: Kaner, Richard B. email: kaner@chem.ucla.edu organization: University of California Los Angeles |
BookMark | eNqFkM1KAzEURoNUsK1uXQ-4ceHUJPOTZFlbq4URhep6SDOJpMwkNZki3fkIPqNPYoZKhYIIgYTLObkf3wD0jDUSgHMERwhCfO2buh5hiLtDyBHooxwlcU4x6-3fCJ6AgfcrCBOEU9IH03GUTL8-Pp-cNq2srqKZk9K33FTavEYT7pbWRAVvWy1kpKyLFrbSmyaah_FNGEunpT8Fx4rXXp793EPwMrt9ntzHxePdfDIuYpGinMS4EoRISBOSL4nCSCGloCRdXoZYKojKKMyoyBimjCmYEapIzvKMVClcUpUMweXu37Wzb5sQs2y0F7KuuZF240ucE4YTAlMW0IsDdGU3zoR0gWIYopxmWaBGO0o4672Tqlw73XC3LREsu1LLrtRyX2oQ0gNB6Ja32prWcV3_rbGd9q5ruf1nSbl4KIpf9xuWSIwf |
CitedBy_id | crossref_primary_10_1002_smll_202308262 crossref_primary_10_3390_mi13091534 crossref_primary_10_1002_anie_202412867 crossref_primary_10_1002_adfm_202408568 crossref_primary_10_1002_batt_202300190 crossref_primary_10_1039_D4SC03203A crossref_primary_10_1021_jacsau_4c00555 crossref_primary_10_1016_j_addma_2025_104695 crossref_primary_10_3390_batteries10030110 crossref_primary_10_1002_ange_202412867 crossref_primary_10_1039_D4GC00638K crossref_primary_10_1088_2515_7655_acf958 crossref_primary_10_1039_D3NR03098A crossref_primary_10_1021_acsomega_4c07776 crossref_primary_10_1039_D4TA02146K crossref_primary_10_1016_j_colsurfa_2023_131603 crossref_primary_10_1021_acs_chemmater_4c01386 crossref_primary_10_1002_batt_202300161 crossref_primary_10_1016_j_jhazmat_2024_133681 crossref_primary_10_1038_s44359_024_00018_w crossref_primary_10_1002_smtd_202400831 crossref_primary_10_1016_j_cclet_2024_110328 crossref_primary_10_1021_acsami_3c18846 crossref_primary_10_1002_smll_202301525 crossref_primary_10_1002_adfm_202302068 crossref_primary_10_1002_advs_202411951 crossref_primary_10_1021_acsaem_3c00789 crossref_primary_10_1016_j_jechem_2024_10_061 crossref_primary_10_1002_adhm_202303708 crossref_primary_10_1002_aenm_202303296 crossref_primary_10_1039_D4CC01202J crossref_primary_10_1021_acsami_2c15688 crossref_primary_10_1002_smll_202305921 crossref_primary_10_1016_j_est_2023_107139 crossref_primary_10_1063_5_0232592 |
Cites_doi | 10.1039/C5TA05118E 10.1021/acs.nanolett.1c01595 10.1002/anie.202108109 10.1002/aenm.201600377 10.1002/ente.201900025 10.1002/aenm.202002637 10.1002/chem.201905131 10.1073/pnas.2111549118 10.1149/1.2133112 10.1002/anie.202102368 10.1039/C5TA06640A 10.1039/D0MA00753F 10.1016/j.nanoen.2017.07.018 10.1016/j.jpowsour.2014.11.019 10.1016/B978-0-444-59513-3.00002-9 10.1039/D0NR03059G 10.1016/j.electacta.2021.137776 10.1016/j.jpowsour.2006.02.065 10.1038/s41560-021-00797-7 10.1002/ppsc.202100007 10.1016/j.ensm.2020.07.020 10.1002/advs.202200187 10.1002/aenm.201602898 10.1016/j.cej.2021.134273 10.1038/s41598-022-07853-6 10.1016/j.carbon.2020.12.051 10.1021/acsaem.9b01972 10.1016/j.carbon.2018.03.005 10.1021/acsami.9b20384 10.1016/j.nanoen.2020.105265 10.1126/science.aam5852 10.1002/adsu.201900083 10.1021/acsami.9b14381 10.1016/j.jechem.2021.11.033 10.1002/cssc.202001837 10.1038/s43246-020-00073-3 10.1016/j.chempr.2021.06.008 10.1016/j.jpowsour.2019.05.013 10.1039/C6TA04877C 10.1016/j.cej.2021.128767 10.1002/cssc.201600779 10.1021/acsnano.0c05896 10.1149/1945-7111/ab75fd 10.1016/j.mtnano.2020.100094 10.1016/j.carbon.2014.04.064 10.1007/s12598-020-01469-3 10.1039/C6EE03716J 10.1002/cey2.111 10.1149/2.084310jes 10.1149/1.2128939 10.1016/j.carbon.2010.10.059 10.1039/C9TA13189B 10.1038/s43246-021-00119-0 10.1038/s41467-019-09061-9 10.1002/aenm.201601602 10.1021/am200973k 10.1002/ange.200702721 10.1016/j.jpowsour.2004.02.027 10.1039/C5TA01443C 10.1038/s41598-021-86938-0 10.1039/C9NR10652A 10.1002/adfm.202201544 10.1016/j.ensm.2021.07.021 10.3389/fmats.2019.00169 10.1021/nl3016957 10.1002/adfm.201809196 |
ContentType | Journal Article |
Copyright | 2022 Wiley‐VCH GmbH 2022 Wiley-VCH GmbH. |
Copyright_xml | – notice: 2022 Wiley‐VCH GmbH – notice: 2022 Wiley-VCH GmbH. |
DBID | AAYXX CITATION 7SR 7U5 8BQ 8FD JG9 L7M 7X8 |
DOI | 10.1002/smll.202202277 |
DatabaseName | CrossRef Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace MEDLINE - Academic |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace METADEX MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic CrossRef Materials Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1613-6829 |
EndPage | n/a |
ExternalDocumentID | 10_1002_smll_202202277 SMLL202202277 |
Genre | article |
GrantInformation_xml | – fundername: California NanoSystems Institute's Noble Family Innovation Fund – fundername: Tohoku University Research Program "Frontier Research in Duo" funderid: 2102 – fundername: JST ALCA‐SPRING funderid: JPMJAL1301 – fundername: Tohoku University Research Program |
GroupedDBID | --- 05W 0R~ 123 1L6 1OC 33P 3SF 3WU 4.4 50Y 52U 53G 5VS 66C 8-0 8-1 8UM A00 AAESR AAEVG AAHHS AAHQN AAIHA AAMNL AANLZ AAONW AAXRX AAYCA AAZKR ABCUV ABIJN ABJNI ABLJU ABRTZ ACAHQ ACCFJ ACCZN ACFBH ACGFS ACIWK ACPOU ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZVAB BFHJK BHBCM BMNLL BMXJE BNHUX BOGZA BRXPI CS3 DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBD EBS EMOBN F5P G-S GNP HBH HGLYW HHY HHZ HZ~ IX1 KQQ LATKE LAW LEEKS LITHE LOXES LUTES LYRES MEWTI MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM MY~ O66 O9- OIG P2P P2W P4E QRW R.K RIWAO RNS ROL RWI RX1 RYL SUPJJ SV3 V2E W99 WBKPD WFSAM WIH WIK WJL WOHZO WXSBR WYISQ WYJ XV2 Y6R ZZTAW ~S- 31~ AANHP AASGY AAYOK AAYXX ACBWZ ACRPL ACYXJ ADNMO AGHNM AGQPQ AGYGG ASPBG AVWKF AZFZN BDRZF CITATION EJD FEDTE GODZA HVGLF 7SR 7U5 8BQ 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY JG9 L7M 7X8 |
ID | FETCH-LOGICAL-c4167-2dc77e08376b7f21f1ff0e720229194c7f58058c592899f0578f769657d40b8f3 |
IEDL.DBID | DR2 |
ISSN | 1613-6810 1613-6829 |
IngestDate | Thu Jul 10 19:15:52 EDT 2025 Sat Jul 19 13:10:42 EDT 2025 Tue Jul 01 02:54:14 EDT 2025 Thu Apr 24 23:09:04 EDT 2025 Wed Jan 22 16:25:07 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 29 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4167-2dc77e08376b7f21f1ff0e720229194c7f58058c592899f0578f769657d40b8f3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-6536-576X 0000-0002-9067-9197 0000-0002-8274-3099 0000-0003-0345-4924 0000-0003-3679-2591 0000-0001-6705-9515 0000-0002-0830-5509 |
PQID | 2692016855 |
PQPubID | 1046358 |
PageCount | 11 |
ParticipantIDs | proquest_miscellaneous_2679237049 proquest_journals_2692016855 crossref_primary_10_1002_smll_202202277 crossref_citationtrail_10_1002_smll_202202277 wiley_primary_10_1002_smll_202202277_SMLL202202277 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-07-01 |
PublicationDateYYYYMMDD | 2022-07-01 |
PublicationDate_xml | – month: 07 year: 2022 text: 2022-07-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Weinheim |
PublicationPlace_xml | – name: Weinheim |
PublicationTitle | Small (Weinheim an der Bergstrasse, Germany) |
PublicationYear | 2022 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2017; 7 2021; 21 2019; 11 2019; 10 2022; 68 2020; 13 2020; 12 2020; 167 2012; 12 1977; 124 2017; 356 2013; 160 2020; 8 2004; 134 2021; 38 2018; 133 2020; 3 2020; 1 2017; 39 2021; 118 2019; 29 2022; 32 2019; 430 2022; 431 2019; 7 2021; 7 2021; 6 1979; 126 2019; 3 2021; 42 2019; 6 2021; 3 2021; 2 2015; 3 2020; 39 2020; 78 2020; 33 2011; 3 2008; 120 2006; 157 2016; 4 2016; 6 2021; 15 2021; 11 2021 2021; 414 2017; 10 2022; 9 2015; 275 2022; 12 2020; 26 2021; 371 2021; 174 2014 2021; 60 2011; 49 2016; 9 2014; 76 e_1_2_9_31_1 e_1_2_9_52_1 e_1_2_9_50_1 e_1_2_9_10_1 e_1_2_9_35_1 e_1_2_9_56_1 e_1_2_9_12_1 e_1_2_9_33_1 e_1_2_9_54_1 e_1_2_9_14_1 e_1_2_9_39_1 e_1_2_9_16_1 e_1_2_9_37_1 e_1_2_9_58_1 e_1_2_9_18_1 e_1_2_9_41_1 e_1_2_9_64_1 e_1_2_9_20_1 e_1_2_9_62_1 e_1_2_9_22_1 e_1_2_9_45_1 e_1_2_9_68_1 e_1_2_9_24_1 e_1_2_9_43_1 e_1_2_9_66_1 e_1_2_9_8_1 e_1_2_9_6_1 e_1_2_9_4_1 e_1_2_9_60_1 e_1_2_9_2_1 e_1_2_9_26_1 e_1_2_9_49_1 e_1_2_9_28_1 e_1_2_9_47_1 e_1_2_9_30_1 e_1_2_9_53_1 e_1_2_9_51_1 e_1_2_9_11_1 e_1_2_9_34_1 e_1_2_9_57_1 e_1_2_9_13_1 e_1_2_9_32_1 e_1_2_9_55_1 e_1_2_9_15_1 e_1_2_9_38_1 e_1_2_9_17_1 e_1_2_9_36_1 e_1_2_9_59_1 e_1_2_9_19_1 e_1_2_9_42_1 e_1_2_9_63_1 e_1_2_9_40_1 e_1_2_9_61_1 e_1_2_9_21_1 e_1_2_9_46_1 e_1_2_9_67_1 e_1_2_9_23_1 e_1_2_9_44_1 e_1_2_9_65_1 e_1_2_9_7_1 e_1_2_9_5_1 e_1_2_9_3_1 e_1_2_9_1_1 e_1_2_9_9_1 e_1_2_9_25_1 e_1_2_9_27_1 e_1_2_9_48_1 e_1_2_9_69_1 e_1_2_9_29_1 |
References_xml | – volume: 78 year: 2020 publication-title: Nano Energy – volume: 76 start-page: 165 year: 2014 publication-title: Carbon – volume: 275 start-page: 234 year: 2015 publication-title: J. Power Sources – volume: 32 year: 2022 publication-title: Adv. Funct. Mater. – volume: 60 year: 2021 publication-title: Angew. Chem., Int. Ed. – volume: 9 start-page: 3093 year: 2016 publication-title: ChemSusChem – volume: 160 year: 2013 publication-title: J. Electrochem. Soc. – year: 2021 – volume: 2 start-page: 16 year: 2021 publication-title: Commun. Mater. – volume: 10 start-page: 1081 year: 2019 publication-title: Nat. Commun. – volume: 1 start-page: 72 year: 2020 publication-title: Commun. Mater. – volume: 157 start-page: 11 year: 2006 publication-title: J. Power Sources – volume: 10 start-page: 538 year: 2017 publication-title: Energy Environ. Sci. – volume: 15 start-page: 47 year: 2021 publication-title: ACS Nano – volume: 3 start-page: 9763 year: 2015 publication-title: J. Mater. Chem. A – volume: 3 start-page: 541 year: 2021 publication-title: Carbon Energy – volume: 371 year: 2021 publication-title: Electrochim. Acta – volume: 26 start-page: 7747 year: 2020 publication-title: Chem. – Eur. J. – volume: 134 start-page: 148 year: 2004 publication-title: J. Power Sources – volume: 167 year: 2020 publication-title: J. Electrochem. Soc. – volume: 39 start-page: 1053 year: 2020 publication-title: Rare Met. – volume: 29 year: 2019 publication-title: Adv. Funct. Mater. – volume: 6 year: 2016 publication-title: Adv. Energy Mater. – volume: 12 start-page: 3783 year: 2012 publication-title: Nano Lett. – volume: 126 start-page: 2258 year: 1979 publication-title: J. Electrochem. Soc. – volume: 11 year: 2021 publication-title: Adv. Energy Mater. – volume: 39 start-page: 489 year: 2017 publication-title: Nano Energy – volume: 12 start-page: 5361 year: 2020 publication-title: ACS Appl. Mater. Interfaces – volume: 430 start-page: 157 year: 2019 publication-title: J. Power Sources – volume: 49 start-page: 1025 year: 2011 publication-title: Carbon – volume: 38 year: 2021 publication-title: Part. Part. Syst. Charact. – volume: 3 year: 2015 publication-title: J. Mater. Chem. A – volume: 4 year: 2016 publication-title: J. Mater. Chem. A – volume: 12 start-page: 7461 year: 2020 publication-title: Nanoscale – start-page: 21 year: 2014 end-page: 39 – volume: 7 start-page: 2684 year: 2021 publication-title: Chem – volume: 133 start-page: 358 year: 2018 publication-title: Carbon – volume: 12 year: 2020 publication-title: Nanoscale – volume: 33 start-page: 18 year: 2020 publication-title: Energy Storage Mater. – volume: 21 start-page: 6504 year: 2021 publication-title: Nano Lett. – volume: 2 start-page: 540 year: 2021 publication-title: Mater. Adv. – volume: 68 start-page: 27 year: 2022 publication-title: J. Energy Chem. – volume: 8 start-page: 5558 year: 2020 publication-title: J. Mater. Chem. A – volume: 9 year: 2022 publication-title: Adv. Sci. – volume: 13 start-page: 5762 year: 2020 publication-title: ChemSusChem – volume: 3 start-page: 4165 year: 2011 publication-title: ACS Appl. Mater. Interfaces – volume: 356 start-page: 599 year: 2017 publication-title: Science – volume: 6 start-page: 169 year: 2019 publication-title: Front. Mater. – volume: 3 start-page: 135 year: 2020 publication-title: ACS Appl. Energy Mater. – volume: 6 start-page: 398 year: 2021 publication-title: Nat. Energy – volume: 174 start-page: 500 year: 2021 publication-title: Carbon – volume: 3 year: 2019 publication-title: Adv. Sustainable Syst. – volume: 11 year: 2019 publication-title: ACS Appl. Mater. Interfaces – volume: 12 start-page: 3915 year: 2022 publication-title: Sci. Rep. – volume: 11 start-page: 7563 year: 2021 publication-title: Sci. Rep. – volume: 120 start-page: 379 year: 2008 publication-title: Angew. Chem. – volume: 42 start-page: 78 year: 2021 publication-title: Energy Storage Mater. – volume: 414 year: 2021 publication-title: Chem. Eng. J. – volume: 7 year: 2017 publication-title: Adv. Energy Mater. – volume: 118 year: 2021 publication-title: Proc. Natl. Acad. Sci. USA – volume: 12 year: 2020 publication-title: Mater. Today Nano – volume: 124 start-page: 1569 year: 1977 publication-title: J. Electrochem. Soc. – volume: 431 year: 2022 publication-title: Chem. Eng. J. – volume: 7 year: 2019 publication-title: Energy Technol. – ident: e_1_2_9_42_1 – ident: e_1_2_9_46_1 doi: 10.1039/C5TA05118E – ident: e_1_2_9_58_1 doi: 10.1021/acs.nanolett.1c01595 – ident: e_1_2_9_12_1 doi: 10.1002/anie.202108109 – ident: e_1_2_9_19_1 doi: 10.1002/aenm.201600377 – ident: e_1_2_9_24_1 doi: 10.1002/ente.201900025 – ident: e_1_2_9_36_1 doi: 10.1002/aenm.202002637 – ident: e_1_2_9_14_1 doi: 10.1002/chem.201905131 – ident: e_1_2_9_43_1 – ident: e_1_2_9_16_1 doi: 10.1073/pnas.2111549118 – ident: e_1_2_9_67_1 doi: 10.1149/1.2133112 – ident: e_1_2_9_53_1 doi: 10.1002/anie.202102368 – ident: e_1_2_9_65_1 doi: 10.1039/C5TA06640A – ident: e_1_2_9_38_1 doi: 10.1039/D0MA00753F – ident: e_1_2_9_51_1 doi: 10.1016/j.nanoen.2017.07.018 – ident: e_1_2_9_18_1 doi: 10.1016/j.jpowsour.2014.11.019 – ident: e_1_2_9_69_1 doi: 10.1016/B978-0-444-59513-3.00002-9 – ident: e_1_2_9_27_1 doi: 10.1039/D0NR03059G – ident: e_1_2_9_59_1 doi: 10.1016/j.electacta.2021.137776 – ident: e_1_2_9_31_1 doi: 10.1016/j.jpowsour.2006.02.065 – ident: e_1_2_9_17_1 doi: 10.1038/s41560-021-00797-7 – ident: e_1_2_9_3_1 doi: 10.1002/ppsc.202100007 – ident: e_1_2_9_32_1 doi: 10.1016/j.ensm.2020.07.020 – ident: e_1_2_9_57_1 – ident: e_1_2_9_8_1 doi: 10.1002/advs.202200187 – ident: e_1_2_9_63_1 doi: 10.1002/aenm.201602898 – ident: e_1_2_9_13_1 doi: 10.1016/j.cej.2021.134273 – ident: e_1_2_9_9_1 doi: 10.1038/s41598-022-07853-6 – ident: e_1_2_9_33_1 doi: 10.1016/j.carbon.2020.12.051 – ident: e_1_2_9_11_1 doi: 10.1021/acsaem.9b01972 – ident: e_1_2_9_64_1 doi: 10.1016/j.carbon.2018.03.005 – ident: e_1_2_9_6_1 doi: 10.1021/acsami.9b20384 – ident: e_1_2_9_21_1 doi: 10.1016/j.nanoen.2020.105265 – ident: e_1_2_9_20_1 doi: 10.1126/science.aam5852 – ident: e_1_2_9_7_1 doi: 10.1002/adsu.201900083 – ident: e_1_2_9_50_1 doi: 10.1021/acsami.9b14381 – ident: e_1_2_9_54_1 doi: 10.1016/j.jechem.2021.11.033 – ident: e_1_2_9_10_1 doi: 10.1002/cssc.202001837 – ident: e_1_2_9_40_1 doi: 10.1038/s43246-020-00073-3 – ident: e_1_2_9_55_1 doi: 10.1016/j.chempr.2021.06.008 – ident: e_1_2_9_48_1 doi: 10.1016/j.jpowsour.2019.05.013 – ident: e_1_2_9_52_1 doi: 10.1039/C6TA04877C – ident: e_1_2_9_35_1 doi: 10.1016/j.cej.2021.128767 – ident: e_1_2_9_30_1 doi: 10.1002/cssc.201600779 – ident: e_1_2_9_5_1 doi: 10.1021/acsnano.0c05896 – ident: e_1_2_9_61_1 doi: 10.1149/1945-7111/ab75fd – ident: e_1_2_9_37_1 doi: 10.1016/j.mtnano.2020.100094 – ident: e_1_2_9_45_1 doi: 10.1016/j.carbon.2014.04.064 – ident: e_1_2_9_56_1 doi: 10.1007/s12598-020-01469-3 – ident: e_1_2_9_29_1 doi: 10.1039/C6EE03716J – ident: e_1_2_9_60_1 doi: 10.1002/cey2.111 – ident: e_1_2_9_68_1 doi: 10.1149/2.084310jes – ident: e_1_2_9_66_1 doi: 10.1149/1.2128939 – ident: e_1_2_9_39_1 doi: 10.1016/j.carbon.2010.10.059 – ident: e_1_2_9_26_1 doi: 10.1039/C9TA13189B – ident: e_1_2_9_2_1 doi: 10.1038/s43246-021-00119-0 – ident: e_1_2_9_4_1 doi: 10.1038/s41467-019-09061-9 – ident: e_1_2_9_22_1 doi: 10.1002/aenm.201601602 – ident: e_1_2_9_62_1 doi: 10.1021/am200973k – ident: e_1_2_9_28_1 doi: 10.1002/ange.200702721 – ident: e_1_2_9_34_1 doi: 10.1016/j.jpowsour.2004.02.027 – ident: e_1_2_9_47_1 doi: 10.1039/C5TA01443C – ident: e_1_2_9_15_1 doi: 10.1038/s41598-021-86938-0 – ident: e_1_2_9_1_1 doi: 10.1039/C9NR10652A – ident: e_1_2_9_25_1 doi: 10.1002/adfm.202201544 – ident: e_1_2_9_49_1 doi: 10.1016/j.ensm.2021.07.021 – ident: e_1_2_9_41_1 doi: 10.3389/fmats.2019.00169 – ident: e_1_2_9_44_1 doi: 10.1021/nl3016957 – ident: e_1_2_9_23_1 doi: 10.1002/adfm.201809196 |
SSID | ssj0031247 |
Score | 2.5407343 |
Snippet | Increasing mass loadings of battery electrodes critically enhances the energy density of an overall battery by eliminating much of the inactive components,... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | e2202277 |
SubjectTerms | 3D printing additive manufacturing Carbon Compacting Electrodes hard carbon high areal capacities Ion transport Lithography Microchannels Nanotechnology Performance degradation Pyrolysis sodium ion batteries (SIBs) sodium storage mechanisms Sodium-ion batteries stereolithography (SLA) Three dimensional printing |
Title | A 3D‐Printed, Freestanding Carbon Lattice for Sodium Ion Batteries |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fsmll.202202277 https://www.proquest.com/docview/2692016855 https://www.proquest.com/docview/2679237049 |
Volume | 18 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bS8MwFA6yJ33wLk6nRBB8sVubtkn6ODbHlE3EOdhbSdIUxK2TXV588if4G_0l5rRrtwkiKPShl4SkJzk932nO-YLQJTO-v01tablRwCyPGAdFSse1pLFeBt8rRQJIFO7e03bfuxv4g5Us_owfovjhBpqRfq9BwYWc1pakodPREJYOCBwM0skhYAtQ0WPBH-Ua45XurmJslgXEWzlro01q69XXrdISaq4C1tTitHaQyPuaBZq8VOczWVVv32gc__Myu2h7AUdxPZs_e2hDJ_toa4Wk8AA169htfr5_PEyAWiK6xq2J1nk6DG6IiRwnuCNmEEWHDQTGvXH0PB_hW3M7Y-80zvgh6rdunhpta7H3gqU8oEInkWJMG3zGqGQxcWInjm3NoH-BE3iKxT63fa78ADy22KA-HjMaUJ9Fni157B6hUjJO9DHCxBW2L10uqWIelZp7XHAqhRMJwV3NysjKZR-qBTE57I8xDDNKZRKCdMJCOmV0VZR_zSg5fixZyYcyXKjmNCQ0MKCHct8vo4visVEqWCkRiR7PoQzQKjLjPZURScftl5bCXrfTKa5O_lLpFG3CSRYKXEGl2WSuzwzgmcnzdFJ_ATt99R4 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEB58HNSDb3F9RhC8WLdN2yQ9irqs2hXxAd5Kk6Yg7nZl3b148if4G_0lZtptdxVEUOilaULTSabzTTL5BmCfG9_fZra03CTglkeNgyKl41rSWC-D75WiAR4Ubl2x5r138eCX0YR4Fqbgh6gW3FAz8v81KjguSNdHrKEvnTbuHVC8OJ-EaUzrnXtVNxWDlGvMV55fxVgtC6m3St5Gm9a_tv9ql0Zgcxyy5jansQCy7G0RavJ0NOjLI_X6jcjxX5-zCPNDREqOiym0BBM6W4a5MZ7CFTg9Ju7px9v7dQ_ZJZJD0uhpXZ6IISdxT3YzEsZ9DKQjBgWT227yOOiQc1NcEHgaf3wV7htndydNa5h-wVIesqHTRHGuDUTjTPKUOqmTprbm2L_ACTzFU1_YvlB-gE5baoCfSDkLmM8Tz5YidddgKutmeh0IdWPbl66QTHGPSS08EQsmYyeJY-FqXgOrFH6khtzkmCKjHRWsyjRC6USVdGpwUNV_Llg5fqy5VY5lNNTOl4iywOAeJny_BnvVY6NXuFkSZ7o7wDrIrMiNA1UDmg_cL2-KblthWN1t_KXRLsw071phFJ5fXW7CLBYWkcFbMNXvDfS2wT99uZPP8E-cqPk5 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ3PT9swFMefoEiIHWDjh9YBmydN2oXQxEls51hRKthahGBI3CLbsSVEm6LSXnbiT-Bv5C_BL2nSgoSQNimXJLbi2H553xfbHwP84C7295mvvDBLuBdRF6AoFYSect7L6XutaYILhftn7OQq-nUdXy-s4i_5EPUPN7SM4nuNBn6X2dYcGno_HODQAcWD82VYiZgvsF93LmqAVOi8V7G9inNaHpK3KmyjT1sv8790S3OtuahYC5fT3QBZFbacaXJ7OJ2oQ_33Fcfxf97mI6zP9Chplx3oEyyZfBM-LFAKt6DTJmHn6eHxfIxsieyAdMfGVOthyJEcq1FOenKC0-iI08DkcpTdTIfk1F0u8Z0uGt-Gq-7xn6MTb7b5gqcjZKHTTHNunEDjTHFLAxtY6xuO5UuCJNLcxsKPhY4TDNmsk33CcpawmGeRr4QNd6CRj3LzGQgNpR-rUCimecSUEZGQgikZZFKK0PAmeFXdp3pGJscNMgZpyVSmKdZOWtdOE37W6e9KJsebKfeqpkxntnmfUpY41cNEHDfhe33bWRUOlcjcjKaYBrmK3IVPTaBFu73zpPSy3-vVZ1_-JdM3WD3vdNPe6dnvXVjDa-W04D1oTMZTs-_Ez0R9Lfr3M8WY9_E |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+3D%E2%80%90Printed%2C+Freestanding+Carbon+Lattice+for+Sodium+Ion+Batteries&rft.jtitle=Small+%28Weinheim+an+der+Bergstrasse%2C+Germany%29&rft.au=Katsuyama%2C+Yuto&rft.au=Kudo%2C+Akira&rft.au=Kobayashi%2C+Hiroaki&rft.au=Han%2C+Jiuhui&rft.date=2022-07-01&rft.issn=1613-6810&rft.eissn=1613-6829&rft.volume=18&rft.issue=29&rft_id=info:doi/10.1002%2Fsmll.202202277&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_smll_202202277 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1613-6810&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1613-6810&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1613-6810&client=summon |