A 3D‐Printed, Freestanding Carbon Lattice for Sodium Ion Batteries

Increasing mass loadings of battery electrodes critically enhances the energy density of an overall battery by eliminating much of the inactive components, while compacting the battery size and lowering the costs of the ingredients. A hard carbon microlattice, digitally designed and fabricated by st...

Full description

Saved in:
Bibliographic Details
Published inSmall (Weinheim an der Bergstrasse, Germany) Vol. 18; no. 29; pp. e2202277 - n/a
Main Authors Katsuyama, Yuto, Kudo, Akira, Kobayashi, Hiroaki, Han, Jiuhui, Chen, Mingwei, Honma, Itaru, Kaner, Richard B.
Format Journal Article
LanguageEnglish
Published Weinheim Wiley Subscription Services, Inc 01.07.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Increasing mass loadings of battery electrodes critically enhances the energy density of an overall battery by eliminating much of the inactive components, while compacting the battery size and lowering the costs of the ingredients. A hard carbon microlattice, digitally designed and fabricated by stereolithography 3D‐printing and pyrolysis, offers enormous potential for high‐mass‐loading electrodes. In this work, sodium‐ion batteries using hard carbon microlattices produced by an inexpensive 3D printer are demonstrated. Controlled periodic carbon microlattices are created with enhanced ion transport through microchannels. Carbon microlattices with a beam width of 32.8 µm reach a record‐high areal capacity of 21.3 mAh cm−2 at a loading of 98 mg cm−2 without degrading performance, which is much higher than the conventional monolithic electrodes (≈5.2 mAh cm−2 at 92 mg cm−2). Furthermore, binder‐free, pure‐carbon elements of microlattices enable the tracking of structural changes in hard carbon that support the hypothesized intercalation of ions at plateau regions by temporal ex situ X‐ray diffraction measurements. These results will advance the development of high‐performance and low‐cost anodes for sodium‐ion batteries as well as help with understanding the mechanisms of ion intercalations in hard carbon, expanding the utilities of 3D‐printed carbon architectures in both applications and fundamental studies. A record‐high areal capacity (21.3 mAh cm−2) for sodium‐ion battery carbon anodes is achieved by a 3D‐printed carbon microlattice with an extraordinary high‐mass‐loading (98 mg cm−2). Furthermore, binder‐free, pure‐carbon elements of microlattice enable the tracking of structural changes in hard carbon during charge/discharge, supporting the hypothesized intercalation of ions at plateau regions by ex situ X‐ray diffraction measurements.
AbstractList Increasing mass loadings of battery electrodes critically enhances the energy density of an overall battery by eliminating much of the inactive components, while compacting the battery size and lowering the costs of the ingredients. A hard carbon microlattice, digitally designed and fabricated by stereolithography 3D-printing and pyrolysis, offers enormous potential for high-mass-loading electrodes. In this work, sodium-ion batteries using hard carbon microlattices produced by an inexpensive 3D printer are demonstrated. Controlled periodic carbon microlattices are created with enhanced ion transport through microchannels. Carbon microlattices with a beam width of 32.8 µm reach a record-high areal capacity of 21.3 mAh cm-2 at a loading of 98 mg cm-2 without degrading performance, which is much higher than the conventional monolithic electrodes (≈5.2 mAh cm-2 at 92 mg cm-2 ). Furthermore, binder-free, pure-carbon elements of microlattices enable the tracking of structural changes in hard carbon that support the hypothesized intercalation of ions at plateau regions by temporal ex situ X-ray diffraction measurements. These results will advance the development of high-performance and low-cost anodes for sodium-ion batteries as well as help with understanding the mechanisms of ion intercalations in hard carbon, expanding the utilities of 3D-printed carbon architectures in both applications and fundamental studies.Increasing mass loadings of battery electrodes critically enhances the energy density of an overall battery by eliminating much of the inactive components, while compacting the battery size and lowering the costs of the ingredients. A hard carbon microlattice, digitally designed and fabricated by stereolithography 3D-printing and pyrolysis, offers enormous potential for high-mass-loading electrodes. In this work, sodium-ion batteries using hard carbon microlattices produced by an inexpensive 3D printer are demonstrated. Controlled periodic carbon microlattices are created with enhanced ion transport through microchannels. Carbon microlattices with a beam width of 32.8 µm reach a record-high areal capacity of 21.3 mAh cm-2 at a loading of 98 mg cm-2 without degrading performance, which is much higher than the conventional monolithic electrodes (≈5.2 mAh cm-2 at 92 mg cm-2 ). Furthermore, binder-free, pure-carbon elements of microlattices enable the tracking of structural changes in hard carbon that support the hypothesized intercalation of ions at plateau regions by temporal ex situ X-ray diffraction measurements. These results will advance the development of high-performance and low-cost anodes for sodium-ion batteries as well as help with understanding the mechanisms of ion intercalations in hard carbon, expanding the utilities of 3D-printed carbon architectures in both applications and fundamental studies.
Increasing mass loadings of battery electrodes critically enhances the energy density of an overall battery by eliminating much of the inactive components, while compacting the battery size and lowering the costs of the ingredients. A hard carbon microlattice, digitally designed and fabricated by stereolithography 3D‐printing and pyrolysis, offers enormous potential for high‐mass‐loading electrodes. In this work, sodium‐ion batteries using hard carbon microlattices produced by an inexpensive 3D printer are demonstrated. Controlled periodic carbon microlattices are created with enhanced ion transport through microchannels. Carbon microlattices with a beam width of 32.8 µm reach a record‐high areal capacity of 21.3 mAh cm −2 at a loading of 98 mg cm −2 without degrading performance, which is much higher than the conventional monolithic electrodes (≈5.2 mAh cm −2 at 92 mg cm −2 ). Furthermore, binder‐free, pure‐carbon elements of microlattices enable the tracking of structural changes in hard carbon that support the hypothesized intercalation of ions at plateau regions by temporal ex situ X‐ray diffraction measurements. These results will advance the development of high‐performance and low‐cost anodes for sodium‐ion batteries as well as help with understanding the mechanisms of ion intercalations in hard carbon, expanding the utilities of 3D‐printed carbon architectures in both applications and fundamental studies.
Increasing mass loadings of battery electrodes critically enhances the energy density of an overall battery by eliminating much of the inactive components, while compacting the battery size and lowering the costs of the ingredients. A hard carbon microlattice, digitally designed and fabricated by stereolithography 3D‐printing and pyrolysis, offers enormous potential for high‐mass‐loading electrodes. In this work, sodium‐ion batteries using hard carbon microlattices produced by an inexpensive 3D printer are demonstrated. Controlled periodic carbon microlattices are created with enhanced ion transport through microchannels. Carbon microlattices with a beam width of 32.8 µm reach a record‐high areal capacity of 21.3 mAh cm−2 at a loading of 98 mg cm−2 without degrading performance, which is much higher than the conventional monolithic electrodes (≈5.2 mAh cm−2 at 92 mg cm−2). Furthermore, binder‐free, pure‐carbon elements of microlattices enable the tracking of structural changes in hard carbon that support the hypothesized intercalation of ions at plateau regions by temporal ex situ X‐ray diffraction measurements. These results will advance the development of high‐performance and low‐cost anodes for sodium‐ion batteries as well as help with understanding the mechanisms of ion intercalations in hard carbon, expanding the utilities of 3D‐printed carbon architectures in both applications and fundamental studies. A record‐high areal capacity (21.3 mAh cm−2) for sodium‐ion battery carbon anodes is achieved by a 3D‐printed carbon microlattice with an extraordinary high‐mass‐loading (98 mg cm−2). Furthermore, binder‐free, pure‐carbon elements of microlattice enable the tracking of structural changes in hard carbon during charge/discharge, supporting the hypothesized intercalation of ions at plateau regions by ex situ X‐ray diffraction measurements.
Increasing mass loadings of battery electrodes critically enhances the energy density of an overall battery by eliminating much of the inactive components, while compacting the battery size and lowering the costs of the ingredients. A hard carbon microlattice, digitally designed and fabricated by stereolithography 3D‐printing and pyrolysis, offers enormous potential for high‐mass‐loading electrodes. In this work, sodium‐ion batteries using hard carbon microlattices produced by an inexpensive 3D printer are demonstrated. Controlled periodic carbon microlattices are created with enhanced ion transport through microchannels. Carbon microlattices with a beam width of 32.8 µm reach a record‐high areal capacity of 21.3 mAh cm−2 at a loading of 98 mg cm−2 without degrading performance, which is much higher than the conventional monolithic electrodes (≈5.2 mAh cm−2 at 92 mg cm−2). Furthermore, binder‐free, pure‐carbon elements of microlattices enable the tracking of structural changes in hard carbon that support the hypothesized intercalation of ions at plateau regions by temporal ex situ X‐ray diffraction measurements. These results will advance the development of high‐performance and low‐cost anodes for sodium‐ion batteries as well as help with understanding the mechanisms of ion intercalations in hard carbon, expanding the utilities of 3D‐printed carbon architectures in both applications and fundamental studies.
Author Katsuyama, Yuto
Han, Jiuhui
Honma, Itaru
Kudo, Akira
Chen, Mingwei
Kaner, Richard B.
Kobayashi, Hiroaki
Author_xml – sequence: 1
  givenname: Yuto
  orcidid: 0000-0003-3679-2591
  surname: Katsuyama
  fullname: Katsuyama, Yuto
  organization: University of California Los Angeles
– sequence: 2
  givenname: Akira
  orcidid: 0000-0002-0830-5509
  surname: Kudo
  fullname: Kudo, Akira
  email: akira.kudo.b8@tohoku.ac.jp
  organization: Tohoku University
– sequence: 3
  givenname: Hiroaki
  orcidid: 0000-0001-6705-9515
  surname: Kobayashi
  fullname: Kobayashi, Hiroaki
  email: h.kobayashi@tohoku.ac.jp
  organization: Tohoku University
– sequence: 4
  givenname: Jiuhui
  orcidid: 0000-0002-9067-9197
  surname: Han
  fullname: Han, Jiuhui
  organization: Tohoku University
– sequence: 5
  givenname: Mingwei
  orcidid: 0000-0002-8274-3099
  surname: Chen
  fullname: Chen, Mingwei
  organization: Johns Hopkins University
– sequence: 6
  givenname: Itaru
  orcidid: 0000-0002-6536-576X
  surname: Honma
  fullname: Honma, Itaru
  organization: Tohoku University
– sequence: 7
  givenname: Richard B.
  orcidid: 0000-0003-0345-4924
  surname: Kaner
  fullname: Kaner, Richard B.
  email: kaner@chem.ucla.edu
  organization: University of California Los Angeles
BookMark eNqFkM1KAzEURoNUsK1uXQ-4ceHUJPOTZFlbq4URhep6SDOJpMwkNZki3fkIPqNPYoZKhYIIgYTLObkf3wD0jDUSgHMERwhCfO2buh5hiLtDyBHooxwlcU4x6-3fCJ6AgfcrCBOEU9IH03GUTL8-Pp-cNq2srqKZk9K33FTavEYT7pbWRAVvWy1kpKyLFrbSmyaah_FNGEunpT8Fx4rXXp793EPwMrt9ntzHxePdfDIuYpGinMS4EoRISBOSL4nCSCGloCRdXoZYKojKKMyoyBimjCmYEapIzvKMVClcUpUMweXu37Wzb5sQs2y0F7KuuZF240ucE4YTAlMW0IsDdGU3zoR0gWIYopxmWaBGO0o4672Tqlw73XC3LREsu1LLrtRyX2oQ0gNB6Ja32prWcV3_rbGd9q5ruf1nSbl4KIpf9xuWSIwf
CitedBy_id crossref_primary_10_1002_smll_202308262
crossref_primary_10_3390_mi13091534
crossref_primary_10_1002_anie_202412867
crossref_primary_10_1002_adfm_202408568
crossref_primary_10_1002_batt_202300190
crossref_primary_10_1039_D4SC03203A
crossref_primary_10_1021_jacsau_4c00555
crossref_primary_10_1016_j_addma_2025_104695
crossref_primary_10_3390_batteries10030110
crossref_primary_10_1002_ange_202412867
crossref_primary_10_1039_D4GC00638K
crossref_primary_10_1088_2515_7655_acf958
crossref_primary_10_1039_D3NR03098A
crossref_primary_10_1021_acsomega_4c07776
crossref_primary_10_1039_D4TA02146K
crossref_primary_10_1016_j_colsurfa_2023_131603
crossref_primary_10_1021_acs_chemmater_4c01386
crossref_primary_10_1002_batt_202300161
crossref_primary_10_1016_j_jhazmat_2024_133681
crossref_primary_10_1038_s44359_024_00018_w
crossref_primary_10_1002_smtd_202400831
crossref_primary_10_1016_j_cclet_2024_110328
crossref_primary_10_1021_acsami_3c18846
crossref_primary_10_1002_smll_202301525
crossref_primary_10_1002_adfm_202302068
crossref_primary_10_1002_advs_202411951
crossref_primary_10_1021_acsaem_3c00789
crossref_primary_10_1016_j_jechem_2024_10_061
crossref_primary_10_1002_adhm_202303708
crossref_primary_10_1002_aenm_202303296
crossref_primary_10_1039_D4CC01202J
crossref_primary_10_1021_acsami_2c15688
crossref_primary_10_1002_smll_202305921
crossref_primary_10_1016_j_est_2023_107139
crossref_primary_10_1063_5_0232592
Cites_doi 10.1039/C5TA05118E
10.1021/acs.nanolett.1c01595
10.1002/anie.202108109
10.1002/aenm.201600377
10.1002/ente.201900025
10.1002/aenm.202002637
10.1002/chem.201905131
10.1073/pnas.2111549118
10.1149/1.2133112
10.1002/anie.202102368
10.1039/C5TA06640A
10.1039/D0MA00753F
10.1016/j.nanoen.2017.07.018
10.1016/j.jpowsour.2014.11.019
10.1016/B978-0-444-59513-3.00002-9
10.1039/D0NR03059G
10.1016/j.electacta.2021.137776
10.1016/j.jpowsour.2006.02.065
10.1038/s41560-021-00797-7
10.1002/ppsc.202100007
10.1016/j.ensm.2020.07.020
10.1002/advs.202200187
10.1002/aenm.201602898
10.1016/j.cej.2021.134273
10.1038/s41598-022-07853-6
10.1016/j.carbon.2020.12.051
10.1021/acsaem.9b01972
10.1016/j.carbon.2018.03.005
10.1021/acsami.9b20384
10.1016/j.nanoen.2020.105265
10.1126/science.aam5852
10.1002/adsu.201900083
10.1021/acsami.9b14381
10.1016/j.jechem.2021.11.033
10.1002/cssc.202001837
10.1038/s43246-020-00073-3
10.1016/j.chempr.2021.06.008
10.1016/j.jpowsour.2019.05.013
10.1039/C6TA04877C
10.1016/j.cej.2021.128767
10.1002/cssc.201600779
10.1021/acsnano.0c05896
10.1149/1945-7111/ab75fd
10.1016/j.mtnano.2020.100094
10.1016/j.carbon.2014.04.064
10.1007/s12598-020-01469-3
10.1039/C6EE03716J
10.1002/cey2.111
10.1149/2.084310jes
10.1149/1.2128939
10.1016/j.carbon.2010.10.059
10.1039/C9TA13189B
10.1038/s43246-021-00119-0
10.1038/s41467-019-09061-9
10.1002/aenm.201601602
10.1021/am200973k
10.1002/ange.200702721
10.1016/j.jpowsour.2004.02.027
10.1039/C5TA01443C
10.1038/s41598-021-86938-0
10.1039/C9NR10652A
10.1002/adfm.202201544
10.1016/j.ensm.2021.07.021
10.3389/fmats.2019.00169
10.1021/nl3016957
10.1002/adfm.201809196
ContentType Journal Article
Copyright 2022 Wiley‐VCH GmbH
2022 Wiley-VCH GmbH.
Copyright_xml – notice: 2022 Wiley‐VCH GmbH
– notice: 2022 Wiley-VCH GmbH.
DBID AAYXX
CITATION
7SR
7U5
8BQ
8FD
JG9
L7M
7X8
DOI 10.1002/smll.202202277
DatabaseName CrossRef
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
MEDLINE - Academic
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
METADEX
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
CrossRef

Materials Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1613-6829
EndPage n/a
ExternalDocumentID 10_1002_smll_202202277
SMLL202202277
Genre article
GrantInformation_xml – fundername: California NanoSystems Institute's Noble Family Innovation Fund
– fundername: Tohoku University Research Program "Frontier Research in Duo"
  funderid: 2102
– fundername: JST ALCA‐SPRING
  funderid: JPMJAL1301
– fundername: Tohoku University Research Program
GroupedDBID ---
05W
0R~
123
1L6
1OC
33P
3SF
3WU
4.4
50Y
52U
53G
5VS
66C
8-0
8-1
8UM
A00
AAESR
AAEVG
AAHHS
AAHQN
AAIHA
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABCUV
ABIJN
ABJNI
ABLJU
ABRTZ
ACAHQ
ACCFJ
ACCZN
ACFBH
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZVAB
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BOGZA
BRXPI
CS3
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBD
EBS
EMOBN
F5P
G-S
GNP
HBH
HGLYW
HHY
HHZ
HZ~
IX1
KQQ
LATKE
LAW
LEEKS
LITHE
LOXES
LUTES
LYRES
MEWTI
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
MY~
O66
O9-
OIG
P2P
P2W
P4E
QRW
R.K
RIWAO
RNS
ROL
RWI
RX1
RYL
SUPJJ
SV3
V2E
W99
WBKPD
WFSAM
WIH
WIK
WJL
WOHZO
WXSBR
WYISQ
WYJ
XV2
Y6R
ZZTAW
~S-
31~
AANHP
AASGY
AAYOK
AAYXX
ACBWZ
ACRPL
ACYXJ
ADNMO
AGHNM
AGQPQ
AGYGG
ASPBG
AVWKF
AZFZN
BDRZF
CITATION
EJD
FEDTE
GODZA
HVGLF
7SR
7U5
8BQ
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
JG9
L7M
7X8
ID FETCH-LOGICAL-c4167-2dc77e08376b7f21f1ff0e720229194c7f58058c592899f0578f769657d40b8f3
IEDL.DBID DR2
ISSN 1613-6810
1613-6829
IngestDate Thu Jul 10 19:15:52 EDT 2025
Sat Jul 19 13:10:42 EDT 2025
Tue Jul 01 02:54:14 EDT 2025
Thu Apr 24 23:09:04 EDT 2025
Wed Jan 22 16:25:07 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 29
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4167-2dc77e08376b7f21f1ff0e720229194c7f58058c592899f0578f769657d40b8f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-6536-576X
0000-0002-9067-9197
0000-0002-8274-3099
0000-0003-0345-4924
0000-0003-3679-2591
0000-0001-6705-9515
0000-0002-0830-5509
PQID 2692016855
PQPubID 1046358
PageCount 11
ParticipantIDs proquest_miscellaneous_2679237049
proquest_journals_2692016855
crossref_primary_10_1002_smll_202202277
crossref_citationtrail_10_1002_smll_202202277
wiley_primary_10_1002_smll_202202277_SMLL202202277
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-07-01
PublicationDateYYYYMMDD 2022-07-01
PublicationDate_xml – month: 07
  year: 2022
  text: 2022-07-01
  day: 01
PublicationDecade 2020
PublicationPlace Weinheim
PublicationPlace_xml – name: Weinheim
PublicationTitle Small (Weinheim an der Bergstrasse, Germany)
PublicationYear 2022
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2017; 7
2021; 21
2019; 11
2019; 10
2022; 68
2020; 13
2020; 12
2020; 167
2012; 12
1977; 124
2017; 356
2013; 160
2020; 8
2004; 134
2021; 38
2018; 133
2020; 3
2020; 1
2017; 39
2021; 118
2019; 29
2022; 32
2019; 430
2022; 431
2019; 7
2021; 7
2021; 6
1979; 126
2019; 3
2021; 42
2019; 6
2021; 3
2021; 2
2015; 3
2020; 39
2020; 78
2020; 33
2011; 3
2008; 120
2006; 157
2016; 4
2016; 6
2021; 15
2021; 11
2021
2021; 414
2017; 10
2022; 9
2015; 275
2022; 12
2020; 26
2021; 371
2021; 174
2014
2021; 60
2011; 49
2016; 9
2014; 76
e_1_2_9_31_1
e_1_2_9_52_1
e_1_2_9_50_1
e_1_2_9_10_1
e_1_2_9_35_1
e_1_2_9_56_1
e_1_2_9_12_1
e_1_2_9_33_1
e_1_2_9_54_1
e_1_2_9_14_1
e_1_2_9_39_1
e_1_2_9_16_1
e_1_2_9_37_1
e_1_2_9_58_1
e_1_2_9_18_1
e_1_2_9_41_1
e_1_2_9_64_1
e_1_2_9_20_1
e_1_2_9_62_1
e_1_2_9_22_1
e_1_2_9_45_1
e_1_2_9_68_1
e_1_2_9_24_1
e_1_2_9_43_1
e_1_2_9_66_1
e_1_2_9_8_1
e_1_2_9_6_1
e_1_2_9_4_1
e_1_2_9_60_1
e_1_2_9_2_1
e_1_2_9_26_1
e_1_2_9_49_1
e_1_2_9_28_1
e_1_2_9_47_1
e_1_2_9_30_1
e_1_2_9_53_1
e_1_2_9_51_1
e_1_2_9_11_1
e_1_2_9_34_1
e_1_2_9_57_1
e_1_2_9_13_1
e_1_2_9_32_1
e_1_2_9_55_1
e_1_2_9_15_1
e_1_2_9_38_1
e_1_2_9_17_1
e_1_2_9_36_1
e_1_2_9_59_1
e_1_2_9_19_1
e_1_2_9_42_1
e_1_2_9_63_1
e_1_2_9_40_1
e_1_2_9_61_1
e_1_2_9_21_1
e_1_2_9_46_1
e_1_2_9_67_1
e_1_2_9_23_1
e_1_2_9_44_1
e_1_2_9_65_1
e_1_2_9_7_1
e_1_2_9_5_1
e_1_2_9_3_1
e_1_2_9_1_1
e_1_2_9_9_1
e_1_2_9_25_1
e_1_2_9_27_1
e_1_2_9_48_1
e_1_2_9_69_1
e_1_2_9_29_1
References_xml – volume: 78
  year: 2020
  publication-title: Nano Energy
– volume: 76
  start-page: 165
  year: 2014
  publication-title: Carbon
– volume: 275
  start-page: 234
  year: 2015
  publication-title: J. Power Sources
– volume: 32
  year: 2022
  publication-title: Adv. Funct. Mater.
– volume: 60
  year: 2021
  publication-title: Angew. Chem., Int. Ed.
– volume: 9
  start-page: 3093
  year: 2016
  publication-title: ChemSusChem
– volume: 160
  year: 2013
  publication-title: J. Electrochem. Soc.
– year: 2021
– volume: 2
  start-page: 16
  year: 2021
  publication-title: Commun. Mater.
– volume: 10
  start-page: 1081
  year: 2019
  publication-title: Nat. Commun.
– volume: 1
  start-page: 72
  year: 2020
  publication-title: Commun. Mater.
– volume: 157
  start-page: 11
  year: 2006
  publication-title: J. Power Sources
– volume: 10
  start-page: 538
  year: 2017
  publication-title: Energy Environ. Sci.
– volume: 15
  start-page: 47
  year: 2021
  publication-title: ACS Nano
– volume: 3
  start-page: 9763
  year: 2015
  publication-title: J. Mater. Chem. A
– volume: 3
  start-page: 541
  year: 2021
  publication-title: Carbon Energy
– volume: 371
  year: 2021
  publication-title: Electrochim. Acta
– volume: 26
  start-page: 7747
  year: 2020
  publication-title: Chem. – Eur. J.
– volume: 134
  start-page: 148
  year: 2004
  publication-title: J. Power Sources
– volume: 167
  year: 2020
  publication-title: J. Electrochem. Soc.
– volume: 39
  start-page: 1053
  year: 2020
  publication-title: Rare Met.
– volume: 29
  year: 2019
  publication-title: Adv. Funct. Mater.
– volume: 6
  year: 2016
  publication-title: Adv. Energy Mater.
– volume: 12
  start-page: 3783
  year: 2012
  publication-title: Nano Lett.
– volume: 126
  start-page: 2258
  year: 1979
  publication-title: J. Electrochem. Soc.
– volume: 11
  year: 2021
  publication-title: Adv. Energy Mater.
– volume: 39
  start-page: 489
  year: 2017
  publication-title: Nano Energy
– volume: 12
  start-page: 5361
  year: 2020
  publication-title: ACS Appl. Mater. Interfaces
– volume: 430
  start-page: 157
  year: 2019
  publication-title: J. Power Sources
– volume: 49
  start-page: 1025
  year: 2011
  publication-title: Carbon
– volume: 38
  year: 2021
  publication-title: Part. Part. Syst. Charact.
– volume: 3
  year: 2015
  publication-title: J. Mater. Chem. A
– volume: 4
  year: 2016
  publication-title: J. Mater. Chem. A
– volume: 12
  start-page: 7461
  year: 2020
  publication-title: Nanoscale
– start-page: 21
  year: 2014
  end-page: 39
– volume: 7
  start-page: 2684
  year: 2021
  publication-title: Chem
– volume: 133
  start-page: 358
  year: 2018
  publication-title: Carbon
– volume: 12
  year: 2020
  publication-title: Nanoscale
– volume: 33
  start-page: 18
  year: 2020
  publication-title: Energy Storage Mater.
– volume: 21
  start-page: 6504
  year: 2021
  publication-title: Nano Lett.
– volume: 2
  start-page: 540
  year: 2021
  publication-title: Mater. Adv.
– volume: 68
  start-page: 27
  year: 2022
  publication-title: J. Energy Chem.
– volume: 8
  start-page: 5558
  year: 2020
  publication-title: J. Mater. Chem. A
– volume: 9
  year: 2022
  publication-title: Adv. Sci.
– volume: 13
  start-page: 5762
  year: 2020
  publication-title: ChemSusChem
– volume: 3
  start-page: 4165
  year: 2011
  publication-title: ACS Appl. Mater. Interfaces
– volume: 356
  start-page: 599
  year: 2017
  publication-title: Science
– volume: 6
  start-page: 169
  year: 2019
  publication-title: Front. Mater.
– volume: 3
  start-page: 135
  year: 2020
  publication-title: ACS Appl. Energy Mater.
– volume: 6
  start-page: 398
  year: 2021
  publication-title: Nat. Energy
– volume: 174
  start-page: 500
  year: 2021
  publication-title: Carbon
– volume: 3
  year: 2019
  publication-title: Adv. Sustainable Syst.
– volume: 11
  year: 2019
  publication-title: ACS Appl. Mater. Interfaces
– volume: 12
  start-page: 3915
  year: 2022
  publication-title: Sci. Rep.
– volume: 11
  start-page: 7563
  year: 2021
  publication-title: Sci. Rep.
– volume: 120
  start-page: 379
  year: 2008
  publication-title: Angew. Chem.
– volume: 42
  start-page: 78
  year: 2021
  publication-title: Energy Storage Mater.
– volume: 414
  year: 2021
  publication-title: Chem. Eng. J.
– volume: 7
  year: 2017
  publication-title: Adv. Energy Mater.
– volume: 118
  year: 2021
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 12
  year: 2020
  publication-title: Mater. Today Nano
– volume: 124
  start-page: 1569
  year: 1977
  publication-title: J. Electrochem. Soc.
– volume: 431
  year: 2022
  publication-title: Chem. Eng. J.
– volume: 7
  year: 2019
  publication-title: Energy Technol.
– ident: e_1_2_9_42_1
– ident: e_1_2_9_46_1
  doi: 10.1039/C5TA05118E
– ident: e_1_2_9_58_1
  doi: 10.1021/acs.nanolett.1c01595
– ident: e_1_2_9_12_1
  doi: 10.1002/anie.202108109
– ident: e_1_2_9_19_1
  doi: 10.1002/aenm.201600377
– ident: e_1_2_9_24_1
  doi: 10.1002/ente.201900025
– ident: e_1_2_9_36_1
  doi: 10.1002/aenm.202002637
– ident: e_1_2_9_14_1
  doi: 10.1002/chem.201905131
– ident: e_1_2_9_43_1
– ident: e_1_2_9_16_1
  doi: 10.1073/pnas.2111549118
– ident: e_1_2_9_67_1
  doi: 10.1149/1.2133112
– ident: e_1_2_9_53_1
  doi: 10.1002/anie.202102368
– ident: e_1_2_9_65_1
  doi: 10.1039/C5TA06640A
– ident: e_1_2_9_38_1
  doi: 10.1039/D0MA00753F
– ident: e_1_2_9_51_1
  doi: 10.1016/j.nanoen.2017.07.018
– ident: e_1_2_9_18_1
  doi: 10.1016/j.jpowsour.2014.11.019
– ident: e_1_2_9_69_1
  doi: 10.1016/B978-0-444-59513-3.00002-9
– ident: e_1_2_9_27_1
  doi: 10.1039/D0NR03059G
– ident: e_1_2_9_59_1
  doi: 10.1016/j.electacta.2021.137776
– ident: e_1_2_9_31_1
  doi: 10.1016/j.jpowsour.2006.02.065
– ident: e_1_2_9_17_1
  doi: 10.1038/s41560-021-00797-7
– ident: e_1_2_9_3_1
  doi: 10.1002/ppsc.202100007
– ident: e_1_2_9_32_1
  doi: 10.1016/j.ensm.2020.07.020
– ident: e_1_2_9_57_1
– ident: e_1_2_9_8_1
  doi: 10.1002/advs.202200187
– ident: e_1_2_9_63_1
  doi: 10.1002/aenm.201602898
– ident: e_1_2_9_13_1
  doi: 10.1016/j.cej.2021.134273
– ident: e_1_2_9_9_1
  doi: 10.1038/s41598-022-07853-6
– ident: e_1_2_9_33_1
  doi: 10.1016/j.carbon.2020.12.051
– ident: e_1_2_9_11_1
  doi: 10.1021/acsaem.9b01972
– ident: e_1_2_9_64_1
  doi: 10.1016/j.carbon.2018.03.005
– ident: e_1_2_9_6_1
  doi: 10.1021/acsami.9b20384
– ident: e_1_2_9_21_1
  doi: 10.1016/j.nanoen.2020.105265
– ident: e_1_2_9_20_1
  doi: 10.1126/science.aam5852
– ident: e_1_2_9_7_1
  doi: 10.1002/adsu.201900083
– ident: e_1_2_9_50_1
  doi: 10.1021/acsami.9b14381
– ident: e_1_2_9_54_1
  doi: 10.1016/j.jechem.2021.11.033
– ident: e_1_2_9_10_1
  doi: 10.1002/cssc.202001837
– ident: e_1_2_9_40_1
  doi: 10.1038/s43246-020-00073-3
– ident: e_1_2_9_55_1
  doi: 10.1016/j.chempr.2021.06.008
– ident: e_1_2_9_48_1
  doi: 10.1016/j.jpowsour.2019.05.013
– ident: e_1_2_9_52_1
  doi: 10.1039/C6TA04877C
– ident: e_1_2_9_35_1
  doi: 10.1016/j.cej.2021.128767
– ident: e_1_2_9_30_1
  doi: 10.1002/cssc.201600779
– ident: e_1_2_9_5_1
  doi: 10.1021/acsnano.0c05896
– ident: e_1_2_9_61_1
  doi: 10.1149/1945-7111/ab75fd
– ident: e_1_2_9_37_1
  doi: 10.1016/j.mtnano.2020.100094
– ident: e_1_2_9_45_1
  doi: 10.1016/j.carbon.2014.04.064
– ident: e_1_2_9_56_1
  doi: 10.1007/s12598-020-01469-3
– ident: e_1_2_9_29_1
  doi: 10.1039/C6EE03716J
– ident: e_1_2_9_60_1
  doi: 10.1002/cey2.111
– ident: e_1_2_9_68_1
  doi: 10.1149/2.084310jes
– ident: e_1_2_9_66_1
  doi: 10.1149/1.2128939
– ident: e_1_2_9_39_1
  doi: 10.1016/j.carbon.2010.10.059
– ident: e_1_2_9_26_1
  doi: 10.1039/C9TA13189B
– ident: e_1_2_9_2_1
  doi: 10.1038/s43246-021-00119-0
– ident: e_1_2_9_4_1
  doi: 10.1038/s41467-019-09061-9
– ident: e_1_2_9_22_1
  doi: 10.1002/aenm.201601602
– ident: e_1_2_9_62_1
  doi: 10.1021/am200973k
– ident: e_1_2_9_28_1
  doi: 10.1002/ange.200702721
– ident: e_1_2_9_34_1
  doi: 10.1016/j.jpowsour.2004.02.027
– ident: e_1_2_9_47_1
  doi: 10.1039/C5TA01443C
– ident: e_1_2_9_15_1
  doi: 10.1038/s41598-021-86938-0
– ident: e_1_2_9_1_1
  doi: 10.1039/C9NR10652A
– ident: e_1_2_9_25_1
  doi: 10.1002/adfm.202201544
– ident: e_1_2_9_49_1
  doi: 10.1016/j.ensm.2021.07.021
– ident: e_1_2_9_41_1
  doi: 10.3389/fmats.2019.00169
– ident: e_1_2_9_44_1
  doi: 10.1021/nl3016957
– ident: e_1_2_9_23_1
  doi: 10.1002/adfm.201809196
SSID ssj0031247
Score 2.5407343
Snippet Increasing mass loadings of battery electrodes critically enhances the energy density of an overall battery by eliminating much of the inactive components,...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage e2202277
SubjectTerms 3D printing
additive manufacturing
Carbon
Compacting
Electrodes
hard carbon
high areal capacities
Ion transport
Lithography
Microchannels
Nanotechnology
Performance degradation
Pyrolysis
sodium ion batteries (SIBs)
sodium storage mechanisms
Sodium-ion batteries
stereolithography (SLA)
Three dimensional printing
Title A 3D‐Printed, Freestanding Carbon Lattice for Sodium Ion Batteries
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fsmll.202202277
https://www.proquest.com/docview/2692016855
https://www.proquest.com/docview/2679237049
Volume 18
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bS8MwFA6yJ33wLk6nRBB8sVubtkn6ODbHlE3EOdhbSdIUxK2TXV588if4G_0l5rRrtwkiKPShl4SkJzk932nO-YLQJTO-v01tablRwCyPGAdFSse1pLFeBt8rRQJIFO7e03bfuxv4g5Us_owfovjhBpqRfq9BwYWc1pakodPREJYOCBwM0skhYAtQ0WPBH-Ua45XurmJslgXEWzlro01q69XXrdISaq4C1tTitHaQyPuaBZq8VOczWVVv32gc__Myu2h7AUdxPZs_e2hDJ_toa4Wk8AA169htfr5_PEyAWiK6xq2J1nk6DG6IiRwnuCNmEEWHDQTGvXH0PB_hW3M7Y-80zvgh6rdunhpta7H3gqU8oEInkWJMG3zGqGQxcWInjm3NoH-BE3iKxT63fa78ADy22KA-HjMaUJ9Fni157B6hUjJO9DHCxBW2L10uqWIelZp7XHAqhRMJwV3NysjKZR-qBTE57I8xDDNKZRKCdMJCOmV0VZR_zSg5fixZyYcyXKjmNCQ0MKCHct8vo4visVEqWCkRiR7PoQzQKjLjPZURScftl5bCXrfTKa5O_lLpFG3CSRYKXEGl2WSuzwzgmcnzdFJ_ATt99R4
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEB58HNSDb3F9RhC8WLdN2yQ9irqs2hXxAd5Kk6Yg7nZl3b148if4G_0lZtptdxVEUOilaULTSabzTTL5BmCfG9_fZra03CTglkeNgyKl41rSWC-D75WiAR4Ubl2x5r138eCX0YR4Fqbgh6gW3FAz8v81KjguSNdHrKEvnTbuHVC8OJ-EaUzrnXtVNxWDlGvMV55fxVgtC6m3St5Gm9a_tv9ql0Zgcxyy5jansQCy7G0RavJ0NOjLI_X6jcjxX5-zCPNDREqOiym0BBM6W4a5MZ7CFTg9Ju7px9v7dQ_ZJZJD0uhpXZ6IISdxT3YzEsZ9DKQjBgWT227yOOiQc1NcEHgaf3wV7htndydNa5h-wVIesqHTRHGuDUTjTPKUOqmTprbm2L_ACTzFU1_YvlB-gE5baoCfSDkLmM8Tz5YidddgKutmeh0IdWPbl66QTHGPSS08EQsmYyeJY-FqXgOrFH6khtzkmCKjHRWsyjRC6USVdGpwUNV_Llg5fqy5VY5lNNTOl4iywOAeJny_BnvVY6NXuFkSZ7o7wDrIrMiNA1UDmg_cL2-KblthWN1t_KXRLsw071phFJ5fXW7CLBYWkcFbMNXvDfS2wT99uZPP8E-cqPk5
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ3PT9swFMefoEiIHWDjh9YBmydN2oXQxEls51hRKthahGBI3CLbsSVEm6LSXnbiT-Bv5C_BL2nSgoSQNimXJLbi2H553xfbHwP84C7295mvvDBLuBdRF6AoFYSect7L6XutaYILhftn7OQq-nUdXy-s4i_5EPUPN7SM4nuNBn6X2dYcGno_HODQAcWD82VYiZgvsF93LmqAVOi8V7G9inNaHpK3KmyjT1sv8790S3OtuahYC5fT3QBZFbacaXJ7OJ2oQ_33Fcfxf97mI6zP9Chplx3oEyyZfBM-LFAKt6DTJmHn6eHxfIxsieyAdMfGVOthyJEcq1FOenKC0-iI08DkcpTdTIfk1F0u8Z0uGt-Gq-7xn6MTb7b5gqcjZKHTTHNunEDjTHFLAxtY6xuO5UuCJNLcxsKPhY4TDNmsk33CcpawmGeRr4QNd6CRj3LzGQgNpR-rUCimecSUEZGQgikZZFKK0PAmeFXdp3pGJscNMgZpyVSmKdZOWtdOE37W6e9KJsebKfeqpkxntnmfUpY41cNEHDfhe33bWRUOlcjcjKaYBrmK3IVPTaBFu73zpPSy3-vVZ1_-JdM3WD3vdNPe6dnvXVjDa-W04D1oTMZTs-_Ez0R9Lfr3M8WY9_E
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+3D%E2%80%90Printed%2C+Freestanding+Carbon+Lattice+for+Sodium+Ion+Batteries&rft.jtitle=Small+%28Weinheim+an+der+Bergstrasse%2C+Germany%29&rft.au=Katsuyama%2C+Yuto&rft.au=Kudo%2C+Akira&rft.au=Kobayashi%2C+Hiroaki&rft.au=Han%2C+Jiuhui&rft.date=2022-07-01&rft.issn=1613-6810&rft.eissn=1613-6829&rft.volume=18&rft.issue=29&rft_id=info:doi/10.1002%2Fsmll.202202277&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_smll_202202277
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1613-6810&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1613-6810&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1613-6810&client=summon