Tuning the Interlayer Interactions of 2D Covalent Organic Frameworks Enables an Ultrastable Platform for Anhydrous Proton Transport
The development of effective, stable anhydrous proton‐conductive materials is vital but challenging. Covalent organic frameworks (COFs) are promising platforms for ion and molecule conduction owing to their pre‐designable structures and tailor‐made functionalities. However, their poor chemical stabi...
Saved in:
Published in | Angewandte Chemie International Edition Vol. 61; no. 35; pp. e202208086 - n/a |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Weinheim
Wiley Subscription Services, Inc
26.08.2022
|
Edition | International ed. in English |
Subjects | |
Online Access | Get full text |
ISSN | 1433-7851 1521-3773 1521-3773 |
DOI | 10.1002/anie.202208086 |
Cover
Loading…
Abstract | The development of effective, stable anhydrous proton‐conductive materials is vital but challenging. Covalent organic frameworks (COFs) are promising platforms for ion and molecule conduction owing to their pre‐designable structures and tailor‐made functionalities. However, their poor chemical stability is due to weak interlayer interactions and intrinsic reversibility of linkages. Herein, we present a strategy for enhancing the interlayer interactions of two‐dimensional COFs via importing planar, rigid triazine units into the center of C3‐symmetric monomers. The developed triazine‐core‐based COF (denoted as TPT‐COF) possesses a well‐defined crystalline structure, ordered nanochannels, and prominent porosity. The proton conductivity was ≈10 times those of non‐triazinyl COFs, even reaching up to 1.27×10−2 S cm−1 at 160 °C. Furthermore, the TPT‐COF exhibited structural ultrastability, making it an effective proton transport platform with remarkable conductivity and long‐term durability.
An ultrastable and anhydrous covalent organic framework (COF)‐based proton conductor is prepared by tuning the interlayer interaction via importing planar and rigid triazine units into the center of C3‐symmetric monomers. This work provides a solution to the instability of imine‐linked COFs and contributes to the design and development of COF‐based energy‐related devices with proton‐transport systems. |
---|---|
AbstractList | The development of effective, stable anhydrous proton‐conductive materials is vital but challenging. Covalent organic frameworks (COFs) are promising platforms for ion and molecule conduction owing to their pre‐designable structures and tailor‐made functionalities. However, their poor chemical stability is due to weak interlayer interactions and intrinsic reversibility of linkages. Herein, we present a strategy for enhancing the interlayer interactions of two‐dimensional COFs via importing planar, rigid triazine units into the center of C3‐symmetric monomers. The developed triazine‐core‐based COF (denoted as TPT‐COF) possesses a well‐defined crystalline structure, ordered nanochannels, and prominent porosity. The proton conductivity was ≈10 times those of non‐triazinyl COFs, even reaching up to 1.27×10−2 S cm−1 at 160 °C. Furthermore, the TPT‐COF exhibited structural ultrastability, making it an effective proton transport platform with remarkable conductivity and long‐term durability.
An ultrastable and anhydrous covalent organic framework (COF)‐based proton conductor is prepared by tuning the interlayer interaction via importing planar and rigid triazine units into the center of C3‐symmetric monomers. This work provides a solution to the instability of imine‐linked COFs and contributes to the design and development of COF‐based energy‐related devices with proton‐transport systems. The development of effective, stable anhydrous proton‐conductive materials is vital but challenging. Covalent organic frameworks (COFs) are promising platforms for ion and molecule conduction owing to their pre‐designable structures and tailor‐made functionalities. However, their poor chemical stability is due to weak interlayer interactions and intrinsic reversibility of linkages. Herein, we present a strategy for enhancing the interlayer interactions of two‐dimensional COFs via importing planar, rigid triazine units into the center of C 3 ‐symmetric monomers. The developed triazine‐core‐based COF (denoted as TPT‐COF) possesses a well‐defined crystalline structure, ordered nanochannels, and prominent porosity. The proton conductivity was ≈10 times those of non‐triazinyl COFs, even reaching up to 1.27×10 −2 S cm −1 at 160 °C. Furthermore, the TPT‐COF exhibited structural ultrastability, making it an effective proton transport platform with remarkable conductivity and long‐term durability. The development of effective, stable anhydrous proton‐conductive materials is vital but challenging. Covalent organic frameworks (COFs) are promising platforms for ion and molecule conduction owing to their pre‐designable structures and tailor‐made functionalities. However, their poor chemical stability is due to weak interlayer interactions and intrinsic reversibility of linkages. Herein, we present a strategy for enhancing the interlayer interactions of two‐dimensional COFs via importing planar, rigid triazine units into the center of C3‐symmetric monomers. The developed triazine‐core‐based COF (denoted as TPT‐COF) possesses a well‐defined crystalline structure, ordered nanochannels, and prominent porosity. The proton conductivity was ≈10 times those of non‐triazinyl COFs, even reaching up to 1.27×10−2 S cm−1 at 160 °C. Furthermore, the TPT‐COF exhibited structural ultrastability, making it an effective proton transport platform with remarkable conductivity and long‐term durability. The development of effective, stable anhydrous proton-conductive materials is vital but challenging. Covalent organic frameworks (COFs) are promising platforms for ion and molecule conduction owing to their pre-designable structures and tailor-made functionalities. However, their poor chemical stability is due to weak interlayer interactions and intrinsic reversibility of linkages. Herein, we present a strategy for enhancing the interlayer interactions of two-dimensional COFs via importing planar, rigid triazine units into the center of C3 -symmetric monomers. The developed triazine-core-based COF (denoted as TPT-COF) possesses a well-defined crystalline structure, ordered nanochannels, and prominent porosity. The proton conductivity was ≈10 times those of non-triazinyl COFs, even reaching up to 1.27×10-2 S cm-1 at 160 °C. Furthermore, the TPT-COF exhibited structural ultrastability, making it an effective proton transport platform with remarkable conductivity and long-term durability.The development of effective, stable anhydrous proton-conductive materials is vital but challenging. Covalent organic frameworks (COFs) are promising platforms for ion and molecule conduction owing to their pre-designable structures and tailor-made functionalities. However, their poor chemical stability is due to weak interlayer interactions and intrinsic reversibility of linkages. Herein, we present a strategy for enhancing the interlayer interactions of two-dimensional COFs via importing planar, rigid triazine units into the center of C3 -symmetric monomers. The developed triazine-core-based COF (denoted as TPT-COF) possesses a well-defined crystalline structure, ordered nanochannels, and prominent porosity. The proton conductivity was ≈10 times those of non-triazinyl COFs, even reaching up to 1.27×10-2 S cm-1 at 160 °C. Furthermore, the TPT-COF exhibited structural ultrastability, making it an effective proton transport platform with remarkable conductivity and long-term durability. |
Author | Zou, Wenwu Wang, Xiujun Jiang, Guoxing Song, Huiyu Cui, Zhiming Liang, Zhenxing Zhang, Longhai Du, Li Ou, Zhaoyuan Zhang, Weifeng |
Author_xml | – sequence: 1 givenname: Guoxing orcidid: 0000-0001-7817-7736 surname: Jiang fullname: Jiang, Guoxing organization: South China University of Technology – sequence: 2 givenname: Wenwu surname: Zou fullname: Zou, Wenwu organization: South China University of Technology – sequence: 3 givenname: Zhaoyuan surname: Ou fullname: Ou, Zhaoyuan organization: South China University of Technology – sequence: 4 givenname: Longhai surname: Zhang fullname: Zhang, Longhai organization: South China University of Technology – sequence: 5 givenname: Weifeng surname: Zhang fullname: Zhang, Weifeng organization: South China University of Technology – sequence: 6 givenname: Xiujun surname: Wang fullname: Wang, Xiujun organization: South China University of Technology – sequence: 7 givenname: Huiyu surname: Song fullname: Song, Huiyu organization: South China University of Technology – sequence: 8 givenname: Zhiming surname: Cui fullname: Cui, Zhiming organization: South China University of Technology – sequence: 9 givenname: Zhenxing surname: Liang fullname: Liang, Zhenxing organization: South China University of Technology – sequence: 10 givenname: Li orcidid: 0000-0003-2394-0727 surname: Du fullname: Du, Li email: duli@scut.edu.cn organization: South China University of Technology |
BookMark | eNqFkc1rGzEQxUVJoPm69izIJZd19LEraY_GsVtDaHJwzkKr1SabypIzkhN87j9eGYcUAqWXmRH83ugx7xQdhRgcQt8omVBC2LUJo5swwhhRRIkv6IQ2jFZcSn5U5przSqqGfkWnKT0XXikiTtDv1TaM4RHnJ4eXITvwZufgMBqbxxgSjgNmN3gWX413IeM7eCxfWbwAs3ZvEX4lPA-m8y5hE_CDz2BS3r_xvTd5iLDGpeBpeNr1ELcJ30PMMeAVmJA2EfI5Oh6MT-7ivZ-hh8V8NftR3d59X86mt5WtqRBVp2zfMC6UYt0gW0Vb2nRdJxtKjShN1E7ylnU9NYTR3g7W0r6XlPSOtZwrfoauDns3EF-2LmW9HpN13pvgii_NhJKStrUgBb38hD7HLYTiTjNJip1GyLpQ9YGyEFMCN2g7ZrM_WrnB6DUlep-M3iejP5Ipsskn2QbGtYHdvwXtQfA2erf7D62nP5fzv9o_pnakjA |
CitedBy_id | crossref_primary_10_1039_D4TA05238B crossref_primary_10_1002_anie_202415454 crossref_primary_10_1016_j_desal_2024_118025 crossref_primary_10_1016_j_jechem_2023_04_002 crossref_primary_10_1021_acsami_4c15871 crossref_primary_10_1002_smll_202400541 crossref_primary_10_1002_aenm_202402556 crossref_primary_10_1002_adfm_202210473 crossref_primary_10_1021_acs_nanolett_4c01228 crossref_primary_10_1002_smll_202403772 crossref_primary_10_1021_jacs_4c14029 crossref_primary_10_1002_celc_202300569 crossref_primary_10_1002_ange_202300172 crossref_primary_10_1016_j_micromeso_2023_112971 crossref_primary_10_1021_acscatal_3c02796 crossref_primary_10_1021_acs_chemmater_3c02421 crossref_primary_10_1002_aic_18593 crossref_primary_10_1002_anie_202420333 crossref_primary_10_1016_j_foodchem_2024_139427 crossref_primary_10_1002_ange_202217240 crossref_primary_10_1016_j_saa_2024_124140 crossref_primary_10_1039_D3GC03851C crossref_primary_10_1002_smll_202409238 crossref_primary_10_1002_smll_202411954 crossref_primary_10_1039_D4TA00087K crossref_primary_10_1021_acsami_4c01241 crossref_primary_10_1021_acsapm_4c03047 crossref_primary_10_1016_j_memsci_2024_123250 crossref_primary_10_1039_D4CE00420E crossref_primary_10_1002_ange_202320218 crossref_primary_10_1007_s11426_023_1694_2 crossref_primary_10_1016_j_jcis_2023_04_017 crossref_primary_10_3390_inorganics11070283 crossref_primary_10_1002_cjoc_202400704 crossref_primary_10_1039_D4TA04384G crossref_primary_10_1002_adma_202303535 crossref_primary_10_1007_s40843_023_2685_5 crossref_primary_10_1002_chem_202302135 crossref_primary_10_1002_ange_202420333 crossref_primary_10_1002_anie_202217240 crossref_primary_10_1002_anie_202300172 crossref_primary_10_1002_ente_202400381 crossref_primary_10_1021_acscatal_3c04509 crossref_primary_10_1039_D3QM00782K crossref_primary_10_1093_chemle_upae191 crossref_primary_10_1016_j_memsci_2024_123119 crossref_primary_10_1002_adfm_202213642 crossref_primary_10_1021_jacs_2c11146 crossref_primary_10_1002_ejic_202400435 crossref_primary_10_1021_acsami_4c11008 crossref_primary_10_1016_j_polymer_2024_126980 crossref_primary_10_1038_s41467_023_43829_4 crossref_primary_10_1039_D3RA04855A crossref_primary_10_1038_s41467_024_50953_2 crossref_primary_10_1002_anie_202320218 crossref_primary_10_1002_adfm_202313844 crossref_primary_10_1007_s12039_024_02340_z crossref_primary_10_1021_acsami_3c19525 crossref_primary_10_1002_ange_202415454 crossref_primary_10_1002_chem_202302146 crossref_primary_10_1002_cjoc_202200664 crossref_primary_10_1016_j_electacta_2024_145112 crossref_primary_10_1002_agt2_687 crossref_primary_10_1016_j_seppur_2025_132582 crossref_primary_10_1021_acs_iecr_3c02384 crossref_primary_10_1039_D4TA00578C crossref_primary_10_1016_j_ccst_2025_100370 crossref_primary_10_1021_acsami_4c10408 crossref_primary_10_1016_j_surfin_2024_104967 crossref_primary_10_1021_acsami_2c20506 crossref_primary_10_1021_jacs_2c13655 crossref_primary_10_1007_s11426_023_1776_0 crossref_primary_10_1002_bte2_20230002 crossref_primary_10_1039_D3CE00607G crossref_primary_10_1021_acs_langmuir_3c01205 crossref_primary_10_1016_j_pmatsci_2025_101455 crossref_primary_10_1039_D4TA04342A crossref_primary_10_1002_advs_202400626 crossref_primary_10_1002_aenm_202303672 crossref_primary_10_1021_acscatal_4c06754 crossref_primary_10_1039_D3NJ03487A crossref_primary_10_1002_smll_202302456 |
Cites_doi | 10.1002/anie.201914424 10.1007/s11581-019-03250-8 10.1016/j.apenergy.2010.09.030 10.1002/ange.202101400 10.1021/ja308278w 10.1021/jacs.0c01990 10.1002/ange.202104870 10.1016/j.electacta.2019.135235 10.1002/ange.202104106 10.1021/acs.accounts.5b00369 10.1002/ange.201906976 10.1002/admi.202002191 10.1002/ange.201914424 10.1002/anie.201913802 10.1021/acsnano.1c05194 10.1039/C6QM00378H 10.1039/C6CC04523E 10.1002/anie.201904291 10.1038/nmat4611 10.1002/anie.202104106 10.1021/acs.chemrev.6b00159 10.1021/jacs.7b05182 10.1021/acsami.8b18891 10.1002/anie.201804753 10.1039/D1PY00776A 10.1039/C4CC07104B 10.1002/anie.202104375 10.1002/1521-3773(20020315)41:6<898::AID-ANIE898>3.0.CO;2-E 10.1021/acs.inorgchem.8b00806 10.1021/ef501977k 10.1017/CBO9780511524806 10.1039/D0TA04488A 10.1021/acsami.0c04002 10.1021/jacs.9b06080 10.1002/ange.201913802 10.1021/jacs.5b13490 10.1021/ja3100319 10.1038/s41467-021-22288-9 10.1002/chem.201801844 10.1002/ange.201904291 10.1021/cr200035s 10.1002/anie.201306775 10.1002/anie.201600087 10.1126/science.1120411 10.1016/j.jpowsour.2007.01.025 10.1002/aenm.202102300 10.1039/C2CS35072F 10.1002/ange.201804753 10.1002/ange.202104375 10.1038/nchem.2444 10.1021/acsnano.1c07178 10.1002/adfm.201701465 10.1021/acsami.6b06189 10.1021/jacs.8b08452 10.1038/s41467-020-15918-1 10.1021/acsami.9b19953 10.1016/j.ccr.2020.213465 10.1021/ja502212v 10.1002/ange.201306775 10.1039/D0SC03048A 10.1002/anie.201909554 10.1002/anie.202101400 10.1002/anie.202104870 10.1016/j.nanoen.2019.01.045 10.1021/acs.chemmater.5b04947 10.1039/C6CC02170K 10.1021/jacs.0c06474 10.1021/cr0207123 10.1002/ange.201600087 10.1002/ange.201909554 10.1021/jacs.0c13090 10.1002/anie.201906976 10.1021/acs.chemmater.8b03897 10.1021/cr4005499 10.1038/nchem.2352 10.1002/adma.202000730 10.1002/1521-3757(20020315)114:6<938::AID-ANGE938>3.0.CO;2-K |
ContentType | Journal Article |
Copyright | 2022 Wiley‐VCH GmbH 2022 Wiley-VCH GmbH. |
Copyright_xml | – notice: 2022 Wiley‐VCH GmbH – notice: 2022 Wiley-VCH GmbH. |
DBID | AAYXX CITATION 7TM K9. 7X8 |
DOI | 10.1002/anie.202208086 |
DatabaseName | CrossRef Nucleic Acids Abstracts ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic |
DatabaseTitle | CrossRef ProQuest Health & Medical Complete (Alumni) Nucleic Acids Abstracts MEDLINE - Academic |
DatabaseTitleList | CrossRef ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1521-3773 |
Edition | International ed. in English |
EndPage | n/a |
ExternalDocumentID | 10_1002_anie_202208086 ANIE202208086 |
Genre | article |
GrantInformation_xml | – fundername: Guangdong Basic and Applied Basic Research Foundation for Distinguished Young Scholar funderid: 2021B1515020025 – fundername: National Natural Science Foundation of China funderid: 21975080 – fundername: Guangzhou Applied Basic Research Foundation funderid: 202102080460 |
GroupedDBID | --- -DZ -~X .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5RE 5VS 66C 6TJ 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABLJU ABPPZ ABPVW ACAHQ ACCFJ ACCZN ACFBH ACGFS ACIWK ACNCT ACPOU ACPRK ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AEQDE AEUQT AEUYR AFBPY AFFNX AFFPM AFGKR AFPWT AFRAH AFWVQ AFZJQ AHBTC AHMBA AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BTSUX BY8 CS3 D-E D-F D0L DCZOG DPXWK DR1 DR2 DRFUL DRSTM EBS F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES M53 MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D PQQKQ Q.N Q11 QB0 QRW R.K RNS ROL RWI RX1 RYL SUPJJ TN5 UB1 UPT UQL V2E VQA W8V W99 WBFHL WBKPD WH7 WIB WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XSW XV2 YZZ ZZTAW ~IA ~KM ~WT AAYXX ABDBF ABJNI AEYWJ AGHNM AGYGG CITATION 7TM K9. 7X8 |
ID | FETCH-LOGICAL-c4166-b8cd5236882bf7981915bbb7511a6b7564e7392bd1a021dcfcc1dd710de293383 |
IEDL.DBID | DR2 |
ISSN | 1433-7851 1521-3773 |
IngestDate | Thu Jul 10 19:30:23 EDT 2025 Sun Jul 13 04:51:15 EDT 2025 Tue Jul 01 01:18:25 EDT 2025 Thu Apr 24 22:59:59 EDT 2025 Wed Jan 22 16:23:29 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 35 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4166-b8cd5236882bf7981915bbb7511a6b7564e7392bd1a021dcfcc1dd710de293383 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0003-2394-0727 0000-0001-7817-7736 |
PQID | 2704165674 |
PQPubID | 946352 |
PageCount | 9 |
ParticipantIDs | proquest_miscellaneous_2687719460 proquest_journals_2704165674 crossref_citationtrail_10_1002_anie_202208086 crossref_primary_10_1002_anie_202208086 wiley_primary_10_1002_anie_202208086_ANIE202208086 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | August 26, 2022 |
PublicationDateYYYYMMDD | 2022-08-26 |
PublicationDate_xml | – month: 08 year: 2022 text: August 26, 2022 day: 26 |
PublicationDecade | 2020 |
PublicationPlace | Weinheim |
PublicationPlace_xml | – name: Weinheim |
PublicationTitle | Angewandte Chemie International Edition |
PublicationYear | 2022 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2017; 1 2019; 11 2019; 58 2020 2020; 59 132 2020; 12 2020; 11 2014; 28 2014; 136 2017; 117 2013 2013; 52 125 2020; 8 2015; 48 2012; 134 2007; 172 2002 2002; 41 114 2018 2018; 57 130 2020; 331 2021; 8 2004; 104 2018; 140 2019; 31 2005; 310 2020; 142 2015; 51 2017; 27 2013; 42 2016; 52 1992 2020; 422 2020; 32 2021; 143 2019; 141 2016; 15 2015; 7 2014; 114 2019 2019; 58 131 2017; 139 2018; 24 2021; 15 2016 2016; 55 128 2021; 12 2012; 112 2021; 11 2021 2021; 60 133 2011; 88 2020; 26 2013; 135 2016; 138 2016; 28 2016; 8 2018; 57 e_1_2_7_5_2 e_1_2_7_3_1 e_1_2_7_9_2 e_1_2_7_7_1 e_1_2_7_19_2 e_1_2_7_60_1 e_1_2_7_83_1 e_1_2_7_17_2 e_1_2_7_15_2 e_1_2_7_60_2 e_1_2_7_81_2 e_1_2_7_41_1 e_1_2_7_64_1 e_1_2_7_1_1 e_1_2_7_13_2 e_1_2_7_62_2 e_1_2_7_66_1 e_1_2_7_43_2 e_1_2_7_11_1 e_1_2_7_45_1 e_1_2_7_68_1 e_1_2_7_45_2 e_1_2_7_47_2 e_1_2_7_26_2 e_1_2_7_49_1 e_1_2_7_28_2 e_1_2_7_71_2 e_1_2_7_73_1 e_1_2_7_50_2 e_1_2_7_25_2 e_1_2_7_75_2 e_1_2_7_52_1 e_1_2_7_75_3 e_1_2_7_23_2 e_1_2_7_31_2 e_1_2_7_54_2 e_1_2_7_33_2 e_1_2_7_21_1 e_1_2_7_33_3 e_1_2_7_56_1 e_1_2_7_35_2 e_1_2_7_58_2 e_1_2_7_77_2 e_1_2_7_37_1 e_1_2_7_79_1 e_1_2_7_39_2 e_1_2_7_39_3 e_1_2_7_4_2 e_1_2_7_8_2 e_1_2_7_6_2 e_1_2_7_18_1 e_1_2_7_16_2 e_1_2_7_80_2 e_1_2_7_61_1 e_1_2_7_82_1 e_1_2_7_2_1 e_1_2_7_40_2 e_1_2_7_63_2 e_1_2_7_14_1 e_1_2_7_12_2 e_1_2_7_42_2 e_1_2_7_63_3 e_1_2_7_65_1 e_1_2_7_44_2 e_1_2_7_10_1 e_1_2_7_46_1 e_1_2_7_67_1 e_1_2_7_69_1 e_1_2_7_48_2 e_1_2_7_27_2 e_1_2_7_27_3 e_1_2_7_29_1 e_1_2_7_72_2 e_1_2_7_70_1 e_1_2_7_51_3 e_1_2_7_76_1 e_1_2_7_30_2 e_1_2_7_51_2 e_1_2_7_24_1 e_1_2_7_53_3 e_1_2_7_72_3 e_1_2_7_22_2 e_1_2_7_32_2 e_1_2_7_53_2 e_1_2_7_74_2 e_1_2_7_32_3 e_1_2_7_55_3 e_1_2_7_78_3 e_1_2_7_20_2 e_1_2_7_34_2 e_1_2_7_55_2 e_1_2_7_36_1 e_1_2_7_57_2 e_1_2_7_78_2 e_1_2_7_38_2 e_1_2_7_59_2 |
References_xml | – volume: 27 year: 2017 publication-title: Adv. Funct. Mater. – volume: 59 132 start-page: 5050 5086 year: 2020 2020 end-page: 5091 5129 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 42 start-page: 548 year: 2013 end-page: 568 publication-title: Chem. Soc. Rev. – volume: 117 start-page: 987 year: 2017 end-page: 1104 publication-title: Chem. Rev. – volume: 135 start-page: 546 year: 2013 end-page: 549 publication-title: J. Am. Chem. Soc. – volume: 52 start-page: 10938 year: 2016 end-page: 10947 publication-title: Chem. Commun. – volume: 60 133 start-page: 13614 13726 year: 2021 2021 end-page: 13620 13732 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 59 132 start-page: 3678 3707 year: 2020 2020 end-page: 3684 3713 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 134 start-page: 19524 year: 2012 end-page: 19527 publication-title: J. Am. Chem. Soc. – volume: 12 start-page: 1982 year: 2021 publication-title: Nat. Commun. – volume: 52 125 start-page: 13052 13290 year: 2013 2013 end-page: 13056 13294 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 26 start-page: 831 year: 2020 end-page: 838 publication-title: Ionics – volume: 422 year: 2020 publication-title: Coord. Chem. Rev. – volume: 141 start-page: 14950 year: 2019 end-page: 14954 publication-title: J. Am. Chem. Soc. – volume: 139 start-page: 10079 year: 2017 end-page: 10086 publication-title: J. Am. Chem. Soc. – volume: 24 start-page: 10829 year: 2018 end-page: 10839 publication-title: Chem. Eur. J. – volume: 58 131 start-page: 15742 15889 year: 2019 2019 end-page: 15746 15893 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 11 start-page: 12647 year: 2020 end-page: 12654 publication-title: Chem. Sci. – volume: 41 114 start-page: 898 938 year: 2002 2002 end-page: 952 993 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 58 start-page: 293 year: 2019 end-page: 303 publication-title: Nano Energy – volume: 140 start-page: 16124 year: 2018 end-page: 16133 publication-title: J. Am. Chem. Soc. – volume: 142 start-page: 14357 year: 2020 end-page: 14364 publication-title: J. Am. Chem. Soc. – volume: 12 start-page: 22910 year: 2020 end-page: 22916 publication-title: ACS Appl. Mater. Interfaces – volume: 8 start-page: 13702 year: 2020 end-page: 13709 publication-title: J. Mater. Chem. A – volume: 11 year: 2021 publication-title: Adv. Energy Mater. – volume: 8 start-page: 310 year: 2016 end-page: 316 publication-title: Nat. Chem. – volume: 48 start-page: 3053 year: 2015 end-page: 3063 publication-title: Acc. Chem. Res. – volume: 60 133 start-page: 19797 19950 year: 2021 2021 end-page: 19803 19956 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 104 start-page: 4535 year: 2004 end-page: 4586 publication-title: Chem. Rev. – volume: 7 start-page: 905 year: 2015 end-page: 912 publication-title: Nat. Chem. – volume: 114 start-page: 12278 year: 2014 end-page: 12329 publication-title: Chem. Rev. – volume: 12 start-page: 8198 year: 2020 end-page: 8205 publication-title: ACS Appl. Mater. Interfaces – volume: 142 start-page: 8862 year: 2020 end-page: 8870 publication-title: J. Am. Chem. Soc. – volume: 11 start-page: 1713 year: 2019 end-page: 1722 publication-title: ACS Appl. Mater. Interfaces – volume: 60 133 start-page: 14875 15001 year: 2021 2021 end-page: 14880 15006 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 143 start-page: 5003 year: 2021 end-page: 5010 publication-title: J. Am. Chem. Soc. – volume: 172 start-page: 94 year: 2007 end-page: 99 publication-title: J. Power Sources – volume: 88 start-page: 981 year: 2011 end-page: 1007 publication-title: Appl. Energy – volume: 28 start-page: 1489 year: 2016 end-page: 1494 publication-title: Chem. Mater. – volume: 15 start-page: 19743 year: 2021 end-page: 19755 publication-title: ACS Nano – volume: 1 start-page: 1354 year: 2017 end-page: 1361 publication-title: Mater. Chem. Front. – volume: 31 start-page: 819 year: 2019 end-page: 825 publication-title: Chem. Mater. – volume: 60 133 start-page: 12918 13028 year: 2021 2021 end-page: 12923 13033 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 59 132 start-page: 6007 6063 year: 2020 2020 end-page: 6014 6070 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 11 start-page: 1981 year: 2020 publication-title: Nat. Commun. – volume: 310 start-page: 1166 year: 2005 end-page: 1170 publication-title: Science – year: 1992 – volume: 57 start-page: 7104 year: 2018 end-page: 7112 publication-title: Inorg. Chem. – volume: 15 start-page: 722 year: 2016 end-page: 726 publication-title: Nat. Mater. – volume: 12 start-page: 4874 year: 2021 end-page: 4894 publication-title: Polym. Chem. – volume: 15 start-page: 12723 year: 2021 end-page: 12740 publication-title: ACS Nano – volume: 28 start-page: 7303 year: 2014 end-page: 7330 publication-title: Energy Fuels – volume: 57 130 start-page: 10894 11060 year: 2018 2018 end-page: 10898 11064 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 8 year: 2021 publication-title: Adv. Mater. Interfaces – volume: 52 start-page: 7986 year: 2016 end-page: 7989 publication-title: Chem. Commun. – volume: 138 start-page: 5897 year: 2016 end-page: 5903 publication-title: J. Am. Chem. Soc. – volume: 32 year: 2020 publication-title: Adv. Mater. – volume: 58 131 start-page: 13753 13891 year: 2019 2019 end-page: 13757 13895 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 331 year: 2020 publication-title: Electrochim. Acta – volume: 8 start-page: 18505 year: 2016 end-page: 18512 publication-title: ACS Appl. Mater. Interfaces – volume: 136 start-page: 6570 year: 2014 end-page: 6573 publication-title: J. Am. Chem. Soc. – volume: 51 start-page: 310 year: 2015 end-page: 313 publication-title: Chem. Commun. – volume: 55 128 start-page: 7806 7937 year: 2016 2016 end-page: 7810 7941 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 112 start-page: 2780 year: 2012 end-page: 2832 publication-title: Chem. Rev. – ident: e_1_2_7_73_1 – ident: e_1_2_7_75_2 doi: 10.1002/anie.201914424 – ident: e_1_2_7_79_1 – ident: e_1_2_7_82_1 doi: 10.1007/s11581-019-03250-8 – ident: e_1_2_7_20_2 doi: 10.1016/j.apenergy.2010.09.030 – ident: e_1_2_7_51_3 doi: 10.1002/ange.202101400 – ident: e_1_2_7_57_2 doi: 10.1021/ja308278w – ident: e_1_2_7_44_2 doi: 10.1021/jacs.0c01990 – ident: e_1_2_7_78_3 doi: 10.1002/ange.202104870 – ident: e_1_2_7_83_1 doi: 10.1016/j.electacta.2019.135235 – ident: e_1_2_7_3_1 – ident: e_1_2_7_56_1 – ident: e_1_2_7_11_1 – ident: e_1_2_7_39_3 doi: 10.1002/ange.202104106 – ident: e_1_2_7_25_2 doi: 10.1021/acs.accounts.5b00369 – ident: e_1_2_7_53_3 doi: 10.1002/ange.201906976 – ident: e_1_2_7_67_1 doi: 10.1002/admi.202002191 – ident: e_1_2_7_52_1 – ident: e_1_2_7_75_3 doi: 10.1002/ange.201914424 – ident: e_1_2_7_33_2 doi: 10.1002/anie.201913802 – ident: e_1_2_7_71_2 doi: 10.1021/acsnano.1c05194 – ident: e_1_2_7_62_2 doi: 10.1039/C6QM00378H – ident: e_1_2_7_41_1 – ident: e_1_2_7_21_1 – ident: e_1_2_7_77_2 doi: 10.1039/C6CC04523E – ident: e_1_2_7_24_1 – ident: e_1_2_7_27_2 doi: 10.1002/anie.201904291 – ident: e_1_2_7_30_2 doi: 10.1038/nmat4611 – ident: e_1_2_7_39_2 doi: 10.1002/anie.202104106 – ident: e_1_2_7_46_1 – ident: e_1_2_7_49_1 – ident: e_1_2_7_15_2 doi: 10.1021/acs.chemrev.6b00159 – ident: e_1_2_7_31_2 doi: 10.1021/jacs.7b05182 – ident: e_1_2_7_4_2 doi: 10.1021/acsami.8b18891 – ident: e_1_2_7_45_1 doi: 10.1002/anie.201804753 – ident: e_1_2_7_10_1 doi: 10.1039/D1PY00776A – ident: e_1_2_7_64_1 doi: 10.1039/C4CC07104B – ident: e_1_2_7_55_2 doi: 10.1002/anie.202104375 – ident: e_1_2_7_60_1 doi: 10.1002/1521-3773(20020315)41:6<898::AID-ANIE898>3.0.CO;2-E – ident: e_1_2_7_6_2 doi: 10.1021/acs.inorgchem.8b00806 – ident: e_1_2_7_16_2 doi: 10.1021/ef501977k – ident: e_1_2_7_1_1 doi: 10.1017/CBO9780511524806 – ident: e_1_2_7_48_2 doi: 10.1039/D0TA04488A – ident: e_1_2_7_47_2 doi: 10.1021/acsami.0c04002 – ident: e_1_2_7_76_1 – ident: e_1_2_7_37_1 – ident: e_1_2_7_40_2 doi: 10.1021/jacs.9b06080 – ident: e_1_2_7_33_3 doi: 10.1002/ange.201913802 – ident: e_1_2_7_42_2 doi: 10.1021/jacs.5b13490 – ident: e_1_2_7_66_1 doi: 10.1021/ja3100319 – ident: e_1_2_7_70_1 – ident: e_1_2_7_29_1 – ident: e_1_2_7_54_2 doi: 10.1038/s41467-021-22288-9 – ident: e_1_2_7_5_2 doi: 10.1002/chem.201801844 – ident: e_1_2_7_14_1 – ident: e_1_2_7_27_3 doi: 10.1002/ange.201904291 – ident: e_1_2_7_13_2 doi: 10.1021/cr200035s – ident: e_1_2_7_63_2 doi: 10.1002/anie.201306775 – ident: e_1_2_7_72_2 doi: 10.1002/anie.201600087 – ident: e_1_2_7_28_2 doi: 10.1126/science.1120411 – ident: e_1_2_7_12_2 doi: 10.1016/j.jpowsour.2007.01.025 – ident: e_1_2_7_7_1 – ident: e_1_2_7_23_2 doi: 10.1002/aenm.202102300 – ident: e_1_2_7_26_2 doi: 10.1039/C2CS35072F – ident: e_1_2_7_45_2 doi: 10.1002/ange.201804753 – ident: e_1_2_7_55_3 doi: 10.1002/ange.202104375 – ident: e_1_2_7_74_2 doi: 10.1038/nchem.2444 – ident: e_1_2_7_35_2 doi: 10.1021/acsnano.1c07178 – ident: e_1_2_7_9_2 doi: 10.1002/adfm.201701465 – ident: e_1_2_7_38_2 doi: 10.1021/acsami.6b06189 – ident: e_1_2_7_65_1 doi: 10.1021/jacs.8b08452 – ident: e_1_2_7_36_1 doi: 10.1038/s41467-020-15918-1 – ident: e_1_2_7_59_2 doi: 10.1021/acsami.9b19953 – ident: e_1_2_7_22_2 doi: 10.1016/j.ccr.2020.213465 – ident: e_1_2_7_58_2 doi: 10.1021/ja502212v – ident: e_1_2_7_63_3 doi: 10.1002/ange.201306775 – ident: e_1_2_7_68_1 doi: 10.1039/D0SC03048A – ident: e_1_2_7_32_2 doi: 10.1002/anie.201909554 – ident: e_1_2_7_51_2 doi: 10.1002/anie.202101400 – ident: e_1_2_7_78_2 doi: 10.1002/anie.202104870 – ident: e_1_2_7_2_1 doi: 10.1016/j.nanoen.2019.01.045 – ident: e_1_2_7_50_2 doi: 10.1021/acs.chemmater.5b04947 – ident: e_1_2_7_81_2 doi: 10.1039/C6CC02170K – ident: e_1_2_7_34_2 doi: 10.1021/jacs.0c06474 – ident: e_1_2_7_17_2 doi: 10.1021/cr0207123 – ident: e_1_2_7_61_1 – ident: e_1_2_7_72_3 doi: 10.1002/ange.201600087 – ident: e_1_2_7_32_3 doi: 10.1002/ange.201909554 – ident: e_1_2_7_18_1 – ident: e_1_2_7_69_1 doi: 10.1021/jacs.0c13090 – ident: e_1_2_7_53_2 doi: 10.1002/anie.201906976 – ident: e_1_2_7_43_2 doi: 10.1021/acs.chemmater.8b03897 – ident: e_1_2_7_19_2 doi: 10.1021/cr4005499 – ident: e_1_2_7_80_2 doi: 10.1038/nchem.2352 – ident: e_1_2_7_8_2 doi: 10.1002/adma.202000730 – ident: e_1_2_7_60_2 doi: 10.1002/1521-3757(20020315)114:6<938::AID-ANGE938>3.0.CO;2-K |
SSID | ssj0028806 |
Score | 2.644884 |
Snippet | The development of effective, stable anhydrous proton‐conductive materials is vital but challenging. Covalent organic frameworks (COFs) are promising platforms... The development of effective, stable anhydrous proton-conductive materials is vital but challenging. Covalent organic frameworks (COFs) are promising platforms... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | e202208086 |
SubjectTerms | Anhydrous Proton Conduction Conductivity Covalent Organic Frameworks (COFs) Interlayer Interaction Interlayers Monomers Nanochannels Porosity Protons Stability Triazine Triazine Unit |
Title | Tuning the Interlayer Interactions of 2D Covalent Organic Frameworks Enables an Ultrastable Platform for Anhydrous Proton Transport |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fanie.202208086 https://www.proquest.com/docview/2704165674 https://www.proquest.com/docview/2687719460 |
Volume | 61 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ3fi9pAEMeX4kv70h_XltraYwqFPq3GNdlNHsUqXqEiRcG3sD8SCpWkmPhw99p_vDNZkzsLx8H1xSQkIXF31vnMuPNdxj7nSWRiYROeh_GEh26ScaO04k4FxrjIoUukhP73lVxuw2-7aHenit_rQ3QJNxoZze81DXBtqtGtaChVYGN8JwQyT0ya2zRhi6joR6cfJdA4fXnRZMJpFfpWtTEQo_Pbz73SLWreBdbG4yxeMN2-q59o8mt4rM3Q3vwj4_g_X-Yle37CUZh6-3nFnmTFBXs6a1eBe83-bI6UOQHkRGiyh3uNkO53fU1EBWUO4ivMSjRadGHgyzstLNp5XxXMmwqtCnQB23190IikeAzrva4JmgE_YFr8vHaH8ljB-lAikUKnu_6GbRfzzWzJTws3cIt8J7mJrcMAVyK9m1wlFBNGxhiFcKclbmSYKeQy48YaEcPZ3Nqxc8g6LkP6wJj5LesVZZG9Y2CtyySajAwxFNUBugkX5CJRSeBEIuK8z3jbcak9qZrT4hr71Osxi5SaNu2ats--dNf_9noe9145aO0gPY3rKhUqCEmvSIV99qk7jV1Cf7PoIsNGSoWMlRonoQz6TDSd_sCT0unqat4dvX_MTR_YM9qnZLeQA9arD8fsI9JSbS6bEfEXhFYNtA |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ1Nb9NAEIZHpRzKBUoBkVJgkSr1tK2zcXbtY5QmSksbVVUicVvthy0kIhvFzoFe-ePMeGOXVkJIcEnixFaS3dnMM5OddwCO83RoE-FSnsfJgMd-kHGrjOJeRdb6oUeXSAn967mcLePLL8N2NyHVwgR9iC7hRiuj-b2mBU4J6bN71VAqwcYATwiEnkQ-gafU1puaGJzfdgpSAs0zFBgNBpz60Le6jZE4e3j9Q790D5u_I2vjc6YvwLafNmw1-Xa6qe2pu3sk5PhfX2cfnm-JlI2CCb2Enaw4gL1x2wjuFfxcbCh5whAVWZNAXBnk9PAwlEVUrMyZOGfjEu0WvRgLFZ6OTdutXxWbNEVaFTMFW67qtUEqxWN2szI1cTPDGzYqvv7w63JTsZt1iVDKOun117CcThbjGd_2buAOEU9ymziPMa5EgLe5SiksHFprFfKdkXgn40whmlnfN0gZ3uXO9b1H3PEZAgiGzW9gtyiL7C0w53wm0WpkjNGoidBT-CgXqUojL1KR5D3g7cxptxU2p_4aKx0kmYWmodXd0PbgpDv_e5D0-OOZR60h6O3SrrRQUUySRSruwafuZZwS-qfFFBkOkhYyUaqfxjLqgWhm_S_vpEfzi0l3dPgvF32Evdni-kpfXcw_v4Nn9DzlvoU8gt16vcneIzzV9kOzPH4BVA8Rzg |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ3La9tAEIeHNIG2lzZ9Ubd5TKHQ0ybyWt6VjsaxSdLWmBJDbss-JAI1UrDkQ3LtP95ZraUkhVBoL7ZlS1jenfF8M9L8FuBzng5Nwm3K8jgZsNgNMmaklszJyBg3dBQSfUH_-0ycLuLzy-HlvS7-oA_RFdy8ZzT_197Br11-fCca6juwKb_jnJgnEU9gJxbkMR6LfnQCUpysM_QXDQbML0PfyjZG_Pjh8Q_D0h1r3ifWJuRMX4JuTzbcafLzaF2bI3v7h47j__yaXXix4VEcBQN6BVtZ8Rqejdtl4N7Ar4u1L50ggSI25cOlJkoPL0NTRIVljvwExyVZLcUwDP2dFqftjV8VTpoWrQp1gYtlvdLEpLSN86WuPTUjPeCouLpxq3Jd4XxVEpJiJ7z-FhbTycX4lG1WbmCWAE8wk1hHGa4gfDe5TH1SODTGSKI7LehJxJkkMDOur4kxnM2t7TtHsOMywg9Kmt_BdlEW2XtAa10myGZETLmojihOuCjnqUwjx1Oe5D1g7cQpu5E196trLFUQZObKD63qhrYHX7r9r4Ogx6N77rV2oDaOXSkuo9gLFsm4B5-6j2lK_HUWXWQ0SIqLRMp-SvbYA95M-l--SY1mZ5Nu68O_HHQIT-cnU_XtbPb1Izz3b_vCNxd7sF2v1tk-kVNtDhrn-A0qSRCG |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Tuning+the+Interlayer+Interactions+of+2D+Covalent+Organic+Frameworks+Enables+an+Ultrastable+Platform+for+Anhydrous+Proton+Transport&rft.jtitle=Angewandte+Chemie+International+Edition&rft.au=Jiang%2C+Guoxing&rft.au=Zou%2C+Wenwu&rft.au=Ou%2C+Zhaoyuan&rft.au=Zhang%2C+Longhai&rft.date=2022-08-26&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=1433-7851&rft.eissn=1521-3773&rft.volume=61&rft.issue=35&rft_id=info:doi/10.1002%2Fanie.202208086&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1433-7851&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1433-7851&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1433-7851&client=summon |