Tuning the Interlayer Interactions of 2D Covalent Organic Frameworks Enables an Ultrastable Platform for Anhydrous Proton Transport

The development of effective, stable anhydrous proton‐conductive materials is vital but challenging. Covalent organic frameworks (COFs) are promising platforms for ion and molecule conduction owing to their pre‐designable structures and tailor‐made functionalities. However, their poor chemical stabi...

Full description

Saved in:
Bibliographic Details
Published inAngewandte Chemie International Edition Vol. 61; no. 35; pp. e202208086 - n/a
Main Authors Jiang, Guoxing, Zou, Wenwu, Ou, Zhaoyuan, Zhang, Longhai, Zhang, Weifeng, Wang, Xiujun, Song, Huiyu, Cui, Zhiming, Liang, Zhenxing, Du, Li
Format Journal Article
LanguageEnglish
Published Weinheim Wiley Subscription Services, Inc 26.08.2022
EditionInternational ed. in English
Subjects
Online AccessGet full text
ISSN1433-7851
1521-3773
1521-3773
DOI10.1002/anie.202208086

Cover

Loading…
Abstract The development of effective, stable anhydrous proton‐conductive materials is vital but challenging. Covalent organic frameworks (COFs) are promising platforms for ion and molecule conduction owing to their pre‐designable structures and tailor‐made functionalities. However, their poor chemical stability is due to weak interlayer interactions and intrinsic reversibility of linkages. Herein, we present a strategy for enhancing the interlayer interactions of two‐dimensional COFs via importing planar, rigid triazine units into the center of C3‐symmetric monomers. The developed triazine‐core‐based COF (denoted as TPT‐COF) possesses a well‐defined crystalline structure, ordered nanochannels, and prominent porosity. The proton conductivity was ≈10 times those of non‐triazinyl COFs, even reaching up to 1.27×10−2 S cm−1 at 160 °C. Furthermore, the TPT‐COF exhibited structural ultrastability, making it an effective proton transport platform with remarkable conductivity and long‐term durability. An ultrastable and anhydrous covalent organic framework (COF)‐based proton conductor is prepared by tuning the interlayer interaction via importing planar and rigid triazine units into the center of C3‐symmetric monomers. This work provides a solution to the instability of imine‐linked COFs and contributes to the design and development of COF‐based energy‐related devices with proton‐transport systems.
AbstractList The development of effective, stable anhydrous proton‐conductive materials is vital but challenging. Covalent organic frameworks (COFs) are promising platforms for ion and molecule conduction owing to their pre‐designable structures and tailor‐made functionalities. However, their poor chemical stability is due to weak interlayer interactions and intrinsic reversibility of linkages. Herein, we present a strategy for enhancing the interlayer interactions of two‐dimensional COFs via importing planar, rigid triazine units into the center of C3‐symmetric monomers. The developed triazine‐core‐based COF (denoted as TPT‐COF) possesses a well‐defined crystalline structure, ordered nanochannels, and prominent porosity. The proton conductivity was ≈10 times those of non‐triazinyl COFs, even reaching up to 1.27×10−2 S cm−1 at 160 °C. Furthermore, the TPT‐COF exhibited structural ultrastability, making it an effective proton transport platform with remarkable conductivity and long‐term durability. An ultrastable and anhydrous covalent organic framework (COF)‐based proton conductor is prepared by tuning the interlayer interaction via importing planar and rigid triazine units into the center of C3‐symmetric monomers. This work provides a solution to the instability of imine‐linked COFs and contributes to the design and development of COF‐based energy‐related devices with proton‐transport systems.
The development of effective, stable anhydrous proton‐conductive materials is vital but challenging. Covalent organic frameworks (COFs) are promising platforms for ion and molecule conduction owing to their pre‐designable structures and tailor‐made functionalities. However, their poor chemical stability is due to weak interlayer interactions and intrinsic reversibility of linkages. Herein, we present a strategy for enhancing the interlayer interactions of two‐dimensional COFs via importing planar, rigid triazine units into the center of C 3 ‐symmetric monomers. The developed triazine‐core‐based COF (denoted as TPT‐COF) possesses a well‐defined crystalline structure, ordered nanochannels, and prominent porosity. The proton conductivity was ≈10 times those of non‐triazinyl COFs, even reaching up to 1.27×10 −2  S cm −1 at 160 °C. Furthermore, the TPT‐COF exhibited structural ultrastability, making it an effective proton transport platform with remarkable conductivity and long‐term durability.
The development of effective, stable anhydrous proton‐conductive materials is vital but challenging. Covalent organic frameworks (COFs) are promising platforms for ion and molecule conduction owing to their pre‐designable structures and tailor‐made functionalities. However, their poor chemical stability is due to weak interlayer interactions and intrinsic reversibility of linkages. Herein, we present a strategy for enhancing the interlayer interactions of two‐dimensional COFs via importing planar, rigid triazine units into the center of C3‐symmetric monomers. The developed triazine‐core‐based COF (denoted as TPT‐COF) possesses a well‐defined crystalline structure, ordered nanochannels, and prominent porosity. The proton conductivity was ≈10 times those of non‐triazinyl COFs, even reaching up to 1.27×10−2 S cm−1 at 160 °C. Furthermore, the TPT‐COF exhibited structural ultrastability, making it an effective proton transport platform with remarkable conductivity and long‐term durability.
The development of effective, stable anhydrous proton-conductive materials is vital but challenging. Covalent organic frameworks (COFs) are promising platforms for ion and molecule conduction owing to their pre-designable structures and tailor-made functionalities. However, their poor chemical stability is due to weak interlayer interactions and intrinsic reversibility of linkages. Herein, we present a strategy for enhancing the interlayer interactions of two-dimensional COFs via importing planar, rigid triazine units into the center of C3 -symmetric monomers. The developed triazine-core-based COF (denoted as TPT-COF) possesses a well-defined crystalline structure, ordered nanochannels, and prominent porosity. The proton conductivity was ≈10 times those of non-triazinyl COFs, even reaching up to 1.27×10-2  S cm-1 at 160 °C. Furthermore, the TPT-COF exhibited structural ultrastability, making it an effective proton transport platform with remarkable conductivity and long-term durability.The development of effective, stable anhydrous proton-conductive materials is vital but challenging. Covalent organic frameworks (COFs) are promising platforms for ion and molecule conduction owing to their pre-designable structures and tailor-made functionalities. However, their poor chemical stability is due to weak interlayer interactions and intrinsic reversibility of linkages. Herein, we present a strategy for enhancing the interlayer interactions of two-dimensional COFs via importing planar, rigid triazine units into the center of C3 -symmetric monomers. The developed triazine-core-based COF (denoted as TPT-COF) possesses a well-defined crystalline structure, ordered nanochannels, and prominent porosity. The proton conductivity was ≈10 times those of non-triazinyl COFs, even reaching up to 1.27×10-2  S cm-1 at 160 °C. Furthermore, the TPT-COF exhibited structural ultrastability, making it an effective proton transport platform with remarkable conductivity and long-term durability.
Author Zou, Wenwu
Wang, Xiujun
Jiang, Guoxing
Song, Huiyu
Cui, Zhiming
Liang, Zhenxing
Zhang, Longhai
Du, Li
Ou, Zhaoyuan
Zhang, Weifeng
Author_xml – sequence: 1
  givenname: Guoxing
  orcidid: 0000-0001-7817-7736
  surname: Jiang
  fullname: Jiang, Guoxing
  organization: South China University of Technology
– sequence: 2
  givenname: Wenwu
  surname: Zou
  fullname: Zou, Wenwu
  organization: South China University of Technology
– sequence: 3
  givenname: Zhaoyuan
  surname: Ou
  fullname: Ou, Zhaoyuan
  organization: South China University of Technology
– sequence: 4
  givenname: Longhai
  surname: Zhang
  fullname: Zhang, Longhai
  organization: South China University of Technology
– sequence: 5
  givenname: Weifeng
  surname: Zhang
  fullname: Zhang, Weifeng
  organization: South China University of Technology
– sequence: 6
  givenname: Xiujun
  surname: Wang
  fullname: Wang, Xiujun
  organization: South China University of Technology
– sequence: 7
  givenname: Huiyu
  surname: Song
  fullname: Song, Huiyu
  organization: South China University of Technology
– sequence: 8
  givenname: Zhiming
  surname: Cui
  fullname: Cui, Zhiming
  organization: South China University of Technology
– sequence: 9
  givenname: Zhenxing
  surname: Liang
  fullname: Liang, Zhenxing
  organization: South China University of Technology
– sequence: 10
  givenname: Li
  orcidid: 0000-0003-2394-0727
  surname: Du
  fullname: Du, Li
  email: duli@scut.edu.cn
  organization: South China University of Technology
BookMark eNqFkc1rGzEQxUVJoPm69izIJZd19LEraY_GsVtDaHJwzkKr1SabypIzkhN87j9eGYcUAqWXmRH83ugx7xQdhRgcQt8omVBC2LUJo5swwhhRRIkv6IQ2jFZcSn5U5przSqqGfkWnKT0XXikiTtDv1TaM4RHnJ4eXITvwZufgMBqbxxgSjgNmN3gWX413IeM7eCxfWbwAs3ZvEX4lPA-m8y5hE_CDz2BS3r_xvTd5iLDGpeBpeNr1ELcJ30PMMeAVmJA2EfI5Oh6MT-7ivZ-hh8V8NftR3d59X86mt5WtqRBVp2zfMC6UYt0gW0Vb2nRdJxtKjShN1E7ylnU9NYTR3g7W0r6XlPSOtZwrfoauDns3EF-2LmW9HpN13pvgii_NhJKStrUgBb38hD7HLYTiTjNJip1GyLpQ9YGyEFMCN2g7ZrM_WrnB6DUlep-M3iejP5Ipsskn2QbGtYHdvwXtQfA2erf7D62nP5fzv9o_pnakjA
CitedBy_id crossref_primary_10_1039_D4TA05238B
crossref_primary_10_1002_anie_202415454
crossref_primary_10_1016_j_desal_2024_118025
crossref_primary_10_1016_j_jechem_2023_04_002
crossref_primary_10_1021_acsami_4c15871
crossref_primary_10_1002_smll_202400541
crossref_primary_10_1002_aenm_202402556
crossref_primary_10_1002_adfm_202210473
crossref_primary_10_1021_acs_nanolett_4c01228
crossref_primary_10_1002_smll_202403772
crossref_primary_10_1021_jacs_4c14029
crossref_primary_10_1002_celc_202300569
crossref_primary_10_1002_ange_202300172
crossref_primary_10_1016_j_micromeso_2023_112971
crossref_primary_10_1021_acscatal_3c02796
crossref_primary_10_1021_acs_chemmater_3c02421
crossref_primary_10_1002_aic_18593
crossref_primary_10_1002_anie_202420333
crossref_primary_10_1016_j_foodchem_2024_139427
crossref_primary_10_1002_ange_202217240
crossref_primary_10_1016_j_saa_2024_124140
crossref_primary_10_1039_D3GC03851C
crossref_primary_10_1002_smll_202409238
crossref_primary_10_1002_smll_202411954
crossref_primary_10_1039_D4TA00087K
crossref_primary_10_1021_acsami_4c01241
crossref_primary_10_1021_acsapm_4c03047
crossref_primary_10_1016_j_memsci_2024_123250
crossref_primary_10_1039_D4CE00420E
crossref_primary_10_1002_ange_202320218
crossref_primary_10_1007_s11426_023_1694_2
crossref_primary_10_1016_j_jcis_2023_04_017
crossref_primary_10_3390_inorganics11070283
crossref_primary_10_1002_cjoc_202400704
crossref_primary_10_1039_D4TA04384G
crossref_primary_10_1002_adma_202303535
crossref_primary_10_1007_s40843_023_2685_5
crossref_primary_10_1002_chem_202302135
crossref_primary_10_1002_ange_202420333
crossref_primary_10_1002_anie_202217240
crossref_primary_10_1002_anie_202300172
crossref_primary_10_1002_ente_202400381
crossref_primary_10_1021_acscatal_3c04509
crossref_primary_10_1039_D3QM00782K
crossref_primary_10_1093_chemle_upae191
crossref_primary_10_1016_j_memsci_2024_123119
crossref_primary_10_1002_adfm_202213642
crossref_primary_10_1021_jacs_2c11146
crossref_primary_10_1002_ejic_202400435
crossref_primary_10_1021_acsami_4c11008
crossref_primary_10_1016_j_polymer_2024_126980
crossref_primary_10_1038_s41467_023_43829_4
crossref_primary_10_1039_D3RA04855A
crossref_primary_10_1038_s41467_024_50953_2
crossref_primary_10_1002_anie_202320218
crossref_primary_10_1002_adfm_202313844
crossref_primary_10_1007_s12039_024_02340_z
crossref_primary_10_1021_acsami_3c19525
crossref_primary_10_1002_ange_202415454
crossref_primary_10_1002_chem_202302146
crossref_primary_10_1002_cjoc_202200664
crossref_primary_10_1016_j_electacta_2024_145112
crossref_primary_10_1002_agt2_687
crossref_primary_10_1016_j_seppur_2025_132582
crossref_primary_10_1021_acs_iecr_3c02384
crossref_primary_10_1039_D4TA00578C
crossref_primary_10_1016_j_ccst_2025_100370
crossref_primary_10_1021_acsami_4c10408
crossref_primary_10_1016_j_surfin_2024_104967
crossref_primary_10_1021_acsami_2c20506
crossref_primary_10_1021_jacs_2c13655
crossref_primary_10_1007_s11426_023_1776_0
crossref_primary_10_1002_bte2_20230002
crossref_primary_10_1039_D3CE00607G
crossref_primary_10_1021_acs_langmuir_3c01205
crossref_primary_10_1016_j_pmatsci_2025_101455
crossref_primary_10_1039_D4TA04342A
crossref_primary_10_1002_advs_202400626
crossref_primary_10_1002_aenm_202303672
crossref_primary_10_1021_acscatal_4c06754
crossref_primary_10_1039_D3NJ03487A
crossref_primary_10_1002_smll_202302456
Cites_doi 10.1002/anie.201914424
10.1007/s11581-019-03250-8
10.1016/j.apenergy.2010.09.030
10.1002/ange.202101400
10.1021/ja308278w
10.1021/jacs.0c01990
10.1002/ange.202104870
10.1016/j.electacta.2019.135235
10.1002/ange.202104106
10.1021/acs.accounts.5b00369
10.1002/ange.201906976
10.1002/admi.202002191
10.1002/ange.201914424
10.1002/anie.201913802
10.1021/acsnano.1c05194
10.1039/C6QM00378H
10.1039/C6CC04523E
10.1002/anie.201904291
10.1038/nmat4611
10.1002/anie.202104106
10.1021/acs.chemrev.6b00159
10.1021/jacs.7b05182
10.1021/acsami.8b18891
10.1002/anie.201804753
10.1039/D1PY00776A
10.1039/C4CC07104B
10.1002/anie.202104375
10.1002/1521-3773(20020315)41:6<898::AID-ANIE898>3.0.CO;2-E
10.1021/acs.inorgchem.8b00806
10.1021/ef501977k
10.1017/CBO9780511524806
10.1039/D0TA04488A
10.1021/acsami.0c04002
10.1021/jacs.9b06080
10.1002/ange.201913802
10.1021/jacs.5b13490
10.1021/ja3100319
10.1038/s41467-021-22288-9
10.1002/chem.201801844
10.1002/ange.201904291
10.1021/cr200035s
10.1002/anie.201306775
10.1002/anie.201600087
10.1126/science.1120411
10.1016/j.jpowsour.2007.01.025
10.1002/aenm.202102300
10.1039/C2CS35072F
10.1002/ange.201804753
10.1002/ange.202104375
10.1038/nchem.2444
10.1021/acsnano.1c07178
10.1002/adfm.201701465
10.1021/acsami.6b06189
10.1021/jacs.8b08452
10.1038/s41467-020-15918-1
10.1021/acsami.9b19953
10.1016/j.ccr.2020.213465
10.1021/ja502212v
10.1002/ange.201306775
10.1039/D0SC03048A
10.1002/anie.201909554
10.1002/anie.202101400
10.1002/anie.202104870
10.1016/j.nanoen.2019.01.045
10.1021/acs.chemmater.5b04947
10.1039/C6CC02170K
10.1021/jacs.0c06474
10.1021/cr0207123
10.1002/ange.201600087
10.1002/ange.201909554
10.1021/jacs.0c13090
10.1002/anie.201906976
10.1021/acs.chemmater.8b03897
10.1021/cr4005499
10.1038/nchem.2352
10.1002/adma.202000730
10.1002/1521-3757(20020315)114:6<938::AID-ANGE938>3.0.CO;2-K
ContentType Journal Article
Copyright 2022 Wiley‐VCH GmbH
2022 Wiley-VCH GmbH.
Copyright_xml – notice: 2022 Wiley‐VCH GmbH
– notice: 2022 Wiley-VCH GmbH.
DBID AAYXX
CITATION
7TM
K9.
7X8
DOI 10.1002/anie.202208086
DatabaseName CrossRef
Nucleic Acids Abstracts
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
DatabaseTitle CrossRef
ProQuest Health & Medical Complete (Alumni)
Nucleic Acids Abstracts
MEDLINE - Academic
DatabaseTitleList
CrossRef
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1521-3773
Edition International ed. in English
EndPage n/a
ExternalDocumentID 10_1002_anie_202208086
ANIE202208086
Genre article
GrantInformation_xml – fundername: Guangdong Basic and Applied Basic Research Foundation for Distinguished Young Scholar
  funderid: 2021B1515020025
– fundername: National Natural Science Foundation of China
  funderid: 21975080
– fundername: Guangzhou Applied Basic Research Foundation
  funderid: 202102080460
GroupedDBID ---
-DZ
-~X
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5RE
5VS
66C
6TJ
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABLJU
ABPPZ
ABPVW
ACAHQ
ACCFJ
ACCZN
ACFBH
ACGFS
ACIWK
ACNCT
ACPOU
ACPRK
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AEQDE
AEUQT
AEUYR
AFBPY
AFFNX
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AFZJQ
AHBTC
AHMBA
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BTSUX
BY8
CS3
D-E
D-F
D0L
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
M53
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RX1
RYL
SUPJJ
TN5
UB1
UPT
UQL
V2E
VQA
W8V
W99
WBFHL
WBKPD
WH7
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XSW
XV2
YZZ
ZZTAW
~IA
~KM
~WT
AAYXX
ABDBF
ABJNI
AEYWJ
AGHNM
AGYGG
CITATION
7TM
K9.
7X8
ID FETCH-LOGICAL-c4166-b8cd5236882bf7981915bbb7511a6b7564e7392bd1a021dcfcc1dd710de293383
IEDL.DBID DR2
ISSN 1433-7851
1521-3773
IngestDate Thu Jul 10 19:30:23 EDT 2025
Sun Jul 13 04:51:15 EDT 2025
Tue Jul 01 01:18:25 EDT 2025
Thu Apr 24 22:59:59 EDT 2025
Wed Jan 22 16:23:29 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 35
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4166-b8cd5236882bf7981915bbb7511a6b7564e7392bd1a021dcfcc1dd710de293383
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-2394-0727
0000-0001-7817-7736
PQID 2704165674
PQPubID 946352
PageCount 9
ParticipantIDs proquest_miscellaneous_2687719460
proquest_journals_2704165674
crossref_citationtrail_10_1002_anie_202208086
crossref_primary_10_1002_anie_202208086
wiley_primary_10_1002_anie_202208086_ANIE202208086
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate August 26, 2022
PublicationDateYYYYMMDD 2022-08-26
PublicationDate_xml – month: 08
  year: 2022
  text: August 26, 2022
  day: 26
PublicationDecade 2020
PublicationPlace Weinheim
PublicationPlace_xml – name: Weinheim
PublicationTitle Angewandte Chemie International Edition
PublicationYear 2022
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2017; 1
2019; 11
2019; 58
2020 2020; 59 132
2020; 12
2020; 11
2014; 28
2014; 136
2017; 117
2013 2013; 52 125
2020; 8
2015; 48
2012; 134
2007; 172
2002 2002; 41 114
2018 2018; 57 130
2020; 331
2021; 8
2004; 104
2018; 140
2019; 31
2005; 310
2020; 142
2015; 51
2017; 27
2013; 42
2016; 52
1992
2020; 422
2020; 32
2021; 143
2019; 141
2016; 15
2015; 7
2014; 114
2019 2019; 58 131
2017; 139
2018; 24
2021; 15
2016 2016; 55 128
2021; 12
2012; 112
2021; 11
2021 2021; 60 133
2011; 88
2020; 26
2013; 135
2016; 138
2016; 28
2016; 8
2018; 57
e_1_2_7_5_2
e_1_2_7_3_1
e_1_2_7_9_2
e_1_2_7_7_1
e_1_2_7_19_2
e_1_2_7_60_1
e_1_2_7_83_1
e_1_2_7_17_2
e_1_2_7_15_2
e_1_2_7_60_2
e_1_2_7_81_2
e_1_2_7_41_1
e_1_2_7_64_1
e_1_2_7_1_1
e_1_2_7_13_2
e_1_2_7_62_2
e_1_2_7_66_1
e_1_2_7_43_2
e_1_2_7_11_1
e_1_2_7_45_1
e_1_2_7_68_1
e_1_2_7_45_2
e_1_2_7_47_2
e_1_2_7_26_2
e_1_2_7_49_1
e_1_2_7_28_2
e_1_2_7_71_2
e_1_2_7_73_1
e_1_2_7_50_2
e_1_2_7_25_2
e_1_2_7_75_2
e_1_2_7_52_1
e_1_2_7_75_3
e_1_2_7_23_2
e_1_2_7_31_2
e_1_2_7_54_2
e_1_2_7_33_2
e_1_2_7_21_1
e_1_2_7_33_3
e_1_2_7_56_1
e_1_2_7_35_2
e_1_2_7_58_2
e_1_2_7_77_2
e_1_2_7_37_1
e_1_2_7_79_1
e_1_2_7_39_2
e_1_2_7_39_3
e_1_2_7_4_2
e_1_2_7_8_2
e_1_2_7_6_2
e_1_2_7_18_1
e_1_2_7_16_2
e_1_2_7_80_2
e_1_2_7_61_1
e_1_2_7_82_1
e_1_2_7_2_1
e_1_2_7_40_2
e_1_2_7_63_2
e_1_2_7_14_1
e_1_2_7_12_2
e_1_2_7_42_2
e_1_2_7_63_3
e_1_2_7_65_1
e_1_2_7_44_2
e_1_2_7_10_1
e_1_2_7_46_1
e_1_2_7_67_1
e_1_2_7_69_1
e_1_2_7_48_2
e_1_2_7_27_2
e_1_2_7_27_3
e_1_2_7_29_1
e_1_2_7_72_2
e_1_2_7_70_1
e_1_2_7_51_3
e_1_2_7_76_1
e_1_2_7_30_2
e_1_2_7_51_2
e_1_2_7_24_1
e_1_2_7_53_3
e_1_2_7_72_3
e_1_2_7_22_2
e_1_2_7_32_2
e_1_2_7_53_2
e_1_2_7_74_2
e_1_2_7_32_3
e_1_2_7_55_3
e_1_2_7_78_3
e_1_2_7_20_2
e_1_2_7_34_2
e_1_2_7_55_2
e_1_2_7_36_1
e_1_2_7_57_2
e_1_2_7_78_2
e_1_2_7_38_2
e_1_2_7_59_2
References_xml – volume: 27
  year: 2017
  publication-title: Adv. Funct. Mater.
– volume: 59 132
  start-page: 5050 5086
  year: 2020 2020
  end-page: 5091 5129
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 42
  start-page: 548
  year: 2013
  end-page: 568
  publication-title: Chem. Soc. Rev.
– volume: 117
  start-page: 987
  year: 2017
  end-page: 1104
  publication-title: Chem. Rev.
– volume: 135
  start-page: 546
  year: 2013
  end-page: 549
  publication-title: J. Am. Chem. Soc.
– volume: 52
  start-page: 10938
  year: 2016
  end-page: 10947
  publication-title: Chem. Commun.
– volume: 60 133
  start-page: 13614 13726
  year: 2021 2021
  end-page: 13620 13732
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 59 132
  start-page: 3678 3707
  year: 2020 2020
  end-page: 3684 3713
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 134
  start-page: 19524
  year: 2012
  end-page: 19527
  publication-title: J. Am. Chem. Soc.
– volume: 12
  start-page: 1982
  year: 2021
  publication-title: Nat. Commun.
– volume: 52 125
  start-page: 13052 13290
  year: 2013 2013
  end-page: 13056 13294
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 26
  start-page: 831
  year: 2020
  end-page: 838
  publication-title: Ionics
– volume: 422
  year: 2020
  publication-title: Coord. Chem. Rev.
– volume: 141
  start-page: 14950
  year: 2019
  end-page: 14954
  publication-title: J. Am. Chem. Soc.
– volume: 139
  start-page: 10079
  year: 2017
  end-page: 10086
  publication-title: J. Am. Chem. Soc.
– volume: 24
  start-page: 10829
  year: 2018
  end-page: 10839
  publication-title: Chem. Eur. J.
– volume: 58 131
  start-page: 15742 15889
  year: 2019 2019
  end-page: 15746 15893
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 11
  start-page: 12647
  year: 2020
  end-page: 12654
  publication-title: Chem. Sci.
– volume: 41 114
  start-page: 898 938
  year: 2002 2002
  end-page: 952 993
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 58
  start-page: 293
  year: 2019
  end-page: 303
  publication-title: Nano Energy
– volume: 140
  start-page: 16124
  year: 2018
  end-page: 16133
  publication-title: J. Am. Chem. Soc.
– volume: 142
  start-page: 14357
  year: 2020
  end-page: 14364
  publication-title: J. Am. Chem. Soc.
– volume: 12
  start-page: 22910
  year: 2020
  end-page: 22916
  publication-title: ACS Appl. Mater. Interfaces
– volume: 8
  start-page: 13702
  year: 2020
  end-page: 13709
  publication-title: J. Mater. Chem. A
– volume: 11
  year: 2021
  publication-title: Adv. Energy Mater.
– volume: 8
  start-page: 310
  year: 2016
  end-page: 316
  publication-title: Nat. Chem.
– volume: 48
  start-page: 3053
  year: 2015
  end-page: 3063
  publication-title: Acc. Chem. Res.
– volume: 60 133
  start-page: 19797 19950
  year: 2021 2021
  end-page: 19803 19956
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 104
  start-page: 4535
  year: 2004
  end-page: 4586
  publication-title: Chem. Rev.
– volume: 7
  start-page: 905
  year: 2015
  end-page: 912
  publication-title: Nat. Chem.
– volume: 114
  start-page: 12278
  year: 2014
  end-page: 12329
  publication-title: Chem. Rev.
– volume: 12
  start-page: 8198
  year: 2020
  end-page: 8205
  publication-title: ACS Appl. Mater. Interfaces
– volume: 142
  start-page: 8862
  year: 2020
  end-page: 8870
  publication-title: J. Am. Chem. Soc.
– volume: 11
  start-page: 1713
  year: 2019
  end-page: 1722
  publication-title: ACS Appl. Mater. Interfaces
– volume: 60 133
  start-page: 14875 15001
  year: 2021 2021
  end-page: 14880 15006
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 143
  start-page: 5003
  year: 2021
  end-page: 5010
  publication-title: J. Am. Chem. Soc.
– volume: 172
  start-page: 94
  year: 2007
  end-page: 99
  publication-title: J. Power Sources
– volume: 88
  start-page: 981
  year: 2011
  end-page: 1007
  publication-title: Appl. Energy
– volume: 28
  start-page: 1489
  year: 2016
  end-page: 1494
  publication-title: Chem. Mater.
– volume: 15
  start-page: 19743
  year: 2021
  end-page: 19755
  publication-title: ACS Nano
– volume: 1
  start-page: 1354
  year: 2017
  end-page: 1361
  publication-title: Mater. Chem. Front.
– volume: 31
  start-page: 819
  year: 2019
  end-page: 825
  publication-title: Chem. Mater.
– volume: 60 133
  start-page: 12918 13028
  year: 2021 2021
  end-page: 12923 13033
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 59 132
  start-page: 6007 6063
  year: 2020 2020
  end-page: 6014 6070
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 11
  start-page: 1981
  year: 2020
  publication-title: Nat. Commun.
– volume: 310
  start-page: 1166
  year: 2005
  end-page: 1170
  publication-title: Science
– year: 1992
– volume: 57
  start-page: 7104
  year: 2018
  end-page: 7112
  publication-title: Inorg. Chem.
– volume: 15
  start-page: 722
  year: 2016
  end-page: 726
  publication-title: Nat. Mater.
– volume: 12
  start-page: 4874
  year: 2021
  end-page: 4894
  publication-title: Polym. Chem.
– volume: 15
  start-page: 12723
  year: 2021
  end-page: 12740
  publication-title: ACS Nano
– volume: 28
  start-page: 7303
  year: 2014
  end-page: 7330
  publication-title: Energy Fuels
– volume: 57 130
  start-page: 10894 11060
  year: 2018 2018
  end-page: 10898 11064
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 8
  year: 2021
  publication-title: Adv. Mater. Interfaces
– volume: 52
  start-page: 7986
  year: 2016
  end-page: 7989
  publication-title: Chem. Commun.
– volume: 138
  start-page: 5897
  year: 2016
  end-page: 5903
  publication-title: J. Am. Chem. Soc.
– volume: 32
  year: 2020
  publication-title: Adv. Mater.
– volume: 58 131
  start-page: 13753 13891
  year: 2019 2019
  end-page: 13757 13895
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 331
  year: 2020
  publication-title: Electrochim. Acta
– volume: 8
  start-page: 18505
  year: 2016
  end-page: 18512
  publication-title: ACS Appl. Mater. Interfaces
– volume: 136
  start-page: 6570
  year: 2014
  end-page: 6573
  publication-title: J. Am. Chem. Soc.
– volume: 51
  start-page: 310
  year: 2015
  end-page: 313
  publication-title: Chem. Commun.
– volume: 55 128
  start-page: 7806 7937
  year: 2016 2016
  end-page: 7810 7941
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 112
  start-page: 2780
  year: 2012
  end-page: 2832
  publication-title: Chem. Rev.
– ident: e_1_2_7_73_1
– ident: e_1_2_7_75_2
  doi: 10.1002/anie.201914424
– ident: e_1_2_7_79_1
– ident: e_1_2_7_82_1
  doi: 10.1007/s11581-019-03250-8
– ident: e_1_2_7_20_2
  doi: 10.1016/j.apenergy.2010.09.030
– ident: e_1_2_7_51_3
  doi: 10.1002/ange.202101400
– ident: e_1_2_7_57_2
  doi: 10.1021/ja308278w
– ident: e_1_2_7_44_2
  doi: 10.1021/jacs.0c01990
– ident: e_1_2_7_78_3
  doi: 10.1002/ange.202104870
– ident: e_1_2_7_83_1
  doi: 10.1016/j.electacta.2019.135235
– ident: e_1_2_7_3_1
– ident: e_1_2_7_56_1
– ident: e_1_2_7_11_1
– ident: e_1_2_7_39_3
  doi: 10.1002/ange.202104106
– ident: e_1_2_7_25_2
  doi: 10.1021/acs.accounts.5b00369
– ident: e_1_2_7_53_3
  doi: 10.1002/ange.201906976
– ident: e_1_2_7_67_1
  doi: 10.1002/admi.202002191
– ident: e_1_2_7_52_1
– ident: e_1_2_7_75_3
  doi: 10.1002/ange.201914424
– ident: e_1_2_7_33_2
  doi: 10.1002/anie.201913802
– ident: e_1_2_7_71_2
  doi: 10.1021/acsnano.1c05194
– ident: e_1_2_7_62_2
  doi: 10.1039/C6QM00378H
– ident: e_1_2_7_41_1
– ident: e_1_2_7_21_1
– ident: e_1_2_7_77_2
  doi: 10.1039/C6CC04523E
– ident: e_1_2_7_24_1
– ident: e_1_2_7_27_2
  doi: 10.1002/anie.201904291
– ident: e_1_2_7_30_2
  doi: 10.1038/nmat4611
– ident: e_1_2_7_39_2
  doi: 10.1002/anie.202104106
– ident: e_1_2_7_46_1
– ident: e_1_2_7_49_1
– ident: e_1_2_7_15_2
  doi: 10.1021/acs.chemrev.6b00159
– ident: e_1_2_7_31_2
  doi: 10.1021/jacs.7b05182
– ident: e_1_2_7_4_2
  doi: 10.1021/acsami.8b18891
– ident: e_1_2_7_45_1
  doi: 10.1002/anie.201804753
– ident: e_1_2_7_10_1
  doi: 10.1039/D1PY00776A
– ident: e_1_2_7_64_1
  doi: 10.1039/C4CC07104B
– ident: e_1_2_7_55_2
  doi: 10.1002/anie.202104375
– ident: e_1_2_7_60_1
  doi: 10.1002/1521-3773(20020315)41:6<898::AID-ANIE898>3.0.CO;2-E
– ident: e_1_2_7_6_2
  doi: 10.1021/acs.inorgchem.8b00806
– ident: e_1_2_7_16_2
  doi: 10.1021/ef501977k
– ident: e_1_2_7_1_1
  doi: 10.1017/CBO9780511524806
– ident: e_1_2_7_48_2
  doi: 10.1039/D0TA04488A
– ident: e_1_2_7_47_2
  doi: 10.1021/acsami.0c04002
– ident: e_1_2_7_76_1
– ident: e_1_2_7_37_1
– ident: e_1_2_7_40_2
  doi: 10.1021/jacs.9b06080
– ident: e_1_2_7_33_3
  doi: 10.1002/ange.201913802
– ident: e_1_2_7_42_2
  doi: 10.1021/jacs.5b13490
– ident: e_1_2_7_66_1
  doi: 10.1021/ja3100319
– ident: e_1_2_7_70_1
– ident: e_1_2_7_29_1
– ident: e_1_2_7_54_2
  doi: 10.1038/s41467-021-22288-9
– ident: e_1_2_7_5_2
  doi: 10.1002/chem.201801844
– ident: e_1_2_7_14_1
– ident: e_1_2_7_27_3
  doi: 10.1002/ange.201904291
– ident: e_1_2_7_13_2
  doi: 10.1021/cr200035s
– ident: e_1_2_7_63_2
  doi: 10.1002/anie.201306775
– ident: e_1_2_7_72_2
  doi: 10.1002/anie.201600087
– ident: e_1_2_7_28_2
  doi: 10.1126/science.1120411
– ident: e_1_2_7_12_2
  doi: 10.1016/j.jpowsour.2007.01.025
– ident: e_1_2_7_7_1
– ident: e_1_2_7_23_2
  doi: 10.1002/aenm.202102300
– ident: e_1_2_7_26_2
  doi: 10.1039/C2CS35072F
– ident: e_1_2_7_45_2
  doi: 10.1002/ange.201804753
– ident: e_1_2_7_55_3
  doi: 10.1002/ange.202104375
– ident: e_1_2_7_74_2
  doi: 10.1038/nchem.2444
– ident: e_1_2_7_35_2
  doi: 10.1021/acsnano.1c07178
– ident: e_1_2_7_9_2
  doi: 10.1002/adfm.201701465
– ident: e_1_2_7_38_2
  doi: 10.1021/acsami.6b06189
– ident: e_1_2_7_65_1
  doi: 10.1021/jacs.8b08452
– ident: e_1_2_7_36_1
  doi: 10.1038/s41467-020-15918-1
– ident: e_1_2_7_59_2
  doi: 10.1021/acsami.9b19953
– ident: e_1_2_7_22_2
  doi: 10.1016/j.ccr.2020.213465
– ident: e_1_2_7_58_2
  doi: 10.1021/ja502212v
– ident: e_1_2_7_63_3
  doi: 10.1002/ange.201306775
– ident: e_1_2_7_68_1
  doi: 10.1039/D0SC03048A
– ident: e_1_2_7_32_2
  doi: 10.1002/anie.201909554
– ident: e_1_2_7_51_2
  doi: 10.1002/anie.202101400
– ident: e_1_2_7_78_2
  doi: 10.1002/anie.202104870
– ident: e_1_2_7_2_1
  doi: 10.1016/j.nanoen.2019.01.045
– ident: e_1_2_7_50_2
  doi: 10.1021/acs.chemmater.5b04947
– ident: e_1_2_7_81_2
  doi: 10.1039/C6CC02170K
– ident: e_1_2_7_34_2
  doi: 10.1021/jacs.0c06474
– ident: e_1_2_7_17_2
  doi: 10.1021/cr0207123
– ident: e_1_2_7_61_1
– ident: e_1_2_7_72_3
  doi: 10.1002/ange.201600087
– ident: e_1_2_7_32_3
  doi: 10.1002/ange.201909554
– ident: e_1_2_7_18_1
– ident: e_1_2_7_69_1
  doi: 10.1021/jacs.0c13090
– ident: e_1_2_7_53_2
  doi: 10.1002/anie.201906976
– ident: e_1_2_7_43_2
  doi: 10.1021/acs.chemmater.8b03897
– ident: e_1_2_7_19_2
  doi: 10.1021/cr4005499
– ident: e_1_2_7_80_2
  doi: 10.1038/nchem.2352
– ident: e_1_2_7_8_2
  doi: 10.1002/adma.202000730
– ident: e_1_2_7_60_2
  doi: 10.1002/1521-3757(20020315)114:6<938::AID-ANGE938>3.0.CO;2-K
SSID ssj0028806
Score 2.644884
Snippet The development of effective, stable anhydrous proton‐conductive materials is vital but challenging. Covalent organic frameworks (COFs) are promising platforms...
The development of effective, stable anhydrous proton-conductive materials is vital but challenging. Covalent organic frameworks (COFs) are promising platforms...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage e202208086
SubjectTerms Anhydrous Proton Conduction
Conductivity
Covalent Organic Frameworks (COFs)
Interlayer Interaction
Interlayers
Monomers
Nanochannels
Porosity
Protons
Stability
Triazine
Triazine Unit
Title Tuning the Interlayer Interactions of 2D Covalent Organic Frameworks Enables an Ultrastable Platform for Anhydrous Proton Transport
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fanie.202208086
https://www.proquest.com/docview/2704165674
https://www.proquest.com/docview/2687719460
Volume 61
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ3fi9pAEMeX4kv70h_XltraYwqFPq3GNdlNHsUqXqEiRcG3sD8SCpWkmPhw99p_vDNZkzsLx8H1xSQkIXF31vnMuPNdxj7nSWRiYROeh_GEh26ScaO04k4FxrjIoUukhP73lVxuw2-7aHenit_rQ3QJNxoZze81DXBtqtGtaChVYGN8JwQyT0ya2zRhi6joR6cfJdA4fXnRZMJpFfpWtTEQo_Pbz73SLWreBdbG4yxeMN2-q59o8mt4rM3Q3vwj4_g_X-Yle37CUZh6-3nFnmTFBXs6a1eBe83-bI6UOQHkRGiyh3uNkO53fU1EBWUO4ivMSjRadGHgyzstLNp5XxXMmwqtCnQB23190IikeAzrva4JmgE_YFr8vHaH8ljB-lAikUKnu_6GbRfzzWzJTws3cIt8J7mJrcMAVyK9m1wlFBNGxhiFcKclbmSYKeQy48YaEcPZ3Nqxc8g6LkP6wJj5LesVZZG9Y2CtyySajAwxFNUBugkX5CJRSeBEIuK8z3jbcak9qZrT4hr71Osxi5SaNu2ats--dNf_9noe9145aO0gPY3rKhUqCEmvSIV99qk7jV1Cf7PoIsNGSoWMlRonoQz6TDSd_sCT0unqat4dvX_MTR_YM9qnZLeQA9arD8fsI9JSbS6bEfEXhFYNtA
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ1Nb9NAEIZHpRzKBUoBkVJgkSr1tK2zcXbtY5QmSksbVVUicVvthy0kIhvFzoFe-ePMeGOXVkJIcEnixFaS3dnMM5OddwCO83RoE-FSnsfJgMd-kHGrjOJeRdb6oUeXSAn967mcLePLL8N2NyHVwgR9iC7hRiuj-b2mBU4J6bN71VAqwcYATwiEnkQ-gafU1puaGJzfdgpSAs0zFBgNBpz60Le6jZE4e3j9Q790D5u_I2vjc6YvwLafNmw1-Xa6qe2pu3sk5PhfX2cfnm-JlI2CCb2Enaw4gL1x2wjuFfxcbCh5whAVWZNAXBnk9PAwlEVUrMyZOGfjEu0WvRgLFZ6OTdutXxWbNEVaFTMFW67qtUEqxWN2szI1cTPDGzYqvv7w63JTsZt1iVDKOun117CcThbjGd_2buAOEU9ymziPMa5EgLe5SiksHFprFfKdkXgn40whmlnfN0gZ3uXO9b1H3PEZAgiGzW9gtyiL7C0w53wm0WpkjNGoidBT-CgXqUojL1KR5D3g7cxptxU2p_4aKx0kmYWmodXd0PbgpDv_e5D0-OOZR60h6O3SrrRQUUySRSruwafuZZwS-qfFFBkOkhYyUaqfxjLqgWhm_S_vpEfzi0l3dPgvF32Evdni-kpfXcw_v4Nn9DzlvoU8gt16vcneIzzV9kOzPH4BVA8Rzg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ3La9tAEIeHNIG2lzZ9Ubd5TKHQ0ybyWt6VjsaxSdLWmBJDbss-JAI1UrDkQ3LtP95ZraUkhVBoL7ZlS1jenfF8M9L8FuBzng5Nwm3K8jgZsNgNMmaklszJyBg3dBQSfUH_-0ycLuLzy-HlvS7-oA_RFdy8ZzT_197Br11-fCca6juwKb_jnJgnEU9gJxbkMR6LfnQCUpysM_QXDQbML0PfyjZG_Pjh8Q_D0h1r3ifWJuRMX4JuTzbcafLzaF2bI3v7h47j__yaXXix4VEcBQN6BVtZ8Rqejdtl4N7Ar4u1L50ggSI25cOlJkoPL0NTRIVljvwExyVZLcUwDP2dFqftjV8VTpoWrQp1gYtlvdLEpLSN86WuPTUjPeCouLpxq3Jd4XxVEpJiJ7z-FhbTycX4lG1WbmCWAE8wk1hHGa4gfDe5TH1SODTGSKI7LehJxJkkMDOur4kxnM2t7TtHsOMywg9Kmt_BdlEW2XtAa10myGZETLmojihOuCjnqUwjx1Oe5D1g7cQpu5E196trLFUQZObKD63qhrYHX7r9r4Ogx6N77rV2oDaOXSkuo9gLFsm4B5-6j2lK_HUWXWQ0SIqLRMp-SvbYA95M-l--SY1mZ5Nu68O_HHQIT-cnU_XtbPb1Izz3b_vCNxd7sF2v1tk-kVNtDhrn-A0qSRCG
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Tuning+the+Interlayer+Interactions+of+2D+Covalent+Organic+Frameworks+Enables+an+Ultrastable+Platform+for+Anhydrous+Proton+Transport&rft.jtitle=Angewandte+Chemie+International+Edition&rft.au=Jiang%2C+Guoxing&rft.au=Zou%2C+Wenwu&rft.au=Ou%2C+Zhaoyuan&rft.au=Zhang%2C+Longhai&rft.date=2022-08-26&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=1433-7851&rft.eissn=1521-3773&rft.volume=61&rft.issue=35&rft_id=info:doi/10.1002%2Fanie.202208086&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1433-7851&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1433-7851&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1433-7851&client=summon