Flexible and Highly Sensitive Pressure Sensors Based on Bionic Hierarchical Structures

The rational design of high‐performance flexible pressure sensors attracts attention because of the potential applications in wearable electronics and human–machine interfacing. For practical applications, pressure sensors with high sensitivity and low detection limit are desired. Here, ta simple pr...

Full description

Saved in:
Bibliographic Details
Published inAdvanced functional materials Vol. 27; no. 9; pp. np - n/a
Main Authors Jian, Muqiang, Xia, Kailun, Wang, Qi, Yin, Zhe, Wang, Huimin, Wang, Chunya, Xie, Huanhuan, Zhang, Mingchao, Zhang, Yingying
Format Journal Article
LanguageEnglish
Published Hoboken Wiley Subscription Services, Inc 03.03.2017
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The rational design of high‐performance flexible pressure sensors attracts attention because of the potential applications in wearable electronics and human–machine interfacing. For practical applications, pressure sensors with high sensitivity and low detection limit are desired. Here, ta simple process to fabricate high‐performance pressure sensors based on biomimetic hierarchical structures and highly conductive active membranes is presented. Aligned carbon nanotubes/graphene (ACNT/G) is used as the active material and microstructured polydimethylsiloxane (m‐PDMS) molded from natural leaves is used as the flexible matrix. The highly conductive ACNT/G films with unique coalescent structures, which are directly grown using chemical vapor deposition, can be conformably coated on the m‐PDMS films with hierarchical protuberances. Flexible ACNT/G pressure sensors are then constructed by putting two ACNT/G/PDMS films face to face with the orientation of the ACNTs in the two films perpendicular to each other. Due to the unique hierarchical structures of both the ACNT/G and m‐PDMS films, the obtained pressure sensors demonstrate high sensitivity (19.8 kPa−1, <0.3 kPa), low detection limit (0.6 Pa), fast response time (<16.7 ms), low operating voltage (0.03 V), and excellent stability for more than 35 000 loading–unloading cycles, thus promising potential applications in wearable electronics. A flexible, highly sensitive, and low operating voltage pressure sensor is fabricated based on carbon nanotube/graphene hybrid films and hierarchical microstructured polydimethylsiloxane films molded from natural leaves. The sensor has high sensitivity (19.8 kPa−1, <0.3 kPa), a low detection limit (0.6 Pa), fast response time (<16.7 ms), low operating voltage (0.03 V), and excellent stability for over 35 000 cycles.
AbstractList The rational design of high‐performance flexible pressure sensors attracts attention because of the potential applications in wearable electronics and human–machine interfacing. For practical applications, pressure sensors with high sensitivity and low detection limit are desired. Here, ta simple process to fabricate high‐performance pressure sensors based on biomimetic hierarchical structures and highly conductive active membranes is presented. Aligned carbon nanotubes/graphene (ACNT/G) is used as the active material and microstructured polydimethylsiloxane (m‐PDMS) molded from natural leaves is used as the flexible matrix. The highly conductive ACNT/G films with unique coalescent structures, which are directly grown using chemical vapor deposition, can be conformably coated on the m‐PDMS films with hierarchical protuberances. Flexible ACNT/G pressure sensors are then constructed by putting two ACNT/G/PDMS films face to face with the orientation of the ACNTs in the two films perpendicular to each other. Due to the unique hierarchical structures of both the ACNT/G and m‐PDMS films, the obtained pressure sensors demonstrate high sensitivity (19.8 kPa−1, <0.3 kPa), low detection limit (0.6 Pa), fast response time (<16.7 ms), low operating voltage (0.03 V), and excellent stability for more than 35 000 loading–unloading cycles, thus promising potential applications in wearable electronics. A flexible, highly sensitive, and low operating voltage pressure sensor is fabricated based on carbon nanotube/graphene hybrid films and hierarchical microstructured polydimethylsiloxane films molded from natural leaves. The sensor has high sensitivity (19.8 kPa−1, <0.3 kPa), a low detection limit (0.6 Pa), fast response time (<16.7 ms), low operating voltage (0.03 V), and excellent stability for over 35 000 cycles.
The rational design of high‐performance flexible pressure sensors attracts attention because of the potential applications in wearable electronics and human–machine interfacing. For practical applications, pressure sensors with high sensitivity and low detection limit are desired. Here, ta simple process to fabricate high‐performance pressure sensors based on biomimetic hierarchical structures and highly conductive active membranes is presented. Aligned carbon nanotubes/graphene (ACNT/G) is used as the active material and microstructured polydimethylsiloxane (m‐PDMS) molded from natural leaves is used as the flexible matrix. The highly conductive ACNT/G films with unique coalescent structures, which are directly grown using chemical vapor deposition, can be conformably coated on the m‐PDMS films with hierarchical protuberances. Flexible ACNT/G pressure sensors are then constructed by putting two ACNT/G/PDMS films face to face with the orientation of the ACNTs in the two films perpendicular to each other. Due to the unique hierarchical structures of both the ACNT/G and m‐PDMS films, the obtained pressure sensors demonstrate high sensitivity (19.8 kPa −1 , <0.3 kPa), low detection limit (0.6 Pa), fast response time (<16.7 ms), low operating voltage (0.03 V), and excellent stability for more than 35 000 loading–unloading cycles, thus promising potential applications in wearable electronics.
The rational design of high-performance flexible pressure sensors attracts attention because of the potential applications in wearable electronics and human-machine interfacing. For practical applications, pressure sensors with high sensitivity and low detection limit are desired. Here, ta simple process to fabricate high-performance pressure sensors based on biomimetic hierarchical structures and highly conductive active membranes is presented. Aligned carbon nanotubes/graphene (ACNT/G) is used as the active material and microstructured polydimethylsiloxane (m-PDMS) molded from natural leaves is used as the flexible matrix. The highly conductive ACNT/G films with unique coalescent structures, which are directly grown using chemical vapor deposition, can be conformably coated on the m-PDMS films with hierarchical protuberances. Flexible ACNT/G pressure sensors are then constructed by putting two ACNT/G/PDMS films face to face with the orientation of the ACNTs in the two films perpendicular to each other. Due to the unique hierarchical structures of both the ACNT/G and m-PDMS films, the obtained pressure sensors demonstrate high sensitivity (19.8 kPa super(-1), <0.3 kPa), low detection limit (0.6 Pa), fast response time (<16.7 ms), low operating voltage (0.03 V), and excellent stability for more than 35 000 loading-unloading cycles, thus promising potential applications in wearable electronics. A flexible, highly sensitive, and low operating voltage pressure sensor is fabricated based on carbon nanotube/graphene hybrid films and hierarchical microstructured polydimethylsiloxane films molded from natural leaves. The sensor has high sensitivity (19.8 kPa super(-1), <0.3 kPa), a low detection limit (0.6 Pa), fast response time (<16.7 ms), low operating voltage (0.03 V), and excellent stability for over 35 000 cycles.
The rational design of high-performance flexible pressure sensors attracts attention because of the potential applications in wearable electronics and human-machine interfacing. For practical applications, pressure sensors with high sensitivity and low detection limit are desired. Here, ta simple process to fabricate high-performance pressure sensors based on biomimetic hierarchical structures and highly conductive active membranes is presented. Aligned carbon nanotubes/graphene (ACNT/G) is used as the active material and microstructured polydimethylsiloxane (m-PDMS) molded from natural leaves is used as the flexible matrix. The highly conductive ACNT/G films with unique coalescent structures, which are directly grown using chemical vapor deposition, can be conformably coated on the m-PDMS films with hierarchical protuberances. Flexible ACNT/G pressure sensors are then constructed by putting two ACNT/G/PDMS films face to face with the orientation of the ACNTs in the two films perpendicular to each other. Due to the unique hierarchical structures of both the ACNT/G and m-PDMS films, the obtained pressure sensors demonstrate high sensitivity (19.8 kPa-1, <0.3 kPa), low detection limit (0.6 Pa), fast response time (<16.7 ms), low operating voltage (0.03 V), and excellent stability for more than 35 000 loading-unloading cycles, thus promising potential applications in wearable electronics.
Author Yin, Zhe
Wang, Chunya
Wang, Huimin
Jian, Muqiang
Wang, Qi
Zhang, Mingchao
Zhang, Yingying
Xie, Huanhuan
Xia, Kailun
Author_xml – sequence: 1
  givenname: Muqiang
  surname: Jian
  fullname: Jian, Muqiang
  organization: Tsinghua University
– sequence: 2
  givenname: Kailun
  surname: Xia
  fullname: Xia, Kailun
  organization: Tsinghua University
– sequence: 3
  givenname: Qi
  surname: Wang
  fullname: Wang, Qi
  organization: Tsinghua University
– sequence: 4
  givenname: Zhe
  surname: Yin
  fullname: Yin, Zhe
  organization: Tsinghua University
– sequence: 5
  givenname: Huimin
  surname: Wang
  fullname: Wang, Huimin
  organization: Tsinghua University
– sequence: 6
  givenname: Chunya
  surname: Wang
  fullname: Wang, Chunya
  organization: Tsinghua University
– sequence: 7
  givenname: Huanhuan
  surname: Xie
  fullname: Xie, Huanhuan
  organization: Tsinghua University
– sequence: 8
  givenname: Mingchao
  surname: Zhang
  fullname: Zhang, Mingchao
  organization: Tsinghua University
– sequence: 9
  givenname: Yingying
  surname: Zhang
  fullname: Zhang, Yingying
  email: yingyingzhang@tsinghua.edu.cn
  organization: Tsinghua University
BookMark eNqFkEFLAzEQRoMoqNWr5wUvXlozyZpNjq1aFSoKVfEWsumsRtJdTXbV_nujlQqCyBwyhPfCl2-brNdNjYTsAR0ApezQzKr5gFEQNI1YI1sgQPQ5ZXJ9tcP9JtmO8YlSKAqeb5G7scd3V3rMTD3Lzt3Do19kU6yja90rZtcBY-wCfl01IWYjE3GWNXU2ck3tbDIwmGAfnTU-m7ahs23C4w7ZqIyPuPt99sjt-PTm-Lw_uTq7OB5O-jYHIfqlKCoojRSlMEqWJRgmmUqRsZQF5FIx5PKoqrjNBS_MkUKl5Awqi8CFQcZ75GD57nNoXjqMrZ67aNF7U2PTRQ1ScZkckAnd_4U-NV2oUzoNitEcOOM8UfmSsqGJMWClrWtNmz7bBuO8Bqo_y9afZetV2Ukb_NKeg5ubsPhbUEvhzXlc_EPr4cn48sf9ADeCk7I
CitedBy_id crossref_primary_10_1016_j_rinma_2024_100646
crossref_primary_10_3788_COL202321_110005
crossref_primary_10_1002_adfm_201808783
crossref_primary_10_1002_advs_201700655
crossref_primary_10_1016_j_nanoen_2018_11_026
crossref_primary_10_1002_admt_202200290
crossref_primary_10_1039_D0TA05310D
crossref_primary_10_1142_S1793292019500814
crossref_primary_10_1021_acsami_9b12929
crossref_primary_10_1016_j_nanoen_2024_109408
crossref_primary_10_1088_1361_665X_ab2624
crossref_primary_10_1002_admi_202000743
crossref_primary_10_1021_acsapm_3c00498
crossref_primary_10_1109_JSEN_2020_2978655
crossref_primary_10_1016_j_cej_2024_149461
crossref_primary_10_1002_adma_201805630
crossref_primary_10_1109_JSEN_2024_3438801
crossref_primary_10_3390_ma13153312
crossref_primary_10_1016_j_nanoso_2023_100974
crossref_primary_10_1016_j_bios_2022_114298
crossref_primary_10_1016_j_snb_2019_01_063
crossref_primary_10_1002_aelm_201901064
crossref_primary_10_1002_adma_201904020
crossref_primary_10_1007_s12274_020_2628_9
crossref_primary_10_1007_s12598_024_03157_y
crossref_primary_10_1016_j_bios_2023_115449
crossref_primary_10_3390_healthcare12232467
crossref_primary_10_3390_s19204589
crossref_primary_10_34133_2020_2038560
crossref_primary_10_3390_ma15072548
crossref_primary_10_1063_1674_0068_cjcp1907146
crossref_primary_10_1002_admi_201901507
crossref_primary_10_1021_acsami_8b15535
crossref_primary_10_1021_acsanm_2c02202
crossref_primary_10_1109_JSEN_2023_3329879
crossref_primary_10_1002_admi_202000875
crossref_primary_10_1039_D0TA05651K
crossref_primary_10_1088_1361_665X_ab4ac6
crossref_primary_10_1088_1361_665X_ab3af6
crossref_primary_10_1016_j_cap_2021_07_014
crossref_primary_10_1088_1361_665X_ab75a3
crossref_primary_10_3390_s19235194
crossref_primary_10_1021_acsami_2c12240
crossref_primary_10_1002_admi_202101312
crossref_primary_10_1039_D0MH01359E
crossref_primary_10_1016_j_ceramint_2023_07_009
crossref_primary_10_1021_acsami_1c23604
crossref_primary_10_3390_bios13060656
crossref_primary_10_1002_admt_201700248
crossref_primary_10_1021_acsami_0c08910
crossref_primary_10_1002_admt_202100572
crossref_primary_10_1016_j_mtcomm_2020_101453
crossref_primary_10_1109_LRA_2021_3111038
crossref_primary_10_1016_j_measurement_2022_111645
crossref_primary_10_1186_s11671_020_03303_2
crossref_primary_10_1002_adma_201702675
crossref_primary_10_1109_JSEN_2022_3174450
crossref_primary_10_1007_s10853_021_05909_y
crossref_primary_10_1038_s41467_022_29424_z
crossref_primary_10_1039_D2NA00866A
crossref_primary_10_1088_1742_6596_1790_1_012063
crossref_primary_10_1007_s13204_019_01147_6
crossref_primary_10_1016_j_carbon_2021_12_080
crossref_primary_10_1007_s11708_019_0653_8
crossref_primary_10_1088_1361_665X_ac251a
crossref_primary_10_1002_mame_202100973
crossref_primary_10_3390_nano14211724
crossref_primary_10_1021_acsami_8b15439
crossref_primary_10_3390_molecules26185715
crossref_primary_10_1039_D0TC03729J
crossref_primary_10_1021_acsami_0c03697
crossref_primary_10_1002_smtd_202200671
crossref_primary_10_1002_smsc_202000080
crossref_primary_10_1016_j_chempr_2017_12_028
crossref_primary_10_1002_adma_202003014
crossref_primary_10_1007_s10854_023_10966_x
crossref_primary_10_1007_s12274_023_5802_z
crossref_primary_10_1021_acsami_0c00255
crossref_primary_10_1021_acsami_4c15827
crossref_primary_10_1021_acssuschemeng_1c08491
crossref_primary_10_1016_j_mser_2022_100672
crossref_primary_10_1007_s10570_018_1893_1
crossref_primary_10_1007_s11432_019_2676_x
crossref_primary_10_1016_j_nanoen_2020_105120
crossref_primary_10_3390_pr10081658
crossref_primary_10_1021_acssuschemeng_8b04528
crossref_primary_10_1002_jemt_23763
crossref_primary_10_1021_acsami_9b01964
crossref_primary_10_1039_C9NR02672J
crossref_primary_10_1002_adfm_202009799
crossref_primary_10_1002_adfm_201808509
crossref_primary_10_1021_acsami_8b08933
crossref_primary_10_1088_1361_6463_ad0e95
crossref_primary_10_1016_j_bios_2023_115454
crossref_primary_10_1021_acsami_0c14314
crossref_primary_10_1021_acsami_1c10961
crossref_primary_10_1021_acsami_1c09975
crossref_primary_10_1016_j_surfin_2025_106258
crossref_primary_10_3390_s20164407
crossref_primary_10_1016_j_cej_2024_158363
crossref_primary_10_1039_C8MH01188E
crossref_primary_10_1016_j_bios_2024_116868
crossref_primary_10_1016_j_jcis_2020_10_006
crossref_primary_10_1021_acsami_2c05823
crossref_primary_10_1007_s10853_017_1644_y
crossref_primary_10_3389_fsens_2020_617805
crossref_primary_10_1016_j_commatsci_2022_111638
crossref_primary_10_1002_elan_202100214
crossref_primary_10_1002_admi_201801061
crossref_primary_10_1088_2631_7990_ad9787
crossref_primary_10_1016_j_mee_2024_112167
crossref_primary_10_1039_C9TC06352H
crossref_primary_10_1038_s41467_020_14485_9
crossref_primary_10_1002_adfm_201907091
crossref_primary_10_1039_D0TC02539A
crossref_primary_10_1002_smll_201801520
crossref_primary_10_1002_smll_201704149
crossref_primary_10_1021_acsami_4c12429
crossref_primary_10_1002_smll_201901744
crossref_primary_10_1088_1361_665X_ad223c
crossref_primary_10_1002_adfm_202111022
crossref_primary_10_1016_j_nanoen_2019_03_013
crossref_primary_10_3390_s22166136
crossref_primary_10_1002_smll_202105334
crossref_primary_10_1002_eom2_12209
crossref_primary_10_1016_j_nanoen_2017_10_007
crossref_primary_10_1002_smll_202203491
crossref_primary_10_1088_2058_8585_acfb1e
crossref_primary_10_1016_j_compscitech_2018_05_017
crossref_primary_10_1039_D1MH00615K
crossref_primary_10_1021_acsami_9b18873
crossref_primary_10_1109_TIM_2020_3038003
crossref_primary_10_1109_TED_2020_3039762
crossref_primary_10_1021_acsami_3c04526
crossref_primary_10_1016_j_cej_2023_147849
crossref_primary_10_1021_acsnano_2c02609
crossref_primary_10_1039_D3MH01387A
crossref_primary_10_1016_j_apsusc_2019_04_271
crossref_primary_10_1016_j_compositesb_2019_01_090
crossref_primary_10_1038_s41528_021_00114_y
crossref_primary_10_1002_adma_202201046
crossref_primary_10_1002_admt_202001084
crossref_primary_10_1007_s10853_022_07776_7
crossref_primary_10_1021_acssuschemeng_2c05540
crossref_primary_10_1109_TIM_2024_3378283
crossref_primary_10_1186_s40486_022_00151_w
crossref_primary_10_3390_polym16020238
crossref_primary_10_1038_s41598_019_40828_8
crossref_primary_10_3390_polym14173670
crossref_primary_10_1002_smll_201801657
crossref_primary_10_1021_acsami_2c17879
crossref_primary_10_1021_acsami_7b06119
crossref_primary_10_1038_s41378_023_00639_4
crossref_primary_10_1039_D0TC03961F
crossref_primary_10_1080_10667857_2020_1863539
crossref_primary_10_1002_adfm_202405722
crossref_primary_10_1002_advs_202405501
crossref_primary_10_1039_D4TC04899G
crossref_primary_10_3390_mi14101940
crossref_primary_10_1002_admt_201900679
crossref_primary_10_1002_adsr_202200099
crossref_primary_10_1149_2_0241914jes
crossref_primary_10_1039_C8TC00839F
crossref_primary_10_1016_j_mtcomm_2022_104541
crossref_primary_10_1088_1361_6528_aaa855
crossref_primary_10_1088_1361_6528_ab1a86
crossref_primary_10_1016_j_compositesa_2020_105898
crossref_primary_10_1002_admi_201901223
crossref_primary_10_3390_mi11030239
crossref_primary_10_1016_j_cej_2022_138193
crossref_primary_10_1021_acsnano_1c00472
crossref_primary_10_1016_j_compositesa_2021_106700
crossref_primary_10_1021_acsami_7b10820
crossref_primary_10_1039_C9TC05392A
crossref_primary_10_1007_s10854_021_07143_3
crossref_primary_10_1016_j_matlet_2021_130977
crossref_primary_10_1021_acsami_8b16027
crossref_primary_10_1126_sciadv_abn2156
crossref_primary_10_1021_acsami_9b21949
crossref_primary_10_1002_adfm_201910292
crossref_primary_10_1002_adfm_202009602
crossref_primary_10_1016_j_cej_2024_149160
crossref_primary_10_1016_j_sna_2024_115170
crossref_primary_10_1002_adfm_202010830
crossref_primary_10_1002_aelm_201900916
crossref_primary_10_1016_j_nanoen_2022_107400
crossref_primary_10_1002_adma_202405405
crossref_primary_10_1002_adfm_201707538
crossref_primary_10_1016_j_nanoen_2019_03_048
crossref_primary_10_1002_admt_201900414
crossref_primary_10_1021_acsami_4c06905
crossref_primary_10_1002_adma_201902343
crossref_primary_10_1007_s10853_023_09212_w
crossref_primary_10_1007_s10854_020_03811_y
crossref_primary_10_1002_adma_201802418
crossref_primary_10_3390_s22030759
crossref_primary_10_1002_aisy_202300317
crossref_primary_10_3389_fbioe_2023_1303142
crossref_primary_10_1109_JSEN_2021_3060425
crossref_primary_10_1002_pat_70005
crossref_primary_10_1016_j_cej_2021_133458
crossref_primary_10_1002_adma_201805921
crossref_primary_10_1016_j_ceramint_2021_11_035
crossref_primary_10_1002_adfm_202405990
crossref_primary_10_1016_j_nanoen_2022_107513
crossref_primary_10_1021_acsnano_1c05806
crossref_primary_10_3390_mi12091091
crossref_primary_10_1016_j_sna_2020_112357
crossref_primary_10_1039_C8TC04893B
crossref_primary_10_1016_j_nanoms_2021_11_003
crossref_primary_10_1021_acsami_9b17100
crossref_primary_10_1002_smll_201702933
crossref_primary_10_1002_mame_202200233
crossref_primary_10_1016_j_cej_2020_127637
crossref_primary_10_1016_j_nanoms_2021_11_006
crossref_primary_10_1109_TED_2022_3146108
crossref_primary_10_1002_adma_202107062
crossref_primary_10_1021_acsami_3c05775
crossref_primary_10_1021_acsapm_1c01111
crossref_primary_10_1016_j_cej_2021_132152
crossref_primary_10_1016_j_cis_2023_102988
crossref_primary_10_1039_C8NR08589G
crossref_primary_10_1016_j_saa_2021_120800
crossref_primary_10_1021_acssensors_3c00818
crossref_primary_10_1039_C8TC01331D
crossref_primary_10_1039_C9TA01448A
crossref_primary_10_1016_j_nanoen_2022_106970
crossref_primary_10_1007_s40820_019_0302_0
crossref_primary_10_1002_adma_202403447
crossref_primary_10_1007_s10854_023_09987_3
crossref_primary_10_1021_acsami_8b08666
crossref_primary_10_1039_C9RA08653F
crossref_primary_10_3390_s22072652
crossref_primary_10_1039_C7TA11348J
crossref_primary_10_1016_j_eml_2020_100714
crossref_primary_10_1039_D2NR06084A
crossref_primary_10_1002_admt_202301196
crossref_primary_10_1039_D3QM00076A
crossref_primary_10_1002_inf2_12426
crossref_primary_10_1039_C9TA09225K
crossref_primary_10_1002_inf2_12424
crossref_primary_10_1016_j_cej_2021_130091
crossref_primary_10_1038_s41378_022_00477_w
crossref_primary_10_1002_adsr_202200049
crossref_primary_10_3390_nano10101941
crossref_primary_10_1002_advs_202105738
crossref_primary_10_1016_j_compscitech_2020_108255
crossref_primary_10_1134_S2635167622040243
crossref_primary_10_1016_j_sbsr_2021_100403
crossref_primary_10_1016_j_surfin_2024_104276
crossref_primary_10_1088_1361_6439_ab2f24
crossref_primary_10_1002_smll_201803411
crossref_primary_10_3390_s20164484
crossref_primary_10_1039_D2TC02051C
crossref_primary_10_1016_j_sna_2019_05_011
crossref_primary_10_1016_j_mattod_2019_08_005
crossref_primary_10_1021_acs_chemrev_2c00429
crossref_primary_10_1016_j_jcis_2022_01_043
crossref_primary_10_1039_C7TC05228F
crossref_primary_10_1021_acsnano_9b00395
crossref_primary_10_1109_TIM_2023_3312487
crossref_primary_10_1021_acsanm_9b01680
crossref_primary_10_1002_admt_201900475
crossref_primary_10_3390_nano12040723
crossref_primary_10_1021_acsami_8b17020
crossref_primary_10_1002_smll_202310032
crossref_primary_10_1002_slct_201900558
crossref_primary_10_3390_ma15082840
crossref_primary_10_1002_app_47928
crossref_primary_10_1002_inf2_12328
crossref_primary_10_1021_acsami_9b08419
crossref_primary_10_1016_j_apmt_2020_100651
crossref_primary_10_3390_molecules29071506
crossref_primary_10_1007_s12613_023_2820_5
crossref_primary_10_1109_JSEN_2020_2999261
crossref_primary_10_1016_j_nanoen_2022_107954
crossref_primary_10_1007_s42235_024_00587_3
crossref_primary_10_1021_acsami_7b09652
crossref_primary_10_1007_s40843_017_9077_x
crossref_primary_10_1021_acsami_8b06496
crossref_primary_10_1016_j_surfin_2024_104573
crossref_primary_10_1021_acsami_9b04509
crossref_primary_10_1021_acsami_2c06574
crossref_primary_10_1039_C9TA00596J
crossref_primary_10_1002_admt_202200848
crossref_primary_10_1016_j_measurement_2024_114905
crossref_primary_10_1016_j_carbon_2018_07_005
crossref_primary_10_3390_mi9110580
crossref_primary_10_1109_JSEN_2022_3218949
crossref_primary_10_1021_acsami_1c12241
crossref_primary_10_1007_s40843_020_1507_0
crossref_primary_10_1002_adem_202401988
crossref_primary_10_1039_C8TC00711J
crossref_primary_10_1021_acsapm_9b00622
crossref_primary_10_1002_pc_25997
crossref_primary_10_1109_JSEN_2022_3189053
crossref_primary_10_1109_LED_2018_2835467
crossref_primary_10_3390_electronics11050716
crossref_primary_10_1021_acsnano_1c05199
crossref_primary_10_1016_j_cej_2024_153281
crossref_primary_10_1002_adfm_201802576
crossref_primary_10_1007_s40843_019_1173_3
crossref_primary_10_1016_j_cej_2024_154250
crossref_primary_10_1016_j_mser_2021_100647
crossref_primary_10_1007_s12274_021_3390_3
crossref_primary_10_1016_j_nanoen_2020_105711
crossref_primary_10_1002_adma_202203193
crossref_primary_10_1007_s12221_022_4839_z
crossref_primary_10_1016_j_cej_2022_140302
crossref_primary_10_1038_s41528_023_00247_2
crossref_primary_10_1002_smll_201804779
crossref_primary_10_1016_j_cej_2020_128199
crossref_primary_10_1016_j_nanoen_2021_106190
crossref_primary_10_1016_j_coco_2020_100586
crossref_primary_10_1002_asia_202100475
crossref_primary_10_1016_j_nanoen_2020_104847
crossref_primary_10_1021_acsanm_1c01229
crossref_primary_10_1039_D0RA05675H
crossref_primary_10_1109_LSENS_2023_3307077
crossref_primary_10_1007_s42114_022_00594_0
crossref_primary_10_1039_D0TA09556G
crossref_primary_10_1088_1361_6463_ac1ddc
crossref_primary_10_1021_acsami_7b15566
crossref_primary_10_1016_j_ceramint_2023_04_032
crossref_primary_10_1016_j_nanoen_2020_105700
crossref_primary_10_1016_j_cej_2022_137268
crossref_primary_10_1016_j_sna_2025_116220
crossref_primary_10_1021_acssensors_4c00170
crossref_primary_10_1016_j_jmat_2020_01_009
crossref_primary_10_1021_acsami_8b11527
crossref_primary_10_1021_acs_chemrev_7b00291
crossref_primary_10_1007_s40843_019_9446_1
crossref_primary_10_1177_09673911231188296
crossref_primary_10_1002_admt_202200820
crossref_primary_10_1016_j_cej_2023_146572
crossref_primary_10_1088_2053_1591_acc1c6
crossref_primary_10_1039_C8TA05862H
crossref_primary_10_3390_s19122763
crossref_primary_10_1002_adma_201805093
crossref_primary_10_1007_s12274_021_3906_x
crossref_primary_10_1016_j_nanoen_2024_110041
crossref_primary_10_2139_ssrn_4162449
crossref_primary_10_1016_j_compositesa_2021_106796
crossref_primary_10_1002_admt_201800572
crossref_primary_10_1021_acsami_2c22727
crossref_primary_10_1016_j_cej_2024_154355
crossref_primary_10_1016_j_jare_2020_07_001
crossref_primary_10_1016_j_jmst_2019_11_014
crossref_primary_10_1039_D4TA03758H
crossref_primary_10_1186_s40580_019_0180_7
crossref_primary_10_1007_s40843_020_1637_9
crossref_primary_10_1002_mame_202200192
crossref_primary_10_1002_aisy_201900179
crossref_primary_10_1002_marc_202000761
crossref_primary_10_1002_admt_201800640
crossref_primary_10_1002_adfm_202105480
crossref_primary_10_3390_s20041219
crossref_primary_10_1039_C8TC01153B
crossref_primary_10_1007_s12598_024_02636_6
crossref_primary_10_3390_nano12132127
crossref_primary_10_1021_acsami_0c16152
crossref_primary_10_1007_s10409_023_23211_x
crossref_primary_10_3390_polym10060587
crossref_primary_10_1021_acsami_8b17085
crossref_primary_10_1021_acsnano_7b06909
crossref_primary_10_1002_advs_202405941
crossref_primary_10_1016_j_nanoen_2021_106181
crossref_primary_10_1038_s41563_024_02036_2
crossref_primary_10_1016_j_apsusc_2023_158021
crossref_primary_10_1016_j_coco_2021_100837
crossref_primary_10_1038_s41528_020_0065_1
crossref_primary_10_1007_s10118_020_2379_9
crossref_primary_10_1021_acs_nanolett_2c01145
crossref_primary_10_1088_1361_6463_acaf38
crossref_primary_10_1007_s42114_024_01168_y
crossref_primary_10_1016_j_compscitech_2020_108419
crossref_primary_10_1021_acsnano_0c03659
crossref_primary_10_1134_S0965545X21050035
crossref_primary_10_1039_C7TC01962A
crossref_primary_10_1002_admt_202201503
crossref_primary_10_1002_admi_202200621
crossref_primary_10_1021_acsomega_7b01575
crossref_primary_10_3390_en16052087
crossref_primary_10_1109_LED_2021_3109035
crossref_primary_10_1021_acsami_0c22938
crossref_primary_10_1038_s41569_025_01127_0
crossref_primary_10_1021_acsami_8b20284
crossref_primary_10_1002_nano_202100003
crossref_primary_10_1016_j_xinn_2023_100485
crossref_primary_10_1021_acsaelm_1c01045
crossref_primary_10_1021_acsami_9b14135
crossref_primary_10_1109_JSEN_2022_3156286
crossref_primary_10_3390_biomimetics8030293
crossref_primary_10_1039_C8NR08503J
crossref_primary_10_1002_mame_202000206
crossref_primary_10_1088_1674_4926_39_1_011012
crossref_primary_10_1021_acs_nanolett_8b04514
crossref_primary_10_1016_j_sna_2022_113558
crossref_primary_10_29026_oea_2022_210029
crossref_primary_10_1002_admt_202200504
crossref_primary_10_1364_OL_475526
crossref_primary_10_1016_j_measurement_2024_116271
crossref_primary_10_1016_j_sna_2023_114600
crossref_primary_10_1016_j_sna_2023_114950
crossref_primary_10_1002_adfm_202214503
crossref_primary_10_1016_j_compositesb_2021_108899
crossref_primary_10_1021_acsnano_9b10230
crossref_primary_10_1021_acssuschemeng_1c02051
crossref_primary_10_1016_j_mtphys_2017_06_002
crossref_primary_10_1016_j_isci_2021_103728
crossref_primary_10_1016_j_matt_2022_02_022
crossref_primary_10_1007_s10570_024_06315_8
crossref_primary_10_1016_j_carbpol_2023_121306
crossref_primary_10_1021_acssensors_4c01171
crossref_primary_10_1021_acsami_7b07990
crossref_primary_10_1021_acsami_8b20380
crossref_primary_10_1021_acsami_4c20660
crossref_primary_10_1016_j_envpol_2021_117717
crossref_primary_10_1039_C8NR05292A
crossref_primary_10_3389_fchem_2019_00399
crossref_primary_10_3390_polym11071120
crossref_primary_10_1021_acs_chemmater_9b00259
crossref_primary_10_1002_advs_202304121
crossref_primary_10_1002_smtd_202100409
crossref_primary_10_1109_TED_2023_3279301
crossref_primary_10_1002_adfm_202305328
crossref_primary_10_1007_s10854_023_10319_8
crossref_primary_10_1038_s41467_020_17298_y
crossref_primary_10_2139_ssrn_4074345
crossref_primary_10_1021_acsnano_3c11080
crossref_primary_10_1002_adma_202106683
crossref_primary_10_1515_polyeng_2024_0110
crossref_primary_10_1016_j_aej_2024_07_003
crossref_primary_10_1016_j_cej_2022_136446
crossref_primary_10_1002_advs_202303264
crossref_primary_10_1016_j_nanoen_2021_105973
crossref_primary_10_1016_j_sna_2018_08_046
crossref_primary_10_1021_acssuschemeng_0c00910
crossref_primary_10_3390_ma16124310
crossref_primary_10_1039_C8TC03296C
crossref_primary_10_1021_acsami_0c00448
crossref_primary_10_1002_advs_202000154
crossref_primary_10_1002_inf2_12060
crossref_primary_10_1016_j_ijbiomac_2024_135909
crossref_primary_10_3390_nano9091304
crossref_primary_10_1007_s11431_021_1899_9
crossref_primary_10_3390_mi11080770
crossref_primary_10_1016_j_cej_2024_155175
crossref_primary_10_1039_D1TA09813F
crossref_primary_10_1002_smll_202407168
crossref_primary_10_1021_acsanm_3c02024
crossref_primary_10_1007_s42235_022_00159_3
crossref_primary_10_1016_j_cej_2022_137664
crossref_primary_10_1039_D1NH00648G
crossref_primary_10_1002_cey2_530
crossref_primary_10_1109_JSEN_2021_3099016
crossref_primary_10_1109_JSEN_2024_3367900
crossref_primary_10_1021_acsami_9b09265
crossref_primary_10_1021_acsnano_2c06432
crossref_primary_10_1021_acsaelm_9b00564
crossref_primary_10_1002_agt2_522
crossref_primary_10_1088_1361_6528_aba4cd
crossref_primary_10_1002_admt_202101021
crossref_primary_10_1021_acsami_9b02518
crossref_primary_10_1021_acsami_0c12561
crossref_primary_10_1039_D0NH00098A
crossref_primary_10_1021_acsami_8b13535
crossref_primary_10_1021_acsami_0c01794
crossref_primary_10_3390_ma14216475
crossref_primary_10_1016_j_cej_2020_126191
crossref_primary_10_3390_s19051250
crossref_primary_10_1016_j_nanoen_2018_05_020
crossref_primary_10_1002_cnma_202100198
crossref_primary_10_1002_smll_202306655
crossref_primary_10_1016_j_nanoen_2022_107199
crossref_primary_10_3390_s20143927
crossref_primary_10_1002_aisy_202200460
crossref_primary_10_1002_admt_202100122
crossref_primary_10_1088_1361_6528_aba3db
crossref_primary_10_1002_smll_201805493
crossref_primary_10_1016_j_pmatsci_2023_101181
crossref_primary_10_1002_aelm_201901310
crossref_primary_10_1002_slct_201803526
crossref_primary_10_1016_j_cej_2024_157332
crossref_primary_10_1002_admt_201800363
crossref_primary_10_1021_acsami_7b17723
crossref_primary_10_1002_adma_201801072
crossref_primary_10_1002_cphc_201801140
crossref_primary_10_1088_1361_6528_ac6812
crossref_primary_10_1016_j_sna_2019_111652
crossref_primary_10_1149_1945_7111_ab7331
crossref_primary_10_1021_acsami_9b23110
crossref_primary_10_1021_acs_nanolett_1c04976
crossref_primary_10_1016_j_sna_2018_09_035
crossref_primary_10_1021_acsami_8b22053
crossref_primary_10_1002_adma_201901408
crossref_primary_10_3390_app10051829
crossref_primary_10_3390_s23125545
crossref_primary_10_1007_s40820_025_01656_w
crossref_primary_10_1021_acsami_8b03639
crossref_primary_10_3390_s20020371
crossref_primary_10_1088_2399_6528_ad7d5d
crossref_primary_10_54097_hset_v43i_7404
crossref_primary_10_1021_acsnano_4c04100
crossref_primary_10_1021_acsami_2c01630
crossref_primary_10_1021_acsami_9b02659
crossref_primary_10_1002_adma_201703700
crossref_primary_10_1016_j_cej_2022_139990
crossref_primary_10_1007_s00339_022_05745_0
crossref_primary_10_1007_s10854_023_10387_w
crossref_primary_10_3390_s19051077
crossref_primary_10_1002_aelm_201700586
crossref_primary_10_1039_C8NR05843A
crossref_primary_10_1002_smll_201800819
crossref_primary_10_1016_j_mee_2019_111201
crossref_primary_10_3390_polym14071294
crossref_primary_10_1038_s41427_018_0041_6
crossref_primary_10_1007_s12274_022_5014_y
crossref_primary_10_1016_j_measurement_2023_113992
crossref_primary_10_1039_D1MH00384D
crossref_primary_10_1021_acsnano_0c03294
crossref_primary_10_1021_acsami_9b21068
crossref_primary_10_1016_j_nanoen_2020_105617
crossref_primary_10_1088_1674_4926_44_2_021601
crossref_primary_10_1016_j_npe_2019_12_006
crossref_primary_10_1002_admt_202101239
crossref_primary_10_1016_j_bios_2019_05_001
crossref_primary_10_1021_acsami_7b16611
crossref_primary_10_1002_admi_202101596
crossref_primary_10_1039_C9TC00820A
crossref_primary_10_1007_s40843_018_9348_8
crossref_primary_10_3390_s24020468
crossref_primary_10_1016_j_cej_2023_147586
crossref_primary_10_1016_j_nanoen_2019_104316
crossref_primary_10_1016_j_sna_2024_115810
crossref_primary_10_1088_1361_6528_ab6cd8
crossref_primary_10_1088_2058_8585_ac8be1
crossref_primary_10_1109_JSEN_2022_3198847
crossref_primary_10_1007_s40820_022_00874_w
crossref_primary_10_1016_j_elstat_2025_104029
crossref_primary_10_1021_acsami_0c12642
crossref_primary_10_1039_D1TA08727D
crossref_primary_10_1002_smll_202201597
crossref_primary_10_1016_j_electacta_2024_144109
crossref_primary_10_1016_j_mtphys_2020_100219
crossref_primary_10_1021_acsami_1c12991
crossref_primary_10_1016_j_ceramint_2020_06_131
crossref_primary_10_1021_acssuschemeng_0c01827
crossref_primary_10_1039_C9RA06098G
crossref_primary_10_1016_j_jallcom_2025_178609
crossref_primary_10_1016_j_cej_2022_139898
crossref_primary_10_1038_s41598_018_32609_6
crossref_primary_10_1002_admi_202101362
crossref_primary_10_1038_s41467_022_28760_4
crossref_primary_10_1002_adma_201803388
crossref_primary_10_1007_s10854_023_10691_5
crossref_primary_10_1007_s40843_018_9280_y
Cites_doi 10.1002/adma.201304248
10.1002/adfm.201500453
10.1002/adma.201502556
10.1021/nn303328e
10.1126/science.1115311
10.1038/ncomms2832
10.1039/C6NR02678H
10.1002/adma.201200523
10.1002/adma.201305182
10.1038/nature07719
10.1002/adfm.201404535
10.1038/nmat3380
10.1002/adfm.201600078
10.1002/adma.201500009
10.1007/s12274-016-1107-9
10.1002/adma.201204426
10.1002/adma.201400918
10.1073/pnas.0401918101
10.1002/adfm.201404365
10.1002/adma.201404850
10.1002/admi.201500674
10.1002/adfm.201401267
10.1002/adfm.201504560
10.1002/adma.201403807
10.1002/adfm.201502960
10.1002/adma.201103406
10.1002/smll.200901173
10.1021/nn501132n
10.1002/adma.201302240
10.1021/nn9003988
10.1038/ncomms4002
10.1002/adma.201401364
10.1038/ncomms4132
10.1126/science.1234855
10.1002/adma.201303041
10.1002/adma.201502777
10.1002/adma.200904426
10.1002/smll.201403036
10.1021/nl300988z
10.1021/nn502702a
10.1021/nn500441k
10.1002/adfm.201504755
10.1002/smll.201600760
10.1038/ncomms5496
10.1002/adma.201502470
10.1021/nn4037514
10.1002/adfm.201404087
10.1002/smll.201401207
10.1002/adma.201601572
10.1002/smll.201402890
10.1002/adma.201600408
10.1002/adma.201302869
10.1002/adma.201504244
10.1038/nnano.2012.192
10.1038/nnano.2011.184
10.1021/nn505953t
10.1021/am500864t
10.1002/adma.201401367
10.1038/srep08603
10.1126/science.1206157
10.1002/adma.201403722
ContentType Journal Article
Copyright 2017 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
Copyright_xml – notice: 2017 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
– notice: 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
DBID AAYXX
CITATION
7SP
7SR
7U5
8BQ
8FD
JG9
L7M
DOI 10.1002/adfm.201606066
DatabaseName CrossRef
Electronics & Communications Abstracts
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Advanced Technologies Database with Aerospace
METADEX
DatabaseTitleList
CrossRef
Materials Research Database
Materials Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1616-3028
EndPage n/a
ExternalDocumentID 10_1002_adfm_201606066
ADFM201606066
Genre article
GrantInformation_xml – fundername: NSF of China
  funderid: 51672153; 51422204; 51372132
– fundername: National Key Basic Research and Development Program
  funderid: 2016YFA0200103; 2013CB228506
GroupedDBID -~X
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6P2
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHQN
AAMMB
AAMNL
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABJNI
ABPVW
ACAHQ
ACCZN
ACGFS
ACIWK
ACPOU
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADMLS
ADOZA
ADXAS
ADZMN
AEFGJ
AEIGN
AEIMD
AENEX
AEUYR
AEYWJ
AFBPY
AFFPM
AFGKR
AFWVQ
AFZJQ
AGHNM
AGXDD
AGYGG
AHBTC
AIDQK
AIDYY
AITYG
AIURR
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
EBS
EJD
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RX1
RYL
SUPJJ
UB1
V2E
W8V
W99
WBKPD
WFSAM
WIH
WIK
WJL
WOHZO
WQJ
WXSBR
WYISQ
XG1
XPP
XV2
~IA
~WT
.Y3
31~
AAHHS
AANHP
AAYXX
ACBWZ
ACCFJ
ACRPL
ACYXJ
ADNMO
ADZOD
AEEZP
AEQDE
AGQPQ
AIWBW
AJBDE
ASPBG
AVWKF
AZFZN
CITATION
FEDTE
HF~
HVGLF
7SP
7SR
7U5
8BQ
8FD
JG9
L7M
ID FETCH-LOGICAL-c4166-b67f1ba86b6a98bb1a2829302eb8714892e385ff3c4637a59e998d1fce136ae23
IEDL.DBID DR2
ISSN 1616-301X
IngestDate Thu Jul 10 17:33:09 EDT 2025
Fri Jul 25 04:45:50 EDT 2025
Tue Jul 01 04:11:37 EDT 2025
Thu Apr 24 23:01:28 EDT 2025
Wed Aug 20 07:24:45 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 9
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4166-b67f1ba86b6a98bb1a2829302eb8714892e385ff3c4637a59e998d1fce136ae23
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
PQID 1920413233
PQPubID 2045204
PageCount 8
ParticipantIDs proquest_miscellaneous_1893899818
proquest_journals_1920413233
crossref_citationtrail_10_1002_adfm_201606066
crossref_primary_10_1002_adfm_201606066
wiley_primary_10_1002_adfm_201606066_ADFM201606066
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate March 3, 2017
PublicationDateYYYYMMDD 2017-03-03
PublicationDate_xml – month: 03
  year: 2017
  text: March 3, 2017
  day: 03
PublicationDecade 2010
PublicationPlace Hoboken
PublicationPlace_xml – name: Hoboken
PublicationTitle Advanced functional materials
PublicationYear 2017
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2004; 101
2011; 333
2013; 25
2013; 4
2015; 5
2015; 11
2014; 26
2014; 24
2013; 340
2013; 7
2011; 6
2012; 12
2012; 11
2016; 12
2009; 457
2010; 22
2015; 25
2014; 5
2015; 27
2016; 3
2005; 309
2011; 23
2009; 3
2012; 6
2016; 28
2012; 24
2012; 7
2014; 8
2016; 26
2014; 6
2016; 8
2010; 6
2016; 9
2014; 10
e_1_2_6_51_1
e_1_2_6_53_1
e_1_2_6_32_1
e_1_2_6_30_1
e_1_2_6_19_1
e_1_2_6_13_1
e_1_2_6_36_1
e_1_2_6_59_1
e_1_2_6_11_1
e_1_2_6_34_1
e_1_2_6_17_1
e_1_2_6_55_1
e_1_2_6_15_1
e_1_2_6_38_1
e_1_2_6_57_1
e_1_2_6_43_1
e_1_2_6_20_1
e_1_2_6_41_1
e_1_2_6_60_1
e_1_2_6_9_1
e_1_2_6_5_1
e_1_2_6_7_1
e_1_2_6_1_1
e_1_2_6_24_1
e_1_2_6_49_1
e_1_2_6_3_1
e_1_2_6_22_1
e_1_2_6_28_1
e_1_2_6_45_1
e_1_2_6_26_1
e_1_2_6_47_1
e_1_2_6_52_1
e_1_2_6_54_1
e_1_2_6_10_1
e_1_2_6_31_1
e_1_2_6_50_1
e_1_2_6_14_1
e_1_2_6_35_1
e_1_2_6_12_1
e_1_2_6_33_1
e_1_2_6_18_1
e_1_2_6_39_1
e_1_2_6_56_1
e_1_2_6_16_1
e_1_2_6_37_1
e_1_2_6_58_1
e_1_2_6_42_1
e_1_2_6_21_1
e_1_2_6_40_1
e_1_2_6_61_1
e_1_2_6_8_1
e_1_2_6_4_1
e_1_2_6_6_1
e_1_2_6_25_1
e_1_2_6_48_1
e_1_2_6_23_1
e_1_2_6_2_1
e_1_2_6_29_1
e_1_2_6_44_1
e_1_2_6_27_1
e_1_2_6_46_1
References_xml – volume: 309
  start-page: 1215
  year: 2005
  publication-title: Science
– volume: 25
  start-page: 6545
  year: 2015
  publication-title: Adv. Funct. Mater.
– volume: 6
  start-page: 9790
  year: 2012
  publication-title: ACS Nano
– volume: 26
  start-page: 1178
  year: 2016
  publication-title: Adv. Funct. Mater.
– volume: 8
  start-page: 12020
  year: 2014
  publication-title: ACS Nano
– volume: 27
  start-page: 6055
  year: 2015
  publication-title: Adv. Mater.
– volume: 26
  start-page: 1336
  year: 2014
  publication-title: Adv. Mater.
– volume: 25
  start-page: 1798
  year: 2015
  publication-title: Adv. Funct. Mater.
– volume: 26
  start-page: 5018
  year: 2014
  publication-title: Adv. Mater.
– volume: 25
  start-page: 5997
  year: 2013
  publication-title: Adv. Mater.
– volume: 27
  start-page: 7130
  year: 2015
  publication-title: Adv. Mater.
– volume: 12
  start-page: 5042
  year: 2016
  publication-title: Small
– volume: 12
  start-page: 3109
  year: 2012
  publication-title: Nano Lett.
– volume: 6
  start-page: 195
  year: 2010
  publication-title: Small
– volume: 8
  start-page: 4689
  year: 2014
  publication-title: ACS Nano
– volume: 340
  start-page: 952
  year: 2013
  publication-title: Science
– volume: 27
  start-page: 1561
  year: 2015
  publication-title: Adv. Mater.
– volume: 22
  start-page: 3027
  year: 2010
  publication-title: Adv. Mater.
– volume: 7
  start-page: 825
  year: 2012
  publication-title: Nat. Nanotechnol.
– volume: 27
  start-page: 634
  year: 2015
  publication-title: Adv. Mater.
– volume: 4
  start-page: 1859
  year: 2013
  publication-title: Nat. Commun.
– volume: 27
  start-page: 2433
  year: 2015
  publication-title: Adv. Mater.
– volume: 7
  start-page: 8266
  year: 2013
  publication-title: ACS Nano
– volume: 26
  start-page: 4735
  year: 2014
  publication-title: Adv. Mater.
– volume: 27
  start-page: 682
  year: 2015
  publication-title: Adv. Mater.
– volume: 333
  start-page: 838
  year: 2011
  publication-title: Science
– volume: 25
  start-page: 2138
  year: 2015
  publication-title: Adv. Funct. Mater.
– volume: 11
  start-page: 795
  year: 2012
  publication-title: Nat. Mater.
– volume: 26
  start-page: 796
  year: 2014
  publication-title: Adv. Mater.
– volume: 28
  start-page: 4338
  year: 2016
  publication-title: Adv. Mater.
– volume: 8
  start-page: 12105
  year: 2016
  publication-title: Nanoscale
– volume: 26
  start-page: 3451
  year: 2014
  publication-title: Adv. Mater.
– volume: 6
  start-page: 7479
  year: 2014
  publication-title: ACS Appl. Mater. Interfaces
– volume: 10
  start-page: 3625
  year: 2014
  publication-title: Small
– volume: 11
  start-page: 3351
  year: 2015
  publication-title: Small
– volume: 9
  start-page: 2182
  year: 2016
  publication-title: Nano Res.
– volume: 8
  start-page: 5707
  year: 2014
  publication-title: ACS Nano
– volume: 28
  start-page: 5300
  year: 2016
  publication-title: Adv. Mater.
– volume: 3
  start-page: 1500674
  year: 2016
  publication-title: Adv. Mater. Interfaces
– volume: 25
  start-page: 2773
  year: 2013
  publication-title: Adv. Mater.
– volume: 25
  start-page: 2287
  year: 2015
  publication-title: Adv. Funct. Mater.
– volume: 5
  start-page: 4496
  year: 2014
  publication-title: Nat. Commun.
– volume: 26
  start-page: 1678
  year: 2016
  publication-title: Adv. Funct. Mater.
– volume: 25
  start-page: 2841
  year: 2015
  publication-title: Adv. Funct. Mater.
– volume: 8
  start-page: 5061
  year: 2014
  publication-title: ACS Nano
– volume: 3
  start-page: 2157
  year: 2009
  publication-title: ACS Nano
– volume: 25
  start-page: 6692
  year: 2013
  publication-title: Adv. Mater.
– volume: 24
  start-page: 3223
  year: 2012
  publication-title: Adv. Mater.
– volume: 11
  start-page: 1886
  year: 2015
  publication-title: Small
– volume: 24
  start-page: 5807
  year: 2014
  publication-title: Adv. Funct. Mater.
– volume: 5
  start-page: 3002
  year: 2014
  publication-title: Nat. Commun.
– volume: 5
  start-page: 3132
  year: 2014
  publication-title: Nat. Commun.
– volume: 5
  start-page: 8603
  year: 2015
  publication-title: Sci. Rep.
– volume: 26
  start-page: 4078
  year: 2016
  publication-title: Adv. Funct. Mater.
– volume: 27
  start-page: 7867
  year: 2015
  publication-title: Adv. Mater.
– volume: 28
  start-page: 6640
  year: 2016
  publication-title: Adv. Mater.
– volume: 457
  start-page: 706
  year: 2009
  publication-title: Nature
– volume: 23
  start-page: 5440
  year: 2011
  publication-title: Adv. Mater.
– volume: 6
  start-page: 788
  year: 2011
  publication-title: Nat. Nanotechnol.
– volume: 101
  start-page: 9966
  year: 2004
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 26
  start-page: 4825
  year: 2014
  publication-title: Adv. Mater.
– ident: e_1_2_6_15_1
  doi: 10.1002/adma.201304248
– ident: e_1_2_6_29_1
  doi: 10.1002/adfm.201500453
– ident: e_1_2_6_23_1
  doi: 10.1002/adma.201502556
– ident: e_1_2_6_55_1
  doi: 10.1021/nn303328e
– ident: e_1_2_6_48_1
  doi: 10.1126/science.1115311
– ident: e_1_2_6_14_1
  doi: 10.1038/ncomms2832
– ident: e_1_2_6_39_1
  doi: 10.1039/C6NR02678H
– ident: e_1_2_6_7_1
  doi: 10.1002/adma.201200523
– ident: e_1_2_6_33_1
  doi: 10.1002/adma.201305182
– ident: e_1_2_6_51_1
  doi: 10.1038/nature07719
– ident: e_1_2_6_11_1
  doi: 10.1002/adfm.201404535
– ident: e_1_2_6_17_1
  doi: 10.1038/nmat3380
– ident: e_1_2_6_38_1
  doi: 10.1002/adfm.201600078
– ident: e_1_2_6_19_1
  doi: 10.1002/adma.201500009
– ident: e_1_2_6_60_1
  doi: 10.1007/s12274-016-1107-9
– ident: e_1_2_6_10_1
  doi: 10.1002/adma.201204426
– ident: e_1_2_6_58_1
  doi: 10.1002/adma.201400918
– ident: e_1_2_6_57_1
  doi: 10.1073/pnas.0401918101
– ident: e_1_2_6_22_1
  doi: 10.1002/adfm.201404365
– ident: e_1_2_6_42_1
  doi: 10.1002/adma.201404850
– ident: e_1_2_6_61_1
  doi: 10.1002/admi.201500674
– ident: e_1_2_6_59_1
  doi: 10.1002/adfm.201401267
– ident: e_1_2_6_16_1
  doi: 10.1002/adfm.201504560
– ident: e_1_2_6_24_1
  doi: 10.1002/adma.201403807
– ident: e_1_2_6_35_1
  doi: 10.1002/adfm.201502960
– ident: e_1_2_6_1_1
  doi: 10.1002/adma.201103406
– ident: e_1_2_6_54_1
  doi: 10.1002/smll.200901173
– ident: e_1_2_6_52_1
  doi: 10.1021/nn501132n
– ident: e_1_2_6_9_1
  doi: 10.1002/adma.201302240
– ident: e_1_2_6_49_1
  doi: 10.1021/nn9003988
– ident: e_1_2_6_40_1
  doi: 10.1038/ncomms4002
– ident: e_1_2_6_12_1
  doi: 10.1002/adma.201401364
– ident: e_1_2_6_18_1
  doi: 10.1038/ncomms4132
– ident: e_1_2_6_26_1
  doi: 10.1126/science.1234855
– ident: e_1_2_6_43_1
  doi: 10.1002/adma.201303041
– ident: e_1_2_6_56_1
  doi: 10.1002/adma.201502777
– ident: e_1_2_6_50_1
  doi: 10.1002/adma.200904426
– ident: e_1_2_6_36_1
  doi: 10.1002/smll.201403036
– ident: e_1_2_6_31_1
  doi: 10.1021/nl300988z
– ident: e_1_2_6_46_1
  doi: 10.1021/nn502702a
– ident: e_1_2_6_34_1
  doi: 10.1021/nn500441k
– ident: e_1_2_6_3_1
  doi: 10.1002/adfm.201504755
– ident: e_1_2_6_25_1
  doi: 10.1002/smll.201600760
– ident: e_1_2_6_27_1
  doi: 10.1038/ncomms5496
– ident: e_1_2_6_30_1
  doi: 10.1002/adma.201502470
– ident: e_1_2_6_32_1
  doi: 10.1021/nn4037514
– ident: e_1_2_6_2_1
  doi: 10.1002/adfm.201404087
– ident: e_1_2_6_20_1
  doi: 10.1002/smll.201401207
– ident: e_1_2_6_5_1
  doi: 10.1002/adma.201601572
– ident: e_1_2_6_47_1
  doi: 10.1002/smll.201402890
– ident: e_1_2_6_37_1
  doi: 10.1002/adma.201600408
– ident: e_1_2_6_28_1
  doi: 10.1002/adma.201302869
– ident: e_1_2_6_4_1
  doi: 10.1002/adma.201504244
– ident: e_1_2_6_8_1
  doi: 10.1038/nnano.2012.192
– ident: e_1_2_6_21_1
  doi: 10.1038/nnano.2011.184
– ident: e_1_2_6_41_1
  doi: 10.1021/nn505953t
– ident: e_1_2_6_13_1
  doi: 10.1021/am500864t
– ident: e_1_2_6_44_1
  doi: 10.1002/adma.201401367
– ident: e_1_2_6_45_1
  doi: 10.1038/srep08603
– ident: e_1_2_6_6_1
  doi: 10.1126/science.1206157
– ident: e_1_2_6_53_1
  doi: 10.1002/adma.201403722
SSID ssj0017734
Score 2.666116
Snippet The rational design of high‐performance flexible pressure sensors attracts attention because of the potential applications in wearable electronics and...
The rational design of high-performance flexible pressure sensors attracts attention because of the potential applications in wearable electronics and...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage np
SubjectTerms Biomimetics
Bionics
Carbon nanotubes
Chemical vapor deposition
Electric potential
electronic skin
Electronics
Graphene
hierarchical structures
Man-machine interfaces
Materials science
Membranes
Nanotubes
Polydimethylsiloxane
Pressure sensors
Protuberances
Response time
Sensitivity
Sensors
Silicone resins
Structural hierarchy
Voltage
Wearable technology
Title Flexible and Highly Sensitive Pressure Sensors Based on Bionic Hierarchical Structures
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadfm.201606066
https://www.proquest.com/docview/1920413233
https://www.proquest.com/docview/1893899818
Volume 27
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELYQLDDwRhRKZSQkprSNnYc9tpSqQpSBUtQtsh1nIUpRHwP8eu6SNm2REBKMSc5y7PP5Ptt3nwm58YQWQhrp-NZyx-PWOFL7ngPGkTDux1zndE39p6A39B5G_mgti7_ghyg33NAy8vkaDVzpaWNFGqriBDPJXUDg4DZhEsaALURFzyV_lBuGxbFy4GKAlztasjY2WWOz-KZXWkHNdcCae5zuAVHLfy0CTd7q85mum89vNI7_acwh2V_AUdoqxs8R2bLZMdlbIyk8Ia9d5MzUqaUqiynGhaQfdIBx7zhT0iK_cGLzV-PJlLbBL8Z0nNE2bvUaKIE5zvmVKykd5HS1ID49JcPu_ctdz1ncxuAYAG2Bo4MwcbUSgQ6UFFq7Cg9heZNZDYsuT0hmufCThBsv4KHypYWVXOwmxoJilGX8jGxn48yeE6qMl0gYIaGwCThHgEiBirVpSiUBb3JeIc5SG5FZUJXjjRlpVJAsswj7Kyr7q0JuS_n3gqTjR8nqUrnRwlinEYDcJvhyhhVfl5_BzPDsRGV2PAcZwHW4NHVFhbBck7_UFLU63X75dPGXQpdklyGIwIg3XiXboCF7BRBopmtkp9XpPw5q-XD_Ar8Q_hQ
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NTtwwEB4heqA9UKCt2Ja2RmrVU2BtJ4596AHYrpbCcihQ7S21HefCKluxoIq-VV-FJ2Imf0ClqlIlDj0msZXE45n5xh5_A_Au1k5r402UhCCjWAYfGZfEESpHIWSSS1fRNY2P1Og0_jxJJgvwqz0LU_NDdAtupBmVvSYFpwXp7VvWUJsXdJScIwRHv9nkVR6Eqx8Ytc0_7g9QxO-FGH462RtFTWGByCP-UJFTacGd1copa7Rz3NJ-ouyL4DB-iLURQeqkKKSPlUxtYgIGJTkvfOBS2UBcB2j1H1EZcaLrH3zpGKt4mtYb2YpTShmftDyRfbF9_3vv-8FbcHsXIlc-bvgUrtvRqVNbzrYuL9yW__kbceR_NXwrsNwgbrZTq8gqLIRyDZ7c4WF8Bl-HRAvqpoHZMmeU-jK9YseU2k_OgNVHKM9DdWt2Pme76PpzNivZLq1me-xBx7irqjJTdlwx8mLz-XM4fZAfewGL5awM68CsjwuDSpDqUKD_RxSobO5831iDkFrKHkSt-DPfsLFTUZBpVvNIi4zkk3Xy6cGHrv33mofkjy032tmUNfZoniGO7yNcEfTize4xWhLaHrJlmF1iG4SuFH1z3QNRTZ2_vCnbGQzH3dXLf-n0FpZGJ-PD7HD_6OAVPBaEmSjBT27AIkorvEbEd-HeVDrG4NtDz8obAZ9Zhw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtQwEB5VrYTgQPkVS0sxEohT2thOnPjAoWUbtZRWiFK0t9R27AurbNVtVZWn4lV4I2by1xYJISH1wDGJrSQez8w39vgbgNdJbvNcOx2l3ssokd5F2qZJhMoRhEwraRu6pv0DtXOUfJikkwX40Z-FafkhhgU30ozGXpOCn1Rh44o01FSBTpJzRODoNru0yj1_eYFB2_zd7hgl_EaIYvvL-52oqysQOYQfKrIqC9yaXFlldG4tN7SdKGPhLYYPSa6Fl3kagnSJkplJtceYpOLBeS6V8UR1gEZ_KVGxpmIR488DYRXPsnYfW3HKKOOTniYyFhs3v_emG7zCttcRcuPiimX42Q9Om9nybf38zK6777_xRv5Po_cA7nd4m222CvIQFnz9CO5dY2F8DF8LIgW1U89MXTFKfJleskNK7CdXwNoDlKe-uTU7nbMtdPwVm9Vsi9ayHfagQ9xNTZkpO2z4eLH5_Akc3cqPPYXFelb7Z8CMS4JGFchyH9D7IwZUprIu1kYjoJZyBFEv_dJ1XOxUEmRatizSoiT5lIN8RvB2aH_SspD8seVqP5nKzhrNS0TxMYIVQS9-NTxGO0KbQ6b2s3Nsg8CVYm-ej0A0M-cvbyo3x8X-cPX8Xzq9hDufxkX5cfdgbwXuCgJMlN0nV2ERheVfINw7s2uNhjE4vu1J-Qtz_1g2
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Flexible+and+Highly+Sensitive+Pressure+Sensors+Based+on+Bionic+Hierarchical+Structures&rft.jtitle=Advanced+functional+materials&rft.au=Jian%2C+Muqiang&rft.au=Xia%2C+Kailun&rft.au=Wang%2C+Qi&rft.au=Yin%2C+Zhe&rft.date=2017-03-03&rft.issn=1616-301X&rft.eissn=1616-3028&rft.volume=27&rft.issue=9&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fadfm.201606066&rft.externalDBID=10.1002%252Fadfm.201606066&rft.externalDocID=ADFM201606066
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1616-301X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1616-301X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1616-301X&client=summon