Flexible and Highly Sensitive Pressure Sensors Based on Bionic Hierarchical Structures
The rational design of high‐performance flexible pressure sensors attracts attention because of the potential applications in wearable electronics and human–machine interfacing. For practical applications, pressure sensors with high sensitivity and low detection limit are desired. Here, ta simple pr...
Saved in:
Published in | Advanced functional materials Vol. 27; no. 9; pp. np - n/a |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Hoboken
Wiley Subscription Services, Inc
03.03.2017
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The rational design of high‐performance flexible pressure sensors attracts attention because of the potential applications in wearable electronics and human–machine interfacing. For practical applications, pressure sensors with high sensitivity and low detection limit are desired. Here, ta simple process to fabricate high‐performance pressure sensors based on biomimetic hierarchical structures and highly conductive active membranes is presented. Aligned carbon nanotubes/graphene (ACNT/G) is used as the active material and microstructured polydimethylsiloxane (m‐PDMS) molded from natural leaves is used as the flexible matrix. The highly conductive ACNT/G films with unique coalescent structures, which are directly grown using chemical vapor deposition, can be conformably coated on the m‐PDMS films with hierarchical protuberances. Flexible ACNT/G pressure sensors are then constructed by putting two ACNT/G/PDMS films face to face with the orientation of the ACNTs in the two films perpendicular to each other. Due to the unique hierarchical structures of both the ACNT/G and m‐PDMS films, the obtained pressure sensors demonstrate high sensitivity (19.8 kPa−1, <0.3 kPa), low detection limit (0.6 Pa), fast response time (<16.7 ms), low operating voltage (0.03 V), and excellent stability for more than 35 000 loading–unloading cycles, thus promising potential applications in wearable electronics.
A flexible, highly sensitive, and low operating voltage pressure sensor is fabricated based on carbon nanotube/graphene hybrid films and hierarchical microstructured polydimethylsiloxane films molded from natural leaves. The sensor has high sensitivity (19.8 kPa−1, <0.3 kPa), a low detection limit (0.6 Pa), fast response time (<16.7 ms), low operating voltage (0.03 V), and excellent stability for over 35 000 cycles. |
---|---|
AbstractList | The rational design of high‐performance flexible pressure sensors attracts attention because of the potential applications in wearable electronics and human–machine interfacing. For practical applications, pressure sensors with high sensitivity and low detection limit are desired. Here, ta simple process to fabricate high‐performance pressure sensors based on biomimetic hierarchical structures and highly conductive active membranes is presented. Aligned carbon nanotubes/graphene (ACNT/G) is used as the active material and microstructured polydimethylsiloxane (m‐PDMS) molded from natural leaves is used as the flexible matrix. The highly conductive ACNT/G films with unique coalescent structures, which are directly grown using chemical vapor deposition, can be conformably coated on the m‐PDMS films with hierarchical protuberances. Flexible ACNT/G pressure sensors are then constructed by putting two ACNT/G/PDMS films face to face with the orientation of the ACNTs in the two films perpendicular to each other. Due to the unique hierarchical structures of both the ACNT/G and m‐PDMS films, the obtained pressure sensors demonstrate high sensitivity (19.8 kPa−1, <0.3 kPa), low detection limit (0.6 Pa), fast response time (<16.7 ms), low operating voltage (0.03 V), and excellent stability for more than 35 000 loading–unloading cycles, thus promising potential applications in wearable electronics.
A flexible, highly sensitive, and low operating voltage pressure sensor is fabricated based on carbon nanotube/graphene hybrid films and hierarchical microstructured polydimethylsiloxane films molded from natural leaves. The sensor has high sensitivity (19.8 kPa−1, <0.3 kPa), a low detection limit (0.6 Pa), fast response time (<16.7 ms), low operating voltage (0.03 V), and excellent stability for over 35 000 cycles. The rational design of high‐performance flexible pressure sensors attracts attention because of the potential applications in wearable electronics and human–machine interfacing. For practical applications, pressure sensors with high sensitivity and low detection limit are desired. Here, ta simple process to fabricate high‐performance pressure sensors based on biomimetic hierarchical structures and highly conductive active membranes is presented. Aligned carbon nanotubes/graphene (ACNT/G) is used as the active material and microstructured polydimethylsiloxane (m‐PDMS) molded from natural leaves is used as the flexible matrix. The highly conductive ACNT/G films with unique coalescent structures, which are directly grown using chemical vapor deposition, can be conformably coated on the m‐PDMS films with hierarchical protuberances. Flexible ACNT/G pressure sensors are then constructed by putting two ACNT/G/PDMS films face to face with the orientation of the ACNTs in the two films perpendicular to each other. Due to the unique hierarchical structures of both the ACNT/G and m‐PDMS films, the obtained pressure sensors demonstrate high sensitivity (19.8 kPa −1 , <0.3 kPa), low detection limit (0.6 Pa), fast response time (<16.7 ms), low operating voltage (0.03 V), and excellent stability for more than 35 000 loading–unloading cycles, thus promising potential applications in wearable electronics. The rational design of high-performance flexible pressure sensors attracts attention because of the potential applications in wearable electronics and human-machine interfacing. For practical applications, pressure sensors with high sensitivity and low detection limit are desired. Here, ta simple process to fabricate high-performance pressure sensors based on biomimetic hierarchical structures and highly conductive active membranes is presented. Aligned carbon nanotubes/graphene (ACNT/G) is used as the active material and microstructured polydimethylsiloxane (m-PDMS) molded from natural leaves is used as the flexible matrix. The highly conductive ACNT/G films with unique coalescent structures, which are directly grown using chemical vapor deposition, can be conformably coated on the m-PDMS films with hierarchical protuberances. Flexible ACNT/G pressure sensors are then constructed by putting two ACNT/G/PDMS films face to face with the orientation of the ACNTs in the two films perpendicular to each other. Due to the unique hierarchical structures of both the ACNT/G and m-PDMS films, the obtained pressure sensors demonstrate high sensitivity (19.8 kPa super(-1), <0.3 kPa), low detection limit (0.6 Pa), fast response time (<16.7 ms), low operating voltage (0.03 V), and excellent stability for more than 35 000 loading-unloading cycles, thus promising potential applications in wearable electronics. A flexible, highly sensitive, and low operating voltage pressure sensor is fabricated based on carbon nanotube/graphene hybrid films and hierarchical microstructured polydimethylsiloxane films molded from natural leaves. The sensor has high sensitivity (19.8 kPa super(-1), <0.3 kPa), a low detection limit (0.6 Pa), fast response time (<16.7 ms), low operating voltage (0.03 V), and excellent stability for over 35 000 cycles. The rational design of high-performance flexible pressure sensors attracts attention because of the potential applications in wearable electronics and human-machine interfacing. For practical applications, pressure sensors with high sensitivity and low detection limit are desired. Here, ta simple process to fabricate high-performance pressure sensors based on biomimetic hierarchical structures and highly conductive active membranes is presented. Aligned carbon nanotubes/graphene (ACNT/G) is used as the active material and microstructured polydimethylsiloxane (m-PDMS) molded from natural leaves is used as the flexible matrix. The highly conductive ACNT/G films with unique coalescent structures, which are directly grown using chemical vapor deposition, can be conformably coated on the m-PDMS films with hierarchical protuberances. Flexible ACNT/G pressure sensors are then constructed by putting two ACNT/G/PDMS films face to face with the orientation of the ACNTs in the two films perpendicular to each other. Due to the unique hierarchical structures of both the ACNT/G and m-PDMS films, the obtained pressure sensors demonstrate high sensitivity (19.8 kPa-1, <0.3 kPa), low detection limit (0.6 Pa), fast response time (<16.7 ms), low operating voltage (0.03 V), and excellent stability for more than 35 000 loading-unloading cycles, thus promising potential applications in wearable electronics. |
Author | Yin, Zhe Wang, Chunya Wang, Huimin Jian, Muqiang Wang, Qi Zhang, Mingchao Zhang, Yingying Xie, Huanhuan Xia, Kailun |
Author_xml | – sequence: 1 givenname: Muqiang surname: Jian fullname: Jian, Muqiang organization: Tsinghua University – sequence: 2 givenname: Kailun surname: Xia fullname: Xia, Kailun organization: Tsinghua University – sequence: 3 givenname: Qi surname: Wang fullname: Wang, Qi organization: Tsinghua University – sequence: 4 givenname: Zhe surname: Yin fullname: Yin, Zhe organization: Tsinghua University – sequence: 5 givenname: Huimin surname: Wang fullname: Wang, Huimin organization: Tsinghua University – sequence: 6 givenname: Chunya surname: Wang fullname: Wang, Chunya organization: Tsinghua University – sequence: 7 givenname: Huanhuan surname: Xie fullname: Xie, Huanhuan organization: Tsinghua University – sequence: 8 givenname: Mingchao surname: Zhang fullname: Zhang, Mingchao organization: Tsinghua University – sequence: 9 givenname: Yingying surname: Zhang fullname: Zhang, Yingying email: yingyingzhang@tsinghua.edu.cn organization: Tsinghua University |
BookMark | eNqFkEFLAzEQRoMoqNWr5wUvXlozyZpNjq1aFSoKVfEWsumsRtJdTXbV_nujlQqCyBwyhPfCl2-brNdNjYTsAR0ApezQzKr5gFEQNI1YI1sgQPQ5ZXJ9tcP9JtmO8YlSKAqeb5G7scd3V3rMTD3Lzt3Do19kU6yja90rZtcBY-wCfl01IWYjE3GWNXU2ck3tbDIwmGAfnTU-m7ahs23C4w7ZqIyPuPt99sjt-PTm-Lw_uTq7OB5O-jYHIfqlKCoojRSlMEqWJRgmmUqRsZQF5FIx5PKoqrjNBS_MkUKl5Awqi8CFQcZ75GD57nNoXjqMrZ67aNF7U2PTRQ1ScZkckAnd_4U-NV2oUzoNitEcOOM8UfmSsqGJMWClrWtNmz7bBuO8Bqo_y9afZetV2Ukb_NKeg5ubsPhbUEvhzXlc_EPr4cn48sf9ADeCk7I |
CitedBy_id | crossref_primary_10_1016_j_rinma_2024_100646 crossref_primary_10_3788_COL202321_110005 crossref_primary_10_1002_adfm_201808783 crossref_primary_10_1002_advs_201700655 crossref_primary_10_1016_j_nanoen_2018_11_026 crossref_primary_10_1002_admt_202200290 crossref_primary_10_1039_D0TA05310D crossref_primary_10_1142_S1793292019500814 crossref_primary_10_1021_acsami_9b12929 crossref_primary_10_1016_j_nanoen_2024_109408 crossref_primary_10_1088_1361_665X_ab2624 crossref_primary_10_1002_admi_202000743 crossref_primary_10_1021_acsapm_3c00498 crossref_primary_10_1109_JSEN_2020_2978655 crossref_primary_10_1016_j_cej_2024_149461 crossref_primary_10_1002_adma_201805630 crossref_primary_10_1109_JSEN_2024_3438801 crossref_primary_10_3390_ma13153312 crossref_primary_10_1016_j_nanoso_2023_100974 crossref_primary_10_1016_j_bios_2022_114298 crossref_primary_10_1016_j_snb_2019_01_063 crossref_primary_10_1002_aelm_201901064 crossref_primary_10_1002_adma_201904020 crossref_primary_10_1007_s12274_020_2628_9 crossref_primary_10_1007_s12598_024_03157_y crossref_primary_10_1016_j_bios_2023_115449 crossref_primary_10_3390_healthcare12232467 crossref_primary_10_3390_s19204589 crossref_primary_10_34133_2020_2038560 crossref_primary_10_3390_ma15072548 crossref_primary_10_1063_1674_0068_cjcp1907146 crossref_primary_10_1002_admi_201901507 crossref_primary_10_1021_acsami_8b15535 crossref_primary_10_1021_acsanm_2c02202 crossref_primary_10_1109_JSEN_2023_3329879 crossref_primary_10_1002_admi_202000875 crossref_primary_10_1039_D0TA05651K crossref_primary_10_1088_1361_665X_ab4ac6 crossref_primary_10_1088_1361_665X_ab3af6 crossref_primary_10_1016_j_cap_2021_07_014 crossref_primary_10_1088_1361_665X_ab75a3 crossref_primary_10_3390_s19235194 crossref_primary_10_1021_acsami_2c12240 crossref_primary_10_1002_admi_202101312 crossref_primary_10_1039_D0MH01359E crossref_primary_10_1016_j_ceramint_2023_07_009 crossref_primary_10_1021_acsami_1c23604 crossref_primary_10_3390_bios13060656 crossref_primary_10_1002_admt_201700248 crossref_primary_10_1021_acsami_0c08910 crossref_primary_10_1002_admt_202100572 crossref_primary_10_1016_j_mtcomm_2020_101453 crossref_primary_10_1109_LRA_2021_3111038 crossref_primary_10_1016_j_measurement_2022_111645 crossref_primary_10_1186_s11671_020_03303_2 crossref_primary_10_1002_adma_201702675 crossref_primary_10_1109_JSEN_2022_3174450 crossref_primary_10_1007_s10853_021_05909_y crossref_primary_10_1038_s41467_022_29424_z crossref_primary_10_1039_D2NA00866A crossref_primary_10_1088_1742_6596_1790_1_012063 crossref_primary_10_1007_s13204_019_01147_6 crossref_primary_10_1016_j_carbon_2021_12_080 crossref_primary_10_1007_s11708_019_0653_8 crossref_primary_10_1088_1361_665X_ac251a crossref_primary_10_1002_mame_202100973 crossref_primary_10_3390_nano14211724 crossref_primary_10_1021_acsami_8b15439 crossref_primary_10_3390_molecules26185715 crossref_primary_10_1039_D0TC03729J crossref_primary_10_1021_acsami_0c03697 crossref_primary_10_1002_smtd_202200671 crossref_primary_10_1002_smsc_202000080 crossref_primary_10_1016_j_chempr_2017_12_028 crossref_primary_10_1002_adma_202003014 crossref_primary_10_1007_s10854_023_10966_x crossref_primary_10_1007_s12274_023_5802_z crossref_primary_10_1021_acsami_0c00255 crossref_primary_10_1021_acsami_4c15827 crossref_primary_10_1021_acssuschemeng_1c08491 crossref_primary_10_1016_j_mser_2022_100672 crossref_primary_10_1007_s10570_018_1893_1 crossref_primary_10_1007_s11432_019_2676_x crossref_primary_10_1016_j_nanoen_2020_105120 crossref_primary_10_3390_pr10081658 crossref_primary_10_1021_acssuschemeng_8b04528 crossref_primary_10_1002_jemt_23763 crossref_primary_10_1021_acsami_9b01964 crossref_primary_10_1039_C9NR02672J crossref_primary_10_1002_adfm_202009799 crossref_primary_10_1002_adfm_201808509 crossref_primary_10_1021_acsami_8b08933 crossref_primary_10_1088_1361_6463_ad0e95 crossref_primary_10_1016_j_bios_2023_115454 crossref_primary_10_1021_acsami_0c14314 crossref_primary_10_1021_acsami_1c10961 crossref_primary_10_1021_acsami_1c09975 crossref_primary_10_1016_j_surfin_2025_106258 crossref_primary_10_3390_s20164407 crossref_primary_10_1016_j_cej_2024_158363 crossref_primary_10_1039_C8MH01188E crossref_primary_10_1016_j_bios_2024_116868 crossref_primary_10_1016_j_jcis_2020_10_006 crossref_primary_10_1021_acsami_2c05823 crossref_primary_10_1007_s10853_017_1644_y crossref_primary_10_3389_fsens_2020_617805 crossref_primary_10_1016_j_commatsci_2022_111638 crossref_primary_10_1002_elan_202100214 crossref_primary_10_1002_admi_201801061 crossref_primary_10_1088_2631_7990_ad9787 crossref_primary_10_1016_j_mee_2024_112167 crossref_primary_10_1039_C9TC06352H crossref_primary_10_1038_s41467_020_14485_9 crossref_primary_10_1002_adfm_201907091 crossref_primary_10_1039_D0TC02539A crossref_primary_10_1002_smll_201801520 crossref_primary_10_1002_smll_201704149 crossref_primary_10_1021_acsami_4c12429 crossref_primary_10_1002_smll_201901744 crossref_primary_10_1088_1361_665X_ad223c crossref_primary_10_1002_adfm_202111022 crossref_primary_10_1016_j_nanoen_2019_03_013 crossref_primary_10_3390_s22166136 crossref_primary_10_1002_smll_202105334 crossref_primary_10_1002_eom2_12209 crossref_primary_10_1016_j_nanoen_2017_10_007 crossref_primary_10_1002_smll_202203491 crossref_primary_10_1088_2058_8585_acfb1e crossref_primary_10_1016_j_compscitech_2018_05_017 crossref_primary_10_1039_D1MH00615K crossref_primary_10_1021_acsami_9b18873 crossref_primary_10_1109_TIM_2020_3038003 crossref_primary_10_1109_TED_2020_3039762 crossref_primary_10_1021_acsami_3c04526 crossref_primary_10_1016_j_cej_2023_147849 crossref_primary_10_1021_acsnano_2c02609 crossref_primary_10_1039_D3MH01387A crossref_primary_10_1016_j_apsusc_2019_04_271 crossref_primary_10_1016_j_compositesb_2019_01_090 crossref_primary_10_1038_s41528_021_00114_y crossref_primary_10_1002_adma_202201046 crossref_primary_10_1002_admt_202001084 crossref_primary_10_1007_s10853_022_07776_7 crossref_primary_10_1021_acssuschemeng_2c05540 crossref_primary_10_1109_TIM_2024_3378283 crossref_primary_10_1186_s40486_022_00151_w crossref_primary_10_3390_polym16020238 crossref_primary_10_1038_s41598_019_40828_8 crossref_primary_10_3390_polym14173670 crossref_primary_10_1002_smll_201801657 crossref_primary_10_1021_acsami_2c17879 crossref_primary_10_1021_acsami_7b06119 crossref_primary_10_1038_s41378_023_00639_4 crossref_primary_10_1039_D0TC03961F crossref_primary_10_1080_10667857_2020_1863539 crossref_primary_10_1002_adfm_202405722 crossref_primary_10_1002_advs_202405501 crossref_primary_10_1039_D4TC04899G crossref_primary_10_3390_mi14101940 crossref_primary_10_1002_admt_201900679 crossref_primary_10_1002_adsr_202200099 crossref_primary_10_1149_2_0241914jes crossref_primary_10_1039_C8TC00839F crossref_primary_10_1016_j_mtcomm_2022_104541 crossref_primary_10_1088_1361_6528_aaa855 crossref_primary_10_1088_1361_6528_ab1a86 crossref_primary_10_1016_j_compositesa_2020_105898 crossref_primary_10_1002_admi_201901223 crossref_primary_10_3390_mi11030239 crossref_primary_10_1016_j_cej_2022_138193 crossref_primary_10_1021_acsnano_1c00472 crossref_primary_10_1016_j_compositesa_2021_106700 crossref_primary_10_1021_acsami_7b10820 crossref_primary_10_1039_C9TC05392A crossref_primary_10_1007_s10854_021_07143_3 crossref_primary_10_1016_j_matlet_2021_130977 crossref_primary_10_1021_acsami_8b16027 crossref_primary_10_1126_sciadv_abn2156 crossref_primary_10_1021_acsami_9b21949 crossref_primary_10_1002_adfm_201910292 crossref_primary_10_1002_adfm_202009602 crossref_primary_10_1016_j_cej_2024_149160 crossref_primary_10_1016_j_sna_2024_115170 crossref_primary_10_1002_adfm_202010830 crossref_primary_10_1002_aelm_201900916 crossref_primary_10_1016_j_nanoen_2022_107400 crossref_primary_10_1002_adma_202405405 crossref_primary_10_1002_adfm_201707538 crossref_primary_10_1016_j_nanoen_2019_03_048 crossref_primary_10_1002_admt_201900414 crossref_primary_10_1021_acsami_4c06905 crossref_primary_10_1002_adma_201902343 crossref_primary_10_1007_s10853_023_09212_w crossref_primary_10_1007_s10854_020_03811_y crossref_primary_10_1002_adma_201802418 crossref_primary_10_3390_s22030759 crossref_primary_10_1002_aisy_202300317 crossref_primary_10_3389_fbioe_2023_1303142 crossref_primary_10_1109_JSEN_2021_3060425 crossref_primary_10_1002_pat_70005 crossref_primary_10_1016_j_cej_2021_133458 crossref_primary_10_1002_adma_201805921 crossref_primary_10_1016_j_ceramint_2021_11_035 crossref_primary_10_1002_adfm_202405990 crossref_primary_10_1016_j_nanoen_2022_107513 crossref_primary_10_1021_acsnano_1c05806 crossref_primary_10_3390_mi12091091 crossref_primary_10_1016_j_sna_2020_112357 crossref_primary_10_1039_C8TC04893B crossref_primary_10_1016_j_nanoms_2021_11_003 crossref_primary_10_1021_acsami_9b17100 crossref_primary_10_1002_smll_201702933 crossref_primary_10_1002_mame_202200233 crossref_primary_10_1016_j_cej_2020_127637 crossref_primary_10_1016_j_nanoms_2021_11_006 crossref_primary_10_1109_TED_2022_3146108 crossref_primary_10_1002_adma_202107062 crossref_primary_10_1021_acsami_3c05775 crossref_primary_10_1021_acsapm_1c01111 crossref_primary_10_1016_j_cej_2021_132152 crossref_primary_10_1016_j_cis_2023_102988 crossref_primary_10_1039_C8NR08589G crossref_primary_10_1016_j_saa_2021_120800 crossref_primary_10_1021_acssensors_3c00818 crossref_primary_10_1039_C8TC01331D crossref_primary_10_1039_C9TA01448A crossref_primary_10_1016_j_nanoen_2022_106970 crossref_primary_10_1007_s40820_019_0302_0 crossref_primary_10_1002_adma_202403447 crossref_primary_10_1007_s10854_023_09987_3 crossref_primary_10_1021_acsami_8b08666 crossref_primary_10_1039_C9RA08653F crossref_primary_10_3390_s22072652 crossref_primary_10_1039_C7TA11348J crossref_primary_10_1016_j_eml_2020_100714 crossref_primary_10_1039_D2NR06084A crossref_primary_10_1002_admt_202301196 crossref_primary_10_1039_D3QM00076A crossref_primary_10_1002_inf2_12426 crossref_primary_10_1039_C9TA09225K crossref_primary_10_1002_inf2_12424 crossref_primary_10_1016_j_cej_2021_130091 crossref_primary_10_1038_s41378_022_00477_w crossref_primary_10_1002_adsr_202200049 crossref_primary_10_3390_nano10101941 crossref_primary_10_1002_advs_202105738 crossref_primary_10_1016_j_compscitech_2020_108255 crossref_primary_10_1134_S2635167622040243 crossref_primary_10_1016_j_sbsr_2021_100403 crossref_primary_10_1016_j_surfin_2024_104276 crossref_primary_10_1088_1361_6439_ab2f24 crossref_primary_10_1002_smll_201803411 crossref_primary_10_3390_s20164484 crossref_primary_10_1039_D2TC02051C crossref_primary_10_1016_j_sna_2019_05_011 crossref_primary_10_1016_j_mattod_2019_08_005 crossref_primary_10_1021_acs_chemrev_2c00429 crossref_primary_10_1016_j_jcis_2022_01_043 crossref_primary_10_1039_C7TC05228F crossref_primary_10_1021_acsnano_9b00395 crossref_primary_10_1109_TIM_2023_3312487 crossref_primary_10_1021_acsanm_9b01680 crossref_primary_10_1002_admt_201900475 crossref_primary_10_3390_nano12040723 crossref_primary_10_1021_acsami_8b17020 crossref_primary_10_1002_smll_202310032 crossref_primary_10_1002_slct_201900558 crossref_primary_10_3390_ma15082840 crossref_primary_10_1002_app_47928 crossref_primary_10_1002_inf2_12328 crossref_primary_10_1021_acsami_9b08419 crossref_primary_10_1016_j_apmt_2020_100651 crossref_primary_10_3390_molecules29071506 crossref_primary_10_1007_s12613_023_2820_5 crossref_primary_10_1109_JSEN_2020_2999261 crossref_primary_10_1016_j_nanoen_2022_107954 crossref_primary_10_1007_s42235_024_00587_3 crossref_primary_10_1021_acsami_7b09652 crossref_primary_10_1007_s40843_017_9077_x crossref_primary_10_1021_acsami_8b06496 crossref_primary_10_1016_j_surfin_2024_104573 crossref_primary_10_1021_acsami_9b04509 crossref_primary_10_1021_acsami_2c06574 crossref_primary_10_1039_C9TA00596J crossref_primary_10_1002_admt_202200848 crossref_primary_10_1016_j_measurement_2024_114905 crossref_primary_10_1016_j_carbon_2018_07_005 crossref_primary_10_3390_mi9110580 crossref_primary_10_1109_JSEN_2022_3218949 crossref_primary_10_1021_acsami_1c12241 crossref_primary_10_1007_s40843_020_1507_0 crossref_primary_10_1002_adem_202401988 crossref_primary_10_1039_C8TC00711J crossref_primary_10_1021_acsapm_9b00622 crossref_primary_10_1002_pc_25997 crossref_primary_10_1109_JSEN_2022_3189053 crossref_primary_10_1109_LED_2018_2835467 crossref_primary_10_3390_electronics11050716 crossref_primary_10_1021_acsnano_1c05199 crossref_primary_10_1016_j_cej_2024_153281 crossref_primary_10_1002_adfm_201802576 crossref_primary_10_1007_s40843_019_1173_3 crossref_primary_10_1016_j_cej_2024_154250 crossref_primary_10_1016_j_mser_2021_100647 crossref_primary_10_1007_s12274_021_3390_3 crossref_primary_10_1016_j_nanoen_2020_105711 crossref_primary_10_1002_adma_202203193 crossref_primary_10_1007_s12221_022_4839_z crossref_primary_10_1016_j_cej_2022_140302 crossref_primary_10_1038_s41528_023_00247_2 crossref_primary_10_1002_smll_201804779 crossref_primary_10_1016_j_cej_2020_128199 crossref_primary_10_1016_j_nanoen_2021_106190 crossref_primary_10_1016_j_coco_2020_100586 crossref_primary_10_1002_asia_202100475 crossref_primary_10_1016_j_nanoen_2020_104847 crossref_primary_10_1021_acsanm_1c01229 crossref_primary_10_1039_D0RA05675H crossref_primary_10_1109_LSENS_2023_3307077 crossref_primary_10_1007_s42114_022_00594_0 crossref_primary_10_1039_D0TA09556G crossref_primary_10_1088_1361_6463_ac1ddc crossref_primary_10_1021_acsami_7b15566 crossref_primary_10_1016_j_ceramint_2023_04_032 crossref_primary_10_1016_j_nanoen_2020_105700 crossref_primary_10_1016_j_cej_2022_137268 crossref_primary_10_1016_j_sna_2025_116220 crossref_primary_10_1021_acssensors_4c00170 crossref_primary_10_1016_j_jmat_2020_01_009 crossref_primary_10_1021_acsami_8b11527 crossref_primary_10_1021_acs_chemrev_7b00291 crossref_primary_10_1007_s40843_019_9446_1 crossref_primary_10_1177_09673911231188296 crossref_primary_10_1002_admt_202200820 crossref_primary_10_1016_j_cej_2023_146572 crossref_primary_10_1088_2053_1591_acc1c6 crossref_primary_10_1039_C8TA05862H crossref_primary_10_3390_s19122763 crossref_primary_10_1002_adma_201805093 crossref_primary_10_1007_s12274_021_3906_x crossref_primary_10_1016_j_nanoen_2024_110041 crossref_primary_10_2139_ssrn_4162449 crossref_primary_10_1016_j_compositesa_2021_106796 crossref_primary_10_1002_admt_201800572 crossref_primary_10_1021_acsami_2c22727 crossref_primary_10_1016_j_cej_2024_154355 crossref_primary_10_1016_j_jare_2020_07_001 crossref_primary_10_1016_j_jmst_2019_11_014 crossref_primary_10_1039_D4TA03758H crossref_primary_10_1186_s40580_019_0180_7 crossref_primary_10_1007_s40843_020_1637_9 crossref_primary_10_1002_mame_202200192 crossref_primary_10_1002_aisy_201900179 crossref_primary_10_1002_marc_202000761 crossref_primary_10_1002_admt_201800640 crossref_primary_10_1002_adfm_202105480 crossref_primary_10_3390_s20041219 crossref_primary_10_1039_C8TC01153B crossref_primary_10_1007_s12598_024_02636_6 crossref_primary_10_3390_nano12132127 crossref_primary_10_1021_acsami_0c16152 crossref_primary_10_1007_s10409_023_23211_x crossref_primary_10_3390_polym10060587 crossref_primary_10_1021_acsami_8b17085 crossref_primary_10_1021_acsnano_7b06909 crossref_primary_10_1002_advs_202405941 crossref_primary_10_1016_j_nanoen_2021_106181 crossref_primary_10_1038_s41563_024_02036_2 crossref_primary_10_1016_j_apsusc_2023_158021 crossref_primary_10_1016_j_coco_2021_100837 crossref_primary_10_1038_s41528_020_0065_1 crossref_primary_10_1007_s10118_020_2379_9 crossref_primary_10_1021_acs_nanolett_2c01145 crossref_primary_10_1088_1361_6463_acaf38 crossref_primary_10_1007_s42114_024_01168_y crossref_primary_10_1016_j_compscitech_2020_108419 crossref_primary_10_1021_acsnano_0c03659 crossref_primary_10_1134_S0965545X21050035 crossref_primary_10_1039_C7TC01962A crossref_primary_10_1002_admt_202201503 crossref_primary_10_1002_admi_202200621 crossref_primary_10_1021_acsomega_7b01575 crossref_primary_10_3390_en16052087 crossref_primary_10_1109_LED_2021_3109035 crossref_primary_10_1021_acsami_0c22938 crossref_primary_10_1038_s41569_025_01127_0 crossref_primary_10_1021_acsami_8b20284 crossref_primary_10_1002_nano_202100003 crossref_primary_10_1016_j_xinn_2023_100485 crossref_primary_10_1021_acsaelm_1c01045 crossref_primary_10_1021_acsami_9b14135 crossref_primary_10_1109_JSEN_2022_3156286 crossref_primary_10_3390_biomimetics8030293 crossref_primary_10_1039_C8NR08503J crossref_primary_10_1002_mame_202000206 crossref_primary_10_1088_1674_4926_39_1_011012 crossref_primary_10_1021_acs_nanolett_8b04514 crossref_primary_10_1016_j_sna_2022_113558 crossref_primary_10_29026_oea_2022_210029 crossref_primary_10_1002_admt_202200504 crossref_primary_10_1364_OL_475526 crossref_primary_10_1016_j_measurement_2024_116271 crossref_primary_10_1016_j_sna_2023_114600 crossref_primary_10_1016_j_sna_2023_114950 crossref_primary_10_1002_adfm_202214503 crossref_primary_10_1016_j_compositesb_2021_108899 crossref_primary_10_1021_acsnano_9b10230 crossref_primary_10_1021_acssuschemeng_1c02051 crossref_primary_10_1016_j_mtphys_2017_06_002 crossref_primary_10_1016_j_isci_2021_103728 crossref_primary_10_1016_j_matt_2022_02_022 crossref_primary_10_1007_s10570_024_06315_8 crossref_primary_10_1016_j_carbpol_2023_121306 crossref_primary_10_1021_acssensors_4c01171 crossref_primary_10_1021_acsami_7b07990 crossref_primary_10_1021_acsami_8b20380 crossref_primary_10_1021_acsami_4c20660 crossref_primary_10_1016_j_envpol_2021_117717 crossref_primary_10_1039_C8NR05292A crossref_primary_10_3389_fchem_2019_00399 crossref_primary_10_3390_polym11071120 crossref_primary_10_1021_acs_chemmater_9b00259 crossref_primary_10_1002_advs_202304121 crossref_primary_10_1002_smtd_202100409 crossref_primary_10_1109_TED_2023_3279301 crossref_primary_10_1002_adfm_202305328 crossref_primary_10_1007_s10854_023_10319_8 crossref_primary_10_1038_s41467_020_17298_y crossref_primary_10_2139_ssrn_4074345 crossref_primary_10_1021_acsnano_3c11080 crossref_primary_10_1002_adma_202106683 crossref_primary_10_1515_polyeng_2024_0110 crossref_primary_10_1016_j_aej_2024_07_003 crossref_primary_10_1016_j_cej_2022_136446 crossref_primary_10_1002_advs_202303264 crossref_primary_10_1016_j_nanoen_2021_105973 crossref_primary_10_1016_j_sna_2018_08_046 crossref_primary_10_1021_acssuschemeng_0c00910 crossref_primary_10_3390_ma16124310 crossref_primary_10_1039_C8TC03296C crossref_primary_10_1021_acsami_0c00448 crossref_primary_10_1002_advs_202000154 crossref_primary_10_1002_inf2_12060 crossref_primary_10_1016_j_ijbiomac_2024_135909 crossref_primary_10_3390_nano9091304 crossref_primary_10_1007_s11431_021_1899_9 crossref_primary_10_3390_mi11080770 crossref_primary_10_1016_j_cej_2024_155175 crossref_primary_10_1039_D1TA09813F crossref_primary_10_1002_smll_202407168 crossref_primary_10_1021_acsanm_3c02024 crossref_primary_10_1007_s42235_022_00159_3 crossref_primary_10_1016_j_cej_2022_137664 crossref_primary_10_1039_D1NH00648G crossref_primary_10_1002_cey2_530 crossref_primary_10_1109_JSEN_2021_3099016 crossref_primary_10_1109_JSEN_2024_3367900 crossref_primary_10_1021_acsami_9b09265 crossref_primary_10_1021_acsnano_2c06432 crossref_primary_10_1021_acsaelm_9b00564 crossref_primary_10_1002_agt2_522 crossref_primary_10_1088_1361_6528_aba4cd crossref_primary_10_1002_admt_202101021 crossref_primary_10_1021_acsami_9b02518 crossref_primary_10_1021_acsami_0c12561 crossref_primary_10_1039_D0NH00098A crossref_primary_10_1021_acsami_8b13535 crossref_primary_10_1021_acsami_0c01794 crossref_primary_10_3390_ma14216475 crossref_primary_10_1016_j_cej_2020_126191 crossref_primary_10_3390_s19051250 crossref_primary_10_1016_j_nanoen_2018_05_020 crossref_primary_10_1002_cnma_202100198 crossref_primary_10_1002_smll_202306655 crossref_primary_10_1016_j_nanoen_2022_107199 crossref_primary_10_3390_s20143927 crossref_primary_10_1002_aisy_202200460 crossref_primary_10_1002_admt_202100122 crossref_primary_10_1088_1361_6528_aba3db crossref_primary_10_1002_smll_201805493 crossref_primary_10_1016_j_pmatsci_2023_101181 crossref_primary_10_1002_aelm_201901310 crossref_primary_10_1002_slct_201803526 crossref_primary_10_1016_j_cej_2024_157332 crossref_primary_10_1002_admt_201800363 crossref_primary_10_1021_acsami_7b17723 crossref_primary_10_1002_adma_201801072 crossref_primary_10_1002_cphc_201801140 crossref_primary_10_1088_1361_6528_ac6812 crossref_primary_10_1016_j_sna_2019_111652 crossref_primary_10_1149_1945_7111_ab7331 crossref_primary_10_1021_acsami_9b23110 crossref_primary_10_1021_acs_nanolett_1c04976 crossref_primary_10_1016_j_sna_2018_09_035 crossref_primary_10_1021_acsami_8b22053 crossref_primary_10_1002_adma_201901408 crossref_primary_10_3390_app10051829 crossref_primary_10_3390_s23125545 crossref_primary_10_1007_s40820_025_01656_w crossref_primary_10_1021_acsami_8b03639 crossref_primary_10_3390_s20020371 crossref_primary_10_1088_2399_6528_ad7d5d crossref_primary_10_54097_hset_v43i_7404 crossref_primary_10_1021_acsnano_4c04100 crossref_primary_10_1021_acsami_2c01630 crossref_primary_10_1021_acsami_9b02659 crossref_primary_10_1002_adma_201703700 crossref_primary_10_1016_j_cej_2022_139990 crossref_primary_10_1007_s00339_022_05745_0 crossref_primary_10_1007_s10854_023_10387_w crossref_primary_10_3390_s19051077 crossref_primary_10_1002_aelm_201700586 crossref_primary_10_1039_C8NR05843A crossref_primary_10_1002_smll_201800819 crossref_primary_10_1016_j_mee_2019_111201 crossref_primary_10_3390_polym14071294 crossref_primary_10_1038_s41427_018_0041_6 crossref_primary_10_1007_s12274_022_5014_y crossref_primary_10_1016_j_measurement_2023_113992 crossref_primary_10_1039_D1MH00384D crossref_primary_10_1021_acsnano_0c03294 crossref_primary_10_1021_acsami_9b21068 crossref_primary_10_1016_j_nanoen_2020_105617 crossref_primary_10_1088_1674_4926_44_2_021601 crossref_primary_10_1016_j_npe_2019_12_006 crossref_primary_10_1002_admt_202101239 crossref_primary_10_1016_j_bios_2019_05_001 crossref_primary_10_1021_acsami_7b16611 crossref_primary_10_1002_admi_202101596 crossref_primary_10_1039_C9TC00820A crossref_primary_10_1007_s40843_018_9348_8 crossref_primary_10_3390_s24020468 crossref_primary_10_1016_j_cej_2023_147586 crossref_primary_10_1016_j_nanoen_2019_104316 crossref_primary_10_1016_j_sna_2024_115810 crossref_primary_10_1088_1361_6528_ab6cd8 crossref_primary_10_1088_2058_8585_ac8be1 crossref_primary_10_1109_JSEN_2022_3198847 crossref_primary_10_1007_s40820_022_00874_w crossref_primary_10_1016_j_elstat_2025_104029 crossref_primary_10_1021_acsami_0c12642 crossref_primary_10_1039_D1TA08727D crossref_primary_10_1002_smll_202201597 crossref_primary_10_1016_j_electacta_2024_144109 crossref_primary_10_1016_j_mtphys_2020_100219 crossref_primary_10_1021_acsami_1c12991 crossref_primary_10_1016_j_ceramint_2020_06_131 crossref_primary_10_1021_acssuschemeng_0c01827 crossref_primary_10_1039_C9RA06098G crossref_primary_10_1016_j_jallcom_2025_178609 crossref_primary_10_1016_j_cej_2022_139898 crossref_primary_10_1038_s41598_018_32609_6 crossref_primary_10_1002_admi_202101362 crossref_primary_10_1038_s41467_022_28760_4 crossref_primary_10_1002_adma_201803388 crossref_primary_10_1007_s10854_023_10691_5 crossref_primary_10_1007_s40843_018_9280_y |
Cites_doi | 10.1002/adma.201304248 10.1002/adfm.201500453 10.1002/adma.201502556 10.1021/nn303328e 10.1126/science.1115311 10.1038/ncomms2832 10.1039/C6NR02678H 10.1002/adma.201200523 10.1002/adma.201305182 10.1038/nature07719 10.1002/adfm.201404535 10.1038/nmat3380 10.1002/adfm.201600078 10.1002/adma.201500009 10.1007/s12274-016-1107-9 10.1002/adma.201204426 10.1002/adma.201400918 10.1073/pnas.0401918101 10.1002/adfm.201404365 10.1002/adma.201404850 10.1002/admi.201500674 10.1002/adfm.201401267 10.1002/adfm.201504560 10.1002/adma.201403807 10.1002/adfm.201502960 10.1002/adma.201103406 10.1002/smll.200901173 10.1021/nn501132n 10.1002/adma.201302240 10.1021/nn9003988 10.1038/ncomms4002 10.1002/adma.201401364 10.1038/ncomms4132 10.1126/science.1234855 10.1002/adma.201303041 10.1002/adma.201502777 10.1002/adma.200904426 10.1002/smll.201403036 10.1021/nl300988z 10.1021/nn502702a 10.1021/nn500441k 10.1002/adfm.201504755 10.1002/smll.201600760 10.1038/ncomms5496 10.1002/adma.201502470 10.1021/nn4037514 10.1002/adfm.201404087 10.1002/smll.201401207 10.1002/adma.201601572 10.1002/smll.201402890 10.1002/adma.201600408 10.1002/adma.201302869 10.1002/adma.201504244 10.1038/nnano.2012.192 10.1038/nnano.2011.184 10.1021/nn505953t 10.1021/am500864t 10.1002/adma.201401367 10.1038/srep08603 10.1126/science.1206157 10.1002/adma.201403722 |
ContentType | Journal Article |
Copyright | 2017 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim |
Copyright_xml | – notice: 2017 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim – notice: 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim |
DBID | AAYXX CITATION 7SP 7SR 7U5 8BQ 8FD JG9 L7M |
DOI | 10.1002/adfm.201606066 |
DatabaseName | CrossRef Electronics & Communications Abstracts Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Electronics & Communications Abstracts Solid State and Superconductivity Abstracts Advanced Technologies Database with Aerospace METADEX |
DatabaseTitleList | CrossRef Materials Research Database Materials Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1616-3028 |
EndPage | n/a |
ExternalDocumentID | 10_1002_adfm_201606066 ADFM201606066 |
Genre | article |
GrantInformation_xml | – fundername: NSF of China funderid: 51672153; 51422204; 51372132 – fundername: National Key Basic Research and Development Program funderid: 2016YFA0200103; 2013CB228506 |
GroupedDBID | -~X .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 6P2 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHQN AAMMB AAMNL AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABJNI ABPVW ACAHQ ACCZN ACGFS ACIWK ACPOU ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADMLS ADOZA ADXAS ADZMN AEFGJ AEIGN AEIMD AENEX AEUYR AEYWJ AFBPY AFFPM AFGKR AFWVQ AFZJQ AGHNM AGXDD AGYGG AHBTC AIDQK AIDYY AITYG AIURR AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM EBS EJD F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D Q.N Q11 QB0 QRW R.K RNS ROL RX1 RYL SUPJJ UB1 V2E W8V W99 WBKPD WFSAM WIH WIK WJL WOHZO WQJ WXSBR WYISQ XG1 XPP XV2 ~IA ~WT .Y3 31~ AAHHS AANHP AAYXX ACBWZ ACCFJ ACRPL ACYXJ ADNMO ADZOD AEEZP AEQDE AGQPQ AIWBW AJBDE ASPBG AVWKF AZFZN CITATION FEDTE HF~ HVGLF 7SP 7SR 7U5 8BQ 8FD JG9 L7M |
ID | FETCH-LOGICAL-c4166-b67f1ba86b6a98bb1a2829302eb8714892e385ff3c4637a59e998d1fce136ae23 |
IEDL.DBID | DR2 |
ISSN | 1616-301X |
IngestDate | Thu Jul 10 17:33:09 EDT 2025 Fri Jul 25 04:45:50 EDT 2025 Tue Jul 01 04:11:37 EDT 2025 Thu Apr 24 23:01:28 EDT 2025 Wed Aug 20 07:24:45 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 9 |
Language | English |
License | http://onlinelibrary.wiley.com/termsAndConditions#vor |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4166-b67f1ba86b6a98bb1a2829302eb8714892e385ff3c4637a59e998d1fce136ae23 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
PQID | 1920413233 |
PQPubID | 2045204 |
PageCount | 8 |
ParticipantIDs | proquest_miscellaneous_1893899818 proquest_journals_1920413233 crossref_citationtrail_10_1002_adfm_201606066 crossref_primary_10_1002_adfm_201606066 wiley_primary_10_1002_adfm_201606066_ADFM201606066 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | March 3, 2017 |
PublicationDateYYYYMMDD | 2017-03-03 |
PublicationDate_xml | – month: 03 year: 2017 text: March 3, 2017 day: 03 |
PublicationDecade | 2010 |
PublicationPlace | Hoboken |
PublicationPlace_xml | – name: Hoboken |
PublicationTitle | Advanced functional materials |
PublicationYear | 2017 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2004; 101 2011; 333 2013; 25 2013; 4 2015; 5 2015; 11 2014; 26 2014; 24 2013; 340 2013; 7 2011; 6 2012; 12 2012; 11 2016; 12 2009; 457 2010; 22 2015; 25 2014; 5 2015; 27 2016; 3 2005; 309 2011; 23 2009; 3 2012; 6 2016; 28 2012; 24 2012; 7 2014; 8 2016; 26 2014; 6 2016; 8 2010; 6 2016; 9 2014; 10 e_1_2_6_51_1 e_1_2_6_53_1 e_1_2_6_32_1 e_1_2_6_30_1 e_1_2_6_19_1 e_1_2_6_13_1 e_1_2_6_36_1 e_1_2_6_59_1 e_1_2_6_11_1 e_1_2_6_34_1 e_1_2_6_17_1 e_1_2_6_55_1 e_1_2_6_15_1 e_1_2_6_38_1 e_1_2_6_57_1 e_1_2_6_43_1 e_1_2_6_20_1 e_1_2_6_41_1 e_1_2_6_60_1 e_1_2_6_9_1 e_1_2_6_5_1 e_1_2_6_7_1 e_1_2_6_1_1 e_1_2_6_24_1 e_1_2_6_49_1 e_1_2_6_3_1 e_1_2_6_22_1 e_1_2_6_28_1 e_1_2_6_45_1 e_1_2_6_26_1 e_1_2_6_47_1 e_1_2_6_52_1 e_1_2_6_54_1 e_1_2_6_10_1 e_1_2_6_31_1 e_1_2_6_50_1 e_1_2_6_14_1 e_1_2_6_35_1 e_1_2_6_12_1 e_1_2_6_33_1 e_1_2_6_18_1 e_1_2_6_39_1 e_1_2_6_56_1 e_1_2_6_16_1 e_1_2_6_37_1 e_1_2_6_58_1 e_1_2_6_42_1 e_1_2_6_21_1 e_1_2_6_40_1 e_1_2_6_61_1 e_1_2_6_8_1 e_1_2_6_4_1 e_1_2_6_6_1 e_1_2_6_25_1 e_1_2_6_48_1 e_1_2_6_23_1 e_1_2_6_2_1 e_1_2_6_29_1 e_1_2_6_44_1 e_1_2_6_27_1 e_1_2_6_46_1 |
References_xml | – volume: 309 start-page: 1215 year: 2005 publication-title: Science – volume: 25 start-page: 6545 year: 2015 publication-title: Adv. Funct. Mater. – volume: 6 start-page: 9790 year: 2012 publication-title: ACS Nano – volume: 26 start-page: 1178 year: 2016 publication-title: Adv. Funct. Mater. – volume: 8 start-page: 12020 year: 2014 publication-title: ACS Nano – volume: 27 start-page: 6055 year: 2015 publication-title: Adv. Mater. – volume: 26 start-page: 1336 year: 2014 publication-title: Adv. Mater. – volume: 25 start-page: 1798 year: 2015 publication-title: Adv. Funct. Mater. – volume: 26 start-page: 5018 year: 2014 publication-title: Adv. Mater. – volume: 25 start-page: 5997 year: 2013 publication-title: Adv. Mater. – volume: 27 start-page: 7130 year: 2015 publication-title: Adv. Mater. – volume: 12 start-page: 5042 year: 2016 publication-title: Small – volume: 12 start-page: 3109 year: 2012 publication-title: Nano Lett. – volume: 6 start-page: 195 year: 2010 publication-title: Small – volume: 8 start-page: 4689 year: 2014 publication-title: ACS Nano – volume: 340 start-page: 952 year: 2013 publication-title: Science – volume: 27 start-page: 1561 year: 2015 publication-title: Adv. Mater. – volume: 22 start-page: 3027 year: 2010 publication-title: Adv. Mater. – volume: 7 start-page: 825 year: 2012 publication-title: Nat. Nanotechnol. – volume: 27 start-page: 634 year: 2015 publication-title: Adv. Mater. – volume: 4 start-page: 1859 year: 2013 publication-title: Nat. Commun. – volume: 27 start-page: 2433 year: 2015 publication-title: Adv. Mater. – volume: 7 start-page: 8266 year: 2013 publication-title: ACS Nano – volume: 26 start-page: 4735 year: 2014 publication-title: Adv. Mater. – volume: 27 start-page: 682 year: 2015 publication-title: Adv. Mater. – volume: 333 start-page: 838 year: 2011 publication-title: Science – volume: 25 start-page: 2138 year: 2015 publication-title: Adv. Funct. Mater. – volume: 11 start-page: 795 year: 2012 publication-title: Nat. Mater. – volume: 26 start-page: 796 year: 2014 publication-title: Adv. Mater. – volume: 28 start-page: 4338 year: 2016 publication-title: Adv. Mater. – volume: 8 start-page: 12105 year: 2016 publication-title: Nanoscale – volume: 26 start-page: 3451 year: 2014 publication-title: Adv. Mater. – volume: 6 start-page: 7479 year: 2014 publication-title: ACS Appl. Mater. Interfaces – volume: 10 start-page: 3625 year: 2014 publication-title: Small – volume: 11 start-page: 3351 year: 2015 publication-title: Small – volume: 9 start-page: 2182 year: 2016 publication-title: Nano Res. – volume: 8 start-page: 5707 year: 2014 publication-title: ACS Nano – volume: 28 start-page: 5300 year: 2016 publication-title: Adv. Mater. – volume: 3 start-page: 1500674 year: 2016 publication-title: Adv. Mater. Interfaces – volume: 25 start-page: 2773 year: 2013 publication-title: Adv. Mater. – volume: 25 start-page: 2287 year: 2015 publication-title: Adv. Funct. Mater. – volume: 5 start-page: 4496 year: 2014 publication-title: Nat. Commun. – volume: 26 start-page: 1678 year: 2016 publication-title: Adv. Funct. Mater. – volume: 25 start-page: 2841 year: 2015 publication-title: Adv. Funct. Mater. – volume: 8 start-page: 5061 year: 2014 publication-title: ACS Nano – volume: 3 start-page: 2157 year: 2009 publication-title: ACS Nano – volume: 25 start-page: 6692 year: 2013 publication-title: Adv. Mater. – volume: 24 start-page: 3223 year: 2012 publication-title: Adv. Mater. – volume: 11 start-page: 1886 year: 2015 publication-title: Small – volume: 24 start-page: 5807 year: 2014 publication-title: Adv. Funct. Mater. – volume: 5 start-page: 3002 year: 2014 publication-title: Nat. Commun. – volume: 5 start-page: 3132 year: 2014 publication-title: Nat. Commun. – volume: 5 start-page: 8603 year: 2015 publication-title: Sci. Rep. – volume: 26 start-page: 4078 year: 2016 publication-title: Adv. Funct. Mater. – volume: 27 start-page: 7867 year: 2015 publication-title: Adv. Mater. – volume: 28 start-page: 6640 year: 2016 publication-title: Adv. Mater. – volume: 457 start-page: 706 year: 2009 publication-title: Nature – volume: 23 start-page: 5440 year: 2011 publication-title: Adv. Mater. – volume: 6 start-page: 788 year: 2011 publication-title: Nat. Nanotechnol. – volume: 101 start-page: 9966 year: 2004 publication-title: Proc. Natl. Acad. Sci. USA – volume: 26 start-page: 4825 year: 2014 publication-title: Adv. Mater. – ident: e_1_2_6_15_1 doi: 10.1002/adma.201304248 – ident: e_1_2_6_29_1 doi: 10.1002/adfm.201500453 – ident: e_1_2_6_23_1 doi: 10.1002/adma.201502556 – ident: e_1_2_6_55_1 doi: 10.1021/nn303328e – ident: e_1_2_6_48_1 doi: 10.1126/science.1115311 – ident: e_1_2_6_14_1 doi: 10.1038/ncomms2832 – ident: e_1_2_6_39_1 doi: 10.1039/C6NR02678H – ident: e_1_2_6_7_1 doi: 10.1002/adma.201200523 – ident: e_1_2_6_33_1 doi: 10.1002/adma.201305182 – ident: e_1_2_6_51_1 doi: 10.1038/nature07719 – ident: e_1_2_6_11_1 doi: 10.1002/adfm.201404535 – ident: e_1_2_6_17_1 doi: 10.1038/nmat3380 – ident: e_1_2_6_38_1 doi: 10.1002/adfm.201600078 – ident: e_1_2_6_19_1 doi: 10.1002/adma.201500009 – ident: e_1_2_6_60_1 doi: 10.1007/s12274-016-1107-9 – ident: e_1_2_6_10_1 doi: 10.1002/adma.201204426 – ident: e_1_2_6_58_1 doi: 10.1002/adma.201400918 – ident: e_1_2_6_57_1 doi: 10.1073/pnas.0401918101 – ident: e_1_2_6_22_1 doi: 10.1002/adfm.201404365 – ident: e_1_2_6_42_1 doi: 10.1002/adma.201404850 – ident: e_1_2_6_61_1 doi: 10.1002/admi.201500674 – ident: e_1_2_6_59_1 doi: 10.1002/adfm.201401267 – ident: e_1_2_6_16_1 doi: 10.1002/adfm.201504560 – ident: e_1_2_6_24_1 doi: 10.1002/adma.201403807 – ident: e_1_2_6_35_1 doi: 10.1002/adfm.201502960 – ident: e_1_2_6_1_1 doi: 10.1002/adma.201103406 – ident: e_1_2_6_54_1 doi: 10.1002/smll.200901173 – ident: e_1_2_6_52_1 doi: 10.1021/nn501132n – ident: e_1_2_6_9_1 doi: 10.1002/adma.201302240 – ident: e_1_2_6_49_1 doi: 10.1021/nn9003988 – ident: e_1_2_6_40_1 doi: 10.1038/ncomms4002 – ident: e_1_2_6_12_1 doi: 10.1002/adma.201401364 – ident: e_1_2_6_18_1 doi: 10.1038/ncomms4132 – ident: e_1_2_6_26_1 doi: 10.1126/science.1234855 – ident: e_1_2_6_43_1 doi: 10.1002/adma.201303041 – ident: e_1_2_6_56_1 doi: 10.1002/adma.201502777 – ident: e_1_2_6_50_1 doi: 10.1002/adma.200904426 – ident: e_1_2_6_36_1 doi: 10.1002/smll.201403036 – ident: e_1_2_6_31_1 doi: 10.1021/nl300988z – ident: e_1_2_6_46_1 doi: 10.1021/nn502702a – ident: e_1_2_6_34_1 doi: 10.1021/nn500441k – ident: e_1_2_6_3_1 doi: 10.1002/adfm.201504755 – ident: e_1_2_6_25_1 doi: 10.1002/smll.201600760 – ident: e_1_2_6_27_1 doi: 10.1038/ncomms5496 – ident: e_1_2_6_30_1 doi: 10.1002/adma.201502470 – ident: e_1_2_6_32_1 doi: 10.1021/nn4037514 – ident: e_1_2_6_2_1 doi: 10.1002/adfm.201404087 – ident: e_1_2_6_20_1 doi: 10.1002/smll.201401207 – ident: e_1_2_6_5_1 doi: 10.1002/adma.201601572 – ident: e_1_2_6_47_1 doi: 10.1002/smll.201402890 – ident: e_1_2_6_37_1 doi: 10.1002/adma.201600408 – ident: e_1_2_6_28_1 doi: 10.1002/adma.201302869 – ident: e_1_2_6_4_1 doi: 10.1002/adma.201504244 – ident: e_1_2_6_8_1 doi: 10.1038/nnano.2012.192 – ident: e_1_2_6_21_1 doi: 10.1038/nnano.2011.184 – ident: e_1_2_6_41_1 doi: 10.1021/nn505953t – ident: e_1_2_6_13_1 doi: 10.1021/am500864t – ident: e_1_2_6_44_1 doi: 10.1002/adma.201401367 – ident: e_1_2_6_45_1 doi: 10.1038/srep08603 – ident: e_1_2_6_6_1 doi: 10.1126/science.1206157 – ident: e_1_2_6_53_1 doi: 10.1002/adma.201403722 |
SSID | ssj0017734 |
Score | 2.666116 |
Snippet | The rational design of high‐performance flexible pressure sensors attracts attention because of the potential applications in wearable electronics and... The rational design of high-performance flexible pressure sensors attracts attention because of the potential applications in wearable electronics and... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | np |
SubjectTerms | Biomimetics Bionics Carbon nanotubes Chemical vapor deposition Electric potential electronic skin Electronics Graphene hierarchical structures Man-machine interfaces Materials science Membranes Nanotubes Polydimethylsiloxane Pressure sensors Protuberances Response time Sensitivity Sensors Silicone resins Structural hierarchy Voltage Wearable technology |
Title | Flexible and Highly Sensitive Pressure Sensors Based on Bionic Hierarchical Structures |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadfm.201606066 https://www.proquest.com/docview/1920413233 https://www.proquest.com/docview/1893899818 |
Volume | 27 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELYQLDDwRhRKZSQkprSNnYc9tpSqQpSBUtQtsh1nIUpRHwP8eu6SNm2REBKMSc5y7PP5Ptt3nwm58YQWQhrp-NZyx-PWOFL7ngPGkTDux1zndE39p6A39B5G_mgti7_ghyg33NAy8vkaDVzpaWNFGqriBDPJXUDg4DZhEsaALURFzyV_lBuGxbFy4GKAlztasjY2WWOz-KZXWkHNdcCae5zuAVHLfy0CTd7q85mum89vNI7_acwh2V_AUdoqxs8R2bLZMdlbIyk8Ia9d5MzUqaUqiynGhaQfdIBx7zhT0iK_cGLzV-PJlLbBL8Z0nNE2bvUaKIE5zvmVKykd5HS1ID49JcPu_ctdz1ncxuAYAG2Bo4MwcbUSgQ6UFFq7Cg9heZNZDYsuT0hmufCThBsv4KHypYWVXOwmxoJilGX8jGxn48yeE6qMl0gYIaGwCThHgEiBirVpSiUBb3JeIc5SG5FZUJXjjRlpVJAsswj7Kyr7q0JuS_n3gqTjR8nqUrnRwlinEYDcJvhyhhVfl5_BzPDsRGV2PAcZwHW4NHVFhbBck7_UFLU63X75dPGXQpdklyGIwIg3XiXboCF7BRBopmtkp9XpPw5q-XD_Ar8Q_hQ |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NTtwwEB4heqA9UKCt2Ja2RmrVU2BtJ4596AHYrpbCcihQ7S21HefCKluxoIq-VV-FJ2Imf0ClqlIlDj0msZXE45n5xh5_A_Au1k5r402UhCCjWAYfGZfEESpHIWSSS1fRNY2P1Og0_jxJJgvwqz0LU_NDdAtupBmVvSYFpwXp7VvWUJsXdJScIwRHv9nkVR6Eqx8Ytc0_7g9QxO-FGH462RtFTWGByCP-UJFTacGd1copa7Rz3NJ-ouyL4DB-iLURQeqkKKSPlUxtYgIGJTkvfOBS2UBcB2j1H1EZcaLrH3zpGKt4mtYb2YpTShmftDyRfbF9_3vv-8FbcHsXIlc-bvgUrtvRqVNbzrYuL9yW__kbceR_NXwrsNwgbrZTq8gqLIRyDZ7c4WF8Bl-HRAvqpoHZMmeU-jK9YseU2k_OgNVHKM9DdWt2Pme76PpzNivZLq1me-xBx7irqjJTdlwx8mLz-XM4fZAfewGL5awM68CsjwuDSpDqUKD_RxSobO5831iDkFrKHkSt-DPfsLFTUZBpVvNIi4zkk3Xy6cGHrv33mofkjy032tmUNfZoniGO7yNcEfTize4xWhLaHrJlmF1iG4SuFH1z3QNRTZ2_vCnbGQzH3dXLf-n0FpZGJ-PD7HD_6OAVPBaEmSjBT27AIkorvEbEd-HeVDrG4NtDz8obAZ9Zhw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtQwEB5VrYTgQPkVS0sxEohT2thOnPjAoWUbtZRWiFK0t9R27AurbNVtVZWn4lV4I2by1xYJISH1wDGJrSQez8w39vgbgNdJbvNcOx2l3ssokd5F2qZJhMoRhEwraRu6pv0DtXOUfJikkwX40Z-FafkhhgU30ozGXpOCn1Rh44o01FSBTpJzRODoNru0yj1_eYFB2_zd7hgl_EaIYvvL-52oqysQOYQfKrIqC9yaXFlldG4tN7SdKGPhLYYPSa6Fl3kagnSJkplJtceYpOLBeS6V8UR1gEZ_KVGxpmIR488DYRXPsnYfW3HKKOOTniYyFhs3v_emG7zCttcRcuPiimX42Q9Om9nybf38zK6777_xRv5Po_cA7nd4m222CvIQFnz9CO5dY2F8DF8LIgW1U89MXTFKfJleskNK7CdXwNoDlKe-uTU7nbMtdPwVm9Vsi9ayHfagQ9xNTZkpO2z4eLH5_Akc3cqPPYXFelb7Z8CMS4JGFchyH9D7IwZUprIu1kYjoJZyBFEv_dJ1XOxUEmRatizSoiT5lIN8RvB2aH_SspD8seVqP5nKzhrNS0TxMYIVQS9-NTxGO0KbQ6b2s3Nsg8CVYm-ej0A0M-cvbyo3x8X-cPX8Xzq9hDufxkX5cfdgbwXuCgJMlN0nV2ERheVfINw7s2uNhjE4vu1J-Qtz_1g2 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Flexible+and+Highly+Sensitive+Pressure+Sensors+Based+on+Bionic+Hierarchical+Structures&rft.jtitle=Advanced+functional+materials&rft.au=Jian%2C+Muqiang&rft.au=Xia%2C+Kailun&rft.au=Wang%2C+Qi&rft.au=Yin%2C+Zhe&rft.date=2017-03-03&rft.issn=1616-301X&rft.eissn=1616-3028&rft.volume=27&rft.issue=9&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fadfm.201606066&rft.externalDBID=10.1002%252Fadfm.201606066&rft.externalDocID=ADFM201606066 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1616-301X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1616-301X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1616-301X&client=summon |