Structural Design Strategy and Active Site Regulation of High‐Efficient Bifunctional Oxygen Reaction Electrocatalysts for Zn–Air Battery
Zinc–air batteries (ZABs) exhibit high energy density as well as flexibility, safety, and portability, thereby fulfilling the requirements of power batteries and consumer batteries. However, the limited efficiency and stability are still the significant challenge. Oxygen reduction reaction (ORR) and...
Saved in:
Published in | Small (Weinheim an der Bergstrasse, Germany) Vol. 17; no. 48; pp. e2006766 - n/a |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Weinheim
Wiley Subscription Services, Inc
01.12.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Zinc–air batteries (ZABs) exhibit high energy density as well as flexibility, safety, and portability, thereby fulfilling the requirements of power batteries and consumer batteries. However, the limited efficiency and stability are still the significant challenge. Oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) are two crucial cathode reactions in ZABs. Development of bifunctional ORR/OER catalysts with high efficiency and well stability is critical to improve the performance of ZABs. In this review, the ORR and OER mechanisms are first explained. Further, the design principles of ORR/OER electrocatalysts are discussed in terms of atomic adjustment mechanism and structural design in conjunction with the latest reported in situ characterization techniques, which provide useful insights on the ORR/OER mechanisms of the catalyst. The improvement in the energy efficiency, stability, and environmental adaptability of the new hybrid ZAB by the inclusion of additional reaction, including the introduction of transition‐metal redox couples in the cathode and the addition of modifiers in the electrolyte to change the OER pathway, is also summarized. Finally, current challenges and future research directions are presented.
Bifunctional oxygen electrocatalysts are the key components in rechargeable Zn–air batteries (ZABs). This review focuses on the design principles of Pt‐free electrocatalysts from the perspective of structural design and active site optimization. The latest advances of in situ techniques and other new strategies to improve the performance of ZABs are also discussed. |
---|---|
AbstractList | Zinc–air batteries (ZABs) exhibit high energy density as well as flexibility, safety, and portability, thereby fulfilling the requirements of power batteries and consumer batteries. However, the limited efficiency and stability are still the significant challenge. Oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) are two crucial cathode reactions in ZABs. Development of bifunctional ORR/OER catalysts with high efficiency and well stability is critical to improve the performance of ZABs. In this review, the ORR and OER mechanisms are first explained. Further, the design principles of ORR/OER electrocatalysts are discussed in terms of atomic adjustment mechanism and structural design in conjunction with the latest reported in situ characterization techniques, which provide useful insights on the ORR/OER mechanisms of the catalyst. The improvement in the energy efficiency, stability, and environmental adaptability of the new hybrid ZAB by the inclusion of additional reaction, including the introduction of transition‐metal redox couples in the cathode and the addition of modifiers in the electrolyte to change the OER pathway, is also summarized. Finally, current challenges and future research directions are presented. Zinc–air batteries (ZABs) exhibit high energy density as well as flexibility, safety, and portability, thereby fulfilling the requirements of power batteries and consumer batteries. However, the limited efficiency and stability are still the significant challenge. Oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) are two crucial cathode reactions in ZABs. Development of bifunctional ORR/OER catalysts with high efficiency and well stability is critical to improve the performance of ZABs. In this review, the ORR and OER mechanisms are first explained. Further, the design principles of ORR/OER electrocatalysts are discussed in terms of atomic adjustment mechanism and structural design in conjunction with the latest reported in situ characterization techniques, which provide useful insights on the ORR/OER mechanisms of the catalyst. The improvement in the energy efficiency, stability, and environmental adaptability of the new hybrid ZAB by the inclusion of additional reaction, including the introduction of transition‐metal redox couples in the cathode and the addition of modifiers in the electrolyte to change the OER pathway, is also summarized. Finally, current challenges and future research directions are presented. Bifunctional oxygen electrocatalysts are the key components in rechargeable Zn–air batteries (ZABs). This review focuses on the design principles of Pt‐free electrocatalysts from the perspective of structural design and active site optimization. The latest advances of in situ techniques and other new strategies to improve the performance of ZABs are also discussed. Zinc-air batteries (ZABs) exhibit high energy density as well as flexibility, safety, and portability, thereby fulfilling the requirements of power batteries and consumer batteries. However, the limited efficiency and stability are still the significant challenge. Oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) are two crucial cathode reactions in ZABs. Development of bifunctional ORR/OER catalysts with high efficiency and well stability is critical to improve the performance of ZABs. In this review, the ORR and OER mechanisms are first explained. Further, the design principles of ORR/OER electrocatalysts are discussed in terms of atomic adjustment mechanism and structural design in conjunction with the latest reported in situ characterization techniques, which provide useful insights on the ORR/OER mechanisms of the catalyst. The improvement in the energy efficiency, stability, and environmental adaptability of the new hybrid ZAB by the inclusion of additional reaction, including the introduction of transition-metal redox couples in the cathode and the addition of modifiers in the electrolyte to change the OER pathway, is also summarized. Finally, current challenges and future research directions are presented.Zinc-air batteries (ZABs) exhibit high energy density as well as flexibility, safety, and portability, thereby fulfilling the requirements of power batteries and consumer batteries. However, the limited efficiency and stability are still the significant challenge. Oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) are two crucial cathode reactions in ZABs. Development of bifunctional ORR/OER catalysts with high efficiency and well stability is critical to improve the performance of ZABs. In this review, the ORR and OER mechanisms are first explained. Further, the design principles of ORR/OER electrocatalysts are discussed in terms of atomic adjustment mechanism and structural design in conjunction with the latest reported in situ characterization techniques, which provide useful insights on the ORR/OER mechanisms of the catalyst. The improvement in the energy efficiency, stability, and environmental adaptability of the new hybrid ZAB by the inclusion of additional reaction, including the introduction of transition-metal redox couples in the cathode and the addition of modifiers in the electrolyte to change the OER pathway, is also summarized. Finally, current challenges and future research directions are presented. |
Author | Wang, Lei Fu, Honggang Liu, Xu Zhang, Guangying |
Author_xml | – sequence: 1 givenname: Xu surname: Liu fullname: Liu, Xu organization: Heilongjiang University – sequence: 2 givenname: Guangying surname: Zhang fullname: Zhang, Guangying organization: Heilongjiang University – sequence: 3 givenname: Lei surname: Wang fullname: Wang, Lei email: wanglei0525@hlju.edu.cn organization: Heilongjiang University – sequence: 4 givenname: Honggang orcidid: 0000-0002-5800-451X surname: Fu fullname: Fu, Honggang email: fuhg@hlju.edu.cn, fuhg@vip.sina.com organization: Heilongjiang University |
BookMark | eNqFkc1KLDEQRoMo-Lt1HXDjZuYm6e5093LU8SqMCI5u3DQxVtpIJtEkrfbOB7iLC76hT2LGEQVBXCVUnVNQ9a2jZessILRNyZASwv6EmTFDRhghvOR8Ca1RTrMBr1i9_PmnZBWth3BLSEZZXq6hf9PoOxk7Lww-gKBbi1NFRGh7LOw1HsmoHwBPdQR8Bm1nRNTOYqfwkW5vXp__j5XSUoONeE-rzsp5O806fepbsEkR7xU8NiCjd1JEYfoQA1bO40v7-vwy0h7viRjB95toRQkTYOvj3UAXh-Pz_aPB5PTv8f5oMpA55XxQUVVkSgJhNaWcCFpLXklRkaLKVFGVUBW8TgsDIzSrqVA0v2JSMp6Ja8qKLNtAu4u5d97ddxBiM9NBgjHCgutCk5iS5-mQc3TnG3rrOp82TBQnBSmLgueJyheU9C4ED6qROr5fKt1Sm4aSZh5RM4-o-YwoacNv2p3XM-H7n4V6ITxqA_0vdDM9mUy-3DexVKk- |
CitedBy_id | crossref_primary_10_1002_smll_202205228 crossref_primary_10_1142_S1793604724510214 crossref_primary_10_1021_acsami_2c23232 crossref_primary_10_1039_D1TA10585J crossref_primary_10_1002_advs_202407631 crossref_primary_10_1016_j_ccr_2023_215383 crossref_primary_10_1007_s11581_022_04842_7 crossref_primary_10_1039_D4QM00169A crossref_primary_10_1002_smll_202300621 crossref_primary_10_1039_D3QI02578K crossref_primary_10_1002_tcr_202300216 crossref_primary_10_1016_j_est_2023_107485 crossref_primary_10_1016_j_nanoen_2022_108039 crossref_primary_10_1002_smll_202202194 crossref_primary_10_1002_cssc_202200612 crossref_primary_10_1007_s12274_022_4966_2 crossref_primary_10_1002_smll_202305062 crossref_primary_10_1039_D3NA00074E crossref_primary_10_1039_D4CC02873B crossref_primary_10_1016_j_jcis_2022_07_180 crossref_primary_10_1002_smtd_202101043 crossref_primary_10_1002_smll_202306396 crossref_primary_10_3390_inorganics12120303 crossref_primary_10_1002_adfm_202304074 crossref_primary_10_1007_s12274_023_5469_5 crossref_primary_10_1021_acsami_2c21616 crossref_primary_10_1002_ange_202423056 crossref_primary_10_1016_j_apcatb_2023_123006 crossref_primary_10_1039_D2QM01288J crossref_primary_10_1021_acsnano_2c06700 crossref_primary_10_1002_adma_202303243 crossref_primary_10_1016_j_jelechem_2023_117686 crossref_primary_10_1002_cssc_202401200 crossref_primary_10_1021_acsami_4c18592 crossref_primary_10_1002_smll_202202014 crossref_primary_10_1002_sstr_202100103 crossref_primary_10_1002_adfm_202417580 crossref_primary_10_1002_batt_202400402 crossref_primary_10_1039_D2TA09626A crossref_primary_10_1002_cssc_202301779 crossref_primary_10_1016_j_cej_2022_137665 crossref_primary_10_1021_acsami_3c17789 crossref_primary_10_1080_14686996_2025_2459051 crossref_primary_10_1039_D3NJ00584D crossref_primary_10_1039_D3NJ05928F crossref_primary_10_1007_s40843_022_2173_3 crossref_primary_10_1016_j_ijhydene_2023_03_336 crossref_primary_10_1002_asia_202401177 crossref_primary_10_1016_j_jcis_2024_06_162 crossref_primary_10_1016_j_jelechem_2023_117381 crossref_primary_10_1002_adfm_202303235 crossref_primary_10_1039_D5TA00184F crossref_primary_10_1039_D3QM00237C crossref_primary_10_1002_smsc_202300066 crossref_primary_10_1016_j_jechem_2023_03_056 crossref_primary_10_1016_j_jechem_2023_05_040 crossref_primary_10_1007_s41918_022_00177_z crossref_primary_10_1039_D2TA01442D crossref_primary_10_1039_D5SE00072F crossref_primary_10_1039_D3EE03383J crossref_primary_10_1039_D4GC04687K crossref_primary_10_1021_acsanm_2c05107 crossref_primary_10_1039_D3QM00146F crossref_primary_10_1002_cnma_202200242 crossref_primary_10_1016_j_jechem_2023_10_038 crossref_primary_10_1039_D2RA08096F crossref_primary_10_1002_anie_202214988 crossref_primary_10_1016_j_ijhydene_2024_01_341 crossref_primary_10_1021_acsnano_2c07542 crossref_primary_10_1039_D4DT01625D crossref_primary_10_1002_tcr_202300017 crossref_primary_10_1002_smll_202106635 crossref_primary_10_1016_j_jcis_2022_11_116 crossref_primary_10_1021_acs_chemmater_1c04120 crossref_primary_10_1002_smll_202304863 crossref_primary_10_1007_s11581_021_04367_5 crossref_primary_10_1002_adfm_202316037 crossref_primary_10_1021_acsami_3c17193 crossref_primary_10_1002_smll_202207675 crossref_primary_10_1002_smll_202406539 crossref_primary_10_1002_cctc_202401655 crossref_primary_10_1002_smll_202400830 crossref_primary_10_1002_advs_202412862 crossref_primary_10_1039_D4QI02179G crossref_primary_10_1016_j_jcis_2024_07_023 crossref_primary_10_1016_j_apsusc_2023_156450 crossref_primary_10_3390_catal13101366 crossref_primary_10_3390_nano12213834 crossref_primary_10_3390_app13169343 crossref_primary_10_1016_j_jelechem_2024_118184 crossref_primary_10_1016_j_apsusc_2023_158070 crossref_primary_10_1002_anie_202423056 crossref_primary_10_1016_j_electacta_2023_142377 crossref_primary_10_1016_j_jcis_2024_04_025 crossref_primary_10_1021_acselectrochem_4c00066 crossref_primary_10_1002_smll_202106773 crossref_primary_10_1016_j_cej_2021_133941 crossref_primary_10_1002_aenm_202302251 crossref_primary_10_1007_s40820_024_01328_1 crossref_primary_10_1039_D2NJ01697D crossref_primary_10_1021_acsami_3c03501 crossref_primary_10_1002_adfm_202213897 crossref_primary_10_1002_cssc_202200312 crossref_primary_10_1021_acs_inorgchem_2c04154 crossref_primary_10_1039_D1TA06243C crossref_primary_10_1038_s41467_024_55239_1 crossref_primary_10_1016_j_ccr_2024_216045 crossref_primary_10_1016_j_fuel_2023_129732 crossref_primary_10_1016_j_isci_2023_106624 crossref_primary_10_1021_acs_inorgchem_4c02077 crossref_primary_10_1039_D3DT02439C crossref_primary_10_1039_D4TA02585G crossref_primary_10_1016_j_ijhydene_2024_10_336 crossref_primary_10_1021_acssuschemeng_1c08560 crossref_primary_10_1039_D4EY00014E crossref_primary_10_1002_adfm_202110572 crossref_primary_10_1016_j_jre_2023_09_020 crossref_primary_10_1016_j_apsusc_2022_153325 crossref_primary_10_1007_s40843_022_2059_x crossref_primary_10_1002_ange_202214988 crossref_primary_10_1002_cssc_202201518 |
Cites_doi | 10.1038/nmat4778 10.1038/s41467-020-15853-1 10.1039/C8EE01415A 10.1038/nchem.1069 10.1039/C8EE02656D 10.1021/acsami.8b10778 10.1149/1.3609770 10.1016/j.apcatb.2018.09.017 10.1021/acsnano.7b07473 10.1002/anie.201710852 10.1002/adfm.201804846 10.1039/c3ta01402a 10.1126/science.aak9991 10.1016/j.elecom.2016.10.016 10.1002/aenm.201700544 10.1149/2.062310jes 10.1002/anie.201914768 10.1021/acsnano.5b05984 10.1021/acsenergylett.0c00812 10.1002/advs.201900628 10.1002/smll.201906867 10.1016/j.jelechem.2006.11.008 10.3390/en7063664 10.1021/jacs.5b00281 10.1002/adfm.201702300 10.1039/C8CY01973H 10.1038/nenergy.2015.6 10.1021/acssuschemeng.9b05033 10.1002/advs.201700691 10.1038/nchem.1095 10.1021/acs.nanolett.6b03691 10.1039/C7SE00413C 10.1002/anie.201908023 10.1002/adma.201808267 10.1002/anie.201810175 10.1038/s41929-019-0297-4 10.1002/ppsc.201700097 10.1007/s40843-018-9359-7 10.1039/C8TA07906D 10.1038/nmat4367 10.1002/anie.202001681 10.1016/j.ensm.2019.08.009 10.1002/cctc.201000397 10.1016/j.nanoen.2017.06.029 10.1002/adma.201704898 10.1002/advs.201802243 10.1039/C9EE03634B 10.1021/acsnano.8b04317 10.1016/j.nanoen.2017.11.020 10.1002/adma.201701546 10.1021/ja5009954 10.1021/jp311886h 10.1039/C5TA02229K 10.1002/smll.201906775 10.1016/j.matchemphys.2019.03.017 10.1021/acs.chemrev.6b00211 10.1038/s41467-018-05341-y 10.1002/adma.201908127 10.1002/adma.201905679 10.1021/acssuschemeng.9b06715 10.1002/adfm.201705048 10.1002/aenm.201903120 10.1002/adma.201900843 10.4271/951948 10.1038/s41467-020-15597-y 10.1002/adma.201704681 10.1021/acscatal.5b01481 10.1021/acsnano.7b03794 10.1039/D0TA05774F 10.1002/anie.201809009 10.1002/aenm.201703539 10.1016/j.cej.2020.124650 10.1063/1.1921328 10.1038/s41560-019-0355-9 10.1002/celc.201500278 10.1021/nl803279t 10.1002/anie.201701477 10.1007/s40843-019-1190-3 10.1002/aenm.201601198 10.1002/adma.201606207 10.1002/anie.201908907 10.1126/science.1200832 10.1021/acsnano.7b08721 10.1038/ncomms8343 10.1002/advs.201902795 10.1039/D0TA08114K 10.1016/j.jpowsour.2017.05.073 10.1021/jacs.9b12803 10.1021/acsenergylett.8b00888 10.1016/j.renene.2018.02.073 10.1016/j.jpowsour.2006.10.042 10.1002/anie.201915803 10.1021/acs.chemrev.7b00488 10.1021/acsnano.6b05914 10.1016/j.nanoen.2017.11.004 10.1126/science.1223985 10.1002/adfm.202000503 10.4271/770381 10.1021/acsami.6b06103 10.1021/cr900356p 10.1002/adma.201602912 10.1021/acs.chemmater.5b02708 10.1021/ja511559d 10.1002/anie.201406695 10.1002/smll.201800225 10.1038/s41467-020-15498-0 10.1039/C6EE00054A 10.1002/adma.201803372 10.1126/science.aad4998 10.1021/acs.accounts.7b00616 10.1039/c2cs35178a 10.1002/smll.201905223 10.1038/srep05184 10.1039/C5CC09173J 10.1021/acs.nanolett.5b04788 10.1038/nmat2725 10.1002/adma.201908488 10.1126/science.aah6133 10.1016/S0360-0564(08)60029-2 10.1002/anie.201509382 10.1002/adma.201800757 10.1002/aenm.201602928 10.1002/aenm.202002992 10.1002/anie.201905954 10.1038/nature11475 10.1021/acsnano.7b00417 10.1016/j.jechem.2020.02.037 10.1021/jz2016507 10.1021/acsenergylett.7b00679 10.1002/anie.201903200 10.1002/anie.201710877 10.1002/adma.201901666 10.1002/adfm.201703363 10.1021/jacs.0c02225 10.1126/science.1170051 10.1002/adfm.201910568 10.1016/j.apcatb.2019.117774 10.1016/S0378-7753(98)00260-2 10.1038/nature11115 10.1039/c1cp21228a 10.1002/anie.201607118 10.1002/adma.201905622 10.1016/j.carbon.2018.10.064 10.1002/aenm.201000010 10.1149/1.2100463 10.1016/j.jpowsour.2020.228621 10.1002/anie.201708385 10.1021/acscatal.6b00553 10.1016/j.nanoen.2017.07.043 10.1021/acs.chemmater.8b04572 10.1016/S0022-0728(00)00407-1 10.1002/cber.19110440303 10.1002/adfm.201803329 10.1002/adma.201902339 10.1002/anie.201915836 10.1039/C6CP05473K |
ContentType | Journal Article |
Copyright | 2021 Wiley‐VCH GmbH 2021 Wiley-VCH GmbH. |
Copyright_xml | – notice: 2021 Wiley‐VCH GmbH – notice: 2021 Wiley-VCH GmbH. |
DBID | AAYXX CITATION 7SR 7U5 8BQ 8FD JG9 L7M 7X8 |
DOI | 10.1002/smll.202006766 |
DatabaseName | CrossRef Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace MEDLINE - Academic |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace METADEX MEDLINE - Academic |
DatabaseTitleList | Materials Research Database CrossRef MEDLINE - Academic |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1613-6829 |
EndPage | n/a |
ExternalDocumentID | 10_1002_smll_202006766 SMLL202006766 |
Genre | reviewArticle |
GrantInformation_xml | – fundername: National Natural Science Foundation of China funderid: 21771059; 21631004 – fundername: National Key R&D Program of China funderid: 2018YFE0201704 |
GroupedDBID | --- 05W 0R~ 123 1L6 1OC 33P 3SF 3WU 4.4 50Y 52U 53G 5VS 66C 8-0 8-1 8UM A00 AAESR AAEVG AAHHS AAHQN AAIHA AAMNL AANLZ AAONW AAXRX AAYCA AAZKR ABCUV ABIJN ABJNI ABLJU ABRTZ ACAHQ ACCFJ ACCZN ACFBH ACGFS ACIWK ACPOU ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZVAB BFHJK BHBCM BMNLL BMXJE BNHUX BOGZA BRXPI CS3 DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBD EBS EMOBN F5P G-S GNP HBH HGLYW HHY HHZ HZ~ IX1 KQQ LATKE LAW LEEKS LITHE LOXES LUTES LYRES MEWTI MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM MY~ O66 O9- OIG P2P P2W P4E QRW R.K RIWAO RNS ROL RWI RX1 RYL SUPJJ SV3 V2E W99 WBKPD WFSAM WIH WIK WJL WOHZO WXSBR WYISQ WYJ XV2 Y6R ZZTAW ~S- 31~ AANHP AASGY AAYOK AAYXX ACBWZ ACRPL ACYXJ ADNMO AGHNM AGQPQ AGYGG ASPBG AVWKF AZFZN BDRZF CITATION EJD FEDTE GODZA HVGLF 7SR 7U5 8BQ 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY JG9 L7M 7X8 |
ID | FETCH-LOGICAL-c4166-81f53fce0291160a19c68ca80583f587e8569161e201391af14b2cc263ad12533 |
IEDL.DBID | DR2 |
ISSN | 1613-6810 1613-6829 |
IngestDate | Fri Jul 11 11:28:55 EDT 2025 Fri Jul 25 11:39:25 EDT 2025 Thu Apr 24 23:05:50 EDT 2025 Tue Jul 01 02:11:04 EDT 2025 Wed Jan 22 16:27:06 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 48 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4166-81f53fce0291160a19c68ca80583f587e8569161e201391af14b2cc263ad12533 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
ORCID | 0000-0002-5800-451X |
PQID | 2605075564 |
PQPubID | 1046358 |
PageCount | 19 |
ParticipantIDs | proquest_miscellaneous_2537642003 proquest_journals_2605075564 crossref_citationtrail_10_1002_smll_202006766 crossref_primary_10_1002_smll_202006766 wiley_primary_10_1002_smll_202006766_SMLL202006766 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-12-01 |
PublicationDateYYYYMMDD | 2021-12-01 |
PublicationDate_xml | – month: 12 year: 2021 text: 2021-12-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Weinheim |
PublicationPlace_xml | – name: Weinheim |
PublicationTitle | Small (Weinheim an der Bergstrasse, Germany) |
PublicationYear | 2021 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2011; 158 2017; 42 2017; 7 1911; 44 2017; 2 2012; 486 2020 2019; 59 4 2011 2007 2018 2016; 13 607 118 16 1977 1999 1995; 80 2019; 58 2020; 16 2020; 59 2016; 73 2020; 11 2018 2020; 6 63 2014 2011; 136 3 2017; 355 2018; 43 2013; 160 2017; 356 2013 2015; 117 2 2019; 241 2015 2009; 14 324 2020; 8 2020; 7 2020 2020; 10 474 2018; 9 2020; 5 2018; 8 2018; 3 2019; 62 2015; 137 2016 2011; 6 332 2017; 39 2016 2014 2019; 18 4 7 2018 2018; 30 57 2019 2016; 229 8 2017; 34 2016; 354 2020; 49 2017; 360 2018; 30 2016; 116 2018 2019; 28 142 2001 2012; 495 3 2014; 7 2012; 337 2010; 9 2014; 53 2019; 7 2018; 28 2015; 6 2019; 6 2011; 1 2015; 3 2019; 31 2020; 142 2019; 2 2017; 27 2007; 165 2016; 52 2017; 29 2020; 32 1969; 19 2011; 3 2015; 9 2016; 16 2018 2018; 2 28 2012 2010 2018; 488 110 5 2016; 55 2016; 6 1987; 134 2020 2020; 13 30 2015; 27 2016; 1 2020; 30 2017; 17 2020 2017; 11 2017; 56 2009; 9 2005; 97 2020; 24 2018; 51 2013 2020 2019; 390 256 2019 2018; 9 125 2018; 12 2016; 28 2018; 11 2018; 10 2016; 9 2012; 41 2018; 14 2018; 57 e_1_2_8_26_1 e_1_2_8_49_1 e_1_2_8_68_1 Wang X. (e_1_2_8_125_1) 2019; 7 e_1_2_8_1_3 e_1_2_8_132_1 e_1_2_8_1_2 e_1_2_8_5_1 e_1_2_8_9_1 e_1_2_8_64_3 e_1_2_8_117_1 e_1_2_8_22_1 e_1_2_8_45_1 e_1_2_8_64_1 e_1_2_8_87_1 e_1_2_8_22_2 e_1_2_8_64_2 e_1_2_8_113_1 e_1_2_8_1_1 e_1_2_8_41_1 e_1_2_8_60_1 e_1_2_8_83_1 e_1_2_8_19_1 e_1_2_8_19_2 e_1_2_8_109_1 e_1_2_8_15_1 e_1_2_8_38_1 e_1_2_8_57_1 e_1_2_8_19_3 e_1_2_8_19_4 e_1_2_8_120_1 e_1_2_8_91_1 e_1_2_8_95_1 e_1_2_8_99_1 e_1_2_8_105_1 e_1_2_8_128_1 e_1_2_8_30_2 e_1_2_8_11_1 e_1_2_8_34_1 e_1_2_8_53_1 e_1_2_8_76_1 e_1_2_8_11_2 e_1_2_8_101_1 e_1_2_8_124_1 e_1_2_8_30_1 e_1_2_8_72_1 e_1_2_8_29_1 e_1_2_8_29_2 e_1_2_8_25_1 e_1_2_8_48_1 e_1_2_8_2_1 e_1_2_8_133_1 e_1_2_8_110_1 e_1_2_8_6_1 e_1_2_8_21_1 e_1_2_8_67_1 e_1_2_8_21_2 e_1_2_8_44_1 e_1_2_8_86_1 e_1_2_8_118_1 e_1_2_8_63_1 e_1_2_8_40_1 e_1_2_8_82_1 e_1_2_8_114_1 e_1_2_8_18_1 e_1_2_8_14_1 e_1_2_8_14_2 e_1_2_8_37_2 e_1_2_8_37_1 e_1_2_8_79_1 e_1_2_8_94_1 e_1_2_8_90_1 e_1_2_8_121_1 e_1_2_8_98_1 e_1_2_8_10_1 e_1_2_8_56_1 e_1_2_8_106_1 e_1_2_8_33_1 e_1_2_8_75_1 e_1_2_8_129_1 e_1_2_8_52_1 e_1_2_8_102_1 e_1_2_8_71_1 e_1_2_8_28_1 e_1_2_8_28_2 e_1_2_8_24_1 e_1_2_8_47_1 e_1_2_8_3_1 e_1_2_8_81_1 e_1_2_8_111_1 e_1_2_8_130_1 e_1_2_8_7_1 e_1_2_8_7_3 e_1_2_8_7_2 e_1_2_8_20_1 e_1_2_8_43_1 e_1_2_8_66_1 e_1_2_8_89_1 e_1_2_8_20_2 e_1_2_8_119_1 e_1_2_8_62_1 e_1_2_8_85_1 e_1_2_8_115_1 e_1_2_8_17_1 e_1_2_8_13_1 e_1_2_8_36_1 e_1_2_8_59_1 e_1_2_8_13_2 e_1_2_8_70_1 e_1_2_8_122_1 e_1_2_8_97_1 e_1_2_8_97_2 e_1_2_8_32_1 e_1_2_8_55_1 e_1_2_8_78_1 e_1_2_8_107_1 e_1_2_8_51_1 e_1_2_8_74_1 e_1_2_8_103_1 e_1_2_8_126_1 e_1_2_8_93_1 e_1_2_8_46_1 e_1_2_8_27_1 e_1_2_8_69_1 e_1_2_8_80_1 e_1_2_8_4_1 e_1_2_8_131_1 e_1_2_8_8_2 e_1_2_8_8_1 e_1_2_8_42_1 e_1_2_8_88_1 e_1_2_8_116_1 e_1_2_8_23_1 e_1_2_8_65_1 e_1_2_8_84_1 e_1_2_8_112_1 e_1_2_8_61_1 e_1_2_8_16_2 e_1_2_8_39_1 e_1_2_8_58_2 e_1_2_8_35_1 e_1_2_8_16_1 e_1_2_8_58_1 e_1_2_8_92_1 e_1_2_8_96_1 e_1_2_8_100_1 e_1_2_8_96_2 e_1_2_8_31_1 e_1_2_8_77_1 e_1_2_8_127_1 e_1_2_8_12_1 e_1_2_8_54_1 e_1_2_8_108_1 e_1_2_8_73_1 e_1_2_8_123_1 e_1_2_8_50_1 e_1_2_8_104_1 |
References_xml | – volume: 51 start-page: 881 year: 2018 publication-title: Acc. Chem. Res. – volume: 27 year: 2017 publication-title: Adv. Funct. Mater. – volume: 53 year: 2014 publication-title: Angew. Chem., Int. Ed. – volume: 12 start-page: 128 year: 2018 publication-title: ACS Nano – volume: 5 start-page: 1881 year: 2020 publication-title: ACS Energy Lett. – volume: 27 start-page: 7610 year: 2015 publication-title: Chem. Mater. – volume: 73 start-page: 71 year: 2016 publication-title: Electrochem. Commun. – volume: 160 year: 2013 publication-title: J. Electrochem. Soc. – volume: 8 start-page: 4384 year: 2020 publication-title: ACS Sustainable Chem. Eng. – volume: 3 start-page: 1698 year: 2018 publication-title: ACS Energy Lett. – volume: 14 year: 2018 publication-title: Small – volume: 34 year: 2017 publication-title: Part. Part. Syst. Charact. – volume: 7 start-page: 3664 year: 2014 publication-title: Energies – year: 2020 publication-title: Adv. Energy Mater. – volume: 355 start-page: 146 year: 2017 publication-title: Science – volume: 165 start-page: 500 year: 2007 publication-title: J. Power Sources – volume: 41 start-page: 7108 year: 2012 publication-title: Chem. Soc. Rev. – volume: 3 start-page: 1159 year: 2011 publication-title: ChemCatChem – volume: 43 start-page: 130 year: 2018 publication-title: Nano Energy – volume: 30 year: 2020 publication-title: Adv. Funct. Mater. – volume: 58 year: 2019 publication-title: Angew. Chem., Int. Ed. – volume: 11 start-page: 2521 year: 2018 publication-title: Energy Environ. Sci. – volume: 6 year: 2019 publication-title: Adv. Sci. – volume: 13 607 118 16 start-page: 83 2302 70 year: 2011 2007 2018 2016 publication-title: Phys. Chem. Chem. Phys. J. Electroanal. Chem. Chem. Rev. Nat. Mater. – volume: 55 start-page: 4087 year: 2016 publication-title: Angew. Chem., Int. Ed. – volume: 13 30 start-page: 1132 year: 2020 2020 publication-title: Energy Environ. Sci. Adv. Funct. Mater. – volume: 12 start-page: 596 year: 2018 publication-title: ACS Nano – volume: 62 start-page: 624 year: 2019 publication-title: Sci. China Mater. – volume: 390 256 year: 2020 2019 publication-title: Chem. Eng. J. Appl. Catal., B – volume: 9 start-page: 1320 year: 2016 publication-title: Energy Environ. Sci. – volume: 57 start-page: 1856 year: 2018 publication-title: Angew. Chem., Int. Ed. – volume: 3 year: 2015 publication-title: J. Mater. Chem. A – volume: 488 110 5 start-page: 294 6595 year: 2012 2010 2018 publication-title: Nature Chem. Rev. Adv. Sci. – volume: 9 start-page: 1752 year: 2009 publication-title: Nano Lett. – volume: 9 start-page: 2885 year: 2018 publication-title: Nat. Commun. – volume: 2 start-page: 688 year: 2019 publication-title: Nat. Catal. – volume: 6 332 start-page: 443 year: 2016 2011 publication-title: Adv. Energy Mater. Science – volume: 6 start-page: 155 year: 2015 publication-title: ACS Catal. – volume: 9 125 start-page: 611 182 year: 2019 2018 publication-title: Catal. Sci. Technol. Renewable Energy – volume: 42 start-page: 334 year: 2017 publication-title: Nano Energy – volume: 31 year: 2019 publication-title: Adv. Mater. – volume: 2 start-page: 1937 year: 2017 publication-title: ACS Energy Lett. – volume: 59 start-page: 4793 year: 2020 publication-title: Angew. Chem., Int. Ed. – volume: 16 start-page: 1794 year: 2016 publication-title: Nano Lett. – volume: 356 start-page: 415 year: 2017 publication-title: Science – volume: 19 start-page: 1 year: 1969 publication-title: Adv. Catal. – volume: 7 year: 2017 publication-title: Adv. Energy Mater. – volume: 11 start-page: 1664 year: 2020 publication-title: Nat. Commun. – volume: 32 year: 2020 publication-title: Adv. Mater. – volume: 11 start-page: 2275 year: 2017 publication-title: ACS Nano – volume: 11 start-page: 3375 year: 2018 publication-title: Energy Environ. Sci. – volume: 6 start-page: 4347 year: 2016 publication-title: ACS Catal. – volume: 57 year: 2018 publication-title: Angew. Chem., Int. Ed. – volume: 117 2 start-page: 2662 2071 year: 2013 2015 publication-title: J. Phys. Chem. C ChemElectroChem – volume: 12 start-page: 8597 year: 2018 publication-title: ACS Nano – volume: 158 year: 2011 publication-title: J. Electrochem. Soc. – volume: 11 start-page: 347 year: 2017 publication-title: ACS Nano – volume: 59 start-page: 2 year: 2020 publication-title: Angew. Chem., Int. Ed. – volume: 56 year: 2017 publication-title: Angew. Chem., Int. Ed. – volume: 9 year: 2015 publication-title: ACS Nano – start-page: 4754 year: 2013 publication-title: J. Mater. Chem. A – volume: 97 year: 2005 publication-title: J. Appl. Phys. – volume: 137 start-page: 1305 year: 2015 publication-title: J. Am. Chem. Soc. – volume: 337 start-page: 563 year: 2012 publication-title: Science – volume: 28 142 start-page: 379 year: 2018 2019 publication-title: Adv. Funct. Mater. Carbon – volume: 7 year: 2020 publication-title: Adv. Sci. – volume: 241 start-page: 104 year: 2019 publication-title: Appl. Catal. B – volume: 44 start-page: 1984 year: 1911 publication-title: Ber. Dtsch. Chem. Ges. – volume: 10 474 year: 2020 2020 publication-title: Adv. Energy Mater. J. Power Sources – volume: 16 year: 2020 publication-title: Small – volume: 1 year: 2016 publication-title: Nat. Energy – volume: 8 year: 2018 publication-title: Adv. Energy Mater. – volume: 18 4 7 start-page: 5184 year: 2016 2014 2019 publication-title: Phys. Chem. Chem. Phys. Sci. Rep. ACS Sustainable Chem. Eng. – volume: 28 start-page: 9532 year: 2016 publication-title: Adv. Mater. – volume: 142 start-page: 715 year: 2020 publication-title: J. Am. Chem. Soc. – volume: 134 start-page: 377 year: 1987 publication-title: J. Electrochem. Soc. – volume: 52 start-page: 2764 year: 2016 publication-title: Chem. Commun. – volume: 137 start-page: 3638 year: 2015 publication-title: J. Am. Chem. Soc. – volume: 28 year: 2018 publication-title: Adv. Funct. Mater. – volume: 59 4 start-page: 6929 329 year: 2020 2019 publication-title: Angew. Chem., Int. Ed. Nat. Energy – volume: 136 3 start-page: 5229 546 year: 2014 2011 publication-title: J. Am. Chem. Soc. Nat. Chem. – volume: 495 3 start-page: 134 399 year: 2001 2012 publication-title: J. Electroanal. Chem. J. Phys. Chem. Lett. – volume: 49 start-page: 375 year: 2020 publication-title: J. Energy Chem. – volume: 59 start-page: 8072 year: 2020 publication-title: Angew. Chem., Int. Ed. – volume: 229 8 start-page: 190 year: 2019 2016 publication-title: Mater. Chem. Phys. ACS Appl. Mater. Interfaces – volume: 39 start-page: 77 year: 2017 publication-title: Nano Energy – volume: 29 year: 2017 publication-title: Adv. Mater. – volume: 11 start-page: 1952 year: 2020 publication-title: Nat. Commun. – volume: 2 28 start-page: 39 year: 2018 2018 publication-title: Sustainable Energy Fuels Adv. Funct. Mater. – volume: 12 start-page: 1894 year: 2018 publication-title: ACS Nano – volume: 486 start-page: 43 year: 2012 publication-title: Nature – volume: 55 year: 2016 publication-title: Angew. Chem., Int. Ed. – volume: 6 63 start-page: 327 year: 2018 2020 publication-title: J. Mater. Chem. A Sci. China Mater. – volume: 30 57 start-page: 172 year: 2018 2018 publication-title: Adv. Mater. Angew. Chem., Int. Ed. – volume: 14 324 start-page: 937 71 year: 2015 2009 publication-title: Nat. Mater. Science – volume: 142 start-page: 8104 year: 2020 publication-title: J. Am. Chem. Soc. – volume: 58 start-page: 2622 year: 2019 publication-title: Angew. Chem., Int. Ed. – volume: 11 start-page: 1731 year: 2020 publication-title: Nat. Commun. – volume: 354 start-page: 1410 year: 2016 publication-title: Science – volume: 116 year: 2016 publication-title: Chem. Rev. – volume: 30 year: 2018 publication-title: Adv. Mater. – volume: 17 start-page: 156 year: 2017 publication-title: Nano Lett. – volume: 39 start-page: 626 year: 2017 publication-title: Nano Energy – volume: 360 start-page: 136 year: 2017 publication-title: J. Power Sources – volume: 9 start-page: 353 year: 2010 publication-title: Nat. Mater. – volume: 24 start-page: 272 year: 2020 publication-title: Energy Storage Mater. – volume: 1 start-page: 34 year: 2011 publication-title: Adv. Energy Mater. – volume: 31 start-page: 1023 year: 2019 publication-title: Chem. Mater. – volume: 6 start-page: 7343 year: 2015 publication-title: Nat. Commun. – volume: 3 start-page: 634 year: 2011 publication-title: Nat. Chem. – volume: 10 year: 2018 publication-title: ACS Appl. Mater. Interfaces – volume: 7 year: 2019 publication-title: ACS Sustainable Chem. Eng. – volume: 56 start-page: 5867 year: 2017 publication-title: Angew. Chem., Int. Ed. – volume: 80 start-page: 171 year: 1977 1999 1995 publication-title: SAE Tech. Pap. J. Power Sources SAE Tech. Pap. – volume: 8 year: 2020 publication-title: J. Mater. Chem. A – ident: e_1_2_8_19_4 doi: 10.1038/nmat4778 – ident: e_1_2_8_99_1 doi: 10.1038/s41467-020-15853-1 – ident: e_1_2_8_116_1 doi: 10.1039/C8EE01415A – ident: e_1_2_8_21_2 doi: 10.1038/nchem.1069 – ident: e_1_2_8_89_1 doi: 10.1039/C8EE02656D – ident: e_1_2_8_119_1 doi: 10.1021/acsami.8b10778 – ident: e_1_2_8_10_1 doi: 10.1149/1.3609770 – ident: e_1_2_8_131_1 doi: 10.1016/j.apcatb.2018.09.017 – ident: e_1_2_8_66_1 doi: 10.1021/acsnano.7b07473 – ident: e_1_2_8_88_1 doi: 10.1002/anie.201710852 – ident: e_1_2_8_28_1 doi: 10.1002/adfm.201804846 – ident: e_1_2_8_6_1 doi: 10.1039/c3ta01402a – ident: e_1_2_8_113_1 doi: 10.1126/science.aak9991 – ident: e_1_2_8_79_1 doi: 10.1016/j.elecom.2016.10.016 – ident: e_1_2_8_111_1 doi: 10.1002/aenm.201700544 – ident: e_1_2_8_26_1 doi: 10.1149/2.062310jes – ident: e_1_2_8_82_1 doi: 10.1002/anie.201914768 – ident: e_1_2_8_92_1 doi: 10.1021/acsnano.5b05984 – ident: e_1_2_8_15_1 doi: 10.1021/acsenergylett.0c00812 – ident: e_1_2_8_42_1 doi: 10.1002/advs.201900628 – ident: e_1_2_8_110_1 doi: 10.1002/smll.201906867 – ident: e_1_2_8_19_2 doi: 10.1016/j.jelechem.2006.11.008 – ident: e_1_2_8_115_1 doi: 10.3390/en7063664 – ident: e_1_2_8_105_1 doi: 10.1021/jacs.5b00281 – ident: e_1_2_8_55_1 doi: 10.1002/adfm.201702300 – ident: e_1_2_8_20_1 doi: 10.1039/C8CY01973H – ident: e_1_2_8_31_1 doi: 10.1038/nenergy.2015.6 – ident: e_1_2_8_64_3 doi: 10.1021/acssuschemeng.9b05033 – ident: e_1_2_8_1_3 doi: 10.1002/advs.201700691 – ident: e_1_2_8_81_1 doi: 10.1038/nchem.1095 – ident: e_1_2_8_121_1 doi: 10.1021/acs.nanolett.6b03691 – ident: e_1_2_8_8_1 doi: 10.1039/C7SE00413C – ident: e_1_2_8_90_1 doi: 10.1002/anie.201908023 – ident: e_1_2_8_84_1 doi: 10.1002/adma.201808267 – ident: e_1_2_8_87_1 doi: 10.1002/anie.201810175 – ident: e_1_2_8_80_1 doi: 10.1038/s41929-019-0297-4 – ident: e_1_2_8_120_1 doi: 10.1002/ppsc.201700097 – ident: e_1_2_8_41_1 doi: 10.1007/s40843-018-9359-7 – ident: e_1_2_8_29_1 doi: 10.1039/C8TA07906D – ident: e_1_2_8_96_1 doi: 10.1038/nmat4367 – ident: e_1_2_8_97_1 doi: 10.1002/anie.202001681 – ident: e_1_2_8_122_1 doi: 10.1016/j.ensm.2019.08.009 – ident: e_1_2_8_23_1 doi: 10.1002/cctc.201000397 – ident: e_1_2_8_44_1 doi: 10.1016/j.nanoen.2017.06.029 – ident: e_1_2_8_101_1 doi: 10.1002/adma.201704898 – ident: e_1_2_8_35_1 doi: 10.1002/advs.201802243 – ident: e_1_2_8_14_1 doi: 10.1039/C9EE03634B – ident: e_1_2_8_118_1 doi: 10.1021/acsnano.8b04317 – ident: e_1_2_8_129_1 doi: 10.1016/j.nanoen.2017.11.020 – ident: e_1_2_8_76_1 doi: 10.1002/adma.201701546 – ident: e_1_2_8_21_1 doi: 10.1021/ja5009954 – ident: e_1_2_8_58_1 doi: 10.1021/jp311886h – ident: e_1_2_8_77_1 doi: 10.1039/C5TA02229K – ident: e_1_2_8_54_1 doi: 10.1002/smll.201906775 – ident: e_1_2_8_22_1 doi: 10.1016/j.matchemphys.2019.03.017 – ident: e_1_2_8_50_1 doi: 10.1021/acs.chemrev.6b00211 – ident: e_1_2_8_104_1 doi: 10.1038/s41467-018-05341-y – ident: e_1_2_8_126_1 doi: 10.1002/adma.201908127 – ident: e_1_2_8_56_1 doi: 10.1002/adma.201905679 – ident: e_1_2_8_132_1 doi: 10.1021/acssuschemeng.9b06715 – ident: e_1_2_8_34_1 doi: 10.1002/adfm.201705048 – ident: e_1_2_8_13_1 doi: 10.1002/aenm.201903120 – ident: e_1_2_8_83_1 doi: 10.1002/adma.201900843 – ident: e_1_2_8_7_3 doi: 10.4271/951948 – ident: e_1_2_8_47_1 doi: 10.1038/s41467-020-15597-y – ident: e_1_2_8_49_1 doi: 10.1002/adma.201704681 – ident: e_1_2_8_106_1 doi: 10.1021/acscatal.5b01481 – ident: e_1_2_8_4_1 doi: 10.1021/acsnano.7b03794 – ident: e_1_2_8_124_1 doi: 10.1039/D0TA05774F – ident: e_1_2_8_98_1 doi: 10.1002/anie.201809009 – ident: e_1_2_8_62_1 doi: 10.1002/aenm.201703539 – ident: e_1_2_8_16_1 doi: 10.1016/j.cej.2020.124650 – ident: e_1_2_8_91_1 doi: 10.1063/1.1921328 – ident: e_1_2_8_97_2 doi: 10.1038/s41560-019-0355-9 – ident: e_1_2_8_58_2 doi: 10.1002/celc.201500278 – ident: e_1_2_8_61_1 doi: 10.1021/nl803279t – ident: e_1_2_8_75_1 doi: 10.1002/anie.201701477 – ident: e_1_2_8_29_2 doi: 10.1007/s40843-019-1190-3 – ident: e_1_2_8_30_1 doi: 10.1002/aenm.201601198 – ident: e_1_2_8_71_1 doi: 10.1002/adma.201606207 – ident: e_1_2_8_103_1 doi: 10.1002/anie.201908907 – ident: e_1_2_8_30_2 doi: 10.1126/science.1200832 – ident: e_1_2_8_85_1 doi: 10.1021/acsnano.7b08721 – ident: e_1_2_8_93_1 doi: 10.1038/ncomms8343 – ident: e_1_2_8_114_1 doi: 10.1002/advs.201902795 – ident: e_1_2_8_40_1 doi: 10.1039/D0TA08114K – ident: e_1_2_8_9_1 doi: 10.1016/j.jpowsour.2017.05.073 – ident: e_1_2_8_102_1 doi: 10.1021/jacs.9b12803 – ident: e_1_2_8_51_1 doi: 10.1021/acsenergylett.8b00888 – ident: e_1_2_8_20_2 doi: 10.1016/j.renene.2018.02.073 – ident: e_1_2_8_57_1 doi: 10.1016/j.jpowsour.2006.10.042 – ident: e_1_2_8_109_1 doi: 10.1002/anie.201915803 – ident: e_1_2_8_19_3 doi: 10.1021/acs.chemrev.7b00488 – ident: e_1_2_8_65_1 doi: 10.1021/acsnano.6b05914 – ident: e_1_2_8_67_1 doi: 10.1016/j.nanoen.2017.11.004 – ident: e_1_2_8_5_1 doi: 10.1126/science.1223985 – ident: e_1_2_8_14_2 doi: 10.1002/adfm.202000503 – ident: e_1_2_8_7_1 doi: 10.4271/770381 – ident: e_1_2_8_22_2 doi: 10.1021/acsami.6b06103 – ident: e_1_2_8_1_2 doi: 10.1021/cr900356p – ident: e_1_2_8_78_1 doi: 10.1002/adma.201602912 – ident: e_1_2_8_27_1 doi: 10.1021/acs.chemmater.5b02708 – ident: e_1_2_8_107_1 doi: 10.1021/ja511559d – ident: e_1_2_8_60_1 doi: 10.1002/anie.201406695 – ident: e_1_2_8_130_1 doi: 10.1002/smll.201800225 – ident: e_1_2_8_25_1 doi: 10.1038/s41467-020-15498-0 – ident: e_1_2_8_72_1 doi: 10.1039/C6EE00054A – ident: e_1_2_8_100_1 doi: 10.1002/adma.201803372 – ident: e_1_2_8_24_1 doi: 10.1126/science.aad4998 – ident: e_1_2_8_45_1 doi: 10.1021/acs.accounts.7b00616 – ident: e_1_2_8_59_1 doi: 10.1039/c2cs35178a – ident: e_1_2_8_38_1 doi: 10.1002/smll.201905223 – ident: e_1_2_8_64_2 doi: 10.1038/srep05184 – ident: e_1_2_8_70_1 doi: 10.1039/C5CC09173J – ident: e_1_2_8_117_1 doi: 10.1021/acs.nanolett.5b04788 – ident: e_1_2_8_2_1 doi: 10.1038/nmat2725 – ident: e_1_2_8_46_1 doi: 10.1002/adma.201908488 – ident: e_1_2_8_12_1 doi: 10.1126/science.aah6133 – ident: e_1_2_8_18_1 doi: 10.1016/S0360-0564(08)60029-2 – ident: e_1_2_8_32_1 doi: 10.1002/anie.201509382 – ident: e_1_2_8_37_1 doi: 10.1002/adma.201800757 – ident: e_1_2_8_68_1 doi: 10.1002/aenm.201602928 – ident: e_1_2_8_123_1 doi: 10.1002/aenm.202002992 – ident: e_1_2_8_128_1 doi: 10.1002/anie.201905954 – ident: e_1_2_8_1_1 doi: 10.1038/nature11475 – ident: e_1_2_8_48_1 doi: 10.1021/acsnano.7b00417 – ident: e_1_2_8_133_1 doi: 10.1016/j.jechem.2020.02.037 – ident: e_1_2_8_11_2 doi: 10.1021/jz2016507 – ident: e_1_2_8_39_1 doi: 10.1021/acsenergylett.7b00679 – ident: e_1_2_8_108_1 doi: 10.1002/anie.201903200 – ident: e_1_2_8_37_2 doi: 10.1002/anie.201710877 – ident: e_1_2_8_95_1 doi: 10.1002/adma.201901666 – ident: e_1_2_8_74_1 doi: 10.1002/adfm.201703363 – ident: e_1_2_8_69_1 doi: 10.1021/jacs.0c02225 – ident: e_1_2_8_96_2 doi: 10.1126/science.1170051 – ident: e_1_2_8_52_1 doi: 10.1002/adfm.201910568 – ident: e_1_2_8_16_2 doi: 10.1016/j.apcatb.2019.117774 – ident: e_1_2_8_7_2 doi: 10.1016/S0378-7753(98)00260-2 – ident: e_1_2_8_112_1 doi: 10.1038/nature11115 – ident: e_1_2_8_19_1 doi: 10.1039/c1cp21228a – ident: e_1_2_8_127_1 doi: 10.1002/anie.201607118 – ident: e_1_2_8_86_1 doi: 10.1002/adma.201905622 – ident: e_1_2_8_28_2 doi: 10.1016/j.carbon.2018.10.064 – ident: e_1_2_8_3_1 doi: 10.1002/aenm.201000010 – ident: e_1_2_8_73_1 doi: 10.1149/1.2100463 – volume: 7 year: 2019 ident: e_1_2_8_125_1 publication-title: ACS Sustainable Chem. Eng. – ident: e_1_2_8_13_2 doi: 10.1016/j.jpowsour.2020.228621 – ident: e_1_2_8_36_1 doi: 10.1002/anie.201708385 – ident: e_1_2_8_94_1 doi: 10.1021/acscatal.6b00553 – ident: e_1_2_8_33_1 doi: 10.1016/j.nanoen.2017.07.043 – ident: e_1_2_8_63_1 doi: 10.1021/acs.chemmater.8b04572 – ident: e_1_2_8_11_1 doi: 10.1016/S0022-0728(00)00407-1 – ident: e_1_2_8_17_1 doi: 10.1002/cber.19110440303 – ident: e_1_2_8_8_2 doi: 10.1002/adfm.201803329 – ident: e_1_2_8_53_1 doi: 10.1002/adma.201902339 – ident: e_1_2_8_43_1 doi: 10.1002/anie.201915836 – ident: e_1_2_8_64_1 doi: 10.1039/C6CP05473K |
SSID | ssj0031247 |
Score | 2.6639628 |
SecondaryResourceType | review_article |
Snippet | Zinc–air batteries (ZABs) exhibit high energy density as well as flexibility, safety, and portability, thereby fulfilling the requirements of power batteries... Zinc-air batteries (ZABs) exhibit high energy density as well as flexibility, safety, and portability, thereby fulfilling the requirements of power batteries... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | e2006766 |
SubjectTerms | active site air cathode bifunctional catalyst Catalysts Cathodes Efficiency Electrocatalysts Flux density Metal air batteries Nanotechnology oxygen evolution Oxygen evolution reactions oxygen reduction Oxygen reduction reactions Power consumption Stability Structural design Zinc-oxygen batteries zinc–air battery |
Title | Structural Design Strategy and Active Site Regulation of High‐Efficient Bifunctional Oxygen Reaction Electrocatalysts for Zn–Air Battery |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fsmll.202006766 https://www.proquest.com/docview/2605075564 https://www.proquest.com/docview/2537642003 |
Volume | 17 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ1bS-QwFMeD-KQPrpeVHW9EEPYp2iZtpvM4riMi6oKzgvhSkjQBWbcjdgTHJz-AD4Lf0E-y5ySdOgoi7D6WJvSSc3L-SU9_h5CtSHZirrVgSH5hiRKc6bjjWOQMLAa00oXDheLxiTw4Sw7P0_OJv_gDH6LZcEPP8PM1OrjS1c4rNLT6c4WfDnBJ3JbI3MaELVRFpw0_SkDw8tVVIGYxBG-NqY0R33nb_W1UepWak4LVR5z9L0SN7zUkmvzevh3qbXP_DuP4Pw8zT-ZqOUq7wX4WyJQtF8nsBKRwiTz2PWIW8Rx0z-d70BppO6KqLGjXz5i0D9qVnobK9jDWdOAo5pC8PDz1PKUCghvdvcQwGnYf6c-7ERgvdAm_VtBeKMjj95NG1bCiIKfpRfny8Ny9vKGBAzr6Ss72e79-HLC6hgMzIPUky2KXCmdsxGFWlZGKO0ZmRmVRmgmXZm2bpWAtMrYctWisXJxobgyXQhWgvYRYJtPloLTfCBWFk4UAuapjCzLTdtogrjKwqUw5rbVrETYew9zUgHOss3GVBzQzz_Et581bbpHvTfvrgPb4sOXa2CTy2sWrHBeCoLdSmbTIZnManBO_uKjSDm6hDcJyEsz_axHux_-TK-X946Oj5mjlXzqtkhmOeTc-5WaNTION2HUQTkO94Z3jL_ngE14 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ3NbtQwEMdHUA7AgW_EQgEjIXFym9iJN3tc6FYL7Bap20qIS2Q7tlTRZit2K7Gc-gAckHjDPgkzdpK2SAgJjlFs5WvG87c9-Q3Ay0QNUmGM5ER-4ZmWgpt04HniLU4GjDaVp4nidEeN97N3H_M2m5D-hYl8iG7BjTwjjNfk4LQgvXlODV0cHdLeAc2J-0pdhWtU1pvw-Vu7HUFKYvgK9VUwanFCb7XcxkRsXu5_OS6di82LkjXEnO3bYNq7jakmnzdOlmbDfvsN5Phfj3MHbjWKlA2jCd2FK66-BzcvcArvw_dZoMwSoYNthZQP1lBtV0zXFRuGQZPNUL6y3VjcHj83m3tGaSRnpz9GAVSB8Y29PqBIGhcg2YevK7Rf7BL_rmCjWJMnLCmtFssFQ0XNPtVnpz-HB19YRIGuHsD-9mjvzZg3ZRy4RbWneJH6XHrrEoEDq0p0OrCqsLpI8kL6vOi7IkeDUakTJEdT7dPMCGuFkrpC-SXlQ1ir57V7BExWXlUSFatJHSpNN-ijvirQrArtjTG-B7z9iKVtGOdUauOwjHRmUdJbLru33INXXfvjSPf4Y8v11ibKxssXJc0FUXLlKuvBi-40-idtuujazU-wDfFyMkoB7IEIBvCXK5Wz6WTSHT3-l07P4fp4bzopJ2933j-BG4LScEIGzjqsob24p6ijluZZ8JRfIPkXeg |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ3NbtQwEMdHUCRED3yjLhQwEhInt4mdeJPjwu6qwLagLpUqLpHtxFJFm626W4nl1AfgUKlv2Cdhxs6mWySEBMcotvLhGc_fzuQ3AK8jlcfCGMmJ_MITLQU3ce545CwuBow2paOF4vaO2tpLPuyn-0t_8Qc-RLvhRp7h52ty8OPSbV5BQ6dHh_TpgJbEXaVuwq1ERTkVb-jvtgApidHLl1fBoMWJvLXANkZi83r_62HpSmsuK1Yfcob3QC9uNmSafNs4nZkN--M3juP_PM19uNvoUdYLBvQAblT1Q1hdohQ-gp9jz5glPgfr-4QP1jBt50zXJev5KZONUbyy3VDaHgebTRyjJJLLs_OBx1RgdGNvDyiOhu1H9un7HK0Xu4R_K9ggVOTxG0rz6WzKUE-zr_Xl2UXv4IQFEOj8MewNB1_ebfGmiAO3qPUUz2KXSmerSOC0qiId51ZlVmdRmkmXZt0qS9FcVFwJEqOxdnFihLVCSV2i-JLyCazUk7paAyZLp0qJetXEFerMKu-iusrQqDLtjDGuA3wxhoVtCOdUaOOwCGxmUdBbLtq33IE3bfvjwPb4Y8v1hUkUjY9PC1oJouBKVdKBV-1p9E765KLranKKbYiWk1ACYAeEH_-_XKkYb49G7dHTf-n0Em5_7g-L0fudj8_gjqAcHJ9-sw4raC7VcxRRM_PC-8kvyxwWKQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Structural+Design+Strategy+and+Active+Site+Regulation+of+High%E2%80%90Efficient+Bifunctional+Oxygen+Reaction+Electrocatalysts+for+Zn%E2%80%93Air+Battery&rft.jtitle=Small+%28Weinheim+an+der+Bergstrasse%2C+Germany%29&rft.au=Liu%2C+Xu&rft.au=Zhang%2C+Guangying&rft.au=Wang%2C+Lei&rft.au=Fu%2C+Honggang&rft.date=2021-12-01&rft.issn=1613-6810&rft.eissn=1613-6829&rft.volume=17&rft.issue=48&rft_id=info:doi/10.1002%2Fsmll.202006766&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_smll_202006766 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1613-6810&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1613-6810&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1613-6810&client=summon |