Structural Design Strategy and Active Site Regulation of High‐Efficient Bifunctional Oxygen Reaction Electrocatalysts for Zn–Air Battery

Zinc–air batteries (ZABs) exhibit high energy density as well as flexibility, safety, and portability, thereby fulfilling the requirements of power batteries and consumer batteries. However, the limited efficiency and stability are still the significant challenge. Oxygen reduction reaction (ORR) and...

Full description

Saved in:
Bibliographic Details
Published inSmall (Weinheim an der Bergstrasse, Germany) Vol. 17; no. 48; pp. e2006766 - n/a
Main Authors Liu, Xu, Zhang, Guangying, Wang, Lei, Fu, Honggang
Format Journal Article
LanguageEnglish
Published Weinheim Wiley Subscription Services, Inc 01.12.2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Zinc–air batteries (ZABs) exhibit high energy density as well as flexibility, safety, and portability, thereby fulfilling the requirements of power batteries and consumer batteries. However, the limited efficiency and stability are still the significant challenge. Oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) are two crucial cathode reactions in ZABs. Development of bifunctional ORR/OER catalysts with high efficiency and well stability is critical to improve the performance of ZABs. In this review, the ORR and OER mechanisms are first explained. Further, the design principles of ORR/OER electrocatalysts are discussed in terms of atomic adjustment mechanism and structural design in conjunction with the latest reported in situ characterization techniques, which provide useful insights on the ORR/OER mechanisms of the catalyst. The improvement in the energy efficiency, stability, and environmental adaptability of the new hybrid ZAB by the inclusion of additional reaction, including the introduction of transition‐metal redox couples in the cathode and the addition of modifiers in the electrolyte to change the OER pathway, is also summarized. Finally, current challenges and future research directions are presented. Bifunctional oxygen electrocatalysts are the key components in rechargeable Zn–air batteries (ZABs). This review focuses on the design principles of Pt‐free electrocatalysts from the perspective of structural design and active site optimization. The latest advances of in situ techniques and other new strategies to improve the performance of ZABs are also discussed.
AbstractList Zinc–air batteries (ZABs) exhibit high energy density as well as flexibility, safety, and portability, thereby fulfilling the requirements of power batteries and consumer batteries. However, the limited efficiency and stability are still the significant challenge. Oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) are two crucial cathode reactions in ZABs. Development of bifunctional ORR/OER catalysts with high efficiency and well stability is critical to improve the performance of ZABs. In this review, the ORR and OER mechanisms are first explained. Further, the design principles of ORR/OER electrocatalysts are discussed in terms of atomic adjustment mechanism and structural design in conjunction with the latest reported in situ characterization techniques, which provide useful insights on the ORR/OER mechanisms of the catalyst. The improvement in the energy efficiency, stability, and environmental adaptability of the new hybrid ZAB by the inclusion of additional reaction, including the introduction of transition‐metal redox couples in the cathode and the addition of modifiers in the electrolyte to change the OER pathway, is also summarized. Finally, current challenges and future research directions are presented.
Zinc–air batteries (ZABs) exhibit high energy density as well as flexibility, safety, and portability, thereby fulfilling the requirements of power batteries and consumer batteries. However, the limited efficiency and stability are still the significant challenge. Oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) are two crucial cathode reactions in ZABs. Development of bifunctional ORR/OER catalysts with high efficiency and well stability is critical to improve the performance of ZABs. In this review, the ORR and OER mechanisms are first explained. Further, the design principles of ORR/OER electrocatalysts are discussed in terms of atomic adjustment mechanism and structural design in conjunction with the latest reported in situ characterization techniques, which provide useful insights on the ORR/OER mechanisms of the catalyst. The improvement in the energy efficiency, stability, and environmental adaptability of the new hybrid ZAB by the inclusion of additional reaction, including the introduction of transition‐metal redox couples in the cathode and the addition of modifiers in the electrolyte to change the OER pathway, is also summarized. Finally, current challenges and future research directions are presented. Bifunctional oxygen electrocatalysts are the key components in rechargeable Zn–air batteries (ZABs). This review focuses on the design principles of Pt‐free electrocatalysts from the perspective of structural design and active site optimization. The latest advances of in situ techniques and other new strategies to improve the performance of ZABs are also discussed.
Zinc-air batteries (ZABs) exhibit high energy density as well as flexibility, safety, and portability, thereby fulfilling the requirements of power batteries and consumer batteries. However, the limited efficiency and stability are still the significant challenge. Oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) are two crucial cathode reactions in ZABs. Development of bifunctional ORR/OER catalysts with high efficiency and well stability is critical to improve the performance of ZABs. In this review, the ORR and OER mechanisms are first explained. Further, the design principles of ORR/OER electrocatalysts are discussed in terms of atomic adjustment mechanism and structural design in conjunction with the latest reported in situ characterization techniques, which provide useful insights on the ORR/OER mechanisms of the catalyst. The improvement in the energy efficiency, stability, and environmental adaptability of the new hybrid ZAB by the inclusion of additional reaction, including the introduction of transition-metal redox couples in the cathode and the addition of modifiers in the electrolyte to change the OER pathway, is also summarized. Finally, current challenges and future research directions are presented.Zinc-air batteries (ZABs) exhibit high energy density as well as flexibility, safety, and portability, thereby fulfilling the requirements of power batteries and consumer batteries. However, the limited efficiency and stability are still the significant challenge. Oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) are two crucial cathode reactions in ZABs. Development of bifunctional ORR/OER catalysts with high efficiency and well stability is critical to improve the performance of ZABs. In this review, the ORR and OER mechanisms are first explained. Further, the design principles of ORR/OER electrocatalysts are discussed in terms of atomic adjustment mechanism and structural design in conjunction with the latest reported in situ characterization techniques, which provide useful insights on the ORR/OER mechanisms of the catalyst. The improvement in the energy efficiency, stability, and environmental adaptability of the new hybrid ZAB by the inclusion of additional reaction, including the introduction of transition-metal redox couples in the cathode and the addition of modifiers in the electrolyte to change the OER pathway, is also summarized. Finally, current challenges and future research directions are presented.
Author Wang, Lei
Fu, Honggang
Liu, Xu
Zhang, Guangying
Author_xml – sequence: 1
  givenname: Xu
  surname: Liu
  fullname: Liu, Xu
  organization: Heilongjiang University
– sequence: 2
  givenname: Guangying
  surname: Zhang
  fullname: Zhang, Guangying
  organization: Heilongjiang University
– sequence: 3
  givenname: Lei
  surname: Wang
  fullname: Wang, Lei
  email: wanglei0525@hlju.edu.cn
  organization: Heilongjiang University
– sequence: 4
  givenname: Honggang
  orcidid: 0000-0002-5800-451X
  surname: Fu
  fullname: Fu, Honggang
  email: fuhg@hlju.edu.cn, fuhg@vip.sina.com
  organization: Heilongjiang University
BookMark eNqFkc1KLDEQRoMo-Lt1HXDjZuYm6e5093LU8SqMCI5u3DQxVtpIJtEkrfbOB7iLC76hT2LGEQVBXCVUnVNQ9a2jZessILRNyZASwv6EmTFDRhghvOR8Ca1RTrMBr1i9_PmnZBWth3BLSEZZXq6hf9PoOxk7Lww-gKBbi1NFRGh7LOw1HsmoHwBPdQR8Bm1nRNTOYqfwkW5vXp__j5XSUoONeE-rzsp5O806fepbsEkR7xU8NiCjd1JEYfoQA1bO40v7-vwy0h7viRjB95toRQkTYOvj3UAXh-Pz_aPB5PTv8f5oMpA55XxQUVVkSgJhNaWcCFpLXklRkaLKVFGVUBW8TgsDIzSrqVA0v2JSMp6Ja8qKLNtAu4u5d97ddxBiM9NBgjHCgutCk5iS5-mQc3TnG3rrOp82TBQnBSmLgueJyheU9C4ED6qROr5fKt1Sm4aSZh5RM4-o-YwoacNv2p3XM-H7n4V6ITxqA_0vdDM9mUy-3DexVKk-
CitedBy_id crossref_primary_10_1002_smll_202205228
crossref_primary_10_1142_S1793604724510214
crossref_primary_10_1021_acsami_2c23232
crossref_primary_10_1039_D1TA10585J
crossref_primary_10_1002_advs_202407631
crossref_primary_10_1016_j_ccr_2023_215383
crossref_primary_10_1007_s11581_022_04842_7
crossref_primary_10_1039_D4QM00169A
crossref_primary_10_1002_smll_202300621
crossref_primary_10_1039_D3QI02578K
crossref_primary_10_1002_tcr_202300216
crossref_primary_10_1016_j_est_2023_107485
crossref_primary_10_1016_j_nanoen_2022_108039
crossref_primary_10_1002_smll_202202194
crossref_primary_10_1002_cssc_202200612
crossref_primary_10_1007_s12274_022_4966_2
crossref_primary_10_1002_smll_202305062
crossref_primary_10_1039_D3NA00074E
crossref_primary_10_1039_D4CC02873B
crossref_primary_10_1016_j_jcis_2022_07_180
crossref_primary_10_1002_smtd_202101043
crossref_primary_10_1002_smll_202306396
crossref_primary_10_3390_inorganics12120303
crossref_primary_10_1002_adfm_202304074
crossref_primary_10_1007_s12274_023_5469_5
crossref_primary_10_1021_acsami_2c21616
crossref_primary_10_1002_ange_202423056
crossref_primary_10_1016_j_apcatb_2023_123006
crossref_primary_10_1039_D2QM01288J
crossref_primary_10_1021_acsnano_2c06700
crossref_primary_10_1002_adma_202303243
crossref_primary_10_1016_j_jelechem_2023_117686
crossref_primary_10_1002_cssc_202401200
crossref_primary_10_1021_acsami_4c18592
crossref_primary_10_1002_smll_202202014
crossref_primary_10_1002_sstr_202100103
crossref_primary_10_1002_adfm_202417580
crossref_primary_10_1002_batt_202400402
crossref_primary_10_1039_D2TA09626A
crossref_primary_10_1002_cssc_202301779
crossref_primary_10_1016_j_cej_2022_137665
crossref_primary_10_1021_acsami_3c17789
crossref_primary_10_1080_14686996_2025_2459051
crossref_primary_10_1039_D3NJ00584D
crossref_primary_10_1039_D3NJ05928F
crossref_primary_10_1007_s40843_022_2173_3
crossref_primary_10_1016_j_ijhydene_2023_03_336
crossref_primary_10_1002_asia_202401177
crossref_primary_10_1016_j_jcis_2024_06_162
crossref_primary_10_1016_j_jelechem_2023_117381
crossref_primary_10_1002_adfm_202303235
crossref_primary_10_1039_D5TA00184F
crossref_primary_10_1039_D3QM00237C
crossref_primary_10_1002_smsc_202300066
crossref_primary_10_1016_j_jechem_2023_03_056
crossref_primary_10_1016_j_jechem_2023_05_040
crossref_primary_10_1007_s41918_022_00177_z
crossref_primary_10_1039_D2TA01442D
crossref_primary_10_1039_D5SE00072F
crossref_primary_10_1039_D3EE03383J
crossref_primary_10_1039_D4GC04687K
crossref_primary_10_1021_acsanm_2c05107
crossref_primary_10_1039_D3QM00146F
crossref_primary_10_1002_cnma_202200242
crossref_primary_10_1016_j_jechem_2023_10_038
crossref_primary_10_1039_D2RA08096F
crossref_primary_10_1002_anie_202214988
crossref_primary_10_1016_j_ijhydene_2024_01_341
crossref_primary_10_1021_acsnano_2c07542
crossref_primary_10_1039_D4DT01625D
crossref_primary_10_1002_tcr_202300017
crossref_primary_10_1002_smll_202106635
crossref_primary_10_1016_j_jcis_2022_11_116
crossref_primary_10_1021_acs_chemmater_1c04120
crossref_primary_10_1002_smll_202304863
crossref_primary_10_1007_s11581_021_04367_5
crossref_primary_10_1002_adfm_202316037
crossref_primary_10_1021_acsami_3c17193
crossref_primary_10_1002_smll_202207675
crossref_primary_10_1002_smll_202406539
crossref_primary_10_1002_cctc_202401655
crossref_primary_10_1002_smll_202400830
crossref_primary_10_1002_advs_202412862
crossref_primary_10_1039_D4QI02179G
crossref_primary_10_1016_j_jcis_2024_07_023
crossref_primary_10_1016_j_apsusc_2023_156450
crossref_primary_10_3390_catal13101366
crossref_primary_10_3390_nano12213834
crossref_primary_10_3390_app13169343
crossref_primary_10_1016_j_jelechem_2024_118184
crossref_primary_10_1016_j_apsusc_2023_158070
crossref_primary_10_1002_anie_202423056
crossref_primary_10_1016_j_electacta_2023_142377
crossref_primary_10_1016_j_jcis_2024_04_025
crossref_primary_10_1021_acselectrochem_4c00066
crossref_primary_10_1002_smll_202106773
crossref_primary_10_1016_j_cej_2021_133941
crossref_primary_10_1002_aenm_202302251
crossref_primary_10_1007_s40820_024_01328_1
crossref_primary_10_1039_D2NJ01697D
crossref_primary_10_1021_acsami_3c03501
crossref_primary_10_1002_adfm_202213897
crossref_primary_10_1002_cssc_202200312
crossref_primary_10_1021_acs_inorgchem_2c04154
crossref_primary_10_1039_D1TA06243C
crossref_primary_10_1038_s41467_024_55239_1
crossref_primary_10_1016_j_ccr_2024_216045
crossref_primary_10_1016_j_fuel_2023_129732
crossref_primary_10_1016_j_isci_2023_106624
crossref_primary_10_1021_acs_inorgchem_4c02077
crossref_primary_10_1039_D3DT02439C
crossref_primary_10_1039_D4TA02585G
crossref_primary_10_1016_j_ijhydene_2024_10_336
crossref_primary_10_1021_acssuschemeng_1c08560
crossref_primary_10_1039_D4EY00014E
crossref_primary_10_1002_adfm_202110572
crossref_primary_10_1016_j_jre_2023_09_020
crossref_primary_10_1016_j_apsusc_2022_153325
crossref_primary_10_1007_s40843_022_2059_x
crossref_primary_10_1002_ange_202214988
crossref_primary_10_1002_cssc_202201518
Cites_doi 10.1038/nmat4778
10.1038/s41467-020-15853-1
10.1039/C8EE01415A
10.1038/nchem.1069
10.1039/C8EE02656D
10.1021/acsami.8b10778
10.1149/1.3609770
10.1016/j.apcatb.2018.09.017
10.1021/acsnano.7b07473
10.1002/anie.201710852
10.1002/adfm.201804846
10.1039/c3ta01402a
10.1126/science.aak9991
10.1016/j.elecom.2016.10.016
10.1002/aenm.201700544
10.1149/2.062310jes
10.1002/anie.201914768
10.1021/acsnano.5b05984
10.1021/acsenergylett.0c00812
10.1002/advs.201900628
10.1002/smll.201906867
10.1016/j.jelechem.2006.11.008
10.3390/en7063664
10.1021/jacs.5b00281
10.1002/adfm.201702300
10.1039/C8CY01973H
10.1038/nenergy.2015.6
10.1021/acssuschemeng.9b05033
10.1002/advs.201700691
10.1038/nchem.1095
10.1021/acs.nanolett.6b03691
10.1039/C7SE00413C
10.1002/anie.201908023
10.1002/adma.201808267
10.1002/anie.201810175
10.1038/s41929-019-0297-4
10.1002/ppsc.201700097
10.1007/s40843-018-9359-7
10.1039/C8TA07906D
10.1038/nmat4367
10.1002/anie.202001681
10.1016/j.ensm.2019.08.009
10.1002/cctc.201000397
10.1016/j.nanoen.2017.06.029
10.1002/adma.201704898
10.1002/advs.201802243
10.1039/C9EE03634B
10.1021/acsnano.8b04317
10.1016/j.nanoen.2017.11.020
10.1002/adma.201701546
10.1021/ja5009954
10.1021/jp311886h
10.1039/C5TA02229K
10.1002/smll.201906775
10.1016/j.matchemphys.2019.03.017
10.1021/acs.chemrev.6b00211
10.1038/s41467-018-05341-y
10.1002/adma.201908127
10.1002/adma.201905679
10.1021/acssuschemeng.9b06715
10.1002/adfm.201705048
10.1002/aenm.201903120
10.1002/adma.201900843
10.4271/951948
10.1038/s41467-020-15597-y
10.1002/adma.201704681
10.1021/acscatal.5b01481
10.1021/acsnano.7b03794
10.1039/D0TA05774F
10.1002/anie.201809009
10.1002/aenm.201703539
10.1016/j.cej.2020.124650
10.1063/1.1921328
10.1038/s41560-019-0355-9
10.1002/celc.201500278
10.1021/nl803279t
10.1002/anie.201701477
10.1007/s40843-019-1190-3
10.1002/aenm.201601198
10.1002/adma.201606207
10.1002/anie.201908907
10.1126/science.1200832
10.1021/acsnano.7b08721
10.1038/ncomms8343
10.1002/advs.201902795
10.1039/D0TA08114K
10.1016/j.jpowsour.2017.05.073
10.1021/jacs.9b12803
10.1021/acsenergylett.8b00888
10.1016/j.renene.2018.02.073
10.1016/j.jpowsour.2006.10.042
10.1002/anie.201915803
10.1021/acs.chemrev.7b00488
10.1021/acsnano.6b05914
10.1016/j.nanoen.2017.11.004
10.1126/science.1223985
10.1002/adfm.202000503
10.4271/770381
10.1021/acsami.6b06103
10.1021/cr900356p
10.1002/adma.201602912
10.1021/acs.chemmater.5b02708
10.1021/ja511559d
10.1002/anie.201406695
10.1002/smll.201800225
10.1038/s41467-020-15498-0
10.1039/C6EE00054A
10.1002/adma.201803372
10.1126/science.aad4998
10.1021/acs.accounts.7b00616
10.1039/c2cs35178a
10.1002/smll.201905223
10.1038/srep05184
10.1039/C5CC09173J
10.1021/acs.nanolett.5b04788
10.1038/nmat2725
10.1002/adma.201908488
10.1126/science.aah6133
10.1016/S0360-0564(08)60029-2
10.1002/anie.201509382
10.1002/adma.201800757
10.1002/aenm.201602928
10.1002/aenm.202002992
10.1002/anie.201905954
10.1038/nature11475
10.1021/acsnano.7b00417
10.1016/j.jechem.2020.02.037
10.1021/jz2016507
10.1021/acsenergylett.7b00679
10.1002/anie.201903200
10.1002/anie.201710877
10.1002/adma.201901666
10.1002/adfm.201703363
10.1021/jacs.0c02225
10.1126/science.1170051
10.1002/adfm.201910568
10.1016/j.apcatb.2019.117774
10.1016/S0378-7753(98)00260-2
10.1038/nature11115
10.1039/c1cp21228a
10.1002/anie.201607118
10.1002/adma.201905622
10.1016/j.carbon.2018.10.064
10.1002/aenm.201000010
10.1149/1.2100463
10.1016/j.jpowsour.2020.228621
10.1002/anie.201708385
10.1021/acscatal.6b00553
10.1016/j.nanoen.2017.07.043
10.1021/acs.chemmater.8b04572
10.1016/S0022-0728(00)00407-1
10.1002/cber.19110440303
10.1002/adfm.201803329
10.1002/adma.201902339
10.1002/anie.201915836
10.1039/C6CP05473K
ContentType Journal Article
Copyright 2021 Wiley‐VCH GmbH
2021 Wiley-VCH GmbH.
Copyright_xml – notice: 2021 Wiley‐VCH GmbH
– notice: 2021 Wiley-VCH GmbH.
DBID AAYXX
CITATION
7SR
7U5
8BQ
8FD
JG9
L7M
7X8
DOI 10.1002/smll.202006766
DatabaseName CrossRef
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
MEDLINE - Academic
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
METADEX
MEDLINE - Academic
DatabaseTitleList Materials Research Database

CrossRef
MEDLINE - Academic
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1613-6829
EndPage n/a
ExternalDocumentID 10_1002_smll_202006766
SMLL202006766
Genre reviewArticle
GrantInformation_xml – fundername: National Natural Science Foundation of China
  funderid: 21771059; 21631004
– fundername: National Key R&D Program of China
  funderid: 2018YFE0201704
GroupedDBID ---
05W
0R~
123
1L6
1OC
33P
3SF
3WU
4.4
50Y
52U
53G
5VS
66C
8-0
8-1
8UM
A00
AAESR
AAEVG
AAHHS
AAHQN
AAIHA
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABCUV
ABIJN
ABJNI
ABLJU
ABRTZ
ACAHQ
ACCFJ
ACCZN
ACFBH
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZVAB
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BOGZA
BRXPI
CS3
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBD
EBS
EMOBN
F5P
G-S
GNP
HBH
HGLYW
HHY
HHZ
HZ~
IX1
KQQ
LATKE
LAW
LEEKS
LITHE
LOXES
LUTES
LYRES
MEWTI
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
MY~
O66
O9-
OIG
P2P
P2W
P4E
QRW
R.K
RIWAO
RNS
ROL
RWI
RX1
RYL
SUPJJ
SV3
V2E
W99
WBKPD
WFSAM
WIH
WIK
WJL
WOHZO
WXSBR
WYISQ
WYJ
XV2
Y6R
ZZTAW
~S-
31~
AANHP
AASGY
AAYOK
AAYXX
ACBWZ
ACRPL
ACYXJ
ADNMO
AGHNM
AGQPQ
AGYGG
ASPBG
AVWKF
AZFZN
BDRZF
CITATION
EJD
FEDTE
GODZA
HVGLF
7SR
7U5
8BQ
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
JG9
L7M
7X8
ID FETCH-LOGICAL-c4166-81f53fce0291160a19c68ca80583f587e8569161e201391af14b2cc263ad12533
IEDL.DBID DR2
ISSN 1613-6810
1613-6829
IngestDate Fri Jul 11 11:28:55 EDT 2025
Fri Jul 25 11:39:25 EDT 2025
Thu Apr 24 23:05:50 EDT 2025
Tue Jul 01 02:11:04 EDT 2025
Wed Jan 22 16:27:06 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 48
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4166-81f53fce0291160a19c68ca80583f587e8569161e201391af14b2cc263ad12533
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
ORCID 0000-0002-5800-451X
PQID 2605075564
PQPubID 1046358
PageCount 19
ParticipantIDs proquest_miscellaneous_2537642003
proquest_journals_2605075564
crossref_citationtrail_10_1002_smll_202006766
crossref_primary_10_1002_smll_202006766
wiley_primary_10_1002_smll_202006766_SMLL202006766
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-12-01
PublicationDateYYYYMMDD 2021-12-01
PublicationDate_xml – month: 12
  year: 2021
  text: 2021-12-01
  day: 01
PublicationDecade 2020
PublicationPlace Weinheim
PublicationPlace_xml – name: Weinheim
PublicationTitle Small (Weinheim an der Bergstrasse, Germany)
PublicationYear 2021
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2011; 158
2017; 42
2017; 7
1911; 44
2017; 2
2012; 486
2020 2019; 59 4
2011 2007 2018 2016; 13 607 118 16
1977 1999 1995; 80
2019; 58
2020; 16
2020; 59
2016; 73
2020; 11
2018 2020; 6 63
2014 2011; 136 3
2017; 355
2018; 43
2013; 160
2017; 356
2013 2015; 117 2
2019; 241
2015 2009; 14 324
2020; 8
2020; 7
2020 2020; 10 474
2018; 9
2020; 5
2018; 8
2018; 3
2019; 62
2015; 137
2016 2011; 6 332
2017; 39
2016 2014 2019; 18 4 7
2018 2018; 30 57
2019 2016; 229 8
2017; 34
2016; 354
2020; 49
2017; 360
2018; 30
2016; 116
2018 2019; 28 142
2001 2012; 495 3
2014; 7
2012; 337
2010; 9
2014; 53
2019; 7
2018; 28
2015; 6
2019; 6
2011; 1
2015; 3
2019; 31
2020; 142
2019; 2
2017; 27
2007; 165
2016; 52
2017; 29
2020; 32
1969; 19
2011; 3
2015; 9
2016; 16
2018 2018; 2 28
2012 2010 2018; 488 110 5
2016; 55
2016; 6
1987; 134
2020 2020; 13 30
2015; 27
2016; 1
2020; 30
2017; 17
2020
2017; 11
2017; 56
2009; 9
2005; 97
2020; 24
2018; 51
2013
2020 2019; 390 256
2019 2018; 9 125
2018; 12
2016; 28
2018; 11
2018; 10
2016; 9
2012; 41
2018; 14
2018; 57
e_1_2_8_26_1
e_1_2_8_49_1
e_1_2_8_68_1
Wang X. (e_1_2_8_125_1) 2019; 7
e_1_2_8_1_3
e_1_2_8_132_1
e_1_2_8_1_2
e_1_2_8_5_1
e_1_2_8_9_1
e_1_2_8_64_3
e_1_2_8_117_1
e_1_2_8_22_1
e_1_2_8_45_1
e_1_2_8_64_1
e_1_2_8_87_1
e_1_2_8_22_2
e_1_2_8_64_2
e_1_2_8_113_1
e_1_2_8_1_1
e_1_2_8_41_1
e_1_2_8_60_1
e_1_2_8_83_1
e_1_2_8_19_1
e_1_2_8_19_2
e_1_2_8_109_1
e_1_2_8_15_1
e_1_2_8_38_1
e_1_2_8_57_1
e_1_2_8_19_3
e_1_2_8_19_4
e_1_2_8_120_1
e_1_2_8_91_1
e_1_2_8_95_1
e_1_2_8_99_1
e_1_2_8_105_1
e_1_2_8_128_1
e_1_2_8_30_2
e_1_2_8_11_1
e_1_2_8_34_1
e_1_2_8_53_1
e_1_2_8_76_1
e_1_2_8_11_2
e_1_2_8_101_1
e_1_2_8_124_1
e_1_2_8_30_1
e_1_2_8_72_1
e_1_2_8_29_1
e_1_2_8_29_2
e_1_2_8_25_1
e_1_2_8_48_1
e_1_2_8_2_1
e_1_2_8_133_1
e_1_2_8_110_1
e_1_2_8_6_1
e_1_2_8_21_1
e_1_2_8_67_1
e_1_2_8_21_2
e_1_2_8_44_1
e_1_2_8_86_1
e_1_2_8_118_1
e_1_2_8_63_1
e_1_2_8_40_1
e_1_2_8_82_1
e_1_2_8_114_1
e_1_2_8_18_1
e_1_2_8_14_1
e_1_2_8_14_2
e_1_2_8_37_2
e_1_2_8_37_1
e_1_2_8_79_1
e_1_2_8_94_1
e_1_2_8_90_1
e_1_2_8_121_1
e_1_2_8_98_1
e_1_2_8_10_1
e_1_2_8_56_1
e_1_2_8_106_1
e_1_2_8_33_1
e_1_2_8_75_1
e_1_2_8_129_1
e_1_2_8_52_1
e_1_2_8_102_1
e_1_2_8_71_1
e_1_2_8_28_1
e_1_2_8_28_2
e_1_2_8_24_1
e_1_2_8_47_1
e_1_2_8_3_1
e_1_2_8_81_1
e_1_2_8_111_1
e_1_2_8_130_1
e_1_2_8_7_1
e_1_2_8_7_3
e_1_2_8_7_2
e_1_2_8_20_1
e_1_2_8_43_1
e_1_2_8_66_1
e_1_2_8_89_1
e_1_2_8_20_2
e_1_2_8_119_1
e_1_2_8_62_1
e_1_2_8_85_1
e_1_2_8_115_1
e_1_2_8_17_1
e_1_2_8_13_1
e_1_2_8_36_1
e_1_2_8_59_1
e_1_2_8_13_2
e_1_2_8_70_1
e_1_2_8_122_1
e_1_2_8_97_1
e_1_2_8_97_2
e_1_2_8_32_1
e_1_2_8_55_1
e_1_2_8_78_1
e_1_2_8_107_1
e_1_2_8_51_1
e_1_2_8_74_1
e_1_2_8_103_1
e_1_2_8_126_1
e_1_2_8_93_1
e_1_2_8_46_1
e_1_2_8_27_1
e_1_2_8_69_1
e_1_2_8_80_1
e_1_2_8_4_1
e_1_2_8_131_1
e_1_2_8_8_2
e_1_2_8_8_1
e_1_2_8_42_1
e_1_2_8_88_1
e_1_2_8_116_1
e_1_2_8_23_1
e_1_2_8_65_1
e_1_2_8_84_1
e_1_2_8_112_1
e_1_2_8_61_1
e_1_2_8_16_2
e_1_2_8_39_1
e_1_2_8_58_2
e_1_2_8_35_1
e_1_2_8_16_1
e_1_2_8_58_1
e_1_2_8_92_1
e_1_2_8_96_1
e_1_2_8_100_1
e_1_2_8_96_2
e_1_2_8_31_1
e_1_2_8_77_1
e_1_2_8_127_1
e_1_2_8_12_1
e_1_2_8_54_1
e_1_2_8_108_1
e_1_2_8_73_1
e_1_2_8_123_1
e_1_2_8_50_1
e_1_2_8_104_1
References_xml – volume: 51
  start-page: 881
  year: 2018
  publication-title: Acc. Chem. Res.
– volume: 27
  year: 2017
  publication-title: Adv. Funct. Mater.
– volume: 53
  year: 2014
  publication-title: Angew. Chem., Int. Ed.
– volume: 12
  start-page: 128
  year: 2018
  publication-title: ACS Nano
– volume: 5
  start-page: 1881
  year: 2020
  publication-title: ACS Energy Lett.
– volume: 27
  start-page: 7610
  year: 2015
  publication-title: Chem. Mater.
– volume: 73
  start-page: 71
  year: 2016
  publication-title: Electrochem. Commun.
– volume: 160
  year: 2013
  publication-title: J. Electrochem. Soc.
– volume: 8
  start-page: 4384
  year: 2020
  publication-title: ACS Sustainable Chem. Eng.
– volume: 3
  start-page: 1698
  year: 2018
  publication-title: ACS Energy Lett.
– volume: 14
  year: 2018
  publication-title: Small
– volume: 34
  year: 2017
  publication-title: Part. Part. Syst. Charact.
– volume: 7
  start-page: 3664
  year: 2014
  publication-title: Energies
– year: 2020
  publication-title: Adv. Energy Mater.
– volume: 355
  start-page: 146
  year: 2017
  publication-title: Science
– volume: 165
  start-page: 500
  year: 2007
  publication-title: J. Power Sources
– volume: 41
  start-page: 7108
  year: 2012
  publication-title: Chem. Soc. Rev.
– volume: 3
  start-page: 1159
  year: 2011
  publication-title: ChemCatChem
– volume: 43
  start-page: 130
  year: 2018
  publication-title: Nano Energy
– volume: 30
  year: 2020
  publication-title: Adv. Funct. Mater.
– volume: 58
  year: 2019
  publication-title: Angew. Chem., Int. Ed.
– volume: 11
  start-page: 2521
  year: 2018
  publication-title: Energy Environ. Sci.
– volume: 6
  year: 2019
  publication-title: Adv. Sci.
– volume: 13 607 118 16
  start-page: 83 2302 70
  year: 2011 2007 2018 2016
  publication-title: Phys. Chem. Chem. Phys. J. Electroanal. Chem. Chem. Rev. Nat. Mater.
– volume: 55
  start-page: 4087
  year: 2016
  publication-title: Angew. Chem., Int. Ed.
– volume: 13 30
  start-page: 1132
  year: 2020 2020
  publication-title: Energy Environ. Sci. Adv. Funct. Mater.
– volume: 12
  start-page: 596
  year: 2018
  publication-title: ACS Nano
– volume: 62
  start-page: 624
  year: 2019
  publication-title: Sci. China Mater.
– volume: 390 256
  year: 2020 2019
  publication-title: Chem. Eng. J. Appl. Catal., B
– volume: 9
  start-page: 1320
  year: 2016
  publication-title: Energy Environ. Sci.
– volume: 57
  start-page: 1856
  year: 2018
  publication-title: Angew. Chem., Int. Ed.
– volume: 3
  year: 2015
  publication-title: J. Mater. Chem. A
– volume: 488 110 5
  start-page: 294 6595
  year: 2012 2010 2018
  publication-title: Nature Chem. Rev. Adv. Sci.
– volume: 9
  start-page: 1752
  year: 2009
  publication-title: Nano Lett.
– volume: 9
  start-page: 2885
  year: 2018
  publication-title: Nat. Commun.
– volume: 2
  start-page: 688
  year: 2019
  publication-title: Nat. Catal.
– volume: 6 332
  start-page: 443
  year: 2016 2011
  publication-title: Adv. Energy Mater. Science
– volume: 6
  start-page: 155
  year: 2015
  publication-title: ACS Catal.
– volume: 9 125
  start-page: 611 182
  year: 2019 2018
  publication-title: Catal. Sci. Technol. Renewable Energy
– volume: 42
  start-page: 334
  year: 2017
  publication-title: Nano Energy
– volume: 31
  year: 2019
  publication-title: Adv. Mater.
– volume: 2
  start-page: 1937
  year: 2017
  publication-title: ACS Energy Lett.
– volume: 59
  start-page: 4793
  year: 2020
  publication-title: Angew. Chem., Int. Ed.
– volume: 16
  start-page: 1794
  year: 2016
  publication-title: Nano Lett.
– volume: 356
  start-page: 415
  year: 2017
  publication-title: Science
– volume: 19
  start-page: 1
  year: 1969
  publication-title: Adv. Catal.
– volume: 7
  year: 2017
  publication-title: Adv. Energy Mater.
– volume: 11
  start-page: 1664
  year: 2020
  publication-title: Nat. Commun.
– volume: 32
  year: 2020
  publication-title: Adv. Mater.
– volume: 11
  start-page: 2275
  year: 2017
  publication-title: ACS Nano
– volume: 11
  start-page: 3375
  year: 2018
  publication-title: Energy Environ. Sci.
– volume: 6
  start-page: 4347
  year: 2016
  publication-title: ACS Catal.
– volume: 57
  year: 2018
  publication-title: Angew. Chem., Int. Ed.
– volume: 117 2
  start-page: 2662 2071
  year: 2013 2015
  publication-title: J. Phys. Chem. C ChemElectroChem
– volume: 12
  start-page: 8597
  year: 2018
  publication-title: ACS Nano
– volume: 158
  year: 2011
  publication-title: J. Electrochem. Soc.
– volume: 11
  start-page: 347
  year: 2017
  publication-title: ACS Nano
– volume: 59
  start-page: 2
  year: 2020
  publication-title: Angew. Chem., Int. Ed.
– volume: 56
  year: 2017
  publication-title: Angew. Chem., Int. Ed.
– volume: 9
  year: 2015
  publication-title: ACS Nano
– start-page: 4754
  year: 2013
  publication-title: J. Mater. Chem. A
– volume: 97
  year: 2005
  publication-title: J. Appl. Phys.
– volume: 137
  start-page: 1305
  year: 2015
  publication-title: J. Am. Chem. Soc.
– volume: 337
  start-page: 563
  year: 2012
  publication-title: Science
– volume: 28 142
  start-page: 379
  year: 2018 2019
  publication-title: Adv. Funct. Mater. Carbon
– volume: 7
  year: 2020
  publication-title: Adv. Sci.
– volume: 241
  start-page: 104
  year: 2019
  publication-title: Appl. Catal. B
– volume: 44
  start-page: 1984
  year: 1911
  publication-title: Ber. Dtsch. Chem. Ges.
– volume: 10 474
  year: 2020 2020
  publication-title: Adv. Energy Mater. J. Power Sources
– volume: 16
  year: 2020
  publication-title: Small
– volume: 1
  year: 2016
  publication-title: Nat. Energy
– volume: 8
  year: 2018
  publication-title: Adv. Energy Mater.
– volume: 18 4 7
  start-page: 5184
  year: 2016 2014 2019
  publication-title: Phys. Chem. Chem. Phys. Sci. Rep. ACS Sustainable Chem. Eng.
– volume: 28
  start-page: 9532
  year: 2016
  publication-title: Adv. Mater.
– volume: 142
  start-page: 715
  year: 2020
  publication-title: J. Am. Chem. Soc.
– volume: 134
  start-page: 377
  year: 1987
  publication-title: J. Electrochem. Soc.
– volume: 52
  start-page: 2764
  year: 2016
  publication-title: Chem. Commun.
– volume: 137
  start-page: 3638
  year: 2015
  publication-title: J. Am. Chem. Soc.
– volume: 28
  year: 2018
  publication-title: Adv. Funct. Mater.
– volume: 59 4
  start-page: 6929 329
  year: 2020 2019
  publication-title: Angew. Chem., Int. Ed. Nat. Energy
– volume: 136 3
  start-page: 5229 546
  year: 2014 2011
  publication-title: J. Am. Chem. Soc. Nat. Chem.
– volume: 495 3
  start-page: 134 399
  year: 2001 2012
  publication-title: J. Electroanal. Chem. J. Phys. Chem. Lett.
– volume: 49
  start-page: 375
  year: 2020
  publication-title: J. Energy Chem.
– volume: 59
  start-page: 8072
  year: 2020
  publication-title: Angew. Chem., Int. Ed.
– volume: 229 8
  start-page: 190
  year: 2019 2016
  publication-title: Mater. Chem. Phys. ACS Appl. Mater. Interfaces
– volume: 39
  start-page: 77
  year: 2017
  publication-title: Nano Energy
– volume: 29
  year: 2017
  publication-title: Adv. Mater.
– volume: 11
  start-page: 1952
  year: 2020
  publication-title: Nat. Commun.
– volume: 2 28
  start-page: 39
  year: 2018 2018
  publication-title: Sustainable Energy Fuels Adv. Funct. Mater.
– volume: 12
  start-page: 1894
  year: 2018
  publication-title: ACS Nano
– volume: 486
  start-page: 43
  year: 2012
  publication-title: Nature
– volume: 55
  year: 2016
  publication-title: Angew. Chem., Int. Ed.
– volume: 6 63
  start-page: 327
  year: 2018 2020
  publication-title: J. Mater. Chem. A Sci. China Mater.
– volume: 30 57
  start-page: 172
  year: 2018 2018
  publication-title: Adv. Mater. Angew. Chem., Int. Ed.
– volume: 14 324
  start-page: 937 71
  year: 2015 2009
  publication-title: Nat. Mater. Science
– volume: 142
  start-page: 8104
  year: 2020
  publication-title: J. Am. Chem. Soc.
– volume: 58
  start-page: 2622
  year: 2019
  publication-title: Angew. Chem., Int. Ed.
– volume: 11
  start-page: 1731
  year: 2020
  publication-title: Nat. Commun.
– volume: 354
  start-page: 1410
  year: 2016
  publication-title: Science
– volume: 116
  year: 2016
  publication-title: Chem. Rev.
– volume: 30
  year: 2018
  publication-title: Adv. Mater.
– volume: 17
  start-page: 156
  year: 2017
  publication-title: Nano Lett.
– volume: 39
  start-page: 626
  year: 2017
  publication-title: Nano Energy
– volume: 360
  start-page: 136
  year: 2017
  publication-title: J. Power Sources
– volume: 9
  start-page: 353
  year: 2010
  publication-title: Nat. Mater.
– volume: 24
  start-page: 272
  year: 2020
  publication-title: Energy Storage Mater.
– volume: 1
  start-page: 34
  year: 2011
  publication-title: Adv. Energy Mater.
– volume: 31
  start-page: 1023
  year: 2019
  publication-title: Chem. Mater.
– volume: 6
  start-page: 7343
  year: 2015
  publication-title: Nat. Commun.
– volume: 3
  start-page: 634
  year: 2011
  publication-title: Nat. Chem.
– volume: 10
  year: 2018
  publication-title: ACS Appl. Mater. Interfaces
– volume: 7
  year: 2019
  publication-title: ACS Sustainable Chem. Eng.
– volume: 56
  start-page: 5867
  year: 2017
  publication-title: Angew. Chem., Int. Ed.
– volume: 80
  start-page: 171
  year: 1977 1999 1995
  publication-title: SAE Tech. Pap. J. Power Sources SAE Tech. Pap.
– volume: 8
  year: 2020
  publication-title: J. Mater. Chem. A
– ident: e_1_2_8_19_4
  doi: 10.1038/nmat4778
– ident: e_1_2_8_99_1
  doi: 10.1038/s41467-020-15853-1
– ident: e_1_2_8_116_1
  doi: 10.1039/C8EE01415A
– ident: e_1_2_8_21_2
  doi: 10.1038/nchem.1069
– ident: e_1_2_8_89_1
  doi: 10.1039/C8EE02656D
– ident: e_1_2_8_119_1
  doi: 10.1021/acsami.8b10778
– ident: e_1_2_8_10_1
  doi: 10.1149/1.3609770
– ident: e_1_2_8_131_1
  doi: 10.1016/j.apcatb.2018.09.017
– ident: e_1_2_8_66_1
  doi: 10.1021/acsnano.7b07473
– ident: e_1_2_8_88_1
  doi: 10.1002/anie.201710852
– ident: e_1_2_8_28_1
  doi: 10.1002/adfm.201804846
– ident: e_1_2_8_6_1
  doi: 10.1039/c3ta01402a
– ident: e_1_2_8_113_1
  doi: 10.1126/science.aak9991
– ident: e_1_2_8_79_1
  doi: 10.1016/j.elecom.2016.10.016
– ident: e_1_2_8_111_1
  doi: 10.1002/aenm.201700544
– ident: e_1_2_8_26_1
  doi: 10.1149/2.062310jes
– ident: e_1_2_8_82_1
  doi: 10.1002/anie.201914768
– ident: e_1_2_8_92_1
  doi: 10.1021/acsnano.5b05984
– ident: e_1_2_8_15_1
  doi: 10.1021/acsenergylett.0c00812
– ident: e_1_2_8_42_1
  doi: 10.1002/advs.201900628
– ident: e_1_2_8_110_1
  doi: 10.1002/smll.201906867
– ident: e_1_2_8_19_2
  doi: 10.1016/j.jelechem.2006.11.008
– ident: e_1_2_8_115_1
  doi: 10.3390/en7063664
– ident: e_1_2_8_105_1
  doi: 10.1021/jacs.5b00281
– ident: e_1_2_8_55_1
  doi: 10.1002/adfm.201702300
– ident: e_1_2_8_20_1
  doi: 10.1039/C8CY01973H
– ident: e_1_2_8_31_1
  doi: 10.1038/nenergy.2015.6
– ident: e_1_2_8_64_3
  doi: 10.1021/acssuschemeng.9b05033
– ident: e_1_2_8_1_3
  doi: 10.1002/advs.201700691
– ident: e_1_2_8_81_1
  doi: 10.1038/nchem.1095
– ident: e_1_2_8_121_1
  doi: 10.1021/acs.nanolett.6b03691
– ident: e_1_2_8_8_1
  doi: 10.1039/C7SE00413C
– ident: e_1_2_8_90_1
  doi: 10.1002/anie.201908023
– ident: e_1_2_8_84_1
  doi: 10.1002/adma.201808267
– ident: e_1_2_8_87_1
  doi: 10.1002/anie.201810175
– ident: e_1_2_8_80_1
  doi: 10.1038/s41929-019-0297-4
– ident: e_1_2_8_120_1
  doi: 10.1002/ppsc.201700097
– ident: e_1_2_8_41_1
  doi: 10.1007/s40843-018-9359-7
– ident: e_1_2_8_29_1
  doi: 10.1039/C8TA07906D
– ident: e_1_2_8_96_1
  doi: 10.1038/nmat4367
– ident: e_1_2_8_97_1
  doi: 10.1002/anie.202001681
– ident: e_1_2_8_122_1
  doi: 10.1016/j.ensm.2019.08.009
– ident: e_1_2_8_23_1
  doi: 10.1002/cctc.201000397
– ident: e_1_2_8_44_1
  doi: 10.1016/j.nanoen.2017.06.029
– ident: e_1_2_8_101_1
  doi: 10.1002/adma.201704898
– ident: e_1_2_8_35_1
  doi: 10.1002/advs.201802243
– ident: e_1_2_8_14_1
  doi: 10.1039/C9EE03634B
– ident: e_1_2_8_118_1
  doi: 10.1021/acsnano.8b04317
– ident: e_1_2_8_129_1
  doi: 10.1016/j.nanoen.2017.11.020
– ident: e_1_2_8_76_1
  doi: 10.1002/adma.201701546
– ident: e_1_2_8_21_1
  doi: 10.1021/ja5009954
– ident: e_1_2_8_58_1
  doi: 10.1021/jp311886h
– ident: e_1_2_8_77_1
  doi: 10.1039/C5TA02229K
– ident: e_1_2_8_54_1
  doi: 10.1002/smll.201906775
– ident: e_1_2_8_22_1
  doi: 10.1016/j.matchemphys.2019.03.017
– ident: e_1_2_8_50_1
  doi: 10.1021/acs.chemrev.6b00211
– ident: e_1_2_8_104_1
  doi: 10.1038/s41467-018-05341-y
– ident: e_1_2_8_126_1
  doi: 10.1002/adma.201908127
– ident: e_1_2_8_56_1
  doi: 10.1002/adma.201905679
– ident: e_1_2_8_132_1
  doi: 10.1021/acssuschemeng.9b06715
– ident: e_1_2_8_34_1
  doi: 10.1002/adfm.201705048
– ident: e_1_2_8_13_1
  doi: 10.1002/aenm.201903120
– ident: e_1_2_8_83_1
  doi: 10.1002/adma.201900843
– ident: e_1_2_8_7_3
  doi: 10.4271/951948
– ident: e_1_2_8_47_1
  doi: 10.1038/s41467-020-15597-y
– ident: e_1_2_8_49_1
  doi: 10.1002/adma.201704681
– ident: e_1_2_8_106_1
  doi: 10.1021/acscatal.5b01481
– ident: e_1_2_8_4_1
  doi: 10.1021/acsnano.7b03794
– ident: e_1_2_8_124_1
  doi: 10.1039/D0TA05774F
– ident: e_1_2_8_98_1
  doi: 10.1002/anie.201809009
– ident: e_1_2_8_62_1
  doi: 10.1002/aenm.201703539
– ident: e_1_2_8_16_1
  doi: 10.1016/j.cej.2020.124650
– ident: e_1_2_8_91_1
  doi: 10.1063/1.1921328
– ident: e_1_2_8_97_2
  doi: 10.1038/s41560-019-0355-9
– ident: e_1_2_8_58_2
  doi: 10.1002/celc.201500278
– ident: e_1_2_8_61_1
  doi: 10.1021/nl803279t
– ident: e_1_2_8_75_1
  doi: 10.1002/anie.201701477
– ident: e_1_2_8_29_2
  doi: 10.1007/s40843-019-1190-3
– ident: e_1_2_8_30_1
  doi: 10.1002/aenm.201601198
– ident: e_1_2_8_71_1
  doi: 10.1002/adma.201606207
– ident: e_1_2_8_103_1
  doi: 10.1002/anie.201908907
– ident: e_1_2_8_30_2
  doi: 10.1126/science.1200832
– ident: e_1_2_8_85_1
  doi: 10.1021/acsnano.7b08721
– ident: e_1_2_8_93_1
  doi: 10.1038/ncomms8343
– ident: e_1_2_8_114_1
  doi: 10.1002/advs.201902795
– ident: e_1_2_8_40_1
  doi: 10.1039/D0TA08114K
– ident: e_1_2_8_9_1
  doi: 10.1016/j.jpowsour.2017.05.073
– ident: e_1_2_8_102_1
  doi: 10.1021/jacs.9b12803
– ident: e_1_2_8_51_1
  doi: 10.1021/acsenergylett.8b00888
– ident: e_1_2_8_20_2
  doi: 10.1016/j.renene.2018.02.073
– ident: e_1_2_8_57_1
  doi: 10.1016/j.jpowsour.2006.10.042
– ident: e_1_2_8_109_1
  doi: 10.1002/anie.201915803
– ident: e_1_2_8_19_3
  doi: 10.1021/acs.chemrev.7b00488
– ident: e_1_2_8_65_1
  doi: 10.1021/acsnano.6b05914
– ident: e_1_2_8_67_1
  doi: 10.1016/j.nanoen.2017.11.004
– ident: e_1_2_8_5_1
  doi: 10.1126/science.1223985
– ident: e_1_2_8_14_2
  doi: 10.1002/adfm.202000503
– ident: e_1_2_8_7_1
  doi: 10.4271/770381
– ident: e_1_2_8_22_2
  doi: 10.1021/acsami.6b06103
– ident: e_1_2_8_1_2
  doi: 10.1021/cr900356p
– ident: e_1_2_8_78_1
  doi: 10.1002/adma.201602912
– ident: e_1_2_8_27_1
  doi: 10.1021/acs.chemmater.5b02708
– ident: e_1_2_8_107_1
  doi: 10.1021/ja511559d
– ident: e_1_2_8_60_1
  doi: 10.1002/anie.201406695
– ident: e_1_2_8_130_1
  doi: 10.1002/smll.201800225
– ident: e_1_2_8_25_1
  doi: 10.1038/s41467-020-15498-0
– ident: e_1_2_8_72_1
  doi: 10.1039/C6EE00054A
– ident: e_1_2_8_100_1
  doi: 10.1002/adma.201803372
– ident: e_1_2_8_24_1
  doi: 10.1126/science.aad4998
– ident: e_1_2_8_45_1
  doi: 10.1021/acs.accounts.7b00616
– ident: e_1_2_8_59_1
  doi: 10.1039/c2cs35178a
– ident: e_1_2_8_38_1
  doi: 10.1002/smll.201905223
– ident: e_1_2_8_64_2
  doi: 10.1038/srep05184
– ident: e_1_2_8_70_1
  doi: 10.1039/C5CC09173J
– ident: e_1_2_8_117_1
  doi: 10.1021/acs.nanolett.5b04788
– ident: e_1_2_8_2_1
  doi: 10.1038/nmat2725
– ident: e_1_2_8_46_1
  doi: 10.1002/adma.201908488
– ident: e_1_2_8_12_1
  doi: 10.1126/science.aah6133
– ident: e_1_2_8_18_1
  doi: 10.1016/S0360-0564(08)60029-2
– ident: e_1_2_8_32_1
  doi: 10.1002/anie.201509382
– ident: e_1_2_8_37_1
  doi: 10.1002/adma.201800757
– ident: e_1_2_8_68_1
  doi: 10.1002/aenm.201602928
– ident: e_1_2_8_123_1
  doi: 10.1002/aenm.202002992
– ident: e_1_2_8_128_1
  doi: 10.1002/anie.201905954
– ident: e_1_2_8_1_1
  doi: 10.1038/nature11475
– ident: e_1_2_8_48_1
  doi: 10.1021/acsnano.7b00417
– ident: e_1_2_8_133_1
  doi: 10.1016/j.jechem.2020.02.037
– ident: e_1_2_8_11_2
  doi: 10.1021/jz2016507
– ident: e_1_2_8_39_1
  doi: 10.1021/acsenergylett.7b00679
– ident: e_1_2_8_108_1
  doi: 10.1002/anie.201903200
– ident: e_1_2_8_37_2
  doi: 10.1002/anie.201710877
– ident: e_1_2_8_95_1
  doi: 10.1002/adma.201901666
– ident: e_1_2_8_74_1
  doi: 10.1002/adfm.201703363
– ident: e_1_2_8_69_1
  doi: 10.1021/jacs.0c02225
– ident: e_1_2_8_96_2
  doi: 10.1126/science.1170051
– ident: e_1_2_8_52_1
  doi: 10.1002/adfm.201910568
– ident: e_1_2_8_16_2
  doi: 10.1016/j.apcatb.2019.117774
– ident: e_1_2_8_7_2
  doi: 10.1016/S0378-7753(98)00260-2
– ident: e_1_2_8_112_1
  doi: 10.1038/nature11115
– ident: e_1_2_8_19_1
  doi: 10.1039/c1cp21228a
– ident: e_1_2_8_127_1
  doi: 10.1002/anie.201607118
– ident: e_1_2_8_86_1
  doi: 10.1002/adma.201905622
– ident: e_1_2_8_28_2
  doi: 10.1016/j.carbon.2018.10.064
– ident: e_1_2_8_3_1
  doi: 10.1002/aenm.201000010
– ident: e_1_2_8_73_1
  doi: 10.1149/1.2100463
– volume: 7
  year: 2019
  ident: e_1_2_8_125_1
  publication-title: ACS Sustainable Chem. Eng.
– ident: e_1_2_8_13_2
  doi: 10.1016/j.jpowsour.2020.228621
– ident: e_1_2_8_36_1
  doi: 10.1002/anie.201708385
– ident: e_1_2_8_94_1
  doi: 10.1021/acscatal.6b00553
– ident: e_1_2_8_33_1
  doi: 10.1016/j.nanoen.2017.07.043
– ident: e_1_2_8_63_1
  doi: 10.1021/acs.chemmater.8b04572
– ident: e_1_2_8_11_1
  doi: 10.1016/S0022-0728(00)00407-1
– ident: e_1_2_8_17_1
  doi: 10.1002/cber.19110440303
– ident: e_1_2_8_8_2
  doi: 10.1002/adfm.201803329
– ident: e_1_2_8_53_1
  doi: 10.1002/adma.201902339
– ident: e_1_2_8_43_1
  doi: 10.1002/anie.201915836
– ident: e_1_2_8_64_1
  doi: 10.1039/C6CP05473K
SSID ssj0031247
Score 2.6639628
SecondaryResourceType review_article
Snippet Zinc–air batteries (ZABs) exhibit high energy density as well as flexibility, safety, and portability, thereby fulfilling the requirements of power batteries...
Zinc-air batteries (ZABs) exhibit high energy density as well as flexibility, safety, and portability, thereby fulfilling the requirements of power batteries...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage e2006766
SubjectTerms active site
air cathode
bifunctional catalyst
Catalysts
Cathodes
Efficiency
Electrocatalysts
Flux density
Metal air batteries
Nanotechnology
oxygen evolution
Oxygen evolution reactions
oxygen reduction
Oxygen reduction reactions
Power consumption
Stability
Structural design
Zinc-oxygen batteries
zinc–air battery
Title Structural Design Strategy and Active Site Regulation of High‐Efficient Bifunctional Oxygen Reaction Electrocatalysts for Zn–Air Battery
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fsmll.202006766
https://www.proquest.com/docview/2605075564
https://www.proquest.com/docview/2537642003
Volume 17
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ1bS-QwFMeD-KQPrpeVHW9EEPYp2iZtpvM4riMi6oKzgvhSkjQBWbcjdgTHJz-AD4Lf0E-y5ySdOgoi7D6WJvSSc3L-SU9_h5CtSHZirrVgSH5hiRKc6bjjWOQMLAa00oXDheLxiTw4Sw7P0_OJv_gDH6LZcEPP8PM1OrjS1c4rNLT6c4WfDnBJ3JbI3MaELVRFpw0_SkDw8tVVIGYxBG-NqY0R33nb_W1UepWak4LVR5z9L0SN7zUkmvzevh3qbXP_DuP4Pw8zT-ZqOUq7wX4WyJQtF8nsBKRwiTz2PWIW8Rx0z-d70BppO6KqLGjXz5i0D9qVnobK9jDWdOAo5pC8PDz1PKUCghvdvcQwGnYf6c-7ERgvdAm_VtBeKMjj95NG1bCiIKfpRfny8Ny9vKGBAzr6Ss72e79-HLC6hgMzIPUky2KXCmdsxGFWlZGKO0ZmRmVRmgmXZm2bpWAtMrYctWisXJxobgyXQhWgvYRYJtPloLTfCBWFk4UAuapjCzLTdtogrjKwqUw5rbVrETYew9zUgHOss3GVBzQzz_Et581bbpHvTfvrgPb4sOXa2CTy2sWrHBeCoLdSmbTIZnManBO_uKjSDm6hDcJyEsz_axHux_-TK-X946Oj5mjlXzqtkhmOeTc-5WaNTION2HUQTkO94Z3jL_ngE14
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ3NbtQwEMdHUA7AgW_EQgEjIXFym9iJN3tc6FYL7Bap20qIS2Q7tlTRZit2K7Gc-gAckHjDPgkzdpK2SAgJjlFs5WvG87c9-Q3Ay0QNUmGM5ER-4ZmWgpt04HniLU4GjDaVp4nidEeN97N3H_M2m5D-hYl8iG7BjTwjjNfk4LQgvXlODV0cHdLeAc2J-0pdhWtU1pvw-Vu7HUFKYvgK9VUwanFCb7XcxkRsXu5_OS6di82LkjXEnO3bYNq7jakmnzdOlmbDfvsN5Phfj3MHbjWKlA2jCd2FK66-BzcvcArvw_dZoMwSoYNthZQP1lBtV0zXFRuGQZPNUL6y3VjcHj83m3tGaSRnpz9GAVSB8Y29PqBIGhcg2YevK7Rf7BL_rmCjWJMnLCmtFssFQ0XNPtVnpz-HB19YRIGuHsD-9mjvzZg3ZRy4RbWneJH6XHrrEoEDq0p0OrCqsLpI8kL6vOi7IkeDUakTJEdT7dPMCGuFkrpC-SXlQ1ir57V7BExWXlUSFatJHSpNN-ijvirQrArtjTG-B7z9iKVtGOdUauOwjHRmUdJbLru33INXXfvjSPf4Y8v11ibKxssXJc0FUXLlKuvBi-40-idtuujazU-wDfFyMkoB7IEIBvCXK5Wz6WTSHT3-l07P4fp4bzopJ2933j-BG4LScEIGzjqsob24p6ijluZZ8JRfIPkXeg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ3NbtQwEMdHUCRED3yjLhQwEhInt4mdeJPjwu6qwLagLpUqLpHtxFJFm626W4nl1AfgUKlv2Cdhxs6mWySEBMcotvLhGc_fzuQ3AK8jlcfCGMmJ_MITLQU3ce545CwuBow2paOF4vaO2tpLPuyn-0t_8Qc-RLvhRp7h52ty8OPSbV5BQ6dHh_TpgJbEXaVuwq1ERTkVb-jvtgApidHLl1fBoMWJvLXANkZi83r_62HpSmsuK1Yfcob3QC9uNmSafNs4nZkN--M3juP_PM19uNvoUdYLBvQAblT1Q1hdohQ-gp9jz5glPgfr-4QP1jBt50zXJev5KZONUbyy3VDaHgebTRyjJJLLs_OBx1RgdGNvDyiOhu1H9un7HK0Xu4R_K9ggVOTxG0rz6WzKUE-zr_Xl2UXv4IQFEOj8MewNB1_ebfGmiAO3qPUUz2KXSmerSOC0qiId51ZlVmdRmkmXZt0qS9FcVFwJEqOxdnFihLVCSV2i-JLyCazUk7paAyZLp0qJetXEFerMKu-iusrQqDLtjDGuA3wxhoVtCOdUaOOwCGxmUdBbLtq33IE3bfvjwPb4Y8v1hUkUjY9PC1oJouBKVdKBV-1p9E765KLranKKbYiWk1ACYAeEH_-_XKkYb49G7dHTf-n0Em5_7g-L0fudj8_gjqAcHJ9-sw4raC7VcxRRM_PC-8kvyxwWKQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Structural+Design+Strategy+and+Active+Site+Regulation+of+High%E2%80%90Efficient+Bifunctional+Oxygen+Reaction+Electrocatalysts+for+Zn%E2%80%93Air+Battery&rft.jtitle=Small+%28Weinheim+an+der+Bergstrasse%2C+Germany%29&rft.au=Liu%2C+Xu&rft.au=Zhang%2C+Guangying&rft.au=Wang%2C+Lei&rft.au=Fu%2C+Honggang&rft.date=2021-12-01&rft.issn=1613-6810&rft.eissn=1613-6829&rft.volume=17&rft.issue=48&rft_id=info:doi/10.1002%2Fsmll.202006766&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_smll_202006766
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1613-6810&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1613-6810&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1613-6810&client=summon