Transition Metal (Co, Ni, Fe, Cu) Single‐Atom Catalysts Anchored on 3D Nitrogen‐Doped Porous Carbon Nanosheets as Efficient Oxygen Reduction Electrocatalysts for Zn–Air Battery
Exploring highly active and cost‐efficient single‐atom catalysts (SACs) for oxygen reduction reaction (ORR) is critical for the large‐scale application of Zn–air battery. Herein, density functional theory (DFT) calculations predict that the intrinsic ORR activity of the active metal of SACs follows...
Saved in:
Published in | Small (Weinheim an der Bergstrasse, Germany) Vol. 18; no. 34; pp. e2202476 - n/a |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Weinheim
Wiley Subscription Services, Inc
01.08.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Exploring highly active and cost‐efficient single‐atom catalysts (SACs) for oxygen reduction reaction (ORR) is critical for the large‐scale application of Zn–air battery. Herein, density functional theory (DFT) calculations predict that the intrinsic ORR activity of the active metal of SACs follows the trend of Co > Fe > Ni ≈ Cu, in which Co SACs possess the best ORR activity due to its optimized spin density. Guided by DFT calculations, four kinds of transition metal single atoms embedded in 3D porous nitrogen‐doped carbon nanosheets (MSAs@PNCN, M = Co, Ni, Fe, Cu) are synthesized via a facile NaCl‐template assisted strategy. The resulting MSAs@PNCN displays ORR activity trend in lines with the theoretical predictions, and the Co SAs@PNCN exhibits the best ORR activity (E1/2 = 0.851 V), being comparable to that of Pt/C under alkaline conditions. X‐ray absorption fine structure (XAFS) spectra verify the atomically dispersed Co‐N4 sites are the catalytically active sites. The highly active CoN4 sites and the unique 3D porous structure contribute to the outstanding ORR performance of Co SAs@PNCN. Furthermore, the Co SAs@PNCN catalyst is employed as cathode in Zn–air battery, which can deliver a large power density of 220 mW cm–2 and maintain robust cycling stability over 530 cycles.
Four kinds of transition metal single atoms embedded in 3D porous nitrogen‐doped carbon nanosheets (MSAs@PNCN, M = Co, Ni, Fe, Cu) are constructed via a facile NaCl‐template assisted strategy. The Co SAs@PNCN catalysts demonstrate remarkable performance with a half‐wave potential of 0.851 V for oxygen reduction reaction and a large power density of 220 mW cm–2 toward Zn–air battery. |
---|---|
AbstractList | Exploring highly active and cost-efficient single-atom catalysts (SACs) for oxygen reduction reaction (ORR) is critical for the large-scale application of Zn-air battery. Herein, density functional theory (DFT) calculations predict that the intrinsic ORR activity of the active metal of SACs follows the trend of Co > Fe > Ni ≈ Cu, in which Co SACs possess the best ORR activity due to its optimized spin density. Guided by DFT calculations, four kinds of transition metal single atoms embedded in 3D porous nitrogen-doped carbon nanosheets (MSAs@PNCN, M = Co, Ni, Fe, Cu) are synthesized via a facile NaCl-template assisted strategy. The resulting MSAs@PNCN displays ORR activity trend in lines with the theoretical predictions, and the Co SAs@PNCN exhibits the best ORR activity (E1/2 = 0.851 V), being comparable to that of Pt/C under alkaline conditions. X-ray absorption fine structure (XAFS) spectra verify the atomically dispersed Co-N4 sites are the catalytically active sites. The highly active CoN4 sites and the unique 3D porous structure contribute to the outstanding ORR performance of Co SAs@PNCN. Furthermore, the Co SAs@PNCN catalyst is employed as cathode in Zn-air battery, which can deliver a large power density of 220 mW cm-2 and maintain robust cycling stability over 530 cycles.Exploring highly active and cost-efficient single-atom catalysts (SACs) for oxygen reduction reaction (ORR) is critical for the large-scale application of Zn-air battery. Herein, density functional theory (DFT) calculations predict that the intrinsic ORR activity of the active metal of SACs follows the trend of Co > Fe > Ni ≈ Cu, in which Co SACs possess the best ORR activity due to its optimized spin density. Guided by DFT calculations, four kinds of transition metal single atoms embedded in 3D porous nitrogen-doped carbon nanosheets (MSAs@PNCN, M = Co, Ni, Fe, Cu) are synthesized via a facile NaCl-template assisted strategy. The resulting MSAs@PNCN displays ORR activity trend in lines with the theoretical predictions, and the Co SAs@PNCN exhibits the best ORR activity (E1/2 = 0.851 V), being comparable to that of Pt/C under alkaline conditions. X-ray absorption fine structure (XAFS) spectra verify the atomically dispersed Co-N4 sites are the catalytically active sites. The highly active CoN4 sites and the unique 3D porous structure contribute to the outstanding ORR performance of Co SAs@PNCN. Furthermore, the Co SAs@PNCN catalyst is employed as cathode in Zn-air battery, which can deliver a large power density of 220 mW cm-2 and maintain robust cycling stability over 530 cycles. Exploring highly active and cost‐efficient single‐atom catalysts (SACs) for oxygen reduction reaction (ORR) is critical for the large‐scale application of Zn–air battery. Herein, density functional theory (DFT) calculations predict that the intrinsic ORR activity of the active metal of SACs follows the trend of Co > Fe > Ni ≈ Cu, in which Co SACs possess the best ORR activity due to its optimized spin density. Guided by DFT calculations, four kinds of transition metal single atoms embedded in 3D porous nitrogen‐doped carbon nanosheets (MSAs@PNCN, M = Co, Ni, Fe, Cu) are synthesized via a facile NaCl‐template assisted strategy. The resulting MSAs@PNCN displays ORR activity trend in lines with the theoretical predictions, and the Co SAs@PNCN exhibits the best ORR activity ( E 1/2 = 0.851 V), being comparable to that of Pt/C under alkaline conditions. X‐ray absorption fine structure (XAFS) spectra verify the atomically dispersed Co‐N 4 sites are the catalytically active sites. The highly active CoN 4 sites and the unique 3D porous structure contribute to the outstanding ORR performance of Co SAs@PNCN. Furthermore, the Co SAs@PNCN catalyst is employed as cathode in Zn–air battery, which can deliver a large power density of 220 mW cm –2 and maintain robust cycling stability over 530 cycles. Exploring highly active and cost‐efficient single‐atom catalysts (SACs) for oxygen reduction reaction (ORR) is critical for the large‐scale application of Zn–air battery. Herein, density functional theory (DFT) calculations predict that the intrinsic ORR activity of the active metal of SACs follows the trend of Co > Fe > Ni ≈ Cu, in which Co SACs possess the best ORR activity due to its optimized spin density. Guided by DFT calculations, four kinds of transition metal single atoms embedded in 3D porous nitrogen‐doped carbon nanosheets (MSAs@PNCN, M = Co, Ni, Fe, Cu) are synthesized via a facile NaCl‐template assisted strategy. The resulting MSAs@PNCN displays ORR activity trend in lines with the theoretical predictions, and the Co SAs@PNCN exhibits the best ORR activity (E1/2 = 0.851 V), being comparable to that of Pt/C under alkaline conditions. X‐ray absorption fine structure (XAFS) spectra verify the atomically dispersed Co‐N4 sites are the catalytically active sites. The highly active CoN4 sites and the unique 3D porous structure contribute to the outstanding ORR performance of Co SAs@PNCN. Furthermore, the Co SAs@PNCN catalyst is employed as cathode in Zn–air battery, which can deliver a large power density of 220 mW cm–2 and maintain robust cycling stability over 530 cycles. Exploring highly active and cost‐efficient single‐atom catalysts (SACs) for oxygen reduction reaction (ORR) is critical for the large‐scale application of Zn–air battery. Herein, density functional theory (DFT) calculations predict that the intrinsic ORR activity of the active metal of SACs follows the trend of Co > Fe > Ni ≈ Cu, in which Co SACs possess the best ORR activity due to its optimized spin density. Guided by DFT calculations, four kinds of transition metal single atoms embedded in 3D porous nitrogen‐doped carbon nanosheets (MSAs@PNCN, M = Co, Ni, Fe, Cu) are synthesized via a facile NaCl‐template assisted strategy. The resulting MSAs@PNCN displays ORR activity trend in lines with the theoretical predictions, and the Co SAs@PNCN exhibits the best ORR activity (E1/2 = 0.851 V), being comparable to that of Pt/C under alkaline conditions. X‐ray absorption fine structure (XAFS) spectra verify the atomically dispersed Co‐N4 sites are the catalytically active sites. The highly active CoN4 sites and the unique 3D porous structure contribute to the outstanding ORR performance of Co SAs@PNCN. Furthermore, the Co SAs@PNCN catalyst is employed as cathode in Zn–air battery, which can deliver a large power density of 220 mW cm–2 and maintain robust cycling stability over 530 cycles. Four kinds of transition metal single atoms embedded in 3D porous nitrogen‐doped carbon nanosheets (MSAs@PNCN, M = Co, Ni, Fe, Cu) are constructed via a facile NaCl‐template assisted strategy. The Co SAs@PNCN catalysts demonstrate remarkable performance with a half‐wave potential of 0.851 V for oxygen reduction reaction and a large power density of 220 mW cm–2 toward Zn–air battery. |
Author | Ma, Fei‐Xiang Li, Hao Chen, Junxiang Zhen, Liang Wen, Zhenhai Xu, Cheng‐Yan Zhang, Mengtian |
Author_xml | – sequence: 1 givenname: Mengtian surname: Zhang fullname: Zhang, Mengtian organization: Harbin Institute of Technology (Shenzhen) – sequence: 2 givenname: Hao surname: Li fullname: Li, Hao organization: Chinese Academy of Sciences – sequence: 3 givenname: Junxiang surname: Chen fullname: Chen, Junxiang organization: Chinese Academy of Sciences – sequence: 4 givenname: Fei‐Xiang surname: Ma fullname: Ma, Fei‐Xiang organization: Harbin Institute of Technology (Shenzhen) – sequence: 5 givenname: Liang surname: Zhen fullname: Zhen, Liang organization: Harbin Institute of Technology – sequence: 6 givenname: Zhenhai orcidid: 0000-0002-2340-9525 surname: Wen fullname: Wen, Zhenhai email: wen@fjirsm.ac.cn organization: Chinese Academy of Sciences – sequence: 7 givenname: Cheng‐Yan orcidid: 0000-0002-7835-6635 surname: Xu fullname: Xu, Cheng‐Yan email: cy_xu@hit.edu.cn organization: Harbin Institute of Technology |
BookMark | eNqFkd1qFDEYhgepYFs99TjgSYXdNX-bmTlcp1srbFux9cSTIZv50qZkk22SQefMSxC8l16QV2K2W1YoiBBICM_z_fAeFHvOOyiK1wRPCMb0XVxZO6GY5sNL8azYJ4Kwsahovbd7E_yiOIjxFmNGMrVf3F8F6aJJxjt0BkladNT4ETo3I3QCI9T0b9GlcdcWfv_4OUt-hRqZoSGmiGZO3fgAHcoqO85KCv4aXAaP_Tp_f_LB9zELYZmJc-l8vAHIooxorrVRBlxCF9-HLKHP0PXqYYq5BZUrqV0f7QP6msv-mpmA3suUIAwvi-da2givHu_D4svJ_Ko5HS8uPnxsZoux4kSIMVtKTZisgGgh-RKmddeVVGjSTUtRaSIpn_IOa4G5EozpSjJMBJYVxyVTJWWHxdG27jr4ux5ialcmKrBWOsjLtVTUohK4YiKjb56gt74PLk_X0hJPa8ErwjPFt5QKPsYAulUmyc3iKUhjW4LbTZjtJsx2F2bWJk-0dTArGYZ_C_VW-GYsDP-h28uzxeKv-wf-4bf- |
CitedBy_id | crossref_primary_10_1002_smll_202205228 crossref_primary_10_1016_j_watres_2024_122545 crossref_primary_10_1021_acsanm_3c06166 crossref_primary_10_1016_j_cej_2023_141468 crossref_primary_10_1016_j_jcis_2022_12_156 crossref_primary_10_1016_j_ccr_2022_214855 crossref_primary_10_1016_j_apsusc_2024_160215 crossref_primary_10_1007_s12274_023_5457_9 crossref_primary_10_1016_j_ccr_2023_215189 crossref_primary_10_1016_j_ijhydene_2023_07_161 crossref_primary_10_1039_D2CS00931E crossref_primary_10_1016_j_ces_2024_120923 crossref_primary_10_34133_energymatadv_0042 crossref_primary_10_1002_smll_202302925 crossref_primary_10_1002_advs_202401804 crossref_primary_10_1007_s12274_022_4903_4 crossref_primary_10_1016_j_apsusc_2023_159219 crossref_primary_10_1021_acssuschemeng_3c00148 crossref_primary_10_1002_adfm_202311084 crossref_primary_10_1021_acsanm_4c05974 crossref_primary_10_3390_nano13081330 crossref_primary_10_1002_cssc_202401713 crossref_primary_10_1002_smll_202305782 crossref_primary_10_1002_aenm_202404689 crossref_primary_10_1016_j_electacta_2024_144968 crossref_primary_10_1002_ange_202219188 crossref_primary_10_1016_j_jallcom_2023_169722 crossref_primary_10_1021_acsanm_3c04255 crossref_primary_10_1039_D3MH01237A crossref_primary_10_1002_adsu_202400881 crossref_primary_10_1016_j_jcis_2024_06_066 crossref_primary_10_1039_D3QM00732D crossref_primary_10_1016_j_jcis_2024_07_029 crossref_primary_10_1016_j_colsurfa_2024_135844 crossref_primary_10_1021_acsmaterialslett_2c01023 crossref_primary_10_1002_cctc_202201192 crossref_primary_10_1002_adma_202303243 crossref_primary_10_1002_smll_202300373 crossref_primary_10_1007_s12274_023_6279_5 crossref_primary_10_1039_D2TA08808H crossref_primary_10_26599_NR_2025_94907019 crossref_primary_10_1002_smll_202309014 crossref_primary_10_1021_acsami_3c03775 crossref_primary_10_1021_acs_jpclett_4c02759 crossref_primary_10_1039_D3CE00097D crossref_primary_10_1002_anie_202219188 crossref_primary_10_1016_j_jelechem_2024_118184 crossref_primary_10_1002_chem_202303943 crossref_primary_10_1021_acs_nanolett_4c03665 crossref_primary_10_1002_ange_202404374 crossref_primary_10_3390_molecules28166117 crossref_primary_10_1016_j_cej_2024_156345 crossref_primary_10_1039_D4TA06669C crossref_primary_10_1021_acsami_4c11698 crossref_primary_10_1021_acs_langmuir_4c01976 crossref_primary_10_3390_molecules28124680 crossref_primary_10_1002_smll_202409506 crossref_primary_10_1007_s00894_023_05620_6 crossref_primary_10_1002_cssc_202201964 crossref_primary_10_1039_D3TA00899A crossref_primary_10_1039_D4CC02988G crossref_primary_10_1002_adfm_202423552 crossref_primary_10_1039_D4CY01507J crossref_primary_10_1016_j_jcis_2024_03_022 crossref_primary_10_1039_D3TA00576C crossref_primary_10_1002_cssc_202300637 crossref_primary_10_1002_anie_202404374 crossref_primary_10_3390_catal14030205 crossref_primary_10_1002_aenm_202402441 crossref_primary_10_1039_D3CY01323E crossref_primary_10_1016_j_jcis_2024_04_015 crossref_primary_10_1039_D4CC04661G crossref_primary_10_1002_cphc_202400838 crossref_primary_10_1039_D3QM00237C crossref_primary_10_1039_D2TA09788E crossref_primary_10_1021_acsami_4c04853 crossref_primary_10_1007_s11426_023_1863_8 crossref_primary_10_1007_s12598_023_02415_9 crossref_primary_10_1039_D3EE03059H |
Cites_doi | 10.1038/nmat4738 10.1002/anie.202010013 10.1016/j.apcatb.2020.119412 10.1016/j.carbon.2021.09.030 10.1039/C6EE01867J 10.1038/ncomms10667 10.1002/aenm.201601172 10.1002/anie.201810175 10.1002/adma.201904548 10.1002/anie.201804958 10.1016/j.matlet.2018.06.079 10.1126/science.aan2255 10.1016/j.joule.2018.06.019 10.1002/adma.201604685 10.1002/smll.201800563 10.1021/acscatal.0c00936 10.1002/adma.202003134 10.1002/advs.201700691 10.1038/s41557-020-0473-9 10.1002/adma.201907399 10.1002/aenm.202000789 10.1016/j.cej.2019.123655 10.1002/adfm.202112832 10.1002/smll.202104684 10.1021/jp047349j 10.1038/s41570-018-0010-1 10.1038/nature11115 10.1039/C4CS00484A 10.1002/aenm.202200855 10.1039/D0EE00477D 10.1002/smll.202005534 10.1021/ar1000956 10.1016/j.nanoen.2019.02.062 10.1016/j.apmate.2021.11.007 10.1016/j.apcatb.2018.08.074 10.1002/smll.201703739 10.1002/smll.201901518 10.1016/j.nanoen.2016.12.056 10.1016/j.apcatb.2019.03.013 10.1021/jacs.9b11852 10.1016/j.nanoen.2019.104088 10.1021/acsaem.0c00215 10.1002/anie.201914123 10.1002/smll.201801929 10.1021/acsnano.8b04693 10.1021/acs.accounts.7b00077 10.1021/ar300361m 10.1002/cphc.201100137 10.1002/anie.202009700 10.1002/anie.202011378 10.1039/C7EE01628J 10.1038/s41929-019-0304-9 10.1038/nmat4834 10.1002/anie.201811126 10.1002/anie.201803262 10.1007/s12274-017-1840-8 10.1021/acs.nanolett.0c01925 10.1002/adfm.201804520 10.1126/science.aaa8765 10.1016/j.nanoen.2020.104454 10.1016/j.nanoen.2020.104547 10.1021/cr500208k 10.1021/acscatal.8b03008 |
ContentType | Journal Article |
Copyright | 2022 Wiley‐VCH GmbH 2022 Wiley-VCH GmbH. |
Copyright_xml | – notice: 2022 Wiley‐VCH GmbH – notice: 2022 Wiley-VCH GmbH. |
DBID | AAYXX CITATION 7SR 7U5 8BQ 8FD JG9 L7M 7X8 |
DOI | 10.1002/smll.202202476 |
DatabaseName | CrossRef Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace MEDLINE - Academic |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace METADEX MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic CrossRef Materials Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1613-6829 |
EndPage | n/a |
ExternalDocumentID | 10_1002_smll_202202476 SMLL202202476 |
Genre | article |
GrantInformation_xml | – fundername: Shenzhen Science and Technology Innovation Committee funderid: JCYJ20200109113212238 – fundername: CAS‐Commonwealth Scientific and Industrial Research Organization funderid: 121835KYSB20200039 – fundername: Scientific Research and Equipment Development Project of CAS funderid: YJKYYQ20190007 – fundername: Joint Fund of the Yulin University and the Dalian National Laboratory for Clean Energy funderid: YLU‐DNL Fund 2021011 – fundername: National Key Research & Development Program of China funderid: 2021YFA1501500 – fundername: National Natural Science Foundation of China funderid: 21875253 |
GroupedDBID | --- 05W 0R~ 123 1L6 1OC 33P 3SF 3WU 4.4 50Y 52U 53G 5VS 66C 8-0 8-1 8UM A00 AAESR AAEVG AAHHS AAHQN AAIHA AAMNL AANLZ AAONW AAXRX AAYCA AAZKR ABCUV ABIJN ABJNI ABLJU ABRTZ ACAHQ ACCFJ ACCZN ACFBH ACGFS ACIWK ACPOU ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZVAB BFHJK BHBCM BMNLL BMXJE BNHUX BOGZA BRXPI CS3 DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBD EBS EMOBN F5P G-S GNP HBH HGLYW HHY HHZ HZ~ IX1 KQQ LATKE LAW LEEKS LITHE LOXES LUTES LYRES MEWTI MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM MY~ O66 O9- OIG P2P P2W P4E QRW R.K RIWAO RNS ROL RWI RX1 RYL SUPJJ SV3 V2E W99 WBKPD WFSAM WIH WIK WJL WOHZO WXSBR WYISQ WYJ XV2 Y6R ZZTAW ~S- 31~ AANHP AASGY AAYOK AAYXX ACBWZ ACRPL ACYXJ ADNMO AGHNM AGQPQ AGYGG ASPBG AVWKF AZFZN BDRZF CITATION EJD FEDTE GODZA HVGLF 7SR 7U5 8BQ 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY JG9 L7M 7X8 |
ID | FETCH-LOGICAL-c4166-3baf13a8e1f6a4be59dd726f1d5768f1a2454d0f604c633f8a30160a84073c723 |
IEDL.DBID | DR2 |
ISSN | 1613-6810 1613-6829 |
IngestDate | Fri Jul 11 08:00:52 EDT 2025 Fri Jul 25 11:39:57 EDT 2025 Thu Apr 24 23:04:14 EDT 2025 Tue Jul 01 02:54:15 EDT 2025 Wed Jan 22 16:23:26 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 34 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4166-3baf13a8e1f6a4be59dd726f1d5768f1a2454d0f604c633f8a30160a84073c723 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-2340-9525 0000-0002-7835-6635 |
PQID | 2705964814 |
PQPubID | 1046358 |
PageCount | 10 |
ParticipantIDs | proquest_miscellaneous_2696860836 proquest_journals_2705964814 crossref_citationtrail_10_1002_smll_202202476 crossref_primary_10_1002_smll_202202476 wiley_primary_10_1002_smll_202202476_SMLL202202476 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-08-01 |
PublicationDateYYYYMMDD | 2022-08-01 |
PublicationDate_xml | – month: 08 year: 2022 text: 2022-08-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Weinheim |
PublicationPlace_xml | – name: Weinheim |
PublicationTitle | Small (Weinheim an der Bergstrasse, Germany) |
PublicationYear | 2022 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2017; 5 2017; 7 2012; 486 2020; 20 2019; 15 2019; 59 2019; 58 2020; 16 2021; 280 2020; 59 2020; 13 2020; 12 2011; 12 2015; 348 2020; 10 2019; 240 2017; 357 2018; 8 2018; 2 2020; 3 2018; 5 2019; 66 2017; 32 2015; 44 2022; 32 2018; 28 2019; 31 2018; 229 2019; 2 2013; 46 2020; 142 2017; 29 2021; 185 2020; 32 2004; 108 2016; 16 2016; 7 2015; 115 2022 2020; 71 2017; 10 2021; 17 2020; 392 2011; 44 2022; 1 2019; 250 2018; 12 2018; 11 2016; 9 2018; 14 2018; 57 e_1_2_7_5_1 e_1_2_7_3_1 e_1_2_7_9_1 e_1_2_7_7_1 e_1_2_7_19_1 e_1_2_7_60_1 e_1_2_7_17_1 e_1_2_7_62_1 e_1_2_7_15_1 e_1_2_7_41_1 e_1_2_7_1_1 e_1_2_7_13_1 e_1_2_7_43_1 e_1_2_7_11_1 e_1_2_7_45_1 e_1_2_7_47_1 e_1_2_7_26_1 e_1_2_7_49_1 e_1_2_7_28_1 e_1_2_7_50_1 e_1_2_7_25_1 e_1_2_7_31_1 e_1_2_7_52_1 e_1_2_7_23_1 e_1_2_7_33_1 e_1_2_7_54_1 e_1_2_7_21_1 e_1_2_7_35_1 e_1_2_7_56_1 e_1_2_7_37_1 e_1_2_7_58_1 e_1_2_7_39_1 e_1_2_7_6_1 e_1_2_7_4_1 e_1_2_7_8_1 e_1_2_7_18_1 e_1_2_7_16_1 e_1_2_7_40_1 e_1_2_7_61_1 e_1_2_7_2_1 e_1_2_7_14_1 e_1_2_7_42_1 e_1_2_7_63_1 e_1_2_7_12_1 e_1_2_7_44_1 e_1_2_7_10_1 e_1_2_7_46_1 e_1_2_7_48_1 e_1_2_7_27_1 e_1_2_7_29_1 e_1_2_7_51_1 e_1_2_7_30_1 e_1_2_7_53_1 e_1_2_7_24_1 e_1_2_7_32_1 e_1_2_7_55_1 e_1_2_7_22_1 e_1_2_7_34_1 e_1_2_7_57_1 e_1_2_7_20_1 e_1_2_7_36_1 e_1_2_7_59_1 e_1_2_7_38_1 |
References_xml | – volume: 10 year: 2020 publication-title: Adv. Energy Mater. – volume: 12 start-page: 9441 year: 2018 publication-title: ACS Nano – volume: 357 start-page: 479 year: 2017 publication-title: Science – volume: 32 year: 2022 publication-title: Adv. Funct. Mater. – year: 2022 publication-title: Adv. Energy Mater. – volume: 13 start-page: 2431 year: 2020 publication-title: Energy Environ. Sci. – volume: 280 year: 2021 publication-title: Appl. Catal., B – volume: 14 year: 2018 publication-title: Small – volume: 12 start-page: 1413 year: 2011 publication-title: ChemPhysChem – volume: 142 start-page: 2404 year: 2020 publication-title: J. Am. Chem. Soc. – volume: 8 year: 2018 publication-title: ACS Catal. – volume: 10 start-page: 1757 year: 2017 publication-title: Energy Environ. Sci. – volume: 16 start-page: 16 year: 2016 publication-title: Nat. Mater. – volume: 71 year: 2020 publication-title: Nano Energy – volume: 12 start-page: 764 year: 2020 publication-title: Nat. Chem. – volume: 16 year: 2020 publication-title: Small – volume: 58 start-page: 1975 year: 2019 publication-title: Angew. Chem., Int. Ed. – volume: 46 start-page: 1740 year: 2013 publication-title: Acc. Chem. Res. – volume: 2 start-page: 65 year: 2018 publication-title: Nat. Rev. Chem. – volume: 28 year: 2018 publication-title: Adv. Funct. Mater. – volume: 57 start-page: 9038 year: 2018 publication-title: Angew. Chem., Int. Ed. – volume: 185 start-page: 96 year: 2021 publication-title: Carbon – volume: 250 start-page: 143 year: 2019 publication-title: Appl. Catal., B – volume: 2 start-page: 1242 year: 2018 publication-title: Joule – volume: 5 start-page: 1240 year: 2017 publication-title: Acc. Chem. Res. – volume: 1 year: 2022 publication-title: Adv. Powder Mater. – volume: 29 year: 2017 publication-title: Adv. Mater. – volume: 392 year: 2020 publication-title: Chem. Eng. J. – volume: 11 start-page: 2217 year: 2018 publication-title: Nano Res. – volume: 44 start-page: 101 year: 2011 publication-title: Acc. Chem. Res. – volume: 57 start-page: 8525 year: 2018 publication-title: Angew. Chem., Int. Ed. – volume: 5 year: 2018 publication-title: Adv. Sci. – volume: 7 year: 2016 publication-title: Nat. Commun. – volume: 17 year: 2021 publication-title: Small – volume: 3 start-page: 4539 year: 2020 publication-title: ACS Appl. Energy Mater. – volume: 32 start-page: 353 year: 2017 publication-title: Nano Energy – volume: 59 year: 2020 publication-title: Angew. Chem., Int. Ed. – volume: 240 start-page: 112 year: 2019 publication-title: Appl. Catal., B – volume: 66 year: 2019 publication-title: Nano Energy – volume: 486 start-page: 43 year: 2012 publication-title: Nature – volume: 20 year: 2020 publication-title: Nano Energy – volume: 15 year: 2019 publication-title: Small – volume: 9 start-page: 3736 year: 2016 publication-title: Energy Environ. Sci. – volume: 31 year: 2019 publication-title: Adv. Mater. – volume: 108 year: 2004 publication-title: J. Phys. Chem. B – volume: 59 start-page: 2688 year: 2020 publication-title: Angew. Chem., Int. Ed. – volume: 58 start-page: 2622 year: 2019 publication-title: Angew. Chem., Int. Ed. – volume: 44 start-page: 2168 year: 2015 publication-title: Chem. Soc. Rev. – volume: 348 start-page: 1230 year: 2015 publication-title: Science – volume: 7 year: 2017 publication-title: Adv. Energy Mater. – volume: 10 start-page: 5862 year: 2020 publication-title: ACS Catal. – volume: 32 year: 2020 publication-title: Adv. Mater. – volume: 59 year: 2020 publication-title: Angew. Chem., Int. Ed. Engl. – volume: 59 start-page: 472 year: 2019 publication-title: Nano Energy – volume: 16 start-page: 57 year: 2016 publication-title: Nat. Mater. – volume: 2 start-page: 578 year: 2019 publication-title: Nat. Catal. – volume: 115 start-page: 28 year: 2015 publication-title: Chem. Rev. – volume: 20 start-page: 5443 year: 2020 publication-title: Nano Lett. – volume: 229 start-page: 5 year: 2018 publication-title: Mater. Lett. – ident: e_1_2_7_3_1 doi: 10.1038/nmat4738 – ident: e_1_2_7_20_1 doi: 10.1002/anie.202010013 – ident: e_1_2_7_51_1 doi: 10.1016/j.apcatb.2020.119412 – ident: e_1_2_7_29_1 doi: 10.1016/j.carbon.2021.09.030 – ident: e_1_2_7_21_1 doi: 10.1039/C6EE01867J – ident: e_1_2_7_36_1 doi: 10.1038/ncomms10667 – ident: e_1_2_7_43_1 doi: 10.1002/aenm.201601172 – ident: e_1_2_7_58_1 doi: 10.1002/anie.201810175 – ident: e_1_2_7_32_1 doi: 10.1002/adma.201904548 – ident: e_1_2_7_52_1 doi: 10.1002/anie.201804958 – ident: e_1_2_7_2_1 doi: 10.1016/j.matlet.2018.06.079 – ident: e_1_2_7_11_1 doi: 10.1126/science.aan2255 – ident: e_1_2_7_17_1 doi: 10.1016/j.joule.2018.06.019 – ident: e_1_2_7_8_1 doi: 10.1002/adma.201604685 – ident: e_1_2_7_27_1 doi: 10.1002/smll.201800563 – ident: e_1_2_7_62_1 doi: 10.1021/acscatal.0c00936 – ident: e_1_2_7_47_1 doi: 10.1002/adma.202003134 – ident: e_1_2_7_6_1 doi: 10.1002/advs.201700691 – ident: e_1_2_7_25_1 doi: 10.1038/s41557-020-0473-9 – ident: e_1_2_7_53_1 doi: 10.1002/adma.201907399 – ident: e_1_2_7_55_1 doi: 10.1002/aenm.202000789 – ident: e_1_2_7_30_1 doi: 10.1016/j.cej.2019.123655 – ident: e_1_2_7_14_1 doi: 10.1002/adfm.202112832 – ident: e_1_2_7_35_1 doi: 10.1002/smll.202104684 – ident: e_1_2_7_38_1 doi: 10.1021/jp047349j – ident: e_1_2_7_18_1 doi: 10.1038/s41570-018-0010-1 – ident: e_1_2_7_1_1 doi: 10.1038/nature11115 – ident: e_1_2_7_10_1 doi: 10.1039/C4CS00484A – ident: e_1_2_7_12_1 doi: 10.1002/aenm.202200855 – ident: e_1_2_7_46_1 doi: 10.1039/D0EE00477D – ident: e_1_2_7_24_1 doi: 10.1002/smll.202005534 – ident: e_1_2_7_40_1 doi: 10.1021/ar1000956 – ident: e_1_2_7_56_1 doi: 10.1016/j.nanoen.2019.02.062 – ident: e_1_2_7_49_1 doi: 10.1016/j.apmate.2021.11.007 – ident: e_1_2_7_57_1 doi: 10.1016/j.apcatb.2018.08.074 – ident: e_1_2_7_45_1 doi: 10.1002/smll.201703739 – ident: e_1_2_7_44_1 doi: 10.1002/smll.201901518 – ident: e_1_2_7_54_1 doi: 10.1016/j.nanoen.2016.12.056 – ident: e_1_2_7_15_1 doi: 10.1016/j.apcatb.2019.03.013 – ident: e_1_2_7_59_1 doi: 10.1021/jacs.9b11852 – ident: e_1_2_7_60_1 doi: 10.1016/j.nanoen.2019.104088 – ident: e_1_2_7_48_1 doi: 10.1021/acsaem.0c00215 – ident: e_1_2_7_34_1 doi: 10.1002/anie.201914123 – ident: e_1_2_7_7_1 doi: 10.1002/smll.201801929 – ident: e_1_2_7_26_1 doi: 10.1021/acsnano.8b04693 – ident: e_1_2_7_42_1 doi: 10.1021/acs.accounts.7b00077 – ident: e_1_2_7_16_1 doi: 10.1021/ar300361m – ident: e_1_2_7_41_1 doi: 10.1002/cphc.201100137 – ident: e_1_2_7_63_1 doi: 10.1002/anie.202009700 – ident: e_1_2_7_13_1 doi: 10.1002/anie.202011378 – ident: e_1_2_7_28_1 doi: 10.1039/C7EE01628J – ident: e_1_2_7_5_1 doi: 10.1038/s41929-019-0304-9 – ident: e_1_2_7_4_1 doi: 10.1038/nmat4834 – ident: e_1_2_7_37_1 doi: 10.1002/anie.201811126 – ident: e_1_2_7_22_1 doi: 10.1002/anie.201803262 – ident: e_1_2_7_23_1 doi: 10.1007/s12274-017-1840-8 – ident: e_1_2_7_33_1 doi: 10.1021/acs.nanolett.0c01925 – ident: e_1_2_7_50_1 doi: 10.1002/adfm.201804520 – ident: e_1_2_7_9_1 doi: 10.1126/science.aaa8765 – ident: e_1_2_7_31_1 doi: 10.1016/j.nanoen.2020.104454 – ident: e_1_2_7_61_1 doi: 10.1016/j.nanoen.2020.104547 – ident: e_1_2_7_19_1 doi: 10.1021/cr500208k – ident: e_1_2_7_39_1 doi: 10.1021/acscatal.8b03008 |
SSID | ssj0031247 |
Score | 2.6519654 |
Snippet | Exploring highly active and cost‐efficient single‐atom catalysts (SACs) for oxygen reduction reaction (ORR) is critical for the large‐scale application of... Exploring highly active and cost-efficient single-atom catalysts (SACs) for oxygen reduction reaction (ORR) is critical for the large-scale application of... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | e2202476 |
SubjectTerms | Carbon Chemical reduction Cobalt Copper Density functional theory Electrocatalysts Fine structure Iron Mathematical analysis Metal air batteries Nanosheets Nanotechnology Nickel Nitrogen nitrogen‐doped carbon oxygen reduction reaction Oxygen reduction reactions Single atom catalysts Transition metals Zinc-oxygen batteries Zn–air battery |
Title | Transition Metal (Co, Ni, Fe, Cu) Single‐Atom Catalysts Anchored on 3D Nitrogen‐Doped Porous Carbon Nanosheets as Efficient Oxygen Reduction Electrocatalysts for Zn–Air Battery |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fsmll.202202476 https://www.proquest.com/docview/2705964814 https://www.proquest.com/docview/2696860836 |
Volume | 18 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ3datswFMfF6NV2sY9uY9naosJgG8StLSn-uAxpQhltN9oVym6MbB3RstQutgPNrvYIg71LH2hPsnPkxE0HY7BBLvJxjuVE0jl_2Sc_MfbaGFLJfuYZYcDDKAleLAm5b40vrMowZbgC2aNw_1S9PxucrfyLv-VDdBfcaGa4eE0TXGf17i00tL6c0q0DgQ8VEXObCrZIFR13_Chs1O0whqpGegTeWlIbfbF71_1uVrqVmquC1WWcySOml-faFpp82Zk12U7-9TeM4_98mcfs4UKO8mE7fp6we1CsswcrkMKn7MalM1fZxQ8BtTp_Oyr7_OiizyfQ56PZO36ChlP4-e37sCkv-YiuCM3rpubDAoNrBYajq9xDl6YqccCi4V55hW9_LKtyVqNDlaEFBvqyPgdAR13zsWNbYErkH67n6MSPCTLrzmLcbt2Td-2g8Oaf8bA_hhcVb4mh82fsdDL-NNr3Frs9eDmKwtCTmbaB1DEENtQqg0FiTCRCGxhaEtlACzVQxrehr_JQShtrSXQ8jSvUSOaRkM_ZWlEW8IJxIWwiogDtVazQIMHVtjCJDRKwAFHeY96yt9N8gUKnHTmmaQtxFin1R9r1R4-96eyvWgjIHy03loMnXQSDOhUR7XGk4kD12Hb3MU5jujejC8BfOhUEKQoJFd5jwo2Uv7SUnhweHHSvXv6L0yt2n5635YwbbK2pZrCJEqvJttw0-gXkXCD0 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dbtMwFLZgXAAXjF_RMcBISIDUbInt5uey6loVaAvaj4R2YyWxLaZ1yZSkEuVqjzBp78ID8SSc4zTZhoSQQMpNknNiJ7bP-WyffIeQ10ohSnYTRzGlHbCS2gk5Uu4b5TIjEnAZNkB25o8PxIcvvSaaEP-Fqfkh2gU3HBnWXuMAxwXp7UvW0PJkjnsHDA4R-DfJLUzrbWdVuy2DFBRrc4wBruEOUm81vI0u276uf90vXYLNq5DV-pzROkma2tahJsdbiyrZSr__RuT4X69zn9xbIVLar7vQA3JDZw_J3Ss8hY_ID-vRbHAXnWqA6_TtIO_S2VGXjnSXDhbv6B4IzvXPs_N-lZ_QAS4KLcuqpP0M7GuhFQVVvgMqVZFDnwXBnfwULn_Oi3xRgkKRgATY-rz8qjUoxiUdWnoL8Ir007clKNFd5Jm1tRjW2XvSthzA3vQQHnvRPypoTRq6fEwORsP9wdhZJXxwUsCFvsOT2Hg8DrVn_FgkuhcpFTDfeApnRcaLmegJ5RrfFanPuQljjgR5MUxSA54GjD8ha1me6aeEMmYiFnggL0IBAhFMuJmKjBdpo3WQdojTNLdMV2zomJRjLmseZyaxPWTbHh3yppU_rXlA_ii52fQeubIHpWQBpjkSoSc65FV7G0Yybs_EmYYvLRnyFPnIFt4hzHaVv5Qk96aTSXu28S9KL8nt8f50IifvZx-fkTt4vY5u3CRrVbHQzwFxVckLO6Z-AdxvJQ8 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3ditQwFA66guiF_-LoqhEEFaa7bZJJ28thflh1dlx2XVi8KWmT4OJsO7QdcLzyEQTfxQfySTwnnenOCiIo9KbtOU3anJzz5affIeS51oiS_dTTTBsPvKTxIo6U-1b7zIoUQobbIDuVe8fizUnvZOMv_oYfop1ww57h_DV28Lm2u-ekodXZDJcOGBwilJfJFSH9CO16eNgSSEGpLsUYwBruIfPWmrbRZ7sX9S-GpXOsuYlYXcgZ3yRqXdlmp8mnnUWd7mRffuNx_J-3uUVurPAo7TcGdJtcMvkdcn2DpfAu-eHimdvaRfcNgHX6clB06fS0S8emSweLV_QIBGfm59dv_bo4owOcElpWdUX7OXjX0mgKqnwIKnVZgMWC4LCYw-WDoiwWFSiUKUiApy-qj8aAoqroyJFbQEyk7z4vQYkeIsusq8Woyd2TteUA8qYf4LHf-6clbShDl_fI8Xj0frDnrdI9eBmgQunxVNmAq8gEViqRml6sdcikDTSOiWygmOgJ7Vvpi0xybiPFkR5PwRA15FnI-H2ylRe5eUAoYzZmYQDyIhIgEMNwm-nYBrGxxoRZh3jr1k6yFRc6puSYJQ2LM0uwPZK2PTrkRSs_b1hA_ii5vTaeZOUNqoSFmORIRIHokGftbejHuDijcgNfOmHIUiSRK7xDmLOUv5SUHO1PJu3Zw39RekquHgzHyeT19O0jcg0vN1sbt8lWXS7MY4BbdfrE9ahfb2sjxw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Transition+Metal+%28Co%2C+Ni%2C+Fe%2C+Cu%29+Single%E2%80%90Atom+Catalysts+Anchored+on+3D+Nitrogen%E2%80%90Doped+Porous+Carbon+Nanosheets+as+Efficient+Oxygen+Reduction+Electrocatalysts+for+Zn%E2%80%93Air+Battery&rft.jtitle=Small+%28Weinheim+an+der+Bergstrasse%2C+Germany%29&rft.au=Zhang%2C+Mengtian&rft.au=Li%2C+Hao&rft.au=Chen%2C+Junxiang&rft.au=Fei%E2%80%90Xiang+Ma&rft.date=2022-08-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=1613-6810&rft.eissn=1613-6829&rft.volume=18&rft.issue=34&rft_id=info:doi/10.1002%2Fsmll.202202476&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1613-6810&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1613-6810&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1613-6810&client=summon |