Transition Metal (Co, Ni, Fe, Cu) Single‐Atom Catalysts Anchored on 3D Nitrogen‐Doped Porous Carbon Nanosheets as Efficient Oxygen Reduction Electrocatalysts for Zn–Air Battery

Exploring highly active and cost‐efficient single‐atom catalysts (SACs) for oxygen reduction reaction (ORR) is critical for the large‐scale application of Zn–air battery. Herein, density functional theory (DFT) calculations predict that the intrinsic ORR activity of the active metal of SACs follows...

Full description

Saved in:
Bibliographic Details
Published inSmall (Weinheim an der Bergstrasse, Germany) Vol. 18; no. 34; pp. e2202476 - n/a
Main Authors Zhang, Mengtian, Li, Hao, Chen, Junxiang, Ma, Fei‐Xiang, Zhen, Liang, Wen, Zhenhai, Xu, Cheng‐Yan
Format Journal Article
LanguageEnglish
Published Weinheim Wiley Subscription Services, Inc 01.08.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Exploring highly active and cost‐efficient single‐atom catalysts (SACs) for oxygen reduction reaction (ORR) is critical for the large‐scale application of Zn–air battery. Herein, density functional theory (DFT) calculations predict that the intrinsic ORR activity of the active metal of SACs follows the trend of Co > Fe > Ni ≈ Cu, in which Co SACs possess the best ORR activity due to its optimized spin density. Guided by DFT calculations, four kinds of transition metal single atoms embedded in 3D porous nitrogen‐doped carbon nanosheets (MSAs@PNCN, M = Co, Ni, Fe, Cu) are synthesized via a facile NaCl‐template assisted strategy. The resulting MSAs@PNCN displays ORR activity trend in lines with the theoretical predictions, and the Co SAs@PNCN exhibits the best ORR activity (E1/2 = 0.851 V), being comparable to that of Pt/C under alkaline conditions. X‐ray absorption fine structure (XAFS) spectra verify the atomically dispersed Co‐N4 sites are the catalytically active sites. The highly active CoN4 sites and the unique 3D porous structure contribute to the outstanding ORR performance of Co SAs@PNCN. Furthermore, the Co SAs@PNCN catalyst is employed as cathode in Zn–air battery, which can deliver a large power density of 220 mW cm–2 and maintain robust cycling stability over 530 cycles. Four kinds of transition metal single atoms embedded in 3D porous nitrogen‐doped carbon nanosheets (MSAs@PNCN, M = Co, Ni, Fe, Cu) are constructed via a facile NaCl‐template assisted strategy. The Co SAs@PNCN catalysts demonstrate remarkable performance with a half‐wave potential of 0.851 V for oxygen reduction reaction and a large power density of 220 mW cm–2 toward Zn–air battery.
AbstractList Exploring highly active and cost-efficient single-atom catalysts (SACs) for oxygen reduction reaction (ORR) is critical for the large-scale application of Zn-air battery. Herein, density functional theory (DFT) calculations predict that the intrinsic ORR activity of the active metal of SACs follows the trend of Co > Fe > Ni ≈ Cu, in which Co SACs possess the best ORR activity due to its optimized spin density. Guided by DFT calculations, four kinds of transition metal single atoms embedded in 3D porous nitrogen-doped carbon nanosheets (MSAs@PNCN, M = Co, Ni, Fe, Cu) are synthesized via a facile NaCl-template assisted strategy. The resulting MSAs@PNCN displays ORR activity trend in lines with the theoretical predictions, and the Co SAs@PNCN exhibits the best ORR activity (E1/2 = 0.851 V), being comparable to that of Pt/C under alkaline conditions. X-ray absorption fine structure (XAFS) spectra verify the atomically dispersed Co-N4 sites are the catalytically active sites. The highly active CoN4 sites and the unique 3D porous structure contribute to the outstanding ORR performance of Co SAs@PNCN. Furthermore, the Co SAs@PNCN catalyst is employed as cathode in Zn-air battery, which can deliver a large power density of 220 mW cm-2 and maintain robust cycling stability over 530 cycles.Exploring highly active and cost-efficient single-atom catalysts (SACs) for oxygen reduction reaction (ORR) is critical for the large-scale application of Zn-air battery. Herein, density functional theory (DFT) calculations predict that the intrinsic ORR activity of the active metal of SACs follows the trend of Co > Fe > Ni ≈ Cu, in which Co SACs possess the best ORR activity due to its optimized spin density. Guided by DFT calculations, four kinds of transition metal single atoms embedded in 3D porous nitrogen-doped carbon nanosheets (MSAs@PNCN, M = Co, Ni, Fe, Cu) are synthesized via a facile NaCl-template assisted strategy. The resulting MSAs@PNCN displays ORR activity trend in lines with the theoretical predictions, and the Co SAs@PNCN exhibits the best ORR activity (E1/2 = 0.851 V), being comparable to that of Pt/C under alkaline conditions. X-ray absorption fine structure (XAFS) spectra verify the atomically dispersed Co-N4 sites are the catalytically active sites. The highly active CoN4 sites and the unique 3D porous structure contribute to the outstanding ORR performance of Co SAs@PNCN. Furthermore, the Co SAs@PNCN catalyst is employed as cathode in Zn-air battery, which can deliver a large power density of 220 mW cm-2 and maintain robust cycling stability over 530 cycles.
Exploring highly active and cost‐efficient single‐atom catalysts (SACs) for oxygen reduction reaction (ORR) is critical for the large‐scale application of Zn–air battery. Herein, density functional theory (DFT) calculations predict that the intrinsic ORR activity of the active metal of SACs follows the trend of Co > Fe > Ni ≈ Cu, in which Co SACs possess the best ORR activity due to its optimized spin density. Guided by DFT calculations, four kinds of transition metal single atoms embedded in 3D porous nitrogen‐doped carbon nanosheets (MSAs@PNCN, M = Co, Ni, Fe, Cu) are synthesized via a facile NaCl‐template assisted strategy. The resulting MSAs@PNCN displays ORR activity trend in lines with the theoretical predictions, and the Co SAs@PNCN exhibits the best ORR activity ( E 1/2  = 0.851 V), being comparable to that of Pt/C under alkaline conditions. X‐ray absorption fine structure (XAFS) spectra verify the atomically dispersed Co‐N 4 sites are the catalytically active sites. The highly active CoN 4 sites and the unique 3D porous structure contribute to the outstanding ORR performance of Co SAs@PNCN. Furthermore, the Co SAs@PNCN catalyst is employed as cathode in Zn–air battery, which can deliver a large power density of 220 mW cm –2 and maintain robust cycling stability over 530 cycles.
Exploring highly active and cost‐efficient single‐atom catalysts (SACs) for oxygen reduction reaction (ORR) is critical for the large‐scale application of Zn–air battery. Herein, density functional theory (DFT) calculations predict that the intrinsic ORR activity of the active metal of SACs follows the trend of Co > Fe > Ni ≈ Cu, in which Co SACs possess the best ORR activity due to its optimized spin density. Guided by DFT calculations, four kinds of transition metal single atoms embedded in 3D porous nitrogen‐doped carbon nanosheets (MSAs@PNCN, M = Co, Ni, Fe, Cu) are synthesized via a facile NaCl‐template assisted strategy. The resulting MSAs@PNCN displays ORR activity trend in lines with the theoretical predictions, and the Co SAs@PNCN exhibits the best ORR activity (E1/2 = 0.851 V), being comparable to that of Pt/C under alkaline conditions. X‐ray absorption fine structure (XAFS) spectra verify the atomically dispersed Co‐N4 sites are the catalytically active sites. The highly active CoN4 sites and the unique 3D porous structure contribute to the outstanding ORR performance of Co SAs@PNCN. Furthermore, the Co SAs@PNCN catalyst is employed as cathode in Zn–air battery, which can deliver a large power density of 220 mW cm–2 and maintain robust cycling stability over 530 cycles.
Exploring highly active and cost‐efficient single‐atom catalysts (SACs) for oxygen reduction reaction (ORR) is critical for the large‐scale application of Zn–air battery. Herein, density functional theory (DFT) calculations predict that the intrinsic ORR activity of the active metal of SACs follows the trend of Co > Fe > Ni ≈ Cu, in which Co SACs possess the best ORR activity due to its optimized spin density. Guided by DFT calculations, four kinds of transition metal single atoms embedded in 3D porous nitrogen‐doped carbon nanosheets (MSAs@PNCN, M = Co, Ni, Fe, Cu) are synthesized via a facile NaCl‐template assisted strategy. The resulting MSAs@PNCN displays ORR activity trend in lines with the theoretical predictions, and the Co SAs@PNCN exhibits the best ORR activity (E1/2 = 0.851 V), being comparable to that of Pt/C under alkaline conditions. X‐ray absorption fine structure (XAFS) spectra verify the atomically dispersed Co‐N4 sites are the catalytically active sites. The highly active CoN4 sites and the unique 3D porous structure contribute to the outstanding ORR performance of Co SAs@PNCN. Furthermore, the Co SAs@PNCN catalyst is employed as cathode in Zn–air battery, which can deliver a large power density of 220 mW cm–2 and maintain robust cycling stability over 530 cycles. Four kinds of transition metal single atoms embedded in 3D porous nitrogen‐doped carbon nanosheets (MSAs@PNCN, M = Co, Ni, Fe, Cu) are constructed via a facile NaCl‐template assisted strategy. The Co SAs@PNCN catalysts demonstrate remarkable performance with a half‐wave potential of 0.851 V for oxygen reduction reaction and a large power density of 220 mW cm–2 toward Zn–air battery.
Author Ma, Fei‐Xiang
Li, Hao
Chen, Junxiang
Zhen, Liang
Wen, Zhenhai
Xu, Cheng‐Yan
Zhang, Mengtian
Author_xml – sequence: 1
  givenname: Mengtian
  surname: Zhang
  fullname: Zhang, Mengtian
  organization: Harbin Institute of Technology (Shenzhen)
– sequence: 2
  givenname: Hao
  surname: Li
  fullname: Li, Hao
  organization: Chinese Academy of Sciences
– sequence: 3
  givenname: Junxiang
  surname: Chen
  fullname: Chen, Junxiang
  organization: Chinese Academy of Sciences
– sequence: 4
  givenname: Fei‐Xiang
  surname: Ma
  fullname: Ma, Fei‐Xiang
  organization: Harbin Institute of Technology (Shenzhen)
– sequence: 5
  givenname: Liang
  surname: Zhen
  fullname: Zhen, Liang
  organization: Harbin Institute of Technology
– sequence: 6
  givenname: Zhenhai
  orcidid: 0000-0002-2340-9525
  surname: Wen
  fullname: Wen, Zhenhai
  email: wen@fjirsm.ac.cn
  organization: Chinese Academy of Sciences
– sequence: 7
  givenname: Cheng‐Yan
  orcidid: 0000-0002-7835-6635
  surname: Xu
  fullname: Xu, Cheng‐Yan
  email: cy_xu@hit.edu.cn
  organization: Harbin Institute of Technology
BookMark eNqFkd1qFDEYhgepYFs99TjgSYXdNX-bmTlcp1srbFux9cSTIZv50qZkk22SQefMSxC8l16QV2K2W1YoiBBICM_z_fAeFHvOOyiK1wRPCMb0XVxZO6GY5sNL8azYJ4Kwsahovbd7E_yiOIjxFmNGMrVf3F8F6aJJxjt0BkladNT4ETo3I3QCI9T0b9GlcdcWfv_4OUt-hRqZoSGmiGZO3fgAHcoqO85KCv4aXAaP_Tp_f_LB9zELYZmJc-l8vAHIooxorrVRBlxCF9-HLKHP0PXqYYq5BZUrqV0f7QP6msv-mpmA3suUIAwvi-da2givHu_D4svJ_Ko5HS8uPnxsZoux4kSIMVtKTZisgGgh-RKmddeVVGjSTUtRaSIpn_IOa4G5EozpSjJMBJYVxyVTJWWHxdG27jr4ux5ialcmKrBWOsjLtVTUohK4YiKjb56gt74PLk_X0hJPa8ErwjPFt5QKPsYAulUmyc3iKUhjW4LbTZjtJsx2F2bWJk-0dTArGYZ_C_VW-GYsDP-h28uzxeKv-wf-4bf-
CitedBy_id crossref_primary_10_1002_smll_202205228
crossref_primary_10_1016_j_watres_2024_122545
crossref_primary_10_1021_acsanm_3c06166
crossref_primary_10_1016_j_cej_2023_141468
crossref_primary_10_1016_j_jcis_2022_12_156
crossref_primary_10_1016_j_ccr_2022_214855
crossref_primary_10_1016_j_apsusc_2024_160215
crossref_primary_10_1007_s12274_023_5457_9
crossref_primary_10_1016_j_ccr_2023_215189
crossref_primary_10_1016_j_ijhydene_2023_07_161
crossref_primary_10_1039_D2CS00931E
crossref_primary_10_1016_j_ces_2024_120923
crossref_primary_10_34133_energymatadv_0042
crossref_primary_10_1002_smll_202302925
crossref_primary_10_1002_advs_202401804
crossref_primary_10_1007_s12274_022_4903_4
crossref_primary_10_1016_j_apsusc_2023_159219
crossref_primary_10_1021_acssuschemeng_3c00148
crossref_primary_10_1002_adfm_202311084
crossref_primary_10_1021_acsanm_4c05974
crossref_primary_10_3390_nano13081330
crossref_primary_10_1002_cssc_202401713
crossref_primary_10_1002_smll_202305782
crossref_primary_10_1002_aenm_202404689
crossref_primary_10_1016_j_electacta_2024_144968
crossref_primary_10_1002_ange_202219188
crossref_primary_10_1016_j_jallcom_2023_169722
crossref_primary_10_1021_acsanm_3c04255
crossref_primary_10_1039_D3MH01237A
crossref_primary_10_1002_adsu_202400881
crossref_primary_10_1016_j_jcis_2024_06_066
crossref_primary_10_1039_D3QM00732D
crossref_primary_10_1016_j_jcis_2024_07_029
crossref_primary_10_1016_j_colsurfa_2024_135844
crossref_primary_10_1021_acsmaterialslett_2c01023
crossref_primary_10_1002_cctc_202201192
crossref_primary_10_1002_adma_202303243
crossref_primary_10_1002_smll_202300373
crossref_primary_10_1007_s12274_023_6279_5
crossref_primary_10_1039_D2TA08808H
crossref_primary_10_26599_NR_2025_94907019
crossref_primary_10_1002_smll_202309014
crossref_primary_10_1021_acsami_3c03775
crossref_primary_10_1021_acs_jpclett_4c02759
crossref_primary_10_1039_D3CE00097D
crossref_primary_10_1002_anie_202219188
crossref_primary_10_1016_j_jelechem_2024_118184
crossref_primary_10_1002_chem_202303943
crossref_primary_10_1021_acs_nanolett_4c03665
crossref_primary_10_1002_ange_202404374
crossref_primary_10_3390_molecules28166117
crossref_primary_10_1016_j_cej_2024_156345
crossref_primary_10_1039_D4TA06669C
crossref_primary_10_1021_acsami_4c11698
crossref_primary_10_1021_acs_langmuir_4c01976
crossref_primary_10_3390_molecules28124680
crossref_primary_10_1002_smll_202409506
crossref_primary_10_1007_s00894_023_05620_6
crossref_primary_10_1002_cssc_202201964
crossref_primary_10_1039_D3TA00899A
crossref_primary_10_1039_D4CC02988G
crossref_primary_10_1002_adfm_202423552
crossref_primary_10_1039_D4CY01507J
crossref_primary_10_1016_j_jcis_2024_03_022
crossref_primary_10_1039_D3TA00576C
crossref_primary_10_1002_cssc_202300637
crossref_primary_10_1002_anie_202404374
crossref_primary_10_3390_catal14030205
crossref_primary_10_1002_aenm_202402441
crossref_primary_10_1039_D3CY01323E
crossref_primary_10_1016_j_jcis_2024_04_015
crossref_primary_10_1039_D4CC04661G
crossref_primary_10_1002_cphc_202400838
crossref_primary_10_1039_D3QM00237C
crossref_primary_10_1039_D2TA09788E
crossref_primary_10_1021_acsami_4c04853
crossref_primary_10_1007_s11426_023_1863_8
crossref_primary_10_1007_s12598_023_02415_9
crossref_primary_10_1039_D3EE03059H
Cites_doi 10.1038/nmat4738
10.1002/anie.202010013
10.1016/j.apcatb.2020.119412
10.1016/j.carbon.2021.09.030
10.1039/C6EE01867J
10.1038/ncomms10667
10.1002/aenm.201601172
10.1002/anie.201810175
10.1002/adma.201904548
10.1002/anie.201804958
10.1016/j.matlet.2018.06.079
10.1126/science.aan2255
10.1016/j.joule.2018.06.019
10.1002/adma.201604685
10.1002/smll.201800563
10.1021/acscatal.0c00936
10.1002/adma.202003134
10.1002/advs.201700691
10.1038/s41557-020-0473-9
10.1002/adma.201907399
10.1002/aenm.202000789
10.1016/j.cej.2019.123655
10.1002/adfm.202112832
10.1002/smll.202104684
10.1021/jp047349j
10.1038/s41570-018-0010-1
10.1038/nature11115
10.1039/C4CS00484A
10.1002/aenm.202200855
10.1039/D0EE00477D
10.1002/smll.202005534
10.1021/ar1000956
10.1016/j.nanoen.2019.02.062
10.1016/j.apmate.2021.11.007
10.1016/j.apcatb.2018.08.074
10.1002/smll.201703739
10.1002/smll.201901518
10.1016/j.nanoen.2016.12.056
10.1016/j.apcatb.2019.03.013
10.1021/jacs.9b11852
10.1016/j.nanoen.2019.104088
10.1021/acsaem.0c00215
10.1002/anie.201914123
10.1002/smll.201801929
10.1021/acsnano.8b04693
10.1021/acs.accounts.7b00077
10.1021/ar300361m
10.1002/cphc.201100137
10.1002/anie.202009700
10.1002/anie.202011378
10.1039/C7EE01628J
10.1038/s41929-019-0304-9
10.1038/nmat4834
10.1002/anie.201811126
10.1002/anie.201803262
10.1007/s12274-017-1840-8
10.1021/acs.nanolett.0c01925
10.1002/adfm.201804520
10.1126/science.aaa8765
10.1016/j.nanoen.2020.104454
10.1016/j.nanoen.2020.104547
10.1021/cr500208k
10.1021/acscatal.8b03008
ContentType Journal Article
Copyright 2022 Wiley‐VCH GmbH
2022 Wiley-VCH GmbH.
Copyright_xml – notice: 2022 Wiley‐VCH GmbH
– notice: 2022 Wiley-VCH GmbH.
DBID AAYXX
CITATION
7SR
7U5
8BQ
8FD
JG9
L7M
7X8
DOI 10.1002/smll.202202476
DatabaseName CrossRef
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
MEDLINE - Academic
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
METADEX
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
CrossRef
Materials Research Database

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1613-6829
EndPage n/a
ExternalDocumentID 10_1002_smll_202202476
SMLL202202476
Genre article
GrantInformation_xml – fundername: Shenzhen Science and Technology Innovation Committee
  funderid: JCYJ20200109113212238
– fundername: CAS‐Commonwealth Scientific and Industrial Research Organization
  funderid: 121835KYSB20200039
– fundername: Scientific Research and Equipment Development Project of CAS
  funderid: YJKYYQ20190007
– fundername: Joint Fund of the Yulin University and the Dalian National Laboratory for Clean Energy
  funderid: YLU‐DNL Fund 2021011
– fundername: National Key Research & Development Program of China
  funderid: 2021YFA1501500
– fundername: National Natural Science Foundation of China
  funderid: 21875253
GroupedDBID ---
05W
0R~
123
1L6
1OC
33P
3SF
3WU
4.4
50Y
52U
53G
5VS
66C
8-0
8-1
8UM
A00
AAESR
AAEVG
AAHHS
AAHQN
AAIHA
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABCUV
ABIJN
ABJNI
ABLJU
ABRTZ
ACAHQ
ACCFJ
ACCZN
ACFBH
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZVAB
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BOGZA
BRXPI
CS3
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBD
EBS
EMOBN
F5P
G-S
GNP
HBH
HGLYW
HHY
HHZ
HZ~
IX1
KQQ
LATKE
LAW
LEEKS
LITHE
LOXES
LUTES
LYRES
MEWTI
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
MY~
O66
O9-
OIG
P2P
P2W
P4E
QRW
R.K
RIWAO
RNS
ROL
RWI
RX1
RYL
SUPJJ
SV3
V2E
W99
WBKPD
WFSAM
WIH
WIK
WJL
WOHZO
WXSBR
WYISQ
WYJ
XV2
Y6R
ZZTAW
~S-
31~
AANHP
AASGY
AAYOK
AAYXX
ACBWZ
ACRPL
ACYXJ
ADNMO
AGHNM
AGQPQ
AGYGG
ASPBG
AVWKF
AZFZN
BDRZF
CITATION
EJD
FEDTE
GODZA
HVGLF
7SR
7U5
8BQ
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
JG9
L7M
7X8
ID FETCH-LOGICAL-c4166-3baf13a8e1f6a4be59dd726f1d5768f1a2454d0f604c633f8a30160a84073c723
IEDL.DBID DR2
ISSN 1613-6810
1613-6829
IngestDate Fri Jul 11 08:00:52 EDT 2025
Fri Jul 25 11:39:57 EDT 2025
Thu Apr 24 23:04:14 EDT 2025
Tue Jul 01 02:54:15 EDT 2025
Wed Jan 22 16:23:26 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 34
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4166-3baf13a8e1f6a4be59dd726f1d5768f1a2454d0f604c633f8a30160a84073c723
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-2340-9525
0000-0002-7835-6635
PQID 2705964814
PQPubID 1046358
PageCount 10
ParticipantIDs proquest_miscellaneous_2696860836
proquest_journals_2705964814
crossref_citationtrail_10_1002_smll_202202476
crossref_primary_10_1002_smll_202202476
wiley_primary_10_1002_smll_202202476_SMLL202202476
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-08-01
PublicationDateYYYYMMDD 2022-08-01
PublicationDate_xml – month: 08
  year: 2022
  text: 2022-08-01
  day: 01
PublicationDecade 2020
PublicationPlace Weinheim
PublicationPlace_xml – name: Weinheim
PublicationTitle Small (Weinheim an der Bergstrasse, Germany)
PublicationYear 2022
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2017; 5
2017; 7
2012; 486
2020; 20
2019; 15
2019; 59
2019; 58
2020; 16
2021; 280
2020; 59
2020; 13
2020; 12
2011; 12
2015; 348
2020; 10
2019; 240
2017; 357
2018; 8
2018; 2
2020; 3
2018; 5
2019; 66
2017; 32
2015; 44
2022; 32
2018; 28
2019; 31
2018; 229
2019; 2
2013; 46
2020; 142
2017; 29
2021; 185
2020; 32
2004; 108
2016; 16
2016; 7
2015; 115
2022
2020; 71
2017; 10
2021; 17
2020; 392
2011; 44
2022; 1
2019; 250
2018; 12
2018; 11
2016; 9
2018; 14
2018; 57
e_1_2_7_5_1
e_1_2_7_3_1
e_1_2_7_9_1
e_1_2_7_7_1
e_1_2_7_19_1
e_1_2_7_60_1
e_1_2_7_17_1
e_1_2_7_62_1
e_1_2_7_15_1
e_1_2_7_41_1
e_1_2_7_1_1
e_1_2_7_13_1
e_1_2_7_43_1
e_1_2_7_11_1
e_1_2_7_45_1
e_1_2_7_47_1
e_1_2_7_26_1
e_1_2_7_49_1
e_1_2_7_28_1
e_1_2_7_50_1
e_1_2_7_25_1
e_1_2_7_31_1
e_1_2_7_52_1
e_1_2_7_23_1
e_1_2_7_33_1
e_1_2_7_54_1
e_1_2_7_21_1
e_1_2_7_35_1
e_1_2_7_56_1
e_1_2_7_37_1
e_1_2_7_58_1
e_1_2_7_39_1
e_1_2_7_6_1
e_1_2_7_4_1
e_1_2_7_8_1
e_1_2_7_18_1
e_1_2_7_16_1
e_1_2_7_40_1
e_1_2_7_61_1
e_1_2_7_2_1
e_1_2_7_14_1
e_1_2_7_42_1
e_1_2_7_63_1
e_1_2_7_12_1
e_1_2_7_44_1
e_1_2_7_10_1
e_1_2_7_46_1
e_1_2_7_48_1
e_1_2_7_27_1
e_1_2_7_29_1
e_1_2_7_51_1
e_1_2_7_30_1
e_1_2_7_53_1
e_1_2_7_24_1
e_1_2_7_32_1
e_1_2_7_55_1
e_1_2_7_22_1
e_1_2_7_34_1
e_1_2_7_57_1
e_1_2_7_20_1
e_1_2_7_36_1
e_1_2_7_59_1
e_1_2_7_38_1
References_xml – volume: 10
  year: 2020
  publication-title: Adv. Energy Mater.
– volume: 12
  start-page: 9441
  year: 2018
  publication-title: ACS Nano
– volume: 357
  start-page: 479
  year: 2017
  publication-title: Science
– volume: 32
  year: 2022
  publication-title: Adv. Funct. Mater.
– year: 2022
  publication-title: Adv. Energy Mater.
– volume: 13
  start-page: 2431
  year: 2020
  publication-title: Energy Environ. Sci.
– volume: 280
  year: 2021
  publication-title: Appl. Catal., B
– volume: 14
  year: 2018
  publication-title: Small
– volume: 12
  start-page: 1413
  year: 2011
  publication-title: ChemPhysChem
– volume: 142
  start-page: 2404
  year: 2020
  publication-title: J. Am. Chem. Soc.
– volume: 8
  year: 2018
  publication-title: ACS Catal.
– volume: 10
  start-page: 1757
  year: 2017
  publication-title: Energy Environ. Sci.
– volume: 16
  start-page: 16
  year: 2016
  publication-title: Nat. Mater.
– volume: 71
  year: 2020
  publication-title: Nano Energy
– volume: 12
  start-page: 764
  year: 2020
  publication-title: Nat. Chem.
– volume: 16
  year: 2020
  publication-title: Small
– volume: 58
  start-page: 1975
  year: 2019
  publication-title: Angew. Chem., Int. Ed.
– volume: 46
  start-page: 1740
  year: 2013
  publication-title: Acc. Chem. Res.
– volume: 2
  start-page: 65
  year: 2018
  publication-title: Nat. Rev. Chem.
– volume: 28
  year: 2018
  publication-title: Adv. Funct. Mater.
– volume: 57
  start-page: 9038
  year: 2018
  publication-title: Angew. Chem., Int. Ed.
– volume: 185
  start-page: 96
  year: 2021
  publication-title: Carbon
– volume: 250
  start-page: 143
  year: 2019
  publication-title: Appl. Catal., B
– volume: 2
  start-page: 1242
  year: 2018
  publication-title: Joule
– volume: 5
  start-page: 1240
  year: 2017
  publication-title: Acc. Chem. Res.
– volume: 1
  year: 2022
  publication-title: Adv. Powder Mater.
– volume: 29
  year: 2017
  publication-title: Adv. Mater.
– volume: 392
  year: 2020
  publication-title: Chem. Eng. J.
– volume: 11
  start-page: 2217
  year: 2018
  publication-title: Nano Res.
– volume: 44
  start-page: 101
  year: 2011
  publication-title: Acc. Chem. Res.
– volume: 57
  start-page: 8525
  year: 2018
  publication-title: Angew. Chem., Int. Ed.
– volume: 5
  year: 2018
  publication-title: Adv. Sci.
– volume: 7
  year: 2016
  publication-title: Nat. Commun.
– volume: 17
  year: 2021
  publication-title: Small
– volume: 3
  start-page: 4539
  year: 2020
  publication-title: ACS Appl. Energy Mater.
– volume: 32
  start-page: 353
  year: 2017
  publication-title: Nano Energy
– volume: 59
  year: 2020
  publication-title: Angew. Chem., Int. Ed.
– volume: 240
  start-page: 112
  year: 2019
  publication-title: Appl. Catal., B
– volume: 66
  year: 2019
  publication-title: Nano Energy
– volume: 486
  start-page: 43
  year: 2012
  publication-title: Nature
– volume: 20
  year: 2020
  publication-title: Nano Energy
– volume: 15
  year: 2019
  publication-title: Small
– volume: 9
  start-page: 3736
  year: 2016
  publication-title: Energy Environ. Sci.
– volume: 31
  year: 2019
  publication-title: Adv. Mater.
– volume: 108
  year: 2004
  publication-title: J. Phys. Chem. B
– volume: 59
  start-page: 2688
  year: 2020
  publication-title: Angew. Chem., Int. Ed.
– volume: 58
  start-page: 2622
  year: 2019
  publication-title: Angew. Chem., Int. Ed.
– volume: 44
  start-page: 2168
  year: 2015
  publication-title: Chem. Soc. Rev.
– volume: 348
  start-page: 1230
  year: 2015
  publication-title: Science
– volume: 7
  year: 2017
  publication-title: Adv. Energy Mater.
– volume: 10
  start-page: 5862
  year: 2020
  publication-title: ACS Catal.
– volume: 32
  year: 2020
  publication-title: Adv. Mater.
– volume: 59
  year: 2020
  publication-title: Angew. Chem., Int. Ed. Engl.
– volume: 59
  start-page: 472
  year: 2019
  publication-title: Nano Energy
– volume: 16
  start-page: 57
  year: 2016
  publication-title: Nat. Mater.
– volume: 2
  start-page: 578
  year: 2019
  publication-title: Nat. Catal.
– volume: 115
  start-page: 28
  year: 2015
  publication-title: Chem. Rev.
– volume: 20
  start-page: 5443
  year: 2020
  publication-title: Nano Lett.
– volume: 229
  start-page: 5
  year: 2018
  publication-title: Mater. Lett.
– ident: e_1_2_7_3_1
  doi: 10.1038/nmat4738
– ident: e_1_2_7_20_1
  doi: 10.1002/anie.202010013
– ident: e_1_2_7_51_1
  doi: 10.1016/j.apcatb.2020.119412
– ident: e_1_2_7_29_1
  doi: 10.1016/j.carbon.2021.09.030
– ident: e_1_2_7_21_1
  doi: 10.1039/C6EE01867J
– ident: e_1_2_7_36_1
  doi: 10.1038/ncomms10667
– ident: e_1_2_7_43_1
  doi: 10.1002/aenm.201601172
– ident: e_1_2_7_58_1
  doi: 10.1002/anie.201810175
– ident: e_1_2_7_32_1
  doi: 10.1002/adma.201904548
– ident: e_1_2_7_52_1
  doi: 10.1002/anie.201804958
– ident: e_1_2_7_2_1
  doi: 10.1016/j.matlet.2018.06.079
– ident: e_1_2_7_11_1
  doi: 10.1126/science.aan2255
– ident: e_1_2_7_17_1
  doi: 10.1016/j.joule.2018.06.019
– ident: e_1_2_7_8_1
  doi: 10.1002/adma.201604685
– ident: e_1_2_7_27_1
  doi: 10.1002/smll.201800563
– ident: e_1_2_7_62_1
  doi: 10.1021/acscatal.0c00936
– ident: e_1_2_7_47_1
  doi: 10.1002/adma.202003134
– ident: e_1_2_7_6_1
  doi: 10.1002/advs.201700691
– ident: e_1_2_7_25_1
  doi: 10.1038/s41557-020-0473-9
– ident: e_1_2_7_53_1
  doi: 10.1002/adma.201907399
– ident: e_1_2_7_55_1
  doi: 10.1002/aenm.202000789
– ident: e_1_2_7_30_1
  doi: 10.1016/j.cej.2019.123655
– ident: e_1_2_7_14_1
  doi: 10.1002/adfm.202112832
– ident: e_1_2_7_35_1
  doi: 10.1002/smll.202104684
– ident: e_1_2_7_38_1
  doi: 10.1021/jp047349j
– ident: e_1_2_7_18_1
  doi: 10.1038/s41570-018-0010-1
– ident: e_1_2_7_1_1
  doi: 10.1038/nature11115
– ident: e_1_2_7_10_1
  doi: 10.1039/C4CS00484A
– ident: e_1_2_7_12_1
  doi: 10.1002/aenm.202200855
– ident: e_1_2_7_46_1
  doi: 10.1039/D0EE00477D
– ident: e_1_2_7_24_1
  doi: 10.1002/smll.202005534
– ident: e_1_2_7_40_1
  doi: 10.1021/ar1000956
– ident: e_1_2_7_56_1
  doi: 10.1016/j.nanoen.2019.02.062
– ident: e_1_2_7_49_1
  doi: 10.1016/j.apmate.2021.11.007
– ident: e_1_2_7_57_1
  doi: 10.1016/j.apcatb.2018.08.074
– ident: e_1_2_7_45_1
  doi: 10.1002/smll.201703739
– ident: e_1_2_7_44_1
  doi: 10.1002/smll.201901518
– ident: e_1_2_7_54_1
  doi: 10.1016/j.nanoen.2016.12.056
– ident: e_1_2_7_15_1
  doi: 10.1016/j.apcatb.2019.03.013
– ident: e_1_2_7_59_1
  doi: 10.1021/jacs.9b11852
– ident: e_1_2_7_60_1
  doi: 10.1016/j.nanoen.2019.104088
– ident: e_1_2_7_48_1
  doi: 10.1021/acsaem.0c00215
– ident: e_1_2_7_34_1
  doi: 10.1002/anie.201914123
– ident: e_1_2_7_7_1
  doi: 10.1002/smll.201801929
– ident: e_1_2_7_26_1
  doi: 10.1021/acsnano.8b04693
– ident: e_1_2_7_42_1
  doi: 10.1021/acs.accounts.7b00077
– ident: e_1_2_7_16_1
  doi: 10.1021/ar300361m
– ident: e_1_2_7_41_1
  doi: 10.1002/cphc.201100137
– ident: e_1_2_7_63_1
  doi: 10.1002/anie.202009700
– ident: e_1_2_7_13_1
  doi: 10.1002/anie.202011378
– ident: e_1_2_7_28_1
  doi: 10.1039/C7EE01628J
– ident: e_1_2_7_5_1
  doi: 10.1038/s41929-019-0304-9
– ident: e_1_2_7_4_1
  doi: 10.1038/nmat4834
– ident: e_1_2_7_37_1
  doi: 10.1002/anie.201811126
– ident: e_1_2_7_22_1
  doi: 10.1002/anie.201803262
– ident: e_1_2_7_23_1
  doi: 10.1007/s12274-017-1840-8
– ident: e_1_2_7_33_1
  doi: 10.1021/acs.nanolett.0c01925
– ident: e_1_2_7_50_1
  doi: 10.1002/adfm.201804520
– ident: e_1_2_7_9_1
  doi: 10.1126/science.aaa8765
– ident: e_1_2_7_31_1
  doi: 10.1016/j.nanoen.2020.104454
– ident: e_1_2_7_61_1
  doi: 10.1016/j.nanoen.2020.104547
– ident: e_1_2_7_19_1
  doi: 10.1021/cr500208k
– ident: e_1_2_7_39_1
  doi: 10.1021/acscatal.8b03008
SSID ssj0031247
Score 2.6519654
Snippet Exploring highly active and cost‐efficient single‐atom catalysts (SACs) for oxygen reduction reaction (ORR) is critical for the large‐scale application of...
Exploring highly active and cost-efficient single-atom catalysts (SACs) for oxygen reduction reaction (ORR) is critical for the large-scale application of...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage e2202476
SubjectTerms Carbon
Chemical reduction
Cobalt
Copper
Density functional theory
Electrocatalysts
Fine structure
Iron
Mathematical analysis
Metal air batteries
Nanosheets
Nanotechnology
Nickel
Nitrogen
nitrogen‐doped carbon
oxygen reduction reaction
Oxygen reduction reactions
Single atom catalysts
Transition metals
Zinc-oxygen batteries
Zn–air battery
Title Transition Metal (Co, Ni, Fe, Cu) Single‐Atom Catalysts Anchored on 3D Nitrogen‐Doped Porous Carbon Nanosheets as Efficient Oxygen Reduction Electrocatalysts for Zn–Air Battery
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fsmll.202202476
https://www.proquest.com/docview/2705964814
https://www.proquest.com/docview/2696860836
Volume 18
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ3datswFMfF6NV2sY9uY9naosJgG8StLSn-uAxpQhltN9oVym6MbB3RstQutgPNrvYIg71LH2hPsnPkxE0HY7BBLvJxjuVE0jl_2Sc_MfbaGFLJfuYZYcDDKAleLAm5b40vrMowZbgC2aNw_1S9PxucrfyLv-VDdBfcaGa4eE0TXGf17i00tL6c0q0DgQ8VEXObCrZIFR13_Chs1O0whqpGegTeWlIbfbF71_1uVrqVmquC1WWcySOml-faFpp82Zk12U7-9TeM4_98mcfs4UKO8mE7fp6we1CsswcrkMKn7MalM1fZxQ8BtTp_Oyr7_OiizyfQ56PZO36ChlP4-e37sCkv-YiuCM3rpubDAoNrBYajq9xDl6YqccCi4V55hW9_LKtyVqNDlaEFBvqyPgdAR13zsWNbYErkH67n6MSPCTLrzmLcbt2Td-2g8Oaf8bA_hhcVb4mh82fsdDL-NNr3Frs9eDmKwtCTmbaB1DEENtQqg0FiTCRCGxhaEtlACzVQxrehr_JQShtrSXQ8jSvUSOaRkM_ZWlEW8IJxIWwiogDtVazQIMHVtjCJDRKwAFHeY96yt9N8gUKnHTmmaQtxFin1R9r1R4-96eyvWgjIHy03loMnXQSDOhUR7XGk4kD12Hb3MU5jujejC8BfOhUEKQoJFd5jwo2Uv7SUnhweHHSvXv6L0yt2n5635YwbbK2pZrCJEqvJttw0-gXkXCD0
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dbtMwFLZgXAAXjF_RMcBISIDUbInt5uey6loVaAvaj4R2YyWxLaZ1yZSkEuVqjzBp78ID8SSc4zTZhoSQQMpNknNiJ7bP-WyffIeQ10ohSnYTRzGlHbCS2gk5Uu4b5TIjEnAZNkB25o8PxIcvvSaaEP-Fqfkh2gU3HBnWXuMAxwXp7UvW0PJkjnsHDA4R-DfJLUzrbWdVuy2DFBRrc4wBruEOUm81vI0u276uf90vXYLNq5DV-pzROkma2tahJsdbiyrZSr__RuT4X69zn9xbIVLar7vQA3JDZw_J3Ss8hY_ID-vRbHAXnWqA6_TtIO_S2VGXjnSXDhbv6B4IzvXPs_N-lZ_QAS4KLcuqpP0M7GuhFQVVvgMqVZFDnwXBnfwULn_Oi3xRgkKRgATY-rz8qjUoxiUdWnoL8Ir007clKNFd5Jm1tRjW2XvSthzA3vQQHnvRPypoTRq6fEwORsP9wdhZJXxwUsCFvsOT2Hg8DrVn_FgkuhcpFTDfeApnRcaLmegJ5RrfFanPuQljjgR5MUxSA54GjD8ha1me6aeEMmYiFnggL0IBAhFMuJmKjBdpo3WQdojTNLdMV2zomJRjLmseZyaxPWTbHh3yppU_rXlA_ii52fQeubIHpWQBpjkSoSc65FV7G0Yybs_EmYYvLRnyFPnIFt4hzHaVv5Qk96aTSXu28S9KL8nt8f50IifvZx-fkTt4vY5u3CRrVbHQzwFxVckLO6Z-AdxvJQ8
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3ditQwFA66guiF_-LoqhEEFaa7bZJJ28thflh1dlx2XVi8KWmT4OJsO7QdcLzyEQTfxQfySTwnnenOCiIo9KbtOU3anJzz5affIeS51oiS_dTTTBsPvKTxIo6U-1b7zIoUQobbIDuVe8fizUnvZOMv_oYfop1ww57h_DV28Lm2u-ekodXZDJcOGBwilJfJFSH9CO16eNgSSEGpLsUYwBruIfPWmrbRZ7sX9S-GpXOsuYlYXcgZ3yRqXdlmp8mnnUWd7mRffuNx_J-3uUVurPAo7TcGdJtcMvkdcn2DpfAu-eHimdvaRfcNgHX6clB06fS0S8emSweLV_QIBGfm59dv_bo4owOcElpWdUX7OXjX0mgKqnwIKnVZgMWC4LCYw-WDoiwWFSiUKUiApy-qj8aAoqroyJFbQEyk7z4vQYkeIsusq8Woyd2TteUA8qYf4LHf-6clbShDl_fI8Xj0frDnrdI9eBmgQunxVNmAq8gEViqRml6sdcikDTSOiWygmOgJ7Vvpi0xybiPFkR5PwRA15FnI-H2ylRe5eUAoYzZmYQDyIhIgEMNwm-nYBrGxxoRZh3jr1k6yFRc6puSYJQ2LM0uwPZK2PTrkRSs_b1hA_ii5vTaeZOUNqoSFmORIRIHokGftbejHuDijcgNfOmHIUiSRK7xDmLOUv5SUHO1PJu3Zw39RekquHgzHyeT19O0jcg0vN1sbt8lWXS7MY4BbdfrE9ahfb2sjxw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Transition+Metal+%28Co%2C+Ni%2C+Fe%2C+Cu%29+Single%E2%80%90Atom+Catalysts+Anchored+on+3D+Nitrogen%E2%80%90Doped+Porous+Carbon+Nanosheets+as+Efficient+Oxygen+Reduction+Electrocatalysts+for+Zn%E2%80%93Air+Battery&rft.jtitle=Small+%28Weinheim+an+der+Bergstrasse%2C+Germany%29&rft.au=Zhang%2C+Mengtian&rft.au=Li%2C+Hao&rft.au=Chen%2C+Junxiang&rft.au=Fei%E2%80%90Xiang+Ma&rft.date=2022-08-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=1613-6810&rft.eissn=1613-6829&rft.volume=18&rft.issue=34&rft_id=info:doi/10.1002%2Fsmll.202202476&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1613-6810&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1613-6810&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1613-6810&client=summon