Single Atom Ru Monolithic Electrode for Efficient Chlorine Evolution and Nitrate Reduction
Fabricating single‐atom electrodes via atomic dispersion of active metal atoms into monolithic metal supports is of great significance to advancing the lab‐to‐fab translation of the electrochemical technologies. Here, we report an inherent oxide anchoring strategy to fasten ligand‐free isolated Ru a...
Saved in:
Published in | Angewandte Chemie International Edition Vol. 61; no. 41; pp. e202208215 - n/a |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Weinheim
Wiley Subscription Services, Inc
10.10.2022
|
Edition | International ed. in English |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Fabricating single‐atom electrodes via atomic dispersion of active metal atoms into monolithic metal supports is of great significance to advancing the lab‐to‐fab translation of the electrochemical technologies. Here, we report an inherent oxide anchoring strategy to fasten ligand‐free isolated Ru atoms on the amorphous layer of monolithic Ti support by regulating the electronic metal‐support interactions. The prepared Ru single atom electrode exhibited exceptional electrochemical chlorine evolution activity, three orders of magnitude higher mass activity than that of commercial dimensionally stable anode, and also selectively reduced nitrate to ammonia with an unprecedented ammonia yield rate of 22.2 mol g−1 h−1 at −0.3 V. Furthermore, the Ru single atom monolithic electrode can be scaled up from 2×2 cm to 25×15 cm at least, thus demonstrating great potential for industrial electrocatalytic applications.
We report an inherent oxide anchoring strategy to synthesize monolithic single atom electrodes. The prepared Ru single atom electrode exhibited exceptional electrochemical chlorine evolution and nitrate reduction performances. The scalability and bifunctionality of Ru single atom electrode highlight its great potential of electrochemical applications. |
---|---|
AbstractList | Fabricating single‐atom electrodes via atomic dispersion of active metal atoms into monolithic metal supports is of great significance to advancing the lab‐to‐fab translation of the electrochemical technologies. Here, we report an inherent oxide anchoring strategy to fasten ligand‐free isolated Ru atoms on the amorphous layer of monolithic Ti support by regulating the electronic metal‐support interactions. The prepared Ru single atom electrode exhibited exceptional electrochemical chlorine evolution activity, three orders of magnitude higher mass activity than that of commercial dimensionally stable anode, and also selectively reduced nitrate to ammonia with an unprecedented ammonia yield rate of 22.2 mol g
−1
h
−1
at −0.3 V. Furthermore, the Ru single atom monolithic electrode can be scaled up from 2×2 cm to 25×15 cm at least, thus demonstrating great potential for industrial electrocatalytic applications. Fabricating single-atom electrodes via atomic dispersion of active metal atoms into monolithic metal supports is of great significance to advancing the lab-to-fab translation of the electrochemical technologies. Here, we report an inherent oxide anchoring strategy to fasten ligand-free isolated Ru atoms on the amorphous layer of monolithic Ti support by regulating the electronic metal-support interactions. The prepared Ru single atom electrode exhibited exceptional electrochemical chlorine evolution activity, three orders of magnitude higher mass activity than that of commercial dimensionally stable anode, and also selectively reduced nitrate to ammonia with an unprecedented ammonia yield rate of 22.2 mol g-1 h-1 at -0.3 V. Furthermore, the Ru single atom monolithic electrode can be scaled up from 2×2 cm to 25×15 cm at least, thus demonstrating great potential for industrial electrocatalytic applications.Fabricating single-atom electrodes via atomic dispersion of active metal atoms into monolithic metal supports is of great significance to advancing the lab-to-fab translation of the electrochemical technologies. Here, we report an inherent oxide anchoring strategy to fasten ligand-free isolated Ru atoms on the amorphous layer of monolithic Ti support by regulating the electronic metal-support interactions. The prepared Ru single atom electrode exhibited exceptional electrochemical chlorine evolution activity, three orders of magnitude higher mass activity than that of commercial dimensionally stable anode, and also selectively reduced nitrate to ammonia with an unprecedented ammonia yield rate of 22.2 mol g-1 h-1 at -0.3 V. Furthermore, the Ru single atom monolithic electrode can be scaled up from 2×2 cm to 25×15 cm at least, thus demonstrating great potential for industrial electrocatalytic applications. Fabricating single‐atom electrodes via atomic dispersion of active metal atoms into monolithic metal supports is of great significance to advancing the lab‐to‐fab translation of the electrochemical technologies. Here, we report an inherent oxide anchoring strategy to fasten ligand‐free isolated Ru atoms on the amorphous layer of monolithic Ti support by regulating the electronic metal‐support interactions. The prepared Ru single atom electrode exhibited exceptional electrochemical chlorine evolution activity, three orders of magnitude higher mass activity than that of commercial dimensionally stable anode, and also selectively reduced nitrate to ammonia with an unprecedented ammonia yield rate of 22.2 mol g−1 h−1 at −0.3 V. Furthermore, the Ru single atom monolithic electrode can be scaled up from 2×2 cm to 25×15 cm at least, thus demonstrating great potential for industrial electrocatalytic applications. We report an inherent oxide anchoring strategy to synthesize monolithic single atom electrodes. The prepared Ru single atom electrode exhibited exceptional electrochemical chlorine evolution and nitrate reduction performances. The scalability and bifunctionality of Ru single atom electrode highlight its great potential of electrochemical applications. Fabricating single‐atom electrodes via atomic dispersion of active metal atoms into monolithic metal supports is of great significance to advancing the lab‐to‐fab translation of the electrochemical technologies. Here, we report an inherent oxide anchoring strategy to fasten ligand‐free isolated Ru atoms on the amorphous layer of monolithic Ti support by regulating the electronic metal‐support interactions. The prepared Ru single atom electrode exhibited exceptional electrochemical chlorine evolution activity, three orders of magnitude higher mass activity than that of commercial dimensionally stable anode, and also selectively reduced nitrate to ammonia with an unprecedented ammonia yield rate of 22.2 mol g−1 h−1 at −0.3 V. Furthermore, the Ru single atom monolithic electrode can be scaled up from 2×2 cm to 25×15 cm at least, thus demonstrating great potential for industrial electrocatalytic applications. |
Author | Wang, Jiaxian Zhang, Lizhi Dai, Jie Hou, Wei Yao, Yancai Zheng, Qian Fang, Chuyang Zhan, Guangming Zhao, Long |
Author_xml | – sequence: 1 givenname: Yancai surname: Yao fullname: Yao, Yancai organization: Shanghai Jiao Tong University – sequence: 2 givenname: Long surname: Zhao fullname: Zhao, Long organization: Shanghai Jiao Tong University – sequence: 3 givenname: Jie surname: Dai fullname: Dai, Jie organization: Shanghai Jiao Tong University – sequence: 4 givenname: Jiaxian surname: Wang fullname: Wang, Jiaxian organization: Shanghai Jiao Tong University – sequence: 5 givenname: Chuyang surname: Fang fullname: Fang, Chuyang organization: Central China Normal University – sequence: 6 givenname: Guangming surname: Zhan fullname: Zhan, Guangming organization: Central China Normal University – sequence: 7 givenname: Qian surname: Zheng fullname: Zheng, Qian organization: Shanghai Jiao Tong University – sequence: 8 givenname: Wei surname: Hou fullname: Hou, Wei organization: Shanghai Jiao Tong University – sequence: 9 givenname: Lizhi orcidid: 0000-0002-6842-9167 surname: Zhang fullname: Zhang, Lizhi email: zhanglizhi@sjtu.edu.cn, zhanglz@mail.ccnu.edu.cn organization: Central China Normal University |
BookMark | eNqFkEtLAzEURoNU0Fa3rgNu3EzNY57LUkYtaIWqGzdDmrnRSJpoJqP035uhoiCIi5BwOSfc7xujkXUWEDqhZEoJYefCapgywhgpGc320CHNGE14UfBRfKecJ0WZ0QM07rqXyJclyQ_R4522TwbwLLgNXvX4xllndHjWEtcGZPCuBaycx7VSWmqwAc-fjfPaAq7fnemDdhYL2-KlDl4EwCtoezlMj9C-EqaD4697gh4u6vv5VXJ9e7mYz64TmdI8S_JcsFyWa5GmioIEqbK8ZWmcQrEu46lijHXbVqCKrOIpoSJXgpVEtUAAKJ-gs92_r9699dCFZqM7CcYIC67vGlaQsuAZSQf09Bf64npv43aRohWnBY9FTVC6o6R3XedBNVIHMUSKCbVpKGmGwpuh8Oa78KhNf2mvXm-E3_4tVDvhQxvY_kM3s-Wi_nE_AXrLlc4 |
CitedBy_id | crossref_primary_10_1002_smll_202400505 crossref_primary_10_1002_anie_202300390 crossref_primary_10_3390_nano13020309 crossref_primary_10_1002_anie_202414202 crossref_primary_10_1016_j_jcis_2024_11_151 crossref_primary_10_1007_s10562_024_04709_8 crossref_primary_10_1016_j_jhazmat_2024_136443 crossref_primary_10_1039_D3QI00732D crossref_primary_10_1002_anie_202423154 crossref_primary_10_1039_D4NJ01829J crossref_primary_10_1073_pnas_2405236121 crossref_primary_10_1002_smll_202303732 crossref_primary_10_1016_j_apcatb_2024_125015 crossref_primary_10_1039_D4CC06290F crossref_primary_10_1002_anie_202216581 crossref_primary_10_1073_pnas_2306461120 crossref_primary_10_1002_anie_202416910 crossref_primary_10_1016_j_cej_2023_145810 crossref_primary_10_1021_acs_jpcc_4c06598 crossref_primary_10_1039_D4CC04897K crossref_primary_10_1002_adfm_202304468 crossref_primary_10_1002_anie_202417293 crossref_primary_10_1016_j_jcis_2024_06_023 crossref_primary_10_1039_D3CY01441J crossref_primary_10_6023_A23040133 crossref_primary_10_1002_adma_202412363 crossref_primary_10_1021_acsestengg_4c00299 crossref_primary_10_1002_adma_202312746 crossref_primary_10_1021_jacs_3c08311 crossref_primary_10_1039_D4SC01220H crossref_primary_10_1016_j_ccr_2024_215723 crossref_primary_10_1021_acsanm_4c03049 crossref_primary_10_1039_D4NR02852J crossref_primary_10_1016_j_jcis_2024_11_250 crossref_primary_10_1002_cctc_202402050 crossref_primary_10_1038_s41893_023_01265_8 crossref_primary_10_1002_adma_202300429 crossref_primary_10_1002_anie_202406046 crossref_primary_10_1002_ange_202406273 crossref_primary_10_1002_ange_202216581 crossref_primary_10_1039_D4CS00420E crossref_primary_10_1002_anie_202401386 crossref_primary_10_1002_sstr_202300240 crossref_primary_10_1002_ange_202414202 crossref_primary_10_1039_D4NR02387K crossref_primary_10_1016_j_apcatb_2025_125034 crossref_primary_10_1039_D2TA07196G crossref_primary_10_1002_adfm_202420282 crossref_primary_10_1007_s40242_025_4207_9 crossref_primary_10_1080_21663831_2023_2209156 crossref_primary_10_1002_ange_202417293 crossref_primary_10_1016_j_apcatb_2022_122192 crossref_primary_10_1038_s41467_023_44469_4 crossref_primary_10_1016_j_checat_2023_100751 crossref_primary_10_1088_1361_6528_ad64d9 crossref_primary_10_1007_s12274_024_6702_6 crossref_primary_10_1002_adfm_202303480 crossref_primary_10_1002_ange_202401386 crossref_primary_10_1039_D3CS00419H crossref_primary_10_1002_anie_202406273 crossref_primary_10_1002_ange_202406046 crossref_primary_10_1002_ange_202423154 crossref_primary_10_1016_j_cej_2024_155683 crossref_primary_10_1016_j_jcis_2023_12_028 crossref_primary_10_1002_aenm_202303792 crossref_primary_10_1002_ange_202416910 crossref_primary_10_1021_acscatal_4c05624 crossref_primary_10_1016_j_checat_2024_101060 crossref_primary_10_1016_j_snb_2024_137112 crossref_primary_10_1016_j_apcatb_2024_124456 crossref_primary_10_1002_ange_202307952 crossref_primary_10_1016_j_chempr_2024_06_014 crossref_primary_10_1002_anie_202219242 crossref_primary_10_1021_acscatal_3c05738 crossref_primary_10_1021_acs_est_3c09759 crossref_primary_10_1021_acsnano_5c00187 crossref_primary_10_1002_adfm_202417486 crossref_primary_10_1002_chem_202303249 crossref_primary_10_1002_ange_202319798 crossref_primary_10_1002_smll_202310467 crossref_primary_10_1002_adsu_202400551 crossref_primary_10_1038_s41467_025_55885_z crossref_primary_10_1039_D3EY00184A crossref_primary_10_1002_adfm_202313307 crossref_primary_10_1021_acsami_4c14621 crossref_primary_10_1039_D4TA02984D crossref_primary_10_1016_j_apcatb_2023_123157 crossref_primary_10_1016_j_apsusc_2023_159238 crossref_primary_10_1002_anie_202307952 crossref_primary_10_1002_adsu_202300275 crossref_primary_10_1038_s41467_024_50343_8 crossref_primary_10_1039_D4CC05101G crossref_primary_10_1002_advs_202405668 crossref_primary_10_1002_ange_202300390 crossref_primary_10_1016_j_watres_2023_120256 crossref_primary_10_1002_smll_202401248 crossref_primary_10_1016_j_jes_2024_07_005 crossref_primary_10_1039_D4CC05747C crossref_primary_10_1021_acs_nanolett_4c06524 crossref_primary_10_1016_j_pmatsci_2024_101294 crossref_primary_10_3390_catal15020137 crossref_primary_10_1021_acssuschemeng_3c01084 crossref_primary_10_1039_D5MH00042D crossref_primary_10_1039_D3SC06337B crossref_primary_10_1016_j_apcatb_2022_122293 crossref_primary_10_1002_ange_202314382 crossref_primary_10_1002_anie_202417092 crossref_primary_10_12677_japc_2024_134062 crossref_primary_10_1002_smll_202412123 crossref_primary_10_1002_cctc_202301641 crossref_primary_10_1002_anie_202414021 crossref_primary_10_1016_j_ese_2023_100383 crossref_primary_10_1021_acsanm_4c01587 crossref_primary_10_1016_j_ccr_2023_215209 crossref_primary_10_1016_j_jece_2024_115144 crossref_primary_10_1002_bkcs_70003 crossref_primary_10_1007_s40242_024_4118_1 crossref_primary_10_1016_j_jcis_2023_02_130 crossref_primary_10_1021_acsmaterialslett_3c01218 crossref_primary_10_1016_j_checat_2023_100786 crossref_primary_10_1016_j_apcatb_2023_122687 crossref_primary_10_1002_anie_202314382 crossref_primary_10_1002_adfm_202307643 crossref_primary_10_1016_j_cej_2024_152543 crossref_primary_10_1021_acs_est_3c06743 crossref_primary_10_1021_acs_jpcc_3c02274 crossref_primary_10_1016_j_apcatb_2024_124783 crossref_primary_10_1039_D4EE03678F crossref_primary_10_1002_advs_202416053 crossref_primary_10_1002_adma_202304021 crossref_primary_10_1002_ange_202414021 crossref_primary_10_1039_D3EE00371J crossref_primary_10_1016_j_apcatb_2023_123260 crossref_primary_10_1002_smtd_202300169 crossref_primary_10_1002_ange_202417092 crossref_primary_10_1002_ange_202219242 crossref_primary_10_1021_acsanm_4c04066 crossref_primary_10_1016_j_ijhydene_2025_02_417 crossref_primary_10_1039_D3DT01412F crossref_primary_10_1002_anie_202319798 crossref_primary_10_1039_D3EY00165B crossref_primary_10_1039_D4EE03970J crossref_primary_10_1016_j_jhazmat_2024_134354 crossref_primary_10_1016_j_apsusc_2025_162891 crossref_primary_10_1021_jacs_3c13834 crossref_primary_10_1039_D4EY00002A |
Cites_doi | 10.1073/pnas.1813605115 10.1021/jacs.6b10435 10.1038/s41563-019-0444-y 10.1002/adma.201803234 10.1038/s41570-018-0010-1 10.1038/s41467-019-09290-y 10.1002/adma.201705369 10.1021/jacs.9b09391 10.1126/sciadv.aax6322 10.1126/science.aaw7515 10.1038/s41929-019-0246-2 10.1002/adma.202105410 10.1038/s41467-019-12510-0 10.1038/s41929-018-0203-5 10.1002/celc.202100147 10.1038/s41557-021-00734-x 10.1002/adma.202003191 10.1002/ange.201911441 10.1038/s41929-017-0008-y 10.1002/anie.201604802 10.1016/j.joule.2018.11.008 10.1038/s41467-019-14272-1 10.1038/s41467-019-13519-1 10.1038/s41467-021-23115-x 10.1016/j.chempr.2018.08.019 10.1021/acssuschemeng.8b01879 10.1038/s41565-021-01022-y 10.1038/s41565-018-0197-9 10.1002/anie.201511804 10.1002/anie.201911441 10.1002/ange.201604802 10.1016/j.xcrp.2019.100004 10.1002/ange.202000016 10.1021/acs.accounts.9b00412 10.1016/j.coelec.2022.100979 10.1002/celc.201900834 10.1039/C9GC01099H 10.1038/s41467-019-12859-2 10.1002/ange.201511804 10.1007/s10853-018-2961-5 10.1002/ange.201703720 10.1038/s41929-021-00621-1 10.1021/jacs.9b04907 10.1021/acs.accounts.8b00490 10.1021/jacs.1c10814 10.1002/anie.202000016 10.1038/s41467-020-14402-0 10.1002/sstr.202000067 10.1016/j.chempr.2017.12.005 10.1039/C8EE03676D 10.1039/C4NR00402G 10.1021/acscatal.9b01159 10.1073/pnas.1319663111 10.1002/aenm.201901945 10.1002/anie.201703720 10.1038/s41467-020-14984-9 |
ContentType | Journal Article |
Copyright | 2022 Wiley‐VCH GmbH 2022 Wiley-VCH GmbH. |
Copyright_xml | – notice: 2022 Wiley‐VCH GmbH – notice: 2022 Wiley-VCH GmbH. |
DBID | AAYXX CITATION 7TM K9. 7X8 |
DOI | 10.1002/anie.202208215 |
DatabaseName | CrossRef Nucleic Acids Abstracts ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic |
DatabaseTitle | CrossRef ProQuest Health & Medical Complete (Alumni) Nucleic Acids Abstracts MEDLINE - Academic |
DatabaseTitleList | CrossRef MEDLINE - Academic ProQuest Health & Medical Complete (Alumni) |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1521-3773 |
Edition | International ed. in English |
EndPage | n/a |
ExternalDocumentID | 10_1002_anie_202208215 ANIE202208215 |
Genre | shortCommunication |
GrantInformation_xml | – fundername: Natural Science Foundation of Shanghai funderid: 22ZR1431700 – fundername: National Key Research and Development Program of China funderid: 2021YFA1201701, 2018YFC1800801 – fundername: National Natural Science Foundation of China funderid: 22102100, 21936003 |
GroupedDBID | --- -DZ -~X .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5RE 5VS 66C 6TJ 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABLJU ABPPZ ABPVW ACAHQ ACCFJ ACCZN ACFBH ACGFS ACIWK ACNCT ACPOU ACPRK ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AEQDE AEUQT AEUYR AFBPY AFFNX AFFPM AFGKR AFPWT AFRAH AFWVQ AFZJQ AHBTC AHMBA AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BTSUX BY8 CS3 D-E D-F D0L DCZOG DPXWK DR1 DR2 DRFUL DRSTM EBS F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES M53 MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D PQQKQ Q.N Q11 QB0 QRW R.K RNS ROL RWI RX1 RYL SUPJJ TN5 UB1 UPT UQL V2E VQA W8V W99 WBFHL WBKPD WH7 WIB WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XSW XV2 YZZ ZZTAW ~IA ~KM ~WT AAYXX ABDBF ABJNI AEYWJ AGHNM AGYGG CITATION 7TM K9. 7X8 |
ID | FETCH-LOGICAL-c4165-66a26c8ba44f1ececf56d246a2e7b8e7b9521bdd9ef7593401a6fa280fde0ee13 |
IEDL.DBID | DR2 |
ISSN | 1433-7851 1521-3773 |
IngestDate | Fri Jul 11 11:30:46 EDT 2025 Fri Jul 25 10:29:06 EDT 2025 Tue Jul 01 01:18:28 EDT 2025 Thu Apr 24 22:49:22 EDT 2025 Wed Jan 22 16:23:50 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 41 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4165-66a26c8ba44f1ececf56d246a2e7b8e7b9521bdd9ef7593401a6fa280fde0ee13 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-6842-9167 |
PQID | 2719317314 |
PQPubID | 946352 |
PageCount | 7 |
ParticipantIDs | proquest_miscellaneous_2708735041 proquest_journals_2719317314 crossref_citationtrail_10_1002_anie_202208215 crossref_primary_10_1002_anie_202208215 wiley_primary_10_1002_anie_202208215_ANIE202208215 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | October 10, 2022 |
PublicationDateYYYYMMDD | 2022-10-10 |
PublicationDate_xml | – month: 10 year: 2022 text: October 10, 2022 day: 10 |
PublicationDecade | 2020 |
PublicationPlace | Weinheim |
PublicationPlace_xml | – name: Weinheim |
PublicationTitle | Angewandte Chemie International Edition |
PublicationYear | 2022 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2021; 8 2019; 9 2019; 3 2021; 4 2019; 6 2019; 5 2021; 2 2019; 52 2019; 2 2019; 10 2019; 54 2019; 12 2020 2020; 59 132 2019; 18 2020; 11 2017 2017; 56 129 2020; 32 2020; 10 2019; 141 2014; 111 2019; 364 2019 2019; 58 131 2017; 139 2022; 144 2021; 13 2018; 6 2018; 2 2016 2016; 55 128 2021; 12 2018; 4 2020; 1 2018; 1 2019; 21 2018; 115 2022; 34 2018; 30 2014; 6 2022; 17 2018; 13 e_1_2_3_50_2 e_1_2_3_4_2 e_1_2_3_16_2 e_1_2_3_37_2 e_1_2_3_2_2 e_1_2_3_18_2 e_1_2_3_39_2 e_1_2_3_12_1 e_1_2_3_56_2 e_1_2_3_8_2 e_1_2_3_33_2 e_1_2_3_58_2 e_1_2_3_6_2 e_1_2_3_14_2 e_1_2_3_35_2 e_1_2_3_31_1 e_1_2_3_52_2 e_1_2_3_10_2 e_1_2_3_54_1 e_1_2_3_60_2 e_1_2_3_49_2 e_1_2_3_28_2 e_1_2_3_45_1 e_1_2_3_24_2 e_1_2_3_47_2 e_1_2_3_24_3 e_1_2_3_26_1 e_1_2_3_41_2 e_1_2_3_64_2 e_1_2_3_20_2 e_1_2_3_43_2 e_1_2_3_62_2 e_1_2_3_22_1 e_1_2_3_1_1 e_1_2_3_19_2 e_1_2_3_38_2 e_1_2_3_3_3 e_1_2_3_5_1 e_1_2_3_3_2 e_1_2_3_17_2 e_1_2_3_59_2 e_1_2_3_59_3 e_1_2_3_9_2 e_1_2_3_11_2 e_1_2_3_34_2 e_1_2_3_57_1 e_1_2_3_55_2 e_1_2_3_7_2 e_1_2_3_13_2 e_1_2_3_15_1 e_1_2_3_36_1 e_1_2_3_30_2 e_1_2_3_51_2 e_1_2_3_32_2 e_1_2_3_53_2 e_1_2_3_61_1 e_1_2_3_40_1 e_1_2_3_27_2 e_1_2_3_29_2 e_1_2_3_21_3 e_1_2_3_23_2 e_1_2_3_25_1 e_1_2_3_48_1 e_1_2_3_25_2 e_1_2_3_46_2 e_1_2_3_65_1 e_1_2_3_44_1 e_1_2_3_21_2 e_1_2_3_42_2 e_1_2_3_63_2 |
References_xml | – volume: 10 year: 2020 publication-title: Adv. Energy Mater. – volume: 2 start-page: 65 year: 2018 end-page: 81 publication-title: Nat. Chem. Rev. – volume: 1 year: 2020 publication-title: Cell Rep. Phys. Sci. – volume: 12 start-page: 1241 year: 2019 end-page: 1248 publication-title: Energy Environ. Sci. – volume: 21 start-page: 3256 year: 2019 end-page: 3262 publication-title: Green Chem. – volume: 2 start-page: 134 year: 2019 end-page: 141 publication-title: Nat. Catal. – volume: 59 132 start-page: 12612 12712 year: 2020 2020 end-page: 12622 12722 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 4 start-page: 285 year: 2018 end-page: 297 publication-title: Chem – volume: 144 start-page: 2171 year: 2022 end-page: 2178 publication-title: J. Am. Chem. Soc. – volume: 3 start-page: 584 year: 2019 end-page: 594 publication-title: Joule – volume: 54 start-page: 949 year: 2019 end-page: 973 publication-title: J. Mater. Sci. – volume: 139 start-page: 1885 year: 2017 end-page: 1893 publication-title: J. Am. Chem. Soc. – volume: 9 start-page: 8561 year: 2019 end-page: 8574 publication-title: ACS Catal. – volume: 115 start-page: 12692 year: 2018 end-page: 12697 publication-title: Proc. Natl. Acad. Sci. USA – volume: 141 start-page: 12717 year: 2019 end-page: 12723 publication-title: J. Am. Chem. Soc. – volume: 52 start-page: 237 year: 2019 end-page: 247 publication-title: Acc. Chem. Res. – volume: 34 year: 2022 publication-title: Adv. Mater. – volume: 10 start-page: 1278 year: 2019 publication-title: Nat. Commun. – volume: 52 start-page: 2858 year: 2019 end-page: 2869 publication-title: Acc. Chem. Res. – volume: 111 start-page: 45 year: 2014 end-page: 50 publication-title: Proc. Natl. Acad. Sci. USA – volume: 13 start-page: 887 year: 2021 end-page: 894 publication-title: Nat. Chem. – volume: 56 129 start-page: 7847 7955 year: 2017 2017 end-page: 7852 7960 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 8 start-page: 1204 year: 2021 end-page: 1210 publication-title: ChemElectroChem – volume: 10 start-page: 4585 year: 2019 publication-title: Nat. Commun. – volume: 11 start-page: 1263 year: 2020 publication-title: Nat. Commun. – volume: 34 year: 2022 publication-title: Curr. Opin. Electrochem. – volume: 6 start-page: 9566 year: 2018 end-page: 9571 publication-title: ACS Sustainable Chem. Eng. – volume: 10 start-page: 5692 year: 2019 publication-title: Nat. Commun. – volume: 13 start-page: 856 year: 2018 end-page: 861 publication-title: Nat. Nanotechnol. – volume: 55 128 start-page: 10800 10958 year: 2016 2016 end-page: 10805 10963 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 6 start-page: 3401 year: 2019 end-page: 3409 publication-title: ChemElectroChem – volume: 17 start-page: 174 year: 2022 end-page: 181 publication-title: Nat. Nanotechnol. – volume: 2 year: 2021 publication-title: Small Struct. – volume: 11 start-page: 412 year: 2020 publication-title: Nat. Commun. – volume: 12 start-page: 2870 year: 2021 publication-title: Nat. Commun. – volume: 2 start-page: 304 year: 2019 end-page: 313 publication-title: Nat. Catal. – volume: 141 start-page: 19964 year: 2019 end-page: 19968 publication-title: J. Am. Chem. Soc. – volume: 18 start-page: 1215 year: 2019 end-page: 1221 publication-title: Nat. Mater. – volume: 4 start-page: 469 year: 2021 end-page: 478 publication-title: Nat. Catal. – volume: 30 year: 2018 publication-title: Adv. Mater. – volume: 58 131 start-page: 18883 19059 year: 2019 2019 end-page: 18887 19063 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 10 start-page: 4855 year: 2019 publication-title: Nat. Commun. – volume: 32 year: 2020 publication-title: Adv. Mater. – volume: 1 start-page: 63 year: 2018 end-page: 72 publication-title: Nat. Catal. – volume: 6 start-page: 5063 year: 2014 end-page: 5074 publication-title: Nanoscale – volume: 5 year: 2019 publication-title: Sci. Adv. – volume: 364 start-page: 1091 year: 2019 end-page: 1094 publication-title: Science – volume: 4 start-page: 2571 year: 2018 end-page: 2586 publication-title: Chem – volume: 11 start-page: 593 year: 2020 publication-title: Nat. Commun. – volume: 55 128 start-page: 7501 7627 year: 2016 2016 end-page: 7504 7630 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – ident: e_1_2_3_19_2 doi: 10.1073/pnas.1813605115 – ident: e_1_2_3_47_2 doi: 10.1021/jacs.6b10435 – ident: e_1_2_3_53_2 doi: 10.1038/s41563-019-0444-y – ident: e_1_2_3_51_2 doi: 10.1002/adma.201803234 – ident: e_1_2_3_13_2 doi: 10.1038/s41570-018-0010-1 – ident: e_1_2_3_29_2 doi: 10.1038/s41467-019-09290-y – ident: e_1_2_3_52_2 doi: 10.1002/adma.201705369 – ident: e_1_2_3_6_2 doi: 10.1021/jacs.9b09391 – ident: e_1_2_3_12_1 – ident: e_1_2_3_37_2 doi: 10.1126/sciadv.aax6322 – ident: e_1_2_3_10_2 doi: 10.1126/science.aaw7515 – ident: e_1_2_3_57_1 – ident: e_1_2_3_11_2 doi: 10.1038/s41929-019-0246-2 – ident: e_1_2_3_27_2 doi: 10.1002/adma.202105410 – ident: e_1_2_3_39_2 doi: 10.1038/s41467-019-12510-0 – ident: e_1_2_3_48_1 – ident: e_1_2_3_9_2 doi: 10.1038/s41929-018-0203-5 – ident: e_1_2_3_26_1 – ident: e_1_2_3_60_2 doi: 10.1002/celc.202100147 – ident: e_1_2_3_17_2 doi: 10.1038/s41557-021-00734-x – ident: e_1_2_3_35_2 doi: 10.1002/adma.202003191 – ident: e_1_2_3_24_3 doi: 10.1002/ange.201911441 – ident: e_1_2_3_61_1 – ident: e_1_2_3_14_2 doi: 10.1038/s41929-017-0008-y – ident: e_1_2_3_21_2 doi: 10.1002/anie.201604802 – ident: e_1_2_3_23_2 doi: 10.1016/j.joule.2018.11.008 – ident: e_1_2_3_7_2 doi: 10.1038/s41467-019-14272-1 – ident: e_1_2_3_49_2 doi: 10.1038/s41467-019-13519-1 – ident: e_1_2_3_5_1 – ident: e_1_2_3_8_2 doi: 10.1038/s41467-021-23115-x – ident: e_1_2_3_4_2 doi: 10.1016/j.chempr.2018.08.019 – ident: e_1_2_3_34_2 doi: 10.1021/acssuschemeng.8b01879 – ident: e_1_2_3_18_2 doi: 10.1038/s41565-021-01022-y – ident: e_1_2_3_38_2 doi: 10.1038/s41565-018-0197-9 – ident: e_1_2_3_59_2 doi: 10.1002/anie.201511804 – ident: e_1_2_3_24_2 doi: 10.1002/anie.201911441 – ident: e_1_2_3_1_1 – ident: e_1_2_3_21_3 doi: 10.1002/ange.201604802 – ident: e_1_2_3_40_1 – ident: e_1_2_3_15_1 – ident: e_1_2_3_16_2 doi: 10.1016/j.xcrp.2019.100004 – ident: e_1_2_3_3_3 doi: 10.1002/ange.202000016 – ident: e_1_2_3_2_2 doi: 10.1021/acs.accounts.9b00412 – ident: e_1_2_3_64_2 doi: 10.1016/j.coelec.2022.100979 – ident: e_1_2_3_54_1 – ident: e_1_2_3_63_2 doi: 10.1002/celc.201900834 – ident: e_1_2_3_65_1 doi: 10.1039/C9GC01099H – ident: e_1_2_3_31_1 – ident: e_1_2_3_50_2 doi: 10.1038/s41467-019-12859-2 – ident: e_1_2_3_59_3 doi: 10.1002/ange.201511804 – ident: e_1_2_3_46_2 doi: 10.1007/s10853-018-2961-5 – ident: e_1_2_3_25_2 doi: 10.1002/ange.201703720 – ident: e_1_2_3_43_2 doi: 10.1038/s41929-021-00621-1 – ident: e_1_2_3_30_2 doi: 10.1021/jacs.9b04907 – ident: e_1_2_3_20_2 doi: 10.1021/acs.accounts.8b00490 – ident: e_1_2_3_45_1 – ident: e_1_2_3_22_1 – ident: e_1_2_3_55_2 doi: 10.1021/jacs.1c10814 – ident: e_1_2_3_36_1 – ident: e_1_2_3_3_2 doi: 10.1002/anie.202000016 – ident: e_1_2_3_28_2 doi: 10.1038/s41467-020-14402-0 – ident: e_1_2_3_41_2 doi: 10.1002/sstr.202000067 – ident: e_1_2_3_56_2 doi: 10.1016/j.chempr.2017.12.005 – ident: e_1_2_3_58_2 doi: 10.1039/C8EE03676D – ident: e_1_2_3_33_2 doi: 10.1039/C4NR00402G – ident: e_1_2_3_62_2 doi: 10.1021/acscatal.9b01159 – ident: e_1_2_3_32_2 doi: 10.1073/pnas.1319663111 – ident: e_1_2_3_44_1 doi: 10.1002/aenm.201901945 – ident: e_1_2_3_25_1 doi: 10.1002/anie.201703720 – ident: e_1_2_3_42_2 doi: 10.1038/s41467-020-14984-9 |
SSID | ssj0028806 |
Score | 2.6701217 |
Snippet | Fabricating single‐atom electrodes via atomic dispersion of active metal atoms into monolithic metal supports is of great significance to advancing the... Fabricating single-atom electrodes via atomic dispersion of active metal atoms into monolithic metal supports is of great significance to advancing the... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | e202208215 |
SubjectTerms | Ammonia Bifunctionality Chlorine Chlorine Evolution Reaction Dimensional stability Dimensionally stable anodes Electrochemistry Electrodes Evolution Inherent Oxide Anchoring Strategy Nitrate reduction Nitrate Reduction Reaction Single Atom Monolithic Electrode Titanium |
Title | Single Atom Ru Monolithic Electrode for Efficient Chlorine Evolution and Nitrate Reduction |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fanie.202208215 https://www.proquest.com/docview/2719317314 https://www.proquest.com/docview/2708735041 |
Volume | 61 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dS8MwEA_ii774LU6nRBB8qjZpm3aPY3So4B6mgvhSkvSKw9mJ23zwr_euX1NBBH0otGlC2-Qu90tz9zvGTjKFRshEwtGRl9E2I6qUAeNYk6UdC660LgUKXw_UxZ1_dR_cf4riL_khmh9upBnFfE0Krs30fEEaShHYuL6TEo1YEWVODluEioYNf5RE4SzDizzPoSz0NWujK8-_Nv9qlRZQ8zNgLSxOf53p-l1LR5Ons_nMnNn3bzSO__mYDbZWwVHeLeVnky1BvsVWenUWuG32cIO2bQy8O5s88-Gc4xxAHnOPI8vjMoNOChyBL48LLgo0Ybz3WHj1AY_fKrnmOk_5YFQQ4fIhkcVS6Q6768e3vQunysfgWIRtgaOUlspGRvt-JsCCzQKVSh9LITQRHh3EAiZNO5CFQcfDlZtWmZaRm6XgAghvly3nkxz2GDdKGSIbRAAkfa2lDhGYBpGNbCi0sNBiTj0eia3IyilnxjgpaZZlQj2WND3WYqdN_ZeSpuPHmu16eJNKXaeJDBHHitATfosdN7exp2n3ROcwmVMdNwq9wPVFi8liLH95UtIdXMbN1f5fGh2wVTonWyncNluevc7hEEHQzBwVgv4BUGz-YA |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VcigX3qhbSmskEKe0sZM42QOH1TbVLm33sLRSxSXYzkStaLOI7raCf8Vf4Rcxk1cpEkJC6oFDDnGclz3j-WzPfAPwqtBkhGwiPZMEBW8zkkpZtJ6zRd536Cvnc6DwwUSPjsJ3x9HxEnxvY2FqfohuwY01oxqvWcF5QXr7mjWUQ7BpgqcUWTHZ-lXu4dcrmrVdvB3vUBe_Vmo3PRyOvCaxgOcIf0Se1kZpl1gThoVEh66IdK5CKsXYJnT0yajZPO9jEUf9gKYgRhdGJX6Ro48oA3ruHbjLacSZrn9n2jFWKVKHOqApCDzOe9_yRPpq--b33rSD1-D2V4hc2bjdB_CjbZ3ateXT1mJut9y334gj_6vmewj3G8QtBrWKPIIlLB_DyrBNdPcEPrwn832GYjCfnYvpQtAwx06BJ6dOpHWSoBwFYXuRVnQbZKXF8KRyXESRXjaqK0yZi8lpxfUrpsyHy6VP4ehWfu0ZLJezEldBWK0t8ykSxlOhMcrEhL2jxCUulkY67IHXCkDmGj52TgtyltVM0irjHsq6HurBm67-55qJ5I8111t5ypoR6SJTMUF1GQcy7MHL7jK1NG8QmRJnC67jJ3EQ-aHsgaqE5y9vygaTcdqdrf3LTZuwMjo82M_2x5O953CPyxkaSH8dludfFviCMN_cblRaJuDjbcvlT7LqXoU |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LT9wwEB5RKrVc2tKH2AKtK7XqKRA7iZM99LDazYqFdlVti4R6SW1nLBCQRWW3CH5V_0r_EeO8KJWqSkgcOOQQx3nY4_F8jme-AXhrJRkhnXBPJYF124ykUhq1Z7TNuwZ9YXwXKPxpLLd2w-29aG8BfjWxMBU_RPvDzWlGOV87BT_J7eYVaaiLwKb1nRBkxHjjVrmD52e0aDv9MBqQhN8JMUy_9re8Oq-AZwh-RJ6USkiTaBWGlqNBYyOZi5BKMdYJHV2yaTrPu2jjqBvQCkRJq0Ti2xx9RB7Qc-_B_ZCa6ZJFDCYtYZUgbajimYLAc2nvG5pIX2xe_97rZvAK2_6JkEsTN3wMv5vOqTxbDjfmM71hLv7ijbxLvfcEHtV4m_UqBVmGBSyewsN-k-buGXz7Qsb7CFlvNj1mkzmjSc65BO4fGJZWKYJyZITsWVqSbZCNZv390m0RWfqzVlymipyND0qmXzZxbLiu9Dns3krTXsBiMS1wBZiWUjs2RUJ4IlRKqJiQd5SYxMRccYMd8Br5Z6ZmY3dJQY6yikdaZE5CWSuhDrxv659UPCT_rLnWDKesno9OMxETUOdxwMMOvGkvU0-77SFV4HTu6vhJHER-yDsgyrHznzdlvfEobc9e3uSm1_Dg82CYfRyNd1ZhyRU7XMD9NVic_ZjjOgG-mX5V6hiD77c9LC8BHLddNA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Single+Atom+Ru+Monolithic+Electrode+for+Efficient+Chlorine+Evolution+and+Nitrate+Reduction&rft.jtitle=Angewandte+Chemie+International+Edition&rft.au=Yao%2C+Yancai&rft.au=Long%2C+Zhao&rft.au=Dai%2C+Jie&rft.au=Wang%2C+Jiaxian&rft.date=2022-10-10&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=1433-7851&rft.eissn=1521-3773&rft.volume=61&rft.issue=41&rft_id=info:doi/10.1002%2Fanie.202208215&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1433-7851&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1433-7851&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1433-7851&client=summon |