Single Atom Ru Monolithic Electrode for Efficient Chlorine Evolution and Nitrate Reduction

Fabricating single‐atom electrodes via atomic dispersion of active metal atoms into monolithic metal supports is of great significance to advancing the lab‐to‐fab translation of the electrochemical technologies. Here, we report an inherent oxide anchoring strategy to fasten ligand‐free isolated Ru a...

Full description

Saved in:
Bibliographic Details
Published inAngewandte Chemie International Edition Vol. 61; no. 41; pp. e202208215 - n/a
Main Authors Yao, Yancai, Zhao, Long, Dai, Jie, Wang, Jiaxian, Fang, Chuyang, Zhan, Guangming, Zheng, Qian, Hou, Wei, Zhang, Lizhi
Format Journal Article
LanguageEnglish
Published Weinheim Wiley Subscription Services, Inc 10.10.2022
EditionInternational ed. in English
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Fabricating single‐atom electrodes via atomic dispersion of active metal atoms into monolithic metal supports is of great significance to advancing the lab‐to‐fab translation of the electrochemical technologies. Here, we report an inherent oxide anchoring strategy to fasten ligand‐free isolated Ru atoms on the amorphous layer of monolithic Ti support by regulating the electronic metal‐support interactions. The prepared Ru single atom electrode exhibited exceptional electrochemical chlorine evolution activity, three orders of magnitude higher mass activity than that of commercial dimensionally stable anode, and also selectively reduced nitrate to ammonia with an unprecedented ammonia yield rate of 22.2 mol g−1 h−1 at −0.3 V. Furthermore, the Ru single atom monolithic electrode can be scaled up from 2×2 cm to 25×15 cm at least, thus demonstrating great potential for industrial electrocatalytic applications. We report an inherent oxide anchoring strategy to synthesize monolithic single atom electrodes. The prepared Ru single atom electrode exhibited exceptional electrochemical chlorine evolution and nitrate reduction performances. The scalability and bifunctionality of Ru single atom electrode highlight its great potential of electrochemical applications.
AbstractList Fabricating single‐atom electrodes via atomic dispersion of active metal atoms into monolithic metal supports is of great significance to advancing the lab‐to‐fab translation of the electrochemical technologies. Here, we report an inherent oxide anchoring strategy to fasten ligand‐free isolated Ru atoms on the amorphous layer of monolithic Ti support by regulating the electronic metal‐support interactions. The prepared Ru single atom electrode exhibited exceptional electrochemical chlorine evolution activity, three orders of magnitude higher mass activity than that of commercial dimensionally stable anode, and also selectively reduced nitrate to ammonia with an unprecedented ammonia yield rate of 22.2 mol g −1  h −1 at −0.3 V. Furthermore, the Ru single atom monolithic electrode can be scaled up from 2×2 cm to 25×15 cm at least, thus demonstrating great potential for industrial electrocatalytic applications.
Fabricating single-atom electrodes via atomic dispersion of active metal atoms into monolithic metal supports is of great significance to advancing the lab-to-fab translation of the electrochemical technologies. Here, we report an inherent oxide anchoring strategy to fasten ligand-free isolated Ru atoms on the amorphous layer of monolithic Ti support by regulating the electronic metal-support interactions. The prepared Ru single atom electrode exhibited exceptional electrochemical chlorine evolution activity, three orders of magnitude higher mass activity than that of commercial dimensionally stable anode, and also selectively reduced nitrate to ammonia with an unprecedented ammonia yield rate of 22.2 mol g-1  h-1 at -0.3 V. Furthermore, the Ru single atom monolithic electrode can be scaled up from 2×2 cm to 25×15 cm at least, thus demonstrating great potential for industrial electrocatalytic applications.Fabricating single-atom electrodes via atomic dispersion of active metal atoms into monolithic metal supports is of great significance to advancing the lab-to-fab translation of the electrochemical technologies. Here, we report an inherent oxide anchoring strategy to fasten ligand-free isolated Ru atoms on the amorphous layer of monolithic Ti support by regulating the electronic metal-support interactions. The prepared Ru single atom electrode exhibited exceptional electrochemical chlorine evolution activity, three orders of magnitude higher mass activity than that of commercial dimensionally stable anode, and also selectively reduced nitrate to ammonia with an unprecedented ammonia yield rate of 22.2 mol g-1  h-1 at -0.3 V. Furthermore, the Ru single atom monolithic electrode can be scaled up from 2×2 cm to 25×15 cm at least, thus demonstrating great potential for industrial electrocatalytic applications.
Fabricating single‐atom electrodes via atomic dispersion of active metal atoms into monolithic metal supports is of great significance to advancing the lab‐to‐fab translation of the electrochemical technologies. Here, we report an inherent oxide anchoring strategy to fasten ligand‐free isolated Ru atoms on the amorphous layer of monolithic Ti support by regulating the electronic metal‐support interactions. The prepared Ru single atom electrode exhibited exceptional electrochemical chlorine evolution activity, three orders of magnitude higher mass activity than that of commercial dimensionally stable anode, and also selectively reduced nitrate to ammonia with an unprecedented ammonia yield rate of 22.2 mol g−1 h−1 at −0.3 V. Furthermore, the Ru single atom monolithic electrode can be scaled up from 2×2 cm to 25×15 cm at least, thus demonstrating great potential for industrial electrocatalytic applications. We report an inherent oxide anchoring strategy to synthesize monolithic single atom electrodes. The prepared Ru single atom electrode exhibited exceptional electrochemical chlorine evolution and nitrate reduction performances. The scalability and bifunctionality of Ru single atom electrode highlight its great potential of electrochemical applications.
Fabricating single‐atom electrodes via atomic dispersion of active metal atoms into monolithic metal supports is of great significance to advancing the lab‐to‐fab translation of the electrochemical technologies. Here, we report an inherent oxide anchoring strategy to fasten ligand‐free isolated Ru atoms on the amorphous layer of monolithic Ti support by regulating the electronic metal‐support interactions. The prepared Ru single atom electrode exhibited exceptional electrochemical chlorine evolution activity, three orders of magnitude higher mass activity than that of commercial dimensionally stable anode, and also selectively reduced nitrate to ammonia with an unprecedented ammonia yield rate of 22.2 mol g−1 h−1 at −0.3 V. Furthermore, the Ru single atom monolithic electrode can be scaled up from 2×2 cm to 25×15 cm at least, thus demonstrating great potential for industrial electrocatalytic applications.
Author Wang, Jiaxian
Zhang, Lizhi
Dai, Jie
Hou, Wei
Yao, Yancai
Zheng, Qian
Fang, Chuyang
Zhan, Guangming
Zhao, Long
Author_xml – sequence: 1
  givenname: Yancai
  surname: Yao
  fullname: Yao, Yancai
  organization: Shanghai Jiao Tong University
– sequence: 2
  givenname: Long
  surname: Zhao
  fullname: Zhao, Long
  organization: Shanghai Jiao Tong University
– sequence: 3
  givenname: Jie
  surname: Dai
  fullname: Dai, Jie
  organization: Shanghai Jiao Tong University
– sequence: 4
  givenname: Jiaxian
  surname: Wang
  fullname: Wang, Jiaxian
  organization: Shanghai Jiao Tong University
– sequence: 5
  givenname: Chuyang
  surname: Fang
  fullname: Fang, Chuyang
  organization: Central China Normal University
– sequence: 6
  givenname: Guangming
  surname: Zhan
  fullname: Zhan, Guangming
  organization: Central China Normal University
– sequence: 7
  givenname: Qian
  surname: Zheng
  fullname: Zheng, Qian
  organization: Shanghai Jiao Tong University
– sequence: 8
  givenname: Wei
  surname: Hou
  fullname: Hou, Wei
  organization: Shanghai Jiao Tong University
– sequence: 9
  givenname: Lizhi
  orcidid: 0000-0002-6842-9167
  surname: Zhang
  fullname: Zhang, Lizhi
  email: zhanglizhi@sjtu.edu.cn, zhanglz@mail.ccnu.edu.cn
  organization: Central China Normal University
BookMark eNqFkEtLAzEURoNU0Fa3rgNu3EzNY57LUkYtaIWqGzdDmrnRSJpoJqP035uhoiCIi5BwOSfc7xujkXUWEDqhZEoJYefCapgywhgpGc320CHNGE14UfBRfKecJ0WZ0QM07rqXyJclyQ_R4522TwbwLLgNXvX4xllndHjWEtcGZPCuBaycx7VSWmqwAc-fjfPaAq7fnemDdhYL2-KlDl4EwCtoezlMj9C-EqaD4697gh4u6vv5VXJ9e7mYz64TmdI8S_JcsFyWa5GmioIEqbK8ZWmcQrEu46lijHXbVqCKrOIpoSJXgpVEtUAAKJ-gs92_r9699dCFZqM7CcYIC67vGlaQsuAZSQf09Bf64npv43aRohWnBY9FTVC6o6R3XedBNVIHMUSKCbVpKGmGwpuh8Oa78KhNf2mvXm-E3_4tVDvhQxvY_kM3s-Wi_nE_AXrLlc4
CitedBy_id crossref_primary_10_1002_smll_202400505
crossref_primary_10_1002_anie_202300390
crossref_primary_10_3390_nano13020309
crossref_primary_10_1002_anie_202414202
crossref_primary_10_1016_j_jcis_2024_11_151
crossref_primary_10_1007_s10562_024_04709_8
crossref_primary_10_1016_j_jhazmat_2024_136443
crossref_primary_10_1039_D3QI00732D
crossref_primary_10_1002_anie_202423154
crossref_primary_10_1039_D4NJ01829J
crossref_primary_10_1073_pnas_2405236121
crossref_primary_10_1002_smll_202303732
crossref_primary_10_1016_j_apcatb_2024_125015
crossref_primary_10_1039_D4CC06290F
crossref_primary_10_1002_anie_202216581
crossref_primary_10_1073_pnas_2306461120
crossref_primary_10_1002_anie_202416910
crossref_primary_10_1016_j_cej_2023_145810
crossref_primary_10_1021_acs_jpcc_4c06598
crossref_primary_10_1039_D4CC04897K
crossref_primary_10_1002_adfm_202304468
crossref_primary_10_1002_anie_202417293
crossref_primary_10_1016_j_jcis_2024_06_023
crossref_primary_10_1039_D3CY01441J
crossref_primary_10_6023_A23040133
crossref_primary_10_1002_adma_202412363
crossref_primary_10_1021_acsestengg_4c00299
crossref_primary_10_1002_adma_202312746
crossref_primary_10_1021_jacs_3c08311
crossref_primary_10_1039_D4SC01220H
crossref_primary_10_1016_j_ccr_2024_215723
crossref_primary_10_1021_acsanm_4c03049
crossref_primary_10_1039_D4NR02852J
crossref_primary_10_1016_j_jcis_2024_11_250
crossref_primary_10_1002_cctc_202402050
crossref_primary_10_1038_s41893_023_01265_8
crossref_primary_10_1002_adma_202300429
crossref_primary_10_1002_anie_202406046
crossref_primary_10_1002_ange_202406273
crossref_primary_10_1002_ange_202216581
crossref_primary_10_1039_D4CS00420E
crossref_primary_10_1002_anie_202401386
crossref_primary_10_1002_sstr_202300240
crossref_primary_10_1002_ange_202414202
crossref_primary_10_1039_D4NR02387K
crossref_primary_10_1016_j_apcatb_2025_125034
crossref_primary_10_1039_D2TA07196G
crossref_primary_10_1002_adfm_202420282
crossref_primary_10_1007_s40242_025_4207_9
crossref_primary_10_1080_21663831_2023_2209156
crossref_primary_10_1002_ange_202417293
crossref_primary_10_1016_j_apcatb_2022_122192
crossref_primary_10_1038_s41467_023_44469_4
crossref_primary_10_1016_j_checat_2023_100751
crossref_primary_10_1088_1361_6528_ad64d9
crossref_primary_10_1007_s12274_024_6702_6
crossref_primary_10_1002_adfm_202303480
crossref_primary_10_1002_ange_202401386
crossref_primary_10_1039_D3CS00419H
crossref_primary_10_1002_anie_202406273
crossref_primary_10_1002_ange_202406046
crossref_primary_10_1002_ange_202423154
crossref_primary_10_1016_j_cej_2024_155683
crossref_primary_10_1016_j_jcis_2023_12_028
crossref_primary_10_1002_aenm_202303792
crossref_primary_10_1002_ange_202416910
crossref_primary_10_1021_acscatal_4c05624
crossref_primary_10_1016_j_checat_2024_101060
crossref_primary_10_1016_j_snb_2024_137112
crossref_primary_10_1016_j_apcatb_2024_124456
crossref_primary_10_1002_ange_202307952
crossref_primary_10_1016_j_chempr_2024_06_014
crossref_primary_10_1002_anie_202219242
crossref_primary_10_1021_acscatal_3c05738
crossref_primary_10_1021_acs_est_3c09759
crossref_primary_10_1021_acsnano_5c00187
crossref_primary_10_1002_adfm_202417486
crossref_primary_10_1002_chem_202303249
crossref_primary_10_1002_ange_202319798
crossref_primary_10_1002_smll_202310467
crossref_primary_10_1002_adsu_202400551
crossref_primary_10_1038_s41467_025_55885_z
crossref_primary_10_1039_D3EY00184A
crossref_primary_10_1002_adfm_202313307
crossref_primary_10_1021_acsami_4c14621
crossref_primary_10_1039_D4TA02984D
crossref_primary_10_1016_j_apcatb_2023_123157
crossref_primary_10_1016_j_apsusc_2023_159238
crossref_primary_10_1002_anie_202307952
crossref_primary_10_1002_adsu_202300275
crossref_primary_10_1038_s41467_024_50343_8
crossref_primary_10_1039_D4CC05101G
crossref_primary_10_1002_advs_202405668
crossref_primary_10_1002_ange_202300390
crossref_primary_10_1016_j_watres_2023_120256
crossref_primary_10_1002_smll_202401248
crossref_primary_10_1016_j_jes_2024_07_005
crossref_primary_10_1039_D4CC05747C
crossref_primary_10_1021_acs_nanolett_4c06524
crossref_primary_10_1016_j_pmatsci_2024_101294
crossref_primary_10_3390_catal15020137
crossref_primary_10_1021_acssuschemeng_3c01084
crossref_primary_10_1039_D5MH00042D
crossref_primary_10_1039_D3SC06337B
crossref_primary_10_1016_j_apcatb_2022_122293
crossref_primary_10_1002_ange_202314382
crossref_primary_10_1002_anie_202417092
crossref_primary_10_12677_japc_2024_134062
crossref_primary_10_1002_smll_202412123
crossref_primary_10_1002_cctc_202301641
crossref_primary_10_1002_anie_202414021
crossref_primary_10_1016_j_ese_2023_100383
crossref_primary_10_1021_acsanm_4c01587
crossref_primary_10_1016_j_ccr_2023_215209
crossref_primary_10_1016_j_jece_2024_115144
crossref_primary_10_1002_bkcs_70003
crossref_primary_10_1007_s40242_024_4118_1
crossref_primary_10_1016_j_jcis_2023_02_130
crossref_primary_10_1021_acsmaterialslett_3c01218
crossref_primary_10_1016_j_checat_2023_100786
crossref_primary_10_1016_j_apcatb_2023_122687
crossref_primary_10_1002_anie_202314382
crossref_primary_10_1002_adfm_202307643
crossref_primary_10_1016_j_cej_2024_152543
crossref_primary_10_1021_acs_est_3c06743
crossref_primary_10_1021_acs_jpcc_3c02274
crossref_primary_10_1016_j_apcatb_2024_124783
crossref_primary_10_1039_D4EE03678F
crossref_primary_10_1002_advs_202416053
crossref_primary_10_1002_adma_202304021
crossref_primary_10_1002_ange_202414021
crossref_primary_10_1039_D3EE00371J
crossref_primary_10_1016_j_apcatb_2023_123260
crossref_primary_10_1002_smtd_202300169
crossref_primary_10_1002_ange_202417092
crossref_primary_10_1002_ange_202219242
crossref_primary_10_1021_acsanm_4c04066
crossref_primary_10_1016_j_ijhydene_2025_02_417
crossref_primary_10_1039_D3DT01412F
crossref_primary_10_1002_anie_202319798
crossref_primary_10_1039_D3EY00165B
crossref_primary_10_1039_D4EE03970J
crossref_primary_10_1016_j_jhazmat_2024_134354
crossref_primary_10_1016_j_apsusc_2025_162891
crossref_primary_10_1021_jacs_3c13834
crossref_primary_10_1039_D4EY00002A
Cites_doi 10.1073/pnas.1813605115
10.1021/jacs.6b10435
10.1038/s41563-019-0444-y
10.1002/adma.201803234
10.1038/s41570-018-0010-1
10.1038/s41467-019-09290-y
10.1002/adma.201705369
10.1021/jacs.9b09391
10.1126/sciadv.aax6322
10.1126/science.aaw7515
10.1038/s41929-019-0246-2
10.1002/adma.202105410
10.1038/s41467-019-12510-0
10.1038/s41929-018-0203-5
10.1002/celc.202100147
10.1038/s41557-021-00734-x
10.1002/adma.202003191
10.1002/ange.201911441
10.1038/s41929-017-0008-y
10.1002/anie.201604802
10.1016/j.joule.2018.11.008
10.1038/s41467-019-14272-1
10.1038/s41467-019-13519-1
10.1038/s41467-021-23115-x
10.1016/j.chempr.2018.08.019
10.1021/acssuschemeng.8b01879
10.1038/s41565-021-01022-y
10.1038/s41565-018-0197-9
10.1002/anie.201511804
10.1002/anie.201911441
10.1002/ange.201604802
10.1016/j.xcrp.2019.100004
10.1002/ange.202000016
10.1021/acs.accounts.9b00412
10.1016/j.coelec.2022.100979
10.1002/celc.201900834
10.1039/C9GC01099H
10.1038/s41467-019-12859-2
10.1002/ange.201511804
10.1007/s10853-018-2961-5
10.1002/ange.201703720
10.1038/s41929-021-00621-1
10.1021/jacs.9b04907
10.1021/acs.accounts.8b00490
10.1021/jacs.1c10814
10.1002/anie.202000016
10.1038/s41467-020-14402-0
10.1002/sstr.202000067
10.1016/j.chempr.2017.12.005
10.1039/C8EE03676D
10.1039/C4NR00402G
10.1021/acscatal.9b01159
10.1073/pnas.1319663111
10.1002/aenm.201901945
10.1002/anie.201703720
10.1038/s41467-020-14984-9
ContentType Journal Article
Copyright 2022 Wiley‐VCH GmbH
2022 Wiley-VCH GmbH.
Copyright_xml – notice: 2022 Wiley‐VCH GmbH
– notice: 2022 Wiley-VCH GmbH.
DBID AAYXX
CITATION
7TM
K9.
7X8
DOI 10.1002/anie.202208215
DatabaseName CrossRef
Nucleic Acids Abstracts
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
DatabaseTitle CrossRef
ProQuest Health & Medical Complete (Alumni)
Nucleic Acids Abstracts
MEDLINE - Academic
DatabaseTitleList CrossRef
MEDLINE - Academic

ProQuest Health & Medical Complete (Alumni)
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1521-3773
Edition International ed. in English
EndPage n/a
ExternalDocumentID 10_1002_anie_202208215
ANIE202208215
Genre shortCommunication
GrantInformation_xml – fundername: Natural Science Foundation of Shanghai
  funderid: 22ZR1431700
– fundername: National Key Research and Development Program of China
  funderid: 2021YFA1201701, 2018YFC1800801
– fundername: National Natural Science Foundation of China
  funderid: 22102100, 21936003
GroupedDBID ---
-DZ
-~X
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5RE
5VS
66C
6TJ
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABLJU
ABPPZ
ABPVW
ACAHQ
ACCFJ
ACCZN
ACFBH
ACGFS
ACIWK
ACNCT
ACPOU
ACPRK
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AEQDE
AEUQT
AEUYR
AFBPY
AFFNX
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AFZJQ
AHBTC
AHMBA
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BTSUX
BY8
CS3
D-E
D-F
D0L
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
M53
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RX1
RYL
SUPJJ
TN5
UB1
UPT
UQL
V2E
VQA
W8V
W99
WBFHL
WBKPD
WH7
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XSW
XV2
YZZ
ZZTAW
~IA
~KM
~WT
AAYXX
ABDBF
ABJNI
AEYWJ
AGHNM
AGYGG
CITATION
7TM
K9.
7X8
ID FETCH-LOGICAL-c4165-66a26c8ba44f1ececf56d246a2e7b8e7b9521bdd9ef7593401a6fa280fde0ee13
IEDL.DBID DR2
ISSN 1433-7851
1521-3773
IngestDate Fri Jul 11 11:30:46 EDT 2025
Fri Jul 25 10:29:06 EDT 2025
Tue Jul 01 01:18:28 EDT 2025
Thu Apr 24 22:49:22 EDT 2025
Wed Jan 22 16:23:50 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 41
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4165-66a26c8ba44f1ececf56d246a2e7b8e7b9521bdd9ef7593401a6fa280fde0ee13
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-6842-9167
PQID 2719317314
PQPubID 946352
PageCount 7
ParticipantIDs proquest_miscellaneous_2708735041
proquest_journals_2719317314
crossref_citationtrail_10_1002_anie_202208215
crossref_primary_10_1002_anie_202208215
wiley_primary_10_1002_anie_202208215_ANIE202208215
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate October 10, 2022
PublicationDateYYYYMMDD 2022-10-10
PublicationDate_xml – month: 10
  year: 2022
  text: October 10, 2022
  day: 10
PublicationDecade 2020
PublicationPlace Weinheim
PublicationPlace_xml – name: Weinheim
PublicationTitle Angewandte Chemie International Edition
PublicationYear 2022
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2021; 8
2019; 9
2019; 3
2021; 4
2019; 6
2019; 5
2021; 2
2019; 52
2019; 2
2019; 10
2019; 54
2019; 12
2020 2020; 59 132
2019; 18
2020; 11
2017 2017; 56 129
2020; 32
2020; 10
2019; 141
2014; 111
2019; 364
2019 2019; 58 131
2017; 139
2022; 144
2021; 13
2018; 6
2018; 2
2016 2016; 55 128
2021; 12
2018; 4
2020; 1
2018; 1
2019; 21
2018; 115
2022; 34
2018; 30
2014; 6
2022; 17
2018; 13
e_1_2_3_50_2
e_1_2_3_4_2
e_1_2_3_16_2
e_1_2_3_37_2
e_1_2_3_2_2
e_1_2_3_18_2
e_1_2_3_39_2
e_1_2_3_12_1
e_1_2_3_56_2
e_1_2_3_8_2
e_1_2_3_33_2
e_1_2_3_58_2
e_1_2_3_6_2
e_1_2_3_14_2
e_1_2_3_35_2
e_1_2_3_31_1
e_1_2_3_52_2
e_1_2_3_10_2
e_1_2_3_54_1
e_1_2_3_60_2
e_1_2_3_49_2
e_1_2_3_28_2
e_1_2_3_45_1
e_1_2_3_24_2
e_1_2_3_47_2
e_1_2_3_24_3
e_1_2_3_26_1
e_1_2_3_41_2
e_1_2_3_64_2
e_1_2_3_20_2
e_1_2_3_43_2
e_1_2_3_62_2
e_1_2_3_22_1
e_1_2_3_1_1
e_1_2_3_19_2
e_1_2_3_38_2
e_1_2_3_3_3
e_1_2_3_5_1
e_1_2_3_3_2
e_1_2_3_17_2
e_1_2_3_59_2
e_1_2_3_59_3
e_1_2_3_9_2
e_1_2_3_11_2
e_1_2_3_34_2
e_1_2_3_57_1
e_1_2_3_55_2
e_1_2_3_7_2
e_1_2_3_13_2
e_1_2_3_15_1
e_1_2_3_36_1
e_1_2_3_30_2
e_1_2_3_51_2
e_1_2_3_32_2
e_1_2_3_53_2
e_1_2_3_61_1
e_1_2_3_40_1
e_1_2_3_27_2
e_1_2_3_29_2
e_1_2_3_21_3
e_1_2_3_23_2
e_1_2_3_25_1
e_1_2_3_48_1
e_1_2_3_25_2
e_1_2_3_46_2
e_1_2_3_65_1
e_1_2_3_44_1
e_1_2_3_21_2
e_1_2_3_42_2
e_1_2_3_63_2
References_xml – volume: 10
  year: 2020
  publication-title: Adv. Energy Mater.
– volume: 2
  start-page: 65
  year: 2018
  end-page: 81
  publication-title: Nat. Chem. Rev.
– volume: 1
  year: 2020
  publication-title: Cell Rep. Phys. Sci.
– volume: 12
  start-page: 1241
  year: 2019
  end-page: 1248
  publication-title: Energy Environ. Sci.
– volume: 21
  start-page: 3256
  year: 2019
  end-page: 3262
  publication-title: Green Chem.
– volume: 2
  start-page: 134
  year: 2019
  end-page: 141
  publication-title: Nat. Catal.
– volume: 59 132
  start-page: 12612 12712
  year: 2020 2020
  end-page: 12622 12722
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 4
  start-page: 285
  year: 2018
  end-page: 297
  publication-title: Chem
– volume: 144
  start-page: 2171
  year: 2022
  end-page: 2178
  publication-title: J. Am. Chem. Soc.
– volume: 3
  start-page: 584
  year: 2019
  end-page: 594
  publication-title: Joule
– volume: 54
  start-page: 949
  year: 2019
  end-page: 973
  publication-title: J. Mater. Sci.
– volume: 139
  start-page: 1885
  year: 2017
  end-page: 1893
  publication-title: J. Am. Chem. Soc.
– volume: 9
  start-page: 8561
  year: 2019
  end-page: 8574
  publication-title: ACS Catal.
– volume: 115
  start-page: 12692
  year: 2018
  end-page: 12697
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 141
  start-page: 12717
  year: 2019
  end-page: 12723
  publication-title: J. Am. Chem. Soc.
– volume: 52
  start-page: 237
  year: 2019
  end-page: 247
  publication-title: Acc. Chem. Res.
– volume: 34
  year: 2022
  publication-title: Adv. Mater.
– volume: 10
  start-page: 1278
  year: 2019
  publication-title: Nat. Commun.
– volume: 52
  start-page: 2858
  year: 2019
  end-page: 2869
  publication-title: Acc. Chem. Res.
– volume: 111
  start-page: 45
  year: 2014
  end-page: 50
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 13
  start-page: 887
  year: 2021
  end-page: 894
  publication-title: Nat. Chem.
– volume: 56 129
  start-page: 7847 7955
  year: 2017 2017
  end-page: 7852 7960
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 8
  start-page: 1204
  year: 2021
  end-page: 1210
  publication-title: ChemElectroChem
– volume: 10
  start-page: 4585
  year: 2019
  publication-title: Nat. Commun.
– volume: 11
  start-page: 1263
  year: 2020
  publication-title: Nat. Commun.
– volume: 34
  year: 2022
  publication-title: Curr. Opin. Electrochem.
– volume: 6
  start-page: 9566
  year: 2018
  end-page: 9571
  publication-title: ACS Sustainable Chem. Eng.
– volume: 10
  start-page: 5692
  year: 2019
  publication-title: Nat. Commun.
– volume: 13
  start-page: 856
  year: 2018
  end-page: 861
  publication-title: Nat. Nanotechnol.
– volume: 55 128
  start-page: 10800 10958
  year: 2016 2016
  end-page: 10805 10963
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 6
  start-page: 3401
  year: 2019
  end-page: 3409
  publication-title: ChemElectroChem
– volume: 17
  start-page: 174
  year: 2022
  end-page: 181
  publication-title: Nat. Nanotechnol.
– volume: 2
  year: 2021
  publication-title: Small Struct.
– volume: 11
  start-page: 412
  year: 2020
  publication-title: Nat. Commun.
– volume: 12
  start-page: 2870
  year: 2021
  publication-title: Nat. Commun.
– volume: 2
  start-page: 304
  year: 2019
  end-page: 313
  publication-title: Nat. Catal.
– volume: 141
  start-page: 19964
  year: 2019
  end-page: 19968
  publication-title: J. Am. Chem. Soc.
– volume: 18
  start-page: 1215
  year: 2019
  end-page: 1221
  publication-title: Nat. Mater.
– volume: 4
  start-page: 469
  year: 2021
  end-page: 478
  publication-title: Nat. Catal.
– volume: 30
  year: 2018
  publication-title: Adv. Mater.
– volume: 58 131
  start-page: 18883 19059
  year: 2019 2019
  end-page: 18887 19063
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 10
  start-page: 4855
  year: 2019
  publication-title: Nat. Commun.
– volume: 32
  year: 2020
  publication-title: Adv. Mater.
– volume: 1
  start-page: 63
  year: 2018
  end-page: 72
  publication-title: Nat. Catal.
– volume: 6
  start-page: 5063
  year: 2014
  end-page: 5074
  publication-title: Nanoscale
– volume: 5
  year: 2019
  publication-title: Sci. Adv.
– volume: 364
  start-page: 1091
  year: 2019
  end-page: 1094
  publication-title: Science
– volume: 4
  start-page: 2571
  year: 2018
  end-page: 2586
  publication-title: Chem
– volume: 11
  start-page: 593
  year: 2020
  publication-title: Nat. Commun.
– volume: 55 128
  start-page: 7501 7627
  year: 2016 2016
  end-page: 7504 7630
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– ident: e_1_2_3_19_2
  doi: 10.1073/pnas.1813605115
– ident: e_1_2_3_47_2
  doi: 10.1021/jacs.6b10435
– ident: e_1_2_3_53_2
  doi: 10.1038/s41563-019-0444-y
– ident: e_1_2_3_51_2
  doi: 10.1002/adma.201803234
– ident: e_1_2_3_13_2
  doi: 10.1038/s41570-018-0010-1
– ident: e_1_2_3_29_2
  doi: 10.1038/s41467-019-09290-y
– ident: e_1_2_3_52_2
  doi: 10.1002/adma.201705369
– ident: e_1_2_3_6_2
  doi: 10.1021/jacs.9b09391
– ident: e_1_2_3_12_1
– ident: e_1_2_3_37_2
  doi: 10.1126/sciadv.aax6322
– ident: e_1_2_3_10_2
  doi: 10.1126/science.aaw7515
– ident: e_1_2_3_57_1
– ident: e_1_2_3_11_2
  doi: 10.1038/s41929-019-0246-2
– ident: e_1_2_3_27_2
  doi: 10.1002/adma.202105410
– ident: e_1_2_3_39_2
  doi: 10.1038/s41467-019-12510-0
– ident: e_1_2_3_48_1
– ident: e_1_2_3_9_2
  doi: 10.1038/s41929-018-0203-5
– ident: e_1_2_3_26_1
– ident: e_1_2_3_60_2
  doi: 10.1002/celc.202100147
– ident: e_1_2_3_17_2
  doi: 10.1038/s41557-021-00734-x
– ident: e_1_2_3_35_2
  doi: 10.1002/adma.202003191
– ident: e_1_2_3_24_3
  doi: 10.1002/ange.201911441
– ident: e_1_2_3_61_1
– ident: e_1_2_3_14_2
  doi: 10.1038/s41929-017-0008-y
– ident: e_1_2_3_21_2
  doi: 10.1002/anie.201604802
– ident: e_1_2_3_23_2
  doi: 10.1016/j.joule.2018.11.008
– ident: e_1_2_3_7_2
  doi: 10.1038/s41467-019-14272-1
– ident: e_1_2_3_49_2
  doi: 10.1038/s41467-019-13519-1
– ident: e_1_2_3_5_1
– ident: e_1_2_3_8_2
  doi: 10.1038/s41467-021-23115-x
– ident: e_1_2_3_4_2
  doi: 10.1016/j.chempr.2018.08.019
– ident: e_1_2_3_34_2
  doi: 10.1021/acssuschemeng.8b01879
– ident: e_1_2_3_18_2
  doi: 10.1038/s41565-021-01022-y
– ident: e_1_2_3_38_2
  doi: 10.1038/s41565-018-0197-9
– ident: e_1_2_3_59_2
  doi: 10.1002/anie.201511804
– ident: e_1_2_3_24_2
  doi: 10.1002/anie.201911441
– ident: e_1_2_3_1_1
– ident: e_1_2_3_21_3
  doi: 10.1002/ange.201604802
– ident: e_1_2_3_40_1
– ident: e_1_2_3_15_1
– ident: e_1_2_3_16_2
  doi: 10.1016/j.xcrp.2019.100004
– ident: e_1_2_3_3_3
  doi: 10.1002/ange.202000016
– ident: e_1_2_3_2_2
  doi: 10.1021/acs.accounts.9b00412
– ident: e_1_2_3_64_2
  doi: 10.1016/j.coelec.2022.100979
– ident: e_1_2_3_54_1
– ident: e_1_2_3_63_2
  doi: 10.1002/celc.201900834
– ident: e_1_2_3_65_1
  doi: 10.1039/C9GC01099H
– ident: e_1_2_3_31_1
– ident: e_1_2_3_50_2
  doi: 10.1038/s41467-019-12859-2
– ident: e_1_2_3_59_3
  doi: 10.1002/ange.201511804
– ident: e_1_2_3_46_2
  doi: 10.1007/s10853-018-2961-5
– ident: e_1_2_3_25_2
  doi: 10.1002/ange.201703720
– ident: e_1_2_3_43_2
  doi: 10.1038/s41929-021-00621-1
– ident: e_1_2_3_30_2
  doi: 10.1021/jacs.9b04907
– ident: e_1_2_3_20_2
  doi: 10.1021/acs.accounts.8b00490
– ident: e_1_2_3_45_1
– ident: e_1_2_3_22_1
– ident: e_1_2_3_55_2
  doi: 10.1021/jacs.1c10814
– ident: e_1_2_3_36_1
– ident: e_1_2_3_3_2
  doi: 10.1002/anie.202000016
– ident: e_1_2_3_28_2
  doi: 10.1038/s41467-020-14402-0
– ident: e_1_2_3_41_2
  doi: 10.1002/sstr.202000067
– ident: e_1_2_3_56_2
  doi: 10.1016/j.chempr.2017.12.005
– ident: e_1_2_3_58_2
  doi: 10.1039/C8EE03676D
– ident: e_1_2_3_33_2
  doi: 10.1039/C4NR00402G
– ident: e_1_2_3_62_2
  doi: 10.1021/acscatal.9b01159
– ident: e_1_2_3_32_2
  doi: 10.1073/pnas.1319663111
– ident: e_1_2_3_44_1
  doi: 10.1002/aenm.201901945
– ident: e_1_2_3_25_1
  doi: 10.1002/anie.201703720
– ident: e_1_2_3_42_2
  doi: 10.1038/s41467-020-14984-9
SSID ssj0028806
Score 2.6701217
Snippet Fabricating single‐atom electrodes via atomic dispersion of active metal atoms into monolithic metal supports is of great significance to advancing the...
Fabricating single-atom electrodes via atomic dispersion of active metal atoms into monolithic metal supports is of great significance to advancing the...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage e202208215
SubjectTerms Ammonia
Bifunctionality
Chlorine
Chlorine Evolution Reaction
Dimensional stability
Dimensionally stable anodes
Electrochemistry
Electrodes
Evolution
Inherent Oxide Anchoring Strategy
Nitrate reduction
Nitrate Reduction Reaction
Single Atom Monolithic Electrode
Titanium
Title Single Atom Ru Monolithic Electrode for Efficient Chlorine Evolution and Nitrate Reduction
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fanie.202208215
https://www.proquest.com/docview/2719317314
https://www.proquest.com/docview/2708735041
Volume 61
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dS8MwEA_ii774LU6nRBB8qjZpm3aPY3So4B6mgvhSkvSKw9mJ23zwr_euX1NBBH0otGlC2-Qu90tz9zvGTjKFRshEwtGRl9E2I6qUAeNYk6UdC660LgUKXw_UxZ1_dR_cf4riL_khmh9upBnFfE0Krs30fEEaShHYuL6TEo1YEWVODluEioYNf5RE4SzDizzPoSz0NWujK8-_Nv9qlRZQ8zNgLSxOf53p-l1LR5Ons_nMnNn3bzSO__mYDbZWwVHeLeVnky1BvsVWenUWuG32cIO2bQy8O5s88-Gc4xxAHnOPI8vjMoNOChyBL48LLgo0Ybz3WHj1AY_fKrnmOk_5YFQQ4fIhkcVS6Q6768e3vQunysfgWIRtgaOUlspGRvt-JsCCzQKVSh9LITQRHh3EAiZNO5CFQcfDlZtWmZaRm6XgAghvly3nkxz2GDdKGSIbRAAkfa2lDhGYBpGNbCi0sNBiTj0eia3IyilnxjgpaZZlQj2WND3WYqdN_ZeSpuPHmu16eJNKXaeJDBHHitATfosdN7exp2n3ROcwmVMdNwq9wPVFi8liLH95UtIdXMbN1f5fGh2wVTonWyncNluevc7hEEHQzBwVgv4BUGz-YA
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VcigX3qhbSmskEKe0sZM42QOH1TbVLm33sLRSxSXYzkStaLOI7raCf8Vf4Rcxk1cpEkJC6oFDDnGclz3j-WzPfAPwqtBkhGwiPZMEBW8zkkpZtJ6zRd536Cvnc6DwwUSPjsJ3x9HxEnxvY2FqfohuwY01oxqvWcF5QXr7mjWUQ7BpgqcUWTHZ-lXu4dcrmrVdvB3vUBe_Vmo3PRyOvCaxgOcIf0Se1kZpl1gThoVEh66IdK5CKsXYJnT0yajZPO9jEUf9gKYgRhdGJX6Ro48oA3ruHbjLacSZrn9n2jFWKVKHOqApCDzOe9_yRPpq--b33rSD1-D2V4hc2bjdB_CjbZ3ateXT1mJut9y334gj_6vmewj3G8QtBrWKPIIlLB_DyrBNdPcEPrwn832GYjCfnYvpQtAwx06BJ6dOpHWSoBwFYXuRVnQbZKXF8KRyXESRXjaqK0yZi8lpxfUrpsyHy6VP4ehWfu0ZLJezEldBWK0t8ykSxlOhMcrEhL2jxCUulkY67IHXCkDmGj52TgtyltVM0irjHsq6HurBm67-55qJ5I8111t5ypoR6SJTMUF1GQcy7MHL7jK1NG8QmRJnC67jJ3EQ-aHsgaqE5y9vygaTcdqdrf3LTZuwMjo82M_2x5O953CPyxkaSH8dludfFviCMN_cblRaJuDjbcvlT7LqXoU
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LT9wwEB5RKrVc2tKH2AKtK7XqKRA7iZM99LDazYqFdlVti4R6SW1nLBCQRWW3CH5V_0r_EeO8KJWqSkgcOOQQx3nY4_F8jme-AXhrJRkhnXBPJYF124ykUhq1Z7TNuwZ9YXwXKPxpLLd2w-29aG8BfjWxMBU_RPvDzWlGOV87BT_J7eYVaaiLwKb1nRBkxHjjVrmD52e0aDv9MBqQhN8JMUy_9re8Oq-AZwh-RJ6USkiTaBWGlqNBYyOZi5BKMdYJHV2yaTrPu2jjqBvQCkRJq0Ti2xx9RB7Qc-_B_ZCa6ZJFDCYtYZUgbajimYLAc2nvG5pIX2xe_97rZvAK2_6JkEsTN3wMv5vOqTxbDjfmM71hLv7ijbxLvfcEHtV4m_UqBVmGBSyewsN-k-buGXz7Qsb7CFlvNj1mkzmjSc65BO4fGJZWKYJyZITsWVqSbZCNZv390m0RWfqzVlymipyND0qmXzZxbLiu9Dns3krTXsBiMS1wBZiWUjs2RUJ4IlRKqJiQd5SYxMRccYMd8Br5Z6ZmY3dJQY6yikdaZE5CWSuhDrxv659UPCT_rLnWDKesno9OMxETUOdxwMMOvGkvU0-77SFV4HTu6vhJHER-yDsgyrHznzdlvfEobc9e3uSm1_Dg82CYfRyNd1ZhyRU7XMD9NVic_ZjjOgG-mX5V6hiD77c9LC8BHLddNA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Single+Atom+Ru+Monolithic+Electrode+for+Efficient+Chlorine+Evolution+and+Nitrate+Reduction&rft.jtitle=Angewandte+Chemie+International+Edition&rft.au=Yao%2C+Yancai&rft.au=Long%2C+Zhao&rft.au=Dai%2C+Jie&rft.au=Wang%2C+Jiaxian&rft.date=2022-10-10&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=1433-7851&rft.eissn=1521-3773&rft.volume=61&rft.issue=41&rft_id=info:doi/10.1002%2Fanie.202208215&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1433-7851&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1433-7851&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1433-7851&client=summon