Multimodal cross‐examination of progressive apraxia of speech by diffusion tensor imaging‐based tractography and Tau‐PET scans

Progressive apraxia of speech (PAOS) is a 4R tauopathy characterized by difficulties with motor speech planning. Neurodegeneration in PAOS targets the premotor cortex, particularly the supplementary motor area (SMA), with degeneration of white matter (WM) tracts connecting premotor and motor cortice...

Full description

Saved in:
Bibliographic Details
Published inHuman brain mapping Vol. 45; no. 8; pp. e26704 - n/a
Main Authors Gatto, Rodolfo G., Pham, Nha Trang Thu, Duffy, Joseph R., Clark, Heather M., Utianski, Rene L., Botha, Hugo, Machulda, Mary M., Lowe, Val J., Schwarz, Christopher G., Jack, Clifford R., Josephs, Keith A., Whitwell, Jennifer L.
Format Journal Article
LanguageEnglish
Published Hoboken, USA John Wiley & Sons, Inc 01.06.2024
Subjects
Online AccessGet full text
ISSN1065-9471
1097-0193
1097-0193
DOI10.1002/hbm.26704

Cover

Loading…
Abstract Progressive apraxia of speech (PAOS) is a 4R tauopathy characterized by difficulties with motor speech planning. Neurodegeneration in PAOS targets the premotor cortex, particularly the supplementary motor area (SMA), with degeneration of white matter (WM) tracts connecting premotor and motor cortices and Broca's area observed on diffusion tensor imaging (DTI). We aimed to assess flortaucipir uptake across speech‐language‐related WM tracts identified using DTI tractography in PAOS. Twenty‐two patients with PAOS and 26 matched healthy controls were recruited by the Neurodegenerative Research Group (NRG) and underwent MRI and flortaucipir‐PET. The patient population included patients with primary progressive apraxia of speech (PPAOS) and non‐fluent variant/agrammatic primary progressive aphasia (agPPA). Flortaucipir PET scans and DTI were coregistered using rigid registration with a mutual information cost function in subject space. Alignments between DTI and flortaucipir PET were inspected in all cases. Whole‐brain tractography was calculated using deterministic algorithms by a tractography reconstruction tool (DSI‐studio) and specific tracts were identified using an automatic fiber tracking atlas‐based method. Fractional anisotropy (FA) and flortaucipir standardized uptake value ratios (SUVRs) were averaged across the frontal aslant tract, arcuate fasciculi, inferior frontal‐occipital fasciculus, inferior and middle longitudinal fasciculi, as well as the SMA commissural fibers. Reduced FA (p < .0001) and elevated flortaucipir SUVR (p = .0012) were observed in PAOS cases compared to controls across all combined WM tracts. For flortaucipir SUVR, the greatest differentiation of PAOS from controls was achieved with the SMA commissural fibers (area under the receiver operator characteristic curve [AUROC] = 0.83), followed by the left arcuate fasciculus (AUROC = 0.75) and left frontal aslant tract (AUROC = 0.71). Our findings demonstrate that flortaucipir uptake is increased across WM tracts related to speech/language difficulties in PAOS. Structural connectomics assessment of the supplementary motor area (SMA) in progressive apraxia of speech (PAOS) subjects. White matter connectivity representation from cortical regions involved in the language network (LN) shows lower fractional anisotropy (FA) and larger mean diffusivity (MD) and standardized uptake value ratio (SUVR) values than control. The addition of SMA to the speech and LN demonstrates further FA decrease in MD and SUVR increase likely due to the involvement of SMA in the disease.
AbstractList Progressive apraxia of speech (PAOS) is a 4R tauopathy characterized by difficulties with motor speech planning. Neurodegeneration in PAOS targets the premotor cortex, particularly the supplementary motor area (SMA), with degeneration of white matter (WM) tracts connecting premotor and motor cortices and Broca's area observed on diffusion tensor imaging (DTI). We aimed to assess flortaucipir uptake across speech‐language‐related WM tracts identified using DTI tractography in PAOS. Twenty‐two patients with PAOS and 26 matched healthy controls were recruited by the Neurodegenerative Research Group (NRG) and underwent MRI and flortaucipir‐PET. The patient population included patients with primary progressive apraxia of speech (PPAOS) and non‐fluent variant/agrammatic primary progressive aphasia (agPPA). Flortaucipir PET scans and DTI were coregistered using rigid registration with a mutual information cost function in subject space. Alignments between DTI and flortaucipir PET were inspected in all cases. Whole‐brain tractography was calculated using deterministic algorithms by a tractography reconstruction tool (DSI‐studio) and specific tracts were identified using an automatic fiber tracking atlas‐based method. Fractional anisotropy (FA) and flortaucipir standardized uptake value ratios (SUVRs) were averaged across the frontal aslant tract, arcuate fasciculi, inferior frontal‐occipital fasciculus, inferior and middle longitudinal fasciculi, as well as the SMA commissural fibers. Reduced FA ( p < .0001) and elevated flortaucipir SUVR ( p = .0012) were observed in PAOS cases compared to controls across all combined WM tracts. For flortaucipir SUVR, the greatest differentiation of PAOS from controls was achieved with the SMA commissural fibers (area under the receiver operator characteristic curve [AUROC] = 0.83), followed by the left arcuate fasciculus (AUROC = 0.75) and left frontal aslant tract (AUROC = 0.71). Our findings demonstrate that flortaucipir uptake is increased across WM tracts related to speech/language difficulties in PAOS.
Progressive apraxia of speech (PAOS) is a 4R tauopathy characterized by difficulties with motor speech planning. Neurodegeneration in PAOS targets the premotor cortex, particularly the supplementary motor area (SMA), with degeneration of white matter (WM) tracts connecting premotor and motor cortices and Broca's area observed on diffusion tensor imaging (DTI). We aimed to assess flortaucipir uptake across speech-language-related WM tracts identified using DTI tractography in PAOS. Twenty-two patients with PAOS and 26 matched healthy controls were recruited by the Neurodegenerative Research Group (NRG) and underwent MRI and flortaucipir-PET. The patient population included patients with primary progressive apraxia of speech (PPAOS) and non-fluent variant/agrammatic primary progressive aphasia (agPPA). Flortaucipir PET scans and DTI were coregistered using rigid registration with a mutual information cost function in subject space. Alignments between DTI and flortaucipir PET were inspected in all cases. Whole-brain tractography was calculated using deterministic algorithms by a tractography reconstruction tool (DSI-studio) and specific tracts were identified using an automatic fiber tracking atlas-based method. Fractional anisotropy (FA) and flortaucipir standardized uptake value ratios (SUVRs) were averaged across the frontal aslant tract, arcuate fasciculi, inferior frontal-occipital fasciculus, inferior and middle longitudinal fasciculi, as well as the SMA commissural fibers. Reduced FA (p < .0001) and elevated flortaucipir SUVR (p = .0012) were observed in PAOS cases compared to controls across all combined WM tracts. For flortaucipir SUVR, the greatest differentiation of PAOS from controls was achieved with the SMA commissural fibers (area under the receiver operator characteristic curve [AUROC] = 0.83), followed by the left arcuate fasciculus (AUROC = 0.75) and left frontal aslant tract (AUROC = 0.71). Our findings demonstrate that flortaucipir uptake is increased across WM tracts related to speech/language difficulties in PAOS.Progressive apraxia of speech (PAOS) is a 4R tauopathy characterized by difficulties with motor speech planning. Neurodegeneration in PAOS targets the premotor cortex, particularly the supplementary motor area (SMA), with degeneration of white matter (WM) tracts connecting premotor and motor cortices and Broca's area observed on diffusion tensor imaging (DTI). We aimed to assess flortaucipir uptake across speech-language-related WM tracts identified using DTI tractography in PAOS. Twenty-two patients with PAOS and 26 matched healthy controls were recruited by the Neurodegenerative Research Group (NRG) and underwent MRI and flortaucipir-PET. The patient population included patients with primary progressive apraxia of speech (PPAOS) and non-fluent variant/agrammatic primary progressive aphasia (agPPA). Flortaucipir PET scans and DTI were coregistered using rigid registration with a mutual information cost function in subject space. Alignments between DTI and flortaucipir PET were inspected in all cases. Whole-brain tractography was calculated using deterministic algorithms by a tractography reconstruction tool (DSI-studio) and specific tracts were identified using an automatic fiber tracking atlas-based method. Fractional anisotropy (FA) and flortaucipir standardized uptake value ratios (SUVRs) were averaged across the frontal aslant tract, arcuate fasciculi, inferior frontal-occipital fasciculus, inferior and middle longitudinal fasciculi, as well as the SMA commissural fibers. Reduced FA (p < .0001) and elevated flortaucipir SUVR (p = .0012) were observed in PAOS cases compared to controls across all combined WM tracts. For flortaucipir SUVR, the greatest differentiation of PAOS from controls was achieved with the SMA commissural fibers (area under the receiver operator characteristic curve [AUROC] = 0.83), followed by the left arcuate fasciculus (AUROC = 0.75) and left frontal aslant tract (AUROC = 0.71). Our findings demonstrate that flortaucipir uptake is increased across WM tracts related to speech/language difficulties in PAOS.
Progressive apraxia of speech (PAOS) is a 4R tauopathy characterized by difficulties with motor speech planning. Neurodegeneration in PAOS targets the premotor cortex, particularly the supplementary motor area (SMA), with degeneration of white matter (WM) tracts connecting premotor and motor cortices and Broca's area observed on diffusion tensor imaging (DTI). We aimed to assess flortaucipir uptake across speech‐language‐related WM tracts identified using DTI tractography in PAOS. Twenty‐two patients with PAOS and 26 matched healthy controls were recruited by the Neurodegenerative Research Group (NRG) and underwent MRI and flortaucipir‐PET. The patient population included patients with primary progressive apraxia of speech (PPAOS) and non‐fluent variant/agrammatic primary progressive aphasia (agPPA). Flortaucipir PET scans and DTI were coregistered using rigid registration with a mutual information cost function in subject space. Alignments between DTI and flortaucipir PET were inspected in all cases. Whole‐brain tractography was calculated using deterministic algorithms by a tractography reconstruction tool (DSI‐studio) and specific tracts were identified using an automatic fiber tracking atlas‐based method. Fractional anisotropy (FA) and flortaucipir standardized uptake value ratios (SUVRs) were averaged across the frontal aslant tract, arcuate fasciculi, inferior frontal‐occipital fasciculus, inferior and middle longitudinal fasciculi, as well as the SMA commissural fibers. Reduced FA ( p  < .0001) and elevated flortaucipir SUVR ( p  = .0012) were observed in PAOS cases compared to controls across all combined WM tracts. For flortaucipir SUVR, the greatest differentiation of PAOS from controls was achieved with the SMA commissural fibers (area under the receiver operator characteristic curve [AUROC] = 0.83), followed by the left arcuate fasciculus (AUROC = 0.75) and left frontal aslant tract (AUROC = 0.71). Our findings demonstrate that flortaucipir uptake is increased across WM tracts related to speech/language difficulties in PAOS. Structural connectomics assessment of the supplementary motor area (SMA) in progressive apraxia of speech (PAOS) subjects. White matter connectivity representation from cortical regions involved in the language network (LN) shows lower fractional anisotropy (FA) and larger mean diffusivity (MD) and standardized uptake value ratio (SUVR) values than control. The addition of SMA to the speech and LN demonstrates further FA decrease in MD and SUVR increase likely due to the involvement of SMA in the disease.
Progressive apraxia of speech (PAOS) is a 4R tauopathy characterized by difficulties with motor speech planning. Neurodegeneration in PAOS targets the premotor cortex, particularly the supplementary motor area (SMA), with degeneration of white matter (WM) tracts connecting premotor and motor cortices and Broca's area observed on diffusion tensor imaging (DTI). We aimed to assess flortaucipir uptake across speech‐language‐related WM tracts identified using DTI tractography in PAOS. Twenty‐two patients with PAOS and 26 matched healthy controls were recruited by the Neurodegenerative Research Group (NRG) and underwent MRI and flortaucipir‐PET. The patient population included patients with primary progressive apraxia of speech (PPAOS) and non‐fluent variant/agrammatic primary progressive aphasia (agPPA). Flortaucipir PET scans and DTI were coregistered using rigid registration with a mutual information cost function in subject space. Alignments between DTI and flortaucipir PET were inspected in all cases. Whole‐brain tractography was calculated using deterministic algorithms by a tractography reconstruction tool (DSI‐studio) and specific tracts were identified using an automatic fiber tracking atlas‐based method. Fractional anisotropy (FA) and flortaucipir standardized uptake value ratios (SUVRs) were averaged across the frontal aslant tract, arcuate fasciculi, inferior frontal‐occipital fasciculus, inferior and middle longitudinal fasciculi, as well as the SMA commissural fibers. Reduced FA (p < .0001) and elevated flortaucipir SUVR (p = .0012) were observed in PAOS cases compared to controls across all combined WM tracts. For flortaucipir SUVR, the greatest differentiation of PAOS from controls was achieved with the SMA commissural fibers (area under the receiver operator characteristic curve [AUROC] = 0.83), followed by the left arcuate fasciculus (AUROC = 0.75) and left frontal aslant tract (AUROC = 0.71). Our findings demonstrate that flortaucipir uptake is increased across WM tracts related to speech/language difficulties in PAOS. Structural connectomics assessment of the supplementary motor area (SMA) in progressive apraxia of speech (PAOS) subjects. White matter connectivity representation from cortical regions involved in the language network (LN) shows lower fractional anisotropy (FA) and larger mean diffusivity (MD) and standardized uptake value ratio (SUVR) values than control. The addition of SMA to the speech and LN demonstrates further FA decrease in MD and SUVR increase likely due to the involvement of SMA in the disease.
Author Gatto, Rodolfo G.
Clark, Heather M.
Pham, Nha Trang Thu
Schwarz, Christopher G.
Lowe, Val J.
Botha, Hugo
Jack, Clifford R.
Duffy, Joseph R.
Whitwell, Jennifer L.
Josephs, Keith A.
Utianski, Rene L.
Machulda, Mary M.
AuthorAffiliation 2 Department of Radiology Mayo Clinic Rochester Minnesota USA
1 Department of Neurology Mayo Clinic Rochester Minnesota USA
3 Department of Psychiatry and Psychology Mayo Clinic Rochester Minnesota USA
AuthorAffiliation_xml – name: 1 Department of Neurology Mayo Clinic Rochester Minnesota USA
– name: 3 Department of Psychiatry and Psychology Mayo Clinic Rochester Minnesota USA
– name: 2 Department of Radiology Mayo Clinic Rochester Minnesota USA
Author_xml – sequence: 1
  givenname: Rodolfo G.
  orcidid: 0000-0003-2170-6662
  surname: Gatto
  fullname: Gatto, Rodolfo G.
  organization: Mayo Clinic
– sequence: 2
  givenname: Nha Trang Thu
  surname: Pham
  fullname: Pham, Nha Trang Thu
  organization: Mayo Clinic
– sequence: 3
  givenname: Joseph R.
  surname: Duffy
  fullname: Duffy, Joseph R.
  organization: Mayo Clinic
– sequence: 4
  givenname: Heather M.
  surname: Clark
  fullname: Clark, Heather M.
  organization: Mayo Clinic
– sequence: 5
  givenname: Rene L.
  surname: Utianski
  fullname: Utianski, Rene L.
  organization: Mayo Clinic
– sequence: 6
  givenname: Hugo
  orcidid: 0000-0003-4390-685X
  surname: Botha
  fullname: Botha, Hugo
  organization: Mayo Clinic
– sequence: 7
  givenname: Mary M.
  surname: Machulda
  fullname: Machulda, Mary M.
  organization: Mayo Clinic
– sequence: 8
  givenname: Val J.
  surname: Lowe
  fullname: Lowe, Val J.
  organization: Mayo Clinic
– sequence: 9
  givenname: Christopher G.
  orcidid: 0000-0002-1466-8357
  surname: Schwarz
  fullname: Schwarz, Christopher G.
  organization: Mayo Clinic
– sequence: 10
  givenname: Clifford R.
  surname: Jack
  fullname: Jack, Clifford R.
  organization: Mayo Clinic
– sequence: 11
  givenname: Keith A.
  surname: Josephs
  fullname: Josephs, Keith A.
  organization: Mayo Clinic
– sequence: 12
  givenname: Jennifer L.
  orcidid: 0000-0001-6914-1563
  surname: Whitwell
  fullname: Whitwell, Jennifer L.
  email: whitwell.jennifer@mayo.edu
  organization: Mayo Clinic
BackLink https://www.ncbi.nlm.nih.gov/pubmed/38825988$$D View this record in MEDLINE/PubMed
BookMark eNp1kctu1TAQhi3Uil5gwQsgL2GRdhzbuawQVIVWagWLw9pynPE5Rokd4qT07FjwADwjT4LPpQgQrDzy_P_3j2ZOyIEPHgl5xuCMAeTnq6Y_y4sSxCNyzKAuM2A1P9jUhcxqUbIjchLjJwDGJLDH5IhXVS7rqjom327nbnJ9aHVHzRhi_PH1O97r3nk9ueBpsHQYw3LEGN0dUj2M-t7pzXccEM2KNmvaOmvnuFFP6GMYqev10vllQjU6YkunUZspQfSwWlPtW7rQc2p-uFzQaLSPT8ih1V3Ep_v3lHx8e7m4uMpu3r-7vnh9kxnBCpE1eVO2GltTAGJtBPBcikoyA9JCa6EEI7lsZVFAzTHXzDLLOUjA1nJsBD8lr3bcYW76xEGfJuvUMKaBx7UK2qk_O96t1DLcKcaYELWERHixJ4zh84xxUr2LBrtOewxzVBwKwXhdCZmkz38P-5XysPskON8Jtnsf0Srjpu3WU7brFAO1ua5K11Xb6ybHy78cD9B_aff0L67D9f-F6urN7c7xE01Bujc
CitedBy_id crossref_primary_10_1016_j_ijbiomac_2024_136618
Cites_doi 10.1016/j.cortex.2017.12.021
10.1093/brain/awy059
10.1016/j.jcomdis.2014.06.008
10.1016/j.nicl.2019.102152
10.1002/mdc3.12584
10.1093/brain/awr099
10.3390/ph14020110
10.1016/j.jalz.2016.01.003
10.1016/j.bandl.2012.04.005
10.1080/02687030600597358
10.1044/2022_ajslp-22-00148
10.1080/02687038.2020.1852002
10.1186/s40478-016-0315-6
10.1097/00004728-199007000-00011
10.3233/jad-180749
10.1016/j.neurobiolaging.2022.08.013
10.1016/j.cortex.2019.11.002
10.1007/s00401-016-1618-1
10.1371/journal.pone.0284182
10.1016/j.cortex.2015.05.013
10.1016/j.neurobiolaging.2018.11.017
10.3390/brainsci7040037
10.2310/7290.2014.00025
10.1002/brb3.3346
10.1016/j.neuroimage.2015.10.019
10.1212/WNL.0b013e31829c5ed5
10.2967/jnumed.120.252411
10.1523/jneurosci.3464-13.2014
10.1016/j.nicl.2022.102999
10.1016/j.jalz.2019.09.079
10.1002/ana.25893
10.1016/j.nicl.2019.102115
10.3389/fnana.2018.00077
10.1093/cercor/bhaa319
10.1186/s13195-019-0470-7
10.2967/jnumed.121.262685
10.1016/j.nicl.2013.06.014
10.2967/jnumed.118.224113
10.1016/j.parkreldis.2019.07.001
10.1148/radiol.15141869
10.1016/j.neuroimage.2019.116131
10.1523/jneurosci.4127-06.2007
10.1016/j.dadm.2018.01.007
10.1093/brain/awt163
10.1002/ana.10390
10.1002/ana.24517
10.1016/j.neuroimage.2017.12.040
10.1038/s41467-021-23687-8
10.2967/jnumed.118.225508
10.1111/j.1532-5415.2005.53221.x
10.1002/mds.22340
10.1007/s00401-016-1640-3
10.1044/2020_JSLHR-20-00253
10.1038/s41467-019-14159-1
10.1016/j.jneumeth.2011.09.021
10.1212/WNL.0b013e31821103e6
10.1093/brain/aws032
10.1016/j.cortex.2018.10.015
10.1212/CPJ.0000000000000699
10.1016/j.neuroimage.2018.10.029
10.1016/j.neuroimage.2018.05.027
10.1007/s00429-014-0773-1
10.1002/ana.25183
10.1016/j.cortex.2023.08.019
10.1212/wnl.0000000000000031
10.3389/fnins.2019.00875
10.1016/j.neuron.2012.03.004
10.3389/fnhum.2021.672665
10.1080/02687038.2016.1225274
10.1016/j.cortex.2021.10.010
10.1007/s13311-018-0663-y
ContentType Journal Article
Copyright 2024 The Authors. published by Wiley Periodicals LLC.
2024 The Authors. Human Brain Mapping published by Wiley Periodicals LLC.
Copyright_xml – notice: 2024 The Authors. published by Wiley Periodicals LLC.
– notice: 2024 The Authors. Human Brain Mapping published by Wiley Periodicals LLC.
DBID 24P
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
DOI 10.1002/hbm.26704
DatabaseName Wiley Online Library Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList CrossRef
MEDLINE
MEDLINE - Academic


Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Anatomy & Physiology
DocumentTitleAlternate Gatto et al
EISSN 1097-0193
EndPage n/a
ExternalDocumentID PMC11144950
38825988
10_1002_hbm_26704
HBM26704
Genre researchArticle
Journal Article
GrantInformation_xml – fundername: National Institutes of Health
  funderid: R01‐DC12519; R01‐DC14942; RF1‐NS112153
– fundername: NIH HHS
  grantid: R01-DC14942
– fundername: NIH HHS
  grantid: R01-DC12519
– fundername: NINDS NIH HHS
  grantid: R01 NS112153
– fundername: NIDCD NIH HHS
  grantid: R01 DC014942
– fundername: NIH HHS
  grantid: RF1-NS112153
– fundername: NIDCD NIH HHS
  grantid: R01 DC012519
– fundername: NINDS NIH HHS
  grantid: RF1 NS112153
GroupedDBID ---
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
24P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
702
7PT
7X7
8-0
8-1
8-3
8-4
8-5
8FI
8FJ
8UM
930
A03
AAESR
AAEVG
AAFWJ
AAMMB
AAONW
AAYCA
AAZKR
ABCQN
ABCUV
ABIJN
ABIVO
ABPVW
ABUWG
ACCMX
ACGFS
ACIWK
ACPOU
ACPRK
ACXQS
ADBBV
ADEOM
ADIZJ
ADMGS
ADPDF
ADXAS
AEFGJ
AEIMD
AENEX
AFBPY
AFGKR
AFKRA
AFPKN
AFRAH
AFZJQ
AGXDD
AHMBA
AIDQK
AIDYY
AIURR
AJXKR
ALAGY
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BENPR
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CCPQU
CS3
D-E
D-F
DCZOG
DPXWK
DR1
DR2
DU5
EBD
EBS
EMOBN
F00
F01
F04
F5P
FYUFA
G-S
G.N
GNP
GODZA
GROUPED_DOAJ
H.T
H.X
HBH
HHY
HHZ
HMCUK
HZ~
IAO
IHR
ITC
IX1
J0M
JPC
KQQ
L7B
LAW
LC2
LC3
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
OK1
OVD
OVEED
P2P
P2W
P2X
P4D
PALCI
PHGZM
PHGZT
PIMPY
PQQKQ
Q.N
Q11
QB0
QRW
R.K
ROL
RPM
RX1
RYL
SUPJJ
SV3
TEORI
UB1
UKHRP
V2E
W8V
W99
WBKPD
WIB
WIH
WIK
WJL
WNSPC
WOHZO
WQJ
WYISQ
XG1
XSW
XV2
ZZTAW
~IA
~WT
.Y3
31~
AANHP
AAYXX
ABEML
ABJNI
ACBWZ
ACRPL
ACSCC
ACYXJ
ADNMO
AGQPQ
ASPBG
AVWKF
AZFZN
BFHJK
CITATION
EJD
FEDTE
GAKWD
HF~
HVGLF
LW6
M6M
RIWAO
RJQFR
SAMSI
WXSBR
AAHHS
ACCFJ
ADZOD
AEEZP
AEQDE
AIWBW
AJBDE
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
WIN
ID FETCH-LOGICAL-c4164-b2b7daedc60ee9c403254851c05f0df070c535d566093e2a1f1f33050edf3eb43
IEDL.DBID 24P
ISSN 1065-9471
1097-0193
IngestDate Thu Aug 21 18:33:32 EDT 2025
Fri Jul 11 07:41:00 EDT 2025
Thu Apr 03 07:27:21 EDT 2025
Thu Apr 24 22:56:25 EDT 2025
Thu Jul 03 08:43:09 EDT 2025
Sun Jul 06 04:45:25 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 8
Keywords flortaucipir
tractography
TauPET
Tau
diffusion tensor imaging
progressive apraxia of speech
positron emission tomography
Language English
License Attribution-NonCommercial-NoDerivs
2024 The Authors. Human Brain Mapping published by Wiley Periodicals LLC.
This is an open access article under the terms of the http://creativecommons.org/licenses/by-nc-nd/4.0/ License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non‐commercial and no modifications or adaptations are made.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4164-b2b7daedc60ee9c403254851c05f0df070c535d566093e2a1f1f33050edf3eb43
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0001-6914-1563
0000-0003-2170-6662
0000-0002-1466-8357
0000-0003-4390-685X
OpenAccessLink https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fhbm.26704
PMID 38825988
PQID 3064139845
PQPubID 23479
PageCount 12
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_11144950
proquest_miscellaneous_3064139845
pubmed_primary_38825988
crossref_citationtrail_10_1002_hbm_26704
crossref_primary_10_1002_hbm_26704
wiley_primary_10_1002_hbm_26704_HBM26704
PublicationCentury 2000
PublicationDate June 1, 2024
PublicationDateYYYYMMDD 2024-06-01
PublicationDate_xml – month: 06
  year: 2024
  text: June 1, 2024
  day: 01
PublicationDecade 2020
PublicationPlace Hoboken, USA
PublicationPlace_xml – name: Hoboken, USA
– name: United States
PublicationTitle Human brain mapping
PublicationTitleAlternate Hum Brain Mapp
PublicationYear 2024
Publisher John Wiley & Sons, Inc
Publisher_xml – name: John Wiley & Sons, Inc
References 2023; 32
2015; 78
2017; 7
2021; 64
2012; 122
1990; 14
2013; 2
2019; 11
2020; 61
2019; 13
2015; 220
2020; 16
2019; 16
2019; 202
2022; 63
2020; 11
2018; 83
2020; 124
2020; 10
2012; 203
2003; 53
2017; 31
2022; 120
2018; 171
2019; 60
2006; 20
2021; 31
2018; 5
2012; 135
2019; 66
2019; 67
2018; 178
2022; 34
2008; 23
2022; 36
2014; 13
2020; 88
2014; 51
2019; 111
2007; 27
2018; 141
2019; 75
2023; 18
2011; 76
2016; 125
2024; 14
2019; 185
2014; 82
2011; 134
2016; 12
2012; 73
2021; 14
2016; 4
2015; 69
2021; 15
2021; 12
2023
2015; 276
2013; 136
2005; 53
2013; 81
2016; 132
2020; 25
2018; 12
2018; 99
2018; 10
2014; 34
2022; 146
e_1_2_10_23_1
e_1_2_10_46_1
e_1_2_10_69_1
e_1_2_10_21_1
e_1_2_10_44_1
e_1_2_10_42_1
e_1_2_10_40_1
e_1_2_10_70_1
e_1_2_10_2_1
e_1_2_10_72_1
e_1_2_10_4_1
e_1_2_10_18_1
e_1_2_10_53_1
e_1_2_10_6_1
e_1_2_10_16_1
e_1_2_10_39_1
e_1_2_10_55_1
e_1_2_10_8_1
e_1_2_10_14_1
e_1_2_10_37_1
e_1_2_10_57_1
e_1_2_10_58_1
e_1_2_10_13_1
e_1_2_10_34_1
e_1_2_10_11_1
e_1_2_10_32_1
e_1_2_10_30_1
e_1_2_10_51_1
e_1_2_10_61_1
e_1_2_10_29_1
e_1_2_10_63_1
e_1_2_10_27_1
e_1_2_10_65_1
e_1_2_10_25_1
e_1_2_10_48_1
e_1_2_10_67_1
e_1_2_10_24_1
e_1_2_10_45_1
e_1_2_10_22_1
e_1_2_10_43_1
e_1_2_10_20_1
e_1_2_10_41_1
e_1_2_10_71_1
e_1_2_10_52_1
e_1_2_10_3_1
e_1_2_10_19_1
e_1_2_10_54_1
e_1_2_10_5_1
e_1_2_10_17_1
e_1_2_10_38_1
e_1_2_10_56_1
e_1_2_10_7_1
e_1_2_10_15_1
e_1_2_10_36_1
e_1_2_10_12_1
e_1_2_10_35_1
e_1_2_10_9_1
e_1_2_10_59_1
e_1_2_10_10_1
e_1_2_10_33_1
e_1_2_10_31_1
e_1_2_10_50_1
e_1_2_10_60_1
e_1_2_10_62_1
e_1_2_10_64_1
e_1_2_10_28_1
e_1_2_10_49_1
e_1_2_10_66_1
e_1_2_10_26_1
e_1_2_10_47_1
e_1_2_10_68_1
References_xml – volume: 111
  start-page: 148
  year: 2019
  end-page: 163
  article-title: The frontal aslant tract (FAT) and its role in speech, language and executive function
  publication-title: Cortex
– volume: 32
  start-page: 469
  issue: 2
  year: 2023
  end-page: 491
  article-title: The apraxia of speech rating scale: Reliability, validity, and utility
  publication-title: American Journal of Speech‐Language Pathology
– volume: 146
  start-page: 141
  year: 2022
  end-page: 160
  article-title: Identification of the main components of spontaneous speech in primary progressive aphasia and their neural underpinnings using multimodal MRI and FDG‐PET imaging
  publication-title: Cortex
– volume: 18
  issue: 5
  year: 2023
  article-title: Comparative assessment of regional tau distribution by Tau‐PET and post‐mortem neuropathology in a representative set of Alzheimer's & frontotemporal lobar degeneration patients
  publication-title: PLoS One
– volume: 61
  start-page: 1409
  issue: 10
  year: 2020
  end-page: 1410
  article-title: First Tau PET tracer approved: Toward accurate in vivo diagnosis of Alzheimer Disease
  publication-title: Journal of Nuclear Medicine
– volume: 12
  start-page: 3452
  issue: 1
  year: 2021
  article-title: A molecular pathology, neurobiology, biochemical, genetic and neuroimaging study of progressive apraxia of speech
  publication-title: Nature Communications
– volume: 31
  start-page: 1693
  issue: 3
  year: 2021
  end-page: 1706
  article-title: Tau and amyloid relationships with resting‐state functional connectivity in atypical Alzheimer's disease
  publication-title: Cereb Cortex
– volume: 88
  start-page: 1009
  issue: 5
  year: 2020
  end-page: 1022
  article-title: Sensitivity‐specificity of Tau and amyloid β positron emission tomography in frontotemporal lobar degeneration
  publication-title: Annals of Neurology
– volume: 27
  start-page: 1334
  issue: 6
  year: 2007
  end-page: 1345
  article-title: Altered effective connectivity within the language network in primary progressive aphasia
  publication-title: The Journal of Neuroscience
– volume: 53
  start-page: 35
  issue: 1
  year: 2003
  end-page: 49
  article-title: Primary progressive aphasia: PPA and the language network
  publication-title: Annals of Neurology
– volume: 11
  start-page: 347
  issue: 1
  year: 2020
  article-title: Functional brain architecture is associated with the rate of tau accumulation in Alzheimer's disease
  publication-title: Nature Communications
– volume: 12
  start-page: 1116
  issue: 11
  year: 2016
  end-page: 1124
  article-title: Characterization of Tau positron emission tomography tracer [( )F]AV‐1451 binding to postmortem tissue in Alzheimer's disease, primary tauopathies, and other dementias
  publication-title: Alzheimer's & Dementia
– volume: 16
  start-page: 561
  issue: 3
  year: 2020
  end-page: 571
  article-title: Tau‐positron emission tomography correlates with neuropathology findings
  publication-title: Alzheimer's & Dementia
– volume: 13
  start-page: 875
  year: 2019
  article-title: Inferior longitudinal Fasciculus' role in visual processing and language comprehension: A combined MEG‐DTI study
  publication-title: Frontiers in Neuroscience
– volume: 15
  year: 2021
  article-title: Functional contributions of the arcuate fasciculus to language processing
  publication-title: Frontiers in Human Neuroscience
– volume: 16
  start-page: 52
  issue: 1
  year: 2019
  end-page: 58
  article-title: Automatic removal of false connections in diffusion MRI tractography using topology‐informed pruning (TIP)
  publication-title: Neurotherapeutics
– volume: 66
  start-page: 56
  year: 2019
  end-page: 61
  article-title: Multimodal neuroimaging relationships in progressive supranuclear palsy
  publication-title: Parkinsonism & Related Disorders
– volume: 220
  start-page: 1983
  issue: 4
  year: 2015
  end-page: 1995
  article-title: The left inferior fronto‐occipital fasciculus subserves language semantics: A multilevel lesion study
  publication-title: Brain Structure & Function
– volume: 14
  start-page: 561
  issue: 4
  year: 1990
  end-page: 570
  article-title: Correction of PET data for partial volume effects in human cerebral cortex by MR imaging
  publication-title: Journal of Computer Assisted Tomography
– volume: 134
  start-page: 3011
  issue: Pt 10
  year: 2011
  end-page: 3029
  article-title: White matter damage in primary progressive aphasias: A diffusion tensor tractography study
  publication-title: Brain
– volume: 13
  year: 2014
  article-title: First human use of a radiopharmaceutical prepared by continuous‐flow microfluidic radiofluorination: Proof of concept with the tau imaging agent [ F]T807
  publication-title: Molecular Imaging
– volume: 51
  start-page: 43
  year: 2014
  end-page: 50
  article-title: The apraxia of speech rating scale: A tool for diagnosis and description of apraxia of speech
  publication-title: Journal of Communication Disorders
– volume: 141
  start-page: 1517
  issue: 5
  year: 2018
  end-page: 1528
  article-title: Longitudinal Tau PET in ageing and Alzheimer's disease
  publication-title: Brain
– year: 2023
  article-title: Diffusion tensor imaging‐based multi‐fiber tracking reconstructions can regionally differentiate phonetic versus prosodic subtypes of progressive apraxia of speech
  publication-title: Cortex
– volume: 7
  issue: 4
  year: 2017
  article-title: Seed location impacts whole‐brain structural network comparisons between healthy elderly and individuals with Alzheimer's disease
  publication-title: Brain Sciences
– volume: 81
  start-page: 337
  issue: 4
  year: 2013
  end-page: 345
  article-title: Syndromes dominated by apraxia of speech show distinct characteristics from agrammatic PPA
  publication-title: Neurology
– volume: 25
  year: 2020
  article-title: Middle longitudinal fascicle is associated with semantic processing deficits in primary progressive aphasia
  publication-title: NeuroImage: Clinical
– volume: 75
  start-page: 187
  year: 2019
  end-page: 197
  article-title: ( )F‐flortaucipir uptake patterns in clinical subtypes of primary progressive aphasia
  publication-title: Neurobiology of Aging
– volume: 76
  start-page: 1006
  issue: 11
  year: 2011
  end-page: 1014
  article-title: Classification of primary progressive aphasia and its variants
  publication-title: Neurology
– volume: 178
  start-page: 57
  year: 2018
  end-page: 68
  article-title: Population‐averaged atlas of the macroscale human structural connectome and its network topology
  publication-title: Neuroimage
– volume: 132
  start-page: 935
  issue: 6
  year: 2016
  end-page: 937
  article-title: Multimodal evaluation demonstrates in vivo (18)F‐AV‐1451 uptake in autopsy‐confirmed corticobasal degeneration
  publication-title: Acta Neuropathologica
– volume: 67
  start-page: 181
  issue: 1
  year: 2019
  end-page: 195
  article-title: A comparison of partial volume correction techniques for measuring change in serial amyloid PET SUVR
  publication-title: Journal of Alzheimer's Disease
– volume: 83
  start-page: 599
  issue: 3
  year: 2018
  end-page: 611
  article-title: [( )F]AV‐1451 tau‐PET and primary progressive aphasia
  publication-title: Annals of Neurology
– volume: 60
  start-page: 1444
  issue: 10
  year: 2019
  end-page: 1451
  article-title: Effect of off‐target binding on (18)F‐Flortaucipir variability in healthy controls across the life span
  publication-title: Journal of Nuclear Medicine
– volume: 31
  start-page: 861
  issue: 8
  year: 2017
  end-page: 878
  article-title: Validating the communicative participation item bank (CPIB) for use with people with aphasia: An analysis of differential item function (DIF)
  publication-title: Aphasiology
– volume: 2
  start-page: 912
  year: 2013
  end-page: 921
  article-title: Diffusion MRI connectometry automatically reveals affected fiberpathways in individuals with chronic stroke
  publication-title: Neuroimage Clinical
– volume: 78
  start-page: 787
  issue: 5
  year: 2015
  end-page: 800
  article-title: Validating novel tau positron emission tomography tracer [F‐18]‐AV‐1451 (T807) on postmortem brain tissue
  publication-title: Annals of Neurology
– volume: 25
  year: 2020
  article-title: Brain volume and flortaucipir analysis of progressive supranuclear palsy clinical variants
  publication-title: NeuroImage: Clinical
– volume: 276
  start-page: 219
  issue: 1
  year: 2015
  end-page: 227
  article-title: Differentiation between subtypes of primary progressive aphasia by using cortical thickness and diffusion‐tensor MR imaging measures
  publication-title: Radiology
– volume: 132
  start-page: 931
  issue: 6
  year: 2016
  end-page: 933
  article-title: [ F]AV‐1451 tau‐PET uptake does correlate with quantitatively measured 4R‐tau burden in autopsy‐confirmed corticobasal degeneration
  publication-title: Acta Neuropathologica
– volume: 36
  start-page: 21
  issue: 1
  year: 2022
  end-page: 50
  article-title: The western aphasia battery: A systematic review of research and clinical applications
  publication-title: Aphasiology
– volume: 34
  year: 2022
  article-title: Tractography of supplementary motor area projections in progressive speech apraxia and aphasia
  publication-title: NeuroImage: Clinical
– volume: 99
  start-page: 358
  year: 2018
  end-page: 374
  article-title: Tau‐PET imaging with [18F]AV‐1451 in primary progressive apraxia of speech
  publication-title: Cortex
– volume: 69
  start-page: 220
  year: 2015
  end-page: 236
  article-title: Classification and clinicoradiologic features of primary progressive aphasia (PPA) and apraxia of speech
  publication-title: Cortex
– volume: 34
  start-page: 9754
  issue: 29
  year: 2014
  end-page: 9767
  article-title: Frontal white matter tracts sustaining speech production in primary progressive aphasia
  publication-title: The Journal of Neuroscience
– volume: 125
  start-page: 1063
  year: 2016
  end-page: 1078
  article-title: An integrated approach to correction for off‐resonance effects and subject movement in diffusion MR imaging
  publication-title: Neuroimage
– volume: 12
  year: 2018
  article-title: Functional anatomy of the inferior longitudinal fasciculus: From historical reports to current hypotheses
  publication-title: Frontiers in Neuroanatomy
– volume: 14
  issue: 2
  year: 2021
  article-title: Tauvid: The first FDA‐approved PET tracer for imaging tau pathology in Alzheimer's Disease
  publication-title: Pharmaceuticals (Basel)
– volume: 124
  start-page: 33
  year: 2020
  end-page: 43
  article-title: Longitudinal flortaucipir ([( )F]AV‐1451) PET imaging in primary progressive apraxia of speech
  publication-title: Cortex
– volume: 73
  start-page: 1216
  issue: 6
  year: 2012
  end-page: 1227
  article-title: Predicting regional neurodegeneration from the healthy brain functional connectome
  publication-title: Neuron
– volume: 5
  start-page: 118
  issue: 2
  year: 2018
  end-page: 130
  article-title: Tau imaging in parkinsonism: What have we learned so far?
  publication-title: Movement Disorders Clinical Practice
– volume: 53
  start-page: 695
  issue: 4
  year: 2005
  end-page: 699
  article-title: The montreal cognitive assessment, MoCA: A brief screening tool for mild cognitive impairment
  publication-title: Journal of the American Geriatrics Society
– volume: 10
  start-page: 232
  year: 2018
  end-page: 236
  article-title: Tau positron emission tomography imaging in tauopathies: The added hurdle of off‐target binding
  publication-title: Alzheimer's & Dementia
– volume: 120
  start-page: 105
  year: 2022
  end-page: 116
  article-title: Functional connectivity to the premotor cortex maps onto longitudinal brain neurodegeneration in progressive apraxia of speech
  publication-title: Neurobiology of Aging
– volume: 185
  start-page: 1
  year: 2019
  end-page: 11
  article-title: Limits toanatomical accuracy of diffusion tractography using modern approaches
  publication-title: Neuroimage
– volume: 136
  start-page: 2619
  issue: Pt 8
  year: 2013
  end-page: 2628
  article-title: A novel frontal pathway underlies verbal fluency in primary progressive aphasia
  publication-title: Brain
– volume: 203
  start-page: 264
  issue: 1
  year: 2012
  end-page: 272
  article-title: Optimization of seed density in DTI tractography for structural networks
  publication-title: Journal of Neuroscience Methods
– volume: 61
  start-page: 263
  issue: 2
  year: 2020
  end-page: 269
  article-title: Multimodal (18)F‐AV‐1451 and MRI findings in nonfluent variant of primary progressive aphasia: Possible insights on nodal propagation of Tau protein across the syntactic network
  publication-title: The Journal of Nuclear Medicine
– volume: 4
  start-page: 58
  issue: 1
  year: 2016
  article-title: An autoradiographic evaluation of AV‐1451 Tau PET in dementia
  publication-title: Acta Neuropathologica Communications
– volume: 202
  year: 2019
  article-title: Differential tractography as a track‐based biomarker for neuronalinjury
  publication-title: Neuroimage
– volume: 23
  start-page: 2129
  issue: 15
  year: 2008
  end-page: 2170
  article-title: Movement disorder society‐sponsored revision of the Unified Parkinson's Disease Rating Scale (MDS‐UPDRS): scale presentation and clinimetric testing results
  publication-title: Movement Disorders: Official Journal of the Movement Disorder Society
– volume: 14
  issue: 1
  year: 2024
  article-title: Combined assessment of progressive apraxia of speech brain microstructure by diffusion tensor imaging tractography and multishell neurite orientation dispersion and density imaging
  publication-title: Brain and Behavior
– volume: 10
  start-page: 162
  issue: 2
  year: 2020
  end-page: 169
  article-title: Apraxia of speech involves lesions of dorsal arcuate fasciculus and insula in patients with aphasia
  publication-title: Neurology Clinical Practice
– volume: 11
  start-page: 13
  issue: 1
  year: 2019
  article-title: ( )F‐flortaucipir (AV‐1451) tau PET in frontotemporal dementia syndromes
  publication-title: Alzheimer's Research & Therapy
– volume: 122
  start-page: 190
  issue: 3
  year: 2012
  end-page: 198
  article-title: The neural basis of syntactic deficits in primary progressive aphasia
  publication-title: Brain and Language
– volume: 20
  start-page: 511
  issue: 6
  year: 2006
  end-page: 527
  article-title: Apraxia of speech in degenerative neurologic disease
  publication-title: Aphasiology
– volume: 135
  start-page: 1522
  issue: Pt 5
  year: 2012
  end-page: 1536
  article-title: Characterizing a neurodegenerative syndrome: primary progressive apraxia of speech
  publication-title: Brain
– volume: 64
  start-page: 392
  issue: 2
  year: 2021
  end-page: 404
  article-title: A longitudinal evaluation of speech rate in primary progressive apraxia of speech
  publication-title: Journal of Speech, Language, and Hearing Research
– volume: 82
  start-page: 239
  issue: 3
  year: 2014
  end-page: 247
  article-title: In vivo signatures of nonfluent/agrammatic primary progressive aphasia caused by FTLD pathology
  publication-title: Neurology
– volume: 171
  start-page: 277
  year: 2018
  end-page: 295
  article-title: Susceptibility‐induced distortion that varies due to motion: Correction in diffusion MR without acquiring additional data
  publication-title: Neuroimage
– volume: 63
  start-page: 931
  issue: 6
  year: 2022
  end-page: 935
  article-title: Relationship between (18)F‐Flortaucipir uptake and histologic lesion types in 4‐repeat tauopathies
  publication-title: Journal of Nuclear Medicine
– ident: e_1_2_10_62_1
  doi: 10.1016/j.cortex.2017.12.021
– ident: e_1_2_10_28_1
  doi: 10.1093/brain/awy059
– ident: e_1_2_10_58_1
  doi: 10.1016/j.jcomdis.2014.06.008
– ident: e_1_2_10_65_1
  doi: 10.1016/j.nicl.2019.102152
– ident: e_1_2_10_64_1
  doi: 10.1002/mdc3.12584
– ident: e_1_2_10_19_1
  doi: 10.1093/brain/awr099
– ident: e_1_2_10_29_1
  doi: 10.3390/ph14020110
– ident: e_1_2_10_49_1
  doi: 10.1016/j.jalz.2016.01.003
– ident: e_1_2_10_66_1
  doi: 10.1016/j.bandl.2012.04.005
– ident: e_1_2_10_16_1
  doi: 10.1080/02687030600597358
– ident: e_1_2_10_17_1
  doi: 10.1044/2022_ajslp-22-00148
– ident: e_1_2_10_36_1
  doi: 10.1080/02687038.2020.1852002
– ident: e_1_2_10_39_1
  doi: 10.1186/s40478-016-0315-6
– ident: e_1_2_10_46_1
  doi: 10.1097/00004728-199007000-00011
– ident: e_1_2_10_51_1
  doi: 10.3233/jad-180749
– ident: e_1_2_10_53_1
  doi: 10.1016/j.neurobiolaging.2022.08.013
– ident: e_1_2_10_60_1
  doi: 10.1016/j.cortex.2019.11.002
– ident: e_1_2_10_35_1
  doi: 10.1007/s00401-016-1618-1
– ident: e_1_2_10_20_1
  doi: 10.1371/journal.pone.0284182
– ident: e_1_2_10_9_1
  doi: 10.1016/j.cortex.2015.05.013
– ident: e_1_2_10_14_1
  doi: 10.1016/j.neurobiolaging.2018.11.017
– ident: e_1_2_10_71_1
  doi: 10.3390/brainsci7040037
– ident: e_1_2_10_38_1
  doi: 10.2310/7290.2014.00025
– ident: e_1_2_10_22_1
  doi: 10.1002/brb3.3346
– ident: e_1_2_10_4_1
  doi: 10.1016/j.neuroimage.2015.10.019
– ident: e_1_2_10_32_1
  doi: 10.1212/WNL.0b013e31829c5ed5
– ident: e_1_2_10_7_1
  doi: 10.2967/jnumed.120.252411
– ident: e_1_2_10_42_1
  doi: 10.1523/jneurosci.3464-13.2014
– ident: e_1_2_10_63_1
  doi: 10.1016/j.nicl.2022.102999
– ident: e_1_2_10_40_1
  doi: 10.1016/j.jalz.2019.09.079
– ident: e_1_2_10_23_1
  doi: 10.1002/ana.25893
– ident: e_1_2_10_41_1
  doi: 10.1016/j.nicl.2019.102115
– ident: e_1_2_10_26_1
  doi: 10.3389/fnana.2018.00077
– ident: e_1_2_10_54_1
  doi: 10.1093/cercor/bhaa319
– ident: e_1_2_10_59_1
  doi: 10.1186/s13195-019-0470-7
– ident: e_1_2_10_34_1
  doi: 10.2967/jnumed.121.262685
– ident: e_1_2_10_69_1
  doi: 10.1016/j.nicl.2013.06.014
– ident: e_1_2_10_6_1
  doi: 10.2967/jnumed.118.224113
– ident: e_1_2_10_55_1
  doi: 10.1016/j.parkreldis.2019.07.001
– ident: e_1_2_10_2_1
  doi: 10.1148/radiol.15141869
– ident: e_1_2_10_70_1
  doi: 10.1016/j.neuroimage.2019.116131
– ident: e_1_2_10_57_1
  doi: 10.1523/jneurosci.4127-06.2007
– ident: e_1_2_10_37_1
  doi: 10.1016/j.dadm.2018.01.007
– ident: e_1_2_10_11_1
  doi: 10.1093/brain/awt163
– ident: e_1_2_10_56_1
  doi: 10.1002/ana.10390
– ident: e_1_2_10_43_1
  doi: 10.1002/ana.24517
– ident: e_1_2_10_5_1
  doi: 10.1016/j.neuroimage.2017.12.040
– ident: e_1_2_10_30_1
  doi: 10.1038/s41467-021-23687-8
– ident: e_1_2_10_48_1
  doi: 10.2967/jnumed.118.225508
– ident: e_1_2_10_47_1
  doi: 10.1111/j.1532-5415.2005.53221.x
– ident: e_1_2_10_24_1
  doi: 10.1002/mds.22340
– ident: e_1_2_10_45_1
  doi: 10.1007/s00401-016-1640-3
– ident: e_1_2_10_61_1
  doi: 10.1044/2020_JSLHR-20-00253
– ident: e_1_2_10_18_1
  doi: 10.1038/s41467-019-14159-1
– ident: e_1_2_10_13_1
  doi: 10.1016/j.jneumeth.2011.09.021
– ident: e_1_2_10_25_1
  doi: 10.1212/WNL.0b013e31821103e6
– ident: e_1_2_10_31_1
  doi: 10.1093/brain/aws032
– ident: e_1_2_10_15_1
  doi: 10.1016/j.cortex.2018.10.015
– ident: e_1_2_10_12_1
  doi: 10.1212/CPJ.0000000000000699
– ident: e_1_2_10_50_1
  doi: 10.1016/j.neuroimage.2018.10.029
– ident: e_1_2_10_68_1
  doi: 10.1016/j.neuroimage.2018.05.027
– ident: e_1_2_10_3_1
  doi: 10.1007/s00429-014-0773-1
– ident: e_1_2_10_33_1
  doi: 10.1002/ana.25183
– ident: e_1_2_10_21_1
  doi: 10.1016/j.cortex.2023.08.019
– ident: e_1_2_10_10_1
  doi: 10.1212/wnl.0000000000000031
– ident: e_1_2_10_52_1
  doi: 10.3389/fnins.2019.00875
– ident: e_1_2_10_72_1
  doi: 10.1016/j.neuron.2012.03.004
– ident: e_1_2_10_27_1
  doi: 10.3389/fnhum.2021.672665
– ident: e_1_2_10_8_1
  doi: 10.1080/02687038.2016.1225274
– ident: e_1_2_10_44_1
  doi: 10.1016/j.cortex.2021.10.010
– ident: e_1_2_10_67_1
  doi: 10.1007/s13311-018-0663-y
SSID ssj0011501
Score 2.45852
Snippet Progressive apraxia of speech (PAOS) is a 4R tauopathy characterized by difficulties with motor speech planning. Neurodegeneration in PAOS targets the premotor...
SourceID pubmedcentral
proquest
pubmed
crossref
wiley
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage e26704
SubjectTerms Aged
Aphasia, Primary Progressive - diagnostic imaging
Aphasia, Primary Progressive - pathology
Apraxias - diagnostic imaging
Apraxias - pathology
Brain - diagnostic imaging
Brain - pathology
Carbolines - pharmacokinetics
diffusion tensor imaging
Diffusion Tensor Imaging - methods
Female
flortaucipir
Humans
Male
Middle Aged
Multimodal Imaging - methods
positron emission tomography
Positron-Emission Tomography - methods
progressive apraxia of speech
Tau
tau Proteins - metabolism
TauPET
tractography
White Matter - diagnostic imaging
White Matter - pathology
Title Multimodal cross‐examination of progressive apraxia of speech by diffusion tensor imaging‐based tractography and Tau‐PET scans
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fhbm.26704
https://www.ncbi.nlm.nih.gov/pubmed/38825988
https://www.proquest.com/docview/3064139845
https://pubmed.ncbi.nlm.nih.gov/PMC11144950
Volume 45
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1La9tAEB5CAqWX0iZ9uA-zLaX0okbWrl70lBQHU3AwwQHfxEo7iw21ZCy7JLce-gP6G_tLOrOS1Zq00IOFkVZC4tud-WZ29luAt7FGsnKx9SJLJlBZg562A-1FhTa-1jyVxamB8WU0ulafZ-HsAD7u1sI0-hBdwo1HhrPXPMB1Xp_-Fg2d58sPQRSzFugRL63lTh6oSTeFQEzHRVvkY72UTPBOVsgPTrtb953RHYZ5t1DyTwLrPNDFQ3jQUkdx1mD9CA6wPIaTs5LC5uWteCdcMafLkh_DvXE7Z34C390a22Vl6F73Gj-__cAbzSUwDIqorHBFWlwP-xWFXq31zULz6XqFWMxFfit4G5Ut59UEF7xXa7FYut2N6FHsBo3Y8GKrVv1a6NKIqd7SxclwKmoCr34M1xfD6aeR1-694BVE0ZSXB3lsNH155COmhfIlRZLEzgo_tL6xZCiKUIaGyKCfSgz0wA6sJNvho7EScyWfwGFZlfgMhNRRQj1CDygcVjGGuS2QRj2m9CNcZA_e70DIilaYnPfH-JI1kspBRnhlDq8evOmarho1jr81er1DMqOxwhMgusRqW2ccbRHjTVTYg6cNst1jJIUaYZokPUj2MO8asA73_pVyMXd63OQuFMWZPn2I6x7_frVsdD52f57_f9MXcD8gItWUp72Ew816i6-ICG3yvuvwdIxncR-OzoeXk6u-Syrw8Sr4BYMsDms
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB5VRQIuCFqgW14GIcQl1Bs7L4lLQa0W6FY9bKXeIicea1dik9U-qvbGgR_Ab-SXMONkA6uCxCFSlDhRos-e-WY8_gzwOjFIVi5xQezIBGpnMTCub4K4NFYaw1NZnBoYnsaDc_35IrrYgvfrtTCNPkSXcOOR4e01D3BOSB_8Vg0dF9N3YZywGOgtHYcJb9wQ6rNuDoGojg-3yMkGGdngta6QDA-6Rze90Q2KebNS8k8G613Q8X2413JHcdiA_QC2sNqB3cOK4ubptXgjfDWnT5PvwO1hO2m-C9_9IttpbelZ_xk_v_3AK8M1MIyKqJ3wVVpcEHuJwszm5mpi-PJihliORXEteB-VFSfWBFe813MxmfrtjehV7AetWPJqq1b-WpjKipFZ0c2zo5FYEHqLh3B-fDT6OAjazReCkjiaDoqwSKyhP48lYlZqqSiUJHpWyshJ68hSlJGKLLFBmSkMTd_1nSLjIdE6hYVWj2C7qivcA6FMnFKXMH2Kh3WCUeFKpGGPGR2Ei-rB2zUIedkqk_MGGV_zRlM5zAmv3OPVg1dd01kjx_G3Ri_XSOY0WHgGxFRYrxY5h1tEeVMd9eBxg2z3GkWxRpSlaQ_SDcy7BizEvXmnmoy9IDf5C02BpqQf8d3j35-WDz4M_cn-_zd9AXcGo-FJfvLp9MsTuBsSq2pq1Z7C9nK-wmfEipbFc9_5fwGUJQ14
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9NAEB5VRaq4INryCBRYEEJcTDdeP9VTgUbhkSqHVOrNWntnlUiNHeWB2huH_oD-Rn5JZ9aOISpIHCxZ9tqy9e3OfLMz-y3A21gjWbnYepElExhYg562Xe1FhTZSa05l8dTA4DTqnwVfz8PzLThar4Wp9SHaCTceGc5e8wCfGXv4WzR0nE8_-FHMWqD3ONnH3dsPhm0KgZiOi7bIx3opmeC1rJD0D9tHN53RHYZ5t1DyTwLrPFDvITxoqKM4rrHehS0s92D_uKSweXol3glXzOlmyfdgZ9DkzPfh2q2xnVaGnnWf8evnDV5qLoFhUERlhSvS4nrYHyj0bK4vJ5ovL2aIxVjkV4K3UVnxvJrggvdqLiZTt7sRvYrdoBFLXmzVqF8LXRox0iu6OTwZiQWBt3gEZ72T0ae-1-y94BVE0QIv9_PYaPrzSCKmRSAVRZLEzgoZWmksGYoiVKEhMihThb7u2q5VZDskGqswD9Rj2C6rEp-CUDpKqEfoLoXDQYxhbgukUY8pHYSL6sD7NQhZ0QiT8_4YF1ktqexnhFfm8OrAm7bprFbj-Fuj12skMxornADRJVarRcbRFjHeJAg78KRGtn2NolAjTJOkA8kG5m0D1uHevFNOxk6Pm9xFQHGmpB9x3ePfn5b1Pw7cybP_b_oKdoafe9n3L6ffnsN9nzhVXal2ANvL-QpfECda5i9d378FAA0Mqg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multimodal+cross%E2%80%90examination+of+progressive+apraxia+of+speech+by+diffusion+tensor+imaging%E2%80%90based+tractography+and+Tau%E2%80%90PET+scans&rft.jtitle=Human+brain+mapping&rft.au=Gatto%2C+Rodolfo+G.&rft.au=Pham%2C+Nha+Trang+Thu&rft.au=Duffy%2C+Joseph+R.&rft.au=Clark%2C+Heather+M.&rft.date=2024-06-01&rft.pub=John+Wiley+%26+Sons%2C+Inc&rft.issn=1065-9471&rft.eissn=1097-0193&rft.volume=45&rft.issue=8&rft_id=info:doi/10.1002%2Fhbm.26704&rft.externalDocID=PMC11144950
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1065-9471&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1065-9471&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1065-9471&client=summon