Multimodal cross‐examination of progressive apraxia of speech by diffusion tensor imaging‐based tractography and Tau‐PET scans
Progressive apraxia of speech (PAOS) is a 4R tauopathy characterized by difficulties with motor speech planning. Neurodegeneration in PAOS targets the premotor cortex, particularly the supplementary motor area (SMA), with degeneration of white matter (WM) tracts connecting premotor and motor cortice...
Saved in:
Published in | Human brain mapping Vol. 45; no. 8; pp. e26704 - n/a |
---|---|
Main Authors | , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Hoboken, USA
John Wiley & Sons, Inc
01.06.2024
|
Subjects | |
Online Access | Get full text |
ISSN | 1065-9471 1097-0193 1097-0193 |
DOI | 10.1002/hbm.26704 |
Cover
Loading…
Abstract | Progressive apraxia of speech (PAOS) is a 4R tauopathy characterized by difficulties with motor speech planning. Neurodegeneration in PAOS targets the premotor cortex, particularly the supplementary motor area (SMA), with degeneration of white matter (WM) tracts connecting premotor and motor cortices and Broca's area observed on diffusion tensor imaging (DTI). We aimed to assess flortaucipir uptake across speech‐language‐related WM tracts identified using DTI tractography in PAOS. Twenty‐two patients with PAOS and 26 matched healthy controls were recruited by the Neurodegenerative Research Group (NRG) and underwent MRI and flortaucipir‐PET. The patient population included patients with primary progressive apraxia of speech (PPAOS) and non‐fluent variant/agrammatic primary progressive aphasia (agPPA). Flortaucipir PET scans and DTI were coregistered using rigid registration with a mutual information cost function in subject space. Alignments between DTI and flortaucipir PET were inspected in all cases. Whole‐brain tractography was calculated using deterministic algorithms by a tractography reconstruction tool (DSI‐studio) and specific tracts were identified using an automatic fiber tracking atlas‐based method. Fractional anisotropy (FA) and flortaucipir standardized uptake value ratios (SUVRs) were averaged across the frontal aslant tract, arcuate fasciculi, inferior frontal‐occipital fasciculus, inferior and middle longitudinal fasciculi, as well as the SMA commissural fibers. Reduced FA (p < .0001) and elevated flortaucipir SUVR (p = .0012) were observed in PAOS cases compared to controls across all combined WM tracts. For flortaucipir SUVR, the greatest differentiation of PAOS from controls was achieved with the SMA commissural fibers (area under the receiver operator characteristic curve [AUROC] = 0.83), followed by the left arcuate fasciculus (AUROC = 0.75) and left frontal aslant tract (AUROC = 0.71). Our findings demonstrate that flortaucipir uptake is increased across WM tracts related to speech/language difficulties in PAOS.
Structural connectomics assessment of the supplementary motor area (SMA) in progressive apraxia of speech (PAOS) subjects. White matter connectivity representation from cortical regions involved in the language network (LN) shows lower fractional anisotropy (FA) and larger mean diffusivity (MD) and standardized uptake value ratio (SUVR) values than control. The addition of SMA to the speech and LN demonstrates further FA decrease in MD and SUVR increase likely due to the involvement of SMA in the disease. |
---|---|
AbstractList | Progressive apraxia of speech (PAOS) is a 4R tauopathy characterized by difficulties with motor speech planning. Neurodegeneration in PAOS targets the premotor cortex, particularly the supplementary motor area (SMA), with degeneration of white matter (WM) tracts connecting premotor and motor cortices and Broca's area observed on diffusion tensor imaging (DTI). We aimed to assess flortaucipir uptake across speech‐language‐related WM tracts identified using DTI tractography in PAOS. Twenty‐two patients with PAOS and 26 matched healthy controls were recruited by the Neurodegenerative Research Group (NRG) and underwent MRI and flortaucipir‐PET. The patient population included patients with primary progressive apraxia of speech (PPAOS) and non‐fluent variant/agrammatic primary progressive aphasia (agPPA). Flortaucipir PET scans and DTI were coregistered using rigid registration with a mutual information cost function in subject space. Alignments between DTI and flortaucipir PET were inspected in all cases. Whole‐brain tractography was calculated using deterministic algorithms by a tractography reconstruction tool (DSI‐studio) and specific tracts were identified using an automatic fiber tracking atlas‐based method. Fractional anisotropy (FA) and flortaucipir standardized uptake value ratios (SUVRs) were averaged across the frontal aslant tract, arcuate fasciculi, inferior frontal‐occipital fasciculus, inferior and middle longitudinal fasciculi, as well as the SMA commissural fibers. Reduced FA ( p < .0001) and elevated flortaucipir SUVR ( p = .0012) were observed in PAOS cases compared to controls across all combined WM tracts. For flortaucipir SUVR, the greatest differentiation of PAOS from controls was achieved with the SMA commissural fibers (area under the receiver operator characteristic curve [AUROC] = 0.83), followed by the left arcuate fasciculus (AUROC = 0.75) and left frontal aslant tract (AUROC = 0.71). Our findings demonstrate that flortaucipir uptake is increased across WM tracts related to speech/language difficulties in PAOS. Progressive apraxia of speech (PAOS) is a 4R tauopathy characterized by difficulties with motor speech planning. Neurodegeneration in PAOS targets the premotor cortex, particularly the supplementary motor area (SMA), with degeneration of white matter (WM) tracts connecting premotor and motor cortices and Broca's area observed on diffusion tensor imaging (DTI). We aimed to assess flortaucipir uptake across speech-language-related WM tracts identified using DTI tractography in PAOS. Twenty-two patients with PAOS and 26 matched healthy controls were recruited by the Neurodegenerative Research Group (NRG) and underwent MRI and flortaucipir-PET. The patient population included patients with primary progressive apraxia of speech (PPAOS) and non-fluent variant/agrammatic primary progressive aphasia (agPPA). Flortaucipir PET scans and DTI were coregistered using rigid registration with a mutual information cost function in subject space. Alignments between DTI and flortaucipir PET were inspected in all cases. Whole-brain tractography was calculated using deterministic algorithms by a tractography reconstruction tool (DSI-studio) and specific tracts were identified using an automatic fiber tracking atlas-based method. Fractional anisotropy (FA) and flortaucipir standardized uptake value ratios (SUVRs) were averaged across the frontal aslant tract, arcuate fasciculi, inferior frontal-occipital fasciculus, inferior and middle longitudinal fasciculi, as well as the SMA commissural fibers. Reduced FA (p < .0001) and elevated flortaucipir SUVR (p = .0012) were observed in PAOS cases compared to controls across all combined WM tracts. For flortaucipir SUVR, the greatest differentiation of PAOS from controls was achieved with the SMA commissural fibers (area under the receiver operator characteristic curve [AUROC] = 0.83), followed by the left arcuate fasciculus (AUROC = 0.75) and left frontal aslant tract (AUROC = 0.71). Our findings demonstrate that flortaucipir uptake is increased across WM tracts related to speech/language difficulties in PAOS.Progressive apraxia of speech (PAOS) is a 4R tauopathy characterized by difficulties with motor speech planning. Neurodegeneration in PAOS targets the premotor cortex, particularly the supplementary motor area (SMA), with degeneration of white matter (WM) tracts connecting premotor and motor cortices and Broca's area observed on diffusion tensor imaging (DTI). We aimed to assess flortaucipir uptake across speech-language-related WM tracts identified using DTI tractography in PAOS. Twenty-two patients with PAOS and 26 matched healthy controls were recruited by the Neurodegenerative Research Group (NRG) and underwent MRI and flortaucipir-PET. The patient population included patients with primary progressive apraxia of speech (PPAOS) and non-fluent variant/agrammatic primary progressive aphasia (agPPA). Flortaucipir PET scans and DTI were coregistered using rigid registration with a mutual information cost function in subject space. Alignments between DTI and flortaucipir PET were inspected in all cases. Whole-brain tractography was calculated using deterministic algorithms by a tractography reconstruction tool (DSI-studio) and specific tracts were identified using an automatic fiber tracking atlas-based method. Fractional anisotropy (FA) and flortaucipir standardized uptake value ratios (SUVRs) were averaged across the frontal aslant tract, arcuate fasciculi, inferior frontal-occipital fasciculus, inferior and middle longitudinal fasciculi, as well as the SMA commissural fibers. Reduced FA (p < .0001) and elevated flortaucipir SUVR (p = .0012) were observed in PAOS cases compared to controls across all combined WM tracts. For flortaucipir SUVR, the greatest differentiation of PAOS from controls was achieved with the SMA commissural fibers (area under the receiver operator characteristic curve [AUROC] = 0.83), followed by the left arcuate fasciculus (AUROC = 0.75) and left frontal aslant tract (AUROC = 0.71). Our findings demonstrate that flortaucipir uptake is increased across WM tracts related to speech/language difficulties in PAOS. Progressive apraxia of speech (PAOS) is a 4R tauopathy characterized by difficulties with motor speech planning. Neurodegeneration in PAOS targets the premotor cortex, particularly the supplementary motor area (SMA), with degeneration of white matter (WM) tracts connecting premotor and motor cortices and Broca's area observed on diffusion tensor imaging (DTI). We aimed to assess flortaucipir uptake across speech‐language‐related WM tracts identified using DTI tractography in PAOS. Twenty‐two patients with PAOS and 26 matched healthy controls were recruited by the Neurodegenerative Research Group (NRG) and underwent MRI and flortaucipir‐PET. The patient population included patients with primary progressive apraxia of speech (PPAOS) and non‐fluent variant/agrammatic primary progressive aphasia (agPPA). Flortaucipir PET scans and DTI were coregistered using rigid registration with a mutual information cost function in subject space. Alignments between DTI and flortaucipir PET were inspected in all cases. Whole‐brain tractography was calculated using deterministic algorithms by a tractography reconstruction tool (DSI‐studio) and specific tracts were identified using an automatic fiber tracking atlas‐based method. Fractional anisotropy (FA) and flortaucipir standardized uptake value ratios (SUVRs) were averaged across the frontal aslant tract, arcuate fasciculi, inferior frontal‐occipital fasciculus, inferior and middle longitudinal fasciculi, as well as the SMA commissural fibers. Reduced FA ( p < .0001) and elevated flortaucipir SUVR ( p = .0012) were observed in PAOS cases compared to controls across all combined WM tracts. For flortaucipir SUVR, the greatest differentiation of PAOS from controls was achieved with the SMA commissural fibers (area under the receiver operator characteristic curve [AUROC] = 0.83), followed by the left arcuate fasciculus (AUROC = 0.75) and left frontal aslant tract (AUROC = 0.71). Our findings demonstrate that flortaucipir uptake is increased across WM tracts related to speech/language difficulties in PAOS. Structural connectomics assessment of the supplementary motor area (SMA) in progressive apraxia of speech (PAOS) subjects. White matter connectivity representation from cortical regions involved in the language network (LN) shows lower fractional anisotropy (FA) and larger mean diffusivity (MD) and standardized uptake value ratio (SUVR) values than control. The addition of SMA to the speech and LN demonstrates further FA decrease in MD and SUVR increase likely due to the involvement of SMA in the disease. Progressive apraxia of speech (PAOS) is a 4R tauopathy characterized by difficulties with motor speech planning. Neurodegeneration in PAOS targets the premotor cortex, particularly the supplementary motor area (SMA), with degeneration of white matter (WM) tracts connecting premotor and motor cortices and Broca's area observed on diffusion tensor imaging (DTI). We aimed to assess flortaucipir uptake across speech‐language‐related WM tracts identified using DTI tractography in PAOS. Twenty‐two patients with PAOS and 26 matched healthy controls were recruited by the Neurodegenerative Research Group (NRG) and underwent MRI and flortaucipir‐PET. The patient population included patients with primary progressive apraxia of speech (PPAOS) and non‐fluent variant/agrammatic primary progressive aphasia (agPPA). Flortaucipir PET scans and DTI were coregistered using rigid registration with a mutual information cost function in subject space. Alignments between DTI and flortaucipir PET were inspected in all cases. Whole‐brain tractography was calculated using deterministic algorithms by a tractography reconstruction tool (DSI‐studio) and specific tracts were identified using an automatic fiber tracking atlas‐based method. Fractional anisotropy (FA) and flortaucipir standardized uptake value ratios (SUVRs) were averaged across the frontal aslant tract, arcuate fasciculi, inferior frontal‐occipital fasciculus, inferior and middle longitudinal fasciculi, as well as the SMA commissural fibers. Reduced FA (p < .0001) and elevated flortaucipir SUVR (p = .0012) were observed in PAOS cases compared to controls across all combined WM tracts. For flortaucipir SUVR, the greatest differentiation of PAOS from controls was achieved with the SMA commissural fibers (area under the receiver operator characteristic curve [AUROC] = 0.83), followed by the left arcuate fasciculus (AUROC = 0.75) and left frontal aslant tract (AUROC = 0.71). Our findings demonstrate that flortaucipir uptake is increased across WM tracts related to speech/language difficulties in PAOS. Structural connectomics assessment of the supplementary motor area (SMA) in progressive apraxia of speech (PAOS) subjects. White matter connectivity representation from cortical regions involved in the language network (LN) shows lower fractional anisotropy (FA) and larger mean diffusivity (MD) and standardized uptake value ratio (SUVR) values than control. The addition of SMA to the speech and LN demonstrates further FA decrease in MD and SUVR increase likely due to the involvement of SMA in the disease. |
Author | Gatto, Rodolfo G. Clark, Heather M. Pham, Nha Trang Thu Schwarz, Christopher G. Lowe, Val J. Botha, Hugo Jack, Clifford R. Duffy, Joseph R. Whitwell, Jennifer L. Josephs, Keith A. Utianski, Rene L. Machulda, Mary M. |
AuthorAffiliation | 2 Department of Radiology Mayo Clinic Rochester Minnesota USA 1 Department of Neurology Mayo Clinic Rochester Minnesota USA 3 Department of Psychiatry and Psychology Mayo Clinic Rochester Minnesota USA |
AuthorAffiliation_xml | – name: 1 Department of Neurology Mayo Clinic Rochester Minnesota USA – name: 3 Department of Psychiatry and Psychology Mayo Clinic Rochester Minnesota USA – name: 2 Department of Radiology Mayo Clinic Rochester Minnesota USA |
Author_xml | – sequence: 1 givenname: Rodolfo G. orcidid: 0000-0003-2170-6662 surname: Gatto fullname: Gatto, Rodolfo G. organization: Mayo Clinic – sequence: 2 givenname: Nha Trang Thu surname: Pham fullname: Pham, Nha Trang Thu organization: Mayo Clinic – sequence: 3 givenname: Joseph R. surname: Duffy fullname: Duffy, Joseph R. organization: Mayo Clinic – sequence: 4 givenname: Heather M. surname: Clark fullname: Clark, Heather M. organization: Mayo Clinic – sequence: 5 givenname: Rene L. surname: Utianski fullname: Utianski, Rene L. organization: Mayo Clinic – sequence: 6 givenname: Hugo orcidid: 0000-0003-4390-685X surname: Botha fullname: Botha, Hugo organization: Mayo Clinic – sequence: 7 givenname: Mary M. surname: Machulda fullname: Machulda, Mary M. organization: Mayo Clinic – sequence: 8 givenname: Val J. surname: Lowe fullname: Lowe, Val J. organization: Mayo Clinic – sequence: 9 givenname: Christopher G. orcidid: 0000-0002-1466-8357 surname: Schwarz fullname: Schwarz, Christopher G. organization: Mayo Clinic – sequence: 10 givenname: Clifford R. surname: Jack fullname: Jack, Clifford R. organization: Mayo Clinic – sequence: 11 givenname: Keith A. surname: Josephs fullname: Josephs, Keith A. organization: Mayo Clinic – sequence: 12 givenname: Jennifer L. orcidid: 0000-0001-6914-1563 surname: Whitwell fullname: Whitwell, Jennifer L. email: whitwell.jennifer@mayo.edu organization: Mayo Clinic |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/38825988$$D View this record in MEDLINE/PubMed |
BookMark | eNp1kctu1TAQhi3Uil5gwQsgL2GRdhzbuawQVIVWagWLw9pynPE5Rokd4qT07FjwADwjT4LPpQgQrDzy_P_3j2ZOyIEPHgl5xuCMAeTnq6Y_y4sSxCNyzKAuM2A1P9jUhcxqUbIjchLjJwDGJLDH5IhXVS7rqjom327nbnJ9aHVHzRhi_PH1O97r3nk9ueBpsHQYw3LEGN0dUj2M-t7pzXccEM2KNmvaOmvnuFFP6GMYqev10vllQjU6YkunUZspQfSwWlPtW7rQc2p-uFzQaLSPT8ih1V3Ep_v3lHx8e7m4uMpu3r-7vnh9kxnBCpE1eVO2GltTAGJtBPBcikoyA9JCa6EEI7lsZVFAzTHXzDLLOUjA1nJsBD8lr3bcYW76xEGfJuvUMKaBx7UK2qk_O96t1DLcKcaYELWERHixJ4zh84xxUr2LBrtOewxzVBwKwXhdCZmkz38P-5XysPskON8Jtnsf0Srjpu3WU7brFAO1ua5K11Xb6ybHy78cD9B_aff0L67D9f-F6urN7c7xE01Bujc |
CitedBy_id | crossref_primary_10_1016_j_ijbiomac_2024_136618 |
Cites_doi | 10.1016/j.cortex.2017.12.021 10.1093/brain/awy059 10.1016/j.jcomdis.2014.06.008 10.1016/j.nicl.2019.102152 10.1002/mdc3.12584 10.1093/brain/awr099 10.3390/ph14020110 10.1016/j.jalz.2016.01.003 10.1016/j.bandl.2012.04.005 10.1080/02687030600597358 10.1044/2022_ajslp-22-00148 10.1080/02687038.2020.1852002 10.1186/s40478-016-0315-6 10.1097/00004728-199007000-00011 10.3233/jad-180749 10.1016/j.neurobiolaging.2022.08.013 10.1016/j.cortex.2019.11.002 10.1007/s00401-016-1618-1 10.1371/journal.pone.0284182 10.1016/j.cortex.2015.05.013 10.1016/j.neurobiolaging.2018.11.017 10.3390/brainsci7040037 10.2310/7290.2014.00025 10.1002/brb3.3346 10.1016/j.neuroimage.2015.10.019 10.1212/WNL.0b013e31829c5ed5 10.2967/jnumed.120.252411 10.1523/jneurosci.3464-13.2014 10.1016/j.nicl.2022.102999 10.1016/j.jalz.2019.09.079 10.1002/ana.25893 10.1016/j.nicl.2019.102115 10.3389/fnana.2018.00077 10.1093/cercor/bhaa319 10.1186/s13195-019-0470-7 10.2967/jnumed.121.262685 10.1016/j.nicl.2013.06.014 10.2967/jnumed.118.224113 10.1016/j.parkreldis.2019.07.001 10.1148/radiol.15141869 10.1016/j.neuroimage.2019.116131 10.1523/jneurosci.4127-06.2007 10.1016/j.dadm.2018.01.007 10.1093/brain/awt163 10.1002/ana.10390 10.1002/ana.24517 10.1016/j.neuroimage.2017.12.040 10.1038/s41467-021-23687-8 10.2967/jnumed.118.225508 10.1111/j.1532-5415.2005.53221.x 10.1002/mds.22340 10.1007/s00401-016-1640-3 10.1044/2020_JSLHR-20-00253 10.1038/s41467-019-14159-1 10.1016/j.jneumeth.2011.09.021 10.1212/WNL.0b013e31821103e6 10.1093/brain/aws032 10.1016/j.cortex.2018.10.015 10.1212/CPJ.0000000000000699 10.1016/j.neuroimage.2018.10.029 10.1016/j.neuroimage.2018.05.027 10.1007/s00429-014-0773-1 10.1002/ana.25183 10.1016/j.cortex.2023.08.019 10.1212/wnl.0000000000000031 10.3389/fnins.2019.00875 10.1016/j.neuron.2012.03.004 10.3389/fnhum.2021.672665 10.1080/02687038.2016.1225274 10.1016/j.cortex.2021.10.010 10.1007/s13311-018-0663-y |
ContentType | Journal Article |
Copyright | 2024 The Authors. published by Wiley Periodicals LLC. 2024 The Authors. Human Brain Mapping published by Wiley Periodicals LLC. |
Copyright_xml | – notice: 2024 The Authors. published by Wiley Periodicals LLC. – notice: 2024 The Authors. Human Brain Mapping published by Wiley Periodicals LLC. |
DBID | 24P AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM |
DOI | 10.1002/hbm.26704 |
DatabaseName | Wiley Online Library Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | CrossRef MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Anatomy & Physiology |
DocumentTitleAlternate | Gatto et al |
EISSN | 1097-0193 |
EndPage | n/a |
ExternalDocumentID | PMC11144950 38825988 10_1002_hbm_26704 HBM26704 |
Genre | researchArticle Journal Article |
GrantInformation_xml | – fundername: National Institutes of Health funderid: R01‐DC12519; R01‐DC14942; RF1‐NS112153 – fundername: NIH HHS grantid: R01-DC14942 – fundername: NIH HHS grantid: R01-DC12519 – fundername: NINDS NIH HHS grantid: R01 NS112153 – fundername: NIDCD NIH HHS grantid: R01 DC014942 – fundername: NIH HHS grantid: RF1-NS112153 – fundername: NIDCD NIH HHS grantid: R01 DC012519 – fundername: NINDS NIH HHS grantid: RF1 NS112153 |
GroupedDBID | --- .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 24P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 702 7PT 7X7 8-0 8-1 8-3 8-4 8-5 8FI 8FJ 8UM 930 A03 AAESR AAEVG AAFWJ AAMMB AAONW AAYCA AAZKR ABCQN ABCUV ABIJN ABIVO ABPVW ABUWG ACCMX ACGFS ACIWK ACPOU ACPRK ACXQS ADBBV ADEOM ADIZJ ADMGS ADPDF ADXAS AEFGJ AEIMD AENEX AFBPY AFGKR AFKRA AFPKN AFRAH AFZJQ AGXDD AHMBA AIDQK AIDYY AIURR AJXKR ALAGY ALIPV ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BENPR BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CCPQU CS3 D-E D-F DCZOG DPXWK DR1 DR2 DU5 EBD EBS EMOBN F00 F01 F04 F5P FYUFA G-S G.N GNP GODZA GROUPED_DOAJ H.T H.X HBH HHY HHZ HMCUK HZ~ IAO IHR ITC IX1 J0M JPC KQQ L7B LAW LC2 LC3 LH4 LITHE LOXES LP6 LP7 LUTES LYRES MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG OK1 OVD OVEED P2P P2W P2X P4D PALCI PHGZM PHGZT PIMPY PQQKQ Q.N Q11 QB0 QRW R.K ROL RPM RX1 RYL SUPJJ SV3 TEORI UB1 UKHRP V2E W8V W99 WBKPD WIB WIH WIK WJL WNSPC WOHZO WQJ WYISQ XG1 XSW XV2 ZZTAW ~IA ~WT .Y3 31~ AANHP AAYXX ABEML ABJNI ACBWZ ACRPL ACSCC ACYXJ ADNMO AGQPQ ASPBG AVWKF AZFZN BFHJK CITATION EJD FEDTE GAKWD HF~ HVGLF LW6 M6M RIWAO RJQFR SAMSI WXSBR AAHHS ACCFJ ADZOD AEEZP AEQDE AIWBW AJBDE CGR CUY CVF ECM EIF NPM 7X8 5PM WIN |
ID | FETCH-LOGICAL-c4164-b2b7daedc60ee9c403254851c05f0df070c535d566093e2a1f1f33050edf3eb43 |
IEDL.DBID | 24P |
ISSN | 1065-9471 1097-0193 |
IngestDate | Thu Aug 21 18:33:32 EDT 2025 Fri Jul 11 07:41:00 EDT 2025 Thu Apr 03 07:27:21 EDT 2025 Thu Apr 24 22:56:25 EDT 2025 Thu Jul 03 08:43:09 EDT 2025 Sun Jul 06 04:45:25 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 8 |
Keywords | flortaucipir tractography TauPET Tau diffusion tensor imaging progressive apraxia of speech positron emission tomography |
Language | English |
License | Attribution-NonCommercial-NoDerivs 2024 The Authors. Human Brain Mapping published by Wiley Periodicals LLC. This is an open access article under the terms of the http://creativecommons.org/licenses/by-nc-nd/4.0/ License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non‐commercial and no modifications or adaptations are made. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4164-b2b7daedc60ee9c403254851c05f0df070c535d566093e2a1f1f33050edf3eb43 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0001-6914-1563 0000-0003-2170-6662 0000-0002-1466-8357 0000-0003-4390-685X |
OpenAccessLink | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fhbm.26704 |
PMID | 38825988 |
PQID | 3064139845 |
PQPubID | 23479 |
PageCount | 12 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_11144950 proquest_miscellaneous_3064139845 pubmed_primary_38825988 crossref_citationtrail_10_1002_hbm_26704 crossref_primary_10_1002_hbm_26704 wiley_primary_10_1002_hbm_26704_HBM26704 |
PublicationCentury | 2000 |
PublicationDate | June 1, 2024 |
PublicationDateYYYYMMDD | 2024-06-01 |
PublicationDate_xml | – month: 06 year: 2024 text: June 1, 2024 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Hoboken, USA |
PublicationPlace_xml | – name: Hoboken, USA – name: United States |
PublicationTitle | Human brain mapping |
PublicationTitleAlternate | Hum Brain Mapp |
PublicationYear | 2024 |
Publisher | John Wiley & Sons, Inc |
Publisher_xml | – name: John Wiley & Sons, Inc |
References | 2023; 32 2015; 78 2017; 7 2021; 64 2012; 122 1990; 14 2013; 2 2019; 11 2020; 61 2019; 13 2015; 220 2020; 16 2019; 16 2019; 202 2022; 63 2020; 11 2018; 83 2020; 124 2020; 10 2012; 203 2003; 53 2017; 31 2022; 120 2018; 171 2019; 60 2006; 20 2021; 31 2018; 5 2012; 135 2019; 66 2019; 67 2018; 178 2022; 34 2008; 23 2022; 36 2014; 13 2020; 88 2014; 51 2019; 111 2007; 27 2018; 141 2019; 75 2023; 18 2011; 76 2016; 125 2024; 14 2019; 185 2014; 82 2011; 134 2016; 12 2012; 73 2021; 14 2016; 4 2015; 69 2021; 15 2021; 12 2023 2015; 276 2013; 136 2005; 53 2013; 81 2016; 132 2020; 25 2018; 12 2018; 99 2018; 10 2014; 34 2022; 146 e_1_2_10_23_1 e_1_2_10_46_1 e_1_2_10_69_1 e_1_2_10_21_1 e_1_2_10_44_1 e_1_2_10_42_1 e_1_2_10_40_1 e_1_2_10_70_1 e_1_2_10_2_1 e_1_2_10_72_1 e_1_2_10_4_1 e_1_2_10_18_1 e_1_2_10_53_1 e_1_2_10_6_1 e_1_2_10_16_1 e_1_2_10_39_1 e_1_2_10_55_1 e_1_2_10_8_1 e_1_2_10_14_1 e_1_2_10_37_1 e_1_2_10_57_1 e_1_2_10_58_1 e_1_2_10_13_1 e_1_2_10_34_1 e_1_2_10_11_1 e_1_2_10_32_1 e_1_2_10_30_1 e_1_2_10_51_1 e_1_2_10_61_1 e_1_2_10_29_1 e_1_2_10_63_1 e_1_2_10_27_1 e_1_2_10_65_1 e_1_2_10_25_1 e_1_2_10_48_1 e_1_2_10_67_1 e_1_2_10_24_1 e_1_2_10_45_1 e_1_2_10_22_1 e_1_2_10_43_1 e_1_2_10_20_1 e_1_2_10_41_1 e_1_2_10_71_1 e_1_2_10_52_1 e_1_2_10_3_1 e_1_2_10_19_1 e_1_2_10_54_1 e_1_2_10_5_1 e_1_2_10_17_1 e_1_2_10_38_1 e_1_2_10_56_1 e_1_2_10_7_1 e_1_2_10_15_1 e_1_2_10_36_1 e_1_2_10_12_1 e_1_2_10_35_1 e_1_2_10_9_1 e_1_2_10_59_1 e_1_2_10_10_1 e_1_2_10_33_1 e_1_2_10_31_1 e_1_2_10_50_1 e_1_2_10_60_1 e_1_2_10_62_1 e_1_2_10_64_1 e_1_2_10_28_1 e_1_2_10_49_1 e_1_2_10_66_1 e_1_2_10_26_1 e_1_2_10_47_1 e_1_2_10_68_1 |
References_xml | – volume: 111 start-page: 148 year: 2019 end-page: 163 article-title: The frontal aslant tract (FAT) and its role in speech, language and executive function publication-title: Cortex – volume: 32 start-page: 469 issue: 2 year: 2023 end-page: 491 article-title: The apraxia of speech rating scale: Reliability, validity, and utility publication-title: American Journal of Speech‐Language Pathology – volume: 146 start-page: 141 year: 2022 end-page: 160 article-title: Identification of the main components of spontaneous speech in primary progressive aphasia and their neural underpinnings using multimodal MRI and FDG‐PET imaging publication-title: Cortex – volume: 18 issue: 5 year: 2023 article-title: Comparative assessment of regional tau distribution by Tau‐PET and post‐mortem neuropathology in a representative set of Alzheimer's & frontotemporal lobar degeneration patients publication-title: PLoS One – volume: 61 start-page: 1409 issue: 10 year: 2020 end-page: 1410 article-title: First Tau PET tracer approved: Toward accurate in vivo diagnosis of Alzheimer Disease publication-title: Journal of Nuclear Medicine – volume: 12 start-page: 3452 issue: 1 year: 2021 article-title: A molecular pathology, neurobiology, biochemical, genetic and neuroimaging study of progressive apraxia of speech publication-title: Nature Communications – volume: 31 start-page: 1693 issue: 3 year: 2021 end-page: 1706 article-title: Tau and amyloid relationships with resting‐state functional connectivity in atypical Alzheimer's disease publication-title: Cereb Cortex – volume: 88 start-page: 1009 issue: 5 year: 2020 end-page: 1022 article-title: Sensitivity‐specificity of Tau and amyloid β positron emission tomography in frontotemporal lobar degeneration publication-title: Annals of Neurology – volume: 27 start-page: 1334 issue: 6 year: 2007 end-page: 1345 article-title: Altered effective connectivity within the language network in primary progressive aphasia publication-title: The Journal of Neuroscience – volume: 53 start-page: 35 issue: 1 year: 2003 end-page: 49 article-title: Primary progressive aphasia: PPA and the language network publication-title: Annals of Neurology – volume: 11 start-page: 347 issue: 1 year: 2020 article-title: Functional brain architecture is associated with the rate of tau accumulation in Alzheimer's disease publication-title: Nature Communications – volume: 12 start-page: 1116 issue: 11 year: 2016 end-page: 1124 article-title: Characterization of Tau positron emission tomography tracer [( )F]AV‐1451 binding to postmortem tissue in Alzheimer's disease, primary tauopathies, and other dementias publication-title: Alzheimer's & Dementia – volume: 16 start-page: 561 issue: 3 year: 2020 end-page: 571 article-title: Tau‐positron emission tomography correlates with neuropathology findings publication-title: Alzheimer's & Dementia – volume: 13 start-page: 875 year: 2019 article-title: Inferior longitudinal Fasciculus' role in visual processing and language comprehension: A combined MEG‐DTI study publication-title: Frontiers in Neuroscience – volume: 15 year: 2021 article-title: Functional contributions of the arcuate fasciculus to language processing publication-title: Frontiers in Human Neuroscience – volume: 16 start-page: 52 issue: 1 year: 2019 end-page: 58 article-title: Automatic removal of false connections in diffusion MRI tractography using topology‐informed pruning (TIP) publication-title: Neurotherapeutics – volume: 66 start-page: 56 year: 2019 end-page: 61 article-title: Multimodal neuroimaging relationships in progressive supranuclear palsy publication-title: Parkinsonism & Related Disorders – volume: 220 start-page: 1983 issue: 4 year: 2015 end-page: 1995 article-title: The left inferior fronto‐occipital fasciculus subserves language semantics: A multilevel lesion study publication-title: Brain Structure & Function – volume: 14 start-page: 561 issue: 4 year: 1990 end-page: 570 article-title: Correction of PET data for partial volume effects in human cerebral cortex by MR imaging publication-title: Journal of Computer Assisted Tomography – volume: 134 start-page: 3011 issue: Pt 10 year: 2011 end-page: 3029 article-title: White matter damage in primary progressive aphasias: A diffusion tensor tractography study publication-title: Brain – volume: 13 year: 2014 article-title: First human use of a radiopharmaceutical prepared by continuous‐flow microfluidic radiofluorination: Proof of concept with the tau imaging agent [ F]T807 publication-title: Molecular Imaging – volume: 51 start-page: 43 year: 2014 end-page: 50 article-title: The apraxia of speech rating scale: A tool for diagnosis and description of apraxia of speech publication-title: Journal of Communication Disorders – volume: 141 start-page: 1517 issue: 5 year: 2018 end-page: 1528 article-title: Longitudinal Tau PET in ageing and Alzheimer's disease publication-title: Brain – year: 2023 article-title: Diffusion tensor imaging‐based multi‐fiber tracking reconstructions can regionally differentiate phonetic versus prosodic subtypes of progressive apraxia of speech publication-title: Cortex – volume: 7 issue: 4 year: 2017 article-title: Seed location impacts whole‐brain structural network comparisons between healthy elderly and individuals with Alzheimer's disease publication-title: Brain Sciences – volume: 81 start-page: 337 issue: 4 year: 2013 end-page: 345 article-title: Syndromes dominated by apraxia of speech show distinct characteristics from agrammatic PPA publication-title: Neurology – volume: 25 year: 2020 article-title: Middle longitudinal fascicle is associated with semantic processing deficits in primary progressive aphasia publication-title: NeuroImage: Clinical – volume: 75 start-page: 187 year: 2019 end-page: 197 article-title: ( )F‐flortaucipir uptake patterns in clinical subtypes of primary progressive aphasia publication-title: Neurobiology of Aging – volume: 76 start-page: 1006 issue: 11 year: 2011 end-page: 1014 article-title: Classification of primary progressive aphasia and its variants publication-title: Neurology – volume: 178 start-page: 57 year: 2018 end-page: 68 article-title: Population‐averaged atlas of the macroscale human structural connectome and its network topology publication-title: Neuroimage – volume: 132 start-page: 935 issue: 6 year: 2016 end-page: 937 article-title: Multimodal evaluation demonstrates in vivo (18)F‐AV‐1451 uptake in autopsy‐confirmed corticobasal degeneration publication-title: Acta Neuropathologica – volume: 67 start-page: 181 issue: 1 year: 2019 end-page: 195 article-title: A comparison of partial volume correction techniques for measuring change in serial amyloid PET SUVR publication-title: Journal of Alzheimer's Disease – volume: 83 start-page: 599 issue: 3 year: 2018 end-page: 611 article-title: [( )F]AV‐1451 tau‐PET and primary progressive aphasia publication-title: Annals of Neurology – volume: 60 start-page: 1444 issue: 10 year: 2019 end-page: 1451 article-title: Effect of off‐target binding on (18)F‐Flortaucipir variability in healthy controls across the life span publication-title: Journal of Nuclear Medicine – volume: 31 start-page: 861 issue: 8 year: 2017 end-page: 878 article-title: Validating the communicative participation item bank (CPIB) for use with people with aphasia: An analysis of differential item function (DIF) publication-title: Aphasiology – volume: 2 start-page: 912 year: 2013 end-page: 921 article-title: Diffusion MRI connectometry automatically reveals affected fiberpathways in individuals with chronic stroke publication-title: Neuroimage Clinical – volume: 78 start-page: 787 issue: 5 year: 2015 end-page: 800 article-title: Validating novel tau positron emission tomography tracer [F‐18]‐AV‐1451 (T807) on postmortem brain tissue publication-title: Annals of Neurology – volume: 25 year: 2020 article-title: Brain volume and flortaucipir analysis of progressive supranuclear palsy clinical variants publication-title: NeuroImage: Clinical – volume: 276 start-page: 219 issue: 1 year: 2015 end-page: 227 article-title: Differentiation between subtypes of primary progressive aphasia by using cortical thickness and diffusion‐tensor MR imaging measures publication-title: Radiology – volume: 132 start-page: 931 issue: 6 year: 2016 end-page: 933 article-title: [ F]AV‐1451 tau‐PET uptake does correlate with quantitatively measured 4R‐tau burden in autopsy‐confirmed corticobasal degeneration publication-title: Acta Neuropathologica – volume: 36 start-page: 21 issue: 1 year: 2022 end-page: 50 article-title: The western aphasia battery: A systematic review of research and clinical applications publication-title: Aphasiology – volume: 34 year: 2022 article-title: Tractography of supplementary motor area projections in progressive speech apraxia and aphasia publication-title: NeuroImage: Clinical – volume: 99 start-page: 358 year: 2018 end-page: 374 article-title: Tau‐PET imaging with [18F]AV‐1451 in primary progressive apraxia of speech publication-title: Cortex – volume: 69 start-page: 220 year: 2015 end-page: 236 article-title: Classification and clinicoradiologic features of primary progressive aphasia (PPA) and apraxia of speech publication-title: Cortex – volume: 34 start-page: 9754 issue: 29 year: 2014 end-page: 9767 article-title: Frontal white matter tracts sustaining speech production in primary progressive aphasia publication-title: The Journal of Neuroscience – volume: 125 start-page: 1063 year: 2016 end-page: 1078 article-title: An integrated approach to correction for off‐resonance effects and subject movement in diffusion MR imaging publication-title: Neuroimage – volume: 12 year: 2018 article-title: Functional anatomy of the inferior longitudinal fasciculus: From historical reports to current hypotheses publication-title: Frontiers in Neuroanatomy – volume: 14 issue: 2 year: 2021 article-title: Tauvid: The first FDA‐approved PET tracer for imaging tau pathology in Alzheimer's Disease publication-title: Pharmaceuticals (Basel) – volume: 124 start-page: 33 year: 2020 end-page: 43 article-title: Longitudinal flortaucipir ([( )F]AV‐1451) PET imaging in primary progressive apraxia of speech publication-title: Cortex – volume: 73 start-page: 1216 issue: 6 year: 2012 end-page: 1227 article-title: Predicting regional neurodegeneration from the healthy brain functional connectome publication-title: Neuron – volume: 5 start-page: 118 issue: 2 year: 2018 end-page: 130 article-title: Tau imaging in parkinsonism: What have we learned so far? publication-title: Movement Disorders Clinical Practice – volume: 53 start-page: 695 issue: 4 year: 2005 end-page: 699 article-title: The montreal cognitive assessment, MoCA: A brief screening tool for mild cognitive impairment publication-title: Journal of the American Geriatrics Society – volume: 10 start-page: 232 year: 2018 end-page: 236 article-title: Tau positron emission tomography imaging in tauopathies: The added hurdle of off‐target binding publication-title: Alzheimer's & Dementia – volume: 120 start-page: 105 year: 2022 end-page: 116 article-title: Functional connectivity to the premotor cortex maps onto longitudinal brain neurodegeneration in progressive apraxia of speech publication-title: Neurobiology of Aging – volume: 185 start-page: 1 year: 2019 end-page: 11 article-title: Limits toanatomical accuracy of diffusion tractography using modern approaches publication-title: Neuroimage – volume: 136 start-page: 2619 issue: Pt 8 year: 2013 end-page: 2628 article-title: A novel frontal pathway underlies verbal fluency in primary progressive aphasia publication-title: Brain – volume: 203 start-page: 264 issue: 1 year: 2012 end-page: 272 article-title: Optimization of seed density in DTI tractography for structural networks publication-title: Journal of Neuroscience Methods – volume: 61 start-page: 263 issue: 2 year: 2020 end-page: 269 article-title: Multimodal (18)F‐AV‐1451 and MRI findings in nonfluent variant of primary progressive aphasia: Possible insights on nodal propagation of Tau protein across the syntactic network publication-title: The Journal of Nuclear Medicine – volume: 4 start-page: 58 issue: 1 year: 2016 article-title: An autoradiographic evaluation of AV‐1451 Tau PET in dementia publication-title: Acta Neuropathologica Communications – volume: 202 year: 2019 article-title: Differential tractography as a track‐based biomarker for neuronalinjury publication-title: Neuroimage – volume: 23 start-page: 2129 issue: 15 year: 2008 end-page: 2170 article-title: Movement disorder society‐sponsored revision of the Unified Parkinson's Disease Rating Scale (MDS‐UPDRS): scale presentation and clinimetric testing results publication-title: Movement Disorders: Official Journal of the Movement Disorder Society – volume: 14 issue: 1 year: 2024 article-title: Combined assessment of progressive apraxia of speech brain microstructure by diffusion tensor imaging tractography and multishell neurite orientation dispersion and density imaging publication-title: Brain and Behavior – volume: 10 start-page: 162 issue: 2 year: 2020 end-page: 169 article-title: Apraxia of speech involves lesions of dorsal arcuate fasciculus and insula in patients with aphasia publication-title: Neurology Clinical Practice – volume: 11 start-page: 13 issue: 1 year: 2019 article-title: ( )F‐flortaucipir (AV‐1451) tau PET in frontotemporal dementia syndromes publication-title: Alzheimer's Research & Therapy – volume: 122 start-page: 190 issue: 3 year: 2012 end-page: 198 article-title: The neural basis of syntactic deficits in primary progressive aphasia publication-title: Brain and Language – volume: 20 start-page: 511 issue: 6 year: 2006 end-page: 527 article-title: Apraxia of speech in degenerative neurologic disease publication-title: Aphasiology – volume: 135 start-page: 1522 issue: Pt 5 year: 2012 end-page: 1536 article-title: Characterizing a neurodegenerative syndrome: primary progressive apraxia of speech publication-title: Brain – volume: 64 start-page: 392 issue: 2 year: 2021 end-page: 404 article-title: A longitudinal evaluation of speech rate in primary progressive apraxia of speech publication-title: Journal of Speech, Language, and Hearing Research – volume: 82 start-page: 239 issue: 3 year: 2014 end-page: 247 article-title: In vivo signatures of nonfluent/agrammatic primary progressive aphasia caused by FTLD pathology publication-title: Neurology – volume: 171 start-page: 277 year: 2018 end-page: 295 article-title: Susceptibility‐induced distortion that varies due to motion: Correction in diffusion MR without acquiring additional data publication-title: Neuroimage – volume: 63 start-page: 931 issue: 6 year: 2022 end-page: 935 article-title: Relationship between (18)F‐Flortaucipir uptake and histologic lesion types in 4‐repeat tauopathies publication-title: Journal of Nuclear Medicine – ident: e_1_2_10_62_1 doi: 10.1016/j.cortex.2017.12.021 – ident: e_1_2_10_28_1 doi: 10.1093/brain/awy059 – ident: e_1_2_10_58_1 doi: 10.1016/j.jcomdis.2014.06.008 – ident: e_1_2_10_65_1 doi: 10.1016/j.nicl.2019.102152 – ident: e_1_2_10_64_1 doi: 10.1002/mdc3.12584 – ident: e_1_2_10_19_1 doi: 10.1093/brain/awr099 – ident: e_1_2_10_29_1 doi: 10.3390/ph14020110 – ident: e_1_2_10_49_1 doi: 10.1016/j.jalz.2016.01.003 – ident: e_1_2_10_66_1 doi: 10.1016/j.bandl.2012.04.005 – ident: e_1_2_10_16_1 doi: 10.1080/02687030600597358 – ident: e_1_2_10_17_1 doi: 10.1044/2022_ajslp-22-00148 – ident: e_1_2_10_36_1 doi: 10.1080/02687038.2020.1852002 – ident: e_1_2_10_39_1 doi: 10.1186/s40478-016-0315-6 – ident: e_1_2_10_46_1 doi: 10.1097/00004728-199007000-00011 – ident: e_1_2_10_51_1 doi: 10.3233/jad-180749 – ident: e_1_2_10_53_1 doi: 10.1016/j.neurobiolaging.2022.08.013 – ident: e_1_2_10_60_1 doi: 10.1016/j.cortex.2019.11.002 – ident: e_1_2_10_35_1 doi: 10.1007/s00401-016-1618-1 – ident: e_1_2_10_20_1 doi: 10.1371/journal.pone.0284182 – ident: e_1_2_10_9_1 doi: 10.1016/j.cortex.2015.05.013 – ident: e_1_2_10_14_1 doi: 10.1016/j.neurobiolaging.2018.11.017 – ident: e_1_2_10_71_1 doi: 10.3390/brainsci7040037 – ident: e_1_2_10_38_1 doi: 10.2310/7290.2014.00025 – ident: e_1_2_10_22_1 doi: 10.1002/brb3.3346 – ident: e_1_2_10_4_1 doi: 10.1016/j.neuroimage.2015.10.019 – ident: e_1_2_10_32_1 doi: 10.1212/WNL.0b013e31829c5ed5 – ident: e_1_2_10_7_1 doi: 10.2967/jnumed.120.252411 – ident: e_1_2_10_42_1 doi: 10.1523/jneurosci.3464-13.2014 – ident: e_1_2_10_63_1 doi: 10.1016/j.nicl.2022.102999 – ident: e_1_2_10_40_1 doi: 10.1016/j.jalz.2019.09.079 – ident: e_1_2_10_23_1 doi: 10.1002/ana.25893 – ident: e_1_2_10_41_1 doi: 10.1016/j.nicl.2019.102115 – ident: e_1_2_10_26_1 doi: 10.3389/fnana.2018.00077 – ident: e_1_2_10_54_1 doi: 10.1093/cercor/bhaa319 – ident: e_1_2_10_59_1 doi: 10.1186/s13195-019-0470-7 – ident: e_1_2_10_34_1 doi: 10.2967/jnumed.121.262685 – ident: e_1_2_10_69_1 doi: 10.1016/j.nicl.2013.06.014 – ident: e_1_2_10_6_1 doi: 10.2967/jnumed.118.224113 – ident: e_1_2_10_55_1 doi: 10.1016/j.parkreldis.2019.07.001 – ident: e_1_2_10_2_1 doi: 10.1148/radiol.15141869 – ident: e_1_2_10_70_1 doi: 10.1016/j.neuroimage.2019.116131 – ident: e_1_2_10_57_1 doi: 10.1523/jneurosci.4127-06.2007 – ident: e_1_2_10_37_1 doi: 10.1016/j.dadm.2018.01.007 – ident: e_1_2_10_11_1 doi: 10.1093/brain/awt163 – ident: e_1_2_10_56_1 doi: 10.1002/ana.10390 – ident: e_1_2_10_43_1 doi: 10.1002/ana.24517 – ident: e_1_2_10_5_1 doi: 10.1016/j.neuroimage.2017.12.040 – ident: e_1_2_10_30_1 doi: 10.1038/s41467-021-23687-8 – ident: e_1_2_10_48_1 doi: 10.2967/jnumed.118.225508 – ident: e_1_2_10_47_1 doi: 10.1111/j.1532-5415.2005.53221.x – ident: e_1_2_10_24_1 doi: 10.1002/mds.22340 – ident: e_1_2_10_45_1 doi: 10.1007/s00401-016-1640-3 – ident: e_1_2_10_61_1 doi: 10.1044/2020_JSLHR-20-00253 – ident: e_1_2_10_18_1 doi: 10.1038/s41467-019-14159-1 – ident: e_1_2_10_13_1 doi: 10.1016/j.jneumeth.2011.09.021 – ident: e_1_2_10_25_1 doi: 10.1212/WNL.0b013e31821103e6 – ident: e_1_2_10_31_1 doi: 10.1093/brain/aws032 – ident: e_1_2_10_15_1 doi: 10.1016/j.cortex.2018.10.015 – ident: e_1_2_10_12_1 doi: 10.1212/CPJ.0000000000000699 – ident: e_1_2_10_50_1 doi: 10.1016/j.neuroimage.2018.10.029 – ident: e_1_2_10_68_1 doi: 10.1016/j.neuroimage.2018.05.027 – ident: e_1_2_10_3_1 doi: 10.1007/s00429-014-0773-1 – ident: e_1_2_10_33_1 doi: 10.1002/ana.25183 – ident: e_1_2_10_21_1 doi: 10.1016/j.cortex.2023.08.019 – ident: e_1_2_10_10_1 doi: 10.1212/wnl.0000000000000031 – ident: e_1_2_10_52_1 doi: 10.3389/fnins.2019.00875 – ident: e_1_2_10_72_1 doi: 10.1016/j.neuron.2012.03.004 – ident: e_1_2_10_27_1 doi: 10.3389/fnhum.2021.672665 – ident: e_1_2_10_8_1 doi: 10.1080/02687038.2016.1225274 – ident: e_1_2_10_44_1 doi: 10.1016/j.cortex.2021.10.010 – ident: e_1_2_10_67_1 doi: 10.1007/s13311-018-0663-y |
SSID | ssj0011501 |
Score | 2.45852 |
Snippet | Progressive apraxia of speech (PAOS) is a 4R tauopathy characterized by difficulties with motor speech planning. Neurodegeneration in PAOS targets the premotor... |
SourceID | pubmedcentral proquest pubmed crossref wiley |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | e26704 |
SubjectTerms | Aged Aphasia, Primary Progressive - diagnostic imaging Aphasia, Primary Progressive - pathology Apraxias - diagnostic imaging Apraxias - pathology Brain - diagnostic imaging Brain - pathology Carbolines - pharmacokinetics diffusion tensor imaging Diffusion Tensor Imaging - methods Female flortaucipir Humans Male Middle Aged Multimodal Imaging - methods positron emission tomography Positron-Emission Tomography - methods progressive apraxia of speech Tau tau Proteins - metabolism TauPET tractography White Matter - diagnostic imaging White Matter - pathology |
Title | Multimodal cross‐examination of progressive apraxia of speech by diffusion tensor imaging‐based tractography and Tau‐PET scans |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fhbm.26704 https://www.ncbi.nlm.nih.gov/pubmed/38825988 https://www.proquest.com/docview/3064139845 https://pubmed.ncbi.nlm.nih.gov/PMC11144950 |
Volume | 45 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1La9tAEB5CAqWX0iZ9uA-zLaX0okbWrl70lBQHU3AwwQHfxEo7iw21ZCy7JLce-gP6G_tLOrOS1Zq00IOFkVZC4tud-WZ29luAt7FGsnKx9SJLJlBZg562A-1FhTa-1jyVxamB8WU0ulafZ-HsAD7u1sI0-hBdwo1HhrPXPMB1Xp_-Fg2d58sPQRSzFugRL63lTh6oSTeFQEzHRVvkY72UTPBOVsgPTrtb953RHYZ5t1DyTwLrPNDFQ3jQUkdx1mD9CA6wPIaTs5LC5uWteCdcMafLkh_DvXE7Z34C390a22Vl6F73Gj-__cAbzSUwDIqorHBFWlwP-xWFXq31zULz6XqFWMxFfit4G5Ut59UEF7xXa7FYut2N6FHsBo3Y8GKrVv1a6NKIqd7SxclwKmoCr34M1xfD6aeR1-694BVE0ZSXB3lsNH155COmhfIlRZLEzgo_tL6xZCiKUIaGyKCfSgz0wA6sJNvho7EScyWfwGFZlfgMhNRRQj1CDygcVjGGuS2QRj2m9CNcZA_e70DIilaYnPfH-JI1kspBRnhlDq8evOmarho1jr81er1DMqOxwhMgusRqW2ccbRHjTVTYg6cNst1jJIUaYZokPUj2MO8asA73_pVyMXd63OQuFMWZPn2I6x7_frVsdD52f57_f9MXcD8gItWUp72Ew816i6-ICG3yvuvwdIxncR-OzoeXk6u-Syrw8Sr4BYMsDms |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB5VRQIuCFqgW14GIcQl1Bs7L4lLQa0W6FY9bKXeIicea1dik9U-qvbGgR_Ab-SXMONkA6uCxCFSlDhRos-e-WY8_gzwOjFIVi5xQezIBGpnMTCub4K4NFYaw1NZnBoYnsaDc_35IrrYgvfrtTCNPkSXcOOR4e01D3BOSB_8Vg0dF9N3YZywGOgtHYcJb9wQ6rNuDoGojg-3yMkGGdngta6QDA-6Rze90Q2KebNS8k8G613Q8X2413JHcdiA_QC2sNqB3cOK4ubptXgjfDWnT5PvwO1hO2m-C9_9IttpbelZ_xk_v_3AK8M1MIyKqJ3wVVpcEHuJwszm5mpi-PJihliORXEteB-VFSfWBFe813MxmfrtjehV7AetWPJqq1b-WpjKipFZ0c2zo5FYEHqLh3B-fDT6OAjazReCkjiaDoqwSKyhP48lYlZqqSiUJHpWyshJ68hSlJGKLLFBmSkMTd_1nSLjIdE6hYVWj2C7qivcA6FMnFKXMH2Kh3WCUeFKpGGPGR2Ei-rB2zUIedkqk_MGGV_zRlM5zAmv3OPVg1dd01kjx_G3Ri_XSOY0WHgGxFRYrxY5h1tEeVMd9eBxg2z3GkWxRpSlaQ_SDcy7BizEvXmnmoy9IDf5C02BpqQf8d3j35-WDz4M_cn-_zd9AXcGo-FJfvLp9MsTuBsSq2pq1Z7C9nK-wmfEipbFc9_5fwGUJQ14 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9NAEB5VRaq4INryCBRYEEJcTDdeP9VTgUbhkSqHVOrNWntnlUiNHeWB2huH_oD-Rn5JZ9aOISpIHCxZ9tqy9e3OfLMz-y3A21gjWbnYepElExhYg562Xe1FhTZSa05l8dTA4DTqnwVfz8PzLThar4Wp9SHaCTceGc5e8wCfGXv4WzR0nE8_-FHMWqD3ONnH3dsPhm0KgZiOi7bIx3opmeC1rJD0D9tHN53RHYZ5t1DyTwLrPFDvITxoqKM4rrHehS0s92D_uKSweXol3glXzOlmyfdgZ9DkzPfh2q2xnVaGnnWf8evnDV5qLoFhUERlhSvS4nrYHyj0bK4vJ5ovL2aIxVjkV4K3UVnxvJrggvdqLiZTt7sRvYrdoBFLXmzVqF8LXRox0iu6OTwZiQWBt3gEZ72T0ae-1-y94BVE0QIv9_PYaPrzSCKmRSAVRZLEzgoZWmksGYoiVKEhMihThb7u2q5VZDskGqswD9Rj2C6rEp-CUDpKqEfoLoXDQYxhbgukUY8pHYSL6sD7NQhZ0QiT8_4YF1ktqexnhFfm8OrAm7bprFbj-Fuj12skMxornADRJVarRcbRFjHeJAg78KRGtn2NolAjTJOkA8kG5m0D1uHevFNOxk6Pm9xFQHGmpB9x3ePfn5b1Pw7cybP_b_oKdoafe9n3L6ffnsN9nzhVXal2ANvL-QpfECda5i9d378FAA0Mqg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multimodal+cross%E2%80%90examination+of+progressive+apraxia+of+speech+by+diffusion+tensor+imaging%E2%80%90based+tractography+and+Tau%E2%80%90PET+scans&rft.jtitle=Human+brain+mapping&rft.au=Gatto%2C+Rodolfo+G.&rft.au=Pham%2C+Nha+Trang+Thu&rft.au=Duffy%2C+Joseph+R.&rft.au=Clark%2C+Heather+M.&rft.date=2024-06-01&rft.pub=John+Wiley+%26+Sons%2C+Inc&rft.issn=1065-9471&rft.eissn=1097-0193&rft.volume=45&rft.issue=8&rft_id=info:doi/10.1002%2Fhbm.26704&rft.externalDocID=PMC11144950 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1065-9471&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1065-9471&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1065-9471&client=summon |