Dependence of Climate Sensitivity on the Given Distribution of Relative Humidity

We study how the vertical distribution of relative humidity (RH) affects climate sensitivity, even if it remains unchanged with warming. Using a radiative‐convective equilibrium model, we show that the climate sensitivity depends on the shape of a fixed vertical distribution of humidity, tending to...

Full description

Saved in:
Bibliographic Details
Published inGeophysical research letters Vol. 48; no. 8
Main Authors Bourdin, Stella, Kluft, Lukas, Stevens, Bjorn
Format Journal Article
LanguageEnglish
Published American Geophysical Union 28.04.2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract We study how the vertical distribution of relative humidity (RH) affects climate sensitivity, even if it remains unchanged with warming. Using a radiative‐convective equilibrium model, we show that the climate sensitivity depends on the shape of a fixed vertical distribution of humidity, tending to be higher for atmospheres with higher humidity. We interpret these effects in terms of the effective emission height of water vapor. Differences in the vertical distribution of RH are shown to explain a large part of the 10%–30% differences in clear‐sky sensitivity seen in climate and storm‐resolving models. The results imply that convective aggregation reduces climate sensitivity, even when the degree of aggregation does not change with warming. Combining our findings with RH trends in reanalysis data shows a tendency toward Earth becoming more sensitive to forcing over time. These trends and their height variation merit further study. Plain Language Summary Equilibrium Climate Sensitivity is the change in surface temperature in response to a doubling of atmospheric CO2. We study how the assumed vertical distribution of relative humidity affects this sensitivity. Theoretical considerations show that the more moist an atmosphere is, the more it warms as a response to an increase in CO2. Adding water vapor to the lower troposphere has the counter effect, lowering the sensitivity. We emphasize the importance of climate simulations taking humidity into account, as it is largely responsible for the difference in projections among models without clouds. We note surprising trends in humidity—with substantial drying of the lower troposphere over the ocean—in the last four decades as reported by two reanalyses of meteorological observations. Subject to the accuracy of these reconstructions, there appears to be a change with less moistening than expected, but with moistening/drying profiles which will condition Earth to become more sensitive to forcing over time. We stress the need for a study of observations to more critically evaluate these trends, and know better what models should aim for. Key Points Climate sensitivity is sensitive to the assumed distribution of relative humidity (RH) Different RH profiles explain clear‐sky climate sensitivity spread among models Tropical RH trend in reanalyses yields an increase in climate sensitivity
AbstractList We study how the vertical distribution of relative humidity (RH) affects climate sensitivity, even if it remains unchanged with warming. Using a radiative‐convective equilibrium model, we show that the climate sensitivity depends on the shape of a fixed vertical distribution of humidity, tending to be higher for atmospheres with higher humidity. We interpret these effects in terms of the effective emission height of water vapor. Differences in the vertical distribution of RH are shown to explain a large part of the 10%–30% differences in clear‐sky sensitivity seen in climate and storm‐resolving models. The results imply that convective aggregation reduces climate sensitivity, even when the degree of aggregation does not change with warming. Combining our findings with RH trends in reanalysis data shows a tendency toward Earth becoming more sensitive to forcing over time. These trends and their height variation merit further study. Plain Language Summary Equilibrium Climate Sensitivity is the change in surface temperature in response to a doubling of atmospheric CO2. We study how the assumed vertical distribution of relative humidity affects this sensitivity. Theoretical considerations show that the more moist an atmosphere is, the more it warms as a response to an increase in CO2. Adding water vapor to the lower troposphere has the counter effect, lowering the sensitivity. We emphasize the importance of climate simulations taking humidity into account, as it is largely responsible for the difference in projections among models without clouds. We note surprising trends in humidity—with substantial drying of the lower troposphere over the ocean—in the last four decades as reported by two reanalyses of meteorological observations. Subject to the accuracy of these reconstructions, there appears to be a change with less moistening than expected, but with moistening/drying profiles which will condition Earth to become more sensitive to forcing over time. We stress the need for a study of observations to more critically evaluate these trends, and know better what models should aim for. Key Points Climate sensitivity is sensitive to the assumed distribution of relative humidity (RH) Different RH profiles explain clear‐sky climate sensitivity spread among models Tropical RH trend in reanalyses yields an increase in climate sensitivity
We study how the vertical distribution of relative humidity (RH) affects climate sensitivity, even if it remains unchanged with warming. Using a radiative‐convective equilibrium model, we show that the climate sensitivity depends on the shape of a fixed vertical distribution of humidity, tending to be higher for atmospheres with higher humidity. We interpret these effects in terms of the effective emission height of water vapor. Differences in the vertical distribution of RH are shown to explain a large part of the 10%–30% differences in clear‐sky sensitivity seen in climate and storm‐resolving models. The results imply that convective aggregation reduces climate sensitivity, even when the degree of aggregation does not change with warming. Combining our findings with RH trends in reanalysis data shows a tendency toward Earth becoming more sensitive to forcing over time. These trends and their height variation merit further study. Equilibrium Climate Sensitivity is the change in surface temperature in response to a doubling of atmospheric CO 2 . We study how the assumed vertical distribution of relative humidity affects this sensitivity. Theoretical considerations show that the more moist an atmosphere is, the more it warms as a response to an increase in CO 2 . Adding water vapor to the lower troposphere has the counter effect, lowering the sensitivity. We emphasize the importance of climate simulations taking humidity into account, as it is largely responsible for the difference in projections among models without clouds. We note surprising trends in humidity—with substantial drying of the lower troposphere over the ocean—in the last four decades as reported by two reanalyses of meteorological observations. Subject to the accuracy of these reconstructions, there appears to be a change with less moistening than expected, but with moistening/drying profiles which will condition Earth to become more sensitive to forcing over time. We stress the need for a study of observations to more critically evaluate these trends, and know better what models should aim for. Climate sensitivity is sensitive to the assumed distribution of relative humidity (RH) Different RH profiles explain clear‐sky climate sensitivity spread among models Tropical RH trend in reanalyses yields an increase in climate sensitivity
Author Bourdin, Stella
Kluft, Lukas
Stevens, Bjorn
Author_xml – sequence: 1
  givenname: Stella
  orcidid: 0000-0003-2635-5654
  surname: Bourdin
  fullname: Bourdin, Stella
  email: stella.bourdin@lsce.ipsl.fr
  organization: Université Paris‐Saclay
– sequence: 2
  givenname: Lukas
  orcidid: 0000-0002-6533-3928
  surname: Kluft
  fullname: Kluft, Lukas
  organization: Universität Hamburg
– sequence: 3
  givenname: Bjorn
  orcidid: 0000-0003-3795-0475
  surname: Stevens
  fullname: Stevens, Bjorn
  organization: Max Planck Institute for Meteorology
BackLink https://hal.science/hal-03225917$$DView record in HAL
BookMark eNp9kFtLw0AQhRepYFt98wfsq2B09pLLPpZWUyGgVH1eNuksXUmTkmwr_fduaQUR9GmGw3fmckZk0LQNEnLN4I4BV_ccOMsLUFwm_IwMmZIyygDSARkCqNDzNLkgo77_AAABgg3Jyww32CyxqZC2lk5rtzYe6Ss2vfNu5_yetg31K6S522FDZ673nSu33gU5GBZYm8AhnW_XbhnwS3JuTd3j1amOyfvjw9t0HhXP-dN0UkSVZImMVFylRsXMIEu5tCrJMsiMFbaqIGGmtDwTyJUoMWU2xhQMy2wJsTUgY0hQjMnNce7K1HrThbO7vW6N0_NJoQ8aCM5jxdIdCyw_slXX9n2HVlfOm8MLvjOu1gz0IT_9M79guv1l-t7yB37a8elq3P_L6nxRJJxzKb4AU2yAEA
CitedBy_id crossref_primary_10_1007_s00704_022_04136_y
crossref_primary_10_1029_2023GL104991
crossref_primary_10_1029_2021GL094074
crossref_primary_10_5194_acp_23_14673_2023
crossref_primary_10_1029_2023EF003604
crossref_primary_10_5194_acp_22_10603_2022
crossref_primary_10_1038_s41561_023_01175_6
crossref_primary_10_1038_s43247_024_01625_y
crossref_primary_10_1088_1748_9326_acfb98
crossref_primary_10_1175_JCLI_D_21_0674_1
crossref_primary_10_1029_2021GL094649
crossref_primary_10_1029_2021GL094969
crossref_primary_10_2151_sola_2025_007
crossref_primary_10_1029_2023MS004157
crossref_primary_10_1029_2022MS003443
crossref_primary_10_1029_2021MS002514
Cites_doi 10.1175/JCLI-D-18-0774.1
10.1002/2016EF000376
10.1175/jcli-d-14-00255.1
10.5194/gmd-11-793-2018
10.1146/annurev.energy.25.1.441
10.1029/2020GL089235
10.1175/JCLI-D-18-0778.1
10.1002/2015JD024569
10.1029/2003GL018747
10.1029/2019RG000678
10.1029/2020MS002165
10.1038/ngeo3017
10.2151/jmsj.2015-001
10.1175/JCLI3799.1
10.1002/qj.3803
10.1175/2008JCLI1995.1
10.1029/97JD00237
10.1073/pnas.1809868115
10.1175/JCLI-D-17-0674.1
10.1029/2020ms002138
10.1002/2013GL058118
10.1007/s00382-013-1725-9
10.1098/rsta.2015.0146
10.1175/1520-0469(1992)049〈2256:ASOTGE〉2.0.CO;2
10.5194/gmd-11-1537-2018
10.1175/1520-0469(1967)024〈0241:TEOTAW〉2.0.CO;2
10.1029/2020GL089609
ContentType Journal Article
Copyright 2021. The Authors.
Attribution
Copyright_xml – notice: 2021. The Authors.
– notice: Attribution
DBID 24P
AAYXX
CITATION
1XC
VOOES
DOI 10.1029/2021GL092462
DatabaseName Wiley_OA刊
CrossRef
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
DatabaseTitle CrossRef
DatabaseTitleList
CrossRef
Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Geology
Physics
EISSN 1944-8007
EndPage n/a
ExternalDocumentID oai_HAL_hal_03225917v1
10_1029_2021GL092462
GRL62224
Genre article
GrantInformation_xml – fundername: EU H2020 CONSTRAIN
  funderid: 82082
– fundername: ANR Investissements d'avenir
  funderid: ANR‐11‐IDEX‐0004—17‐EURE‐0006
GroupedDBID -DZ
-~X
05W
0R~
1OB
1OC
24P
33P
50Y
5GY
5VS
702
8-1
8R4
8R5
A00
AAESR
AAHHS
AAIHA
AAXRX
AAZKR
ABCUV
ABPPZ
ACAHQ
ACCFJ
ACCZN
ACGFO
ACGFS
ACGOD
ACIWK
ACNCT
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AENEX
AEQDE
AEUQT
AFBPY
AFGKR
AFPWT
AFRAH
AIURR
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALXUD
AMYDB
AVUZU
AZFZN
AZVAB
BENPR
BFHJK
BMXJE
BRXPI
CS3
DCZOG
DPXWK
DRFUL
DRSTM
DU5
EBS
F5P
G-S
GODZA
HZ~
LATKE
LEEKS
LITHE
LOXES
LUTES
LYRES
MEWTI
MSFUL
MSSTM
MXFUL
MXSTM
MY~
O9-
OK1
P-X
P2P
P2W
PYCSY
Q2X
R.K
RNS
ROL
SUPJJ
TN5
TWZ
UPT
WBKPD
WH7
WIH
WIN
WXSBR
WYJ
XSW
ZZTAW
~02
~OA
~~A
AAFWJ
AAYXX
ACTHY
CITATION
1XC
VOOES
ID FETCH-LOGICAL-c4164-95c7a951ae1724f968808af3fcc061abf283e293be71f5e70a18fb05fa04506e3
IEDL.DBID 24P
ISSN 0094-8276
IngestDate Fri May 09 12:05:23 EDT 2025
Tue Jul 01 01:41:16 EDT 2025
Thu Apr 24 22:59:03 EDT 2025
Wed Jan 22 16:29:16 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 8
Language English
License Attribution-NonCommercial
Attribution: http://creativecommons.org/licenses/by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4164-95c7a951ae1724f968808af3fcc061abf283e293be71f5e70a18fb05fa04506e3
ORCID 0000-0002-6533-3928
0000-0003-3795-0475
0000-0003-2635-5654
OpenAccessLink https://onlinelibrary.wiley.com/doi/abs/10.1029%2F2021GL092462
PageCount 10
ParticipantIDs hal_primary_oai_HAL_hal_03225917v1
crossref_citationtrail_10_1029_2021GL092462
crossref_primary_10_1029_2021GL092462
wiley_primary_10_1029_2021GL092462_GRL62224
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 28 April 2021
2021-04-28
PublicationDateYYYYMMDD 2021-04-28
PublicationDate_xml – month: 04
  year: 2021
  text: 28 April 2021
  day: 28
PublicationDecade 2020
PublicationTitle Geophysical research letters
PublicationYear 2021
Publisher American Geophysical Union
Publisher_xml – name: American Geophysical Union
References 2021; 48
2000; 25
2015; 93
2019; 32
2013; 40
2013; 41
2014; 27
2016; 121
2020; 58
2006; 19
1967; 24
2020; 12
2020; 146
1979
1997; 102
2016; 4
2004; 31
2020
2017; 10
2018; 115
2015; 373
2018
2020; 47
2008; 21
1992; 49
2018; 11
2018; 31
e_1_2_10_23_1
e_1_2_10_24_1
e_1_2_10_21_1
e_1_2_10_22_1
e_1_2_10_20_1
e_1_2_10_2_1
e_1_2_10_18_1
e_1_2_10_3_1
e_1_2_10_19_1
e_1_2_10_6_1
e_1_2_10_16_1
e_1_2_10_17_1
e_1_2_10_8_1
e_1_2_10_14_1
e_1_2_10_7_1
e_1_2_10_15_1
e_1_2_10_9_1
e_1_2_10_13_1
e_1_2_10_10_1
e_1_2_10_11_1
e_1_2_10_32_1
e_1_2_10_31_1
e_1_2_10_30_1
Kluft L. (e_1_2_10_12_1) 2020
Dacie S. (e_1_2_10_5_1) 2020
Charney J. G. (e_1_2_10_4_1) 1979
e_1_2_10_29_1
e_1_2_10_27_1
e_1_2_10_28_1
e_1_2_10_25_1
e_1_2_10_26_1
References_xml – volume: 47
  issue: 17
  year: 2020
  article-title: Linearity of outgoing longwave radiation: From an atmospheric column to global climate models
  publication-title: Geophysical Research Letters
– volume: 32
  start-page: 6769
  issue: 20
  year: 2019
  end-page: 6782
  article-title: A 1D RCE study of factors affecting the tropical tropopause layer and surface climate
  publication-title: Journal of Climate
– volume: 58
  year: 2020
  article-title: An assessment of Earth's climate sensitivity using multiple lines of evidence
  publication-title: Reviews of Geophysics
– volume: 31
  start-page: 3187
  issue: 8
  year: 2018
  end-page: 3206
  article-title: Sources of intermodel spread in the lapse rate and water vapor feedbacks
  publication-title: Journal of Climate
– volume: 41
  start-page: 3339
  issue: 11
  year: 2013
  end-page: 3362
  article-title: On the interpretation of inter‐model spread in CMIP5 climate sensitivity estimates
  publication-title: Climate Dynamics
– volume: 27
  start-page: 7432
  issue: 19
  year: 2014
  end-page: 7449
  article-title: An analytical model for tropical relative humidity
  publication-title: Journal of Climate
– volume: 25
  start-page: 441
  issue: 1
  year: 2000
  article-title: Water vapor feedback and global warming
  publication-title: Annual Review of Energy and the Environment
– volume: 19
  start-page: 3354
  issue: 14
  year: 2006
  end-page: 3360
  article-title: An assessment of climate feedbacks in coupled ocean‐atmosphere models
  publication-title: Journal of Climate
– volume: 11
  start-page: 1537
  issue: 4
  year: 2018
  end-page: 1556
  article-title: ARTS, the atmospheric radiative transfer simulator—version 2.2, the planetary toolbox edition
  publication-title: Geoscientific Model Development
– volume: 12
  issue: 9
  year: 2020
  article-title: Clouds and convective self‐aggregation in a multimodel ensemble of radiative‐convective equilibrium simulations
  publication-title: Journal of Advances in Modeling Earth Systems
– volume: 48
  year: 2021
  article-title: H O windows and CO radiator fins: A clear‐sky explanation for the peak in equilibrium climate sensitivity
  publication-title: Geophysical Research Letters
– volume: 373
  issue: 2054
  year: 2015
  article-title: Feedbacks, climate sensitivity and the limits of linear models
  publication-title: Philosophical Transactions of the Royal Society A Mathematical, Physical and Engineering Sciences
– volume: 10
  start-page: 727
  issue: 10
  year: 2017
  end-page: 736
  article-title: Beyond equilibrium climate sensitivity
  publication-title: Nature Geoscience
– volume: 32
  start-page: 8111
  year: 2019
  end-page: 8125
  article-title: Re‐examining the first climate models: Climate sensitivity of a modern radiative‐convective equilibrium model
  publication-title: Journal of Climate
– year: 1979
– year: 2018
– volume: 115
  start-page: 10293
  issue: 41
  year: 2018
  end-page: 10298
  article-title: Earth's outgoing longwave radiation linear due to H O greenhouse effect
  publication-title: Proceedings of the National Academy of Sciences of the United States of America
– volume: 93
  start-page: 5
  issue: 1
  year: 2015
  end-page: 48
  article-title: The JRA‐55 reanalysis: General specifications and basic characteristics
  publication-title: Journal of the Meteorological Society of Japan
– volume: 12
  issue: 10
  year: 2020
  article-title: Understanding the extreme spread in climate sensitivity within the radiative‐convective equilibrium model intercomparison project
  publication-title: Journal of Advances in Modeling Earth Systems
– volume: 121
  start-page: 2780
  issue: 6
  year: 2016
  end-page: 2789
  article-title: Inhomogeneous radiative forcing of homogeneous greenhouse gases
  publication-title: Journal of Geophysical Research: Atmospheres
– volume: 49
  start-page: 2256
  issue: 23
  year: 1992
  end-page: 2266
  article-title: A study on the "runaway greenhouse effect" with a one‐dimensional radiative‐convective equilibrium model
  publication-title: Journal of the Atmospheric Sciences
– year: 2020
– volume: 146
  start-page: 1999
  issue: 730
  year: 2020
  end-page: 2049
  article-title: The ERA5 global reanalysis
  publication-title: Quarterly Journal of the Royal Meteorological Society
– volume: 40
  start-page: 5944
  issue: 22
  year: 2013
  end-page: 5948
  article-title: Robust increase in equilibrium climate sensitivity under global warming
  publication-title: Geophysical Research Letters
– volume: 31
  issue: 3
  year: 2004
  article-title: A new method for diagnosing radiative forcing and climate sensitivity
  publication-title: Geophysical Research Letters
– volume: 21
  start-page: 4974
  issue: 19
  year: 2008
  end-page: 4991
  article-title: Aqua planets, climate sensitivity, and low clouds
  publication-title: Journal of Climate
– volume: 4
  start-page: 512
  issue: 11
  year: 2016
  end-page: 522
  article-title: Prospects for narrowing bounds on Earth's equilibrium climate sensitivity
  publication-title: Earth's Future
– volume: 102
  start-page: 16663
  issue: D14
  year: 1997
  end-page: 16682
  article-title: Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated‐k model for the longwave
  publication-title: Journal of Geophysical Research
– volume: 11
  start-page: 793
  year: 2018
  end-page: 813
  article-title: Radiative‐convective equilibrium model intercomparison project
  publication-title: Geoscientific Model Development
– volume: 24
  start-page: 241
  year: 1967
  end-page: 259
  article-title: Thermal Equilibrium of the atmosphere with a given distribution of relative humidity
  publication-title: Journal of the Atmospheric Sciences
– ident: e_1_2_10_13_1
  doi: 10.1175/JCLI-D-18-0774.1
– volume-title: Carbon dioxide and climate: A scientific assessment
  year: 1979
  ident: e_1_2_10_4_1
– ident: e_1_2_10_28_1
  doi: 10.1002/2016EF000376
– ident: e_1_2_10_24_1
  doi: 10.1175/jcli-d-14-00255.1
– ident: e_1_2_10_30_1
  doi: 10.5194/gmd-11-793-2018
– ident: e_1_2_10_9_1
  doi: 10.1146/annurev.energy.25.1.441
– ident: e_1_2_10_32_1
  doi: 10.1029/2020GL089235
– ident: e_1_2_10_6_1
  doi: 10.1175/JCLI-D-18-0778.1
– ident: e_1_2_10_11_1
  doi: 10.1002/2015JD024569
– ident: e_1_2_10_8_1
  doi: 10.1029/2003GL018747
– ident: e_1_2_10_26_1
  doi: 10.1029/2019RG000678
– ident: e_1_2_10_2_1
  doi: 10.1029/2020MS002165
– ident: e_1_2_10_15_1
  doi: 10.1038/ngeo3017
– ident: e_1_2_10_16_1
  doi: 10.2151/jmsj.2015-001
– ident: e_1_2_10_27_1
  doi: 10.1175/JCLI3799.1
– ident: e_1_2_10_10_1
  doi: 10.1002/qj.3803
– ident: e_1_2_10_19_1
  doi: 10.1175/2008JCLI1995.1
– volume-title: Benchmark calculations of the climate sensitivity of radiative‐convective equilibrium
  year: 2020
  ident: e_1_2_10_12_1
– ident: e_1_2_10_21_1
  doi: 10.1029/97JD00237
– ident: e_1_2_10_17_1
  doi: 10.1073/pnas.1809868115
– ident: e_1_2_10_23_1
  doi: 10.1175/JCLI-D-17-0674.1
– ident: e_1_2_10_31_1
  doi: 10.1029/2020ms002138
– ident: e_1_2_10_7_1
– ident: e_1_2_10_20_1
  doi: 10.1002/2013GL058118
– ident: e_1_2_10_29_1
  doi: 10.1007/s00382-013-1725-9
– ident: e_1_2_10_14_1
  doi: 10.1098/rsta.2015.0146
– ident: e_1_2_10_22_1
  doi: 10.1175/1520-0469(1992)049〈2256:ASOTGE〉2.0.CO;2
– ident: e_1_2_10_3_1
  doi: 10.5194/gmd-11-1537-2018
– ident: e_1_2_10_18_1
  doi: 10.1175/1520-0469(1967)024〈0241:TEOTAW〉2.0.CO;2
– volume-title: Using simple models to understand changes in the tropical mean atmosphere under warming
  year: 2020
  ident: e_1_2_10_5_1
– ident: e_1_2_10_25_1
  doi: 10.1029/2020GL089609
SSID ssj0003031
Score 2.4733088
Snippet We study how the vertical distribution of relative humidity (RH) affects climate sensitivity, even if it remains unchanged with warming. Using a...
SourceID hal
crossref
wiley
SourceType Open Access Repository
Enrichment Source
Index Database
Publisher
SubjectTerms atmospheric radiation
climate sensitivity
Continental interfaces, environment
feedbacks
humidity
Ocean, Atmosphere
RCE
Sciences of the Universe
troposphere
Title Dependence of Climate Sensitivity on the Given Distribution of Relative Humidity
URI https://onlinelibrary.wiley.com/doi/abs/10.1029%2F2021GL092462
https://hal.science/hal-03225917
Volume 48
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dS8MwEA-6IfgifuL8GEH0SYptl_TjcWyuQ6YMtSK-lCRNcDA6cXPgf-9dG8t8UPCthEsLud7d75LL7wg5zxXnPI87Dodo4LAQTUpyMDwduSqHJNsP8Tby7V0wTNnNM3-2G254F6bih6g33NAySn-NBi7k3JINIEcmZO1eMnIhf0AX3MTbtVjS57Nx7YnBPVcd82LmRH4Y2MJ3mH-1OvtHSFp_xYLIVaBaRprBNtmyEJF2K53ukDVd7JKNpGzB-wlPZdGmmu-Rcd92sFWazgztTScAPzV9wJr0qikEnRUUEB5N0KfRPpLk2v5WOKEqhFtqCjqd5CC-T9LB9WNv6NgOCY4CIMWcmKtQAEYSGnAIM3EA1hgJ0zFKQZwW0gB40BDQpQ49w3XoCi8y0uVGAJJzA905II1iVuhDQv1Yslz6mnlGMKTsYdJI5cVCRVqA2bbI5fciZcrSh2MXi2lWHmP7cba6pC1yUUu_VbQZv8idwXrXIsh1PeyOMhxz0dVAMrn04NOlOv58U5bcjwIAO-zoX9LHZBPH8XzIj05IY_H-oU8BZixku_yX2qTZfUpf0i9ZoMcn
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bS8MwFA66IfoiXnFeg-iTFNsu6eVxbG5TuyG6ifhSkjTBwehE58B_7zltHPNBwbdSTlJIcs750px8HyFnmeKcZ3Hd4ZANHBaiS0kOjqcjV2WwyfZDvI3c6wfdIbt54k9W5xTvwpT8EPMfbugZRbxGB8cf0pZtAEkyYdvudRIXNhAYg6sIbGBZVxuPw-fhPBhDhC5F82LmRH4Y2Np36OFysf2PrLT8gjWRi1i1SDbtDbJuUSJtlNO6SZZ0vkVWOoUK7yc8FXWb6n2b3LWsiK3SdGJoczwCBKrpA5all7oQdJJTAHm0g2GNtpAn10pcYYOyFm6mKUzrKAPzHTJsXw2aXceKJDgKsBRzYq5CATBJaIAizMQBOGQkTN0oBalaSAP4QUNOlzr0DNehK7zISJcbAWDODXR9l1TySa73CPVjyTLpa-YZwZC1h0kjlRcLFWkBnlsjF9-DlCrLII5CFuO0OMn243RxSGvkfG79WjJn_GJ3CuM9N0G6624jSfGdi9EG9pMzDz5dTMefPaWd-yQAvMP2_2V9Qla7g16SJtf92wOyhjZ4XORHh6QyffvQR4A6pvLYrqwv5kLKpA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dS8MwEA-6ofgifuL8DKJPUmy7pB-PY3ObOsdQK-JLSdIEB2MbOgf-9961scwHBd9KuaRw6d39Lrn8jpCzTHHOs7jucIgGDgvRpCQHw9ORqzJIsv0QbyPf9YNuwm6e-bPdcMO7MAU_RLnhhpaR-2s08GlmLNkAcmRC1u51ei7kD-iCqxwCk1sh1cZT8pKUvhgcdNEzL2ZO5IeBLX2HGS4Xx_8ISsuvWBK5CFXzWNPeIOsWJNJGsaqbZEmPt8hKJ2_C-wlPedmmet8mg5btYas0nRjaHA0BgGr6gFXpRVsIOhlTwHi0g16NtpAm13a4wgFFKdxcU1jVYQbiOyRpXz02u47tkeAogFLMibkKBaAkoQGJMBMHYI-RMHWjFChESAPwQUNIlzr0DNehK7zISJcbAVjODXR9l1TGk7HeI9SPJcukr5lnBEPSHiaNVF4sVKQFGG6NXHwrKVWWQBz7WIzS_CDbj9NFldbIeSk9LYgzfpE7BX2XIsh23W30UnznorOBdHLuwafz5fhzprRz3wsA7rD9f0mfkNVBq532rvu3B2QNRfCwyI8OSWX29qGPAHPM5LH9sb4AsaXJxA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Dependence+of+Climate+Sensitivity+on+the+Given+Distribution+of+Relative+Humidity&rft.jtitle=Geophysical+research+letters&rft.au=Bourdin%2C+Stella&rft.au=Kluft%2C+Lukas&rft.au=Stevens%2C+Bjorn&rft.date=2021-04-28&rft.pub=American+Geophysical+Union&rft.issn=0094-8276&rft.eissn=1944-8007&rft.volume=48&rft.issue=8&rft_id=info:doi/10.1029%2F2021GL092462&rft.externalDBID=HAS_PDF_LINK&rft.externalDocID=oai_HAL_hal_03225917v1
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0094-8276&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0094-8276&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0094-8276&client=summon