Dependence of Climate Sensitivity on the Given Distribution of Relative Humidity
We study how the vertical distribution of relative humidity (RH) affects climate sensitivity, even if it remains unchanged with warming. Using a radiative‐convective equilibrium model, we show that the climate sensitivity depends on the shape of a fixed vertical distribution of humidity, tending to...
Saved in:
Published in | Geophysical research letters Vol. 48; no. 8 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
American Geophysical Union
28.04.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | We study how the vertical distribution of relative humidity (RH) affects climate sensitivity, even if it remains unchanged with warming. Using a radiative‐convective equilibrium model, we show that the climate sensitivity depends on the shape of a fixed vertical distribution of humidity, tending to be higher for atmospheres with higher humidity. We interpret these effects in terms of the effective emission height of water vapor. Differences in the vertical distribution of RH are shown to explain a large part of the 10%–30% differences in clear‐sky sensitivity seen in climate and storm‐resolving models. The results imply that convective aggregation reduces climate sensitivity, even when the degree of aggregation does not change with warming. Combining our findings with RH trends in reanalysis data shows a tendency toward Earth becoming more sensitive to forcing over time. These trends and their height variation merit further study.
Plain Language Summary
Equilibrium Climate Sensitivity is the change in surface temperature in response to a doubling of atmospheric CO2. We study how the assumed vertical distribution of relative humidity affects this sensitivity. Theoretical considerations show that the more moist an atmosphere is, the more it warms as a response to an increase in CO2. Adding water vapor to the lower troposphere has the counter effect, lowering the sensitivity. We emphasize the importance of climate simulations taking humidity into account, as it is largely responsible for the difference in projections among models without clouds. We note surprising trends in humidity—with substantial drying of the lower troposphere over the ocean—in the last four decades as reported by two reanalyses of meteorological observations. Subject to the accuracy of these reconstructions, there appears to be a change with less moistening than expected, but with moistening/drying profiles which will condition Earth to become more sensitive to forcing over time. We stress the need for a study of observations to more critically evaluate these trends, and know better what models should aim for.
Key Points
Climate sensitivity is sensitive to the assumed distribution of relative humidity (RH)
Different RH profiles explain clear‐sky climate sensitivity spread among models
Tropical RH trend in reanalyses yields an increase in climate sensitivity |
---|---|
AbstractList | We study how the vertical distribution of relative humidity (RH) affects climate sensitivity, even if it remains unchanged with warming. Using a radiative‐convective equilibrium model, we show that the climate sensitivity depends on the shape of a fixed vertical distribution of humidity, tending to be higher for atmospheres with higher humidity. We interpret these effects in terms of the effective emission height of water vapor. Differences in the vertical distribution of RH are shown to explain a large part of the 10%–30% differences in clear‐sky sensitivity seen in climate and storm‐resolving models. The results imply that convective aggregation reduces climate sensitivity, even when the degree of aggregation does not change with warming. Combining our findings with RH trends in reanalysis data shows a tendency toward Earth becoming more sensitive to forcing over time. These trends and their height variation merit further study.
Plain Language Summary
Equilibrium Climate Sensitivity is the change in surface temperature in response to a doubling of atmospheric CO2. We study how the assumed vertical distribution of relative humidity affects this sensitivity. Theoretical considerations show that the more moist an atmosphere is, the more it warms as a response to an increase in CO2. Adding water vapor to the lower troposphere has the counter effect, lowering the sensitivity. We emphasize the importance of climate simulations taking humidity into account, as it is largely responsible for the difference in projections among models without clouds. We note surprising trends in humidity—with substantial drying of the lower troposphere over the ocean—in the last four decades as reported by two reanalyses of meteorological observations. Subject to the accuracy of these reconstructions, there appears to be a change with less moistening than expected, but with moistening/drying profiles which will condition Earth to become more sensitive to forcing over time. We stress the need for a study of observations to more critically evaluate these trends, and know better what models should aim for.
Key Points
Climate sensitivity is sensitive to the assumed distribution of relative humidity (RH)
Different RH profiles explain clear‐sky climate sensitivity spread among models
Tropical RH trend in reanalyses yields an increase in climate sensitivity We study how the vertical distribution of relative humidity (RH) affects climate sensitivity, even if it remains unchanged with warming. Using a radiative‐convective equilibrium model, we show that the climate sensitivity depends on the shape of a fixed vertical distribution of humidity, tending to be higher for atmospheres with higher humidity. We interpret these effects in terms of the effective emission height of water vapor. Differences in the vertical distribution of RH are shown to explain a large part of the 10%–30% differences in clear‐sky sensitivity seen in climate and storm‐resolving models. The results imply that convective aggregation reduces climate sensitivity, even when the degree of aggregation does not change with warming. Combining our findings with RH trends in reanalysis data shows a tendency toward Earth becoming more sensitive to forcing over time. These trends and their height variation merit further study. Equilibrium Climate Sensitivity is the change in surface temperature in response to a doubling of atmospheric CO 2 . We study how the assumed vertical distribution of relative humidity affects this sensitivity. Theoretical considerations show that the more moist an atmosphere is, the more it warms as a response to an increase in CO 2 . Adding water vapor to the lower troposphere has the counter effect, lowering the sensitivity. We emphasize the importance of climate simulations taking humidity into account, as it is largely responsible for the difference in projections among models without clouds. We note surprising trends in humidity—with substantial drying of the lower troposphere over the ocean—in the last four decades as reported by two reanalyses of meteorological observations. Subject to the accuracy of these reconstructions, there appears to be a change with less moistening than expected, but with moistening/drying profiles which will condition Earth to become more sensitive to forcing over time. We stress the need for a study of observations to more critically evaluate these trends, and know better what models should aim for. Climate sensitivity is sensitive to the assumed distribution of relative humidity (RH) Different RH profiles explain clear‐sky climate sensitivity spread among models Tropical RH trend in reanalyses yields an increase in climate sensitivity |
Author | Bourdin, Stella Kluft, Lukas Stevens, Bjorn |
Author_xml | – sequence: 1 givenname: Stella orcidid: 0000-0003-2635-5654 surname: Bourdin fullname: Bourdin, Stella email: stella.bourdin@lsce.ipsl.fr organization: Université Paris‐Saclay – sequence: 2 givenname: Lukas orcidid: 0000-0002-6533-3928 surname: Kluft fullname: Kluft, Lukas organization: Universität Hamburg – sequence: 3 givenname: Bjorn orcidid: 0000-0003-3795-0475 surname: Stevens fullname: Stevens, Bjorn organization: Max Planck Institute for Meteorology |
BackLink | https://hal.science/hal-03225917$$DView record in HAL |
BookMark | eNp9kFtLw0AQhRepYFt98wfsq2B09pLLPpZWUyGgVH1eNuksXUmTkmwr_fduaQUR9GmGw3fmckZk0LQNEnLN4I4BV_ccOMsLUFwm_IwMmZIyygDSARkCqNDzNLkgo77_AAABgg3Jyww32CyxqZC2lk5rtzYe6Ss2vfNu5_yetg31K6S522FDZ673nSu33gU5GBZYm8AhnW_XbhnwS3JuTd3j1amOyfvjw9t0HhXP-dN0UkSVZImMVFylRsXMIEu5tCrJMsiMFbaqIGGmtDwTyJUoMWU2xhQMy2wJsTUgY0hQjMnNce7K1HrThbO7vW6N0_NJoQ8aCM5jxdIdCyw_slXX9n2HVlfOm8MLvjOu1gz0IT_9M79guv1l-t7yB37a8elq3P_L6nxRJJxzKb4AU2yAEA |
CitedBy_id | crossref_primary_10_1007_s00704_022_04136_y crossref_primary_10_1029_2023GL104991 crossref_primary_10_1029_2021GL094074 crossref_primary_10_5194_acp_23_14673_2023 crossref_primary_10_1029_2023EF003604 crossref_primary_10_5194_acp_22_10603_2022 crossref_primary_10_1038_s41561_023_01175_6 crossref_primary_10_1038_s43247_024_01625_y crossref_primary_10_1088_1748_9326_acfb98 crossref_primary_10_1175_JCLI_D_21_0674_1 crossref_primary_10_1029_2021GL094649 crossref_primary_10_1029_2021GL094969 crossref_primary_10_2151_sola_2025_007 crossref_primary_10_1029_2023MS004157 crossref_primary_10_1029_2022MS003443 crossref_primary_10_1029_2021MS002514 |
Cites_doi | 10.1175/JCLI-D-18-0774.1 10.1002/2016EF000376 10.1175/jcli-d-14-00255.1 10.5194/gmd-11-793-2018 10.1146/annurev.energy.25.1.441 10.1029/2020GL089235 10.1175/JCLI-D-18-0778.1 10.1002/2015JD024569 10.1029/2003GL018747 10.1029/2019RG000678 10.1029/2020MS002165 10.1038/ngeo3017 10.2151/jmsj.2015-001 10.1175/JCLI3799.1 10.1002/qj.3803 10.1175/2008JCLI1995.1 10.1029/97JD00237 10.1073/pnas.1809868115 10.1175/JCLI-D-17-0674.1 10.1029/2020ms002138 10.1002/2013GL058118 10.1007/s00382-013-1725-9 10.1098/rsta.2015.0146 10.1175/1520-0469(1992)049〈2256:ASOTGE〉2.0.CO;2 10.5194/gmd-11-1537-2018 10.1175/1520-0469(1967)024〈0241:TEOTAW〉2.0.CO;2 10.1029/2020GL089609 |
ContentType | Journal Article |
Copyright | 2021. The Authors. Attribution |
Copyright_xml | – notice: 2021. The Authors. – notice: Attribution |
DBID | 24P AAYXX CITATION 1XC VOOES |
DOI | 10.1029/2021GL092462 |
DatabaseName | Wiley_OA刊 CrossRef Hyper Article en Ligne (HAL) Hyper Article en Ligne (HAL) (Open Access) |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
Database_xml | – sequence: 1 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Geology Physics |
EISSN | 1944-8007 |
EndPage | n/a |
ExternalDocumentID | oai_HAL_hal_03225917v1 10_1029_2021GL092462 GRL62224 |
Genre | article |
GrantInformation_xml | – fundername: EU H2020 CONSTRAIN funderid: 82082 – fundername: ANR Investissements d'avenir funderid: ANR‐11‐IDEX‐0004—17‐EURE‐0006 |
GroupedDBID | -DZ -~X 05W 0R~ 1OB 1OC 24P 33P 50Y 5GY 5VS 702 8-1 8R4 8R5 A00 AAESR AAHHS AAIHA AAXRX AAZKR ABCUV ABPPZ ACAHQ ACCFJ ACCZN ACGFO ACGFS ACGOD ACIWK ACNCT ACPOU ACXBN ACXQS ADBBV ADEOM ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AENEX AEQDE AEUQT AFBPY AFGKR AFPWT AFRAH AIURR AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALUQN ALXUD AMYDB AVUZU AZFZN AZVAB BENPR BFHJK BMXJE BRXPI CS3 DCZOG DPXWK DRFUL DRSTM DU5 EBS F5P G-S GODZA HZ~ LATKE LEEKS LITHE LOXES LUTES LYRES MEWTI MSFUL MSSTM MXFUL MXSTM MY~ O9- OK1 P-X P2P P2W PYCSY Q2X R.K RNS ROL SUPJJ TN5 TWZ UPT WBKPD WH7 WIH WIN WXSBR WYJ XSW ZZTAW ~02 ~OA ~~A AAFWJ AAYXX ACTHY CITATION 1XC VOOES |
ID | FETCH-LOGICAL-c4164-95c7a951ae1724f968808af3fcc061abf283e293be71f5e70a18fb05fa04506e3 |
IEDL.DBID | 24P |
ISSN | 0094-8276 |
IngestDate | Fri May 09 12:05:23 EDT 2025 Tue Jul 01 01:41:16 EDT 2025 Thu Apr 24 22:59:03 EDT 2025 Wed Jan 22 16:29:16 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 8 |
Language | English |
License | Attribution-NonCommercial Attribution: http://creativecommons.org/licenses/by |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4164-95c7a951ae1724f968808af3fcc061abf283e293be71f5e70a18fb05fa04506e3 |
ORCID | 0000-0002-6533-3928 0000-0003-3795-0475 0000-0003-2635-5654 |
OpenAccessLink | https://onlinelibrary.wiley.com/doi/abs/10.1029%2F2021GL092462 |
PageCount | 10 |
ParticipantIDs | hal_primary_oai_HAL_hal_03225917v1 crossref_citationtrail_10_1029_2021GL092462 crossref_primary_10_1029_2021GL092462 wiley_primary_10_1029_2021GL092462_GRL62224 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 28 April 2021 2021-04-28 |
PublicationDateYYYYMMDD | 2021-04-28 |
PublicationDate_xml | – month: 04 year: 2021 text: 28 April 2021 day: 28 |
PublicationDecade | 2020 |
PublicationTitle | Geophysical research letters |
PublicationYear | 2021 |
Publisher | American Geophysical Union |
Publisher_xml | – name: American Geophysical Union |
References | 2021; 48 2000; 25 2015; 93 2019; 32 2013; 40 2013; 41 2014; 27 2016; 121 2020; 58 2006; 19 1967; 24 2020; 12 2020; 146 1979 1997; 102 2016; 4 2004; 31 2020 2017; 10 2018; 115 2015; 373 2018 2020; 47 2008; 21 1992; 49 2018; 11 2018; 31 e_1_2_10_23_1 e_1_2_10_24_1 e_1_2_10_21_1 e_1_2_10_22_1 e_1_2_10_20_1 e_1_2_10_2_1 e_1_2_10_18_1 e_1_2_10_3_1 e_1_2_10_19_1 e_1_2_10_6_1 e_1_2_10_16_1 e_1_2_10_17_1 e_1_2_10_8_1 e_1_2_10_14_1 e_1_2_10_7_1 e_1_2_10_15_1 e_1_2_10_9_1 e_1_2_10_13_1 e_1_2_10_10_1 e_1_2_10_11_1 e_1_2_10_32_1 e_1_2_10_31_1 e_1_2_10_30_1 Kluft L. (e_1_2_10_12_1) 2020 Dacie S. (e_1_2_10_5_1) 2020 Charney J. G. (e_1_2_10_4_1) 1979 e_1_2_10_29_1 e_1_2_10_27_1 e_1_2_10_28_1 e_1_2_10_25_1 e_1_2_10_26_1 |
References_xml | – volume: 47 issue: 17 year: 2020 article-title: Linearity of outgoing longwave radiation: From an atmospheric column to global climate models publication-title: Geophysical Research Letters – volume: 32 start-page: 6769 issue: 20 year: 2019 end-page: 6782 article-title: A 1D RCE study of factors affecting the tropical tropopause layer and surface climate publication-title: Journal of Climate – volume: 58 year: 2020 article-title: An assessment of Earth's climate sensitivity using multiple lines of evidence publication-title: Reviews of Geophysics – volume: 31 start-page: 3187 issue: 8 year: 2018 end-page: 3206 article-title: Sources of intermodel spread in the lapse rate and water vapor feedbacks publication-title: Journal of Climate – volume: 41 start-page: 3339 issue: 11 year: 2013 end-page: 3362 article-title: On the interpretation of inter‐model spread in CMIP5 climate sensitivity estimates publication-title: Climate Dynamics – volume: 27 start-page: 7432 issue: 19 year: 2014 end-page: 7449 article-title: An analytical model for tropical relative humidity publication-title: Journal of Climate – volume: 25 start-page: 441 issue: 1 year: 2000 article-title: Water vapor feedback and global warming publication-title: Annual Review of Energy and the Environment – volume: 19 start-page: 3354 issue: 14 year: 2006 end-page: 3360 article-title: An assessment of climate feedbacks in coupled ocean‐atmosphere models publication-title: Journal of Climate – volume: 11 start-page: 1537 issue: 4 year: 2018 end-page: 1556 article-title: ARTS, the atmospheric radiative transfer simulator—version 2.2, the planetary toolbox edition publication-title: Geoscientific Model Development – volume: 12 issue: 9 year: 2020 article-title: Clouds and convective self‐aggregation in a multimodel ensemble of radiative‐convective equilibrium simulations publication-title: Journal of Advances in Modeling Earth Systems – volume: 48 year: 2021 article-title: H O windows and CO radiator fins: A clear‐sky explanation for the peak in equilibrium climate sensitivity publication-title: Geophysical Research Letters – volume: 373 issue: 2054 year: 2015 article-title: Feedbacks, climate sensitivity and the limits of linear models publication-title: Philosophical Transactions of the Royal Society A Mathematical, Physical and Engineering Sciences – volume: 10 start-page: 727 issue: 10 year: 2017 end-page: 736 article-title: Beyond equilibrium climate sensitivity publication-title: Nature Geoscience – volume: 32 start-page: 8111 year: 2019 end-page: 8125 article-title: Re‐examining the first climate models: Climate sensitivity of a modern radiative‐convective equilibrium model publication-title: Journal of Climate – year: 1979 – year: 2018 – volume: 115 start-page: 10293 issue: 41 year: 2018 end-page: 10298 article-title: Earth's outgoing longwave radiation linear due to H O greenhouse effect publication-title: Proceedings of the National Academy of Sciences of the United States of America – volume: 93 start-page: 5 issue: 1 year: 2015 end-page: 48 article-title: The JRA‐55 reanalysis: General specifications and basic characteristics publication-title: Journal of the Meteorological Society of Japan – volume: 12 issue: 10 year: 2020 article-title: Understanding the extreme spread in climate sensitivity within the radiative‐convective equilibrium model intercomparison project publication-title: Journal of Advances in Modeling Earth Systems – volume: 121 start-page: 2780 issue: 6 year: 2016 end-page: 2789 article-title: Inhomogeneous radiative forcing of homogeneous greenhouse gases publication-title: Journal of Geophysical Research: Atmospheres – volume: 49 start-page: 2256 issue: 23 year: 1992 end-page: 2266 article-title: A study on the "runaway greenhouse effect" with a one‐dimensional radiative‐convective equilibrium model publication-title: Journal of the Atmospheric Sciences – year: 2020 – volume: 146 start-page: 1999 issue: 730 year: 2020 end-page: 2049 article-title: The ERA5 global reanalysis publication-title: Quarterly Journal of the Royal Meteorological Society – volume: 40 start-page: 5944 issue: 22 year: 2013 end-page: 5948 article-title: Robust increase in equilibrium climate sensitivity under global warming publication-title: Geophysical Research Letters – volume: 31 issue: 3 year: 2004 article-title: A new method for diagnosing radiative forcing and climate sensitivity publication-title: Geophysical Research Letters – volume: 21 start-page: 4974 issue: 19 year: 2008 end-page: 4991 article-title: Aqua planets, climate sensitivity, and low clouds publication-title: Journal of Climate – volume: 4 start-page: 512 issue: 11 year: 2016 end-page: 522 article-title: Prospects for narrowing bounds on Earth's equilibrium climate sensitivity publication-title: Earth's Future – volume: 102 start-page: 16663 issue: D14 year: 1997 end-page: 16682 article-title: Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated‐k model for the longwave publication-title: Journal of Geophysical Research – volume: 11 start-page: 793 year: 2018 end-page: 813 article-title: Radiative‐convective equilibrium model intercomparison project publication-title: Geoscientific Model Development – volume: 24 start-page: 241 year: 1967 end-page: 259 article-title: Thermal Equilibrium of the atmosphere with a given distribution of relative humidity publication-title: Journal of the Atmospheric Sciences – ident: e_1_2_10_13_1 doi: 10.1175/JCLI-D-18-0774.1 – volume-title: Carbon dioxide and climate: A scientific assessment year: 1979 ident: e_1_2_10_4_1 – ident: e_1_2_10_28_1 doi: 10.1002/2016EF000376 – ident: e_1_2_10_24_1 doi: 10.1175/jcli-d-14-00255.1 – ident: e_1_2_10_30_1 doi: 10.5194/gmd-11-793-2018 – ident: e_1_2_10_9_1 doi: 10.1146/annurev.energy.25.1.441 – ident: e_1_2_10_32_1 doi: 10.1029/2020GL089235 – ident: e_1_2_10_6_1 doi: 10.1175/JCLI-D-18-0778.1 – ident: e_1_2_10_11_1 doi: 10.1002/2015JD024569 – ident: e_1_2_10_8_1 doi: 10.1029/2003GL018747 – ident: e_1_2_10_26_1 doi: 10.1029/2019RG000678 – ident: e_1_2_10_2_1 doi: 10.1029/2020MS002165 – ident: e_1_2_10_15_1 doi: 10.1038/ngeo3017 – ident: e_1_2_10_16_1 doi: 10.2151/jmsj.2015-001 – ident: e_1_2_10_27_1 doi: 10.1175/JCLI3799.1 – ident: e_1_2_10_10_1 doi: 10.1002/qj.3803 – ident: e_1_2_10_19_1 doi: 10.1175/2008JCLI1995.1 – volume-title: Benchmark calculations of the climate sensitivity of radiative‐convective equilibrium year: 2020 ident: e_1_2_10_12_1 – ident: e_1_2_10_21_1 doi: 10.1029/97JD00237 – ident: e_1_2_10_17_1 doi: 10.1073/pnas.1809868115 – ident: e_1_2_10_23_1 doi: 10.1175/JCLI-D-17-0674.1 – ident: e_1_2_10_31_1 doi: 10.1029/2020ms002138 – ident: e_1_2_10_7_1 – ident: e_1_2_10_20_1 doi: 10.1002/2013GL058118 – ident: e_1_2_10_29_1 doi: 10.1007/s00382-013-1725-9 – ident: e_1_2_10_14_1 doi: 10.1098/rsta.2015.0146 – ident: e_1_2_10_22_1 doi: 10.1175/1520-0469(1992)049〈2256:ASOTGE〉2.0.CO;2 – ident: e_1_2_10_3_1 doi: 10.5194/gmd-11-1537-2018 – ident: e_1_2_10_18_1 doi: 10.1175/1520-0469(1967)024〈0241:TEOTAW〉2.0.CO;2 – volume-title: Using simple models to understand changes in the tropical mean atmosphere under warming year: 2020 ident: e_1_2_10_5_1 – ident: e_1_2_10_25_1 doi: 10.1029/2020GL089609 |
SSID | ssj0003031 |
Score | 2.4733088 |
Snippet | We study how the vertical distribution of relative humidity (RH) affects climate sensitivity, even if it remains unchanged with warming. Using a... |
SourceID | hal crossref wiley |
SourceType | Open Access Repository Enrichment Source Index Database Publisher |
SubjectTerms | atmospheric radiation climate sensitivity Continental interfaces, environment feedbacks humidity Ocean, Atmosphere RCE Sciences of the Universe troposphere |
Title | Dependence of Climate Sensitivity on the Given Distribution of Relative Humidity |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1029%2F2021GL092462 https://hal.science/hal-03225917 |
Volume | 48 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dS8MwEA-6IfgifuL8GEH0SYptl_TjcWyuQ6YMtSK-lCRNcDA6cXPgf-9dG8t8UPCthEsLud7d75LL7wg5zxXnPI87Dodo4LAQTUpyMDwduSqHJNsP8Tby7V0wTNnNM3-2G254F6bih6g33NAySn-NBi7k3JINIEcmZO1eMnIhf0AX3MTbtVjS57Nx7YnBPVcd82LmRH4Y2MJ3mH-1OvtHSFp_xYLIVaBaRprBNtmyEJF2K53ukDVd7JKNpGzB-wlPZdGmmu-Rcd92sFWazgztTScAPzV9wJr0qikEnRUUEB5N0KfRPpLk2v5WOKEqhFtqCjqd5CC-T9LB9WNv6NgOCY4CIMWcmKtQAEYSGnAIM3EA1hgJ0zFKQZwW0gB40BDQpQ49w3XoCi8y0uVGAJJzA905II1iVuhDQv1Yslz6mnlGMKTsYdJI5cVCRVqA2bbI5fciZcrSh2MXi2lWHmP7cba6pC1yUUu_VbQZv8idwXrXIsh1PeyOMhxz0dVAMrn04NOlOv58U5bcjwIAO-zoX9LHZBPH8XzIj05IY_H-oU8BZixku_yX2qTZfUpf0i9ZoMcn |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bS8MwFA66IfoiXnFeg-iTFNsu6eVxbG5TuyG6ifhSkjTBwehE58B_7zltHPNBwbdSTlJIcs750px8HyFnmeKcZ3Hd4ZANHBaiS0kOjqcjV2WwyfZDvI3c6wfdIbt54k9W5xTvwpT8EPMfbugZRbxGB8cf0pZtAEkyYdvudRIXNhAYg6sIbGBZVxuPw-fhPBhDhC5F82LmRH4Y2Np36OFysf2PrLT8gjWRi1i1SDbtDbJuUSJtlNO6SZZ0vkVWOoUK7yc8FXWb6n2b3LWsiK3SdGJoczwCBKrpA5all7oQdJJTAHm0g2GNtpAn10pcYYOyFm6mKUzrKAPzHTJsXw2aXceKJDgKsBRzYq5CATBJaIAizMQBOGQkTN0oBalaSAP4QUNOlzr0DNehK7zISJcbAWDODXR9l1TySa73CPVjyTLpa-YZwZC1h0kjlRcLFWkBnlsjF9-DlCrLII5CFuO0OMn243RxSGvkfG79WjJn_GJ3CuM9N0G6624jSfGdi9EG9pMzDz5dTMefPaWd-yQAvMP2_2V9Qla7g16SJtf92wOyhjZ4XORHh6QyffvQR4A6pvLYrqwv5kLKpA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dS8MwEA-6ofgifuL8DKJPUmy7pB-PY3ObOsdQK-JLSdIEB2MbOgf-9961scwHBd9KuaRw6d39Lrn8jpCzTHHOs7jucIgGDgvRpCQHw9ORqzJIsv0QbyPf9YNuwm6e-bPdcMO7MAU_RLnhhpaR-2s08GlmLNkAcmRC1u51ei7kD-iCqxwCk1sh1cZT8pKUvhgcdNEzL2ZO5IeBLX2HGS4Xx_8ISsuvWBK5CFXzWNPeIOsWJNJGsaqbZEmPt8hKJ2_C-wlPedmmet8mg5btYas0nRjaHA0BgGr6gFXpRVsIOhlTwHi0g16NtpAm13a4wgFFKdxcU1jVYQbiOyRpXz02u47tkeAogFLMibkKBaAkoQGJMBMHYI-RMHWjFChESAPwQUNIlzr0DNehK7zISJcbAVjODXR9l1TGk7HeI9SPJcukr5lnBEPSHiaNVF4sVKQFGG6NXHwrKVWWQBz7WIzS_CDbj9NFldbIeSk9LYgzfpE7BX2XIsh23W30UnznorOBdHLuwafz5fhzprRz3wsA7rD9f0mfkNVBq532rvu3B2QNRfCwyI8OSWX29qGPAHPM5LH9sb4AsaXJxA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Dependence+of+Climate+Sensitivity+on+the+Given+Distribution+of+Relative+Humidity&rft.jtitle=Geophysical+research+letters&rft.au=Bourdin%2C+Stella&rft.au=Kluft%2C+Lukas&rft.au=Stevens%2C+Bjorn&rft.date=2021-04-28&rft.pub=American+Geophysical+Union&rft.issn=0094-8276&rft.eissn=1944-8007&rft.volume=48&rft.issue=8&rft_id=info:doi/10.1029%2F2021GL092462&rft.externalDBID=HAS_PDF_LINK&rft.externalDocID=oai_HAL_hal_03225917v1 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0094-8276&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0094-8276&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0094-8276&client=summon |