Manipulating the Local Coordination and Electronic Structures for Efficient Electrocatalytic Oxygen Evolution

Non‐noble‐metal‐based nanomaterials can exhibit extraordinary electrocatalytic performance toward the oxygen evolution reaction (OER) by harnessing the structural evolution during catalysis and the synergistic effect between elements. However, the structure of active centers in bimetallic/multimetal...

Full description

Saved in:
Bibliographic Details
Published inAdvanced materials (Weinheim) Vol. 33; no. 40; pp. e2103004 - n/a
Main Authors Wu, Zhi‐Peng, Zhang, Huabin, Zuo, Shouwei, Wang, Yan, Zhang, Song Lin, Zhang, Jing, Zang, Shuang‐Quan, Lou, Xiong Wen (David)
Format Journal Article
LanguageEnglish
Published Weinheim Wiley Subscription Services, Inc 01.10.2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Non‐noble‐metal‐based nanomaterials can exhibit extraordinary electrocatalytic performance toward the oxygen evolution reaction (OER) by harnessing the structural evolution during catalysis and the synergistic effect between elements. However, the structure of active centers in bimetallic/multimetallic catalysts is under long‐time debate in the catalysis community. Here, an efficient bimetallic Ni–Fe selenide‐derived OER electrocatalyst is reported and the structure–activity correlation during the OER evolution studied. By combining experiments and theoretical calculations, a conceptual advance is provided, in that the local coordination structure distortion and disordering of active sites inherited from the pre‐catalyst and post‐formed by a further reconstruction are responsible for boosting the OER performance. The active center is identified on Ni sites showing moderate bindings with oxygenous intermediates rather than Fe sites with strong and poisonous adsorptions. These findings provide crucial understanding in manipulating the local coordination and electronic structures toward rational design and fabrication of efficient OER electrocatalysts. Bimetallic Ni–Fe selenide‐derived (oxy)hydroxide nanocage electrocatalysts are in situ generated by inheriting the structure of the pre‐catalyst. The successful manipulation of the local coordination and electronic structures of the electrocatalyst enables superior electrocatalytic activity and stability for the oxygen evolution reaction.
AbstractList Non‐noble‐metal‐based nanomaterials can exhibit extraordinary electrocatalytic performance toward the oxygen evolution reaction (OER) by harnessing the structural evolution during catalysis and the synergistic effect between elements. However, the structure of active centers in bimetallic/multimetallic catalysts is under long‐time debate in the catalysis community. Here, an efficient bimetallic Ni–Fe selenide‐derived OER electrocatalyst is reported and the structure–activity correlation during the OER evolution studied. By combining experiments and theoretical calculations, a conceptual advance is provided, in that the local coordination structure distortion and disordering of active sites inherited from the pre‐catalyst and post‐formed by a further reconstruction are responsible for boosting the OER performance. The active center is identified on Ni sites showing moderate bindings with oxygenous intermediates rather than Fe sites with strong and poisonous adsorptions. These findings provide crucial understanding in manipulating the local coordination and electronic structures toward rational design and fabrication of efficient OER electrocatalysts. Bimetallic Ni–Fe selenide‐derived (oxy)hydroxide nanocage electrocatalysts are in situ generated by inheriting the structure of the pre‐catalyst. The successful manipulation of the local coordination and electronic structures of the electrocatalyst enables superior electrocatalytic activity and stability for the oxygen evolution reaction.
Non‐noble‐metal‐based nanomaterials can exhibit extraordinary electrocatalytic performance toward the oxygen evolution reaction (OER) by harnessing the structural evolution during catalysis and the synergistic effect between elements. However, the structure of active centers in bimetallic/multimetallic catalysts is under long‐time debate in the catalysis community. Here, an efficient bimetallic Ni–Fe selenide‐derived OER electrocatalyst is reported and the structure–activity correlation during the OER evolution studied. By combining experiments and theoretical calculations, a conceptual advance is provided, in that the local coordination structure distortion and disordering of active sites inherited from the pre‐catalyst and post‐formed by a further reconstruction are responsible for boosting the OER performance. The active center is identified on Ni sites showing moderate bindings with oxygenous intermediates rather than Fe sites with strong and poisonous adsorptions. These findings provide crucial understanding in manipulating the local coordination and electronic structures toward rational design and fabrication of efficient OER electrocatalysts.
Non-noble-metal-based nanomaterials can exhibit extraordinary electrocatalytic performance toward the oxygen evolution reaction (OER) by harnessing the structural evolution during catalysis and the synergistic effect between elements. However, the structure of active centers in bimetallic/multimetallic catalysts is under long-time debate in the catalysis community. Here, an efficient bimetallic Ni-Fe selenide-derived OER electrocatalyst is reported and the structure-activity correlation during the OER evolution studied. By combining experiments and theoretical calculations, a conceptual advance is provided, in that the local coordination structure distortion and disordering of active sites inherited from the pre-catalyst and post-formed by a further reconstruction are responsible for boosting the OER performance. The active center is identified on Ni sites showing moderate bindings with oxygenous intermediates rather than Fe sites with strong and poisonous adsorptions. These findings provide crucial understanding in manipulating the local coordination and electronic structures toward rational design and fabrication of efficient OER electrocatalysts.Non-noble-metal-based nanomaterials can exhibit extraordinary electrocatalytic performance toward the oxygen evolution reaction (OER) by harnessing the structural evolution during catalysis and the synergistic effect between elements. However, the structure of active centers in bimetallic/multimetallic catalysts is under long-time debate in the catalysis community. Here, an efficient bimetallic Ni-Fe selenide-derived OER electrocatalyst is reported and the structure-activity correlation during the OER evolution studied. By combining experiments and theoretical calculations, a conceptual advance is provided, in that the local coordination structure distortion and disordering of active sites inherited from the pre-catalyst and post-formed by a further reconstruction are responsible for boosting the OER performance. The active center is identified on Ni sites showing moderate bindings with oxygenous intermediates rather than Fe sites with strong and poisonous adsorptions. These findings provide crucial understanding in manipulating the local coordination and electronic structures toward rational design and fabrication of efficient OER electrocatalysts.
Non‐noble‐metal‐based nanomaterials can exhibit extraordinary electrocatalytic performance toward the oxygen evolution reaction (OER) by harnessing the structural evolution during catalysis and the synergistic effect between elements. However, the structure of active centers in bimetallic/multimetallic catalysts is under long‐time debate in the catalysis community. Here, an efficient bimetallic Ni–Fe selenide‐derived OER electrocatalyst is reported and the structure–activity correlation during the OER evolution studied. By combining experiments and theoretical calculations, a conceptual advance is provided, in that the local coordination structure distortion and disordering of active sites inherited from the pre‐catalyst and post‐formed by a further reconstruction are responsible for boosting the OER performance. The active center is identified on Ni sites showing moderate bindings with oxygenous intermediates rather than Fe sites with strong and poisonous adsorptions. These findings provide crucial understanding in manipulating the local coordination and electronic structures toward rational design and fabrication of efficient OER electrocatalysts.
Author Zhang, Jing
Zuo, Shouwei
Zhang, Huabin
Zhang, Song Lin
Lou, Xiong Wen (David)
Zang, Shuang‐Quan
Wu, Zhi‐Peng
Wang, Yan
Author_xml – sequence: 1
  givenname: Zhi‐Peng
  orcidid: 0000-0002-5422-1349
  surname: Wu
  fullname: Wu, Zhi‐Peng
  organization: Nanyang Technological University
– sequence: 2
  givenname: Huabin
  orcidid: 0000-0003-1601-2471
  surname: Zhang
  fullname: Zhang, Huabin
  organization: King Abdullah University of Science and Technology
– sequence: 3
  givenname: Shouwei
  surname: Zuo
  fullname: Zuo, Shouwei
  organization: King Abdullah University of Science and Technology
– sequence: 4
  givenname: Yan
  surname: Wang
  fullname: Wang, Yan
  organization: Nanyang Technological University
– sequence: 5
  givenname: Song Lin
  surname: Zhang
  fullname: Zhang, Song Lin
  organization: Nanyang Technological University
– sequence: 6
  givenname: Jing
  surname: Zhang
  fullname: Zhang, Jing
  organization: Chinese Academy of Sciences
– sequence: 7
  givenname: Shuang‐Quan
  orcidid: 0000-0002-6728-0559
  surname: Zang
  fullname: Zang, Shuang‐Quan
  email: zangsqzg@zzu.edu.cn
  organization: Zhengzhou University
– sequence: 8
  givenname: Xiong Wen (David)
  orcidid: 0000-0002-5557-4437
  surname: Lou
  fullname: Lou, Xiong Wen (David)
  email: xwlou@ntu.edu.sg
  organization: Nanyang Technological University
BookMark eNqFkU1PGzEQhq0KpAbolbMlLr1sOl6vvfExSlNaKYgD9LwavDYYOXZqe0vz79k0fEhIiNNIo-d5NZr3iByEGAwhpwymDKD-hv0apzXUDDhA84lMmKhZ1YASB2QCiotKyWb2mRzlfA8ASoKckPUFBrcZPBYXbmm5M3QVNXq6iDH1LozrGCiGni690SXF4DS9KmnQZUgmUxsTXVrrtDOhPDMaC_ptGcnLf9tbE-jyb_TDLumEHFr02Xx5msfk94_l9eJntbo8_7WYryrdMNlUbMZbwy232FqByozHGiklWAsWUM-wV5xxBtiKfgZM172wDFuQErkUN4ofk6_73E2KfwaTS7d2WRvvMZg45K4Wkjc1E4KP6Nkb9D4OKYzXjVSroOWsliPV7CmdYs7J2E678v85JaHzHYNu10G366B76WDUpm-0TXJrTNv3BbUXHpw32w_obv79Yv7qPgJjbJyM
CitedBy_id crossref_primary_10_1016_j_jcis_2022_05_160
crossref_primary_10_1002_adma_202412598
crossref_primary_10_1016_j_apsusc_2023_156670
crossref_primary_10_1002_adma_202302666
crossref_primary_10_1063_5_0226555
crossref_primary_10_1002_ange_202316762
crossref_primary_10_1016_j_jechem_2022_08_020
crossref_primary_10_1021_acsenergylett_4c01833
crossref_primary_10_1016_j_apcatb_2023_122818
crossref_primary_10_1021_acs_energyfuels_4c04009
crossref_primary_10_1039_D2NR00522K
crossref_primary_10_1002_smll_202405596
crossref_primary_10_1021_acsnano_2c06890
crossref_primary_10_1002_adfm_202301490
crossref_primary_10_1002_smll_202401394
crossref_primary_10_1039_D2TA02984G
crossref_primary_10_1002_anie_202300826
crossref_primary_10_1016_j_cej_2022_136432
crossref_primary_10_3390_nano13132012
crossref_primary_10_1002_smll_202301715
crossref_primary_10_1016_j_fuel_2024_130999
crossref_primary_10_1016_j_ijhydene_2024_04_355
crossref_primary_10_1016_j_jcis_2023_01_021
crossref_primary_10_1002_adfm_202207618
crossref_primary_10_1002_aenm_202203595
crossref_primary_10_1016_j_jcis_2023_04_003
crossref_primary_10_1039_D4SE00685B
crossref_primary_10_3390_molecules28196986
crossref_primary_10_1016_j_ijhydene_2022_05_149
crossref_primary_10_1039_D3CC04054B
crossref_primary_10_1002_adma_202211497
crossref_primary_10_1039_D3SC05891C
crossref_primary_10_1021_acscatal_4c00229
crossref_primary_10_1002_ente_202301574
crossref_primary_10_1016_j_surfin_2024_104987
crossref_primary_10_1016_j_jcis_2025_137314
crossref_primary_10_1021_acsanm_4c00444
crossref_primary_10_1002_smll_202208202
crossref_primary_10_1063_5_0121887
crossref_primary_10_1016_j_fuel_2024_133916
crossref_primary_10_1038_s41467_024_53763_8
crossref_primary_10_1039_D3TA00635B
crossref_primary_10_1039_D2TA05356J
crossref_primary_10_1002_ange_202212542
crossref_primary_10_1002_smll_202407933
crossref_primary_10_1002_sus2_76
crossref_primary_10_1016_j_jcis_2023_09_115
crossref_primary_10_1016_j_pmatsci_2024_101410
crossref_primary_10_1016_j_jcis_2023_09_117
crossref_primary_10_1016_j_apsusc_2022_155568
crossref_primary_10_1002_smll_202207472
crossref_primary_10_1016_j_nanoen_2022_107297
crossref_primary_10_1039_D3TA05104H
crossref_primary_10_1002_advs_202310181
crossref_primary_10_1088_1361_6528_ac5b55
crossref_primary_10_1016_j_chphma_2024_03_002
crossref_primary_10_1016_j_jallcom_2022_168349
crossref_primary_10_1016_j_jcis_2024_11_251
crossref_primary_10_1016_j_jcis_2023_02_053
crossref_primary_10_1016_j_cej_2021_134274
crossref_primary_10_1002_smll_202403596
crossref_primary_10_1039_D2TA00597B
crossref_primary_10_1016_j_cej_2022_138515
crossref_primary_10_1021_acsnano_2c12029
crossref_primary_10_1039_D2SC02019J
crossref_primary_10_1039_D4CS01031K
crossref_primary_10_1016_j_electacta_2021_139278
crossref_primary_10_1016_j_ijhydene_2023_04_099
crossref_primary_10_1021_acs_cgd_4c00890
crossref_primary_10_1016_j_cej_2022_140278
crossref_primary_10_1002_aesr_202200036
crossref_primary_10_1002_smll_202301255
crossref_primary_10_1007_s11581_024_05909_3
crossref_primary_10_1039_D3TA01789C
crossref_primary_10_1016_j_ccr_2024_215833
crossref_primary_10_1039_D3DT03249C
crossref_primary_10_1016_j_cej_2023_147418
crossref_primary_10_1039_D2SC00308B
crossref_primary_10_1016_j_ccr_2024_216243
crossref_primary_10_1039_D4TA00849A
crossref_primary_10_1016_j_ijhydene_2023_07_276
crossref_primary_10_1021_acs_analchem_2c04931
crossref_primary_10_1021_jacs_4c07995
crossref_primary_10_1016_j_cej_2022_137036
crossref_primary_10_1016_j_cej_2023_141714
crossref_primary_10_1002_anie_202316762
crossref_primary_10_1002_cctc_202401753
crossref_primary_10_1039_D3TA00015J
crossref_primary_10_1038_s41467_022_33590_5
crossref_primary_10_1002_adma_202207888
crossref_primary_10_1016_j_cej_2021_134304
crossref_primary_10_1002_aenm_202103247
crossref_primary_10_3390_catal13091230
crossref_primary_10_1021_acs_chemrev_2c00515
crossref_primary_10_1016_j_apsusc_2022_156237
crossref_primary_10_1021_acsnano_2c07136
crossref_primary_10_1016_j_fmre_2024_04_017
crossref_primary_10_1016_j_jece_2024_114552
crossref_primary_10_1002_adma_202306309
crossref_primary_10_1007_s12274_024_6696_0
crossref_primary_10_1016_j_jallcom_2023_169936
crossref_primary_10_1021_acs_inorgchem_4c01254
crossref_primary_10_1039_D3NA00949A
crossref_primary_10_1002_smll_202311713
crossref_primary_10_1039_D2EE01337A
crossref_primary_10_1039_D2TA02244C
crossref_primary_10_1002_aenm_202103383
crossref_primary_10_1002_anie_202207537
crossref_primary_10_1007_s10853_024_09541_4
crossref_primary_10_1039_D3TA01509B
crossref_primary_10_1016_j_apsusc_2022_154728
crossref_primary_10_1039_D4CS00038B
crossref_primary_10_1002_smll_202105305
crossref_primary_10_1039_D2QI01470J
crossref_primary_10_1002_adfm_202307947
crossref_primary_10_1002_adma_202415265
crossref_primary_10_1002_cey2_317
crossref_primary_10_1039_D2TA01701F
crossref_primary_10_1016_j_apcatb_2024_123830
crossref_primary_10_1039_D1TA08039C
crossref_primary_10_1016_j_jece_2023_109407
crossref_primary_10_1039_D2TA04296G
crossref_primary_10_1002_ange_202300826
crossref_primary_10_1039_D4TA08129C
crossref_primary_10_1016_j_jallcom_2022_165344
crossref_primary_10_1016_j_apsusc_2024_160588
crossref_primary_10_1016_j_colsurfa_2022_130191
crossref_primary_10_1039_D2NR07019G
crossref_primary_10_1016_j_apcatb_2022_122332
crossref_primary_10_1016_j_apcatb_2023_123567
crossref_primary_10_1007_s10800_024_02190_0
crossref_primary_10_1039_D4TA00196F
crossref_primary_10_1039_D3QI02573J
crossref_primary_10_1002_smtd_202200459
crossref_primary_10_1021_acs_inorgchem_3c00082
crossref_primary_10_1002_smm2_1326
crossref_primary_10_1016_j_apcatb_2023_122474
crossref_primary_10_1039_D2CC00867J
crossref_primary_10_1021_acs_energyfuels_2c03833
crossref_primary_10_1021_jacs_2c05660
crossref_primary_10_1002_adma_202302642
crossref_primary_10_1039_D2TA04340H
crossref_primary_10_1002_aenm_202303614
crossref_primary_10_1039_D4TA02679A
crossref_primary_10_1016_j_jcis_2023_03_176
crossref_primary_10_1039_D3GC03210H
crossref_primary_10_1038_s41467_022_33725_8
crossref_primary_10_1002_smll_202206531
crossref_primary_10_1021_acs_inorgchem_2c02666
crossref_primary_10_1002_chem_202301124
crossref_primary_10_1038_s41467_024_55120_1
crossref_primary_10_1039_D4CC05027D
crossref_primary_10_1002_anie_202212542
crossref_primary_10_1016_j_apcatb_2023_122600
crossref_primary_10_1039_D2TA06858C
crossref_primary_10_1039_D5CC00997A
crossref_primary_10_1021_acsami_2c15158
crossref_primary_10_1016_j_apcatb_2022_122207
crossref_primary_10_1016_j_ijhydene_2023_11_081
crossref_primary_10_1039_D4CC00866A
crossref_primary_10_1002_smll_202309859
crossref_primary_10_1039_D4CE01039F
crossref_primary_10_1002_adfm_202202141
crossref_primary_10_1021_acsaem_2c01479
crossref_primary_10_1021_acscatal_3c01348
crossref_primary_10_1002_smll_202304390
crossref_primary_10_1016_j_apsusc_2023_156500
crossref_primary_10_1016_j_apsusc_2023_158002
crossref_primary_10_1039_D1NR08007E
crossref_primary_10_1016_j_jallcom_2022_166779
crossref_primary_10_1016_j_jcis_2022_08_160
crossref_primary_10_1016_j_apsusc_2024_161893
crossref_primary_10_1016_j_ijhydene_2024_11_095
crossref_primary_10_1021_acscatal_2c02181
crossref_primary_10_1002_adfm_202401509
crossref_primary_10_1039_D4TA08773A
crossref_primary_10_1002_adfm_202212442
crossref_primary_10_1002_adfm_202308575
crossref_primary_10_1007_s11581_022_04875_y
crossref_primary_10_1002_ange_202207537
crossref_primary_10_1002_advs_202303682
crossref_primary_10_1016_j_jallcom_2025_179819
crossref_primary_10_1002_adfm_202311854
crossref_primary_10_1007_s40820_023_01024_6
crossref_primary_10_1039_D2TA03181G
crossref_primary_10_1002_cey2_226
crossref_primary_10_1016_j_jelechem_2022_116630
crossref_primary_10_1016_j_coelec_2024_101593
crossref_primary_10_1126_sciadv_adu5370
crossref_primary_10_1016_j_apcatb_2024_124259
crossref_primary_10_1021_acscatal_3c05314
Cites_doi 10.1002/adma.201703870
10.1002/anie.201903200
10.1021/acs.accounts.0c00564
10.1038/s41560-019-0407-1
10.1002/adma.202006292
10.1126/sciadv.1700732
10.1002/adma.200800854
10.1038/s41467-021-21017-6
10.1126/science.1212858
10.1021/ja510442p
10.1038/s41560-019-0355-9
10.1002/adma.201904548
10.1021/acs.jpcc.9b04229
10.1126/science.aaw7493
10.1038/s41560-020-00709-1
10.1038/nmat3313
10.1038/s41560-020-0576-y
10.1002/anie.201105190
10.1021/acscentsci.0c00512
10.1002/adma.201506315
10.1021/ja301018q
10.1126/science.aan5412
10.1038/s41929-018-0162-x
10.1126/science.aaf1525
10.1021/acscatal.9b04975
10.1126/science.aad4998
10.1039/D0EE02276D
10.1039/D0EE02935A
10.1002/adma.201901977
10.1021/jacs.5b10699
10.1039/C7CP01445G
10.1038/s41560-018-0308-8
10.1002/anie.201808818
10.1038/s41929-020-0465-6
10.1038/nenergy.2015.20
10.1038/s41929-020-00525-6
10.1002/adfm.201910274
10.1039/C9EE02787D
10.1021/jacs.5b10977
10.1002/adma.201800757
10.1021/acscatal.8b03106
10.1126/sciadv.abb9823
10.1073/pnas.1722034115
10.1002/adma.201706825
10.1126/sciadv.aao6657
10.1038/nchem.2886
10.1038/s41929-019-0325-4
10.1038/ncomms12324
10.1038/s41467-020-16237-1
ContentType Journal Article
Copyright 2021 Wiley‐VCH GmbH
2021 Wiley-VCH GmbH.
Copyright_xml – notice: 2021 Wiley‐VCH GmbH
– notice: 2021 Wiley-VCH GmbH.
DBID AAYXX
CITATION
7SR
8BQ
8FD
JG9
7X8
DOI 10.1002/adma.202103004
DatabaseName CrossRef
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
MEDLINE - Academic
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
METADEX
MEDLINE - Academic
DatabaseTitleList
Materials Research Database
MEDLINE - Academic
CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1521-4095
EndPage n/a
ExternalDocumentID 10_1002_adma_202103004
ADMA202103004
Genre article
GrantInformation_xml – fundername: National Science Fund for Distinguished Young Scholars
  funderid: 21825106
– fundername: China Postdoctoral Science Foundation
  funderid: 2020M682333
– fundername: Ministry of Education of Singapore
  funderid: MOE2019‐T2‐2‐049
GroupedDBID ---
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6P2
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABIJN
ABJNI
ABLJU
ABPVW
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RWM
RX1
RYL
SUPJJ
TN5
UB1
UPT
V2E
W8V
W99
WBKPD
WFSAM
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XV2
YR2
ZZTAW
~02
~IA
~WT
.Y3
31~
6TJ
8WZ
A6W
AANHP
AASGY
AAYOK
AAYXX
ABEML
ACBWZ
ACRPL
ACSCC
ACYXJ
ADMLS
ADNMO
AETEA
AEYWJ
AFFNX
AGHNM
AGQPQ
AGYGG
ASPBG
AVWKF
AZFZN
CITATION
EJD
FEDTE
FOJGT
HF~
HVGLF
LW6
M6K
NDZJH
PALCI
RIWAO
RJQFR
SAMSI
WTY
ZY4
7SR
8BQ
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
JG9
7X8
ID FETCH-LOGICAL-c4164-1837e3f3fa7f5a9e009e6660ff0f0ac8ad931310a75d801c2d5f1a7066a365b93
IEDL.DBID DR2
ISSN 0935-9648
1521-4095
IngestDate Fri Jul 11 07:42:06 EDT 2025
Fri Jul 25 02:32:28 EDT 2025
Tue Jul 01 02:33:06 EDT 2025
Thu Apr 24 22:54:56 EDT 2025
Wed Jan 22 16:29:02 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 40
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4164-1837e3f3fa7f5a9e009e6660ff0f0ac8ad931310a75d801c2d5f1a7066a365b93
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-5557-4437
0000-0002-6728-0559
0000-0002-5422-1349
0000-0003-1601-2471
PQID 2579073126
PQPubID 2045203
PageCount 10
ParticipantIDs proquest_miscellaneous_2563421553
proquest_journals_2579073126
crossref_citationtrail_10_1002_adma_202103004
crossref_primary_10_1002_adma_202103004
wiley_primary_10_1002_adma_202103004_ADMA202103004
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-10-01
PublicationDateYYYYMMDD 2021-10-01
PublicationDate_xml – month: 10
  year: 2021
  text: 2021-10-01
  day: 01
PublicationDecade 2020
PublicationPlace Weinheim
PublicationPlace_xml – name: Weinheim
PublicationTitle Advanced materials (Weinheim)
PublicationYear 2021
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2011; 334
2019; 4
2017; 3
2019; 31
2019; 2
2019; 12
2019; 58
2019; 366
2017; 29
2020; 11
2020; 10
2017; 355
2012; 11
2019; 123
2012; 51
2021; 14
2020; 6
2016; 7
2018; 8
2020; 5
2016; 1
2020; 3
2021; 12
2012; 134
2021; 33
2018; 4
2015; 137
2020; 53
2018; 359
2020; 30
2018; 1
2018; 115
2015; 2015
2016; 352
2018; 30
2017; 19
2016; 138
2008; 20
2016; 28
2018; 10
2018; 57
e_1_2_7_5_1
e_1_2_7_3_1
e_1_2_7_9_1
e_1_2_7_7_1
e_1_2_7_19_1
e_1_2_7_17_1
e_1_2_7_15_1
e_1_2_7_41_1
e_1_2_7_1_1
e_1_2_7_13_1
e_1_2_7_43_1
e_1_2_7_11_1
e_1_2_7_47_1
e_1_2_7_26_1
e_1_2_7_49_1
e_1_2_7_28_1
e_1_2_7_50_1
e_1_2_7_25_1
e_1_2_7_31_1
e_1_2_7_23_1
e_1_2_7_33_1
e_1_2_7_21_1
e_1_2_7_35_1
e_1_2_7_37_1
e_1_2_7_39_1
e_1_2_7_6_1
e_1_2_7_4_1
e_1_2_7_8_1
e_1_2_7_18_1
e_1_2_7_16_1
e_1_2_7_40_1
e_1_2_7_2_1
e_1_2_7_14_1
e_1_2_7_42_1
e_1_2_7_12_1
e_1_2_7_44_1
e_1_2_7_10_1
e_1_2_7_46_1
e_1_2_7_48_1
e_1_2_7_27_1
e_1_2_7_29_1
Mei L. (e_1_2_7_45_1) 2015; 2015
e_1_2_7_30_1
e_1_2_7_24_1
e_1_2_7_32_1
e_1_2_7_22_1
e_1_2_7_34_1
e_1_2_7_20_1
e_1_2_7_36_1
e_1_2_7_38_1
References_xml – volume: 2
  start-page: 763
  year: 2019
  publication-title: Nat. Catal.
– volume: 137
  start-page: 4347
  year: 2015
  publication-title: J. Am. Chem. Soc.
– volume: 29
  year: 2017
  publication-title: Adv. Mater.
– volume: 10
  start-page: 149
  year: 2018
  publication-title: Nat. Chem.
– volume: 4
  start-page: 430
  year: 2019
  publication-title: Nat. Energy
– volume: 4
  start-page: 115
  year: 2019
  publication-title: Nat. Energy
– volume: 1
  start-page: 820
  year: 2018
  publication-title: Nat. Catal.
– volume: 6
  year: 2020
  publication-title: Sci. Adv.
– volume: 7
  year: 2016
  publication-title: Nat. Commun.
– volume: 137
  year: 2015
  publication-title: J. Am. Chem. Soc.
– volume: 4
  year: 2018
  publication-title: Sci. Adv.
– volume: 2015
  year: 2015
  publication-title: Adv. Mater. Sci. Eng.
– volume: 3
  start-page: 554
  year: 2020
  publication-title: Nat. Catal.
– volume: 8
  year: 2018
  publication-title: ACS Catal.
– volume: 20
  start-page: 3987
  year: 2008
  publication-title: Adv. Mater.
– volume: 6
  start-page: 1288
  year: 2020
  publication-title: ACS Cent. Sci.
– volume: 4
  start-page: 329
  year: 2019
  publication-title: Nat. Energy
– volume: 31
  year: 2019
  publication-title: Adv. Mater.
– volume: 5
  start-page: 881
  year: 2020
  publication-title: Nat. Energy
– volume: 19
  year: 2017
  publication-title: Phys. Chem. Chem. Phys.
– volume: 115
  start-page: 5872
  year: 2018
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 352
  start-page: 333
  year: 2016
  publication-title: Science
– volume: 1
  year: 2016
  publication-title: Nat. Energy
– volume: 33
  year: 2021
  publication-title: Adv. Mater.
– volume: 30
  year: 2020
  publication-title: Adv. Funct. Mater.
– volume: 30
  year: 2018
  publication-title: Adv. Mater.
– volume: 58
  year: 2019
  publication-title: Angew. Chem., Int. Ed.
– volume: 28
  start-page: 4601
  year: 2016
  publication-title: Adv. Mater.
– volume: 12
  start-page: 3348
  year: 2019
  publication-title: Energy Environ. Sci.
– volume: 138
  start-page: 313
  year: 2016
  publication-title: J. Am. Chem. Soc.
– volume: 5
  start-page: 222
  year: 2020
  publication-title: Nat. Energy
– volume: 10
  start-page: 2581
  year: 2020
  publication-title: ACS Catal.
– volume: 53
  start-page: 2913
  year: 2020
  publication-title: Acc. Chem. Res.
– volume: 355
  year: 2017
  publication-title: Science
– volume: 3
  start-page: 985
  year: 2020
  publication-title: Nat. Catal.
– volume: 51
  start-page: 984
  year: 2012
  publication-title: Angew. Chem., Int. Ed.
– volume: 359
  start-page: 1489
  year: 2018
  publication-title: Science
– volume: 366
  start-page: 850
  year: 2019
  publication-title: Science
– volume: 3
  year: 2017
  publication-title: Sci. Adv.
– volume: 12
  start-page: 859
  year: 2021
  publication-title: Nat. Commun.
– volume: 11
  start-page: 2522
  year: 2020
  publication-title: Nat. Commun.
– volume: 123
  year: 2019
  publication-title: J. Phys. Chem. C
– volume: 134
  start-page: 6801
  year: 2012
  publication-title: J. Am. Chem. Soc.
– volume: 334
  start-page: 1383
  year: 2011
  publication-title: Science
– volume: 57
  year: 2018
  publication-title: Angew. Chem., Int. Ed.
– volume: 14
  start-page: 3053
  year: 2021
  publication-title: Energy Environ. Sci.
– volume: 14
  start-page: 906
  year: 2021
  publication-title: Energy Environ. Sci.
– volume: 11
  start-page: 550
  year: 2012
  publication-title: Nat. Mater.
– ident: e_1_2_7_18_1
  doi: 10.1002/adma.201703870
– ident: e_1_2_7_33_1
  doi: 10.1002/anie.201903200
– ident: e_1_2_7_23_1
  doi: 10.1021/acs.accounts.0c00564
– ident: e_1_2_7_2_1
  doi: 10.1038/s41560-019-0407-1
– volume: 2015
  year: 2015
  ident: e_1_2_7_45_1
  publication-title: Adv. Mater. Sci. Eng.
– ident: e_1_2_7_6_1
  doi: 10.1002/adma.202006292
– ident: e_1_2_7_40_1
  doi: 10.1126/sciadv.1700732
– ident: e_1_2_7_41_1
  doi: 10.1002/adma.200800854
– ident: e_1_2_7_3_1
  doi: 10.1038/s41467-021-21017-6
– ident: e_1_2_7_26_1
  doi: 10.1126/science.1212858
– ident: e_1_2_7_13_1
  doi: 10.1021/ja510442p
– ident: e_1_2_7_9_1
  doi: 10.1038/s41560-019-0355-9
– ident: e_1_2_7_15_1
  doi: 10.1002/adma.201904548
– ident: e_1_2_7_48_1
  doi: 10.1021/acs.jpcc.9b04229
– ident: e_1_2_7_4_1
  doi: 10.1126/science.aaw7493
– ident: e_1_2_7_29_1
  doi: 10.1038/s41560-020-00709-1
– ident: e_1_2_7_30_1
  doi: 10.1038/nmat3313
– ident: e_1_2_7_36_1
  doi: 10.1038/s41560-020-0576-y
– ident: e_1_2_7_42_1
  doi: 10.1002/anie.201105190
– ident: e_1_2_7_8_1
  doi: 10.1021/acscentsci.0c00512
– ident: e_1_2_7_39_1
  doi: 10.1002/adma.201506315
– ident: e_1_2_7_46_1
  doi: 10.1021/ja301018q
– ident: e_1_2_7_50_1
  doi: 10.1126/science.aan5412
– ident: e_1_2_7_12_1
  doi: 10.1038/s41929-018-0162-x
– ident: e_1_2_7_21_1
  doi: 10.1126/science.aaf1525
– ident: e_1_2_7_49_1
  doi: 10.1021/acscatal.9b04975
– ident: e_1_2_7_5_1
  doi: 10.1126/science.aad4998
– ident: e_1_2_7_20_1
  doi: 10.1039/D0EE02276D
– ident: e_1_2_7_25_1
  doi: 10.1039/D0EE02935A
– ident: e_1_2_7_24_1
  doi: 10.1002/adma.201901977
– ident: e_1_2_7_37_1
  doi: 10.1021/jacs.5b10699
– ident: e_1_2_7_47_1
  doi: 10.1039/C7CP01445G
– ident: e_1_2_7_35_1
  doi: 10.1038/s41560-018-0308-8
– ident: e_1_2_7_34_1
  doi: 10.1002/anie.201808818
– ident: e_1_2_7_10_1
  doi: 10.1038/s41929-020-0465-6
– ident: e_1_2_7_1_1
  doi: 10.1038/nenergy.2015.20
– ident: e_1_2_7_31_1
  doi: 10.1038/s41929-020-00525-6
– ident: e_1_2_7_7_1
  doi: 10.1002/adfm.201910274
– ident: e_1_2_7_19_1
  doi: 10.1039/C9EE02787D
– ident: e_1_2_7_32_1
  doi: 10.1021/jacs.5b10977
– ident: e_1_2_7_16_1
  doi: 10.1002/adma.201800757
– ident: e_1_2_7_22_1
  doi: 10.1021/acscatal.8b03106
– ident: e_1_2_7_44_1
  doi: 10.1126/sciadv.abb9823
– ident: e_1_2_7_27_1
  doi: 10.1073/pnas.1722034115
– ident: e_1_2_7_38_1
  doi: 10.1002/adma.201706825
– ident: e_1_2_7_43_1
  doi: 10.1126/sciadv.aao6657
– ident: e_1_2_7_28_1
  doi: 10.1038/nchem.2886
– ident: e_1_2_7_11_1
  doi: 10.1038/s41929-019-0325-4
– ident: e_1_2_7_17_1
  doi: 10.1038/ncomms12324
– ident: e_1_2_7_14_1
  doi: 10.1038/s41467-020-16237-1
SSID ssj0009606
Score 2.6860516
Snippet Non‐noble‐metal‐based nanomaterials can exhibit extraordinary electrocatalytic performance toward the oxygen evolution reaction (OER) by harnessing the...
Non-noble-metal-based nanomaterials can exhibit extraordinary electrocatalytic performance toward the oxygen evolution reaction (OER) by harnessing the...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage e2103004
SubjectTerms Bimetals
Catalysis
Catalysts
Coordination
electrocatalysis
Electrocatalysts
Nanomaterials
Nickel
oxygen evolution reaction
Oxygen evolution reactions
selenides
structure evolution
Synergistic effect
Title Manipulating the Local Coordination and Electronic Structures for Efficient Electrocatalytic Oxygen Evolution
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadma.202103004
https://www.proquest.com/docview/2579073126
https://www.proquest.com/docview/2563421553
Volume 33
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ1bS8MwFMeD-KQP3sXqlAiCT9Fe0nZ9HHNjiFPwAr6Vk5uI2glzon56T9LLpiCCvrU0oW1OTs4_afo7hBygipciUpIl0leMGxUxYbRiWrR9mQJKcofYGJ4ngxt-ehvfzvzFX_IhmgU36xluvLYODmJ8PIWGgnLcoNDmyXJAULthy6qiyyk_yspzB9uLYpYlvF1TG_3w-Gv1r1FpKjVnBauLOP1lAvWzlhtNHo4mL-JIfnzDOP7nZVbIUiVHaafsP6tkThdrZHEGUrhOnoZQ3JdZvoo7inqRntn4R7sjnLfel4uJFApFe01GHXrlqLQTnMpTFMW05zgVGN7qMm7R6B3vSS_e3rEL095r5QIb5Kbfu-4OWJWkgUnUcpzhkJDqyEQGUhNDprHRNU6JfGN844Nsg8qiADUkpLHCaChDFZsAUlQ6gPYSWbRJ5otRobcINRa9E-g2qgbgCZeCCyFMqLngAEnMPcJqI-WyIpjbRBqPecleDnPbjHnTjB45bMo_l-yOH0u2apvnlQ-PcxzMMhwAgzDxyH5zGb3PflKBQo8mtkwS8dDmXvJI6Az8y53yzsmw05xt_6XSDlmwx-WOwhaZR4vqXVRGL2LP9f5PnyAGVA
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9NAEB6hcoAeCrRUpBRYpEo9bWJ713Z8jEqiAEkqtYnEzdpnVdE6lZogwq9ndv1IUgkhtUfbs7K9szPzzXj9DcAJonglmVY0UYGm3GpGpTWaGtkNVCoQknuKjfEkGc74tx9xvZvQ_QtT8kM0BTdnGd5fOwN3BenOmjVUaE8cFLlGWY4R9Llr6-2zqos1g5QD6J5uj8U0S3i35m0Mos72-O24tAabm5DVx5zBK5D105ZbTX62lwvZVn8eEDk-6XVew16FSEmvXEJv4Jkp9mF3g6fwAG7HorguG30VVwQhIxm5EEjO5pi6Xpf1RCIKTfpNUx1y6Ylpl5jNE8TFpO-pKjDC1TK-brTCe5Lz3ytcxaT_q7KCtzAb9KdnQ1r1aaAK4Ryn6BVSwyyzIrWxyAzOusGsKLA2sIFQXaEzFiKMFGmsMSCqSMc2FCmCHcGSWGbsEHaKeWHeAbGOfSc0XQQOgidcSS6ltJHhkguRxLwFtNZSrioSc9dL4yYv6Zej3E1j3kxjC04b-buSvuOfkse10vPKjO9z9GcZ-sAwSlrwubmMBui-qojCzJdOJmE8cu2XWhB5Df_nTnnvy7jXHB09ZtAneDGcjkf56Ovk-3t46c6XGwyPYQe1az4gUFrIj94U_gIDhQpv
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ3bT9swFIePEJPQeGA3EGXd5kmT9mRIY8dJHivaigFl0wYSb5GvqNpIkaCI7q_fsXNpmYSQ4DGJrSQ-Pj4_O853AL6giteKGU2FjgzlzjCqnDXUqizSqURJHhAb4xNxcMYPz5Pzpb_4Kz5Eu-DmPSOM197Br4zbW0BDpQncoNjnyfJA0BdcRJnv14OfC4CU1-eBtscSmgueNdjGKN67X_9-WFpozWXFGkLO6BXI5mGrnSa_d2c3alf__Y_j-Jy3eQ0btR4l_aoDvYEVW76F9SVK4Tu4HMtyUqX5Ki8ICkZy7AMg2Z_ixHVSrSYSWRoybFPqkF8BSzvDuTxBVUyGAVSB8a0pE1aN5nhP8v1ujn2YDG9rH9iEs9HwdP-A1lkaqEYxxymOCalljjmZukTmFhvd4pwoci5ykdSZNDnroYiUaWIwHOrYJK4nU5Q6kolE5WwLVstpabeBOM_e6dkMZYPkgmvFlVIutlxxKUXCO0AbIxW6Rpj7TBp_igq-HBe-GYu2GTvwtS1_VcE7HizZbWxe1E58XeBoluMI2ItFBz63l9H9_DcVWdrpzJcRjMc--VIH4mDgR-5U9Afjfnu085RKn2Dtx2BUHH87OXoPL_3pandhF1bRuPYDqqQb9TE4wj_yqAkn
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Manipulating+the+Local+Coordination+and+Electronic+Structures+for+Efficient+Electrocatalytic+Oxygen+Evolution&rft.jtitle=Advanced+materials+%28Weinheim%29&rft.au=Wu%2C+Zhi%E2%80%90Peng&rft.au=Zhang%2C+Huabin&rft.au=Zuo%2C+Shouwei&rft.au=Wang%2C+Yan&rft.date=2021-10-01&rft.issn=0935-9648&rft.eissn=1521-4095&rft.volume=33&rft.issue=40&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fadma.202103004&rft.externalDBID=10.1002%252Fadma.202103004&rft.externalDocID=ADMA202103004
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0935-9648&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0935-9648&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0935-9648&client=summon