Manipulating the Local Coordination and Electronic Structures for Efficient Electrocatalytic Oxygen Evolution
Non‐noble‐metal‐based nanomaterials can exhibit extraordinary electrocatalytic performance toward the oxygen evolution reaction (OER) by harnessing the structural evolution during catalysis and the synergistic effect between elements. However, the structure of active centers in bimetallic/multimetal...
Saved in:
Published in | Advanced materials (Weinheim) Vol. 33; no. 40; pp. e2103004 - n/a |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Weinheim
Wiley Subscription Services, Inc
01.10.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Non‐noble‐metal‐based nanomaterials can exhibit extraordinary electrocatalytic performance toward the oxygen evolution reaction (OER) by harnessing the structural evolution during catalysis and the synergistic effect between elements. However, the structure of active centers in bimetallic/multimetallic catalysts is under long‐time debate in the catalysis community. Here, an efficient bimetallic Ni–Fe selenide‐derived OER electrocatalyst is reported and the structure–activity correlation during the OER evolution studied. By combining experiments and theoretical calculations, a conceptual advance is provided, in that the local coordination structure distortion and disordering of active sites inherited from the pre‐catalyst and post‐formed by a further reconstruction are responsible for boosting the OER performance. The active center is identified on Ni sites showing moderate bindings with oxygenous intermediates rather than Fe sites with strong and poisonous adsorptions. These findings provide crucial understanding in manipulating the local coordination and electronic structures toward rational design and fabrication of efficient OER electrocatalysts.
Bimetallic Ni–Fe selenide‐derived (oxy)hydroxide nanocage electrocatalysts are in situ generated by inheriting the structure of the pre‐catalyst. The successful manipulation of the local coordination and electronic structures of the electrocatalyst enables superior electrocatalytic activity and stability for the oxygen evolution reaction. |
---|---|
AbstractList | Non‐noble‐metal‐based nanomaterials can exhibit extraordinary electrocatalytic performance toward the oxygen evolution reaction (OER) by harnessing the structural evolution during catalysis and the synergistic effect between elements. However, the structure of active centers in bimetallic/multimetallic catalysts is under long‐time debate in the catalysis community. Here, an efficient bimetallic Ni–Fe selenide‐derived OER electrocatalyst is reported and the structure–activity correlation during the OER evolution studied. By combining experiments and theoretical calculations, a conceptual advance is provided, in that the local coordination structure distortion and disordering of active sites inherited from the pre‐catalyst and post‐formed by a further reconstruction are responsible for boosting the OER performance. The active center is identified on Ni sites showing moderate bindings with oxygenous intermediates rather than Fe sites with strong and poisonous adsorptions. These findings provide crucial understanding in manipulating the local coordination and electronic structures toward rational design and fabrication of efficient OER electrocatalysts.
Bimetallic Ni–Fe selenide‐derived (oxy)hydroxide nanocage electrocatalysts are in situ generated by inheriting the structure of the pre‐catalyst. The successful manipulation of the local coordination and electronic structures of the electrocatalyst enables superior electrocatalytic activity and stability for the oxygen evolution reaction. Non‐noble‐metal‐based nanomaterials can exhibit extraordinary electrocatalytic performance toward the oxygen evolution reaction (OER) by harnessing the structural evolution during catalysis and the synergistic effect between elements. However, the structure of active centers in bimetallic/multimetallic catalysts is under long‐time debate in the catalysis community. Here, an efficient bimetallic Ni–Fe selenide‐derived OER electrocatalyst is reported and the structure–activity correlation during the OER evolution studied. By combining experiments and theoretical calculations, a conceptual advance is provided, in that the local coordination structure distortion and disordering of active sites inherited from the pre‐catalyst and post‐formed by a further reconstruction are responsible for boosting the OER performance. The active center is identified on Ni sites showing moderate bindings with oxygenous intermediates rather than Fe sites with strong and poisonous adsorptions. These findings provide crucial understanding in manipulating the local coordination and electronic structures toward rational design and fabrication of efficient OER electrocatalysts. Non-noble-metal-based nanomaterials can exhibit extraordinary electrocatalytic performance toward the oxygen evolution reaction (OER) by harnessing the structural evolution during catalysis and the synergistic effect between elements. However, the structure of active centers in bimetallic/multimetallic catalysts is under long-time debate in the catalysis community. Here, an efficient bimetallic Ni-Fe selenide-derived OER electrocatalyst is reported and the structure-activity correlation during the OER evolution studied. By combining experiments and theoretical calculations, a conceptual advance is provided, in that the local coordination structure distortion and disordering of active sites inherited from the pre-catalyst and post-formed by a further reconstruction are responsible for boosting the OER performance. The active center is identified on Ni sites showing moderate bindings with oxygenous intermediates rather than Fe sites with strong and poisonous adsorptions. These findings provide crucial understanding in manipulating the local coordination and electronic structures toward rational design and fabrication of efficient OER electrocatalysts.Non-noble-metal-based nanomaterials can exhibit extraordinary electrocatalytic performance toward the oxygen evolution reaction (OER) by harnessing the structural evolution during catalysis and the synergistic effect between elements. However, the structure of active centers in bimetallic/multimetallic catalysts is under long-time debate in the catalysis community. Here, an efficient bimetallic Ni-Fe selenide-derived OER electrocatalyst is reported and the structure-activity correlation during the OER evolution studied. By combining experiments and theoretical calculations, a conceptual advance is provided, in that the local coordination structure distortion and disordering of active sites inherited from the pre-catalyst and post-formed by a further reconstruction are responsible for boosting the OER performance. The active center is identified on Ni sites showing moderate bindings with oxygenous intermediates rather than Fe sites with strong and poisonous adsorptions. These findings provide crucial understanding in manipulating the local coordination and electronic structures toward rational design and fabrication of efficient OER electrocatalysts. Non‐noble‐metal‐based nanomaterials can exhibit extraordinary electrocatalytic performance toward the oxygen evolution reaction (OER) by harnessing the structural evolution during catalysis and the synergistic effect between elements. However, the structure of active centers in bimetallic/multimetallic catalysts is under long‐time debate in the catalysis community. Here, an efficient bimetallic Ni–Fe selenide‐derived OER electrocatalyst is reported and the structure–activity correlation during the OER evolution studied. By combining experiments and theoretical calculations, a conceptual advance is provided, in that the local coordination structure distortion and disordering of active sites inherited from the pre‐catalyst and post‐formed by a further reconstruction are responsible for boosting the OER performance. The active center is identified on Ni sites showing moderate bindings with oxygenous intermediates rather than Fe sites with strong and poisonous adsorptions. These findings provide crucial understanding in manipulating the local coordination and electronic structures toward rational design and fabrication of efficient OER electrocatalysts. |
Author | Zhang, Jing Zuo, Shouwei Zhang, Huabin Zhang, Song Lin Lou, Xiong Wen (David) Zang, Shuang‐Quan Wu, Zhi‐Peng Wang, Yan |
Author_xml | – sequence: 1 givenname: Zhi‐Peng orcidid: 0000-0002-5422-1349 surname: Wu fullname: Wu, Zhi‐Peng organization: Nanyang Technological University – sequence: 2 givenname: Huabin orcidid: 0000-0003-1601-2471 surname: Zhang fullname: Zhang, Huabin organization: King Abdullah University of Science and Technology – sequence: 3 givenname: Shouwei surname: Zuo fullname: Zuo, Shouwei organization: King Abdullah University of Science and Technology – sequence: 4 givenname: Yan surname: Wang fullname: Wang, Yan organization: Nanyang Technological University – sequence: 5 givenname: Song Lin surname: Zhang fullname: Zhang, Song Lin organization: Nanyang Technological University – sequence: 6 givenname: Jing surname: Zhang fullname: Zhang, Jing organization: Chinese Academy of Sciences – sequence: 7 givenname: Shuang‐Quan orcidid: 0000-0002-6728-0559 surname: Zang fullname: Zang, Shuang‐Quan email: zangsqzg@zzu.edu.cn organization: Zhengzhou University – sequence: 8 givenname: Xiong Wen (David) orcidid: 0000-0002-5557-4437 surname: Lou fullname: Lou, Xiong Wen (David) email: xwlou@ntu.edu.sg organization: Nanyang Technological University |
BookMark | eNqFkU1PGzEQhq0KpAbolbMlLr1sOl6vvfExSlNaKYgD9LwavDYYOXZqe0vz79k0fEhIiNNIo-d5NZr3iByEGAwhpwymDKD-hv0apzXUDDhA84lMmKhZ1YASB2QCiotKyWb2mRzlfA8ASoKckPUFBrcZPBYXbmm5M3QVNXq6iDH1LozrGCiGni690SXF4DS9KmnQZUgmUxsTXVrrtDOhPDMaC_ptGcnLf9tbE-jyb_TDLumEHFr02Xx5msfk94_l9eJntbo8_7WYryrdMNlUbMZbwy232FqByozHGiklWAsWUM-wV5xxBtiKfgZM172wDFuQErkUN4ofk6_73E2KfwaTS7d2WRvvMZg45K4Wkjc1E4KP6Nkb9D4OKYzXjVSroOWsliPV7CmdYs7J2E678v85JaHzHYNu10G366B76WDUpm-0TXJrTNv3BbUXHpw32w_obv79Yv7qPgJjbJyM |
CitedBy_id | crossref_primary_10_1016_j_jcis_2022_05_160 crossref_primary_10_1002_adma_202412598 crossref_primary_10_1016_j_apsusc_2023_156670 crossref_primary_10_1002_adma_202302666 crossref_primary_10_1063_5_0226555 crossref_primary_10_1002_ange_202316762 crossref_primary_10_1016_j_jechem_2022_08_020 crossref_primary_10_1021_acsenergylett_4c01833 crossref_primary_10_1016_j_apcatb_2023_122818 crossref_primary_10_1021_acs_energyfuels_4c04009 crossref_primary_10_1039_D2NR00522K crossref_primary_10_1002_smll_202405596 crossref_primary_10_1021_acsnano_2c06890 crossref_primary_10_1002_adfm_202301490 crossref_primary_10_1002_smll_202401394 crossref_primary_10_1039_D2TA02984G crossref_primary_10_1002_anie_202300826 crossref_primary_10_1016_j_cej_2022_136432 crossref_primary_10_3390_nano13132012 crossref_primary_10_1002_smll_202301715 crossref_primary_10_1016_j_fuel_2024_130999 crossref_primary_10_1016_j_ijhydene_2024_04_355 crossref_primary_10_1016_j_jcis_2023_01_021 crossref_primary_10_1002_adfm_202207618 crossref_primary_10_1002_aenm_202203595 crossref_primary_10_1016_j_jcis_2023_04_003 crossref_primary_10_1039_D4SE00685B crossref_primary_10_3390_molecules28196986 crossref_primary_10_1016_j_ijhydene_2022_05_149 crossref_primary_10_1039_D3CC04054B crossref_primary_10_1002_adma_202211497 crossref_primary_10_1039_D3SC05891C crossref_primary_10_1021_acscatal_4c00229 crossref_primary_10_1002_ente_202301574 crossref_primary_10_1016_j_surfin_2024_104987 crossref_primary_10_1016_j_jcis_2025_137314 crossref_primary_10_1021_acsanm_4c00444 crossref_primary_10_1002_smll_202208202 crossref_primary_10_1063_5_0121887 crossref_primary_10_1016_j_fuel_2024_133916 crossref_primary_10_1038_s41467_024_53763_8 crossref_primary_10_1039_D3TA00635B crossref_primary_10_1039_D2TA05356J crossref_primary_10_1002_ange_202212542 crossref_primary_10_1002_smll_202407933 crossref_primary_10_1002_sus2_76 crossref_primary_10_1016_j_jcis_2023_09_115 crossref_primary_10_1016_j_pmatsci_2024_101410 crossref_primary_10_1016_j_jcis_2023_09_117 crossref_primary_10_1016_j_apsusc_2022_155568 crossref_primary_10_1002_smll_202207472 crossref_primary_10_1016_j_nanoen_2022_107297 crossref_primary_10_1039_D3TA05104H crossref_primary_10_1002_advs_202310181 crossref_primary_10_1088_1361_6528_ac5b55 crossref_primary_10_1016_j_chphma_2024_03_002 crossref_primary_10_1016_j_jallcom_2022_168349 crossref_primary_10_1016_j_jcis_2024_11_251 crossref_primary_10_1016_j_jcis_2023_02_053 crossref_primary_10_1016_j_cej_2021_134274 crossref_primary_10_1002_smll_202403596 crossref_primary_10_1039_D2TA00597B crossref_primary_10_1016_j_cej_2022_138515 crossref_primary_10_1021_acsnano_2c12029 crossref_primary_10_1039_D2SC02019J crossref_primary_10_1039_D4CS01031K crossref_primary_10_1016_j_electacta_2021_139278 crossref_primary_10_1016_j_ijhydene_2023_04_099 crossref_primary_10_1021_acs_cgd_4c00890 crossref_primary_10_1016_j_cej_2022_140278 crossref_primary_10_1002_aesr_202200036 crossref_primary_10_1002_smll_202301255 crossref_primary_10_1007_s11581_024_05909_3 crossref_primary_10_1039_D3TA01789C crossref_primary_10_1016_j_ccr_2024_215833 crossref_primary_10_1039_D3DT03249C crossref_primary_10_1016_j_cej_2023_147418 crossref_primary_10_1039_D2SC00308B crossref_primary_10_1016_j_ccr_2024_216243 crossref_primary_10_1039_D4TA00849A crossref_primary_10_1016_j_ijhydene_2023_07_276 crossref_primary_10_1021_acs_analchem_2c04931 crossref_primary_10_1021_jacs_4c07995 crossref_primary_10_1016_j_cej_2022_137036 crossref_primary_10_1016_j_cej_2023_141714 crossref_primary_10_1002_anie_202316762 crossref_primary_10_1002_cctc_202401753 crossref_primary_10_1039_D3TA00015J crossref_primary_10_1038_s41467_022_33590_5 crossref_primary_10_1002_adma_202207888 crossref_primary_10_1016_j_cej_2021_134304 crossref_primary_10_1002_aenm_202103247 crossref_primary_10_3390_catal13091230 crossref_primary_10_1021_acs_chemrev_2c00515 crossref_primary_10_1016_j_apsusc_2022_156237 crossref_primary_10_1021_acsnano_2c07136 crossref_primary_10_1016_j_fmre_2024_04_017 crossref_primary_10_1016_j_jece_2024_114552 crossref_primary_10_1002_adma_202306309 crossref_primary_10_1007_s12274_024_6696_0 crossref_primary_10_1016_j_jallcom_2023_169936 crossref_primary_10_1021_acs_inorgchem_4c01254 crossref_primary_10_1039_D3NA00949A crossref_primary_10_1002_smll_202311713 crossref_primary_10_1039_D2EE01337A crossref_primary_10_1039_D2TA02244C crossref_primary_10_1002_aenm_202103383 crossref_primary_10_1002_anie_202207537 crossref_primary_10_1007_s10853_024_09541_4 crossref_primary_10_1039_D3TA01509B crossref_primary_10_1016_j_apsusc_2022_154728 crossref_primary_10_1039_D4CS00038B crossref_primary_10_1002_smll_202105305 crossref_primary_10_1039_D2QI01470J crossref_primary_10_1002_adfm_202307947 crossref_primary_10_1002_adma_202415265 crossref_primary_10_1002_cey2_317 crossref_primary_10_1039_D2TA01701F crossref_primary_10_1016_j_apcatb_2024_123830 crossref_primary_10_1039_D1TA08039C crossref_primary_10_1016_j_jece_2023_109407 crossref_primary_10_1039_D2TA04296G crossref_primary_10_1002_ange_202300826 crossref_primary_10_1039_D4TA08129C crossref_primary_10_1016_j_jallcom_2022_165344 crossref_primary_10_1016_j_apsusc_2024_160588 crossref_primary_10_1016_j_colsurfa_2022_130191 crossref_primary_10_1039_D2NR07019G crossref_primary_10_1016_j_apcatb_2022_122332 crossref_primary_10_1016_j_apcatb_2023_123567 crossref_primary_10_1007_s10800_024_02190_0 crossref_primary_10_1039_D4TA00196F crossref_primary_10_1039_D3QI02573J crossref_primary_10_1002_smtd_202200459 crossref_primary_10_1021_acs_inorgchem_3c00082 crossref_primary_10_1002_smm2_1326 crossref_primary_10_1016_j_apcatb_2023_122474 crossref_primary_10_1039_D2CC00867J crossref_primary_10_1021_acs_energyfuels_2c03833 crossref_primary_10_1021_jacs_2c05660 crossref_primary_10_1002_adma_202302642 crossref_primary_10_1039_D2TA04340H crossref_primary_10_1002_aenm_202303614 crossref_primary_10_1039_D4TA02679A crossref_primary_10_1016_j_jcis_2023_03_176 crossref_primary_10_1039_D3GC03210H crossref_primary_10_1038_s41467_022_33725_8 crossref_primary_10_1002_smll_202206531 crossref_primary_10_1021_acs_inorgchem_2c02666 crossref_primary_10_1002_chem_202301124 crossref_primary_10_1038_s41467_024_55120_1 crossref_primary_10_1039_D4CC05027D crossref_primary_10_1002_anie_202212542 crossref_primary_10_1016_j_apcatb_2023_122600 crossref_primary_10_1039_D2TA06858C crossref_primary_10_1039_D5CC00997A crossref_primary_10_1021_acsami_2c15158 crossref_primary_10_1016_j_apcatb_2022_122207 crossref_primary_10_1016_j_ijhydene_2023_11_081 crossref_primary_10_1039_D4CC00866A crossref_primary_10_1002_smll_202309859 crossref_primary_10_1039_D4CE01039F crossref_primary_10_1002_adfm_202202141 crossref_primary_10_1021_acsaem_2c01479 crossref_primary_10_1021_acscatal_3c01348 crossref_primary_10_1002_smll_202304390 crossref_primary_10_1016_j_apsusc_2023_156500 crossref_primary_10_1016_j_apsusc_2023_158002 crossref_primary_10_1039_D1NR08007E crossref_primary_10_1016_j_jallcom_2022_166779 crossref_primary_10_1016_j_jcis_2022_08_160 crossref_primary_10_1016_j_apsusc_2024_161893 crossref_primary_10_1016_j_ijhydene_2024_11_095 crossref_primary_10_1021_acscatal_2c02181 crossref_primary_10_1002_adfm_202401509 crossref_primary_10_1039_D4TA08773A crossref_primary_10_1002_adfm_202212442 crossref_primary_10_1002_adfm_202308575 crossref_primary_10_1007_s11581_022_04875_y crossref_primary_10_1002_ange_202207537 crossref_primary_10_1002_advs_202303682 crossref_primary_10_1016_j_jallcom_2025_179819 crossref_primary_10_1002_adfm_202311854 crossref_primary_10_1007_s40820_023_01024_6 crossref_primary_10_1039_D2TA03181G crossref_primary_10_1002_cey2_226 crossref_primary_10_1016_j_jelechem_2022_116630 crossref_primary_10_1016_j_coelec_2024_101593 crossref_primary_10_1126_sciadv_adu5370 crossref_primary_10_1016_j_apcatb_2024_124259 crossref_primary_10_1021_acscatal_3c05314 |
Cites_doi | 10.1002/adma.201703870 10.1002/anie.201903200 10.1021/acs.accounts.0c00564 10.1038/s41560-019-0407-1 10.1002/adma.202006292 10.1126/sciadv.1700732 10.1002/adma.200800854 10.1038/s41467-021-21017-6 10.1126/science.1212858 10.1021/ja510442p 10.1038/s41560-019-0355-9 10.1002/adma.201904548 10.1021/acs.jpcc.9b04229 10.1126/science.aaw7493 10.1038/s41560-020-00709-1 10.1038/nmat3313 10.1038/s41560-020-0576-y 10.1002/anie.201105190 10.1021/acscentsci.0c00512 10.1002/adma.201506315 10.1021/ja301018q 10.1126/science.aan5412 10.1038/s41929-018-0162-x 10.1126/science.aaf1525 10.1021/acscatal.9b04975 10.1126/science.aad4998 10.1039/D0EE02276D 10.1039/D0EE02935A 10.1002/adma.201901977 10.1021/jacs.5b10699 10.1039/C7CP01445G 10.1038/s41560-018-0308-8 10.1002/anie.201808818 10.1038/s41929-020-0465-6 10.1038/nenergy.2015.20 10.1038/s41929-020-00525-6 10.1002/adfm.201910274 10.1039/C9EE02787D 10.1021/jacs.5b10977 10.1002/adma.201800757 10.1021/acscatal.8b03106 10.1126/sciadv.abb9823 10.1073/pnas.1722034115 10.1002/adma.201706825 10.1126/sciadv.aao6657 10.1038/nchem.2886 10.1038/s41929-019-0325-4 10.1038/ncomms12324 10.1038/s41467-020-16237-1 |
ContentType | Journal Article |
Copyright | 2021 Wiley‐VCH GmbH 2021 Wiley-VCH GmbH. |
Copyright_xml | – notice: 2021 Wiley‐VCH GmbH – notice: 2021 Wiley-VCH GmbH. |
DBID | AAYXX CITATION 7SR 8BQ 8FD JG9 7X8 |
DOI | 10.1002/adma.202103004 |
DatabaseName | CrossRef Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database MEDLINE - Academic |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database METADEX MEDLINE - Academic |
DatabaseTitleList | Materials Research Database MEDLINE - Academic CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1521-4095 |
EndPage | n/a |
ExternalDocumentID | 10_1002_adma_202103004 ADMA202103004 |
Genre | article |
GrantInformation_xml | – fundername: National Science Fund for Distinguished Young Scholars funderid: 21825106 – fundername: China Postdoctoral Science Foundation funderid: 2020M682333 – fundername: Ministry of Education of Singapore funderid: MOE2019‐T2‐2‐049 |
GroupedDBID | --- .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 6P2 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AAXRX AAYCA AAZKR ABCQN ABCUV ABIJN ABJNI ABLJU ABPVW ACAHQ ACCFJ ACCZN ACGFS ACIWK ACPOU ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR1 DR2 DRFUL DRSTM EBS F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D Q.N Q11 QB0 QRW R.K RNS ROL RWI RWM RX1 RYL SUPJJ TN5 UB1 UPT V2E W8V W99 WBKPD WFSAM WIB WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XV2 YR2 ZZTAW ~02 ~IA ~WT .Y3 31~ 6TJ 8WZ A6W AANHP AASGY AAYOK AAYXX ABEML ACBWZ ACRPL ACSCC ACYXJ ADMLS ADNMO AETEA AEYWJ AFFNX AGHNM AGQPQ AGYGG ASPBG AVWKF AZFZN CITATION EJD FEDTE FOJGT HF~ HVGLF LW6 M6K NDZJH PALCI RIWAO RJQFR SAMSI WTY ZY4 7SR 8BQ 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY JG9 7X8 |
ID | FETCH-LOGICAL-c4164-1837e3f3fa7f5a9e009e6660ff0f0ac8ad931310a75d801c2d5f1a7066a365b93 |
IEDL.DBID | DR2 |
ISSN | 0935-9648 1521-4095 |
IngestDate | Fri Jul 11 07:42:06 EDT 2025 Fri Jul 25 02:32:28 EDT 2025 Tue Jul 01 02:33:06 EDT 2025 Thu Apr 24 22:54:56 EDT 2025 Wed Jan 22 16:29:02 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 40 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4164-1837e3f3fa7f5a9e009e6660ff0f0ac8ad931310a75d801c2d5f1a7066a365b93 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-5557-4437 0000-0002-6728-0559 0000-0002-5422-1349 0000-0003-1601-2471 |
PQID | 2579073126 |
PQPubID | 2045203 |
PageCount | 10 |
ParticipantIDs | proquest_miscellaneous_2563421553 proquest_journals_2579073126 crossref_citationtrail_10_1002_adma_202103004 crossref_primary_10_1002_adma_202103004 wiley_primary_10_1002_adma_202103004_ADMA202103004 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-10-01 |
PublicationDateYYYYMMDD | 2021-10-01 |
PublicationDate_xml | – month: 10 year: 2021 text: 2021-10-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Weinheim |
PublicationPlace_xml | – name: Weinheim |
PublicationTitle | Advanced materials (Weinheim) |
PublicationYear | 2021 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2011; 334 2019; 4 2017; 3 2019; 31 2019; 2 2019; 12 2019; 58 2019; 366 2017; 29 2020; 11 2020; 10 2017; 355 2012; 11 2019; 123 2012; 51 2021; 14 2020; 6 2016; 7 2018; 8 2020; 5 2016; 1 2020; 3 2021; 12 2012; 134 2021; 33 2018; 4 2015; 137 2020; 53 2018; 359 2020; 30 2018; 1 2018; 115 2015; 2015 2016; 352 2018; 30 2017; 19 2016; 138 2008; 20 2016; 28 2018; 10 2018; 57 e_1_2_7_5_1 e_1_2_7_3_1 e_1_2_7_9_1 e_1_2_7_7_1 e_1_2_7_19_1 e_1_2_7_17_1 e_1_2_7_15_1 e_1_2_7_41_1 e_1_2_7_1_1 e_1_2_7_13_1 e_1_2_7_43_1 e_1_2_7_11_1 e_1_2_7_47_1 e_1_2_7_26_1 e_1_2_7_49_1 e_1_2_7_28_1 e_1_2_7_50_1 e_1_2_7_25_1 e_1_2_7_31_1 e_1_2_7_23_1 e_1_2_7_33_1 e_1_2_7_21_1 e_1_2_7_35_1 e_1_2_7_37_1 e_1_2_7_39_1 e_1_2_7_6_1 e_1_2_7_4_1 e_1_2_7_8_1 e_1_2_7_18_1 e_1_2_7_16_1 e_1_2_7_40_1 e_1_2_7_2_1 e_1_2_7_14_1 e_1_2_7_42_1 e_1_2_7_12_1 e_1_2_7_44_1 e_1_2_7_10_1 e_1_2_7_46_1 e_1_2_7_48_1 e_1_2_7_27_1 e_1_2_7_29_1 Mei L. (e_1_2_7_45_1) 2015; 2015 e_1_2_7_30_1 e_1_2_7_24_1 e_1_2_7_32_1 e_1_2_7_22_1 e_1_2_7_34_1 e_1_2_7_20_1 e_1_2_7_36_1 e_1_2_7_38_1 |
References_xml | – volume: 2 start-page: 763 year: 2019 publication-title: Nat. Catal. – volume: 137 start-page: 4347 year: 2015 publication-title: J. Am. Chem. Soc. – volume: 29 year: 2017 publication-title: Adv. Mater. – volume: 10 start-page: 149 year: 2018 publication-title: Nat. Chem. – volume: 4 start-page: 430 year: 2019 publication-title: Nat. Energy – volume: 4 start-page: 115 year: 2019 publication-title: Nat. Energy – volume: 1 start-page: 820 year: 2018 publication-title: Nat. Catal. – volume: 6 year: 2020 publication-title: Sci. Adv. – volume: 7 year: 2016 publication-title: Nat. Commun. – volume: 137 year: 2015 publication-title: J. Am. Chem. Soc. – volume: 4 year: 2018 publication-title: Sci. Adv. – volume: 2015 year: 2015 publication-title: Adv. Mater. Sci. Eng. – volume: 3 start-page: 554 year: 2020 publication-title: Nat. Catal. – volume: 8 year: 2018 publication-title: ACS Catal. – volume: 20 start-page: 3987 year: 2008 publication-title: Adv. Mater. – volume: 6 start-page: 1288 year: 2020 publication-title: ACS Cent. Sci. – volume: 4 start-page: 329 year: 2019 publication-title: Nat. Energy – volume: 31 year: 2019 publication-title: Adv. Mater. – volume: 5 start-page: 881 year: 2020 publication-title: Nat. Energy – volume: 19 year: 2017 publication-title: Phys. Chem. Chem. Phys. – volume: 115 start-page: 5872 year: 2018 publication-title: Proc. Natl. Acad. Sci. USA – volume: 352 start-page: 333 year: 2016 publication-title: Science – volume: 1 year: 2016 publication-title: Nat. Energy – volume: 33 year: 2021 publication-title: Adv. Mater. – volume: 30 year: 2020 publication-title: Adv. Funct. Mater. – volume: 30 year: 2018 publication-title: Adv. Mater. – volume: 58 year: 2019 publication-title: Angew. Chem., Int. Ed. – volume: 28 start-page: 4601 year: 2016 publication-title: Adv. Mater. – volume: 12 start-page: 3348 year: 2019 publication-title: Energy Environ. Sci. – volume: 138 start-page: 313 year: 2016 publication-title: J. Am. Chem. Soc. – volume: 5 start-page: 222 year: 2020 publication-title: Nat. Energy – volume: 10 start-page: 2581 year: 2020 publication-title: ACS Catal. – volume: 53 start-page: 2913 year: 2020 publication-title: Acc. Chem. Res. – volume: 355 year: 2017 publication-title: Science – volume: 3 start-page: 985 year: 2020 publication-title: Nat. Catal. – volume: 51 start-page: 984 year: 2012 publication-title: Angew. Chem., Int. Ed. – volume: 359 start-page: 1489 year: 2018 publication-title: Science – volume: 366 start-page: 850 year: 2019 publication-title: Science – volume: 3 year: 2017 publication-title: Sci. Adv. – volume: 12 start-page: 859 year: 2021 publication-title: Nat. Commun. – volume: 11 start-page: 2522 year: 2020 publication-title: Nat. Commun. – volume: 123 year: 2019 publication-title: J. Phys. Chem. C – volume: 134 start-page: 6801 year: 2012 publication-title: J. Am. Chem. Soc. – volume: 334 start-page: 1383 year: 2011 publication-title: Science – volume: 57 year: 2018 publication-title: Angew. Chem., Int. Ed. – volume: 14 start-page: 3053 year: 2021 publication-title: Energy Environ. Sci. – volume: 14 start-page: 906 year: 2021 publication-title: Energy Environ. Sci. – volume: 11 start-page: 550 year: 2012 publication-title: Nat. Mater. – ident: e_1_2_7_18_1 doi: 10.1002/adma.201703870 – ident: e_1_2_7_33_1 doi: 10.1002/anie.201903200 – ident: e_1_2_7_23_1 doi: 10.1021/acs.accounts.0c00564 – ident: e_1_2_7_2_1 doi: 10.1038/s41560-019-0407-1 – volume: 2015 year: 2015 ident: e_1_2_7_45_1 publication-title: Adv. Mater. Sci. Eng. – ident: e_1_2_7_6_1 doi: 10.1002/adma.202006292 – ident: e_1_2_7_40_1 doi: 10.1126/sciadv.1700732 – ident: e_1_2_7_41_1 doi: 10.1002/adma.200800854 – ident: e_1_2_7_3_1 doi: 10.1038/s41467-021-21017-6 – ident: e_1_2_7_26_1 doi: 10.1126/science.1212858 – ident: e_1_2_7_13_1 doi: 10.1021/ja510442p – ident: e_1_2_7_9_1 doi: 10.1038/s41560-019-0355-9 – ident: e_1_2_7_15_1 doi: 10.1002/adma.201904548 – ident: e_1_2_7_48_1 doi: 10.1021/acs.jpcc.9b04229 – ident: e_1_2_7_4_1 doi: 10.1126/science.aaw7493 – ident: e_1_2_7_29_1 doi: 10.1038/s41560-020-00709-1 – ident: e_1_2_7_30_1 doi: 10.1038/nmat3313 – ident: e_1_2_7_36_1 doi: 10.1038/s41560-020-0576-y – ident: e_1_2_7_42_1 doi: 10.1002/anie.201105190 – ident: e_1_2_7_8_1 doi: 10.1021/acscentsci.0c00512 – ident: e_1_2_7_39_1 doi: 10.1002/adma.201506315 – ident: e_1_2_7_46_1 doi: 10.1021/ja301018q – ident: e_1_2_7_50_1 doi: 10.1126/science.aan5412 – ident: e_1_2_7_12_1 doi: 10.1038/s41929-018-0162-x – ident: e_1_2_7_21_1 doi: 10.1126/science.aaf1525 – ident: e_1_2_7_49_1 doi: 10.1021/acscatal.9b04975 – ident: e_1_2_7_5_1 doi: 10.1126/science.aad4998 – ident: e_1_2_7_20_1 doi: 10.1039/D0EE02276D – ident: e_1_2_7_25_1 doi: 10.1039/D0EE02935A – ident: e_1_2_7_24_1 doi: 10.1002/adma.201901977 – ident: e_1_2_7_37_1 doi: 10.1021/jacs.5b10699 – ident: e_1_2_7_47_1 doi: 10.1039/C7CP01445G – ident: e_1_2_7_35_1 doi: 10.1038/s41560-018-0308-8 – ident: e_1_2_7_34_1 doi: 10.1002/anie.201808818 – ident: e_1_2_7_10_1 doi: 10.1038/s41929-020-0465-6 – ident: e_1_2_7_1_1 doi: 10.1038/nenergy.2015.20 – ident: e_1_2_7_31_1 doi: 10.1038/s41929-020-00525-6 – ident: e_1_2_7_7_1 doi: 10.1002/adfm.201910274 – ident: e_1_2_7_19_1 doi: 10.1039/C9EE02787D – ident: e_1_2_7_32_1 doi: 10.1021/jacs.5b10977 – ident: e_1_2_7_16_1 doi: 10.1002/adma.201800757 – ident: e_1_2_7_22_1 doi: 10.1021/acscatal.8b03106 – ident: e_1_2_7_44_1 doi: 10.1126/sciadv.abb9823 – ident: e_1_2_7_27_1 doi: 10.1073/pnas.1722034115 – ident: e_1_2_7_38_1 doi: 10.1002/adma.201706825 – ident: e_1_2_7_43_1 doi: 10.1126/sciadv.aao6657 – ident: e_1_2_7_28_1 doi: 10.1038/nchem.2886 – ident: e_1_2_7_11_1 doi: 10.1038/s41929-019-0325-4 – ident: e_1_2_7_17_1 doi: 10.1038/ncomms12324 – ident: e_1_2_7_14_1 doi: 10.1038/s41467-020-16237-1 |
SSID | ssj0009606 |
Score | 2.6860516 |
Snippet | Non‐noble‐metal‐based nanomaterials can exhibit extraordinary electrocatalytic performance toward the oxygen evolution reaction (OER) by harnessing the... Non-noble-metal-based nanomaterials can exhibit extraordinary electrocatalytic performance toward the oxygen evolution reaction (OER) by harnessing the... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | e2103004 |
SubjectTerms | Bimetals Catalysis Catalysts Coordination electrocatalysis Electrocatalysts Nanomaterials Nickel oxygen evolution reaction Oxygen evolution reactions selenides structure evolution Synergistic effect |
Title | Manipulating the Local Coordination and Electronic Structures for Efficient Electrocatalytic Oxygen Evolution |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadma.202103004 https://www.proquest.com/docview/2579073126 https://www.proquest.com/docview/2563421553 |
Volume | 33 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ1bS8MwFMeD-KQP3sXqlAiCT9Fe0nZ9HHNjiFPwAr6Vk5uI2glzon56T9LLpiCCvrU0oW1OTs4_afo7hBygipciUpIl0leMGxUxYbRiWrR9mQJKcofYGJ4ngxt-ehvfzvzFX_IhmgU36xluvLYODmJ8PIWGgnLcoNDmyXJAULthy6qiyyk_yspzB9uLYpYlvF1TG_3w-Gv1r1FpKjVnBauLOP1lAvWzlhtNHo4mL-JIfnzDOP7nZVbIUiVHaafsP6tkThdrZHEGUrhOnoZQ3JdZvoo7inqRntn4R7sjnLfel4uJFApFe01GHXrlqLQTnMpTFMW05zgVGN7qMm7R6B3vSS_e3rEL095r5QIb5Kbfu-4OWJWkgUnUcpzhkJDqyEQGUhNDprHRNU6JfGN844Nsg8qiADUkpLHCaChDFZsAUlQ6gPYSWbRJ5otRobcINRa9E-g2qgbgCZeCCyFMqLngAEnMPcJqI-WyIpjbRBqPecleDnPbjHnTjB45bMo_l-yOH0u2apvnlQ-PcxzMMhwAgzDxyH5zGb3PflKBQo8mtkwS8dDmXvJI6Az8y53yzsmw05xt_6XSDlmwx-WOwhaZR4vqXVRGL2LP9f5PnyAGVA |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9NAEB6hcoAeCrRUpBRYpEo9bWJ713Z8jEqiAEkqtYnEzdpnVdE6lZogwq9ndv1IUgkhtUfbs7K9szPzzXj9DcAJonglmVY0UYGm3GpGpTWaGtkNVCoQknuKjfEkGc74tx9xvZvQ_QtT8kM0BTdnGd5fOwN3BenOmjVUaE8cFLlGWY4R9Llr6-2zqos1g5QD6J5uj8U0S3i35m0Mos72-O24tAabm5DVx5zBK5D105ZbTX62lwvZVn8eEDk-6XVew16FSEmvXEJv4Jkp9mF3g6fwAG7HorguG30VVwQhIxm5EEjO5pi6Xpf1RCIKTfpNUx1y6Ylpl5jNE8TFpO-pKjDC1TK-brTCe5Lz3ytcxaT_q7KCtzAb9KdnQ1r1aaAK4Ryn6BVSwyyzIrWxyAzOusGsKLA2sIFQXaEzFiKMFGmsMSCqSMc2FCmCHcGSWGbsEHaKeWHeAbGOfSc0XQQOgidcSS6ltJHhkguRxLwFtNZSrioSc9dL4yYv6Zej3E1j3kxjC04b-buSvuOfkse10vPKjO9z9GcZ-sAwSlrwubmMBui-qojCzJdOJmE8cu2XWhB5Df_nTnnvy7jXHB09ZtAneDGcjkf56Ovk-3t46c6XGwyPYQe1az4gUFrIj94U_gIDhQpv |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ3bT9swFIePEJPQeGA3EGXd5kmT9mRIY8dJHivaigFl0wYSb5GvqNpIkaCI7q_fsXNpmYSQ4DGJrSQ-Pj4_O853AL6giteKGU2FjgzlzjCqnDXUqizSqURJHhAb4xNxcMYPz5Pzpb_4Kz5Eu-DmPSOM197Br4zbW0BDpQncoNjnyfJA0BdcRJnv14OfC4CU1-eBtscSmgueNdjGKN67X_9-WFpozWXFGkLO6BXI5mGrnSa_d2c3alf__Y_j-Jy3eQ0btR4l_aoDvYEVW76F9SVK4Tu4HMtyUqX5Ki8ICkZy7AMg2Z_ixHVSrSYSWRoybFPqkF8BSzvDuTxBVUyGAVSB8a0pE1aN5nhP8v1ujn2YDG9rH9iEs9HwdP-A1lkaqEYxxymOCalljjmZukTmFhvd4pwoci5ykdSZNDnroYiUaWIwHOrYJK4nU5Q6kolE5WwLVstpabeBOM_e6dkMZYPkgmvFlVIutlxxKUXCO0AbIxW6Rpj7TBp_igq-HBe-GYu2GTvwtS1_VcE7HizZbWxe1E58XeBoluMI2ItFBz63l9H9_DcVWdrpzJcRjMc--VIH4mDgR-5U9Afjfnu085RKn2Dtx2BUHH87OXoPL_3pandhF1bRuPYDqqQb9TE4wj_yqAkn |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Manipulating+the+Local+Coordination+and+Electronic+Structures+for+Efficient+Electrocatalytic+Oxygen+Evolution&rft.jtitle=Advanced+materials+%28Weinheim%29&rft.au=Wu%2C+Zhi%E2%80%90Peng&rft.au=Zhang%2C+Huabin&rft.au=Zuo%2C+Shouwei&rft.au=Wang%2C+Yan&rft.date=2021-10-01&rft.issn=0935-9648&rft.eissn=1521-4095&rft.volume=33&rft.issue=40&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fadma.202103004&rft.externalDBID=10.1002%252Fadma.202103004&rft.externalDocID=ADMA202103004 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0935-9648&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0935-9648&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0935-9648&client=summon |