Rhodium‐Catalyzed Asymmetric Hydrogenation of All‐Carbon Aromatic Rings

Compared with heteroarenes, homogeneous asymmetric hydrogenation of all‐carbon aromatic rings is a longstanding challenge in organic synthesis due to the strong aromaticity and difficult enantioselective control. Herein, we report the rhodium/diphosphine‐catalyzed asymmetric hydrogenation of all‐car...

Full description

Saved in:
Bibliographic Details
Published inAngewandte Chemie International Edition Vol. 61; no. 34; pp. e202205623 - n/a
Main Authors Ding, Yi‐Xuan, Zhu, Zhou‐Hao, Chen, Mu‐Wang, Yu, Chang‐Bin, Zhou, Yong‐Gui
Format Journal Article
LanguageEnglish
Published WEINHEIM Wiley 22.08.2022
Wiley Subscription Services, Inc
EditionInternational ed. in English
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Compared with heteroarenes, homogeneous asymmetric hydrogenation of all‐carbon aromatic rings is a longstanding challenge in organic synthesis due to the strong aromaticity and difficult enantioselective control. Herein, we report the rhodium/diphosphine‐catalyzed asymmetric hydrogenation of all‐carbon aromatic rings, affording a series of axially chiral cyclic compounds with high enantioselectivity through desymmetrization or kinetic resolution. In addition, the central‐chiral cyclic compounds were also obtained by asymmetric hydrogenation of phenanthrenes bearing a directing group. The key to success is the introduction of chiral diphosphine ligands with steric hindrance and strong electron‐donating properties. The axially chiral monophosphine ligands could be obtained by simple conversion of the hydrogenation products bearing the phosphine atom. The first rhodium/diphosphine‐catalyzed asymmetric hydrogenation of all‐carbon aromatic rings, anthracenes and naphthalenes, was reported, affording the axially chiral biaryl compounds by desymmetrization or kinetic resolution. Meanwhile, central‐chiral cyclic compounds were also obtained by asymmetric hydrogenation of phenanthrenes. In addition, after simple conversion of the products, the axially chiral monophosphine ligands could be obtained.
AbstractList Compared with heteroarenes, homogeneous asymmetric hydrogenation of all-carbon aromatic rings is a longstanding challenge in organic synthesis due to the strong aromaticity and difficult enantioselective control. Herein, we report the rhodium/diphosphine-catalyzed asymmetric hydrogenation of all-carbon aromatic rings, affording a series of axially chiral cyclic compounds with high enantioselectivity through desymmetrization or kinetic resolution. In addition, the central-chiral cyclic compounds were also obtained by asymmetric hydrogenation of phenanthrenes bearing a directing group. The key to success is the introduction of chiral diphosphine ligands with steric hindrance and strong electron-donating properties. The axially chiral monophosphine ligands could be obtained by simple conversion of the hydrogenation products bearing the phosphine atom.
Compared with heteroarenes, homogeneous asymmetric hydrogenation of all-carbon aromatic rings is a longstanding challenge in organic synthesis due to the strong aromaticity and difficult enantioselective control. Herein, we report the rhodium/diphosphine-catalyzed asymmetric hydrogenation of all-carbon aromatic rings, affording a series of axially chiral cyclic compounds with high enantioselectivity through desymmetrization or kinetic resolution. In addition, the central-chiral cyclic compounds were also obtained by asymmetric hydrogenation of phenanthrenes bearing a directing group. The key to success is the introduction of chiral diphosphine ligands with steric hindrance and strong electron-donating properties. The axially chiral monophosphine ligands could be obtained by simple conversion of the hydrogenation products bearing the phosphine atom.Compared with heteroarenes, homogeneous asymmetric hydrogenation of all-carbon aromatic rings is a longstanding challenge in organic synthesis due to the strong aromaticity and difficult enantioselective control. Herein, we report the rhodium/diphosphine-catalyzed asymmetric hydrogenation of all-carbon aromatic rings, affording a series of axially chiral cyclic compounds with high enantioselectivity through desymmetrization or kinetic resolution. In addition, the central-chiral cyclic compounds were also obtained by asymmetric hydrogenation of phenanthrenes bearing a directing group. The key to success is the introduction of chiral diphosphine ligands with steric hindrance and strong electron-donating properties. The axially chiral monophosphine ligands could be obtained by simple conversion of the hydrogenation products bearing the phosphine atom.
Compared with heteroarenes, homogeneous asymmetric hydrogenation of all‐carbon aromatic rings is a longstanding challenge in organic synthesis due to the strong aromaticity and difficult enantioselective control. Herein, we report the rhodium/diphosphine‐catalyzed asymmetric hydrogenation of all‐carbon aromatic rings, affording a series of axially chiral cyclic compounds with high enantioselectivity through desymmetrization or kinetic resolution. In addition, the central‐chiral cyclic compounds were also obtained by asymmetric hydrogenation of phenanthrenes bearing a directing group. The key to success is the introduction of chiral diphosphine ligands with steric hindrance and strong electron‐donating properties. The axially chiral monophosphine ligands could be obtained by simple conversion of the hydrogenation products bearing the phosphine atom. The first rhodium/diphosphine‐catalyzed asymmetric hydrogenation of all‐carbon aromatic rings, anthracenes and naphthalenes, was reported, affording the axially chiral biaryl compounds by desymmetrization or kinetic resolution. Meanwhile, central‐chiral cyclic compounds were also obtained by asymmetric hydrogenation of phenanthrenes. In addition, after simple conversion of the products, the axially chiral monophosphine ligands could be obtained.
ArticleNumber 202205623
Author Chen, Mu‐Wang
Zhu, Zhou‐Hao
Yu, Chang‐Bin
Zhou, Yong‐Gui
Ding, Yi‐Xuan
Author_xml – sequence: 1
  givenname: Yi‐Xuan
  surname: Ding
  fullname: Ding, Yi‐Xuan
  organization: University of Chinese Academy of Sciences
– sequence: 2
  givenname: Zhou‐Hao
  surname: Zhu
  fullname: Zhu, Zhou‐Hao
  organization: University of Chinese Academy of Sciences
– sequence: 3
  givenname: Mu‐Wang
  surname: Chen
  fullname: Chen, Mu‐Wang
  organization: Chinese Academy of Sciences
– sequence: 4
  givenname: Chang‐Bin
  surname: Yu
  fullname: Yu, Chang‐Bin
  organization: Chinese Academy of Sciences
– sequence: 5
  givenname: Yong‐Gui
  orcidid: 0000-0002-3321-5521
  surname: Zhou
  fullname: Zhou, Yong‐Gui
  email: ygzhou@dicp.ac.cn
  organization: Dalian University of Technology
BookMark eNqNkcFqFTEUhoNUbHt163rAjSD3muTMJLnLYahtsSgUXYdM5kxNmUlqMkMZVz5Cn9EnMe29KhREVznhfF_OT84xOfDBIyEvGd0wSvlb4x1uOOWcVoLDE3LEKs7WICUc5LoEWEtVsUNynNJ15pWi4hk5hEqKsgI4Iu8vv4TOzeOP73eNmcywfMOuqNMyjjhFZ4uzpYvhCr2ZXPBF6It6GB7Y2OZ7HcOYO7a4dP4qPSdPezMkfLE_V-Tzu5NPzdn64uPpeVNfrG3JBKwN6xCpgI63KAzYfksZqI4rCgqNwdKWneit4KLvW84kMIlbVYm2r6SytIQVeb179yaGrzOmSY8uWRwG4zHMSXOhOK-kFDSjrx6h12GOPqfTXFIuQPFym6k3O-oW29An69Bb1DfRjSYumlKqOCgAlascdUXU_9ONmx6-rgmzn7Ja7lQbQ0oRe233_SkaN2hG9f1W9f1W9e-tZm3zSPs17a_Cdh_RDbj8g9b1h_OTP-5Px2i0Qw
CitedBy_id crossref_primary_10_1021_jacs_3c04983
crossref_primary_10_6023_cjoc202200053
crossref_primary_10_6023_cjoc202303001
crossref_primary_10_1021_acs_orglett_4c01737
crossref_primary_10_1021_acs_orglett_5c00014
crossref_primary_10_1039_D3CS00329A
crossref_primary_10_1038_s41467_024_50009_5
crossref_primary_10_1002_ange_202301337
crossref_primary_10_1021_acscatal_4c06881
crossref_primary_10_1002_cjoc_202300503
crossref_primary_10_1002_hlca_202300085
crossref_primary_10_1021_acs_oprd_4c00064
crossref_primary_10_1021_acs_jpcc_3c02352
crossref_primary_10_1002_anie_202301337
crossref_primary_10_1021_jacs_4c15673
crossref_primary_10_1021_acscatal_4c04620
crossref_primary_10_1021_jacs_4c18009
crossref_primary_10_6023_cjoc202403017
Cites_doi 10.1584/jpestics.J08-02
10.1002/ange.201915674
10.1021/jm200187y
10.1002/anie.201505898
10.1021/om020995p
10.1002/ange.201300646
10.1021/ja0353762
10.1002/anie.200802237
10.1039/c2md20347b
10.1021/acscatal.7b01316
10.1002/ange.201200963
10.1021/jm901241e
10.1002/anie.201600979
10.1002/ange.201308237
10.1021/acscatal.0c03958
10.1021/acscatal.6b01736
10.1002/ange.201304756
10.1021/ja200723n
10.1002/anie.201310562
10.1126/science.aav3421
10.1002/anie.201100008
10.1021/ol401816y
10.1002/anie.201915674
10.1039/b512139f
10.1002/ange.201505898
10.1038/s41929-019-0247-1
10.1039/C2CS35333D
10.1021/ar7000028
10.1021/ja001271c
10.1021/jm4017625
10.1021/cr020049i
10.1002/anie.200601529
10.1021/acscatal.1c00571
10.1002/anie.201300646
10.1002/anie.201200963
10.1002/anie.200701158
10.1007/128_2013_480
10.1021/acs.joc.8b00190
10.1002/anie.202103910
10.1021/cr0300845
10.1002/ange.201304039
10.1002/anie.201308237
10.1002/9780470147276.ch4
10.1021/cr200328h
10.1016/bs.aihch.2016.11.002
10.1002/ange.201310562
10.1126/science.aao0270
10.1039/D0CS00870B
10.1021/jacs.1c09975
10.1002/ange.200701158
10.1002/anie.201201153
10.1002/ange.201100008
10.1002/ange.200703925
10.1021/ja211684v
10.1021/jacs.5b05868
10.1002/anie.201107811
10.1002/anie.201701409
10.1002/ange.202103910
10.1002/anie.201304039
10.3987/REV-08-SR(N)5
10.1039/C5CC01971K
10.1021/acs.orglett.7b04060
10.1021/ar700094b
10.1002/anie.200703925
10.1002/ange.201814471
10.1021/jacs.9b03328
10.1002/ange.200802237
10.1021/jm501100b
10.1021/ja00538a061
10.1021/ja401709k
10.1002/ange.201201153
10.1039/C2CS35410A
10.1002/ange.201107811
10.1021/ja00183a002
10.1002/ange.201701409
10.1002/ange.200601529
10.1021/jacs.7b02581
10.1021/cr030082k
10.1002/anie.201814471
10.1002/ange.201600979
10.1002/anie.201304756
10.1021/jacs.6b06009
10.1039/d0cs00870b
10.1039/c5cc01971k
10.1039/c2cs35410a
10.1039/c2cs35333d
ContentType Journal Article
Copyright 2022 Wiley‐VCH GmbH
2022 Wiley-VCH GmbH.
Copyright_xml – notice: 2022 Wiley‐VCH GmbH
– notice: 2022 Wiley-VCH GmbH.
DBID AAYXX
CITATION
17B
1KM
1KN
AHQBO
BLEPL
DTL
EGQ
7TM
K9.
7X8
DOI 10.1002/anie.202205623
DatabaseName CrossRef
Web of Knowledge
Index Chemicus
Current Chemical Reactions
Web of Science - Science Citation Index Expanded - 2022
Web of Science Core Collection
Science Citation Index Expanded
Web of Science Primary (SCIE, SSCI & AHCI)
Nucleic Acids Abstracts
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
DatabaseTitle CrossRef
Web of Science
ProQuest Health & Medical Complete (Alumni)
Nucleic Acids Abstracts
MEDLINE - Academic
DatabaseTitleList Web of Science
CrossRef
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: 1KN
  name: Current Chemical Reactions
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/woscc/search-with-editions?editions=WOS.CCR
  sourceTypes:
    Enrichment Source
    Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1521-3773
Edition International ed. in English
EndPage n/a
ExternalDocumentID 000823833800001
10_1002_anie_202205623
ANIE202205623
Genre article
GrantInformation_xml – fundername: National Natural Science Foundation of China
  funderid: 21901239, 20532006
– fundername: K. C. Wong Education Foundation
  funderid: GJTD-2020-08
– fundername: National Natural Science Foundation of China; National Natural Science Foundation of China (NSFC)
  grantid: 21901239; 20532006
– fundername: K. C. Wong Education Foundation of Chinese Academy of Sciences; Chinese Academy of Sciences
  grantid: GJTD-2020-08
GroupedDBID ---
-DZ
-~X
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5RE
5VS
66C
6TJ
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABLJU
ABPPZ
ABPVW
ACAHQ
ACCFJ
ACCZN
ACFBH
ACGFS
ACIWK
ACNCT
ACPOU
ACPRK
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AEQDE
AEUQT
AEUYR
AFBPY
AFFNX
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AFZJQ
AHBTC
AHMBA
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BTSUX
BY8
CS3
D-E
D-F
D0L
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
M53
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RX1
RYL
SUPJJ
TN5
UB1
UPT
UQL
V2E
VQA
W8V
W99
WBFHL
WBKPD
WH7
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XSW
XV2
YZZ
ZZTAW
~IA
~KM
~WT
AAYXX
ABDBF
ABJNI
AEYWJ
AGHNM
AGYGG
CITATION
17B
1KM
1KN
BLEPL
DTL
GROUPED_WOS_SCIENCE_CITATION_INDEX_EXPANDED
GROUPED_WOS_WEB_OF_SCIENCE
7TM
K9.
7X8
ID FETCH-LOGICAL-c4163-a1dee063d2be6a3cf90138d28038eaae4c4d6fc626ffb217317e9856bf578c043
IEDL.DBID DR2
ISICitedReferencesCount 28
ISICitedReferencesURI https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestApp=WOS&DestLinkType=CitingArticles&UT=000823833800001
ISSN 1433-7851
1521-3773
IngestDate Fri Jul 11 15:59:57 EDT 2025
Sun Jul 13 05:33:54 EDT 2025
Wed Jul 09 17:53:11 EDT 2025
Fri Aug 29 16:15:54 EDT 2025
Tue Jul 01 01:18:24 EDT 2025
Thu Apr 24 22:57:58 EDT 2025
Wed Jan 22 16:24:42 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 34
Keywords COMPLEX
Desymmetrization
ENANTIOSELECTIVE REDUCTION
QUINOLINES
Asymmetric Hydrogenation
RUTHENIUM
HETEROAROMATIC-COMPOUNDS
All-Carbon Aromatic Rings
PHOSPHORUS LIGANDS
KETONES
Kinetic Resolution
Rhodium
ACCESS
Language English
LinkModel DirectLink
LogoURL https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg
MergedId FETCHMERGED-LOGICAL-c4163-a1dee063d2be6a3cf90138d28038eaae4c4d6fc626ffb217317e9856bf578c043
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-3321-5521
PMID 35764533
PQID 2702638249
PQPubID 946352
PageCount 9
ParticipantIDs webofscience_primary_000823833800001CitationCount
wiley_primary_10_1002_anie_202205623_ANIE202205623
webofscience_primary_000823833800001
crossref_citationtrail_10_1002_anie_202205623
proquest_miscellaneous_2682257760
proquest_journals_2702638249
crossref_primary_10_1002_anie_202205623
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate August 22, 2022
PublicationDateYYYYMMDD 2022-08-22
PublicationDate_xml – month: 08
  year: 2022
  text: August 22, 2022
  day: 22
PublicationDecade 2020
PublicationPlace WEINHEIM
PublicationPlace_xml – name: WEINHEIM
– name: Weinheim
PublicationTitle Angewandte Chemie International Edition
PublicationTitleAbbrev ANGEW CHEM INT EDIT
PublicationYear 2022
Publisher Wiley
Wiley Subscription Services, Inc
Publisher_xml – name: Wiley
– name: Wiley Subscription Services, Inc
References 2014 2014; 53 126
2017; 7
2013; 4
1989; 111
2020 2020; 59 132
2011; 54
2008; 76
2008; 33
2018; 83
2020; 10
2008 2008; 47 120
2017; 357
2013 2013; 52 125
2019; 363
2009; 52
2013; 15
2012; 134
2015; 137
2012 2012; 51 124
2005; 105
2015 2015; 54 127
2014; 57
2000; 122
2003; 125
2017; 123
1980; 102
1988; 18
2015; 51
2019; 2
2013; 42
2013; 343
2017 2017; 56 129
2021; 143
2021; 50
2019; 141
2018; 20
2019 2019; 58 131
2011; 133
2017; 139
2006 2006; 45 118
2016; 6
2016 2016; 55 128
2012; 112
2021; 11
2007 2007; 46 119
2021 2021; 60 133
2013; 135
2011 2011; 50 123
2016; 138
2005; 3
2007; 40
2003; 103
2003; 22
e_1_2_7_5_2
e_1_2_7_3_2
e_1_2_7_9_2
e_1_2_7_7_2
e_1_2_7_19_3
e_1_2_7_5_3
e_1_2_7_19_2
e_1_2_7_17_3
e_1_2_7_60_1
e_1_2_7_17_2
e_1_2_7_15_2
e_1_2_7_1_1
e_1_2_7_41_2
e_1_2_7_62_2
e_1_2_7_11_3
e_1_2_7_13_1
e_1_2_7_43_1
e_1_2_7_64_3
e_1_2_7_11_2
e_1_2_7_64_2
e_1_2_7_45_2
e_1_2_7_66_2
e_1_2_7_47_1
e_1_2_7_68_2
e_1_2_7_26_2
e_1_2_7_49_1
e_1_2_7_26_3
e_1_2_7_28_2
e_1_2_7_71_2
e_1_2_7_71_3
e_1_2_7_73_1
e_1_2_7_50_1
e_1_2_7_25_2
e_1_2_7_52_2
e_1_2_7_23_3
e_1_2_7_23_2
e_1_2_7_31_2
e_1_2_7_54_1
e_1_2_7_33_2
e_1_2_7_56_2
e_1_2_7_21_1
e_1_2_7_35_1
e_1_2_7_58_2
e_1_2_7_37_2
e_1_2_7_39_2
e_1_2_7_4_2
e_1_2_7_2_2
e_1_2_7_8_2
e_1_2_7_6_2
e_1_2_7_18_3
e_1_2_7_18_2
e_1_2_7_16_3
e_1_2_7_16_2
e_1_2_7_61_2
e_1_2_7_14_2
e_1_2_7_40_2
e_1_2_7_63_2
e_1_2_7_42_1
e_1_2_7_12_2
e_1_2_7_42_2
e_1_2_7_65_2
e_1_2_7_10_3
e_1_2_7_63_3
e_1_2_7_10_2
e_1_2_7_44_2
e_1_2_7_67_2
e_1_2_7_44_3
e_1_2_7_65_3
e_1_2_7_46_2
e_1_2_7_48_1
e_1_2_7_67_3
e_1_2_7_69_1
e_1_2_7_27_1
e_1_2_7_48_2
e_1_2_7_29_2
e_1_2_7_70_3
e_1_2_7_72_1
e_1_2_7_70_2
e_1_2_7_24_2
e_1_2_7_30_2
e_1_2_7_51_2
e_1_2_7_22_3
e_1_2_7_74_1
e_1_2_7_22_2
e_1_2_7_32_2
e_1_2_7_53_2
e_1_2_7_20_2
e_1_2_7_34_2
e_1_2_7_55_2
e_1_2_7_36_2
e_1_2_7_57_2
e_1_2_7_38_2
e_1_2_7_59_2
(000823833800001.55) 2021; 133
Kagan, H.B. (000823833800001.82) 1988; 18
Zhou, YG (WOS:000251787500015) 2007; 40
(000823833800001.70) 2013; 125
Borowski, AF (WOS:000182119700016) 2003; 22
Chen, QA (WOS:000301084600085) 2012; 134
Cheng, DJ (WOS:000337176800016) 2014; 53
(000823833800001.50) 2012; 124
Glorius, F (WOS:000233362000001) 2005; 3
(000823833800001.22) 2012; 124
(000823833800001.27) 2007; 119
Meanwell, NA (WOS:000406858800006) 2017; 123
Lovering, F (WOS:000315355800005) 2013; 4
Carmona, JA (WOS:000637003700032) 2021; 11
He, YM (WOS:000356813000006) 2014; 343
Lovering, F (WOS:000271427900027) 2009; 52
Chen, QA (WOS:000312460600007) 2013; 42
(000823833800001.5) 2012; 124
Zhan, BB (WOS:000508989600001) 2020; 59
GREY, RA (WOS:A1980KE71000060) 1980; 102
Guo, QS (WOS:000252652200029) 2008; 47
Kim, AN (WOS:000598140200008) 2020; 10
Yu, ZK (WOS:000305180400005) 2012; 51
(000823833800001.78) 2013; 125
(000823833800001.13) 2019; 131
Wiesenfeldt, MP (WOS:000408734900040) 2017; 357
Wei, Y (WOS:000358896600014) 2015; 137
Ortega, N (WOS:000299946400041) 2012; 51
Zhou, HF (WOS:000260622700025) 2008; 47
Li, HF (WOS:000405360800027) 2017; 7
(000823833800001.68) 2013; 125
Yan, Z (WOS:000426013600050) 2018; 20
(000823833800001.24) 2017; 129
Tosatti, P (WOS:000398154000032) 2017; 56
Huang, LW (WOS:000373133000020) 2016; 55
Cyranski, MK (WOS:000232755200012) 2005; 105
Urban, S (WOS:000289276000036) 2011; 50
Shugrue, CR (WOS:000363389400032) 2015; 54
Wiesenfeldt, MP (WOS:000476919100009) 2019; 58
(000823833800001.83) 1000
(000823833800001.75) 2020; 132
Welin, ER (WOS:000456140700034) 2019; 363
Kuwano, R (WOS:000088683200031) 2000; 122
Wang, J (WOS:000382181900011) 2016; 138
Taylor, RD (WOS:000339540800002) 2014; 57
Rueping, M (WOS:000247500600032) 2007; 46
Moock, D (WOS:000646985600001) 2021; 60
Li, GQ (WOS:000319551000007) 2013; 135
Kuwano, R (WOS:000353033600035) 2015; 51
Etayo, P (WOS:000312460600017) 2013; 42
Han, B (WOS:000470939200050) 2019; 141
Qi, LW (WOS:000464248600011) 2019; 2
Kuwano, R (WOS:000262427000002) 2008; 76
Zhang, WC (WOS:000251787500007) 2007; 40
Zhao, QY (WOS:000322853000054) 2013; 15
(000823833800001.18) 2006; 118
Wu, HB (WOS:000750743100037) 2021; 143
(000823833800001.80) 2016; 128
Vitaku, E (WOS:000347437400004) 2014; 57
Liu, GD (WOS:000317064600031) 2013; 52
(000823833800001.20) 2008; 120
(000823833800001.11) 2013; 125
KATRITZKY, AR (WOS:A1989R647200002) 1989; 111
Jin, YS (WOS:000429886100040) 2018; 83
Roughley, SD (WOS:000290651800001) 2011; 54
Shirakawa, S (WOS:000328531100060) 2013; 52
(000823833800001.29) 2008; 120
Wang, WB (WOS:000185012800027) 2003; 125
De, CK (WOS:000323393100050) 2013; 52
Heine, T (WOS:000232755200015) 2005; 105
(000823833800001.72) 2014; 126
Carmona, JA (WOS:000629731800003) 2021; 50
Sanemitsu, Y (WOS:000257471900010) 2008; 33
Tang, WJ (WOS:000184821500013) 2003; 103
Zhao, DB (WOS:000323829600008) 2013; 52
Chen, QA (WOS:000292715500008) 2011; 133
(000823833800001.33) 2015; 127
Shoba, VM (WOS:000400321500027) 2017; 139
Wang, DS (WOS:000303283900020) 2012; 112
Kuwano, R (WOS:000303001000026) 2012; 51
(000823833800001.48) 2011; 123
Zhao, DB (WOS:000382714000038) 2016; 6
Kaiser, S (WOS:000239808500026) 2006; 45
References_xml – volume: 59 132
  start-page: 3568 3596
  year: 2020 2020
  end-page: 3572 3600
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 54 127
  start-page: 11173 11325
  year: 2015 2015
  end-page: 11176 11328
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 15
  start-page: 4014
  year: 2013
  end-page: 4017
  publication-title: Org. Lett.
– volume: 52
  start-page: 6752
  year: 2009
  end-page: 6756
  publication-title: J. Med. Chem.
– volume: 55 128
  start-page: 4527 4603
  year: 2016 2016
  end-page: 4531 4607
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 51
  start-page: 7558
  year: 2015
  end-page: 7561
  publication-title: Chem. Commun.
– volume: 2
  start-page: 314
  year: 2019
  end-page: 323
  publication-title: Nat. Catal.
– volume: 137
  start-page: 9250
  year: 2015
  end-page: 9253
  publication-title: J. Am. Chem. Soc.
– volume: 139
  start-page: 5740
  year: 2017
  end-page: 5743
  publication-title: J. Am. Chem. Soc.
– volume: 112
  start-page: 2557
  year: 2012
  end-page: 2590
  publication-title: Chem. Rev.
– volume: 3
  start-page: 4171
  year: 2005
  end-page: 4175
  publication-title: Org. Biomol. Chem.
– volume: 7
  start-page: 4446
  year: 2017
  end-page: 4450
  publication-title: ACS Catal.
– volume: 52 125
  start-page: 9616 9794
  year: 2013 2013
  end-page: 9618 9796
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 50
  start-page: 2968
  year: 2021
  end-page: 2983
  publication-title: Chem. Soc. Rev.
– volume: 57
  start-page: 5845
  year: 2014
  end-page: 5859
  publication-title: J. Med. Chem.
– volume: 102
  start-page: 5948
  year: 1980
  end-page: 5949
  publication-title: J. Am. Chem. Soc.
– volume: 51 124
  start-page: 4136 4212
  year: 2012 2012
  end-page: 4139 4215
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 33
  start-page: 175
  year: 2008
  end-page: 177
  publication-title: J. Pestic. Sci.
– volume: 50 123
  start-page: 3803 3887
  year: 2011 2011
  end-page: 3806 3890
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 40
  start-page: 1357
  year: 2007
  end-page: 1366
  publication-title: Acc. Chem. Res.
– volume: 42
  start-page: 497
  year: 2013
  end-page: 511
  publication-title: Chem. Soc. Rev.
– volume: 51 124
  start-page: 1710 1742
  year: 2012 2012
  end-page: 1713 1745
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 141
  start-page: 9018
  year: 2019
  end-page: 9026
  publication-title: J. Am. Chem. Soc.
– volume: 103
  start-page: 3029
  year: 2003
  end-page: 3070
  publication-title: Chem. Rev.
– volume: 105
  start-page: 3773
  year: 2005
  end-page: 3811
  publication-title: Chem. Rev.
– volume: 138
  start-page: 10413
  year: 2016
  end-page: 10416
  publication-title: J. Am. Chem. Soc.
– volume: 343
  start-page: 145
  year: 2013
  end-page: 190
  publication-title: Top. Curr. Chem.
– volume: 58 131
  start-page: 10460 10570
  year: 2019 2019
  end-page: 10476 10586
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 83
  start-page: 3829
  year: 2018
  end-page: 3839
  publication-title: J. Org. Chem.
– volume: 143
  start-page: 20377
  year: 2021
  end-page: 20383
  publication-title: J. Am. Chem. Soc.
– volume: 45 118
  start-page: 5194 5318
  year: 2006 2006
  end-page: 5197 5321
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 123
  start-page: 245
  year: 2017
  end-page: 361
  publication-title: Adv. Heterocycl. Chem.
– volume: 53 126
  start-page: 3684 3758
  year: 2014 2014
  end-page: 3687 3761
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 4
  start-page: 515
  year: 2013
  end-page: 519
  publication-title: MedChemComm
– volume: 56 129
  start-page: 4579 4650
  year: 2017 2017
  end-page: 4582 4653
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 54
  start-page: 3451
  year: 2011
  end-page: 3479
  publication-title: J. Med. Chem.
– volume: 60 133
  start-page: 13677 13791
  year: 2021 2021
  end-page: 13681 13796
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 133
  start-page: 6126
  year: 2011
  end-page: 6129
  publication-title: J. Am. Chem. Soc.
– volume: 52 125
  start-page: 4235 4329
  year: 2013 2013
  end-page: 4238 4332
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 125
  start-page: 10536
  year: 2003
  end-page: 10537
  publication-title: J. Am. Chem. Soc.
– volume: 52 125
  start-page: 14200 14450
  year: 2013 2013
  end-page: 14203 14453
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 135
  start-page: 7414
  year: 2013
  end-page: 7417
  publication-title: J. Am. Chem. Soc.
– volume: 111
  start-page: 7
  year: 1989
  end-page: 15
  publication-title: J. Am. Chem. Soc.
– volume: 42
  start-page: 728
  year: 2013
  end-page: 754
  publication-title: Chem. Soc. Rev.
– volume: 76
  start-page: 909
  year: 2008
  end-page: 922
  publication-title: Heterocycles
– volume: 47 120
  start-page: 8464 8592
  year: 2008 2008
  end-page: 8467 8595
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 52 125
  start-page: 9293 9463
  year: 2013 2013
  end-page: 9295 9465
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 22
  start-page: 1630
  year: 2003
  end-page: 1637
  publication-title: Organometallics
– volume: 105
  start-page: 3889
  year: 2005
  end-page: 3910
  publication-title: Chem. Rev.
– volume: 11
  start-page: 4117
  year: 2021
  end-page: 4124
  publication-title: ACS Catal.
– volume: 6
  start-page: 5978
  year: 2016
  end-page: 5988
  publication-title: ACS Catal.
– volume: 122
  start-page: 7614
  year: 2000
  end-page: 7615
  publication-title: J. Am. Chem. Soc.
– volume: 18
  start-page: 249
  year: 1988
  end-page: 330
  publication-title: Top. Stereochem.
– volume: 51 124
  start-page: 6060 6164
  year: 2012 2012
  end-page: 6072 6177
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 40
  start-page: 1278
  year: 2007
  end-page: 1290
  publication-title: Acc. Chem. Res.
– volume: 20
  start-page: 1094
  year: 2018
  end-page: 1097
  publication-title: Org. Lett.
– volume: 47 120
  start-page: 759 771
  year: 2008 2008
  end-page: 762 774
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 57
  start-page: 10257
  year: 2014
  end-page: 10274
  publication-title: J. Med. Chem.
– volume: 46 119
  start-page: 4562 4646
  year: 2007 2007
  end-page: 4565 4649
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 10
  start-page: 13834
  year: 2020
  end-page: 13851
  publication-title: ACS Catal.
– volume: 363
  start-page: 270
  year: 2019
  end-page: 275
  publication-title: Science
– volume: 134
  start-page: 2442
  year: 2012
  end-page: 2448
  publication-title: J. Am. Chem. Soc.
– volume: 357
  start-page: 908
  year: 2017
  end-page: 912
  publication-title: Science
– ident: e_1_2_7_34_2
  doi: 10.1584/jpestics.J08-02
– ident: e_1_2_7_67_3
  doi: 10.1002/ange.201915674
– ident: e_1_2_7_32_2
  doi: 10.1021/jm200187y
– ident: e_1_2_7_26_2
  doi: 10.1002/anie.201505898
– ident: e_1_2_7_37_2
  doi: 10.1021/om020995p
– ident: e_1_2_7_70_3
  doi: 10.1002/ange.201300646
– ident: e_1_2_7_15_2
  doi: 10.1021/ja0353762
– ident: e_1_2_7_17_2
  doi: 10.1002/anie.200802237
– ident: e_1_2_7_31_2
  doi: 10.1039/c2md20347b
– ident: e_1_2_7_39_2
  doi: 10.1021/acscatal.7b01316
– ident: e_1_2_7_5_3
  doi: 10.1002/ange.201200963
– ident: e_1_2_7_30_2
  doi: 10.1021/jm901241e
– ident: e_1_2_7_71_2
  doi: 10.1002/anie.201600979
– ident: e_1_2_7_64_3
  doi: 10.1002/ange.201308237
– ident: e_1_2_7_74_1
– ident: e_1_2_7_12_2
  doi: 10.1021/acscatal.0c03958
– ident: e_1_2_7_60_1
– ident: e_1_2_7_8_2
  doi: 10.1021/acscatal.6b01736
– ident: e_1_2_7_10_3
  doi: 10.1002/ange.201304756
– ident: e_1_2_7_24_2
  doi: 10.1021/ja200723n
– ident: e_1_2_7_65_2
  doi: 10.1002/anie.201310562
– ident: e_1_2_7_20_2
  doi: 10.1126/science.aav3421
– ident: e_1_2_7_42_1
  doi: 10.1002/anie.201100008
– ident: e_1_2_7_55_2
  doi: 10.1021/ol401816y
– ident: e_1_2_7_67_2
  doi: 10.1002/anie.201915674
– ident: e_1_2_7_2_2
  doi: 10.1039/b512139f
– ident: e_1_2_7_26_3
  doi: 10.1002/ange.201505898
– ident: e_1_2_7_66_2
  doi: 10.1038/s41929-019-0247-1
– ident: e_1_2_7_6_2
  doi: 10.1039/C2CS35333D
– ident: e_1_2_7_57_2
  doi: 10.1021/ar7000028
– ident: e_1_2_7_13_1
– ident: e_1_2_7_21_1
– ident: e_1_2_7_14_2
  doi: 10.1021/ja001271c
– ident: e_1_2_7_29_2
  doi: 10.1021/jm4017625
– ident: e_1_2_7_56_2
  doi: 10.1021/cr020049i
– ident: e_1_2_7_16_2
  doi: 10.1002/anie.200601529
– ident: e_1_2_7_68_2
  doi: 10.1021/acscatal.1c00571
– ident: e_1_2_7_27_1
– ident: e_1_2_7_70_2
  doi: 10.1002/anie.201300646
– ident: e_1_2_7_5_2
  doi: 10.1002/anie.201200963
– ident: e_1_2_7_35_1
– ident: e_1_2_7_22_2
  doi: 10.1002/anie.200701158
– ident: e_1_2_7_7_2
  doi: 10.1007/128_2013_480
– ident: e_1_2_7_46_2
  doi: 10.1021/acs.joc.8b00190
– ident: e_1_2_7_43_1
– ident: e_1_2_7_48_1
  doi: 10.1002/anie.202103910
– ident: e_1_2_7_53_2
  doi: 10.1021/cr0300845
– ident: e_1_2_7_54_1
– ident: e_1_2_7_63_3
  doi: 10.1002/ange.201304039
– ident: e_1_2_7_64_2
  doi: 10.1002/anie.201308237
– ident: e_1_2_7_73_1
  doi: 10.1002/9780470147276.ch4
– ident: e_1_2_7_9_2
  doi: 10.1021/cr200328h
– ident: e_1_2_7_33_2
  doi: 10.1016/bs.aihch.2016.11.002
– ident: e_1_2_7_65_3
  doi: 10.1002/ange.201310562
– ident: e_1_2_7_40_2
  doi: 10.1126/science.aao0270
– ident: e_1_2_7_61_2
  doi: 10.1039/D0CS00870B
– ident: e_1_2_7_49_1
  doi: 10.1021/jacs.1c09975
– ident: e_1_2_7_22_3
  doi: 10.1002/ange.200701158
– ident: e_1_2_7_44_2
  doi: 10.1002/anie.201201153
– ident: e_1_2_7_42_2
  doi: 10.1002/ange.201100008
– ident: e_1_2_7_23_3
  doi: 10.1002/ange.200703925
– ident: e_1_2_7_25_2
  doi: 10.1021/ja211684v
– ident: e_1_2_7_38_2
  doi: 10.1021/jacs.5b05868
– ident: e_1_2_7_18_2
  doi: 10.1002/anie.201107811
– ident: e_1_2_7_19_2
  doi: 10.1002/anie.201701409
– ident: e_1_2_7_48_2
  doi: 10.1002/ange.202103910
– ident: e_1_2_7_63_2
  doi: 10.1002/anie.201304039
– ident: e_1_2_7_1_1
– ident: e_1_2_7_3_2
  doi: 10.3987/REV-08-SR(N)5
– ident: e_1_2_7_45_2
  doi: 10.1039/C5CC01971K
– ident: e_1_2_7_47_1
  doi: 10.1021/acs.orglett.7b04060
– ident: e_1_2_7_4_2
  doi: 10.1021/ar700094b
– ident: e_1_2_7_23_2
  doi: 10.1002/anie.200703925
– ident: e_1_2_7_11_3
  doi: 10.1002/ange.201814471
– ident: e_1_2_7_41_2
  doi: 10.1021/jacs.9b03328
– ident: e_1_2_7_17_3
  doi: 10.1002/ange.200802237
– ident: e_1_2_7_28_2
  doi: 10.1021/jm501100b
– ident: e_1_2_7_36_2
  doi: 10.1021/ja00538a061
– ident: e_1_2_7_62_2
  doi: 10.1021/ja401709k
– ident: e_1_2_7_69_1
– ident: e_1_2_7_44_3
  doi: 10.1002/ange.201201153
– ident: e_1_2_7_58_2
  doi: 10.1039/C2CS35410A
– ident: e_1_2_7_18_3
  doi: 10.1002/ange.201107811
– ident: e_1_2_7_51_2
  doi: 10.1021/ja00183a002
– ident: e_1_2_7_19_3
  doi: 10.1002/ange.201701409
– ident: e_1_2_7_16_3
  doi: 10.1002/ange.200601529
– ident: e_1_2_7_59_2
  doi: 10.1021/jacs.7b02581
– ident: e_1_2_7_50_1
– ident: e_1_2_7_52_2
  doi: 10.1021/cr030082k
– ident: e_1_2_7_11_2
  doi: 10.1002/anie.201814471
– ident: e_1_2_7_71_3
  doi: 10.1002/ange.201600979
– ident: e_1_2_7_10_2
  doi: 10.1002/anie.201304756
– ident: e_1_2_7_72_1
  doi: 10.1021/jacs.6b06009
– volume: 52
  start-page: 9616
  year: 2013
  ident: WOS:000323829600008
  article-title: Enantioselective Hydrogenation of Isoquinolines
  publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION
  doi: 10.1002/anie.201304756
– volume: 50
  start-page: 2968
  year: 2021
  ident: WOS:000629731800003
  article-title: Atroposelective transformation of axially chiral (hetero)biaryls. From desymmetrization to modern resolution strategies
  publication-title: CHEMICAL SOCIETY REVIEWS
  doi: 10.1039/d0cs00870b
– volume: 135
  start-page: 7414
  year: 2013
  ident: WOS:000319551000007
  article-title: Organocatalytic Aryl-Aryl Bond Formation: An Atroposelective [3,3]-Rearrangement Approach to BINAM Derivatives
  publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
  doi: 10.1021/ja401709k
– volume: 51
  start-page: 7558
  year: 2015
  ident: WOS:000353033600035
  article-title: Catalytic asymmetric hydrogenation of quinoline carbocycles: unusual chemoselectivity in the hydrogenation of quinolines
  publication-title: CHEMICAL COMMUNICATIONS
  doi: 10.1039/c5cc01971k
– volume: 60
  start-page: 13677
  year: 2021
  ident: WOS:000646985600001
  article-title: Enantio- and Diastereoselective, Complete Hydrogenation of Benzofurans by Cascade Catalysis
  publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION
  doi: 10.1002/anie.202103910
– volume: 127
  start-page: 11325
  year: 2015
  ident: 000823833800001.33
  publication-title: Angew. Chem
– volume: 11
  start-page: 4117
  year: 2021
  ident: WOS:000637003700032
  article-title: Atroposelective Transfer Hydrogenation of Biaryl Aminals via Dynamic Kinetic Resolution. Synthesis of Axially Chiral Diamines
  publication-title: ACS CATALYSIS
  doi: 10.1021/acscatal.1c00571
– volume: 57
  start-page: 5845
  year: 2014
  ident: WOS:000339540800002
  article-title: Rings in Drugs
  publication-title: JOURNAL OF MEDICINAL CHEMISTRY
  doi: 10.1021/jm4017625
– volume: 123
  start-page: 3887
  year: 2011
  ident: 000823833800001.48
  publication-title: Angew. Chem
– volume: 54
  start-page: 11173
  year: 2015
  ident: WOS:000363389400032
  article-title: Phosphothreonine as a Catalytic Residue in Peptide-Mediated Asymmetric Transfer Hydrogenations of 8-Aminoquinolines
  publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION
  doi: 10.1002/anie.201505898
– volume: 46
  start-page: 4562
  year: 2007
  ident: WOS:000247500600032
  article-title: Organocatalytic enantioselective reduction of Pyridines
  publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION
  doi: 10.1002/anie.200701158
– volume: 125
  start-page: 9463
  year: 2013
  ident: 000823833800001.68
  publication-title: Angew. Chem.
– volume: 123
  start-page: 245
  year: 2017
  ident: WOS:000406858800006
  article-title: A Synopsis of the Properties and Applications of Heteroaromatic Rings in Medicinal Chemistry
  publication-title: ADVANCES IN HETEROCYCLIC CHEMISTRY, VOL 123
  doi: 10.1016/bs.aihch.2016.11.002
– volume: 40
  start-page: 1278
  year: 2007
  ident: WOS:000251787500007
  article-title: Developing chiral ligands for asymmetric hydrogenation
  publication-title: ACCOUNTS OF CHEMICAL RESEARCH
  doi: 10.1021/ar7000028
– volume: 52
  start-page: 4235
  year: 2013
  ident: WOS:000317064600031
  article-title: Design of Phosphorus Ligands with Deep Chiral Pockets: Practical Synthesis of Chiral β-Arylamines by Asymmetric Hydrogenation
  publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION
  doi: 10.1002/anie.201300646
– volume: 138
  start-page: 10413
  year: 2016
  ident: WOS:000382181900011
  article-title: Kinetic Resolution of Axially Chiral 5-or 8-Substituted Quinolines via Asymmetric Transfer Hydrogenation
  publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
  doi: 10.1021/jacs.6b06009
– volume: 59
  start-page: 3568
  year: 2020
  ident: WOS:000508989600001
  article-title: Synthesis of Axially Chiral Biaryl-2-amines by PdII-Catalyzed Free-Amine-Directed Atroposelective C-H Olefination
  publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION
  doi: 10.1002/anie.201915674
– volume: 143
  start-page: 20377
  year: 2021
  ident: WOS:000750743100037
  article-title: Asymmetric Full Saturation of Vinylarenes with Cooperative Homogeneous and Heterogeneous Rhodium Catalysis
  publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
  doi: 10.1021/jacs.1c09975
– volume: 343
  start-page: 145
  year: 2014
  ident: WOS:000356813000006
  article-title: Advances in Transition Metal-Catalyzed Asymmetric Hydrogenation of Heteroaromatic Compounds
  publication-title: STEREOSELECTIVE FORMATION OF AMINES
  doi: 10.1007/128_2013_480
– volume: 134
  start-page: 2442
  year: 2012
  ident: WOS:000301084600085
  article-title: Dihydrophenanthridine: A New and Easily Regenerable NAD(P)H Model for Biomimetic Asymmetric Hydrogenation
  publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
  doi: 10.1021/ja211684v
– volume: 128
  start-page: 4603
  year: 2016
  ident: 000823833800001.80
  publication-title: Angew. Chem.
– volume: 129
  start-page: 4650
  year: 2017
  ident: 000823833800001.24
  publication-title: Angew. Chem.
– volume: 124
  start-page: 1742
  year: 2012
  ident: 000823833800001.22
  publication-title: Angew. Chem
– volume: 125
  start-page: 14450
  year: 2013
  ident: 000823833800001.70
  publication-title: Angew. Chem
– volume: 133
  start-page: 13791
  year: 2021
  ident: 000823833800001.55
  publication-title: Angew. Chem.
– volume: 102
  start-page: 5948
  year: 1980
  ident: WOS:A1980KE71000060
  article-title: SELECTIVE HOMOGENEOUS CATALYTIC-HYDROGENATION OF POLYNUCLEAR AROMATICS
  publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
– volume: 54
  start-page: 3451
  year: 2011
  ident: WOS:000290651800001
  article-title: The Medicinal Chemist's Toolbox: An Analysis of Reactions Used in the Pursuit of Drug Candidates
  publication-title: JOURNAL OF MEDICINAL CHEMISTRY
  doi: 10.1021/jm200187y
– volume: 56
  start-page: 4579
  year: 2017
  ident: WOS:000398154000032
  article-title: Iridium-Catalyzed Asymmetric Hydrogenation of Benzo[b]thiophene 1,1-Dioxides
  publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION
  doi: 10.1002/anie.201701409
– volume: 50
  start-page: 3803
  year: 2011
  ident: WOS:000289276000036
  article-title: Ligand-Controlled Highly Regioselective and Asymmetric Hydrogenation of Quinoxalines Catalyzed by Ruthenium N-Heterocyclic Carbene Complexes
  publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION
  doi: 10.1002/anie.201100008
– volume: 7
  start-page: 4446
  year: 2017
  ident: WOS:000405360800027
  article-title: Selective Catalytic Hydrogenation of Arenols by a Wel-Defined Complex of Ruthenium and Phosphorus-Nitrogen PN3-Pincer Ligand Containing a Phenanthroline Backbone
  publication-title: ACS CATALYSIS
  doi: 10.1021/acscatal.7b01316
– volume: 15
  start-page: 4014
  year: 2013
  ident: WOS:000322853000054
  article-title: A Novel Chiral Bisphosphine-Thiourea Ligand for Asymmetric Hydrogenation of β,β-Disubstituted Nitroalkenes
  publication-title: ORGANIC LETTERS
  doi: 10.1021/ol401816y
– volume: 47
  start-page: 8464
  year: 2008
  ident: WOS:000260622700025
  article-title: Hydrogenation of Quinolines Using a Recyclable Phosphine-Free Chiral Cationic Ruthenium Catalyst: Enhancement of Catalyst Stability and Selectivity in an Ionic Liquid
  publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION
  doi: 10.1002/anie.200802237
– volume: 53
  start-page: 3684
  year: 2014
  ident: WOS:000337176800016
  article-title: Highly Enantioselective Kinetic Resolution of Axially Chiral BINAM Derivatives Catalyzed by a Bronsted Acid
  publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION
  doi: 10.1002/anie.201310562
– volume: 42
  start-page: 728
  year: 2013
  ident: WOS:000312460600017
  article-title: Rhodium-catalysed asymmetric hydrogenation as a valuable synthetic tool for the preparation of chiral drugs
  publication-title: CHEMICAL SOCIETY REVIEWS
  doi: 10.1039/c2cs35410a
– volume: 40
  start-page: 1357
  year: 2007
  ident: WOS:000251787500015
  article-title: Asymmetric hydrogenation of heteroaromatic compounds
  publication-title: ACCOUNTS OF CHEMICAL RESEARCH
  doi: 10.1021/ar700094b
– volume: 2
  start-page: 314
  year: 2019
  ident: WOS:000464248600011
  article-title: Asymmetric construction of atropisomeric biaryls via a redox neutral cross-coupling strategy
  publication-title: NATURE CATALYSIS
  doi: 10.1038/s41929-019-0247-1
– volume: 22
  start-page: 1630
  year: 2003
  ident: WOS:000182119700016
  article-title: Reactivity of the bis(dihydrogen) complex [RuH2(η2-H2)2(PCy3)2] toward N-heteroaromatic compounds. Regioselective hydrogenation of acridine to 1,2,3,4,5,6,7,8-octahydroacridine
  publication-title: ORGANOMETALLICS
  doi: 10.1021/om020995p
– volume: 51
  start-page: 6060
  year: 2012
  ident: WOS:000305180400005
  article-title: Bronsted Acid Activation Strategy in Transition-Metal Catalyzed Asymmetric Hydrogenation of N-Unprotected Imines, Enamines, and N-Heteroaromatic Compounds
  publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION
  doi: 10.1002/anie.201200963
– volume: 132
  start-page: 3596
  year: 2020
  ident: 000823833800001.75
  publication-title: Angew. Chem
– volume: 124
  start-page: 6164
  year: 2012
  ident: 000823833800001.5
  publication-title: Angew. Chem
– volume: 133
  start-page: 6126
  year: 2011
  ident: WOS:000292715500008
  article-title: Convergent Asymmetric Disproportionation Reactions: Metal/Bronsted Acid Relay Catalysis for Enantioselective Reduction of Quinoxalines
  publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
  doi: 10.1021/ja200723n
– volume: 58
  start-page: 10460
  year: 2019
  ident: WOS:000476919100009
  article-title: Selective Arene Hydrogenation for Direct Access to Saturated Carbo- and Heterocycles
  publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION
  doi: 10.1002/anie.201814471
– volume: 55
  start-page: 4527
  year: 2016
  ident: WOS:000373133000020
  article-title: Highly Enantioselective Rhodium-Catalyzed Addition of Arylboroxines to Simple Aryl Ketones: Efficient Synthesis of Escitalopram
  publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION
  doi: 10.1002/anie.201600979
– volume: 42
  start-page: 497
  year: 2013
  ident: WOS:000312460600007
  article-title: Homogeneous palladium-catalyzed asymmetric hydrogenation
  publication-title: CHEMICAL SOCIETY REVIEWS
  doi: 10.1039/c2cs35333d
– volume: 52
  start-page: 9293
  year: 2013
  ident: WOS:000323393100050
  article-title: Catalytic Asymmetric Benzidine Rearrangement
  publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION
  doi: 10.1002/anie.201304039
– volume: 131
  start-page: 10570
  year: 2019
  ident: 000823833800001.13
  publication-title: Angew. Chem
– volume: 47
  start-page: 759
  year: 2008
  ident: WOS:000252652200029
  article-title: The development of double axially chiral phosphoric acids and their catalytic transfer hydrogenation of quinolines
  publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION
  doi: 10.1002/anie.200703925
– volume: 105
  start-page: 3773
  year: 2005
  ident: WOS:000232755200012
  article-title: Energetic aspects of cyclic Pi-electron delocalization: Evaluation of the methods of estimating aromatic stabilization energies
  publication-title: CHEMICAL REVIEWS
  doi: 10.1021/cr0300845
– volume: 33
  start-page: 175
  year: 2008
  ident: WOS:000257471900010
  article-title: Studies on the synthetic development for the discovery of novel heterocyclic agrochemicals
  publication-title: JOURNAL OF PESTICIDE SCIENCE
  doi: 10.1584/jpestics.J08-02
– volume: 103
  start-page: 3029
  year: 2003
  ident: WOS:000184821500013
  article-title: New chiral phosphorus ligands for enantioselective hydrogenation
  publication-title: CHEMICAL REVIEWS
  doi: 10.1021/cr020049i
– volume: 357
  start-page: 908
  year: 2017
  ident: WOS:000408734900040
  article-title: Hydrogenation of fluoroarenes: Direct access to all-cis-(multi)fluorinated cycloalkanes
  publication-title: SCIENCE
  doi: 10.1126/science.aao0270
– volume: 119
  start-page: 4646
  year: 2007
  ident: 000823833800001.27
  publication-title: Angew. Chem.
– volume: 6
  start-page: 5978
  year: 2016
  ident: WOS:000382714000038
  article-title: N-Heterocyclic Carbenes in Asymmetric Hydrogenation
  publication-title: ACS CATALYSIS
  doi: 10.1021/acscatal.6b01736
– volume: 118
  start-page: 5318
  year: 2006
  ident: 000823833800001.18
  publication-title: Angew. Chem
– volume: 83
  start-page: 3829
  year: 2018
  ident: WOS:000429886100040
  article-title: Ruthenium-Catalyzed Chemo- and Enantioselective Hydrogenation of Isoquinoline Carbocycles
  publication-title: JOURNAL OF ORGANIC CHEMISTRY
  doi: 10.1021/acs.joc.8b00190
– volume: 45
  start-page: 5194
  year: 2006
  ident: WOS:000239808500026
  article-title: Iridium catalysts with bicyclic pyridine-phosphinite ligands: Asymmetric hydrogenation of olefins and furan derivatives
  publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION
  doi: 10.1002/anie.200601529
– volume: 363
  start-page: 270
  year: 2019
  ident: WOS:000456140700034
  article-title: Concise total syntheses of (-)-jorunnamycin A and (-)-jorumycin enabled by asymmetric catalysis
  publication-title: SCIENCE
  doi: 10.1126/science.aav3421
– volume: 137
  start-page: 9250
  year: 2015
  ident: WOS:000358896600014
  article-title: Highly Selective Hydrogenation of Aromatic Ketones and Phenols Enabled by Cyclic (Amino)(alkyl)carbene Rhodium Complexes
  publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
  doi: 10.1021/jacs.5b05868
– volume: 141
  start-page: 9018
  year: 2019
  ident: WOS:000470939200050
  article-title: Chromium- and Cobalt-Catalyzed, Regiocontrolled Hydrogenation of Polycyclic Aromatic Hydrocarbons: A Combined Experimental and Theoretical Study
  publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
  doi: 10.1021/jacs.9b03328
– volume: 126
  start-page: 3758
  year: 2014
  ident: 000823833800001.72
  publication-title: Angew. Chem
– volume: 120
  start-page: 771
  year: 2008
  ident: 000823833800001.29
  publication-title: Angew. Chem
– volume: 111
  start-page: 7
  year: 1989
  ident: WOS:A1989R647200002
  article-title: AROMATICITY AS A QUANTITATIVE CONCEPT .1. A STATISTICAL DEMONSTRATION OF THE ORTHOGONALITY OF CLASSICAL AND MAGNETIC AROMATICITY IN 5-MEMBERED AND 6-MEMBERED HETEROCYCLES
  publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
– volume: 20
  start-page: 1094
  year: 2018
  ident: WOS:000426013600050
  article-title: Ruthenium-Catalyzed Hydrogenation of Carbocyclic Aromatic Amines: Access to Chiral Exocyclic Amines
  publication-title: ORGANIC LETTERS
  doi: 10.1021/acs.orglett.7b04060
– volume: 51
  start-page: 4136
  year: 2012
  ident: WOS:000303001000026
  article-title: Catalytic Asymmetric Hydrogenation of Naphthalenes
  publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION
  doi: 10.1002/anie.201201153
– volume: 51
  start-page: 1710
  year: 2012
  ident: WOS:000299946400041
  article-title: Ruthenium NHC Catalyzed Highly Asymmetric Hydrogenation of Benzofurans
  publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION
  doi: 10.1002/anie.201107811
– volume: 112
  start-page: 2557
  year: 2012
  ident: WOS:000303283900020
  article-title: Asymmetric Hydrogenation of Heteroarenes and Arenes
  publication-title: CHEMICAL REVIEWS
  doi: 10.1021/cr200328h
– volume: 124
  start-page: 4212
  year: 2012
  ident: 000823833800001.50
  publication-title: Angew. Chem
– volume: 3
  start-page: 4171
  year: 2005
  ident: WOS:000233362000001
  article-title: Asymmetric hydrogenation of aromatic compounds
  publication-title: ORGANIC & BIOMOLECULAR CHEMISTRY
  doi: 10.1039/b512139f
– volume: 125
  start-page: 10536
  year: 2003
  ident: WOS:000185012800027
  article-title: Highly enantioselective iridium-catalyzed hydrogenation of heteroaromatic compounds, quinolines
  publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
  doi: 10.1021/ja0353762
– volume: 57
  start-page: 10257
  year: 2014
  ident: WOS:000347437400004
  article-title: Analysis of the Structural Diversity, Substitution Patterns, and Frequency of Nitrogen Heterocycles among US FDA Approved Pharmaceuticals
  publication-title: JOURNAL OF MEDICINAL CHEMISTRY
  doi: 10.1021/jm501100b
– volume: 18
  start-page: 249
  year: 1988
  ident: 000823833800001.82
  publication-title: Top. Stereochem
– volume: 125
  start-page: 9794
  year: 2013
  ident: 000823833800001.11
  publication-title: Angew. Chem.
– volume: 52
  start-page: 14200
  year: 2013
  ident: WOS:000328531100060
  article-title: Kinetic Resolution of Axially Chiral 2-Amino-1,1′-Biaryls by Phase-Transfer-Catalyzed N-Allylation
  publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION
  doi: 10.1002/anie.201308237
– year: 1000
  ident: 000823833800001.83
  publication-title: Deposition Numbers 2095168,2080871,2044557,2072357 and 2083665 ((-)-2 a, (-)-4 c, (+)-6 a, (-)-8 m, (-)-8 p) for this paper. These data are provided free of charge by the joint Cambridge Crystallographic Data Centre and Fachinformationszentrum Karlsruhe Access Structures service.
– volume: 139
  start-page: 5740
  year: 2017
  ident: WOS:000400321500027
  article-title: Remarkably Facile Borane-Promoted, Rhodium-Catalyzed Asymmetric Hydrogenation of Tri- and Tetrasubstituted Alkenes
  publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
  doi: 10.1021/jacs.7b02581
– volume: 10
  start-page: 13834
  year: 2020
  ident: WOS:000598140200008
  article-title: Recent Advances in Homogeneous Catalysts for the Asymmetric Hydrogenation of Heteroarenes
  publication-title: ACS CATALYSIS
  doi: 10.1021/acscatal.0c03958
– volume: 76
  start-page: 909
  year: 2008
  ident: WOS:000262427000002
  article-title: CATALYTIC ASYMMETRIC HYDROGENATION OF 5-MEMBERED HETEROAROMATICS
  publication-title: HETEROCYCLES
– volume: 105
  start-page: 3889
  year: 2005
  ident: WOS:000232755200015
  article-title: The magnetic shielding function of molecules and Pi-electron delocalization
  publication-title: CHEMICAL REVIEWS
  doi: 10.1021/cr030082k
– volume: 125
  start-page: 4329
  year: 2013
  ident: 000823833800001.78
  publication-title: Angew. Chem.
– volume: 122
  start-page: 7614
  year: 2000
  ident: WOS:000088683200031
  article-title: Catalytic asymmetric hydrogenation of heteroaromatic compounds, indoles
  publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
– volume: 4
  start-page: 515
  year: 2013
  ident: WOS:000315355800005
  article-title: Escape from Flatland 2: complexity and promiscuity
  publication-title: MEDCHEMCOMM
  doi: 10.1039/c2md20347b
– volume: 52
  start-page: 6752
  year: 2009
  ident: WOS:000271427900027
  article-title: Escape from Flatland: Increasing Saturation as an Approach to Improving Clinical Success
  publication-title: JOURNAL OF MEDICINAL CHEMISTRY
  doi: 10.1021/jm901241e
– volume: 120
  start-page: 8592
  year: 2008
  ident: 000823833800001.20
  publication-title: Angew. Chem
SSID ssj0028806
Score 2.5213265
Snippet Compared with heteroarenes, homogeneous asymmetric hydrogenation of all‐carbon aromatic rings is a longstanding challenge in organic synthesis due to the...
Compared with heteroarenes, homogeneous asymmetric hydrogenation of all-carbon aromatic rings is a longstanding challenge in organic synthesis due to the...
Source Web of Science
SourceID proquest
webofscience
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage e202205623
SubjectTerms All-Carbon Aromatic Rings
Aromatic compounds
Aromaticity
Asymmetric Hydrogenation
Asymmetry
Carbon
Chemistry
Chemistry, Multidisciplinary
Cyclic compounds
Desymmetrization
Enantiomers
Hydrogenation
Kinetic Resolution
Ligands
Phosphine
Phosphines
Physical Sciences
Rhodium
Science & Technology
Steric hindrance
Title Rhodium‐Catalyzed Asymmetric Hydrogenation of All‐Carbon Aromatic Rings
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fanie.202205623
http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestApp=WOS&DestLinkType=FullRecord&UT=000823833800001
https://www.proquest.com/docview/2702638249
https://www.proquest.com/docview/2682257760
Volume 61
WOS 000823833800001
WOSCitedRecordID wos000823833800001
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEB7Ei158i_VFBcFTdTdNs-2xLMqq6GFR8FbyKoq7W9nHYT35E_yN_hJn-tIVRNFbQye0SSaTb5LMNwCHihtGgQdeGobK41o30A7ayNMhGgbBlR8YchSvrkXnll_cBXefovgLfoh6w41mRm6vaYJLNTr5IA2lCGz07yhQFJdwNMJ0YYtQUbfmj2KonEV4ke97lIW-Ym1ssJPZ6rOr0gfUnFmMZvFrvgCdLYOsfr24d_J4PBmrY_38hdXxP21bgaUSnbpxoU6rMGcHa7DQrpLCrcNl9z4zD5P-28trmzZ-ps_WuPFo2u9TZi7tdqZmmKFO5uPtZqkb93q57FBhOR5mOUOs26X9-Q24PTu9aXe8Mh-Dpwm2ebJprEVIY5iyQvo6jeiY01B-q9BKabnmRqQaXaQ0VejqIDSxURgIlaJZ0A3ub8L8IBvYLXDDQHPZkuTPCS4CFkkEZiZSCO9aTes3HPCq8Uh0SVZOOTN6SUGzzBLqoqTuIgeOavmngqbjW8ndaniTcrqOEgrKQ0OErqgDB_Vr7Fo6PZEDm01QRiCWClotgT93-Fkt6g8Wx5YhOv35mYkDzd-ItcvmEQfB2AGW68UPjUji6_PTurT9l0o7sEjPtD3O2C7Mj4cTu4f4aqz28zn0DgHAG6k
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3LTttQEB2l6SLdtJQWYQqtkUBdGZLrR-xFF1YeShqSRQRSdsb3YYGaxCgPVWHVT-iv9Ff6CXwJM37RVKqokLJg6WSc-N47c-fMHc8ZgCNuSUaFB0bkutywhKjiPqg8Q7i4MTgWN21JgWJ_4HQurK8je1SCX3ktTMoPURy4kWUk-zUZOB1Inz6whlIJNgZ4VCmKPjx7r7KnVt8xapt_6TZxiY8Za7fOGx0jayxgCMIfRliTSqFvlowrJzRF5FG-TlKjJleFobKEJZ1IINaPIo6YHX2s8lzb4RHqt6haJv7uC3hJbcSJrr85LBirGJpDWtBkmgb1vc95IqvsdP151_3gA7hdc3_riDlxee038DufrPRNl28nywU_Ebd_8Ug-q9ncgtcZANf91GLeQklNt6HSyPvevYPe8CqW18vJ3Y-fDTrbWt0qqfvz1WRCzceE3lnJWYxml6i0Hke6Px4nsjOO1_4sTkhw9SGlIN7DxUbGsgPlaTxVu6C7trDCekghq4OawrwQsaf0OCLYek2ZVQ2MXAECkfGxU1uQcZAySbOAliQolkSDz4X8TcpE8k_J_VyfgmxHmgdUd4h7LUbbGhwWX-PUUoIonKp4iTIOwkW7Xnfw4Y7-1MPiD9PMrGuabpIW0qD2P2KNbHhEs7DQgCWK-MggAn_QbRVXe0-56RNUOuf9s-CsO-h9gFf0OWUDGNuH8mK2VAcIJxf8Y2LAOlxuWsfvAWG5egM
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtNAEB61RQIu_CNMCxipiJMbZ73e2AcOVtIoIRChiEq9Ge-PRdUkrvKjKj3xCDxKX6Wv0CfpjP9KkBAIqYce7Ywd7-7MzjcezzcAu5JrRoUHThoE0uFKubgPmtBRAW4MgkvP1xQofh6K3gH_eOgfbsB5VQtT8EPUL9zIMvL9mgz8RKeNa9JQqsDG-I4KRdGFl59VDszqFIO2-Yd-B1f4HWPd_a_tnlP2FXAUwQ8naWpj0DVrJo1IPJWGlK7T1KcpMEliuOJapAqhfppKhOzoYk0Y-EKmqN7K5R7edxPucOGG1CyiM6oJqxhaQ1HP5HkOtb2vaCJd1lh_3nU3eI1t17zfOmDOPV73IVxUc1V86HK8t1zIPXX2G43kbZrMR_CghN92VNjLY9gw0ydwr111vXsKg9H3TB8tJ5c_frbpzdbqzGg7mq8mE2o9puzeSs8yNLpcoe0staPxOJedSTyOZllOgWuPKAHxDA5uZCzPYWuaTc0LsANf8aSVUMAquPBZmCDy1KFE_NpqGs-1wKnWP1YlGzs1BRnHBY80i2lJ4npJLHhfy58UPCR_lNyp1Cku96N5TFWHuNNirG3B2_pnnFpKDyVTky1RRiBY9FstgQ-3-6sa1n9Y5GUDzwvypJAFzX8Ra5fDI5KFhQUs18O_DCKOhv39-ujl_1z0Bu5-6XTjT_3hYBvu02lKBTC2A1uL2dK8Qiy5kK9z87Xh202r-BVcLHiy
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Rhodium-Catalyzed+Asymmetric+Hydrogenation+of+All-Carbon+Aromatic+Rings&rft.jtitle=Angewandte+Chemie+International+Edition&rft.au=Ding%2C+Yi-Xuan&rft.au=Zhu%2C+Zhou-Hao&rft.au=Chen%2C+Mu-Wang&rft.au=Yu%2C+Chang-Bin&rft.date=2022-08-22&rft.pub=Wiley&rft.eissn=1521-3773&rft.volume=61&rft.issue=34&rft_id=info:doi/10.1002%2Fanie.202205623&rft_id=info%3Apmid%2F35764533&rft.externalDBID=n%2Fa&rft.externalDocID=000823833800001
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1433-7851&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1433-7851&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1433-7851&client=summon