Rhodium‐Catalyzed Asymmetric Hydrogenation of All‐Carbon Aromatic Rings
Compared with heteroarenes, homogeneous asymmetric hydrogenation of all‐carbon aromatic rings is a longstanding challenge in organic synthesis due to the strong aromaticity and difficult enantioselective control. Herein, we report the rhodium/diphosphine‐catalyzed asymmetric hydrogenation of all‐car...
Saved in:
Published in | Angewandte Chemie International Edition Vol. 61; no. 34; pp. e202205623 - n/a |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
WEINHEIM
Wiley
22.08.2022
Wiley Subscription Services, Inc |
Edition | International ed. in English |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Compared with heteroarenes, homogeneous asymmetric hydrogenation of all‐carbon aromatic rings is a longstanding challenge in organic synthesis due to the strong aromaticity and difficult enantioselective control. Herein, we report the rhodium/diphosphine‐catalyzed asymmetric hydrogenation of all‐carbon aromatic rings, affording a series of axially chiral cyclic compounds with high enantioselectivity through desymmetrization or kinetic resolution. In addition, the central‐chiral cyclic compounds were also obtained by asymmetric hydrogenation of phenanthrenes bearing a directing group. The key to success is the introduction of chiral diphosphine ligands with steric hindrance and strong electron‐donating properties. The axially chiral monophosphine ligands could be obtained by simple conversion of the hydrogenation products bearing the phosphine atom.
The first rhodium/diphosphine‐catalyzed asymmetric hydrogenation of all‐carbon aromatic rings, anthracenes and naphthalenes, was reported, affording the axially chiral biaryl compounds by desymmetrization or kinetic resolution. Meanwhile, central‐chiral cyclic compounds were also obtained by asymmetric hydrogenation of phenanthrenes. In addition, after simple conversion of the products, the axially chiral monophosphine ligands could be obtained. |
---|---|
AbstractList | Compared with heteroarenes, homogeneous asymmetric hydrogenation of all-carbon aromatic rings is a longstanding challenge in organic synthesis due to the strong aromaticity and difficult enantioselective control. Herein, we report the rhodium/diphosphine-catalyzed asymmetric hydrogenation of all-carbon aromatic rings, affording a series of axially chiral cyclic compounds with high enantioselectivity through desymmetrization or kinetic resolution. In addition, the central-chiral cyclic compounds were also obtained by asymmetric hydrogenation of phenanthrenes bearing a directing group. The key to success is the introduction of chiral diphosphine ligands with steric hindrance and strong electron-donating properties. The axially chiral monophosphine ligands could be obtained by simple conversion of the hydrogenation products bearing the phosphine atom. Compared with heteroarenes, homogeneous asymmetric hydrogenation of all-carbon aromatic rings is a longstanding challenge in organic synthesis due to the strong aromaticity and difficult enantioselective control. Herein, we report the rhodium/diphosphine-catalyzed asymmetric hydrogenation of all-carbon aromatic rings, affording a series of axially chiral cyclic compounds with high enantioselectivity through desymmetrization or kinetic resolution. In addition, the central-chiral cyclic compounds were also obtained by asymmetric hydrogenation of phenanthrenes bearing a directing group. The key to success is the introduction of chiral diphosphine ligands with steric hindrance and strong electron-donating properties. The axially chiral monophosphine ligands could be obtained by simple conversion of the hydrogenation products bearing the phosphine atom.Compared with heteroarenes, homogeneous asymmetric hydrogenation of all-carbon aromatic rings is a longstanding challenge in organic synthesis due to the strong aromaticity and difficult enantioselective control. Herein, we report the rhodium/diphosphine-catalyzed asymmetric hydrogenation of all-carbon aromatic rings, affording a series of axially chiral cyclic compounds with high enantioselectivity through desymmetrization or kinetic resolution. In addition, the central-chiral cyclic compounds were also obtained by asymmetric hydrogenation of phenanthrenes bearing a directing group. The key to success is the introduction of chiral diphosphine ligands with steric hindrance and strong electron-donating properties. The axially chiral monophosphine ligands could be obtained by simple conversion of the hydrogenation products bearing the phosphine atom. Compared with heteroarenes, homogeneous asymmetric hydrogenation of all‐carbon aromatic rings is a longstanding challenge in organic synthesis due to the strong aromaticity and difficult enantioselective control. Herein, we report the rhodium/diphosphine‐catalyzed asymmetric hydrogenation of all‐carbon aromatic rings, affording a series of axially chiral cyclic compounds with high enantioselectivity through desymmetrization or kinetic resolution. In addition, the central‐chiral cyclic compounds were also obtained by asymmetric hydrogenation of phenanthrenes bearing a directing group. The key to success is the introduction of chiral diphosphine ligands with steric hindrance and strong electron‐donating properties. The axially chiral monophosphine ligands could be obtained by simple conversion of the hydrogenation products bearing the phosphine atom. The first rhodium/diphosphine‐catalyzed asymmetric hydrogenation of all‐carbon aromatic rings, anthracenes and naphthalenes, was reported, affording the axially chiral biaryl compounds by desymmetrization or kinetic resolution. Meanwhile, central‐chiral cyclic compounds were also obtained by asymmetric hydrogenation of phenanthrenes. In addition, after simple conversion of the products, the axially chiral monophosphine ligands could be obtained. |
ArticleNumber | 202205623 |
Author | Chen, Mu‐Wang Zhu, Zhou‐Hao Yu, Chang‐Bin Zhou, Yong‐Gui Ding, Yi‐Xuan |
Author_xml | – sequence: 1 givenname: Yi‐Xuan surname: Ding fullname: Ding, Yi‐Xuan organization: University of Chinese Academy of Sciences – sequence: 2 givenname: Zhou‐Hao surname: Zhu fullname: Zhu, Zhou‐Hao organization: University of Chinese Academy of Sciences – sequence: 3 givenname: Mu‐Wang surname: Chen fullname: Chen, Mu‐Wang organization: Chinese Academy of Sciences – sequence: 4 givenname: Chang‐Bin surname: Yu fullname: Yu, Chang‐Bin organization: Chinese Academy of Sciences – sequence: 5 givenname: Yong‐Gui orcidid: 0000-0002-3321-5521 surname: Zhou fullname: Zhou, Yong‐Gui email: ygzhou@dicp.ac.cn organization: Dalian University of Technology |
BookMark | eNqNkcFqFTEUhoNUbHt163rAjSD3muTMJLnLYahtsSgUXYdM5kxNmUlqMkMZVz5Cn9EnMe29KhREVznhfF_OT84xOfDBIyEvGd0wSvlb4x1uOOWcVoLDE3LEKs7WICUc5LoEWEtVsUNynNJ15pWi4hk5hEqKsgI4Iu8vv4TOzeOP73eNmcywfMOuqNMyjjhFZ4uzpYvhCr2ZXPBF6It6GB7Y2OZ7HcOYO7a4dP4qPSdPezMkfLE_V-Tzu5NPzdn64uPpeVNfrG3JBKwN6xCpgI63KAzYfksZqI4rCgqNwdKWneit4KLvW84kMIlbVYm2r6SytIQVeb179yaGrzOmSY8uWRwG4zHMSXOhOK-kFDSjrx6h12GOPqfTXFIuQPFym6k3O-oW29An69Bb1DfRjSYumlKqOCgAlascdUXU_9ONmx6-rgmzn7Ja7lQbQ0oRe233_SkaN2hG9f1W9f1W9e-tZm3zSPs17a_Cdh_RDbj8g9b1h_OTP-5Px2i0Qw |
CitedBy_id | crossref_primary_10_1021_jacs_3c04983 crossref_primary_10_6023_cjoc202200053 crossref_primary_10_6023_cjoc202303001 crossref_primary_10_1021_acs_orglett_4c01737 crossref_primary_10_1021_acs_orglett_5c00014 crossref_primary_10_1039_D3CS00329A crossref_primary_10_1038_s41467_024_50009_5 crossref_primary_10_1002_ange_202301337 crossref_primary_10_1021_acscatal_4c06881 crossref_primary_10_1002_cjoc_202300503 crossref_primary_10_1002_hlca_202300085 crossref_primary_10_1021_acs_oprd_4c00064 crossref_primary_10_1021_acs_jpcc_3c02352 crossref_primary_10_1002_anie_202301337 crossref_primary_10_1021_jacs_4c15673 crossref_primary_10_1021_acscatal_4c04620 crossref_primary_10_1021_jacs_4c18009 crossref_primary_10_6023_cjoc202403017 |
Cites_doi | 10.1584/jpestics.J08-02 10.1002/ange.201915674 10.1021/jm200187y 10.1002/anie.201505898 10.1021/om020995p 10.1002/ange.201300646 10.1021/ja0353762 10.1002/anie.200802237 10.1039/c2md20347b 10.1021/acscatal.7b01316 10.1002/ange.201200963 10.1021/jm901241e 10.1002/anie.201600979 10.1002/ange.201308237 10.1021/acscatal.0c03958 10.1021/acscatal.6b01736 10.1002/ange.201304756 10.1021/ja200723n 10.1002/anie.201310562 10.1126/science.aav3421 10.1002/anie.201100008 10.1021/ol401816y 10.1002/anie.201915674 10.1039/b512139f 10.1002/ange.201505898 10.1038/s41929-019-0247-1 10.1039/C2CS35333D 10.1021/ar7000028 10.1021/ja001271c 10.1021/jm4017625 10.1021/cr020049i 10.1002/anie.200601529 10.1021/acscatal.1c00571 10.1002/anie.201300646 10.1002/anie.201200963 10.1002/anie.200701158 10.1007/128_2013_480 10.1021/acs.joc.8b00190 10.1002/anie.202103910 10.1021/cr0300845 10.1002/ange.201304039 10.1002/anie.201308237 10.1002/9780470147276.ch4 10.1021/cr200328h 10.1016/bs.aihch.2016.11.002 10.1002/ange.201310562 10.1126/science.aao0270 10.1039/D0CS00870B 10.1021/jacs.1c09975 10.1002/ange.200701158 10.1002/anie.201201153 10.1002/ange.201100008 10.1002/ange.200703925 10.1021/ja211684v 10.1021/jacs.5b05868 10.1002/anie.201107811 10.1002/anie.201701409 10.1002/ange.202103910 10.1002/anie.201304039 10.3987/REV-08-SR(N)5 10.1039/C5CC01971K 10.1021/acs.orglett.7b04060 10.1021/ar700094b 10.1002/anie.200703925 10.1002/ange.201814471 10.1021/jacs.9b03328 10.1002/ange.200802237 10.1021/jm501100b 10.1021/ja00538a061 10.1021/ja401709k 10.1002/ange.201201153 10.1039/C2CS35410A 10.1002/ange.201107811 10.1021/ja00183a002 10.1002/ange.201701409 10.1002/ange.200601529 10.1021/jacs.7b02581 10.1021/cr030082k 10.1002/anie.201814471 10.1002/ange.201600979 10.1002/anie.201304756 10.1021/jacs.6b06009 10.1039/d0cs00870b 10.1039/c5cc01971k 10.1039/c2cs35410a 10.1039/c2cs35333d |
ContentType | Journal Article |
Copyright | 2022 Wiley‐VCH GmbH 2022 Wiley-VCH GmbH. |
Copyright_xml | – notice: 2022 Wiley‐VCH GmbH – notice: 2022 Wiley-VCH GmbH. |
DBID | AAYXX CITATION 17B 1KM 1KN AHQBO BLEPL DTL EGQ 7TM K9. 7X8 |
DOI | 10.1002/anie.202205623 |
DatabaseName | CrossRef Web of Knowledge Index Chemicus Current Chemical Reactions Web of Science - Science Citation Index Expanded - 2022 Web of Science Core Collection Science Citation Index Expanded Web of Science Primary (SCIE, SSCI & AHCI) Nucleic Acids Abstracts ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic |
DatabaseTitle | CrossRef Web of Science ProQuest Health & Medical Complete (Alumni) Nucleic Acids Abstracts MEDLINE - Academic |
DatabaseTitleList | Web of Science CrossRef ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: 1KN name: Current Chemical Reactions url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/woscc/search-with-editions?editions=WOS.CCR sourceTypes: Enrichment Source Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1521-3773 |
Edition | International ed. in English |
EndPage | n/a |
ExternalDocumentID | 000823833800001 10_1002_anie_202205623 ANIE202205623 |
Genre | article |
GrantInformation_xml | – fundername: National Natural Science Foundation of China funderid: 21901239, 20532006 – fundername: K. C. Wong Education Foundation funderid: GJTD-2020-08 – fundername: National Natural Science Foundation of China; National Natural Science Foundation of China (NSFC) grantid: 21901239; 20532006 – fundername: K. C. Wong Education Foundation of Chinese Academy of Sciences; Chinese Academy of Sciences grantid: GJTD-2020-08 |
GroupedDBID | --- -DZ -~X .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5RE 5VS 66C 6TJ 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABLJU ABPPZ ABPVW ACAHQ ACCFJ ACCZN ACFBH ACGFS ACIWK ACNCT ACPOU ACPRK ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AEQDE AEUQT AEUYR AFBPY AFFNX AFFPM AFGKR AFPWT AFRAH AFWVQ AFZJQ AHBTC AHMBA AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BTSUX BY8 CS3 D-E D-F D0L DCZOG DPXWK DR1 DR2 DRFUL DRSTM EBS F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES M53 MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D PQQKQ Q.N Q11 QB0 QRW R.K RNS ROL RWI RX1 RYL SUPJJ TN5 UB1 UPT UQL V2E VQA W8V W99 WBFHL WBKPD WH7 WIB WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XSW XV2 YZZ ZZTAW ~IA ~KM ~WT AAYXX ABDBF ABJNI AEYWJ AGHNM AGYGG CITATION 17B 1KM 1KN BLEPL DTL GROUPED_WOS_SCIENCE_CITATION_INDEX_EXPANDED GROUPED_WOS_WEB_OF_SCIENCE 7TM K9. 7X8 |
ID | FETCH-LOGICAL-c4163-a1dee063d2be6a3cf90138d28038eaae4c4d6fc626ffb217317e9856bf578c043 |
IEDL.DBID | DR2 |
ISICitedReferencesCount | 28 |
ISICitedReferencesURI | https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestApp=WOS&DestLinkType=CitingArticles&UT=000823833800001 |
ISSN | 1433-7851 1521-3773 |
IngestDate | Fri Jul 11 15:59:57 EDT 2025 Sun Jul 13 05:33:54 EDT 2025 Wed Jul 09 17:53:11 EDT 2025 Fri Aug 29 16:15:54 EDT 2025 Tue Jul 01 01:18:24 EDT 2025 Thu Apr 24 22:57:58 EDT 2025 Wed Jan 22 16:24:42 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 34 |
Keywords | COMPLEX Desymmetrization ENANTIOSELECTIVE REDUCTION QUINOLINES Asymmetric Hydrogenation RUTHENIUM HETEROAROMATIC-COMPOUNDS All-Carbon Aromatic Rings PHOSPHORUS LIGANDS KETONES Kinetic Resolution Rhodium ACCESS |
Language | English |
LinkModel | DirectLink |
LogoURL | https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg |
MergedId | FETCHMERGED-LOGICAL-c4163-a1dee063d2be6a3cf90138d28038eaae4c4d6fc626ffb217317e9856bf578c043 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-3321-5521 |
PMID | 35764533 |
PQID | 2702638249 |
PQPubID | 946352 |
PageCount | 9 |
ParticipantIDs | webofscience_primary_000823833800001CitationCount wiley_primary_10_1002_anie_202205623_ANIE202205623 webofscience_primary_000823833800001 crossref_citationtrail_10_1002_anie_202205623 proquest_miscellaneous_2682257760 proquest_journals_2702638249 crossref_primary_10_1002_anie_202205623 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | August 22, 2022 |
PublicationDateYYYYMMDD | 2022-08-22 |
PublicationDate_xml | – month: 08 year: 2022 text: August 22, 2022 day: 22 |
PublicationDecade | 2020 |
PublicationPlace | WEINHEIM |
PublicationPlace_xml | – name: WEINHEIM – name: Weinheim |
PublicationTitle | Angewandte Chemie International Edition |
PublicationTitleAbbrev | ANGEW CHEM INT EDIT |
PublicationYear | 2022 |
Publisher | Wiley Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley – name: Wiley Subscription Services, Inc |
References | 2014 2014; 53 126 2017; 7 2013; 4 1989; 111 2020 2020; 59 132 2011; 54 2008; 76 2008; 33 2018; 83 2020; 10 2008 2008; 47 120 2017; 357 2013 2013; 52 125 2019; 363 2009; 52 2013; 15 2012; 134 2015; 137 2012 2012; 51 124 2005; 105 2015 2015; 54 127 2014; 57 2000; 122 2003; 125 2017; 123 1980; 102 1988; 18 2015; 51 2019; 2 2013; 42 2013; 343 2017 2017; 56 129 2021; 143 2021; 50 2019; 141 2018; 20 2019 2019; 58 131 2011; 133 2017; 139 2006 2006; 45 118 2016; 6 2016 2016; 55 128 2012; 112 2021; 11 2007 2007; 46 119 2021 2021; 60 133 2013; 135 2011 2011; 50 123 2016; 138 2005; 3 2007; 40 2003; 103 2003; 22 e_1_2_7_5_2 e_1_2_7_3_2 e_1_2_7_9_2 e_1_2_7_7_2 e_1_2_7_19_3 e_1_2_7_5_3 e_1_2_7_19_2 e_1_2_7_17_3 e_1_2_7_60_1 e_1_2_7_17_2 e_1_2_7_15_2 e_1_2_7_1_1 e_1_2_7_41_2 e_1_2_7_62_2 e_1_2_7_11_3 e_1_2_7_13_1 e_1_2_7_43_1 e_1_2_7_64_3 e_1_2_7_11_2 e_1_2_7_64_2 e_1_2_7_45_2 e_1_2_7_66_2 e_1_2_7_47_1 e_1_2_7_68_2 e_1_2_7_26_2 e_1_2_7_49_1 e_1_2_7_26_3 e_1_2_7_28_2 e_1_2_7_71_2 e_1_2_7_71_3 e_1_2_7_73_1 e_1_2_7_50_1 e_1_2_7_25_2 e_1_2_7_52_2 e_1_2_7_23_3 e_1_2_7_23_2 e_1_2_7_31_2 e_1_2_7_54_1 e_1_2_7_33_2 e_1_2_7_56_2 e_1_2_7_21_1 e_1_2_7_35_1 e_1_2_7_58_2 e_1_2_7_37_2 e_1_2_7_39_2 e_1_2_7_4_2 e_1_2_7_2_2 e_1_2_7_8_2 e_1_2_7_6_2 e_1_2_7_18_3 e_1_2_7_18_2 e_1_2_7_16_3 e_1_2_7_16_2 e_1_2_7_61_2 e_1_2_7_14_2 e_1_2_7_40_2 e_1_2_7_63_2 e_1_2_7_42_1 e_1_2_7_12_2 e_1_2_7_42_2 e_1_2_7_65_2 e_1_2_7_10_3 e_1_2_7_63_3 e_1_2_7_10_2 e_1_2_7_44_2 e_1_2_7_67_2 e_1_2_7_44_3 e_1_2_7_65_3 e_1_2_7_46_2 e_1_2_7_48_1 e_1_2_7_67_3 e_1_2_7_69_1 e_1_2_7_27_1 e_1_2_7_48_2 e_1_2_7_29_2 e_1_2_7_70_3 e_1_2_7_72_1 e_1_2_7_70_2 e_1_2_7_24_2 e_1_2_7_30_2 e_1_2_7_51_2 e_1_2_7_22_3 e_1_2_7_74_1 e_1_2_7_22_2 e_1_2_7_32_2 e_1_2_7_53_2 e_1_2_7_20_2 e_1_2_7_34_2 e_1_2_7_55_2 e_1_2_7_36_2 e_1_2_7_57_2 e_1_2_7_38_2 e_1_2_7_59_2 (000823833800001.55) 2021; 133 Kagan, H.B. (000823833800001.82) 1988; 18 Zhou, YG (WOS:000251787500015) 2007; 40 (000823833800001.70) 2013; 125 Borowski, AF (WOS:000182119700016) 2003; 22 Chen, QA (WOS:000301084600085) 2012; 134 Cheng, DJ (WOS:000337176800016) 2014; 53 (000823833800001.50) 2012; 124 Glorius, F (WOS:000233362000001) 2005; 3 (000823833800001.22) 2012; 124 (000823833800001.27) 2007; 119 Meanwell, NA (WOS:000406858800006) 2017; 123 Lovering, F (WOS:000315355800005) 2013; 4 Carmona, JA (WOS:000637003700032) 2021; 11 He, YM (WOS:000356813000006) 2014; 343 Lovering, F (WOS:000271427900027) 2009; 52 Chen, QA (WOS:000312460600007) 2013; 42 (000823833800001.5) 2012; 124 Zhan, BB (WOS:000508989600001) 2020; 59 GREY, RA (WOS:A1980KE71000060) 1980; 102 Guo, QS (WOS:000252652200029) 2008; 47 Kim, AN (WOS:000598140200008) 2020; 10 Yu, ZK (WOS:000305180400005) 2012; 51 (000823833800001.78) 2013; 125 (000823833800001.13) 2019; 131 Wiesenfeldt, MP (WOS:000408734900040) 2017; 357 Wei, Y (WOS:000358896600014) 2015; 137 Ortega, N (WOS:000299946400041) 2012; 51 Zhou, HF (WOS:000260622700025) 2008; 47 Li, HF (WOS:000405360800027) 2017; 7 (000823833800001.68) 2013; 125 Yan, Z (WOS:000426013600050) 2018; 20 (000823833800001.24) 2017; 129 Tosatti, P (WOS:000398154000032) 2017; 56 Huang, LW (WOS:000373133000020) 2016; 55 Cyranski, MK (WOS:000232755200012) 2005; 105 Urban, S (WOS:000289276000036) 2011; 50 Shugrue, CR (WOS:000363389400032) 2015; 54 Wiesenfeldt, MP (WOS:000476919100009) 2019; 58 (000823833800001.83) 1000 (000823833800001.75) 2020; 132 Welin, ER (WOS:000456140700034) 2019; 363 Kuwano, R (WOS:000088683200031) 2000; 122 Wang, J (WOS:000382181900011) 2016; 138 Taylor, RD (WOS:000339540800002) 2014; 57 Rueping, M (WOS:000247500600032) 2007; 46 Moock, D (WOS:000646985600001) 2021; 60 Li, GQ (WOS:000319551000007) 2013; 135 Kuwano, R (WOS:000353033600035) 2015; 51 Etayo, P (WOS:000312460600017) 2013; 42 Han, B (WOS:000470939200050) 2019; 141 Qi, LW (WOS:000464248600011) 2019; 2 Kuwano, R (WOS:000262427000002) 2008; 76 Zhang, WC (WOS:000251787500007) 2007; 40 Zhao, QY (WOS:000322853000054) 2013; 15 (000823833800001.18) 2006; 118 Wu, HB (WOS:000750743100037) 2021; 143 (000823833800001.80) 2016; 128 Vitaku, E (WOS:000347437400004) 2014; 57 Liu, GD (WOS:000317064600031) 2013; 52 (000823833800001.20) 2008; 120 (000823833800001.11) 2013; 125 KATRITZKY, AR (WOS:A1989R647200002) 1989; 111 Jin, YS (WOS:000429886100040) 2018; 83 Roughley, SD (WOS:000290651800001) 2011; 54 Shirakawa, S (WOS:000328531100060) 2013; 52 (000823833800001.29) 2008; 120 Wang, WB (WOS:000185012800027) 2003; 125 De, CK (WOS:000323393100050) 2013; 52 Heine, T (WOS:000232755200015) 2005; 105 (000823833800001.72) 2014; 126 Carmona, JA (WOS:000629731800003) 2021; 50 Sanemitsu, Y (WOS:000257471900010) 2008; 33 Tang, WJ (WOS:000184821500013) 2003; 103 Zhao, DB (WOS:000323829600008) 2013; 52 Chen, QA (WOS:000292715500008) 2011; 133 (000823833800001.33) 2015; 127 Shoba, VM (WOS:000400321500027) 2017; 139 Wang, DS (WOS:000303283900020) 2012; 112 Kuwano, R (WOS:000303001000026) 2012; 51 (000823833800001.48) 2011; 123 Zhao, DB (WOS:000382714000038) 2016; 6 Kaiser, S (WOS:000239808500026) 2006; 45 |
References_xml | – volume: 59 132 start-page: 3568 3596 year: 2020 2020 end-page: 3572 3600 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 54 127 start-page: 11173 11325 year: 2015 2015 end-page: 11176 11328 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 15 start-page: 4014 year: 2013 end-page: 4017 publication-title: Org. Lett. – volume: 52 start-page: 6752 year: 2009 end-page: 6756 publication-title: J. Med. Chem. – volume: 55 128 start-page: 4527 4603 year: 2016 2016 end-page: 4531 4607 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 51 start-page: 7558 year: 2015 end-page: 7561 publication-title: Chem. Commun. – volume: 2 start-page: 314 year: 2019 end-page: 323 publication-title: Nat. Catal. – volume: 137 start-page: 9250 year: 2015 end-page: 9253 publication-title: J. Am. Chem. Soc. – volume: 139 start-page: 5740 year: 2017 end-page: 5743 publication-title: J. Am. Chem. Soc. – volume: 112 start-page: 2557 year: 2012 end-page: 2590 publication-title: Chem. Rev. – volume: 3 start-page: 4171 year: 2005 end-page: 4175 publication-title: Org. Biomol. Chem. – volume: 7 start-page: 4446 year: 2017 end-page: 4450 publication-title: ACS Catal. – volume: 52 125 start-page: 9616 9794 year: 2013 2013 end-page: 9618 9796 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 50 start-page: 2968 year: 2021 end-page: 2983 publication-title: Chem. Soc. Rev. – volume: 57 start-page: 5845 year: 2014 end-page: 5859 publication-title: J. Med. Chem. – volume: 102 start-page: 5948 year: 1980 end-page: 5949 publication-title: J. Am. Chem. Soc. – volume: 51 124 start-page: 4136 4212 year: 2012 2012 end-page: 4139 4215 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 33 start-page: 175 year: 2008 end-page: 177 publication-title: J. Pestic. Sci. – volume: 50 123 start-page: 3803 3887 year: 2011 2011 end-page: 3806 3890 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 40 start-page: 1357 year: 2007 end-page: 1366 publication-title: Acc. Chem. Res. – volume: 42 start-page: 497 year: 2013 end-page: 511 publication-title: Chem. Soc. Rev. – volume: 51 124 start-page: 1710 1742 year: 2012 2012 end-page: 1713 1745 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 141 start-page: 9018 year: 2019 end-page: 9026 publication-title: J. Am. Chem. Soc. – volume: 103 start-page: 3029 year: 2003 end-page: 3070 publication-title: Chem. Rev. – volume: 105 start-page: 3773 year: 2005 end-page: 3811 publication-title: Chem. Rev. – volume: 138 start-page: 10413 year: 2016 end-page: 10416 publication-title: J. Am. Chem. Soc. – volume: 343 start-page: 145 year: 2013 end-page: 190 publication-title: Top. Curr. Chem. – volume: 58 131 start-page: 10460 10570 year: 2019 2019 end-page: 10476 10586 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 83 start-page: 3829 year: 2018 end-page: 3839 publication-title: J. Org. Chem. – volume: 143 start-page: 20377 year: 2021 end-page: 20383 publication-title: J. Am. Chem. Soc. – volume: 45 118 start-page: 5194 5318 year: 2006 2006 end-page: 5197 5321 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 123 start-page: 245 year: 2017 end-page: 361 publication-title: Adv. Heterocycl. Chem. – volume: 53 126 start-page: 3684 3758 year: 2014 2014 end-page: 3687 3761 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 4 start-page: 515 year: 2013 end-page: 519 publication-title: MedChemComm – volume: 56 129 start-page: 4579 4650 year: 2017 2017 end-page: 4582 4653 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 54 start-page: 3451 year: 2011 end-page: 3479 publication-title: J. Med. Chem. – volume: 60 133 start-page: 13677 13791 year: 2021 2021 end-page: 13681 13796 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 133 start-page: 6126 year: 2011 end-page: 6129 publication-title: J. Am. Chem. Soc. – volume: 52 125 start-page: 4235 4329 year: 2013 2013 end-page: 4238 4332 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 125 start-page: 10536 year: 2003 end-page: 10537 publication-title: J. Am. Chem. Soc. – volume: 52 125 start-page: 14200 14450 year: 2013 2013 end-page: 14203 14453 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 135 start-page: 7414 year: 2013 end-page: 7417 publication-title: J. Am. Chem. Soc. – volume: 111 start-page: 7 year: 1989 end-page: 15 publication-title: J. Am. Chem. Soc. – volume: 42 start-page: 728 year: 2013 end-page: 754 publication-title: Chem. Soc. Rev. – volume: 76 start-page: 909 year: 2008 end-page: 922 publication-title: Heterocycles – volume: 47 120 start-page: 8464 8592 year: 2008 2008 end-page: 8467 8595 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 52 125 start-page: 9293 9463 year: 2013 2013 end-page: 9295 9465 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 22 start-page: 1630 year: 2003 end-page: 1637 publication-title: Organometallics – volume: 105 start-page: 3889 year: 2005 end-page: 3910 publication-title: Chem. Rev. – volume: 11 start-page: 4117 year: 2021 end-page: 4124 publication-title: ACS Catal. – volume: 6 start-page: 5978 year: 2016 end-page: 5988 publication-title: ACS Catal. – volume: 122 start-page: 7614 year: 2000 end-page: 7615 publication-title: J. Am. Chem. Soc. – volume: 18 start-page: 249 year: 1988 end-page: 330 publication-title: Top. Stereochem. – volume: 51 124 start-page: 6060 6164 year: 2012 2012 end-page: 6072 6177 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 40 start-page: 1278 year: 2007 end-page: 1290 publication-title: Acc. Chem. Res. – volume: 20 start-page: 1094 year: 2018 end-page: 1097 publication-title: Org. Lett. – volume: 47 120 start-page: 759 771 year: 2008 2008 end-page: 762 774 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 57 start-page: 10257 year: 2014 end-page: 10274 publication-title: J. Med. Chem. – volume: 46 119 start-page: 4562 4646 year: 2007 2007 end-page: 4565 4649 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 10 start-page: 13834 year: 2020 end-page: 13851 publication-title: ACS Catal. – volume: 363 start-page: 270 year: 2019 end-page: 275 publication-title: Science – volume: 134 start-page: 2442 year: 2012 end-page: 2448 publication-title: J. Am. Chem. Soc. – volume: 357 start-page: 908 year: 2017 end-page: 912 publication-title: Science – ident: e_1_2_7_34_2 doi: 10.1584/jpestics.J08-02 – ident: e_1_2_7_67_3 doi: 10.1002/ange.201915674 – ident: e_1_2_7_32_2 doi: 10.1021/jm200187y – ident: e_1_2_7_26_2 doi: 10.1002/anie.201505898 – ident: e_1_2_7_37_2 doi: 10.1021/om020995p – ident: e_1_2_7_70_3 doi: 10.1002/ange.201300646 – ident: e_1_2_7_15_2 doi: 10.1021/ja0353762 – ident: e_1_2_7_17_2 doi: 10.1002/anie.200802237 – ident: e_1_2_7_31_2 doi: 10.1039/c2md20347b – ident: e_1_2_7_39_2 doi: 10.1021/acscatal.7b01316 – ident: e_1_2_7_5_3 doi: 10.1002/ange.201200963 – ident: e_1_2_7_30_2 doi: 10.1021/jm901241e – ident: e_1_2_7_71_2 doi: 10.1002/anie.201600979 – ident: e_1_2_7_64_3 doi: 10.1002/ange.201308237 – ident: e_1_2_7_74_1 – ident: e_1_2_7_12_2 doi: 10.1021/acscatal.0c03958 – ident: e_1_2_7_60_1 – ident: e_1_2_7_8_2 doi: 10.1021/acscatal.6b01736 – ident: e_1_2_7_10_3 doi: 10.1002/ange.201304756 – ident: e_1_2_7_24_2 doi: 10.1021/ja200723n – ident: e_1_2_7_65_2 doi: 10.1002/anie.201310562 – ident: e_1_2_7_20_2 doi: 10.1126/science.aav3421 – ident: e_1_2_7_42_1 doi: 10.1002/anie.201100008 – ident: e_1_2_7_55_2 doi: 10.1021/ol401816y – ident: e_1_2_7_67_2 doi: 10.1002/anie.201915674 – ident: e_1_2_7_2_2 doi: 10.1039/b512139f – ident: e_1_2_7_26_3 doi: 10.1002/ange.201505898 – ident: e_1_2_7_66_2 doi: 10.1038/s41929-019-0247-1 – ident: e_1_2_7_6_2 doi: 10.1039/C2CS35333D – ident: e_1_2_7_57_2 doi: 10.1021/ar7000028 – ident: e_1_2_7_13_1 – ident: e_1_2_7_21_1 – ident: e_1_2_7_14_2 doi: 10.1021/ja001271c – ident: e_1_2_7_29_2 doi: 10.1021/jm4017625 – ident: e_1_2_7_56_2 doi: 10.1021/cr020049i – ident: e_1_2_7_16_2 doi: 10.1002/anie.200601529 – ident: e_1_2_7_68_2 doi: 10.1021/acscatal.1c00571 – ident: e_1_2_7_27_1 – ident: e_1_2_7_70_2 doi: 10.1002/anie.201300646 – ident: e_1_2_7_5_2 doi: 10.1002/anie.201200963 – ident: e_1_2_7_35_1 – ident: e_1_2_7_22_2 doi: 10.1002/anie.200701158 – ident: e_1_2_7_7_2 doi: 10.1007/128_2013_480 – ident: e_1_2_7_46_2 doi: 10.1021/acs.joc.8b00190 – ident: e_1_2_7_43_1 – ident: e_1_2_7_48_1 doi: 10.1002/anie.202103910 – ident: e_1_2_7_53_2 doi: 10.1021/cr0300845 – ident: e_1_2_7_54_1 – ident: e_1_2_7_63_3 doi: 10.1002/ange.201304039 – ident: e_1_2_7_64_2 doi: 10.1002/anie.201308237 – ident: e_1_2_7_73_1 doi: 10.1002/9780470147276.ch4 – ident: e_1_2_7_9_2 doi: 10.1021/cr200328h – ident: e_1_2_7_33_2 doi: 10.1016/bs.aihch.2016.11.002 – ident: e_1_2_7_65_3 doi: 10.1002/ange.201310562 – ident: e_1_2_7_40_2 doi: 10.1126/science.aao0270 – ident: e_1_2_7_61_2 doi: 10.1039/D0CS00870B – ident: e_1_2_7_49_1 doi: 10.1021/jacs.1c09975 – ident: e_1_2_7_22_3 doi: 10.1002/ange.200701158 – ident: e_1_2_7_44_2 doi: 10.1002/anie.201201153 – ident: e_1_2_7_42_2 doi: 10.1002/ange.201100008 – ident: e_1_2_7_23_3 doi: 10.1002/ange.200703925 – ident: e_1_2_7_25_2 doi: 10.1021/ja211684v – ident: e_1_2_7_38_2 doi: 10.1021/jacs.5b05868 – ident: e_1_2_7_18_2 doi: 10.1002/anie.201107811 – ident: e_1_2_7_19_2 doi: 10.1002/anie.201701409 – ident: e_1_2_7_48_2 doi: 10.1002/ange.202103910 – ident: e_1_2_7_63_2 doi: 10.1002/anie.201304039 – ident: e_1_2_7_1_1 – ident: e_1_2_7_3_2 doi: 10.3987/REV-08-SR(N)5 – ident: e_1_2_7_45_2 doi: 10.1039/C5CC01971K – ident: e_1_2_7_47_1 doi: 10.1021/acs.orglett.7b04060 – ident: e_1_2_7_4_2 doi: 10.1021/ar700094b – ident: e_1_2_7_23_2 doi: 10.1002/anie.200703925 – ident: e_1_2_7_11_3 doi: 10.1002/ange.201814471 – ident: e_1_2_7_41_2 doi: 10.1021/jacs.9b03328 – ident: e_1_2_7_17_3 doi: 10.1002/ange.200802237 – ident: e_1_2_7_28_2 doi: 10.1021/jm501100b – ident: e_1_2_7_36_2 doi: 10.1021/ja00538a061 – ident: e_1_2_7_62_2 doi: 10.1021/ja401709k – ident: e_1_2_7_69_1 – ident: e_1_2_7_44_3 doi: 10.1002/ange.201201153 – ident: e_1_2_7_58_2 doi: 10.1039/C2CS35410A – ident: e_1_2_7_18_3 doi: 10.1002/ange.201107811 – ident: e_1_2_7_51_2 doi: 10.1021/ja00183a002 – ident: e_1_2_7_19_3 doi: 10.1002/ange.201701409 – ident: e_1_2_7_16_3 doi: 10.1002/ange.200601529 – ident: e_1_2_7_59_2 doi: 10.1021/jacs.7b02581 – ident: e_1_2_7_50_1 – ident: e_1_2_7_52_2 doi: 10.1021/cr030082k – ident: e_1_2_7_11_2 doi: 10.1002/anie.201814471 – ident: e_1_2_7_71_3 doi: 10.1002/ange.201600979 – ident: e_1_2_7_10_2 doi: 10.1002/anie.201304756 – ident: e_1_2_7_72_1 doi: 10.1021/jacs.6b06009 – volume: 52 start-page: 9616 year: 2013 ident: WOS:000323829600008 article-title: Enantioselective Hydrogenation of Isoquinolines publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION doi: 10.1002/anie.201304756 – volume: 50 start-page: 2968 year: 2021 ident: WOS:000629731800003 article-title: Atroposelective transformation of axially chiral (hetero)biaryls. From desymmetrization to modern resolution strategies publication-title: CHEMICAL SOCIETY REVIEWS doi: 10.1039/d0cs00870b – volume: 135 start-page: 7414 year: 2013 ident: WOS:000319551000007 article-title: Organocatalytic Aryl-Aryl Bond Formation: An Atroposelective [3,3]-Rearrangement Approach to BINAM Derivatives publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY doi: 10.1021/ja401709k – volume: 51 start-page: 7558 year: 2015 ident: WOS:000353033600035 article-title: Catalytic asymmetric hydrogenation of quinoline carbocycles: unusual chemoselectivity in the hydrogenation of quinolines publication-title: CHEMICAL COMMUNICATIONS doi: 10.1039/c5cc01971k – volume: 60 start-page: 13677 year: 2021 ident: WOS:000646985600001 article-title: Enantio- and Diastereoselective, Complete Hydrogenation of Benzofurans by Cascade Catalysis publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION doi: 10.1002/anie.202103910 – volume: 127 start-page: 11325 year: 2015 ident: 000823833800001.33 publication-title: Angew. Chem – volume: 11 start-page: 4117 year: 2021 ident: WOS:000637003700032 article-title: Atroposelective Transfer Hydrogenation of Biaryl Aminals via Dynamic Kinetic Resolution. Synthesis of Axially Chiral Diamines publication-title: ACS CATALYSIS doi: 10.1021/acscatal.1c00571 – volume: 57 start-page: 5845 year: 2014 ident: WOS:000339540800002 article-title: Rings in Drugs publication-title: JOURNAL OF MEDICINAL CHEMISTRY doi: 10.1021/jm4017625 – volume: 123 start-page: 3887 year: 2011 ident: 000823833800001.48 publication-title: Angew. Chem – volume: 54 start-page: 11173 year: 2015 ident: WOS:000363389400032 article-title: Phosphothreonine as a Catalytic Residue in Peptide-Mediated Asymmetric Transfer Hydrogenations of 8-Aminoquinolines publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION doi: 10.1002/anie.201505898 – volume: 46 start-page: 4562 year: 2007 ident: WOS:000247500600032 article-title: Organocatalytic enantioselective reduction of Pyridines publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION doi: 10.1002/anie.200701158 – volume: 125 start-page: 9463 year: 2013 ident: 000823833800001.68 publication-title: Angew. Chem. – volume: 123 start-page: 245 year: 2017 ident: WOS:000406858800006 article-title: A Synopsis of the Properties and Applications of Heteroaromatic Rings in Medicinal Chemistry publication-title: ADVANCES IN HETEROCYCLIC CHEMISTRY, VOL 123 doi: 10.1016/bs.aihch.2016.11.002 – volume: 40 start-page: 1278 year: 2007 ident: WOS:000251787500007 article-title: Developing chiral ligands for asymmetric hydrogenation publication-title: ACCOUNTS OF CHEMICAL RESEARCH doi: 10.1021/ar7000028 – volume: 52 start-page: 4235 year: 2013 ident: WOS:000317064600031 article-title: Design of Phosphorus Ligands with Deep Chiral Pockets: Practical Synthesis of Chiral β-Arylamines by Asymmetric Hydrogenation publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION doi: 10.1002/anie.201300646 – volume: 138 start-page: 10413 year: 2016 ident: WOS:000382181900011 article-title: Kinetic Resolution of Axially Chiral 5-or 8-Substituted Quinolines via Asymmetric Transfer Hydrogenation publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY doi: 10.1021/jacs.6b06009 – volume: 59 start-page: 3568 year: 2020 ident: WOS:000508989600001 article-title: Synthesis of Axially Chiral Biaryl-2-amines by PdII-Catalyzed Free-Amine-Directed Atroposelective C-H Olefination publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION doi: 10.1002/anie.201915674 – volume: 143 start-page: 20377 year: 2021 ident: WOS:000750743100037 article-title: Asymmetric Full Saturation of Vinylarenes with Cooperative Homogeneous and Heterogeneous Rhodium Catalysis publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY doi: 10.1021/jacs.1c09975 – volume: 343 start-page: 145 year: 2014 ident: WOS:000356813000006 article-title: Advances in Transition Metal-Catalyzed Asymmetric Hydrogenation of Heteroaromatic Compounds publication-title: STEREOSELECTIVE FORMATION OF AMINES doi: 10.1007/128_2013_480 – volume: 134 start-page: 2442 year: 2012 ident: WOS:000301084600085 article-title: Dihydrophenanthridine: A New and Easily Regenerable NAD(P)H Model for Biomimetic Asymmetric Hydrogenation publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY doi: 10.1021/ja211684v – volume: 128 start-page: 4603 year: 2016 ident: 000823833800001.80 publication-title: Angew. Chem. – volume: 129 start-page: 4650 year: 2017 ident: 000823833800001.24 publication-title: Angew. Chem. – volume: 124 start-page: 1742 year: 2012 ident: 000823833800001.22 publication-title: Angew. Chem – volume: 125 start-page: 14450 year: 2013 ident: 000823833800001.70 publication-title: Angew. Chem – volume: 133 start-page: 13791 year: 2021 ident: 000823833800001.55 publication-title: Angew. Chem. – volume: 102 start-page: 5948 year: 1980 ident: WOS:A1980KE71000060 article-title: SELECTIVE HOMOGENEOUS CATALYTIC-HYDROGENATION OF POLYNUCLEAR AROMATICS publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY – volume: 54 start-page: 3451 year: 2011 ident: WOS:000290651800001 article-title: The Medicinal Chemist's Toolbox: An Analysis of Reactions Used in the Pursuit of Drug Candidates publication-title: JOURNAL OF MEDICINAL CHEMISTRY doi: 10.1021/jm200187y – volume: 56 start-page: 4579 year: 2017 ident: WOS:000398154000032 article-title: Iridium-Catalyzed Asymmetric Hydrogenation of Benzo[b]thiophene 1,1-Dioxides publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION doi: 10.1002/anie.201701409 – volume: 50 start-page: 3803 year: 2011 ident: WOS:000289276000036 article-title: Ligand-Controlled Highly Regioselective and Asymmetric Hydrogenation of Quinoxalines Catalyzed by Ruthenium N-Heterocyclic Carbene Complexes publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION doi: 10.1002/anie.201100008 – volume: 7 start-page: 4446 year: 2017 ident: WOS:000405360800027 article-title: Selective Catalytic Hydrogenation of Arenols by a Wel-Defined Complex of Ruthenium and Phosphorus-Nitrogen PN3-Pincer Ligand Containing a Phenanthroline Backbone publication-title: ACS CATALYSIS doi: 10.1021/acscatal.7b01316 – volume: 15 start-page: 4014 year: 2013 ident: WOS:000322853000054 article-title: A Novel Chiral Bisphosphine-Thiourea Ligand for Asymmetric Hydrogenation of β,β-Disubstituted Nitroalkenes publication-title: ORGANIC LETTERS doi: 10.1021/ol401816y – volume: 47 start-page: 8464 year: 2008 ident: WOS:000260622700025 article-title: Hydrogenation of Quinolines Using a Recyclable Phosphine-Free Chiral Cationic Ruthenium Catalyst: Enhancement of Catalyst Stability and Selectivity in an Ionic Liquid publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION doi: 10.1002/anie.200802237 – volume: 53 start-page: 3684 year: 2014 ident: WOS:000337176800016 article-title: Highly Enantioselective Kinetic Resolution of Axially Chiral BINAM Derivatives Catalyzed by a Bronsted Acid publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION doi: 10.1002/anie.201310562 – volume: 42 start-page: 728 year: 2013 ident: WOS:000312460600017 article-title: Rhodium-catalysed asymmetric hydrogenation as a valuable synthetic tool for the preparation of chiral drugs publication-title: CHEMICAL SOCIETY REVIEWS doi: 10.1039/c2cs35410a – volume: 40 start-page: 1357 year: 2007 ident: WOS:000251787500015 article-title: Asymmetric hydrogenation of heteroaromatic compounds publication-title: ACCOUNTS OF CHEMICAL RESEARCH doi: 10.1021/ar700094b – volume: 2 start-page: 314 year: 2019 ident: WOS:000464248600011 article-title: Asymmetric construction of atropisomeric biaryls via a redox neutral cross-coupling strategy publication-title: NATURE CATALYSIS doi: 10.1038/s41929-019-0247-1 – volume: 22 start-page: 1630 year: 2003 ident: WOS:000182119700016 article-title: Reactivity of the bis(dihydrogen) complex [RuH2(η2-H2)2(PCy3)2] toward N-heteroaromatic compounds. Regioselective hydrogenation of acridine to 1,2,3,4,5,6,7,8-octahydroacridine publication-title: ORGANOMETALLICS doi: 10.1021/om020995p – volume: 51 start-page: 6060 year: 2012 ident: WOS:000305180400005 article-title: Bronsted Acid Activation Strategy in Transition-Metal Catalyzed Asymmetric Hydrogenation of N-Unprotected Imines, Enamines, and N-Heteroaromatic Compounds publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION doi: 10.1002/anie.201200963 – volume: 132 start-page: 3596 year: 2020 ident: 000823833800001.75 publication-title: Angew. Chem – volume: 124 start-page: 6164 year: 2012 ident: 000823833800001.5 publication-title: Angew. Chem – volume: 133 start-page: 6126 year: 2011 ident: WOS:000292715500008 article-title: Convergent Asymmetric Disproportionation Reactions: Metal/Bronsted Acid Relay Catalysis for Enantioselective Reduction of Quinoxalines publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY doi: 10.1021/ja200723n – volume: 58 start-page: 10460 year: 2019 ident: WOS:000476919100009 article-title: Selective Arene Hydrogenation for Direct Access to Saturated Carbo- and Heterocycles publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION doi: 10.1002/anie.201814471 – volume: 55 start-page: 4527 year: 2016 ident: WOS:000373133000020 article-title: Highly Enantioselective Rhodium-Catalyzed Addition of Arylboroxines to Simple Aryl Ketones: Efficient Synthesis of Escitalopram publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION doi: 10.1002/anie.201600979 – volume: 42 start-page: 497 year: 2013 ident: WOS:000312460600007 article-title: Homogeneous palladium-catalyzed asymmetric hydrogenation publication-title: CHEMICAL SOCIETY REVIEWS doi: 10.1039/c2cs35333d – volume: 52 start-page: 9293 year: 2013 ident: WOS:000323393100050 article-title: Catalytic Asymmetric Benzidine Rearrangement publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION doi: 10.1002/anie.201304039 – volume: 131 start-page: 10570 year: 2019 ident: 000823833800001.13 publication-title: Angew. Chem – volume: 47 start-page: 759 year: 2008 ident: WOS:000252652200029 article-title: The development of double axially chiral phosphoric acids and their catalytic transfer hydrogenation of quinolines publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION doi: 10.1002/anie.200703925 – volume: 105 start-page: 3773 year: 2005 ident: WOS:000232755200012 article-title: Energetic aspects of cyclic Pi-electron delocalization: Evaluation of the methods of estimating aromatic stabilization energies publication-title: CHEMICAL REVIEWS doi: 10.1021/cr0300845 – volume: 33 start-page: 175 year: 2008 ident: WOS:000257471900010 article-title: Studies on the synthetic development for the discovery of novel heterocyclic agrochemicals publication-title: JOURNAL OF PESTICIDE SCIENCE doi: 10.1584/jpestics.J08-02 – volume: 103 start-page: 3029 year: 2003 ident: WOS:000184821500013 article-title: New chiral phosphorus ligands for enantioselective hydrogenation publication-title: CHEMICAL REVIEWS doi: 10.1021/cr020049i – volume: 357 start-page: 908 year: 2017 ident: WOS:000408734900040 article-title: Hydrogenation of fluoroarenes: Direct access to all-cis-(multi)fluorinated cycloalkanes publication-title: SCIENCE doi: 10.1126/science.aao0270 – volume: 119 start-page: 4646 year: 2007 ident: 000823833800001.27 publication-title: Angew. Chem. – volume: 6 start-page: 5978 year: 2016 ident: WOS:000382714000038 article-title: N-Heterocyclic Carbenes in Asymmetric Hydrogenation publication-title: ACS CATALYSIS doi: 10.1021/acscatal.6b01736 – volume: 118 start-page: 5318 year: 2006 ident: 000823833800001.18 publication-title: Angew. Chem – volume: 83 start-page: 3829 year: 2018 ident: WOS:000429886100040 article-title: Ruthenium-Catalyzed Chemo- and Enantioselective Hydrogenation of Isoquinoline Carbocycles publication-title: JOURNAL OF ORGANIC CHEMISTRY doi: 10.1021/acs.joc.8b00190 – volume: 45 start-page: 5194 year: 2006 ident: WOS:000239808500026 article-title: Iridium catalysts with bicyclic pyridine-phosphinite ligands: Asymmetric hydrogenation of olefins and furan derivatives publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION doi: 10.1002/anie.200601529 – volume: 363 start-page: 270 year: 2019 ident: WOS:000456140700034 article-title: Concise total syntheses of (-)-jorunnamycin A and (-)-jorumycin enabled by asymmetric catalysis publication-title: SCIENCE doi: 10.1126/science.aav3421 – volume: 137 start-page: 9250 year: 2015 ident: WOS:000358896600014 article-title: Highly Selective Hydrogenation of Aromatic Ketones and Phenols Enabled by Cyclic (Amino)(alkyl)carbene Rhodium Complexes publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY doi: 10.1021/jacs.5b05868 – volume: 141 start-page: 9018 year: 2019 ident: WOS:000470939200050 article-title: Chromium- and Cobalt-Catalyzed, Regiocontrolled Hydrogenation of Polycyclic Aromatic Hydrocarbons: A Combined Experimental and Theoretical Study publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY doi: 10.1021/jacs.9b03328 – volume: 126 start-page: 3758 year: 2014 ident: 000823833800001.72 publication-title: Angew. Chem – volume: 120 start-page: 771 year: 2008 ident: 000823833800001.29 publication-title: Angew. Chem – volume: 111 start-page: 7 year: 1989 ident: WOS:A1989R647200002 article-title: AROMATICITY AS A QUANTITATIVE CONCEPT .1. A STATISTICAL DEMONSTRATION OF THE ORTHOGONALITY OF CLASSICAL AND MAGNETIC AROMATICITY IN 5-MEMBERED AND 6-MEMBERED HETEROCYCLES publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY – volume: 20 start-page: 1094 year: 2018 ident: WOS:000426013600050 article-title: Ruthenium-Catalyzed Hydrogenation of Carbocyclic Aromatic Amines: Access to Chiral Exocyclic Amines publication-title: ORGANIC LETTERS doi: 10.1021/acs.orglett.7b04060 – volume: 51 start-page: 4136 year: 2012 ident: WOS:000303001000026 article-title: Catalytic Asymmetric Hydrogenation of Naphthalenes publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION doi: 10.1002/anie.201201153 – volume: 51 start-page: 1710 year: 2012 ident: WOS:000299946400041 article-title: Ruthenium NHC Catalyzed Highly Asymmetric Hydrogenation of Benzofurans publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION doi: 10.1002/anie.201107811 – volume: 112 start-page: 2557 year: 2012 ident: WOS:000303283900020 article-title: Asymmetric Hydrogenation of Heteroarenes and Arenes publication-title: CHEMICAL REVIEWS doi: 10.1021/cr200328h – volume: 124 start-page: 4212 year: 2012 ident: 000823833800001.50 publication-title: Angew. Chem – volume: 3 start-page: 4171 year: 2005 ident: WOS:000233362000001 article-title: Asymmetric hydrogenation of aromatic compounds publication-title: ORGANIC & BIOMOLECULAR CHEMISTRY doi: 10.1039/b512139f – volume: 125 start-page: 10536 year: 2003 ident: WOS:000185012800027 article-title: Highly enantioselective iridium-catalyzed hydrogenation of heteroaromatic compounds, quinolines publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY doi: 10.1021/ja0353762 – volume: 57 start-page: 10257 year: 2014 ident: WOS:000347437400004 article-title: Analysis of the Structural Diversity, Substitution Patterns, and Frequency of Nitrogen Heterocycles among US FDA Approved Pharmaceuticals publication-title: JOURNAL OF MEDICINAL CHEMISTRY doi: 10.1021/jm501100b – volume: 18 start-page: 249 year: 1988 ident: 000823833800001.82 publication-title: Top. Stereochem – volume: 125 start-page: 9794 year: 2013 ident: 000823833800001.11 publication-title: Angew. Chem. – volume: 52 start-page: 14200 year: 2013 ident: WOS:000328531100060 article-title: Kinetic Resolution of Axially Chiral 2-Amino-1,1′-Biaryls by Phase-Transfer-Catalyzed N-Allylation publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION doi: 10.1002/anie.201308237 – year: 1000 ident: 000823833800001.83 publication-title: Deposition Numbers 2095168,2080871,2044557,2072357 and 2083665 ((-)-2 a, (-)-4 c, (+)-6 a, (-)-8 m, (-)-8 p) for this paper. These data are provided free of charge by the joint Cambridge Crystallographic Data Centre and Fachinformationszentrum Karlsruhe Access Structures service. – volume: 139 start-page: 5740 year: 2017 ident: WOS:000400321500027 article-title: Remarkably Facile Borane-Promoted, Rhodium-Catalyzed Asymmetric Hydrogenation of Tri- and Tetrasubstituted Alkenes publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY doi: 10.1021/jacs.7b02581 – volume: 10 start-page: 13834 year: 2020 ident: WOS:000598140200008 article-title: Recent Advances in Homogeneous Catalysts for the Asymmetric Hydrogenation of Heteroarenes publication-title: ACS CATALYSIS doi: 10.1021/acscatal.0c03958 – volume: 76 start-page: 909 year: 2008 ident: WOS:000262427000002 article-title: CATALYTIC ASYMMETRIC HYDROGENATION OF 5-MEMBERED HETEROAROMATICS publication-title: HETEROCYCLES – volume: 105 start-page: 3889 year: 2005 ident: WOS:000232755200015 article-title: The magnetic shielding function of molecules and Pi-electron delocalization publication-title: CHEMICAL REVIEWS doi: 10.1021/cr030082k – volume: 125 start-page: 4329 year: 2013 ident: 000823833800001.78 publication-title: Angew. Chem. – volume: 122 start-page: 7614 year: 2000 ident: WOS:000088683200031 article-title: Catalytic asymmetric hydrogenation of heteroaromatic compounds, indoles publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY – volume: 4 start-page: 515 year: 2013 ident: WOS:000315355800005 article-title: Escape from Flatland 2: complexity and promiscuity publication-title: MEDCHEMCOMM doi: 10.1039/c2md20347b – volume: 52 start-page: 6752 year: 2009 ident: WOS:000271427900027 article-title: Escape from Flatland: Increasing Saturation as an Approach to Improving Clinical Success publication-title: JOURNAL OF MEDICINAL CHEMISTRY doi: 10.1021/jm901241e – volume: 120 start-page: 8592 year: 2008 ident: 000823833800001.20 publication-title: Angew. Chem |
SSID | ssj0028806 |
Score | 2.5213265 |
Snippet | Compared with heteroarenes, homogeneous asymmetric hydrogenation of all‐carbon aromatic rings is a longstanding challenge in organic synthesis due to the... Compared with heteroarenes, homogeneous asymmetric hydrogenation of all-carbon aromatic rings is a longstanding challenge in organic synthesis due to the... |
Source | Web of Science |
SourceID | proquest webofscience crossref wiley |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | e202205623 |
SubjectTerms | All-Carbon Aromatic Rings Aromatic compounds Aromaticity Asymmetric Hydrogenation Asymmetry Carbon Chemistry Chemistry, Multidisciplinary Cyclic compounds Desymmetrization Enantiomers Hydrogenation Kinetic Resolution Ligands Phosphine Phosphines Physical Sciences Rhodium Science & Technology Steric hindrance |
Title | Rhodium‐Catalyzed Asymmetric Hydrogenation of All‐Carbon Aromatic Rings |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fanie.202205623 http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestApp=WOS&DestLinkType=FullRecord&UT=000823833800001 https://www.proquest.com/docview/2702638249 https://www.proquest.com/docview/2682257760 |
Volume | 61 |
WOS | 000823833800001 |
WOSCitedRecordID | wos000823833800001 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEB7Ei158i_VFBcFTdTdNs-2xLMqq6GFR8FbyKoq7W9nHYT35E_yN_hJn-tIVRNFbQye0SSaTb5LMNwCHihtGgQdeGobK41o30A7ayNMhGgbBlR8YchSvrkXnll_cBXefovgLfoh6w41mRm6vaYJLNTr5IA2lCGz07yhQFJdwNMJ0YYtQUbfmj2KonEV4ke97lIW-Ym1ssJPZ6rOr0gfUnFmMZvFrvgCdLYOsfr24d_J4PBmrY_38hdXxP21bgaUSnbpxoU6rMGcHa7DQrpLCrcNl9z4zD5P-28trmzZ-ps_WuPFo2u9TZi7tdqZmmKFO5uPtZqkb93q57FBhOR5mOUOs26X9-Q24PTu9aXe8Mh-Dpwm2ebJprEVIY5iyQvo6jeiY01B-q9BKabnmRqQaXaQ0VejqIDSxURgIlaJZ0A3ub8L8IBvYLXDDQHPZkuTPCS4CFkkEZiZSCO9aTes3HPCq8Uh0SVZOOTN6SUGzzBLqoqTuIgeOavmngqbjW8ndaniTcrqOEgrKQ0OErqgDB_Vr7Fo6PZEDm01QRiCWClotgT93-Fkt6g8Wx5YhOv35mYkDzd-ItcvmEQfB2AGW68UPjUji6_PTurT9l0o7sEjPtD3O2C7Mj4cTu4f4aqz28zn0DgHAG6k |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3LTttQEB2l6SLdtJQWYQqtkUBdGZLrR-xFF1YeShqSRQRSdsb3YYGaxCgPVWHVT-iv9Ff6CXwJM37RVKqokLJg6WSc-N47c-fMHc8ZgCNuSUaFB0bkutywhKjiPqg8Q7i4MTgWN21JgWJ_4HQurK8je1SCX3ktTMoPURy4kWUk-zUZOB1Inz6whlIJNgZ4VCmKPjx7r7KnVt8xapt_6TZxiY8Za7fOGx0jayxgCMIfRliTSqFvlowrJzRF5FG-TlKjJleFobKEJZ1IINaPIo6YHX2s8lzb4RHqt6haJv7uC3hJbcSJrr85LBirGJpDWtBkmgb1vc95IqvsdP151_3gA7hdc3_riDlxee038DufrPRNl28nywU_Ebd_8Ug-q9ncgtcZANf91GLeQklNt6HSyPvevYPe8CqW18vJ3Y-fDTrbWt0qqfvz1WRCzceE3lnJWYxml6i0Hke6Px4nsjOO1_4sTkhw9SGlIN7DxUbGsgPlaTxVu6C7trDCekghq4OawrwQsaf0OCLYek2ZVQ2MXAECkfGxU1uQcZAySbOAliQolkSDz4X8TcpE8k_J_VyfgmxHmgdUd4h7LUbbGhwWX-PUUoIonKp4iTIOwkW7Xnfw4Y7-1MPiD9PMrGuabpIW0qD2P2KNbHhEs7DQgCWK-MggAn_QbRVXe0-56RNUOuf9s-CsO-h9gFf0OWUDGNuH8mK2VAcIJxf8Y2LAOlxuWsfvAWG5egM |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtNAEB61RQIu_CNMCxipiJMbZ73e2AcOVtIoIRChiEq9Ge-PRdUkrvKjKj3xCDxKX6Wv0CfpjP9KkBAIqYce7Ywd7-7MzjcezzcAu5JrRoUHThoE0uFKubgPmtBRAW4MgkvP1xQofh6K3gH_eOgfbsB5VQtT8EPUL9zIMvL9mgz8RKeNa9JQqsDG-I4KRdGFl59VDszqFIO2-Yd-B1f4HWPd_a_tnlP2FXAUwQ8naWpj0DVrJo1IPJWGlK7T1KcpMEliuOJapAqhfppKhOzoYk0Y-EKmqN7K5R7edxPucOGG1CyiM6oJqxhaQ1HP5HkOtb2vaCJd1lh_3nU3eI1t17zfOmDOPV73IVxUc1V86HK8t1zIPXX2G43kbZrMR_CghN92VNjLY9gw0ydwr111vXsKg9H3TB8tJ5c_frbpzdbqzGg7mq8mE2o9puzeSs8yNLpcoe0staPxOJedSTyOZllOgWuPKAHxDA5uZCzPYWuaTc0LsANf8aSVUMAquPBZmCDy1KFE_NpqGs-1wKnWP1YlGzs1BRnHBY80i2lJ4npJLHhfy58UPCR_lNyp1Cku96N5TFWHuNNirG3B2_pnnFpKDyVTky1RRiBY9FstgQ-3-6sa1n9Y5GUDzwvypJAFzX8Ra5fDI5KFhQUs18O_DCKOhv39-ujl_1z0Bu5-6XTjT_3hYBvu02lKBTC2A1uL2dK8Qiy5kK9z87Xh202r-BVcLHiy |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Rhodium-Catalyzed+Asymmetric+Hydrogenation+of+All-Carbon+Aromatic+Rings&rft.jtitle=Angewandte+Chemie+International+Edition&rft.au=Ding%2C+Yi-Xuan&rft.au=Zhu%2C+Zhou-Hao&rft.au=Chen%2C+Mu-Wang&rft.au=Yu%2C+Chang-Bin&rft.date=2022-08-22&rft.pub=Wiley&rft.eissn=1521-3773&rft.volume=61&rft.issue=34&rft_id=info:doi/10.1002%2Fanie.202205623&rft_id=info%3Apmid%2F35764533&rft.externalDBID=n%2Fa&rft.externalDocID=000823833800001 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1433-7851&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1433-7851&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1433-7851&client=summon |