Selective Degradation of Styrene‐Related Plastics Catalyzed by Iron under Visible Light
Efficient degradation of plastics, the vital challenge for a sustainable future, stands in need of better chemical recycling procedures that help produce commercially valuable small molecules and redefine plastic waste as a rich source of chemical feedstock. However, the corresponding chemical recyc...
Saved in:
Published in | ChemSusChem Vol. 14; no. 22; pp. 5049 - 5056 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Weinheim
Wiley Subscription Services, Inc
19.11.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Efficient degradation of plastics, the vital challenge for a sustainable future, stands in need of better chemical recycling procedures that help produce commercially valuable small molecules and redefine plastic waste as a rich source of chemical feedstock. However, the corresponding chemical recycling methods, while being generally restricted to polar polymers, need improvement. Particularly, degradation of chemically inert nonpolar polymers, the major constitutes of plastics, suffers from low selectivity and very harsh transformation conditions. Herein, an efficient method was developed for selective degradation of styrene‐related plastics under gentle conditions through multiple oxidation of sp3 C−H bonds and sp3 C−C bonds. The procedure was catalyzed with inexpensive iron salts under visible light, using oxygen as green oxidant. Furthermore, simple iron salts could be used to degrade plastics in the absence of solvent under natural conditions, highlighting the potential application of iron salts as additives for degradable plastics.
Plastics degradation: An iron photocatalysis system improves the multiple C−H and C−C bond oxidative cleavage of substituted benzenes, applying oxygen as the terminal oxidant to produce benzoic acid selectively. The system is used to degrade styrene‐related plastics successfully, even under natural conditions without solvent. |
---|---|
AbstractList | Efficient degradation of plastics, the vital challenge for a sustainable future, stands in need of better chemical recycling procedures that help produce commercially valuable small molecules and redefine plastic waste as a rich source of chemical feedstock. However, the corresponding chemical recycling methods, while being generally restricted to polar polymers, need improvement. Particularly, degradation of chemically inert nonpolar polymers, the major constitutes of plastics, suffers from low selectivity and very harsh transformation conditions. Herein, an efficient method was developed for selective degradation of styrene‐related plastics under gentle conditions through multiple oxidation of sp3 C−H bonds and sp3 C−C bonds. The procedure was catalyzed with inexpensive iron salts under visible light, using oxygen as green oxidant. Furthermore, simple iron salts could be used to degrade plastics in the absence of solvent under natural conditions, highlighting the potential application of iron salts as additives for degradable plastics. Efficient degradation of plastics, the vital challenge for a sustainable future, stands in need of better chemical recycling procedures that help produce commercially valuable small molecules and redefine plastic waste as a rich source of chemical feedstock. However, the corresponding chemical recycling methods, while being generally restricted to polar polymers, need improvement. Particularly, degradation of chemically inert nonpolar polymers, the major constitutes of plastics, suffers from low selectivity and very harsh transformation conditions. Herein, an efficient method was developed for selective degradation of styrene‐related plastics under gentle conditions through multiple oxidation of sp 3 C−H bonds and sp 3 C−C bonds. The procedure was catalyzed with inexpensive iron salts under visible light, using oxygen as green oxidant. Furthermore, simple iron salts could be used to degrade plastics in the absence of solvent under natural conditions, highlighting the potential application of iron salts as additives for degradable plastics. Efficient degradation of plastics, the vital challenge for a sustainable future, stands in need of better chemical recycling procedures that help produce commercially valuable small molecules and redefine plastic waste as a rich source of chemical feedstock. However, the corresponding chemical recycling methods, while being generally restricted to polar polymers, need improvement. Particularly, degradation of chemically inert nonpolar polymers, the major constitutes of plastics, suffers from low selectivity and very harsh transformation conditions. Herein, an efficient method was developed for selective degradation of styrene‐related plastics under gentle conditions through multiple oxidation of sp3 C−H bonds and sp3 C−C bonds. The procedure was catalyzed with inexpensive iron salts under visible light, using oxygen as green oxidant. Furthermore, simple iron salts could be used to degrade plastics in the absence of solvent under natural conditions, highlighting the potential application of iron salts as additives for degradable plastics. Plastics degradation: An iron photocatalysis system improves the multiple C−H and C−C bond oxidative cleavage of substituted benzenes, applying oxygen as the terminal oxidant to produce benzoic acid selectively. The system is used to degrade styrene‐related plastics successfully, even under natural conditions without solvent. Efficient degradation of plastics, the vital challenge for a sustainable future, stands in need of better chemical recycling procedures that help produce commercially valuable small molecules and redefine plastic waste as a rich source of chemical feedstock. However, the corresponding chemical recycling methods, while being generally restricted to polar polymers, need improvement. Particularly, degradation of chemically inert nonpolar polymers, the major constitutes of plastics, suffers from low selectivity and very harsh transformation conditions. Herein, an efficient method was developed for selective degradation of styrene-related plastics under gentle conditions through multiple oxidation of sp3 C-H bonds and sp3 C-C bonds. The procedure was catalyzed with inexpensive iron salts under visible light, using oxygen as green oxidant. Furthermore, simple iron salts could be used to degrade plastics in the absence of solvent under natural conditions, highlighting the potential application of iron salts as additives for degradable plastics.Efficient degradation of plastics, the vital challenge for a sustainable future, stands in need of better chemical recycling procedures that help produce commercially valuable small molecules and redefine plastic waste as a rich source of chemical feedstock. However, the corresponding chemical recycling methods, while being generally restricted to polar polymers, need improvement. Particularly, degradation of chemically inert nonpolar polymers, the major constitutes of plastics, suffers from low selectivity and very harsh transformation conditions. Herein, an efficient method was developed for selective degradation of styrene-related plastics under gentle conditions through multiple oxidation of sp3 C-H bonds and sp3 C-C bonds. The procedure was catalyzed with inexpensive iron salts under visible light, using oxygen as green oxidant. Furthermore, simple iron salts could be used to degrade plastics in the absence of solvent under natural conditions, highlighting the potential application of iron salts as additives for degradable plastics. |
Author | Wang, Miao Wen, Jinglan Hu, Peng Huang, Yahao |
Author_xml | – sequence: 1 givenname: Miao surname: Wang fullname: Wang, Miao organization: Sun Yat-sen University – sequence: 2 givenname: Jinglan surname: Wen fullname: Wen, Jinglan organization: Sun Yat-sen University – sequence: 3 givenname: Yahao surname: Huang fullname: Huang, Yahao organization: Sun Yat-sen University – sequence: 4 givenname: Peng orcidid: 0000-0001-7864-3514 surname: Hu fullname: Hu, Peng email: hupeng8@mail.sysu.edu.cn organization: Sun Yat-sen University |
BookMark | eNqFkM9KxDAQh4MouK5ePRe8eNl1kjZpc5T6FxYUV0VPJc1ONUu21SSr1JOP4DP6JFZXFBbE0wzD980Mvw2yWjc1ErJNYUgB2J72Xg8ZMAo0FWyF9GgmkgEXyc3qTx_TdbLh_RRAgBSiR27HaFEH84TRAd45NVHBNHXUVNE4tA5rfH99u0CrAk6ic6t8MNpHuQrKti_dqGyjU9fx83qCLro23pQWo5G5uw-bZK1S1uPWd-2Tq6PDy_xkMDo7Ps33RwOdUMEGUlYs5YLxklcy5SlVCUuFFCzmSqdMUsU1qzIOIBkkWZmUqmSg4ywTCjPUcZ_sLvY-uOZxjj4UM-M1WqtqbOa-YDxlLKYC4g7dWUKnzdzV3XcdJTMJkIHoqOGC0q7x3mFVPDgzU64tKBSfSRefSRc_SXdCsiRoE75yDE4Z-7cmF9qzsdj-c6TIx-P81_0AofGU6g |
CitedBy_id | crossref_primary_10_1002_adsc_202200256 crossref_primary_10_1016_j_xinn_2024_100586 crossref_primary_10_1021_acs_chemrev_3c00943 crossref_primary_10_1002_marc_202400358 crossref_primary_10_1039_D3CC01057K crossref_primary_10_1016_j_giant_2024_100307 crossref_primary_10_1002_cctc_202200916 crossref_primary_10_1088_1402_4896_ad6bfa crossref_primary_10_1016_j_scib_2023_06_024 crossref_primary_10_1016_j_apcatb_2023_123357 crossref_primary_10_1016_j_trechm_2022_10_003 crossref_primary_10_1002_ange_202301303 crossref_primary_10_1002_cctc_202401626 crossref_primary_10_1016_j_chempr_2022_08_011 crossref_primary_10_1039_D4CY00970C crossref_primary_10_1039_D2TA09523H crossref_primary_10_1002_smll_202303693 crossref_primary_10_1016_j_chempr_2022_06_002 crossref_primary_10_1002_ange_202418680 crossref_primary_10_1039_D4SC08658A crossref_primary_10_1021_acs_joc_1c02947 crossref_primary_10_1021_acsomega_4c04302 crossref_primary_10_1016_j_cej_2023_148406 crossref_primary_10_1021_acssuschemeng_3c03907 crossref_primary_10_1002_anie_202407464 crossref_primary_10_1021_acscatal_5c00139 crossref_primary_10_1360_TB_2023_0813 crossref_primary_10_1021_acs_orglett_2c03260 crossref_primary_10_1016_j_ces_2023_119016 crossref_primary_10_1021_acssuschemeng_3c01282 crossref_primary_10_1016_j_jaap_2025_107052 crossref_primary_10_1039_D3GC01872E crossref_primary_10_1021_jacs_4c15500 crossref_primary_10_1002_cjoc_202400343 crossref_primary_10_1039_D3VA00158J crossref_primary_10_1002_ange_202404952 crossref_primary_10_1002_adsc_202201076 crossref_primary_10_1002_cssc_202400474 crossref_primary_10_1016_j_ces_2023_118729 crossref_primary_10_1039_D3GC00865G crossref_primary_10_1039_D3GC00986F crossref_primary_10_1016_j_ccr_2023_215522 crossref_primary_10_1002_cssc_202200367 crossref_primary_10_1002_anie_202217365 crossref_primary_10_1021_acscatal_3c02084 crossref_primary_10_1021_acssuschemeng_4c02871 crossref_primary_10_1039_D2QO00362G crossref_primary_10_1055_a_1921_0698 crossref_primary_10_1021_acscatal_3c02516 crossref_primary_10_1039_D4DT03102D crossref_primary_10_1038_s44160_024_00698_z crossref_primary_10_1016_j_polymdegradstab_2024_110779 crossref_primary_10_1002_ange_202307042 crossref_primary_10_1021_acs_joc_4c00155 crossref_primary_10_1021_acs_langmuir_3c03866 crossref_primary_10_1021_acs_joc_3c00210 crossref_primary_10_1039_D3CC06149C crossref_primary_10_1021_acssuschemeng_3c01387 crossref_primary_10_1021_acs_orglett_3c01642 crossref_primary_10_1038_s41467_022_32510_x crossref_primary_10_1021_acs_orglett_3c00556 crossref_primary_10_1016_j_scitotenv_2024_172213 crossref_primary_10_1021_jacs_4c18143 crossref_primary_10_1002_cplu_202400336 crossref_primary_10_1021_acs_joc_4c00962 crossref_primary_10_1039_D3GC02591H crossref_primary_10_1002_adsc_202300183 crossref_primary_10_1002_ange_202407464 crossref_primary_10_1002_anie_202404952 crossref_primary_10_1016_j_fmre_2023_11_015 crossref_primary_10_1016_j_apcatb_2023_122744 crossref_primary_10_1002_chem_202401588 crossref_primary_10_1039_D4GC01556H crossref_primary_10_1002_solr_202300411 crossref_primary_10_1002_ange_202217365 crossref_primary_10_1039_D2CC04056E crossref_primary_10_1016_j_chempr_2023_07_008 crossref_primary_10_1021_acs_iecr_3c04426 crossref_primary_10_1016_j_cej_2025_160073 crossref_primary_10_1039_D3SC05613A crossref_primary_10_1021_acs_orglett_2c02242 crossref_primary_10_1016_j_checat_2024_101044 crossref_primary_10_1039_D4CS00407H crossref_primary_10_1002_anie_202307042 crossref_primary_10_1002_anie_202301303 crossref_primary_10_1002_cssc_202401920 crossref_primary_10_1021_jacs_2c01411 crossref_primary_10_1021_acscatal_3c00301 crossref_primary_10_1016_j_trechm_2024_05_003 crossref_primary_10_1021_acs_macromol_3c00602 crossref_primary_10_1039_D4SC03269A crossref_primary_10_1038_s41467_024_46656_3 crossref_primary_10_1002_anie_202402436 crossref_primary_10_1002_ejoc_202300664 crossref_primary_10_1002_cssc_202201241 crossref_primary_10_1016_j_xcrp_2023_101550 crossref_primary_10_1002_ange_202402436 crossref_primary_10_1002_ejoc_202401109 crossref_primary_10_1055_a_2201_3964 crossref_primary_10_1016_j_mcat_2024_114809 crossref_primary_10_1021_acscatal_2c05293 crossref_primary_10_1021_acs_orglett_1c03488 crossref_primary_10_1039_D4CC05866F crossref_primary_10_1016_j_chempr_2023_08_024 crossref_primary_10_1002_cssc_202400174 crossref_primary_10_1007_s11705_024_2507_0 crossref_primary_10_1016_j_envpol_2023_122835 crossref_primary_10_1038_s41467_022_34829_x crossref_primary_10_1002_anie_202418680 crossref_primary_10_1002_pol_20230982 |
Cites_doi | 10.1021/cr300503r 10.1038/s41570-020-0218-8 10.1039/D0TA03374J 10.1002/ange.201914557 10.1002/cjoc.201800455 10.1021/acs.orglett.1c00556 10.1002/anie.201506578 10.1016/j.rser.2017.01.142 10.1039/C8CS00386F 10.2174/138527209789578018 10.1002/ange.201800818 10.1039/C5CC06015J 10.1002/ange.202007187 10.1002/ange.201905218 10.1016/j.jcat.2017.02.017 10.1039/D0SC04542J 10.1021/ja004311l 10.1021/acscatal.5b01573 10.3390/catal8120640 10.1021/ja058731s 10.31635/ccschem.019.20180026 10.1002/ejoc.201901381 10.1021/acs.energyfuels.5b01083 10.1002/pola.24939 10.1002/anie.201800818 10.1002/app.1983.070281017 10.1021/ja00521a073 10.1039/C4GC01760A 10.1002/marc.202000745 10.1021/ja00020a032 10.1016/j.chempr.2019.11.009 10.1021/ic00329a058 10.1038/s41586-020-03149-9 10.1002/anie.201905218 10.1039/c2dt30210a 10.1016/j.wasman.2017.07.044 10.1021/acsmacrolett.0c00582 10.1021/acs.chemrev.8b00245 10.1039/C9CC06584A 10.1021/acs.chemrev.0c00335 10.1246/bcsj.76.393 10.1021/acs.chemrev.5b00138 10.1126/science.1239176 10.1002/anie.200300578 10.1016/S0040-4039(00)95235-3 10.1039/B913880N 10.1126/sciadv.1700782 10.1039/B815215B 10.1021/jacs.5b00939 10.1039/C9CC03939B 10.1021/jacs.9b05932 10.1021/ar00023a004 10.1039/C7QO00798A 10.1246/bcsj.77.2251 10.1002/anie.201908788 10.1002/anie.201914557 10.1021/acs.orglett.9b01439 10.1016/j.tetlet.2018.10.060 10.1021/acsmacrolett.0c00789 10.1002/ange.201908788 10.1002/ange.201506578 10.1002/cssc.202100682 10.1021/acs.chemrev.0c00030 10.1016/j.chempr.2020.06.014 10.1002/anie.202007187 10.1002/ange.200300578 10.1007/BF02097875 10.1039/C8CC02642D |
ContentType | Journal Article |
Copyright | 2021 Wiley‐VCH GmbH 2021 Wiley-VCH GmbH. |
Copyright_xml | – notice: 2021 Wiley‐VCH GmbH – notice: 2021 Wiley-VCH GmbH. |
DBID | AAYXX CITATION 7SR 8BQ 8FD JG9 K9. 7X8 |
DOI | 10.1002/cssc.202101762 |
DatabaseName | CrossRef Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic |
DatabaseTitle | CrossRef Materials Research Database ProQuest Health & Medical Complete (Alumni) Engineered Materials Abstracts Technology Research Database METADEX MEDLINE - Academic |
DatabaseTitleList | Materials Research Database CrossRef MEDLINE - Academic |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1864-564X |
EndPage | 5056 |
ExternalDocumentID | 10_1002_cssc_202101762 CSSC202101762 |
Genre | article |
GrantInformation_xml | – fundername: Department of Science and Technology of Guangdong Province funderid: 2019QN01L151 – fundername: National Natural Science Foundation of China funderid: 21821003 – fundername: Sun Yat-sen University |
GroupedDBID | --- 05W 0R~ 1OC 29B 33P 4.4 5GY 5VS 66C 77Q 8-1 A00 AAESR AAHHS AAHQN AAIHA AAMNL AANLZ AAXRX AAYCA AAZKR ABCUV ACAHQ ACCFJ ACCZN ACGFS ACIWK ACPOU ACXBN ACXQS ADKYN ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AENEX AEQDE AEUYR AFBPY AFFPM AFWVQ AFZJQ AHBTC AHMBA AITYG AIURR AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMYDB AZVAB BDRZF BFHJK BRXPI CS3 DCZOG DR2 DRFUL DRSTM DU5 EBD EBS EMOBN F5P G-S HGLYW HZ~ IX1 LATKE LAW LEEKS LITHE LOXES LUTES LYRES MEWTI MY~ O9- OIG P2W P4E PQQKQ ROL SUPJJ SV3 W99 WBKPD WOHZO WXSBR WYJ XV2 ZZTAW ~S- AAYXX AEYWJ AGYGG CITATION 7SR 8BQ 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY JG9 K9. 7X8 |
ID | FETCH-LOGICAL-c4162-99f275625b5f97571a427696235ac7291a5c2f850092048b4bab20c3886ae8ec3 |
IEDL.DBID | DR2 |
ISSN | 1864-5631 1864-564X |
IngestDate | Thu Jul 10 18:36:49 EDT 2025 Fri Jul 25 12:01:14 EDT 2025 Thu Apr 24 23:02:00 EDT 2025 Tue Jul 01 00:36:18 EDT 2025 Wed Jan 22 16:27:06 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 22 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4162-99f275625b5f97571a427696235ac7291a5c2f850092048b4bab20c3886ae8ec3 |
Notes | https://doi.org/10.33774/chemrxiv‐2021‐mczbs . A previous version of this manuscript has been deposited on a preprint server ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0001-7864-3514 |
PQID | 2598900806 |
PQPubID | 986333 |
PageCount | 8 |
ParticipantIDs | proquest_miscellaneous_2572231603 proquest_journals_2598900806 crossref_primary_10_1002_cssc_202101762 crossref_citationtrail_10_1002_cssc_202101762 wiley_primary_10_1002_cssc_202101762_CSSC202101762 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | November 19, 2021 |
PublicationDateYYYYMMDD | 2021-11-19 |
PublicationDate_xml | – month: 11 year: 2021 text: November 19, 2021 day: 19 |
PublicationDecade | 2020 |
PublicationPlace | Weinheim |
PublicationPlace_xml | – name: Weinheim |
PublicationTitle | ChemSusChem |
PublicationYear | 2021 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 1991; 113 2017; 3 2021; 23 2019; 55 2020 2020; 59 132 2020; 11 2021; 121 2020; 8 2017; 73 1990; 41 2004; 77 1989; 30 2020; 6 2018; 8 2009; 13 2020; 4 2018; 5 2015; 137 2019; 21 2018 2018; 57 130 2020; 9 2015 2015; 54 127 2021; 590 2013; 113 2019; 119 1983; 28 2006; 128 1996; 20 1980; 102 2001; 123 2015; 17 2021; 42 2015; 5 2017; 69 2015; 51 2019; 1 1991; 31 2019; 37 2011; 40 2009 2003 2003; 42 115 2002 2019; 141 2019 2019; 58 131 2003; 76 2012; 50 2021; 14 2021; 10 2015; 29 2015; 115 1990; 29 2019; 48 2019 1992; 25 2013 2018; 54 2018; 59 2017; 348 2014; 343 2012; 41 e_1_2_6_51_1 e_1_2_6_51_2 e_1_2_6_53_1 e_1_2_6_70_1 e_1_2_6_19_1 e_1_2_6_13_1 e_1_2_6_34_3 e_1_2_6_36_1 e_1_2_6_59_1 e_1_2_6_34_2 e_1_2_6_11_1 e_1_2_6_32_2 e_1_2_6_55_1 e_1_2_6_17_2 e_1_2_6_15_1 e_1_2_6_38_1 e_1_2_6_57_1 e_1_2_6_62_1 e_1_2_6_64_1 e_1_2_6_43_1 e_1_2_6_20_1 e_1_2_6_41_2 e_1_2_6_41_1 e_1_2_6_60_1 e_1_2_6_9_1 e_1_2_6_5_1 e_1_2_6_7_1 e_1_2_6_1_1 e_1_2_6_47_2 e_1_2_6_24_1 e_1_2_6_49_1 e_1_2_6_3_1 e_1_2_6_22_2 e_1_2_6_49_2 e_1_2_6_22_1 e_1_2_6_28_2 e_1_2_6_66_1 e_1_2_6_45_1 e_1_2_6_26_1 e_1_2_6_47_1 e_1_2_6_68_1 e_1_2_6_52_1 e_1_2_6_54_1 e_1_2_6_31_2 e_1_2_6_50_1 e_1_2_6_71_1 e_1_2_6_35_2 e_1_2_6_14_1 e_1_2_6_12_1 e_1_2_6_33_1 e_1_2_6_16_2 e_1_2_6_39_1 e_1_2_6_56_1 e_1_2_6_37_1 e_1_2_6_58_1 e_1_2_6_63_1 e_1_2_6_42_1 e_1_2_6_65_1 e_1_2_6_21_1 Kaminsky W. (e_1_2_6_18_1) 2013 e_1_2_6_40_1 e_1_2_6_61_1 Shul'pin G. B. (e_1_2_6_30_2) 1996; 20 Shul'pin G. B. (e_1_2_6_29_2) 1991; 31 La Mantia F. (e_1_2_6_10_1) 2002 e_1_2_6_8_1 e_1_2_6_4_1 e_1_2_6_6_1 e_1_2_6_25_1 e_1_2_6_48_1 e_1_2_6_48_2 e_1_2_6_23_1 e_1_2_6_2_1 e_1_2_6_44_1 e_1_2_6_67_1 e_1_2_6_27_1 e_1_2_6_46_1 e_1_2_6_69_1 |
References_xml | – volume: 50 start-page: 1 year: 2012 end-page: 15 publication-title: J. Polym. Sci. Part A: Polym. Chem. – volume: 121 start-page: 506 year: 2021 end-page: 561 publication-title: Chem. Rev. – volume: 29 start-page: 869 year: 1990 end-page: 874 publication-title: Inorg. Chem. – volume: 51 start-page: 14046 year: 2015 end-page: 14049 publication-title: Chem. Commun. – volume: 37 start-page: 171 year: 2019 end-page: 182 publication-title: Chin. J. Chem. – volume: 11 start-page: 11124 year: 2020 end-page: 11141 publication-title: Chem. Sci. – volume: 59 132 start-page: 4138 4167 year: 2020 2020 end-page: 4144 4173 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 76 start-page: 393 year: 2003 end-page: 398 publication-title: Bull. Chem. Soc. Jpn. – volume: 59 start-page: 4349 year: 2018 end-page: 4354 publication-title: Tetrahedron Lett. – volume: 17 start-page: 146 year: 2015 end-page: 156 publication-title: Green Chem. – volume: 42 year: 2021 publication-title: Macromol. Rapid Commun. – volume: 55 start-page: 12699 year: 2019 end-page: 12702 publication-title: Chem. Commun. – volume: 4 start-page: 600 year: 2020 end-page: 614 publication-title: Nat. Chem. Rev. – volume: 28 start-page: 3227 year: 1983 end-page: 3233 publication-title: J. Appl. Polym. Sci. – volume: 59 132 start-page: 19851 20023 year: 2020 2020 end-page: 19856 20028 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 119 start-page: 2128 year: 2019 end-page: 2191 publication-title: Chem. Rev. – volume: 48 start-page: 2615 year: 2019 end-page: 2656 publication-title: Chem. Soc. Rev. – volume: 102 start-page: 389 year: 1980 end-page: 391 publication-title: J. Am. Chem. Soc. – volume: 3 year: 2017 publication-title: Sci. Adv. – volume: 21 start-page: 4259 year: 2019 end-page: 4265 publication-title: Org. Lett. – volume: 5 start-page: 380 year: 2018 end-page: 385 publication-title: Org. Chem. Front. – volume: 1 start-page: 38 year: 2019 end-page: 49 publication-title: CCS – volume: 25 start-page: 504 year: 1992 end-page: 512 publication-title: Acc. Chem. Res. – volume: 6 start-page: 266 year: 2020 end-page: 279 publication-title: Chem – volume: 55 start-page: 7840 year: 2019 end-page: 7843 publication-title: Chem. Commun. – volume: 6 start-page: 1575 year: 2020 end-page: 1588 publication-title: Chem – volume: 29 start-page: 6068 year: 2015 end-page: 6077 publication-title: Energy Fuels – volume: 31 start-page: 647 year: 1991 end-page: 656 publication-title: Pet. Chem. – volume: 20 start-page: 1243 year: 1996 end-page: 1256 publication-title: New J. Chem. – volume: 13 start-page: 1737 year: 2009 end-page: 1745 publication-title: Curr. Org. Chem. – volume: 41 start-page: 5974 year: 2012 end-page: 5980 publication-title: Dalton Trans. – volume: 58 131 start-page: 17393 17554 year: 2019 2019 end-page: 17398 17559 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 123 start-page: 8459 year: 2001 end-page: 8467 publication-title: J. Am. Chem. Soc. – volume: 58 131 start-page: 14044 14182 year: 2019 2019 end-page: 14054 14192 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 113 start-page: 5322 year: 2013 end-page: 5363 publication-title: Chem. Rev. – volume: 141 start-page: 10556 year: 2019 end-page: 10564 publication-title: J. Am. Chem. Soc. – volume: 348 start-page: 160 year: 2017 end-page: 167 publication-title: J. Catal. – volume: 113 start-page: 7672 year: 1991 end-page: 7675 publication-title: J. Am. Chem. Soc. – volume: 30 start-page: 485 year: 1989 end-page: 488 publication-title: Tetrahedron Lett. – volume: 128 start-page: 6546 year: 2006 end-page: 6547 publication-title: J. Am. Chem. Soc. – start-page: 1024 year: 2009 end-page: 1033 publication-title: Dalton Trans. – volume: 57 130 start-page: 4078 4142 year: 2018 2018 end-page: 4082 4146 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 41 start-page: 239 year: 1990 end-page: 243 publication-title: React. Kinet. Catal. Lett. – volume: 40 start-page: 102 year: 2011 end-page: 113 publication-title: Chem. Soc. Rev. – volume: 73 start-page: 346 year: 2017 end-page: 368 publication-title: Renewable Sustainable Energy Rev. – volume: 5 start-page: 5927 year: 2015 end-page: 5931 publication-title: ACS Catal. – volume: 9 start-page: 1494 year: 2020 end-page: 1506 publication-title: ACS Macro Lett. – volume: 54 start-page: 6105 year: 2018 end-page: 6112 publication-title: Chem. Commun. – volume: 121 start-page: 485 year: 2021 end-page: 505 publication-title: Chem. Rev. – volume: 14 start-page: 2689 year: 2021 end-page: 2693 publication-title: ChemSusChem – start-page: 6728 year: 2019 end-page: 6732 publication-title: Eur. J. Org. Chem. – volume: 590 start-page: 423 year: 2021 end-page: 427 publication-title: Nature – volume: 8 start-page: 640 year: 2018 publication-title: Catalysts – volume: 115 start-page: 9410 year: 2015 end-page: 9464 publication-title: Chem. Rev. – volume: 10 start-page: 41 year: 2021 end-page: 53 publication-title: ACS Macro Lett. – year: 2002 – volume: 69 start-page: 24 year: 2017 end-page: 58 publication-title: Waste Manage. – volume: 343 year: 2014 publication-title: Science – volume: 8 start-page: 13921 year: 2020 end-page: 13926 publication-title: J. Mater. Chem. A – volume: 42 115 start-page: 5932 6112 year: 2003 2003 end-page: 5954 6136 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 77 start-page: 2251 year: 2004 end-page: 2255 publication-title: Bull. Chem. Soc. Jpn. – volume: 137 start-page: 3490 year: 2015 end-page: 3493 publication-title: J. Am. Chem. Soc. – volume: 23 start-page: 2915 year: 2021 end-page: 2920 publication-title: Org. Lett. – volume: 54 127 start-page: 12692 12883 year: 2015 2015 end-page: 12696 12887 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – year: 2013 – ident: e_1_2_6_54_1 doi: 10.1021/cr300503r – ident: e_1_2_6_20_1 doi: 10.1038/s41570-020-0218-8 – volume-title: Handbook of Plastics Recycling year: 2002 ident: e_1_2_6_10_1 – ident: e_1_2_6_12_1 doi: 10.1039/D0TA03374J – ident: e_1_2_6_49_2 doi: 10.1002/ange.201914557 – ident: e_1_2_6_24_1 doi: 10.1002/cjoc.201800455 – ident: e_1_2_6_52_1 doi: 10.1021/acs.orglett.1c00556 – ident: e_1_2_6_51_1 doi: 10.1002/anie.201506578 – ident: e_1_2_6_59_1 – ident: e_1_2_6_13_1 doi: 10.1016/j.rser.2017.01.142 – ident: e_1_2_6_21_1 doi: 10.1039/C8CS00386F – ident: e_1_2_6_64_1 doi: 10.2174/138527209789578018 – ident: e_1_2_6_41_2 doi: 10.1002/ange.201800818 – ident: e_1_2_6_63_1 doi: 10.1039/C5CC06015J – ident: e_1_2_6_48_2 doi: 10.1002/ange.202007187 – ident: e_1_2_6_22_2 doi: 10.1002/ange.201905218 – ident: e_1_2_6_45_1 doi: 10.1016/j.jcat.2017.02.017 – ident: e_1_2_6_58_1 doi: 10.1039/D0SC04542J – ident: e_1_2_6_62_1 doi: 10.1021/ja004311l – ident: e_1_2_6_68_1 doi: 10.1021/acscatal.5b01573 – ident: e_1_2_6_40_1 doi: 10.3390/catal8120640 – ident: e_1_2_6_36_1 doi: 10.1021/ja058731s – ident: e_1_2_6_57_1 doi: 10.31635/ccschem.019.20180026 – ident: e_1_2_6_71_1 doi: 10.1002/ejoc.201901381 – ident: e_1_2_6_16_2 doi: 10.1021/acs.energyfuels.5b01083 – ident: e_1_2_6_15_1 – ident: e_1_2_6_6_1 doi: 10.1002/pola.24939 – ident: e_1_2_6_41_1 doi: 10.1002/anie.201800818 – volume: 31 start-page: 647 year: 1991 ident: e_1_2_6_29_2 publication-title: Pet. Chem. – ident: e_1_2_6_17_2 doi: 10.1002/app.1983.070281017 – ident: e_1_2_6_66_1 doi: 10.1021/ja00521a073 – ident: e_1_2_6_14_1 doi: 10.1039/C4GC01760A – ident: e_1_2_6_4_1 doi: 10.1002/marc.202000745 – ident: e_1_2_6_65_1 doi: 10.1021/ja00020a032 – ident: e_1_2_6_1_1 – ident: e_1_2_6_44_1 doi: 10.1016/j.chempr.2019.11.009 – ident: e_1_2_6_61_1 doi: 10.1021/ic00329a058 – ident: e_1_2_6_9_1 doi: 10.1038/s41586-020-03149-9 – ident: e_1_2_6_22_1 doi: 10.1002/anie.201905218 – ident: e_1_2_6_69_1 doi: 10.1039/c2dt30210a – ident: e_1_2_6_11_1 doi: 10.1016/j.wasman.2017.07.044 – ident: e_1_2_6_2_1 doi: 10.1021/acsmacrolett.0c00582 – ident: e_1_2_6_25_1 doi: 10.1021/acs.chemrev.8b00245 – ident: e_1_2_6_38_1 doi: 10.1039/C9CC06584A – ident: e_1_2_6_23_1 doi: 10.1021/acs.chemrev.0c00335 – volume-title: Polyolefins: 50 Years after Ziegler and Natta I year: 2013 ident: e_1_2_6_18_1 – ident: e_1_2_6_31_2 doi: 10.1246/bcsj.76.393 – ident: e_1_2_6_19_1 doi: 10.1021/acs.chemrev.5b00138 – ident: e_1_2_6_55_1 doi: 10.1126/science.1239176 – ident: e_1_2_6_34_2 doi: 10.1002/anie.200300578 – ident: e_1_2_6_60_1 doi: 10.1016/S0040-4039(00)95235-3 – ident: e_1_2_6_53_1 doi: 10.1039/B913880N – ident: e_1_2_6_33_1 – ident: e_1_2_6_5_1 doi: 10.1126/sciadv.1700782 – ident: e_1_2_6_67_1 doi: 10.1039/B815215B – ident: e_1_2_6_50_1 doi: 10.1021/jacs.5b00939 – ident: e_1_2_6_39_1 doi: 10.1039/C9CC03939B – ident: e_1_2_6_43_1 doi: 10.1021/jacs.9b05932 – ident: e_1_2_6_35_2 doi: 10.1021/ar00023a004 – ident: e_1_2_6_37_1 doi: 10.1039/C7QO00798A – ident: e_1_2_6_32_2 doi: 10.1246/bcsj.77.2251 – ident: e_1_2_6_27_1 – ident: e_1_2_6_47_1 doi: 10.1002/anie.201908788 – ident: e_1_2_6_49_1 doi: 10.1002/anie.201914557 – ident: e_1_2_6_70_1 doi: 10.1021/acs.orglett.9b01439 – ident: e_1_2_6_8_1 – ident: e_1_2_6_46_1 doi: 10.1016/j.tetlet.2018.10.060 – ident: e_1_2_6_3_1 doi: 10.1021/acsmacrolett.0c00789 – ident: e_1_2_6_47_2 doi: 10.1002/ange.201908788 – ident: e_1_2_6_51_2 doi: 10.1002/ange.201506578 – volume: 20 start-page: 1243 year: 1996 ident: e_1_2_6_30_2 publication-title: New J. Chem. – ident: e_1_2_6_42_1 doi: 10.1002/cssc.202100682 – ident: e_1_2_6_26_1 doi: 10.1021/acs.chemrev.0c00030 – ident: e_1_2_6_7_1 doi: 10.1016/j.chempr.2020.06.014 – ident: e_1_2_6_48_1 doi: 10.1002/anie.202007187 – ident: e_1_2_6_34_3 doi: 10.1002/ange.200300578 – ident: e_1_2_6_28_2 doi: 10.1007/BF02097875 – ident: e_1_2_6_56_1 doi: 10.1039/C8CC02642D |
SSID | ssj0060966 |
Score | 2.623974 |
Snippet | Efficient degradation of plastics, the vital challenge for a sustainable future, stands in need of better chemical recycling procedures that help produce... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 5049 |
SubjectTerms | Additives C−C bond cleavage Iron Oxidation Oxidizing agents photocatalysis Photodegradation plastic degradation Plastics Polymers Recycling Selectivity Styrenes |
Title | Selective Degradation of Styrene‐Related Plastics Catalyzed by Iron under Visible Light |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fcssc.202101762 https://www.proquest.com/docview/2598900806 https://www.proquest.com/docview/2572231603 |
Volume | 14 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LTxsxELZQLvRSoA81PCojIXFyiB3bsY9oAQUECDVNRU8r2_FKVdEG5XGAEz-B38gvYWY3u0kqVZXKbR9j7a7HM_486_mGkAPDJffGe4Z5ngy8n2XGDj2THCb0DBDA0GNA_-pa9wby4lbdLmXxl_wQdcANLaPw12jgzk-OFqShYTJBCkKBY6pwwrhhC1HRt5o_SgM-L9KLjJZM6Q6vWBvb4mi1-eqstICay4C1mHHONoir3rXcaPK7NZv6Vnj8g8bxLR-zSd7P4Sg9LsfPFlmL-QeynlRV4D6Sn_2iUA74RHqCvBJlCSY6ymgf49d5fHl6LjbUxSG9ASSOrM80wZjQwyNc8g_0fAzymKo2pj9-gQHeRXqJEYFPZHB2-j3psXk5BhZAZ4JZmyFXvFBeZbarutxJ0dUW8JNyATA6dyqIzCikcQK_4KV3XrRDxxjtoomh85k08lEevxDqYN0WXEd5LTMZg3Da8mi1CnLIZVBZk7BKHWmYc5VjyYy7tGRZFil2WFp3WJMc1vL3JUvHXyV3K-2mc2udpLAENBaxs26S_fo2dDT-PHF5HM1QpgtICotyN4koVPmPJ6VJv5_UZ9v_02iHvMNjTH3kdpc0puNZ3AMMNPVfi3H-Civq_Ng |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NTtwwEB4hONBLS2mrbqHgSpV6MmCv7bWPVQpaYEFVF6r2FNleR0JF2Wp_DnDiEfqMfZLOJJtQkBBSe4wzVhKPZ_x54vkG4L0VSgQbAqc8T47ez3HrRoErgQt6gQhgFCigf3Jq-ufq6JtuThNSLkzND9EG3MgyKn9NBk4B6d1b1tA4nRIHoaRJRV54hcp6V7uqLy2DlEGEXiUYWaO4Nl3R8Dbuyd27_e-uS7dg82_IWq05B88gNG9bHzX5sTOfhZ14fY_I8b8-Zw2eLhAp-1hPoeewlMp1WM2aQnAv4PuwqpWDbpF9ImqJugoTGxdsSCHsMv2--VWdqUsj9hnBOBE_s4zCQlfX2BSu2OEE5SlbbcK-XqANXiY2oKDASzg_2D_L-nxRkYFHVJvkzhVEFy910IXr6Z7wSvaMQwilfUSYLryOsrCamJzQNQQVfJB7sWut8cmm2H0Fy-W4TK-Bedy6Rd_VwahCpSi9cSI5o6MaCRV10QHe6COPC7pyqppxmddEyzKnAcvbAevAh1b-Z03U8aDkZqPefGGw0xx3gdYRfDYdeNfexoGm_ye-TOM5yfQQTFFd7g7ISpePPCnPhsOsvXrzL522YbV_djLIB4enxxvwhNopE1K4TVieTebpLUKiWdiqJv0fAEwBAg |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtQwEB6hIgGXUv7EtgWMhMTJ7dpre-0jynbVQqkqlqJyimzHkVCrbLU_h_bEI_CMPAkzySZtkRASHOOMlcQzHn-eeL4BeGOFEsGGwCnPk6P3c9y6InAlcEEvEQEUgQL6H4_M_ol6f6pPb2TxN_wQXcCNZkbtr2mCXxTl7jVpaJzPiYJQkk2RE76rTN-SXY8-dQRSBgF6nV9kjeLaDERL29iXu7f7316WrrHmTcRaLznjh-Dbl21OmpztLBdhJ179xuP4P1-zAesrPMreNQb0CO6k6jHcz9oycE_g66SulINOkY2IWKKpwcSmJZtQALtKP7__qE_UpYIdIxQn2meWUVDo8gqbwiU7mKE85arN2JdvOAPPEzukkMBTOBnvfc72-aoeA4-oNMmdK4ksXuqgSzfUQ-GVHBqHAEr7iCBdeB1laTXxOKFjCCr4IPtxYK3xyaY4eAZr1bRKz4F53LhFP9DBqFKlKL1xIjmjoyqEirrsAW_VkccVWTnVzDjPG5plmdOA5d2A9eBtJ3_R0HT8UXK71W6-mq7zHPeA1hF4Nj143d3Ggaa_J75K0yXJDBFKUVXuHshalX95Up5NJll3tfkvnV7BvePROD88OPqwBQ-omdIghduGtcVsmV4gHlqEl7XJ_wIQBf-r |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Selective+Degradation+of+Styrene%E2%80%90Related+Plastics+Catalyzed+by+Iron+under+Visible+Light&rft.jtitle=ChemSusChem&rft.au=Wang%2C+Miao&rft.au=Wen%2C+Jinglan&rft.au=Huang%2C+Yahao&rft.au=Hu%2C+Peng&rft.date=2021-11-19&rft.issn=1864-5631&rft.eissn=1864-564X&rft.volume=14&rft.issue=22&rft.spage=5049&rft.epage=5056&rft_id=info:doi/10.1002%2Fcssc.202101762&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_cssc_202101762 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1864-5631&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1864-5631&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1864-5631&client=summon |