Single‐Crystal SnSe Thermoelectric Fibers via Laser‐Induced Directional Crystallization: From 1D Fibers to Multidimensional Fabrics

Single‐crystal tin selenide (SnSe), a record holder of high‐performance thermoelectric materials, enables high‐efficient interconversion between heat and electricity for power generation or refrigeration. However, the rigid bulky SnSe cannot satisfy the applications for flexible and wearable devices...

Full description

Saved in:
Bibliographic Details
Published inAdvanced materials (Weinheim) Vol. 32; no. 36; pp. e2002702 - n/a
Main Authors Zhang, Jing, Zhang, Ting, Zhang, Hang, Wang, Zhixun, Li, Chen, Wang, Zhe, Li, Kaiwei, Huang, Xingming, Chen, Ming, Chen, Zhe, Tian, Zhiting, Chen, Haisheng, Zhao, Li‐Dong, Wei, Lei
Format Journal Article
LanguageEnglish
Published Weinheim Wiley Subscription Services, Inc 01.09.2020
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Single‐crystal tin selenide (SnSe), a record holder of high‐performance thermoelectric materials, enables high‐efficient interconversion between heat and electricity for power generation or refrigeration. However, the rigid bulky SnSe cannot satisfy the applications for flexible and wearable devices. Here, a method is demonstrated to achieve ultralong single‐crystal SnSe wire with rock‐salt structure and high thermoelectric performance with diameters from micro‐ to nanoscale. This method starts from thermally drawing SnSe into a flexible fiber‐like substrate, which is polycrystalline, highly flexible, ultralong, and mechanically stable. Then a CO2 laser is employed to recrystallize the SnSe core to single‐crystal over the entire fiber. Both theoretical and experimental studies demonstrate that the single‐crystal rock‐salt SnSe fibers possess high thermoelectric properties, significantly enhancing the ZT value to 2 at 862 K. This simple and low‐cost approach offers a promising path to engage the fiber‐shaped single‐crystal materials in applications from 1D fiber devices to multidimensional wearable fabrics. Single‐crystal SnSe fibers are achieved using thermal drawing and laser‐induced recrystallization. The resulting single‐crystal rock‐salt SnSe fibers possess high thermoelectric properties, enhancing the ZT value close to 2 at 860 K, while being highly flexible, ultralong, and mechanically stable. This simple and low‐cost approach engages the fiber‐shaped high‐performance single‐crystal materials in applications from 1D fiber devices to multidimensional wearable fabrics.
AbstractList Single‐crystal tin selenide (SnSe), a record holder of high‐performance thermoelectric materials, enables high‐efficient interconversion between heat and electricity for power generation or refrigeration. However, the rigid bulky SnSe cannot satisfy the applications for flexible and wearable devices. Here, a method is demonstrated to achieve ultralong single‐crystal SnSe wire with rock‐salt structure and high thermoelectric performance with diameters from micro‐ to nanoscale. This method starts from thermally drawing SnSe into a flexible fiber‐like substrate, which is polycrystalline, highly flexible, ultralong, and mechanically stable. Then a CO 2 laser is employed to recrystallize the SnSe core to single‐crystal over the entire fiber. Both theoretical and experimental studies demonstrate that the single‐crystal rock‐salt SnSe fibers possess high thermoelectric properties, significantly enhancing the ZT value to 2 at 862 K. This simple and low‐cost approach offers a promising path to engage the fiber‐shaped single‐crystal materials in applications from 1D fiber devices to multidimensional wearable fabrics.
Single‐crystal tin selenide (SnSe), a record holder of high‐performance thermoelectric materials, enables high‐efficient interconversion between heat and electricity for power generation or refrigeration. However, the rigid bulky SnSe cannot satisfy the applications for flexible and wearable devices. Here, a method is demonstrated to achieve ultralong single‐crystal SnSe wire with rock‐salt structure and high thermoelectric performance with diameters from micro‐ to nanoscale. This method starts from thermally drawing SnSe into a flexible fiber‐like substrate, which is polycrystalline, highly flexible, ultralong, and mechanically stable. Then a CO2 laser is employed to recrystallize the SnSe core to single‐crystal over the entire fiber. Both theoretical and experimental studies demonstrate that the single‐crystal rock‐salt SnSe fibers possess high thermoelectric properties, significantly enhancing the ZT value to 2 at 862 K. This simple and low‐cost approach offers a promising path to engage the fiber‐shaped single‐crystal materials in applications from 1D fiber devices to multidimensional wearable fabrics. Single‐crystal SnSe fibers are achieved using thermal drawing and laser‐induced recrystallization. The resulting single‐crystal rock‐salt SnSe fibers possess high thermoelectric properties, enhancing the ZT value close to 2 at 860 K, while being highly flexible, ultralong, and mechanically stable. This simple and low‐cost approach engages the fiber‐shaped high‐performance single‐crystal materials in applications from 1D fiber devices to multidimensional wearable fabrics.
Single-crystal tin selenide (SnSe), a record holder of high-performance thermoelectric materials, enables high-efficient interconversion between heat and electricity for power generation or refrigeration. However, the rigid bulky SnSe cannot satisfy the applications for flexible and wearable devices. Here, a method is demonstrated to achieve ultralong single-crystal SnSe wire with rock-salt structure and high thermoelectric performance with diameters from micro- to nanoscale. This method starts from thermally drawing SnSe into a flexible fiber-like substrate, which is polycrystalline, highly flexible, ultralong, and mechanically stable. Then a CO2 laser is employed to recrystallize the SnSe core to single-crystal over the entire fiber. Both theoretical and experimental studies demonstrate that the single-crystal rock-salt SnSe fibers possess high thermoelectric properties, significantly enhancing the ZT value to 2 at 862 K. This simple and low-cost approach offers a promising path to engage the fiber-shaped single-crystal materials in applications from 1D fiber devices to multidimensional wearable fabrics.Single-crystal tin selenide (SnSe), a record holder of high-performance thermoelectric materials, enables high-efficient interconversion between heat and electricity for power generation or refrigeration. However, the rigid bulky SnSe cannot satisfy the applications for flexible and wearable devices. Here, a method is demonstrated to achieve ultralong single-crystal SnSe wire with rock-salt structure and high thermoelectric performance with diameters from micro- to nanoscale. This method starts from thermally drawing SnSe into a flexible fiber-like substrate, which is polycrystalline, highly flexible, ultralong, and mechanically stable. Then a CO2 laser is employed to recrystallize the SnSe core to single-crystal over the entire fiber. Both theoretical and experimental studies demonstrate that the single-crystal rock-salt SnSe fibers possess high thermoelectric properties, significantly enhancing the ZT value to 2 at 862 K. This simple and low-cost approach offers a promising path to engage the fiber-shaped single-crystal materials in applications from 1D fiber devices to multidimensional wearable fabrics.
Single‐crystal tin selenide (SnSe), a record holder of high‐performance thermoelectric materials, enables high‐efficient interconversion between heat and electricity for power generation or refrigeration. However, the rigid bulky SnSe cannot satisfy the applications for flexible and wearable devices. Here, a method is demonstrated to achieve ultralong single‐crystal SnSe wire with rock‐salt structure and high thermoelectric performance with diameters from micro‐ to nanoscale. This method starts from thermally drawing SnSe into a flexible fiber‐like substrate, which is polycrystalline, highly flexible, ultralong, and mechanically stable. Then a CO2 laser is employed to recrystallize the SnSe core to single‐crystal over the entire fiber. Both theoretical and experimental studies demonstrate that the single‐crystal rock‐salt SnSe fibers possess high thermoelectric properties, significantly enhancing the ZT value to 2 at 862 K. This simple and low‐cost approach offers a promising path to engage the fiber‐shaped single‐crystal materials in applications from 1D fiber devices to multidimensional wearable fabrics.
Author Li, Chen
Wang, Zhe
Zhang, Ting
Wei, Lei
Li, Kaiwei
Huang, Xingming
Chen, Haisheng
Zhang, Jing
Chen, Ming
Tian, Zhiting
Wang, Zhixun
Zhang, Hang
Zhao, Li‐Dong
Chen, Zhe
Author_xml – sequence: 1
  givenname: Jing
  surname: Zhang
  fullname: Zhang, Jing
  organization: Nanyang Technological University
– sequence: 2
  givenname: Ting
  surname: Zhang
  fullname: Zhang, Ting
  email: zhangting@iet.cn
  organization: Chinese Academy of Sciences
– sequence: 3
  givenname: Hang
  surname: Zhang
  fullname: Zhang, Hang
  organization: Chinese Academy of Sciences
– sequence: 4
  givenname: Zhixun
  surname: Wang
  fullname: Wang, Zhixun
  organization: Nanyang Technological University
– sequence: 5
  givenname: Chen
  surname: Li
  fullname: Li, Chen
  organization: Cornell University
– sequence: 6
  givenname: Zhe
  surname: Wang
  fullname: Wang, Zhe
  organization: Nanyang Technological University
– sequence: 7
  givenname: Kaiwei
  surname: Li
  fullname: Li, Kaiwei
  organization: Nanyang Technological University
– sequence: 8
  givenname: Xingming
  surname: Huang
  fullname: Huang, Xingming
  organization: Central South University
– sequence: 9
  givenname: Ming
  surname: Chen
  fullname: Chen, Ming
  organization: Chinese Academy of Sciences
– sequence: 10
  givenname: Zhe
  surname: Chen
  fullname: Chen, Zhe
  organization: Chinese Academy of Sciences
– sequence: 11
  givenname: Zhiting
  surname: Tian
  fullname: Tian, Zhiting
  organization: Cornell University
– sequence: 12
  givenname: Haisheng
  surname: Chen
  fullname: Chen, Haisheng
  organization: Chinese Academy of Sciences
– sequence: 13
  givenname: Li‐Dong
  surname: Zhao
  fullname: Zhao, Li‐Dong
  organization: Beihang University
– sequence: 14
  givenname: Lei
  orcidid: 0000-0003-0819-8325
  surname: Wei
  fullname: Wei, Lei
  email: wei.lei@ntu.edu.sg
  organization: Research Techno Plaza
BookMark eNqFkcFOGzEQhq0KpAbotWdLXLhsOna83nVvUdJQpKAekvvK8c4WI--a2rug9MSNK8_Ik-AQaCWkqiePrO-bGfs_Iged75CQzwzGDIB_0XWrxxx4qgvgH8iI5ZxlAlR-QEagJnmmpCg_kqMYrwFASZAj8rCy3U-HT_ePs7CNvXZ01a2Qrq8wtB4dmj5YQxd2gyHSW6vpUkcMCb_o6sFgTec2JMj6LqmvLZz9rXc3X-ki-Jay-Zvfe3o5uN7WtsUu7p2F3qQJ8YQcNtpF_PR6HpP14tt69j1b_ji_mE2XmRFM8kyKokANUOSFEaWpJbJSsqaBWsuiUbmBWuVNLlBLU08a0xQaWImgUChgm8kxOdu3vQn-14Cxr1obDTqnO_RDrLjgRfq1CUBCT9-h134IaeUdJUBCCYwnSuwpE3yMAZvK2P7l9X3Q1lUMql041S6c6k84SRu_026CbXXY_ltQe-HOOtz-h66m88vpX_cZMgynPQ
CitedBy_id crossref_primary_10_29026_oes_2023_220025
crossref_primary_10_1007_s42765_020_00057_5
crossref_primary_10_1021_acsenergylett_0c02483
crossref_primary_10_1016_j_mser_2024_100915
crossref_primary_10_1038_s41586_023_06946_0
crossref_primary_10_1007_s40843_021_1921_3
crossref_primary_10_1002_smtd_202400589
crossref_primary_10_1002_gch2_202300023
crossref_primary_10_1007_s42765_023_00267_7
crossref_primary_10_1021_acsnano_1c06230
crossref_primary_10_1002_advs_202401250
crossref_primary_10_1016_j_mattod_2021_02_016
crossref_primary_10_1007_s12200_021_1226_0
crossref_primary_10_1093_nsr_nwae203
crossref_primary_10_1016_j_mtcomm_2023_107682
crossref_primary_10_3390_nano13132011
crossref_primary_10_1002_aesr_202100060
crossref_primary_10_3390_ma14216306
crossref_primary_10_1360_nso_20240035
crossref_primary_10_3390_s21103437
crossref_primary_10_3788_LOP231225
crossref_primary_10_3788_LOP231424
crossref_primary_10_1002_adma_202202942
crossref_primary_10_1039_D0EE03520C
crossref_primary_10_3390_bios12100882
crossref_primary_10_1002_ctm2_1685
crossref_primary_10_34133_energymatadv_0124
crossref_primary_10_1111_jace_19142
crossref_primary_10_1002_advs_202203808
crossref_primary_10_1021_acsami_3c13239
crossref_primary_10_1007_s10854_024_13746_3
crossref_primary_10_3390_polym15040842
crossref_primary_10_1016_j_eng_2024_01_015
crossref_primary_10_1002_adpr_202000159
crossref_primary_10_1063_5_0071699
crossref_primary_10_1038_s41467_021_24135_3
crossref_primary_10_1007_s42765_020_00056_6
crossref_primary_10_20517_microstructures_2024_56
crossref_primary_10_1007_s10853_023_08593_2
crossref_primary_10_1111_jace_19916
crossref_primary_10_1002_advs_202207642
crossref_primary_10_1002_ece2_17
crossref_primary_10_1021_acsnano_4c10111
crossref_primary_10_3390_mi12080869
crossref_primary_10_1021_accountsmr_4c00343
crossref_primary_10_1016_j_nanoen_2023_109182
crossref_primary_10_3390_nano13020326
crossref_primary_10_1007_s42242_024_00300_7
crossref_primary_10_3390_mi12121463
crossref_primary_10_1111_jace_18229
crossref_primary_10_1002_smtd_202101235
crossref_primary_10_1002_inf2_12318
crossref_primary_10_1002_adfm_202423909
crossref_primary_10_1016_j_pmatsci_2022_101003
crossref_primary_10_1038_s41467_024_51377_8
crossref_primary_10_54227_mlab_20230032
crossref_primary_10_1002_adma_202102990
crossref_primary_10_1007_s11431_024_2738_5
crossref_primary_10_1063_5_0186789
crossref_primary_10_1093_nsr_nwac202
crossref_primary_10_3788_gzxb20245304_0406001
crossref_primary_10_1016_j_jallcom_2025_179125
crossref_primary_10_1039_D4CS00286E
crossref_primary_10_1017_wtc_2025_2
crossref_primary_10_1126_science_adp2444
crossref_primary_10_3390_ma15155331
crossref_primary_10_3390_app14010085
crossref_primary_10_1039_D1TC02331D
crossref_primary_10_1080_00405167_2023_2250651
crossref_primary_10_3390_coatings13020383
crossref_primary_10_54227_mlab_20220006
crossref_primary_10_1007_s12200_023_00058_3
crossref_primary_10_1002_smll_202304599
crossref_primary_10_1007_s40042_021_00100_7
crossref_primary_10_1088_2752_5724_ad0ca9
crossref_primary_10_1016_j_nanoen_2022_107553
Cites_doi 10.1038/nmat1889
10.1039/C7RA00140A
10.1038/nature13184
10.1038/s41467-019-09835-1
10.1088/0268-1242/31/10/103004
10.1039/C6EE01755J
10.1002/adom.201600592
10.1126/science.aaq1479
10.1364/OME.7.001388
10.1103/PhysRevB.15.2177
10.1039/C6TA03625B
10.1016/j.cpc.2006.03.007
10.1016/S0022-3093(96)00648-5
10.1088/1361-648X/aa8f79
10.1007/s10765-017-2328-1
10.1039/C8TC01314D
10.1063/1.4936636
10.1103/PhysRevB.86.174307
10.1038/ncomms3216
10.1590/S1516-14391998000100003
10.1002/adfm.201703245
10.1038/nbt.3093
10.1038/s41586-018-0390-x
10.1103/PhysRevLett.77.3865
10.1016/j.cpc.2014.02.015
10.1002/aelm.201600449
10.1002/adom.201500784
10.1016/j.applthermaleng.2016.08.154
10.1016/j.scriptamat.2015.07.021
10.1007/978-3-540-74761-1_13
10.1021/acs.nanolett.5b04499
10.1038/nmat3273
10.1039/C5NR02131F
10.1002/adma.200600527
10.1103/PhysRevB.85.184303
10.1016/0921-5107(88)90031-1
10.1021/acsenergylett.8b00399
10.1038/ncomms5314
10.1039/C4TA01643B
10.1002/adma.201802348
10.1039/C8CC02230E
10.1016/j.joule.2019.01.001
10.1021/acsphotonics.6b00584
10.1038/ncomms4525
10.1126/science.aaz9426
10.1038/ncomms13265
10.1038/nmat4098
10.1016/j.joule.2019.03.001
10.1063/1.1754812
10.1103/PhysRevB.88.235122
10.1016/j.jallcom.2017.07.150
10.1063/1.1524305
10.1021/jacs.9b01396
10.1115/1.4023585
ContentType Journal Article
Copyright 2020 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
2020 Wiley‐VCH GmbH
2020 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Copyright_xml – notice: 2020 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
– notice: 2020 Wiley‐VCH GmbH
– notice: 2020 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
DBID AAYXX
CITATION
7SR
8BQ
8FD
JG9
7X8
DOI 10.1002/adma.202002702
DatabaseName CrossRef
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
MEDLINE - Academic
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
METADEX
MEDLINE - Academic
DatabaseTitleList CrossRef

MEDLINE - Academic
Materials Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1521-4095
EndPage n/a
ExternalDocumentID 10_1002_adma_202002702
ADMA202002702
Genre article
GrantInformation_xml – fundername: National Research Foundation Singapore
  funderid: NRF‐CRP18‐2017‐02
– fundername: National Natural Science Foundation of China
  funderid: 11804354
– fundername: Shenzhen Basic Research
  funderid: JCYJ20180507182431967
– fundername: Chinese Academy of Sciences Talents Program
  funderid: E0290706
– fundername: Ministry of Education - Singapore
  funderid: MOE2019‐T2‐2‐127; MOE2019‐T1‐001‐103; MOE2019‐T1‐001‐111
– fundername: National Natural Science Foundation of China
  funderid: 51888103
GroupedDBID ---
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6P2
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABIJN
ABJNI
ABLJU
ABPVW
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RWM
RX1
RYL
SUPJJ
TN5
UB1
UPT
V2E
W8V
W99
WBKPD
WFSAM
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XV2
YR2
ZZTAW
~02
~IA
~WT
.Y3
31~
6TJ
8WZ
A6W
AANHP
AAYOK
AAYXX
ABEML
ACBWZ
ACRPL
ACSCC
ACYXJ
ADMLS
ADNMO
AETEA
AEYWJ
AFFNX
AGHNM
AGQPQ
AGYGG
ASPBG
AVWKF
AZFZN
CITATION
EJD
FEDTE
FOJGT
HF~
HVGLF
LW6
M6K
NDZJH
PALCI
RIWAO
RJQFR
SAMSI
WTY
ZY4
7SR
8BQ
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
JG9
7X8
ID FETCH-LOGICAL-c4162-6477ea00757c48cd6e1861ff0da67f95c0d95f54ea6cd3fcf7a018e09e4901b3
IEDL.DBID DR2
ISSN 0935-9648
1521-4095
IngestDate Thu Jul 10 23:27:54 EDT 2025
Fri Jul 25 08:39:44 EDT 2025
Thu Apr 24 22:54:00 EDT 2025
Tue Jul 01 02:32:50 EDT 2025
Wed Jan 22 16:32:16 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 36
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4162-6477ea00757c48cd6e1861ff0da67f95c0d95f54ea6cd3fcf7a018e09e4901b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-0819-8325
PQID 2440608012
PQPubID 2045203
PageCount 10
ParticipantIDs proquest_miscellaneous_2427521300
proquest_journals_2440608012
crossref_citationtrail_10_1002_adma_202002702
crossref_primary_10_1002_adma_202002702
wiley_primary_10_1002_adma_202002702_ADMA202002702
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-09-01
PublicationDateYYYYMMDD 2020-09-01
PublicationDate_xml – month: 09
  year: 2020
  text: 2020-09-01
  day: 01
PublicationDecade 2020
PublicationPlace Weinheim
PublicationPlace_xml – name: Weinheim
PublicationTitle Advanced materials (Weinheim)
PublicationYear 2020
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2017; 7
2013; 4
2013; 88
2010
2017; 27
1977 2015 2017; 15 7 7
2006; 175
2015; 108
2017; 29
1997 1977; 211 15
2015 2017 2018 2018; 33 3 31 560
2003; 93
2017 2013 2012 2007; 111 135 11 19
1996; 77
2016; 4
1988; 1
2018; 6
2017; 725
2014; 5
2014; 508
2016 2017 2019 2016 2014 2016 2016 2017 2017; 4 5 10 7 13 31 7 4
1967; 10
2007; 6
2016 2018; 16 39
1998; 1
1975 2014; 60 5
2014; 185
2018 2019 2019 2018 2018 2019 2020; 360 3 3 3 54 141 367
2016; 9
2012; 86
2012; 85
2015 2014; 5 2
Aleksandrov A. (e_1_2_6_11_2) 1977; 15
e_1_2_6_32_1
e_1_2_6_30_1
Jin W. (e_1_2_6_16_3) 2017; 7
e_1_2_6_19_1
e_1_2_6_13_2
e_1_2_6_11_1
e_1_2_6_17_1
e_1_2_6_15_1
e_1_2_6_20_2
e_1_2_6_20_1
e_1_2_6_9_9
e_1_2_6_9_8
e_1_2_6_9_5
e_1_2_6_9_4
e_1_2_6_9_6
e_1_2_6_3_7
e_1_2_6_7_3
e_1_2_6_9_1
e_1_2_6_3_6
e_1_2_6_7_2
e_1_2_6_9_3
e_1_2_6_7_4
e_1_2_6_9_2
e_1_2_6_3_3
e_1_2_6_5_1
e_1_2_6_3_2
e_1_2_6_3_5
e_1_2_6_7_1
e_1_2_6_3_4
e_1_2_6_1_1
e_1_2_6_24_1
e_1_2_6_3_1
e_1_2_6_22_1
e_1_2_6_28_1
e_1_2_6_26_1
e_1_2_6_31_2
e_1_2_6_10_1
e_1_2_6_31_1
Knrpnrnrcr R. J. (e_1_2_6_13_1) 1975; 60
e_1_2_6_14_1
Peacock A. C. (e_1_2_6_9_7) 2016
e_1_2_6_12_1
e_1_2_6_16_2
e_1_2_6_18_1
e_1_2_6_16_1
e_1_2_6_21_1
e_1_2_6_8_1
e_1_2_6_4_1
e_1_2_6_6_1
e_1_2_6_23_3
e_1_2_6_25_1
e_1_2_6_23_2
e_1_2_6_23_1
e_1_2_6_2_1
e_1_2_6_29_1
e_1_2_6_27_1
e_1_2_6_23_4
References_xml – volume: 27
  year: 2017
  publication-title: Adv. Funct. Mater.
– volume: 93
  start-page: 793
  year: 2003
  publication-title: J. Appl. Phys.
– volume: 6
  start-page: 336
  year: 2007
  publication-title: Nat. Mater.
– volume: 15 7 7
  start-page: 2177
  year: 1977 2015 2017
  publication-title: Phys. Rev. B Nanoscale Phys. Rev. X
– volume: 4
  year: 2016
  publication-title: J. Mater. Chem. A
– volume: 6
  year: 2018
  publication-title: J. Mater. Chem. C
– volume: 111 135 11 19
  start-page: 1441 422 1043
  year: 2017 2013 2012 2007
  publication-title: Appl. Therm. Eng. J. Heat Transfer Nat. Mater. Adv. Mater.
– volume: 5 2
  year: 2015 2014
  publication-title: AIP Adv. J. Mater. Chem. A
– volume: 86
  year: 2012
  publication-title: Phys. Rev. B
– volume: 360 3 3 3 54 141 367
  start-page: 778 636 719 1153 6573 6141 1196
  year: 2018 2019 2019 2018 2018 2019 2020
  publication-title: Science Joule Joule ACS Energy Lett. Chem. Commun. J. Am. Chem. Soc. Science
– volume: 29
  year: 2017
  publication-title: J. Phys.: Condens. Matter
– volume: 88
  year: 2013
  publication-title: Phys. Rev. B
– volume: 85
  year: 2012
  publication-title: Phys. Rev. B
– volume: 9
  start-page: 3044
  year: 2016
  publication-title: Energy Environ. Sci.
– volume: 77
  start-page: 3865
  year: 1996
  publication-title: Phys. Rev. Lett
– volume: 60 5
  start-page: 798 4314
  year: 1975 2014
  publication-title: Am. Mineral. Nat. Commun.
– volume: 1
  start-page: 67
  year: 1988
  publication-title: Mater. Sci. Eng., B
– volume: 211 15
  start-page: 281 47
  year: 1997 1977
  publication-title: J. Non‐Cryst. Solids Teplofiz. Vys. Temp.
– volume: 4
  start-page: 2216
  year: 2013
  publication-title: Nat. Commun.
– volume: 185
  start-page: 1747
  year: 2014
  publication-title: Comput. Phys. Commun.
– volume: 725
  start-page: 242
  year: 2017
  publication-title: J. Alloys Compd.
– volume: 175
  start-page: 67
  year: 2006
  publication-title: Comput. Phys. Commun.
– volume: 10
  start-page: 282
  year: 1967
  publication-title: Appl. Phys. Lett
– start-page: 393
  year: 2010
– volume: 5
  start-page: 3525
  year: 2014
  publication-title: Nat. Commun.
– volume: 4 5 10 7 13 31 7 4
  start-page: 1004 1790 1122 1388 85
  year: 2016 2017 2019 2016 2014 2016 2016 2017 2017
  publication-title: Adv. Opt. Mater. Adv. Opt. Mater. Nat. Commun. Nat. Commun. Nat. Mater. Semicond. Sci. Technol. Opt. Mater. Express ACS Photonics
– volume: 16 39
  start-page: 1643 5
  year: 2016 2018
  publication-title: Nano Lett. Int. J. Thermophys.
– volume: 33 3 31 560
  start-page: 277 214
  year: 2015 2017 2018 2018
  publication-title: Nat. Biotechnol. Adv. Electron. Mater. Adv. Mater. Nature
– volume: 7
  start-page: 8258
  year: 2017
  publication-title: RSC Adv.
– volume: 1
  start-page: 05
  year: 1998
  publication-title: Mater. Res.
– volume: 508
  start-page: 373
  year: 2014
  publication-title: Nature
– volume: 108
  start-page: 1
  year: 2015
  publication-title: Scr. Mater.
– ident: e_1_2_6_5_1
  doi: 10.1038/nmat1889
– ident: e_1_2_6_18_1
  doi: 10.1039/C7RA00140A
– ident: e_1_2_6_2_1
  doi: 10.1038/nature13184
– ident: e_1_2_6_9_3
  doi: 10.1038/s41467-019-09835-1
– volume-title: Integrated Photonics Research, Silicon and Nanophotonics
  year: 2016
  ident: e_1_2_6_9_7
– volume: 7
  start-page: 041020
  year: 2017
  ident: e_1_2_6_16_3
  publication-title: Phys. Rev. X
– ident: e_1_2_6_9_6
  doi: 10.1088/0268-1242/31/10/103004
– ident: e_1_2_6_4_1
  doi: 10.1039/C6EE01755J
– ident: e_1_2_6_9_2
  doi: 10.1002/adom.201600592
– ident: e_1_2_6_3_1
  doi: 10.1126/science.aaq1479
– ident: e_1_2_6_9_8
  doi: 10.1364/OME.7.001388
– ident: e_1_2_6_16_1
  doi: 10.1103/PhysRevB.15.2177
– ident: e_1_2_6_19_1
  doi: 10.1039/C6TA03625B
– ident: e_1_2_6_26_1
  doi: 10.1016/j.cpc.2006.03.007
– ident: e_1_2_6_11_1
  doi: 10.1016/S0022-3093(96)00648-5
– ident: e_1_2_6_22_1
  doi: 10.1088/1361-648X/aa8f79
– ident: e_1_2_6_31_2
  doi: 10.1007/s10765-017-2328-1
– ident: e_1_2_6_17_1
  doi: 10.1039/C8TC01314D
– ident: e_1_2_6_20_1
  doi: 10.1063/1.4936636
– volume: 60
  start-page: 798
  year: 1975
  ident: e_1_2_6_13_1
  publication-title: Am. Mineral.
– ident: e_1_2_6_30_1
  doi: 10.1103/PhysRevB.86.174307
– ident: e_1_2_6_10_1
  doi: 10.1038/ncomms3216
– ident: e_1_2_6_12_1
  doi: 10.1590/S1516-14391998000100003
– ident: e_1_2_6_8_1
  doi: 10.1002/adfm.201703245
– ident: e_1_2_6_7_1
  doi: 10.1038/nbt.3093
– ident: e_1_2_6_7_4
  doi: 10.1038/s41586-018-0390-x
– ident: e_1_2_6_25_1
  doi: 10.1103/PhysRevLett.77.3865
– ident: e_1_2_6_29_1
  doi: 10.1016/j.cpc.2014.02.015
– ident: e_1_2_6_7_2
  doi: 10.1002/aelm.201600449
– ident: e_1_2_6_9_1
  doi: 10.1002/adom.201500784
– ident: e_1_2_6_23_1
  doi: 10.1016/j.applthermaleng.2016.08.154
– ident: e_1_2_6_27_1
  doi: 10.1016/j.scriptamat.2015.07.021
– ident: e_1_2_6_6_1
  doi: 10.1007/978-3-540-74761-1_13
– ident: e_1_2_6_31_1
  doi: 10.1021/acs.nanolett.5b04499
– ident: e_1_2_6_23_3
  doi: 10.1038/nmat3273
– ident: e_1_2_6_16_2
  doi: 10.1039/C5NR02131F
– ident: e_1_2_6_23_4
  doi: 10.1002/adma.200600527
– ident: e_1_2_6_24_1
  doi: 10.1103/PhysRevB.85.184303
– ident: e_1_2_6_1_1
  doi: 10.1016/0921-5107(88)90031-1
– ident: e_1_2_6_3_4
  doi: 10.1021/acsenergylett.8b00399
– ident: e_1_2_6_13_2
  doi: 10.1038/ncomms5314
– ident: e_1_2_6_20_2
  doi: 10.1039/C4TA01643B
– ident: e_1_2_6_7_3
  doi: 10.1002/adma.201802348
– ident: e_1_2_6_3_5
  doi: 10.1039/C8CC02230E
– ident: e_1_2_6_3_3
  doi: 10.1016/j.joule.2019.01.001
– ident: e_1_2_6_9_9
  doi: 10.1021/acsphotonics.6b00584
– ident: e_1_2_6_28_1
  doi: 10.1038/ncomms4525
– ident: e_1_2_6_3_7
  doi: 10.1126/science.aaz9426
– ident: e_1_2_6_9_4
  doi: 10.1038/ncomms13265
– ident: e_1_2_6_9_5
  doi: 10.1038/nmat4098
– ident: e_1_2_6_3_2
  doi: 10.1016/j.joule.2019.03.001
– ident: e_1_2_6_15_1
  doi: 10.1063/1.1754812
– ident: e_1_2_6_14_1
  doi: 10.1103/PhysRevB.88.235122
– volume: 15
  start-page: 47
  year: 1977
  ident: e_1_2_6_11_2
  publication-title: Teplofiz. Vys. Temp.
– ident: e_1_2_6_21_1
  doi: 10.1016/j.jallcom.2017.07.150
– ident: e_1_2_6_32_1
  doi: 10.1063/1.1524305
– ident: e_1_2_6_3_6
  doi: 10.1021/jacs.9b01396
– ident: e_1_2_6_23_2
  doi: 10.1115/1.4023585
SSID ssj0009606
Score 2.6102803
Snippet Single‐crystal tin selenide (SnSe), a record holder of high‐performance thermoelectric materials, enables high‐efficient interconversion between heat and...
Single-crystal tin selenide (SnSe), a record holder of high-performance thermoelectric materials, enables high-efficient interconversion between heat and...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage e2002702
SubjectTerms Carbon dioxide
Carbon dioxide lasers
Crystal structure
Crystallization
Fabrics
Fibers
flexible fibers
high thermoelectric properties
laser recrystallization
Materials science
single‐crystal SnSe
Substrates
Thermoelectric materials
Tin selenide
wearable fabrics
Wearable technology
Title Single‐Crystal SnSe Thermoelectric Fibers via Laser‐Induced Directional Crystallization: From 1D Fibers to Multidimensional Fabrics
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadma.202002702
https://www.proquest.com/docview/2440608012
https://www.proquest.com/docview/2427521300
Volume 32
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Nb9QwELWqnugBaAGx0CIjIXFK62SdOOG2ahtViPbQLVJvkeMZSxXbpMruIsGpt175jf0l9Tgfu0VCSHBKoszEie3xvCQzbxj7ADFK50bKQBqI3QsKyiADsIGNFCpbgkUfRHN6lpx8lZ8v48u1LP6WH2L44EaW4ddrMnBdzg9WpKEaPG8QBRkozyZJAVuEis5X_FEEzz3Z3jgOskSmPWujiA4eqz_2SiuouQ5YvcfJnzHd32sbaPJtf7ko983P32gc_-dhnrOnHRzlk3b-bLMNrHbY1hpJ4Qt2N3WbGd7f_jpsfjgsOePTaorcza_mum6r6FwZnlPkyZx_v9L8i3OMjROnqiAGgXerKkF-3l1i1mV_fuJ5U1_z8KjXX9TcpwQDFR1oCUN4rkvXwvwlu8iPLw5Pgq58Q2AcyosCSnFFTZhEGZkaSDBMk9BaATpRNouNgCy2sUSdGBhbY5UWYYoiQ-lASjl-xTarusLXjCcRWh0CgIFUYqkzhRKkMSmg861WjVjQj15hOmpzqrAxK1pS5qig_i2G_h2xj4P8TUvq8UfJ3X4yFJ1xzwuHiEQiyLWP2PvhtDNL-teiK6yXJBMph4zGQoxY5Ef-Ly0Vk6PTyXD05l-U3rIntN9GwO2yzUWzxD0HmRblO28WD71wEjU
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lj9MwELbQcgAOvBGFBYyExCm7TurECbdql6hAuwdaJG6R4xlLq-0mKG2R4MSNK7-RX4LHeXQXCSHBKUoyjhPb4_nszHzD2AuIUTozUgbSQOwWKCiDDMAGNlKobAkWvRPN_CSZfpBvP8a9NyHFwrT8EMOGG2mGn69JwWlD-nDHGqrBEweRl4EiOsmrlNbbr6re7xikCKB7ur1xHGSJTHveRhEdXi5_2S7twOZFyOptTn6Llf3btq4mZwfbTXlgvv5G5Phfn3Ob3ewQKZ-0Q-gOu4LVXXbjAk_hPfZ94Q4r_Pntx1HzxcHJFV9UC-RuiDXndZtI59TwnJxP1vzzqeYzZxsbJ06JQQwC7yZWQv28e8SqCwB9xfOmPufhcV9-U3MfFQyUd6DlDOG5Ll0N6_tsmb9eHk2DLoNDYBzQiwKKckVNsEQZmRpIMEyT0FoBOlE2i42ALLaxRJ0YGFtjlRZhiiJD6XBKOX7A9qq6woeMJxFaHQKAgVRiqTOFEqQxKaAzr1aNWNB3X2E6dnNKsrEqWl7mqKD2LYb2HbGXg_ynltfjj5L7_WgoOv1eFw4UiUSQdR-x58Ntp5n0u0VXWG9JJlIOHI2FGLHId_1faiomx_PJcPboXwo9Y9emy_msmL05efeYXafrrUPcPtvbNFt84hDUpnzqdeQXzhgWUA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELZQkRAceLUVCwWMhMQprZN14oTbqktU-hJiW6m3yPGMpYptUmV3K5UTN678Rn4J47x2WwlVglOUZBwn9oznSzLzDWPvIURJbiT3pIGQXlBQegmA9WygUNkcLNZBNEfH0d6p3D8Lz1ay-Bt-iP6Dm7OMer12Bn4JdmdJGqqh5g1yQQbKsUnel5GInV6Pvy4JpBw-r9n2hqGXRDLuaBtFsHOz_U23tMSaq4i1djnpE6a7m20iTb5tL-b5tvl-i8fxf57mKXvc4lE-ahToGbuHxXP2aIWlcJ39nNBmir9__NqtrglMTvmkmCAnBasuyqaMzrnhqQs9mfGrc80PyTNWJO7KghgE3i6rDvPz9hLTNv3zI0-r8oL74679vOR1TjC4qgMNYwhPdU49zDbYSfrpZHfPa-s3eIZgXuC5HFfUDpQoI2MDEfpx5FsrQEfKJqERkIQ2lKgjA0NrrNLCj1EkKAml5MNNtlaUBb5gPArQah8ADMQSc50olCCNiQHJuVo1YF43e5lpuc1diY1p1rAyB5kb36wf3wH70MtfNqwef5Xc6pQha617lhEkEqRs5NsH7F1_muzS_WzRBZYLJxMogkZDIQYsqGf-jp6y0fho1O-9_JdGb9mDL-M0O_x8fPCKPXSHm2i4LbY2rxb4muDTPH9TW8gfmjgVCA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Single%E2%80%90Crystal+SnSe+Thermoelectric+Fibers+via+Laser%E2%80%90Induced+Directional+Crystallization%3A+From+1D+Fibers+to+Multidimensional+Fabrics&rft.jtitle=Advanced+materials+%28Weinheim%29&rft.au=Zhang%2C+Jing&rft.au=Zhang%2C+Ting&rft.au=Zhang%2C+Hang&rft.au=Wang%2C+Zhixun&rft.date=2020-09-01&rft.issn=0935-9648&rft.eissn=1521-4095&rft.volume=32&rft.issue=36&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fadma.202002702&rft.externalDBID=10.1002%252Fadma.202002702&rft.externalDocID=ADMA202002702
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0935-9648&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0935-9648&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0935-9648&client=summon