Single‐Crystal SnSe Thermoelectric Fibers via Laser‐Induced Directional Crystallization: From 1D Fibers to Multidimensional Fabrics
Single‐crystal tin selenide (SnSe), a record holder of high‐performance thermoelectric materials, enables high‐efficient interconversion between heat and electricity for power generation or refrigeration. However, the rigid bulky SnSe cannot satisfy the applications for flexible and wearable devices...
Saved in:
Published in | Advanced materials (Weinheim) Vol. 32; no. 36; pp. e2002702 - n/a |
---|---|
Main Authors | , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Weinheim
Wiley Subscription Services, Inc
01.09.2020
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Single‐crystal tin selenide (SnSe), a record holder of high‐performance thermoelectric materials, enables high‐efficient interconversion between heat and electricity for power generation or refrigeration. However, the rigid bulky SnSe cannot satisfy the applications for flexible and wearable devices. Here, a method is demonstrated to achieve ultralong single‐crystal SnSe wire with rock‐salt structure and high thermoelectric performance with diameters from micro‐ to nanoscale. This method starts from thermally drawing SnSe into a flexible fiber‐like substrate, which is polycrystalline, highly flexible, ultralong, and mechanically stable. Then a CO2 laser is employed to recrystallize the SnSe core to single‐crystal over the entire fiber. Both theoretical and experimental studies demonstrate that the single‐crystal rock‐salt SnSe fibers possess high thermoelectric properties, significantly enhancing the ZT value to 2 at 862 K. This simple and low‐cost approach offers a promising path to engage the fiber‐shaped single‐crystal materials in applications from 1D fiber devices to multidimensional wearable fabrics.
Single‐crystal SnSe fibers are achieved using thermal drawing and laser‐induced recrystallization. The resulting single‐crystal rock‐salt SnSe fibers possess high thermoelectric properties, enhancing the ZT value close to 2 at 860 K, while being highly flexible, ultralong, and mechanically stable. This simple and low‐cost approach engages the fiber‐shaped high‐performance single‐crystal materials in applications from 1D fiber devices to multidimensional wearable fabrics. |
---|---|
AbstractList | Single‐crystal tin selenide (SnSe), a record holder of high‐performance thermoelectric materials, enables high‐efficient interconversion between heat and electricity for power generation or refrigeration. However, the rigid bulky SnSe cannot satisfy the applications for flexible and wearable devices. Here, a method is demonstrated to achieve ultralong single‐crystal SnSe wire with rock‐salt structure and high thermoelectric performance with diameters from micro‐ to nanoscale. This method starts from thermally drawing SnSe into a flexible fiber‐like substrate, which is polycrystalline, highly flexible, ultralong, and mechanically stable. Then a CO
2
laser is employed to recrystallize the SnSe core to single‐crystal over the entire fiber. Both theoretical and experimental studies demonstrate that the single‐crystal rock‐salt SnSe fibers possess high thermoelectric properties, significantly enhancing the
ZT
value to 2 at 862 K. This simple and low‐cost approach offers a promising path to engage the fiber‐shaped single‐crystal materials in applications from 1D fiber devices to multidimensional wearable fabrics. Single‐crystal tin selenide (SnSe), a record holder of high‐performance thermoelectric materials, enables high‐efficient interconversion between heat and electricity for power generation or refrigeration. However, the rigid bulky SnSe cannot satisfy the applications for flexible and wearable devices. Here, a method is demonstrated to achieve ultralong single‐crystal SnSe wire with rock‐salt structure and high thermoelectric performance with diameters from micro‐ to nanoscale. This method starts from thermally drawing SnSe into a flexible fiber‐like substrate, which is polycrystalline, highly flexible, ultralong, and mechanically stable. Then a CO2 laser is employed to recrystallize the SnSe core to single‐crystal over the entire fiber. Both theoretical and experimental studies demonstrate that the single‐crystal rock‐salt SnSe fibers possess high thermoelectric properties, significantly enhancing the ZT value to 2 at 862 K. This simple and low‐cost approach offers a promising path to engage the fiber‐shaped single‐crystal materials in applications from 1D fiber devices to multidimensional wearable fabrics. Single‐crystal SnSe fibers are achieved using thermal drawing and laser‐induced recrystallization. The resulting single‐crystal rock‐salt SnSe fibers possess high thermoelectric properties, enhancing the ZT value close to 2 at 860 K, while being highly flexible, ultralong, and mechanically stable. This simple and low‐cost approach engages the fiber‐shaped high‐performance single‐crystal materials in applications from 1D fiber devices to multidimensional wearable fabrics. Single-crystal tin selenide (SnSe), a record holder of high-performance thermoelectric materials, enables high-efficient interconversion between heat and electricity for power generation or refrigeration. However, the rigid bulky SnSe cannot satisfy the applications for flexible and wearable devices. Here, a method is demonstrated to achieve ultralong single-crystal SnSe wire with rock-salt structure and high thermoelectric performance with diameters from micro- to nanoscale. This method starts from thermally drawing SnSe into a flexible fiber-like substrate, which is polycrystalline, highly flexible, ultralong, and mechanically stable. Then a CO2 laser is employed to recrystallize the SnSe core to single-crystal over the entire fiber. Both theoretical and experimental studies demonstrate that the single-crystal rock-salt SnSe fibers possess high thermoelectric properties, significantly enhancing the ZT value to 2 at 862 K. This simple and low-cost approach offers a promising path to engage the fiber-shaped single-crystal materials in applications from 1D fiber devices to multidimensional wearable fabrics.Single-crystal tin selenide (SnSe), a record holder of high-performance thermoelectric materials, enables high-efficient interconversion between heat and electricity for power generation or refrigeration. However, the rigid bulky SnSe cannot satisfy the applications for flexible and wearable devices. Here, a method is demonstrated to achieve ultralong single-crystal SnSe wire with rock-salt structure and high thermoelectric performance with diameters from micro- to nanoscale. This method starts from thermally drawing SnSe into a flexible fiber-like substrate, which is polycrystalline, highly flexible, ultralong, and mechanically stable. Then a CO2 laser is employed to recrystallize the SnSe core to single-crystal over the entire fiber. Both theoretical and experimental studies demonstrate that the single-crystal rock-salt SnSe fibers possess high thermoelectric properties, significantly enhancing the ZT value to 2 at 862 K. This simple and low-cost approach offers a promising path to engage the fiber-shaped single-crystal materials in applications from 1D fiber devices to multidimensional wearable fabrics. Single‐crystal tin selenide (SnSe), a record holder of high‐performance thermoelectric materials, enables high‐efficient interconversion between heat and electricity for power generation or refrigeration. However, the rigid bulky SnSe cannot satisfy the applications for flexible and wearable devices. Here, a method is demonstrated to achieve ultralong single‐crystal SnSe wire with rock‐salt structure and high thermoelectric performance with diameters from micro‐ to nanoscale. This method starts from thermally drawing SnSe into a flexible fiber‐like substrate, which is polycrystalline, highly flexible, ultralong, and mechanically stable. Then a CO2 laser is employed to recrystallize the SnSe core to single‐crystal over the entire fiber. Both theoretical and experimental studies demonstrate that the single‐crystal rock‐salt SnSe fibers possess high thermoelectric properties, significantly enhancing the ZT value to 2 at 862 K. This simple and low‐cost approach offers a promising path to engage the fiber‐shaped single‐crystal materials in applications from 1D fiber devices to multidimensional wearable fabrics. |
Author | Li, Chen Wang, Zhe Zhang, Ting Wei, Lei Li, Kaiwei Huang, Xingming Chen, Haisheng Zhang, Jing Chen, Ming Tian, Zhiting Wang, Zhixun Zhang, Hang Zhao, Li‐Dong Chen, Zhe |
Author_xml | – sequence: 1 givenname: Jing surname: Zhang fullname: Zhang, Jing organization: Nanyang Technological University – sequence: 2 givenname: Ting surname: Zhang fullname: Zhang, Ting email: zhangting@iet.cn organization: Chinese Academy of Sciences – sequence: 3 givenname: Hang surname: Zhang fullname: Zhang, Hang organization: Chinese Academy of Sciences – sequence: 4 givenname: Zhixun surname: Wang fullname: Wang, Zhixun organization: Nanyang Technological University – sequence: 5 givenname: Chen surname: Li fullname: Li, Chen organization: Cornell University – sequence: 6 givenname: Zhe surname: Wang fullname: Wang, Zhe organization: Nanyang Technological University – sequence: 7 givenname: Kaiwei surname: Li fullname: Li, Kaiwei organization: Nanyang Technological University – sequence: 8 givenname: Xingming surname: Huang fullname: Huang, Xingming organization: Central South University – sequence: 9 givenname: Ming surname: Chen fullname: Chen, Ming organization: Chinese Academy of Sciences – sequence: 10 givenname: Zhe surname: Chen fullname: Chen, Zhe organization: Chinese Academy of Sciences – sequence: 11 givenname: Zhiting surname: Tian fullname: Tian, Zhiting organization: Cornell University – sequence: 12 givenname: Haisheng surname: Chen fullname: Chen, Haisheng organization: Chinese Academy of Sciences – sequence: 13 givenname: Li‐Dong surname: Zhao fullname: Zhao, Li‐Dong organization: Beihang University – sequence: 14 givenname: Lei orcidid: 0000-0003-0819-8325 surname: Wei fullname: Wei, Lei email: wei.lei@ntu.edu.sg organization: Research Techno Plaza |
BookMark | eNqFkcFOGzEQhq0KpAbotWdLXLhsOna83nVvUdJQpKAekvvK8c4WI--a2rug9MSNK8_Ik-AQaCWkqiePrO-bGfs_Iged75CQzwzGDIB_0XWrxxx4qgvgH8iI5ZxlAlR-QEagJnmmpCg_kqMYrwFASZAj8rCy3U-HT_ePs7CNvXZ01a2Qrq8wtB4dmj5YQxd2gyHSW6vpUkcMCb_o6sFgTec2JMj6LqmvLZz9rXc3X-ki-Jay-Zvfe3o5uN7WtsUu7p2F3qQJ8YQcNtpF_PR6HpP14tt69j1b_ji_mE2XmRFM8kyKokANUOSFEaWpJbJSsqaBWsuiUbmBWuVNLlBLU08a0xQaWImgUChgm8kxOdu3vQn-14Cxr1obDTqnO_RDrLjgRfq1CUBCT9-h134IaeUdJUBCCYwnSuwpE3yMAZvK2P7l9X3Q1lUMql041S6c6k84SRu_026CbXXY_ltQe-HOOtz-h66m88vpX_cZMgynPQ |
CitedBy_id | crossref_primary_10_29026_oes_2023_220025 crossref_primary_10_1007_s42765_020_00057_5 crossref_primary_10_1021_acsenergylett_0c02483 crossref_primary_10_1016_j_mser_2024_100915 crossref_primary_10_1038_s41586_023_06946_0 crossref_primary_10_1007_s40843_021_1921_3 crossref_primary_10_1002_smtd_202400589 crossref_primary_10_1002_gch2_202300023 crossref_primary_10_1007_s42765_023_00267_7 crossref_primary_10_1021_acsnano_1c06230 crossref_primary_10_1002_advs_202401250 crossref_primary_10_1016_j_mattod_2021_02_016 crossref_primary_10_1007_s12200_021_1226_0 crossref_primary_10_1093_nsr_nwae203 crossref_primary_10_1016_j_mtcomm_2023_107682 crossref_primary_10_3390_nano13132011 crossref_primary_10_1002_aesr_202100060 crossref_primary_10_3390_ma14216306 crossref_primary_10_1360_nso_20240035 crossref_primary_10_3390_s21103437 crossref_primary_10_3788_LOP231225 crossref_primary_10_3788_LOP231424 crossref_primary_10_1002_adma_202202942 crossref_primary_10_1039_D0EE03520C crossref_primary_10_3390_bios12100882 crossref_primary_10_1002_ctm2_1685 crossref_primary_10_34133_energymatadv_0124 crossref_primary_10_1111_jace_19142 crossref_primary_10_1002_advs_202203808 crossref_primary_10_1021_acsami_3c13239 crossref_primary_10_1007_s10854_024_13746_3 crossref_primary_10_3390_polym15040842 crossref_primary_10_1016_j_eng_2024_01_015 crossref_primary_10_1002_adpr_202000159 crossref_primary_10_1063_5_0071699 crossref_primary_10_1038_s41467_021_24135_3 crossref_primary_10_1007_s42765_020_00056_6 crossref_primary_10_20517_microstructures_2024_56 crossref_primary_10_1007_s10853_023_08593_2 crossref_primary_10_1111_jace_19916 crossref_primary_10_1002_advs_202207642 crossref_primary_10_1002_ece2_17 crossref_primary_10_1021_acsnano_4c10111 crossref_primary_10_3390_mi12080869 crossref_primary_10_1021_accountsmr_4c00343 crossref_primary_10_1016_j_nanoen_2023_109182 crossref_primary_10_3390_nano13020326 crossref_primary_10_1007_s42242_024_00300_7 crossref_primary_10_3390_mi12121463 crossref_primary_10_1111_jace_18229 crossref_primary_10_1002_smtd_202101235 crossref_primary_10_1002_inf2_12318 crossref_primary_10_1002_adfm_202423909 crossref_primary_10_1016_j_pmatsci_2022_101003 crossref_primary_10_1038_s41467_024_51377_8 crossref_primary_10_54227_mlab_20230032 crossref_primary_10_1002_adma_202102990 crossref_primary_10_1007_s11431_024_2738_5 crossref_primary_10_1063_5_0186789 crossref_primary_10_1093_nsr_nwac202 crossref_primary_10_3788_gzxb20245304_0406001 crossref_primary_10_1016_j_jallcom_2025_179125 crossref_primary_10_1039_D4CS00286E crossref_primary_10_1017_wtc_2025_2 crossref_primary_10_1126_science_adp2444 crossref_primary_10_3390_ma15155331 crossref_primary_10_3390_app14010085 crossref_primary_10_1039_D1TC02331D crossref_primary_10_1080_00405167_2023_2250651 crossref_primary_10_3390_coatings13020383 crossref_primary_10_54227_mlab_20220006 crossref_primary_10_1007_s12200_023_00058_3 crossref_primary_10_1002_smll_202304599 crossref_primary_10_1007_s40042_021_00100_7 crossref_primary_10_1088_2752_5724_ad0ca9 crossref_primary_10_1016_j_nanoen_2022_107553 |
Cites_doi | 10.1038/nmat1889 10.1039/C7RA00140A 10.1038/nature13184 10.1038/s41467-019-09835-1 10.1088/0268-1242/31/10/103004 10.1039/C6EE01755J 10.1002/adom.201600592 10.1126/science.aaq1479 10.1364/OME.7.001388 10.1103/PhysRevB.15.2177 10.1039/C6TA03625B 10.1016/j.cpc.2006.03.007 10.1016/S0022-3093(96)00648-5 10.1088/1361-648X/aa8f79 10.1007/s10765-017-2328-1 10.1039/C8TC01314D 10.1063/1.4936636 10.1103/PhysRevB.86.174307 10.1038/ncomms3216 10.1590/S1516-14391998000100003 10.1002/adfm.201703245 10.1038/nbt.3093 10.1038/s41586-018-0390-x 10.1103/PhysRevLett.77.3865 10.1016/j.cpc.2014.02.015 10.1002/aelm.201600449 10.1002/adom.201500784 10.1016/j.applthermaleng.2016.08.154 10.1016/j.scriptamat.2015.07.021 10.1007/978-3-540-74761-1_13 10.1021/acs.nanolett.5b04499 10.1038/nmat3273 10.1039/C5NR02131F 10.1002/adma.200600527 10.1103/PhysRevB.85.184303 10.1016/0921-5107(88)90031-1 10.1021/acsenergylett.8b00399 10.1038/ncomms5314 10.1039/C4TA01643B 10.1002/adma.201802348 10.1039/C8CC02230E 10.1016/j.joule.2019.01.001 10.1021/acsphotonics.6b00584 10.1038/ncomms4525 10.1126/science.aaz9426 10.1038/ncomms13265 10.1038/nmat4098 10.1016/j.joule.2019.03.001 10.1063/1.1754812 10.1103/PhysRevB.88.235122 10.1016/j.jallcom.2017.07.150 10.1063/1.1524305 10.1021/jacs.9b01396 10.1115/1.4023585 |
ContentType | Journal Article |
Copyright | 2020 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim 2020 Wiley‐VCH GmbH 2020 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. |
Copyright_xml | – notice: 2020 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim – notice: 2020 Wiley‐VCH GmbH – notice: 2020 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. |
DBID | AAYXX CITATION 7SR 8BQ 8FD JG9 7X8 |
DOI | 10.1002/adma.202002702 |
DatabaseName | CrossRef Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database MEDLINE - Academic |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database METADEX MEDLINE - Academic |
DatabaseTitleList | CrossRef MEDLINE - Academic Materials Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1521-4095 |
EndPage | n/a |
ExternalDocumentID | 10_1002_adma_202002702 ADMA202002702 |
Genre | article |
GrantInformation_xml | – fundername: National Research Foundation Singapore funderid: NRF‐CRP18‐2017‐02 – fundername: National Natural Science Foundation of China funderid: 11804354 – fundername: Shenzhen Basic Research funderid: JCYJ20180507182431967 – fundername: Chinese Academy of Sciences Talents Program funderid: E0290706 – fundername: Ministry of Education - Singapore funderid: MOE2019‐T2‐2‐127; MOE2019‐T1‐001‐103; MOE2019‐T1‐001‐111 – fundername: National Natural Science Foundation of China funderid: 51888103 |
GroupedDBID | --- .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 6P2 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABIJN ABJNI ABLJU ABPVW ACAHQ ACCFJ ACCZN ACGFS ACIWK ACPOU ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR1 DR2 DRFUL DRSTM EBS F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D Q.N Q11 QB0 QRW R.K RNS ROL RWI RWM RX1 RYL SUPJJ TN5 UB1 UPT V2E W8V W99 WBKPD WFSAM WIB WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XV2 YR2 ZZTAW ~02 ~IA ~WT .Y3 31~ 6TJ 8WZ A6W AANHP AAYOK AAYXX ABEML ACBWZ ACRPL ACSCC ACYXJ ADMLS ADNMO AETEA AEYWJ AFFNX AGHNM AGQPQ AGYGG ASPBG AVWKF AZFZN CITATION EJD FEDTE FOJGT HF~ HVGLF LW6 M6K NDZJH PALCI RIWAO RJQFR SAMSI WTY ZY4 7SR 8BQ 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY JG9 7X8 |
ID | FETCH-LOGICAL-c4162-6477ea00757c48cd6e1861ff0da67f95c0d95f54ea6cd3fcf7a018e09e4901b3 |
IEDL.DBID | DR2 |
ISSN | 0935-9648 1521-4095 |
IngestDate | Thu Jul 10 23:27:54 EDT 2025 Fri Jul 25 08:39:44 EDT 2025 Thu Apr 24 22:54:00 EDT 2025 Tue Jul 01 02:32:50 EDT 2025 Wed Jan 22 16:32:16 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 36 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4162-6477ea00757c48cd6e1861ff0da67f95c0d95f54ea6cd3fcf7a018e09e4901b3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0003-0819-8325 |
PQID | 2440608012 |
PQPubID | 2045203 |
PageCount | 10 |
ParticipantIDs | proquest_miscellaneous_2427521300 proquest_journals_2440608012 crossref_citationtrail_10_1002_adma_202002702 crossref_primary_10_1002_adma_202002702 wiley_primary_10_1002_adma_202002702_ADMA202002702 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-09-01 |
PublicationDateYYYYMMDD | 2020-09-01 |
PublicationDate_xml | – month: 09 year: 2020 text: 2020-09-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Weinheim |
PublicationPlace_xml | – name: Weinheim |
PublicationTitle | Advanced materials (Weinheim) |
PublicationYear | 2020 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2017; 7 2013; 4 2013; 88 2010 2017; 27 1977 2015 2017; 15 7 7 2006; 175 2015; 108 2017; 29 1997 1977; 211 15 2015 2017 2018 2018; 33 3 31 560 2003; 93 2017 2013 2012 2007; 111 135 11 19 1996; 77 2016; 4 1988; 1 2018; 6 2017; 725 2014; 5 2014; 508 2016 2017 2019 2016 2014 2016 2016 2017 2017; 4 5 10 7 13 31 7 4 1967; 10 2007; 6 2016 2018; 16 39 1998; 1 1975 2014; 60 5 2014; 185 2018 2019 2019 2018 2018 2019 2020; 360 3 3 3 54 141 367 2016; 9 2012; 86 2012; 85 2015 2014; 5 2 Aleksandrov A. (e_1_2_6_11_2) 1977; 15 e_1_2_6_32_1 e_1_2_6_30_1 Jin W. (e_1_2_6_16_3) 2017; 7 e_1_2_6_19_1 e_1_2_6_13_2 e_1_2_6_11_1 e_1_2_6_17_1 e_1_2_6_15_1 e_1_2_6_20_2 e_1_2_6_20_1 e_1_2_6_9_9 e_1_2_6_9_8 e_1_2_6_9_5 e_1_2_6_9_4 e_1_2_6_9_6 e_1_2_6_3_7 e_1_2_6_7_3 e_1_2_6_9_1 e_1_2_6_3_6 e_1_2_6_7_2 e_1_2_6_9_3 e_1_2_6_7_4 e_1_2_6_9_2 e_1_2_6_3_3 e_1_2_6_5_1 e_1_2_6_3_2 e_1_2_6_3_5 e_1_2_6_7_1 e_1_2_6_3_4 e_1_2_6_1_1 e_1_2_6_24_1 e_1_2_6_3_1 e_1_2_6_22_1 e_1_2_6_28_1 e_1_2_6_26_1 e_1_2_6_31_2 e_1_2_6_10_1 e_1_2_6_31_1 Knrpnrnrcr R. J. (e_1_2_6_13_1) 1975; 60 e_1_2_6_14_1 Peacock A. C. (e_1_2_6_9_7) 2016 e_1_2_6_12_1 e_1_2_6_16_2 e_1_2_6_18_1 e_1_2_6_16_1 e_1_2_6_21_1 e_1_2_6_8_1 e_1_2_6_4_1 e_1_2_6_6_1 e_1_2_6_23_3 e_1_2_6_25_1 e_1_2_6_23_2 e_1_2_6_23_1 e_1_2_6_2_1 e_1_2_6_29_1 e_1_2_6_27_1 e_1_2_6_23_4 |
References_xml | – volume: 27 year: 2017 publication-title: Adv. Funct. Mater. – volume: 93 start-page: 793 year: 2003 publication-title: J. Appl. Phys. – volume: 6 start-page: 336 year: 2007 publication-title: Nat. Mater. – volume: 15 7 7 start-page: 2177 year: 1977 2015 2017 publication-title: Phys. Rev. B Nanoscale Phys. Rev. X – volume: 4 year: 2016 publication-title: J. Mater. Chem. A – volume: 6 year: 2018 publication-title: J. Mater. Chem. C – volume: 111 135 11 19 start-page: 1441 422 1043 year: 2017 2013 2012 2007 publication-title: Appl. Therm. Eng. J. Heat Transfer Nat. Mater. Adv. Mater. – volume: 5 2 year: 2015 2014 publication-title: AIP Adv. J. Mater. Chem. A – volume: 86 year: 2012 publication-title: Phys. Rev. B – volume: 360 3 3 3 54 141 367 start-page: 778 636 719 1153 6573 6141 1196 year: 2018 2019 2019 2018 2018 2019 2020 publication-title: Science Joule Joule ACS Energy Lett. Chem. Commun. J. Am. Chem. Soc. Science – volume: 29 year: 2017 publication-title: J. Phys.: Condens. Matter – volume: 88 year: 2013 publication-title: Phys. Rev. B – volume: 85 year: 2012 publication-title: Phys. Rev. B – volume: 9 start-page: 3044 year: 2016 publication-title: Energy Environ. Sci. – volume: 77 start-page: 3865 year: 1996 publication-title: Phys. Rev. Lett – volume: 60 5 start-page: 798 4314 year: 1975 2014 publication-title: Am. Mineral. Nat. Commun. – volume: 1 start-page: 67 year: 1988 publication-title: Mater. Sci. Eng., B – volume: 211 15 start-page: 281 47 year: 1997 1977 publication-title: J. Non‐Cryst. Solids Teplofiz. Vys. Temp. – volume: 4 start-page: 2216 year: 2013 publication-title: Nat. Commun. – volume: 185 start-page: 1747 year: 2014 publication-title: Comput. Phys. Commun. – volume: 725 start-page: 242 year: 2017 publication-title: J. Alloys Compd. – volume: 175 start-page: 67 year: 2006 publication-title: Comput. Phys. Commun. – volume: 10 start-page: 282 year: 1967 publication-title: Appl. Phys. Lett – start-page: 393 year: 2010 – volume: 5 start-page: 3525 year: 2014 publication-title: Nat. Commun. – volume: 4 5 10 7 13 31 7 4 start-page: 1004 1790 1122 1388 85 year: 2016 2017 2019 2016 2014 2016 2016 2017 2017 publication-title: Adv. Opt. Mater. Adv. Opt. Mater. Nat. Commun. Nat. Commun. Nat. Mater. Semicond. Sci. Technol. Opt. Mater. Express ACS Photonics – volume: 16 39 start-page: 1643 5 year: 2016 2018 publication-title: Nano Lett. Int. J. Thermophys. – volume: 33 3 31 560 start-page: 277 214 year: 2015 2017 2018 2018 publication-title: Nat. Biotechnol. Adv. Electron. Mater. Adv. Mater. Nature – volume: 7 start-page: 8258 year: 2017 publication-title: RSC Adv. – volume: 1 start-page: 05 year: 1998 publication-title: Mater. Res. – volume: 508 start-page: 373 year: 2014 publication-title: Nature – volume: 108 start-page: 1 year: 2015 publication-title: Scr. Mater. – ident: e_1_2_6_5_1 doi: 10.1038/nmat1889 – ident: e_1_2_6_18_1 doi: 10.1039/C7RA00140A – ident: e_1_2_6_2_1 doi: 10.1038/nature13184 – ident: e_1_2_6_9_3 doi: 10.1038/s41467-019-09835-1 – volume-title: Integrated Photonics Research, Silicon and Nanophotonics year: 2016 ident: e_1_2_6_9_7 – volume: 7 start-page: 041020 year: 2017 ident: e_1_2_6_16_3 publication-title: Phys. Rev. X – ident: e_1_2_6_9_6 doi: 10.1088/0268-1242/31/10/103004 – ident: e_1_2_6_4_1 doi: 10.1039/C6EE01755J – ident: e_1_2_6_9_2 doi: 10.1002/adom.201600592 – ident: e_1_2_6_3_1 doi: 10.1126/science.aaq1479 – ident: e_1_2_6_9_8 doi: 10.1364/OME.7.001388 – ident: e_1_2_6_16_1 doi: 10.1103/PhysRevB.15.2177 – ident: e_1_2_6_19_1 doi: 10.1039/C6TA03625B – ident: e_1_2_6_26_1 doi: 10.1016/j.cpc.2006.03.007 – ident: e_1_2_6_11_1 doi: 10.1016/S0022-3093(96)00648-5 – ident: e_1_2_6_22_1 doi: 10.1088/1361-648X/aa8f79 – ident: e_1_2_6_31_2 doi: 10.1007/s10765-017-2328-1 – ident: e_1_2_6_17_1 doi: 10.1039/C8TC01314D – ident: e_1_2_6_20_1 doi: 10.1063/1.4936636 – volume: 60 start-page: 798 year: 1975 ident: e_1_2_6_13_1 publication-title: Am. Mineral. – ident: e_1_2_6_30_1 doi: 10.1103/PhysRevB.86.174307 – ident: e_1_2_6_10_1 doi: 10.1038/ncomms3216 – ident: e_1_2_6_12_1 doi: 10.1590/S1516-14391998000100003 – ident: e_1_2_6_8_1 doi: 10.1002/adfm.201703245 – ident: e_1_2_6_7_1 doi: 10.1038/nbt.3093 – ident: e_1_2_6_7_4 doi: 10.1038/s41586-018-0390-x – ident: e_1_2_6_25_1 doi: 10.1103/PhysRevLett.77.3865 – ident: e_1_2_6_29_1 doi: 10.1016/j.cpc.2014.02.015 – ident: e_1_2_6_7_2 doi: 10.1002/aelm.201600449 – ident: e_1_2_6_9_1 doi: 10.1002/adom.201500784 – ident: e_1_2_6_23_1 doi: 10.1016/j.applthermaleng.2016.08.154 – ident: e_1_2_6_27_1 doi: 10.1016/j.scriptamat.2015.07.021 – ident: e_1_2_6_6_1 doi: 10.1007/978-3-540-74761-1_13 – ident: e_1_2_6_31_1 doi: 10.1021/acs.nanolett.5b04499 – ident: e_1_2_6_23_3 doi: 10.1038/nmat3273 – ident: e_1_2_6_16_2 doi: 10.1039/C5NR02131F – ident: e_1_2_6_23_4 doi: 10.1002/adma.200600527 – ident: e_1_2_6_24_1 doi: 10.1103/PhysRevB.85.184303 – ident: e_1_2_6_1_1 doi: 10.1016/0921-5107(88)90031-1 – ident: e_1_2_6_3_4 doi: 10.1021/acsenergylett.8b00399 – ident: e_1_2_6_13_2 doi: 10.1038/ncomms5314 – ident: e_1_2_6_20_2 doi: 10.1039/C4TA01643B – ident: e_1_2_6_7_3 doi: 10.1002/adma.201802348 – ident: e_1_2_6_3_5 doi: 10.1039/C8CC02230E – ident: e_1_2_6_3_3 doi: 10.1016/j.joule.2019.01.001 – ident: e_1_2_6_9_9 doi: 10.1021/acsphotonics.6b00584 – ident: e_1_2_6_28_1 doi: 10.1038/ncomms4525 – ident: e_1_2_6_3_7 doi: 10.1126/science.aaz9426 – ident: e_1_2_6_9_4 doi: 10.1038/ncomms13265 – ident: e_1_2_6_9_5 doi: 10.1038/nmat4098 – ident: e_1_2_6_3_2 doi: 10.1016/j.joule.2019.03.001 – ident: e_1_2_6_15_1 doi: 10.1063/1.1754812 – ident: e_1_2_6_14_1 doi: 10.1103/PhysRevB.88.235122 – volume: 15 start-page: 47 year: 1977 ident: e_1_2_6_11_2 publication-title: Teplofiz. Vys. Temp. – ident: e_1_2_6_21_1 doi: 10.1016/j.jallcom.2017.07.150 – ident: e_1_2_6_32_1 doi: 10.1063/1.1524305 – ident: e_1_2_6_3_6 doi: 10.1021/jacs.9b01396 – ident: e_1_2_6_23_2 doi: 10.1115/1.4023585 |
SSID | ssj0009606 |
Score | 2.6102803 |
Snippet | Single‐crystal tin selenide (SnSe), a record holder of high‐performance thermoelectric materials, enables high‐efficient interconversion between heat and... Single-crystal tin selenide (SnSe), a record holder of high-performance thermoelectric materials, enables high-efficient interconversion between heat and... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | e2002702 |
SubjectTerms | Carbon dioxide Carbon dioxide lasers Crystal structure Crystallization Fabrics Fibers flexible fibers high thermoelectric properties laser recrystallization Materials science single‐crystal SnSe Substrates Thermoelectric materials Tin selenide wearable fabrics Wearable technology |
Title | Single‐Crystal SnSe Thermoelectric Fibers via Laser‐Induced Directional Crystallization: From 1D Fibers to Multidimensional Fabrics |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadma.202002702 https://www.proquest.com/docview/2440608012 https://www.proquest.com/docview/2427521300 |
Volume | 32 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Nb9QwELWqnugBaAGx0CIjIXFK62SdOOG2ahtViPbQLVJvkeMZSxXbpMruIsGpt175jf0l9Tgfu0VCSHBKoszEie3xvCQzbxj7ADFK50bKQBqI3QsKyiADsIGNFCpbgkUfRHN6lpx8lZ8v48u1LP6WH2L44EaW4ddrMnBdzg9WpKEaPG8QBRkozyZJAVuEis5X_FEEzz3Z3jgOskSmPWujiA4eqz_2SiuouQ5YvcfJnzHd32sbaPJtf7ko983P32gc_-dhnrOnHRzlk3b-bLMNrHbY1hpJ4Qt2N3WbGd7f_jpsfjgsOePTaorcza_mum6r6FwZnlPkyZx_v9L8i3OMjROnqiAGgXerKkF-3l1i1mV_fuJ5U1_z8KjXX9TcpwQDFR1oCUN4rkvXwvwlu8iPLw5Pgq58Q2AcyosCSnFFTZhEGZkaSDBMk9BaATpRNouNgCy2sUSdGBhbY5UWYYoiQ-lASjl-xTarusLXjCcRWh0CgIFUYqkzhRKkMSmg861WjVjQj15hOmpzqrAxK1pS5qig_i2G_h2xj4P8TUvq8UfJ3X4yFJ1xzwuHiEQiyLWP2PvhtDNL-teiK6yXJBMph4zGQoxY5Ef-Ly0Vk6PTyXD05l-U3rIntN9GwO2yzUWzxD0HmRblO28WD71wEjU |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lj9MwELbQcgAOvBGFBYyExCm7TurECbdql6hAuwdaJG6R4xlLq-0mKG2R4MSNK7-RX4LHeXQXCSHBKUoyjhPb4_nszHzD2AuIUTozUgbSQOwWKCiDDMAGNlKobAkWvRPN_CSZfpBvP8a9NyHFwrT8EMOGG2mGn69JwWlD-nDHGqrBEweRl4EiOsmrlNbbr6re7xikCKB7ur1xHGSJTHveRhEdXi5_2S7twOZFyOptTn6Llf3btq4mZwfbTXlgvv5G5Phfn3Ob3ewQKZ-0Q-gOu4LVXXbjAk_hPfZ94Q4r_Pntx1HzxcHJFV9UC-RuiDXndZtI59TwnJxP1vzzqeYzZxsbJ06JQQwC7yZWQv28e8SqCwB9xfOmPufhcV9-U3MfFQyUd6DlDOG5Ll0N6_tsmb9eHk2DLoNDYBzQiwKKckVNsEQZmRpIMEyT0FoBOlE2i42ALLaxRJ0YGFtjlRZhiiJD6XBKOX7A9qq6woeMJxFaHQKAgVRiqTOFEqQxKaAzr1aNWNB3X2E6dnNKsrEqWl7mqKD2LYb2HbGXg_ynltfjj5L7_WgoOv1eFw4UiUSQdR-x58Ntp5n0u0VXWG9JJlIOHI2FGLHId_1faiomx_PJcPboXwo9Y9emy_msmL05efeYXafrrUPcPtvbNFt84hDUpnzqdeQXzhgWUA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELZQkRAceLUVCwWMhMQprZN14oTbqktU-hJiW6m3yPGMpYptUmV3K5UTN678Rn4J47x2WwlVglOUZBwn9oznSzLzDWPvIURJbiT3pIGQXlBQegmA9WygUNkcLNZBNEfH0d6p3D8Lz1ay-Bt-iP6Dm7OMer12Bn4JdmdJGqqh5g1yQQbKsUnel5GInV6Pvy4JpBw-r9n2hqGXRDLuaBtFsHOz_U23tMSaq4i1djnpE6a7m20iTb5tL-b5tvl-i8fxf57mKXvc4lE-ahToGbuHxXP2aIWlcJ39nNBmir9__NqtrglMTvmkmCAnBasuyqaMzrnhqQs9mfGrc80PyTNWJO7KghgE3i6rDvPz9hLTNv3zI0-r8oL74679vOR1TjC4qgMNYwhPdU49zDbYSfrpZHfPa-s3eIZgXuC5HFfUDpQoI2MDEfpx5FsrQEfKJqERkIQ2lKgjA0NrrNLCj1EkKAml5MNNtlaUBb5gPArQah8ADMQSc50olCCNiQHJuVo1YF43e5lpuc1diY1p1rAyB5kb36wf3wH70MtfNqwef5Xc6pQha617lhEkEqRs5NsH7F1_muzS_WzRBZYLJxMogkZDIQYsqGf-jp6y0fho1O-9_JdGb9mDL-M0O_x8fPCKPXSHm2i4LbY2rxb4muDTPH9TW8gfmjgVCA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Single%E2%80%90Crystal+SnSe+Thermoelectric+Fibers+via+Laser%E2%80%90Induced+Directional+Crystallization%3A+From+1D+Fibers+to+Multidimensional+Fabrics&rft.jtitle=Advanced+materials+%28Weinheim%29&rft.au=Zhang%2C+Jing&rft.au=Zhang%2C+Ting&rft.au=Zhang%2C+Hang&rft.au=Wang%2C+Zhixun&rft.date=2020-09-01&rft.issn=0935-9648&rft.eissn=1521-4095&rft.volume=32&rft.issue=36&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fadma.202002702&rft.externalDBID=10.1002%252Fadma.202002702&rft.externalDocID=ADMA202002702 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0935-9648&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0935-9648&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0935-9648&client=summon |