Additively Manufactured Deformation‐Recoverable and Broadband Sound‐Absorbing Microlattice Inspired by the Concept of Traditional Perforated Panels
Noise pollution is a highly detrimental daily health hazard. Sound absorbers, such as the traditionally used perforated panels, find widespread applications. Nonetheless, modern product designs call for material novelties with enhanced performance and multifunctionality. The advent of additive manuf...
Saved in:
Published in | Advanced materials (Weinheim) Vol. 33; no. 44; pp. e2104552 - n/a |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Weinheim
Wiley Subscription Services, Inc
01.11.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Noise pollution is a highly detrimental daily health hazard. Sound absorbers, such as the traditionally used perforated panels, find widespread applications. Nonetheless, modern product designs call for material novelties with enhanced performance and multifunctionality. The advent of additive manufacturing has brought about the possibilities of functional materials design to be based on structures rather than chemistry. With this in mind, herein, the traditional concept of perforated panels is revisited and is incorporated with additive manufacturing for the development of a novel microlattice‐based sound absorber with additional impact resistance multifunctionality. The structurally optimized microlattice presents excellent broadband absorption with an averaged experimental absorption coefficient of 0.77 across a broad frequency range from 1000 to 6300 Hz. Extensive simulation and experiments reveal absorption mechanisms to be based on viscous flow, thermal and structural damping dissipations while broadband capabilities to be on multiple resonance modes working in tandem. High deformation recovery up to 30% strain is also possible from the strut‐based design and viscoelasticity of the base material. Overall, the excellent properties of the microlattice overcome tradeoffs commonly found in conventional absorbers. Additionally, this work aims to present a new paradigm: revisiting old concepts for the developments of novel materials using contemporary methods.
Based on traditional perforated panel concepts, a novel broadband sound‐absorbing microlattice with impact‐recovery multifunctionality is presented. The microlattice boasts high averaged absorption coefficients of 0.77 with mechanisms attributing to synergistic impedance matching and a combination of viscous, thermal, and structural damping dissipation. It is also pseudo‐reusable with high strain recovery at 30% with no degradation of sound absorption observed. |
---|---|
AbstractList | Noise pollution is a highly detrimental daily health hazard. Sound absorbers, such as the traditionally used perforated panels, find widespread applications. Nonetheless, modern product designs call for material novelties with enhanced performance and multifunctionality. The advent of additive manufacturing has brought about the possibilities of functional materials design to be based on structures rather than chemistry. With this in mind, herein, the traditional concept of perforated panels is revisited and is incorporated with additive manufacturing for the development of a novel microlattice‐based sound absorber with additional impact resistance multifunctionality. The structurally optimized microlattice presents excellent broadband absorption with an averaged experimental absorption coefficient of 0.77 across a broad frequency range from 1000 to 6300 Hz. Extensive simulation and experiments reveal absorption mechanisms to be based on viscous flow, thermal and structural damping dissipations while broadband capabilities to be on multiple resonance modes working in tandem. High deformation recovery up to 30% strain is also possible from the strut‐based design and viscoelasticity of the base material. Overall, the excellent properties of the microlattice overcome tradeoffs commonly found in conventional absorbers. Additionally, this work aims to present a new paradigm: revisiting old concepts for the developments of novel materials using contemporary methods.
Based on traditional perforated panel concepts, a novel broadband sound‐absorbing microlattice with impact‐recovery multifunctionality is presented. The microlattice boasts high averaged absorption coefficients of 0.77 with mechanisms attributing to synergistic impedance matching and a combination of viscous, thermal, and structural damping dissipation. It is also pseudo‐reusable with high strain recovery at 30% with no degradation of sound absorption observed. Noise pollution is a highly detrimental daily health hazard. Sound absorbers, such as the traditionally used perforated panels, find widespread applications. Nonetheless, modern product designs call for material novelties with enhanced performance and multifunctionality. The advent of additive manufacturing has brought about the possibilities of functional materials design to be based on structures rather than chemistry. With this in mind, herein, the traditional concept of perforated panels is revisited and is incorporated with additive manufacturing for the development of a novel microlattice-based sound absorber with additional impact resistance multifunctionality. The structurally optimized microlattice presents excellent broadband absorption with an averaged experimental absorption coefficient of 0.77 across a broad frequency range from 1000 to 6300 Hz. Extensive simulation and experiments reveal absorption mechanisms to be based on viscous flow, thermal and structural damping dissipations while broadband capabilities to be on multiple resonance modes working in tandem. High deformation recovery up to 30% strain is also possible from the strut-based design and viscoelasticity of the base material. Overall, the excellent properties of the microlattice overcome tradeoffs commonly found in conventional absorbers. Additionally, this work aims to present a new paradigm: revisiting old concepts for the developments of novel materials using contemporary methods.Noise pollution is a highly detrimental daily health hazard. Sound absorbers, such as the traditionally used perforated panels, find widespread applications. Nonetheless, modern product designs call for material novelties with enhanced performance and multifunctionality. The advent of additive manufacturing has brought about the possibilities of functional materials design to be based on structures rather than chemistry. With this in mind, herein, the traditional concept of perforated panels is revisited and is incorporated with additive manufacturing for the development of a novel microlattice-based sound absorber with additional impact resistance multifunctionality. The structurally optimized microlattice presents excellent broadband absorption with an averaged experimental absorption coefficient of 0.77 across a broad frequency range from 1000 to 6300 Hz. Extensive simulation and experiments reveal absorption mechanisms to be based on viscous flow, thermal and structural damping dissipations while broadband capabilities to be on multiple resonance modes working in tandem. High deformation recovery up to 30% strain is also possible from the strut-based design and viscoelasticity of the base material. Overall, the excellent properties of the microlattice overcome tradeoffs commonly found in conventional absorbers. Additionally, this work aims to present a new paradigm: revisiting old concepts for the developments of novel materials using contemporary methods. Noise pollution is a highly detrimental daily health hazard. Sound absorbers, such as the traditionally used perforated panels, find widespread applications. Nonetheless, modern product designs call for material novelties with enhanced performance and multifunctionality. The advent of additive manufacturing has brought about the possibilities of functional materials design to be based on structures rather than chemistry. With this in mind, herein, the traditional concept of perforated panels is revisited and is incorporated with additive manufacturing for the development of a novel microlattice‐based sound absorber with additional impact resistance multifunctionality. The structurally optimized microlattice presents excellent broadband absorption with an averaged experimental absorption coefficient of 0.77 across a broad frequency range from 1000 to 6300 Hz. Extensive simulation and experiments reveal absorption mechanisms to be based on viscous flow, thermal and structural damping dissipations while broadband capabilities to be on multiple resonance modes working in tandem. High deformation recovery up to 30% strain is also possible from the strut‐based design and viscoelasticity of the base material. Overall, the excellent properties of the microlattice overcome tradeoffs commonly found in conventional absorbers. Additionally, this work aims to present a new paradigm: revisiting old concepts for the developments of novel materials using contemporary methods. Noise pollution is a highly detrimental daily health hazard. Sound absorbers, such as the traditionally used perforated panels, find widespread applications. Nonetheless, modern product designs call for material novelties with enhanced performance and multifunctionality. The advent of additive manufacturing has brought about the possibilities of functional materials design to be based on structures rather than chemistry. With this in mind, herein, the traditional concept of perforated panels is revisited and is incorporated with additive manufacturing for the development of a novel microlattice‐based sound absorber with additional impact resistance multifunctionality. The structurally optimized microlattice presents excellent broadband absorption with an averaged experimental absorption coefficient of 0.77 across a broad frequency range from 1000 to 6300 Hz. Extensive simulation and experiments reveal absorption mechanisms to be based on viscous flow, thermal and structural damping dissipations while broadband capabilities to be on multiple resonance modes working in tandem. High deformation recovery up to 30% strain is also possible from the strut‐based design and viscoelasticity of the base material. Overall, the excellent properties of the microlattice overcome tradeoffs commonly found in conventional absorbers. Additionally, this work aims to present a new paradigm: revisiting old concepts for the developments of novel materials using contemporary methods. |
Author | Yu, Xiang Li, Xinwei Zhai, Wei |
Author_xml | – sequence: 1 givenname: Xinwei orcidid: 0000-0002-1702-8670 surname: Li fullname: Li, Xinwei organization: National University of Singapore – sequence: 2 givenname: Xiang surname: Yu fullname: Yu, Xiang organization: ASTAR – sequence: 3 givenname: Wei orcidid: 0000-0003-2307-5243 surname: Zhai fullname: Zhai, Wei email: mpezwei@nus.edu.sg organization: National University of Singapore |
BookMark | eNqFkc9u1DAQhy1UJLaFK2dLXLhk8d8kPoZtgUpdUUE5R449AVdee7Gdor3xCNx4P56EhEUgVUKcZg7fNzOa3yk6CTEAQk8pWVNC2Attd3rNCKNESMkeoBWVjFaCKHmCVkRxWalatI_Qac63hBBVk3qFvnfWuuLuwB_wVodp1KZMCSw-hzGmnS4uhh9fv70DE-8g6cED1sHilylqOyzd-zgFOxPdkGMaXPiIt86k6HUpzgC-DHnvlnnDAZdPgDcxGNgXHEd8k_SyOgbt8TWkeZ0uM3itA_j8GD0ctc_w5Hc9Qx9eXdxs3lRXb19fbrqryghas0oyUMAHRWnTNnXbkJZzyZhsObPMWjk2oxSaMa4El6LldWNb2kBtrFJ6aDg_Q8-Pc_cpfp4gl37nsgHv5yvilHsmGyFIWxMyo8_uobdxSvP1C9UqJYhgCyWO1PyEnBOMvXHl1xtL0s73lPRLWv2SVv8nrVlb39P2ye10OvxbUEfhi_Nw-A_dd-fb7q_7E53JrJ0 |
CitedBy_id | crossref_primary_10_3390_ma15165600 crossref_primary_10_1016_j_matdes_2024_112946 crossref_primary_10_1038_s41427_024_00565_5 crossref_primary_10_1016_j_matdes_2022_110527 crossref_primary_10_1088_1361_6463_ad9ab2 crossref_primary_10_1016_j_matdes_2024_112703 crossref_primary_10_1016_j_jcis_2023_05_209 crossref_primary_10_1007_s42765_024_00411_x crossref_primary_10_1021_acsnano_2c06011 crossref_primary_10_1016_j_tws_2024_112603 crossref_primary_10_1021_acs_nanolett_4c05906 crossref_primary_10_1016_j_ijmecsci_2022_107842 crossref_primary_10_1002_adma_202103740 crossref_primary_10_1016_j_jsv_2024_118306 crossref_primary_10_1016_j_apacoust_2024_109930 crossref_primary_10_1016_j_jcis_2024_11_036 crossref_primary_10_1016_j_addma_2022_102676 crossref_primary_10_1016_j_compstruct_2025_118894 crossref_primary_10_1016_j_matdes_2022_111206 crossref_primary_10_1016_j_matdes_2024_112659 crossref_primary_10_1016_j_matdes_2025_113801 crossref_primary_10_1080_17452759_2022_2111585 crossref_primary_10_1016_j_ijmecsci_2022_108092 crossref_primary_10_1016_j_ijmecsci_2024_109526 crossref_primary_10_1002_adma_202310160 crossref_primary_10_1002_admt_202400517 crossref_primary_10_1021_acsami_3c13872 crossref_primary_10_1016_j_tws_2023_111244 crossref_primary_10_1007_s00339_023_06844_2 crossref_primary_10_1038_s41598_024_81496_7 crossref_primary_10_1002_smll_202307369 crossref_primary_10_3390_app122111066 crossref_primary_10_1039_D3TA04895K crossref_primary_10_1016_j_ijmecsci_2023_108784 crossref_primary_10_1016_j_ijmecsci_2022_107396 crossref_primary_10_1039_D4MH01173B crossref_primary_10_1016_j_engstruct_2024_119453 crossref_primary_10_1016_j_addma_2023_103438 crossref_primary_10_1016_j_apacoust_2023_109591 crossref_primary_10_1016_j_jmps_2024_105751 crossref_primary_10_1016_j_tws_2023_111498 crossref_primary_10_1103_PhysRevApplied_20_010501 crossref_primary_10_1016_j_matdes_2025_113852 crossref_primary_10_1002_admt_202201757 crossref_primary_10_1080_17452759_2024_2444572 crossref_primary_10_1016_j_matdes_2024_112912 crossref_primary_10_1002_smll_202204145 crossref_primary_10_1121_10_0021880 crossref_primary_10_1002_advs_202501898 crossref_primary_10_1016_j_compstruct_2023_117589 crossref_primary_10_1016_j_addma_2022_103152 crossref_primary_10_1080_17452759_2022_2085119 crossref_primary_10_1080_17452759_2024_2342432 crossref_primary_10_1080_17452759_2024_2425386 crossref_primary_10_1016_j_smmf_2025_100073 crossref_primary_10_1002_adfm_202421746 crossref_primary_10_1002_smll_202403254 crossref_primary_10_1039_D3MH00428G crossref_primary_10_1080_17452759_2023_2166851 crossref_primary_10_1021_acsami_2c19456 crossref_primary_10_4103_nah_nah_60_23 crossref_primary_10_1007_s12613_023_2684_8 crossref_primary_10_1016_j_ijmecsci_2024_109563 crossref_primary_10_1002_adfm_202210160 crossref_primary_10_1016_j_tws_2024_111815 crossref_primary_10_1016_j_tws_2025_112925 crossref_primary_10_1002_advs_202400250 crossref_primary_10_1038_s42254_023_00659_z crossref_primary_10_1073_pnas_2407362121 crossref_primary_10_1080_17452759_2024_2412198 crossref_primary_10_1016_j_mtcomm_2023_106344 crossref_primary_10_1016_j_jsv_2022_117527 crossref_primary_10_1080_15376494_2022_2053906 crossref_primary_10_1002_advs_202301567 crossref_primary_10_1016_j_matdes_2023_112354 crossref_primary_10_1016_j_matdes_2024_113544 crossref_primary_10_1016_j_actamat_2024_120700 crossref_primary_10_1063_5_0187328 crossref_primary_10_1002_advs_202405835 crossref_primary_10_1021_acsami_2c03245 crossref_primary_10_1016_j_apacoust_2025_110629 crossref_primary_10_1021_acsnano_3c06921 crossref_primary_10_1002_pc_29656 crossref_primary_10_1002_adfm_202406132 crossref_primary_10_1016_j_carbon_2022_09_009 crossref_primary_10_1002_advs_202305232 crossref_primary_10_1016_j_apacoust_2022_108941 crossref_primary_10_1039_D2MH00977C crossref_primary_10_1103_PhysRevB_109_104113 crossref_primary_10_1016_j_matdes_2022_110462 crossref_primary_10_1021_acsami_3c02498 crossref_primary_10_1002_adma_202302530 crossref_primary_10_1016_j_compstruct_2024_118371 crossref_primary_10_1002_smtd_202300569 crossref_primary_10_1016_j_addma_2023_103800 crossref_primary_10_1016_j_compositesb_2022_110454 crossref_primary_10_1016_j_ijmecsci_2025_109920 crossref_primary_10_1016_j_apacoust_2025_110698 crossref_primary_10_1016_j_compstruct_2022_116434 crossref_primary_10_1016_j_eml_2022_101855 crossref_primary_10_1007_s10853_022_06886_6 crossref_primary_10_1016_j_tws_2023_111226 crossref_primary_10_1016_j_ceramint_2023_12_110 crossref_primary_10_1002_adfm_202305978 crossref_primary_10_1016_j_addma_2024_104248 crossref_primary_10_1002_admt_202500118 crossref_primary_10_1016_j_ijmecsci_2022_107650 |
Cites_doi | 10.1002/adma.201803334 10.1121/1.423870 10.1121/1.5119224 10.1121/1.2783126 10.1002/admt.202000787 10.1002/adma.202000797 10.1016/j.actamat.2021.116666 10.1002/adma.201705001 10.1016/j.apacoust.2020.107244 10.1002/smll.201902842 10.3390/jfb8040044 10.3390/app9071507 10.1016/j.apacoust.2011.04.010 10.1126/science.1255908 10.1016/j.compositesa.2020.105934 10.1016/j.apmt.2019.100486 10.1088/1361-6463/aafaa3 10.1002/admt.201800410 10.1115/1.4002956 10.1016/j.actamat.2016.05.054 10.1002/smll.202100336 10.1121/1.3596459 10.1039/C7MH00699C 10.1557/mrs.2019.230 10.1021/acsnano.0c01157 10.1016/j.apacoust.2019.107138 10.1063/1.370550 10.1016/S1359-6454(00)00269-X 10.1126/science.1211649 10.1002/adma.201701850 10.1039/C8MH00653A 10.1063/1.4984095 10.1063/5.0042514 10.1146/annurev-matsci-070616-124032 10.1038/s41467-020-17533-6 10.1016/j.addma.2020.101564 10.1002/adem.201600053 10.1002/adma.202005647 10.1002/adma.201301986 10.1039/C7MH00129K 10.1016/j.compositesb.2020.107833 10.1016/j.apacoust.2018.12.008 10.1002/adma.202007348 10.1073/pnas.1817309116 10.1016/j.jsv.2019.115167 10.1002/adfm.201703820 10.1016/j.actamat.2015.12.017 10.1080/17452759.2020.1740747 10.1177/1099636221993880 10.1002/adma.201501708 10.1021/acs.nanolett.8b01241 10.1002/advs.201801670 10.1016/j.matdes.2017.09.006 |
ContentType | Journal Article |
Copyright | 2021 Wiley‐VCH GmbH 2021 Wiley-VCH GmbH. |
Copyright_xml | – notice: 2021 Wiley‐VCH GmbH – notice: 2021 Wiley-VCH GmbH. |
DBID | AAYXX CITATION 7SR 8BQ 8FD JG9 7X8 |
DOI | 10.1002/adma.202104552 |
DatabaseName | CrossRef Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database MEDLINE - Academic |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database METADEX MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic Materials Research Database CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1521-4095 |
EndPage | n/a |
ExternalDocumentID | 10_1002_adma_202104552 ADMA202104552 |
Genre | article |
GrantInformation_xml | – fundername: A*STAR funderid: A20E6c0099 |
GroupedDBID | --- .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 6P2 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AAXRX AAYCA AAZKR ABCQN ABCUV ABIJN ABJNI ABLJU ABPVW ACAHQ ACCFJ ACCZN ACGFS ACIWK ACPOU ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR1 DR2 DRFUL DRSTM EBS F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D Q.N Q11 QB0 QRW R.K RNS ROL RWI RWM RX1 RYL SUPJJ TN5 UB1 UPT V2E W8V W99 WBKPD WFSAM WIB WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XV2 YR2 ZZTAW ~02 ~IA ~WT .Y3 31~ 6TJ 8WZ A6W AANHP AASGY AAYOK AAYXX ABEML ACBWZ ACRPL ACSCC ACYXJ ADMLS ADNMO AETEA AEYWJ AFFNX AGHNM AGQPQ AGYGG ASPBG AVWKF AZFZN CITATION EJD FEDTE FOJGT HF~ HVGLF LW6 M6K NDZJH PALCI RIWAO RJQFR SAMSI WTY ZY4 7SR 8BQ 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY JG9 7X8 |
ID | FETCH-LOGICAL-c4162-52e9e3b91178768708335225832d2dd5f7f54a223943548367d817e6cd99ab733 |
IEDL.DBID | DR2 |
ISSN | 0935-9648 1521-4095 |
IngestDate | Thu Jul 10 22:24:23 EDT 2025 Fri Jul 25 07:25:48 EDT 2025 Thu Apr 24 23:06:03 EDT 2025 Tue Jul 01 02:33:07 EDT 2025 Wed Jan 22 16:28:24 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 44 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4162-52e9e3b91178768708335225832d2dd5f7f54a223943548367d817e6cd99ab733 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-1702-8670 0000-0003-2307-5243 |
PQID | 2589940420 |
PQPubID | 2045203 |
PageCount | 13 |
ParticipantIDs | proquest_miscellaneous_2574408600 proquest_journals_2589940420 crossref_citationtrail_10_1002_adma_202104552 crossref_primary_10_1002_adma_202104552 wiley_primary_10_1002_adma_202104552_ADMA202104552 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-11-01 |
PublicationDateYYYYMMDD | 2021-11-01 |
PublicationDate_xml | – month: 11 year: 2021 text: 2021-11-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Weinheim |
PublicationPlace_xml | – name: Weinheim |
PublicationTitle | Advanced materials (Weinheim) |
PublicationYear | 2021 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2021; 6 2017; 8 2007 2020; 122 160 2019; 4 2013; 25 2017; 4 2011 2017; 47 2019; 52 2000; 48 2020; 164 2017; 27 2019 2020; 6 14 2020 2020; 36 187 2021; 206 2019; 148 2011 2019; 72 9 2020; 15 2019; 146 2016; 105 1999; 85 2020; 11 2016 2020; 116 135 2017; 110 2016; 18 2011; 133 2017 2011 2021; 134 130 2020; 18 2018; 5 2020; 472 2021 2018 2019 2014 2019; 33 30 116 345 44 2020 2017; 16 29 2021; 17 2021; 118 2016 1998; 104 2018 2015 2020 2021 2011 2018; 30 27 32 33 334 18 e_1_2_10_23_1 e_1_2_10_21_1 e_1_2_10_2_1 e_1_2_10_16_5 e_1_2_10_4_1 e_1_2_10_16_3 e_1_2_10_18_1 e_1_2_10_16_4 e_1_2_10_18_2 e_1_2_10_6_1 e_1_2_10_16_1 e_1_2_10_16_2 e_1_2_10_8_1 e_1_2_10_14_1 e_1_2_10_37_1 e_1_2_10_14_2 e_1_2_10_13_1 e_1_2_10_34_1 e_1_2_10_11_1 e_1_2_10_32_1 e_1_2_10_30_1 e_1_2_10_29_1 e_1_2_10_27_1 e_1_2_10_25_1 e_1_2_10_25_2 e_1_2_10_24_1 e_1_2_10_22_1 e_1_2_10_20_1 e_1_2_10_17_6 e_1_2_10_1_1 e_1_2_10_17_4 e_1_2_10_17_5 e_1_2_10_17_2 e_1_2_10_3_1 e_1_2_10_17_3 e_1_2_10_19_1 e_1_2_10_15_2 e_1_2_10_38_2 e_1_2_10_5_1 e_1_2_10_17_1 e_1_2_10_38_1 e_1_2_10_36_2 e_1_2_10_7_1 e_1_2_10_15_1 e_1_2_10_36_1 e_1_2_10_12_1 e_1_2_10_35_1 e_1_2_10_9_1 e_1_2_10_10_1 e_1_2_10_33_1 e_1_2_10_31_1 e_1_2_10_28_2 e_1_2_10_28_3 e_1_2_10_28_1 e_1_2_10_26_1 |
References_xml | – year: 2011 – volume: 25 start-page: 5044 year: 2013 publication-title: Adv. Mater. – volume: 27 year: 2017 publication-title: Adv. Funct. Mater. – volume: 36 187 year: 2020 2020 publication-title: Addit. Manuf. Composites, Part B – volume: 116 135 start-page: 14 year: 2016 2020 publication-title: Acta Mater. Composites, Part A – volume: 4 year: 2019 publication-title: Adv. Mater. Technol. – volume: 133 year: 2011 publication-title: J. Vib. Acoust. – volume: 122 160 start-page: 2653 year: 2007 2020 publication-title: J. Acoust. Soc. Am. Appl. Acoust. – volume: 72 9 start-page: 772 1507 year: 2011 2019 publication-title: Appl. Acoust. Appl. Sci. – volume: 11 start-page: 3732 year: 2020 publication-title: Nat. Commun. – volume: 17 year: 2021 publication-title: Small – volume: 164 year: 2020 publication-title: Appl. Acoust. – volume: 16 29 year: 2020 2017 publication-title: Small Adv. Mater. – year: 2016 – volume: 104 start-page: 2861 year: 1998 publication-title: J. Acoust. Soc. Am. – volume: 30 27 32 33 334 18 start-page: 4296 962 4247 year: 2018 2015 2020 2021 2011 2018 publication-title: Adv. Mater. Adv. Mater. Adv. Mater. Adv. Mater. Science Nano Lett. – volume: 6 14 start-page: 9675 year: 2019 2020 publication-title: Adv. Sci. ACS Nano – volume: 6 year: 2021 publication-title: Adv. Mater. Technol. – volume: 18 year: 2020 publication-title: Appl. Mater. Today – volume: 5 start-page: 939 year: 2018 publication-title: Mater. Horiz. – volume: 48 start-page: 4349 year: 2000 publication-title: Acta Mater. – volume: 85 start-page: 7528 year: 1999 publication-title: J. Appl. Phys. – volume: 472 year: 2020 publication-title: J. Sound Vib. – volume: 18 start-page: 1847 year: 2016 publication-title: Adv. Eng. Mater. – volume: 146 start-page: 649 year: 2019 publication-title: J. Acoust. Soc. Am. – volume: 110 year: 2017 publication-title: Appl. Phys. Lett. – volume: 118 year: 2021 publication-title: Appl. Phys. Lett. – volume: 33 30 116 345 44 start-page: 6665 1322 758 year: 2021 2018 2019 2014 2019 publication-title: Adv. Mater. Adv. Mater. Proc. Natl. Acad. Sci. USA Science MRS Bull. – volume: 8 start-page: 44 year: 2017 publication-title: J. Funct. Biomater. – volume: 47 start-page: 83 year: 2017 publication-title: Annu. Rev. Mater. Res. – volume: 15 start-page: 242 year: 2020 publication-title: Virtual Phys. Prototyping – volume: 105 start-page: 75 year: 2016 publication-title: Acta Mater. – volume: 148 start-page: 1 year: 2019 publication-title: Appl. Acoust. – volume: 52 year: 2019 publication-title: J. Phys. D – volume: 4 start-page: 673 year: 2017 publication-title: Mater. Horiz. – volume: 206 year: 2021 publication-title: Acta Mater. – volume: 134 130 start-page: 502 208 year: 2017 2011 2021 publication-title: Mater. Des. J. Acoust. Soc. Am. J. Sandwich Struct. Mater. – volume: 5 start-page: 28 year: 2018 publication-title: Mater. Horiz. – ident: e_1_2_10_16_2 doi: 10.1002/adma.201803334 – ident: e_1_2_10_26_1 doi: 10.1121/1.423870 – ident: e_1_2_10_34_1 doi: 10.1121/1.5119224 – ident: e_1_2_10_36_1 doi: 10.1121/1.2783126 – ident: e_1_2_10_4_1 doi: 10.1002/admt.202000787 – ident: e_1_2_10_17_3 doi: 10.1002/adma.202000797 – ident: e_1_2_10_7_1 doi: 10.1016/j.actamat.2021.116666 – ident: e_1_2_10_17_1 doi: 10.1002/adma.201705001 – ident: e_1_2_10_22_1 doi: 10.1016/j.apacoust.2020.107244 – ident: e_1_2_10_14_1 doi: 10.1002/smll.201902842 – ident: e_1_2_10_35_1 doi: 10.3390/jfb8040044 – ident: e_1_2_10_38_2 doi: 10.3390/app9071507 – ident: e_1_2_10_38_1 doi: 10.1016/j.apacoust.2011.04.010 – ident: e_1_2_10_16_4 doi: 10.1126/science.1255908 – ident: e_1_2_10_15_2 doi: 10.1016/j.compositesa.2020.105934 – ident: e_1_2_10_19_1 doi: 10.1016/j.apmt.2019.100486 – ident: e_1_2_10_11_1 doi: 10.1088/1361-6463/aafaa3 – ident: e_1_2_10_6_1 doi: 10.1002/admt.201800410 – ident: e_1_2_10_27_1 doi: 10.1115/1.4002956 – ident: e_1_2_10_1_1 – ident: e_1_2_10_15_1 doi: 10.1016/j.actamat.2016.05.054 – ident: e_1_2_10_21_1 doi: 10.1002/smll.202100336 – ident: e_1_2_10_28_2 doi: 10.1121/1.3596459 – ident: e_1_2_10_20_1 doi: 10.1039/C7MH00699C – ident: e_1_2_10_16_5 doi: 10.1557/mrs.2019.230 – ident: e_1_2_10_18_2 doi: 10.1021/acsnano.0c01157 – ident: e_1_2_10_36_2 doi: 10.1016/j.apacoust.2019.107138 – ident: e_1_2_10_37_1 doi: 10.1063/1.370550 – ident: e_1_2_10_32_1 doi: 10.1016/S1359-6454(00)00269-X – ident: e_1_2_10_17_5 doi: 10.1126/science.1211649 – ident: e_1_2_10_14_2 doi: 10.1002/adma.201701850 – ident: e_1_2_10_29_1 doi: 10.1039/C8MH00653A – ident: e_1_2_10_10_1 doi: 10.1063/1.4984095 – ident: e_1_2_10_2_1 – ident: e_1_2_10_13_1 doi: 10.1063/5.0042514 – ident: e_1_2_10_3_1 doi: 10.1146/annurev-matsci-070616-124032 – ident: e_1_2_10_8_1 doi: 10.1038/s41467-020-17533-6 – ident: e_1_2_10_25_1 doi: 10.1016/j.addma.2020.101564 – ident: e_1_2_10_30_1 doi: 10.1002/adem.201600053 – ident: e_1_2_10_17_4 doi: 10.1002/adma.202005647 – ident: e_1_2_10_31_1 doi: 10.1002/adma.201301986 – ident: e_1_2_10_9_1 doi: 10.1039/C7MH00129K – ident: e_1_2_10_25_2 doi: 10.1016/j.compositesb.2020.107833 – ident: e_1_2_10_12_1 doi: 10.1016/j.apacoust.2018.12.008 – ident: e_1_2_10_16_1 doi: 10.1002/adma.202007348 – ident: e_1_2_10_16_3 doi: 10.1073/pnas.1817309116 – ident: e_1_2_10_24_1 doi: 10.1016/j.jsv.2019.115167 – ident: e_1_2_10_5_1 doi: 10.1002/adfm.201703820 – ident: e_1_2_10_33_1 doi: 10.1016/j.actamat.2015.12.017 – ident: e_1_2_10_23_1 doi: 10.1080/17452759.2020.1740747 – ident: e_1_2_10_28_3 doi: 10.1177/1099636221993880 – ident: e_1_2_10_17_2 doi: 10.1002/adma.201501708 – ident: e_1_2_10_17_6 doi: 10.1021/acs.nanolett.8b01241 – ident: e_1_2_10_18_1 doi: 10.1002/advs.201801670 – ident: e_1_2_10_28_1 doi: 10.1016/j.matdes.2017.09.006 |
SSID | ssj0009606 |
Score | 2.6443913 |
Snippet | Noise pollution is a highly detrimental daily health hazard. Sound absorbers, such as the traditionally used perforated panels, find widespread applications.... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | e2104552 |
SubjectTerms | 3D printing Absorbers Absorptivity Additive manufacturing Broadband Damping Deformation energy absorption Frequency ranges Functional materials Health hazards Impact resistance Manufacturing Materials science microlattices Noise pollution Panels recoverable sound absorption Sound transmission Viscoelasticity Viscous flow |
Title | Additively Manufactured Deformation‐Recoverable and Broadband Sound‐Absorbing Microlattice Inspired by the Concept of Traditional Perforated Panels |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadma.202104552 https://www.proquest.com/docview/2589940420 https://www.proquest.com/docview/2574408600 |
Volume | 33 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEF7Ekx58i_XFCoKnaM1uHnsM1qJCRdSCt7Db3YhYEmmbQz35E7z5__wlzmwebQUR9JaQTdLdzsx-X3bmW0IOIeKDFQE7CYD9ONyTiSND7jqChU1Xa1dyu4LfufYvuvzqwXuYquIv9CHqD27oGTZeo4NLNTyZiIZKbXWDgLJwz8MgjAlbiIpuJ_pRCM-t2B7zHOHzsFJtbLons7fPzkoTqDkNWO2M014msvqtRaLJ83E-Use9128yjv_pzApZKuEojQr7WSVzJl0ji1MihevkI9LaJhj1x7Qj0xxLIfKB0bRl6srHz7d35LHgFliJRWWqKfB7qRUe3eHOTdAiUsNsAET8kXYwC7AvR5h4Ry9TXOyH56kxBTRKz4pCSpolFCZS_VR8rKQ3Ng8fkLGmNxK6O9wg3fb5_dmFU27n4PQA9SHlNcIwBdEVgoQPccLWe7kexBQNZuElQeJx6eJe7Qx4FPMDHZ4Gxu9pIaQKGNsk82mWmi1CASb5wgA1Ck4TzrgvjZShaCaBZkpDmGkQp_o7416pdY5bbvTjQqXZjXHA43rAG-Sobv9SqHz82HK3so649PZhDH0QgkP4azbIQX0Z_BQXX2BIshzboBRjCPiyQVxrCr-8KY5anag-2_7LTTtkAY-L0sldMj8a5GYPMNRI7Vs_-QLF0RQ3 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LTxsxEB5VcGg58GiLCARwpUqcFsLa-_BxFUChZRFqQeptZcdehIg2KMke4MRP4Mb_45cw481uAAlVam95eDexd2b8ffbMZ4DvGPHRipCdRMh-PBGo3FOx8D3J445vjK-E28FPT8PehfjxJ6izCakWptKHaBbcyDNcvCYHpwXpvZlqqDJOOAg5iwgCjMLzdKy3Y1W_ZgpSBNCd3B4PPBmKuNZt7Ph7r69_PS_NwOZLyOrmnKMl0PW_rVJNrnfLid7t370Rcvyv7izD4hSRsqQyoRX4YIvPsPBCp_ALPCbGuByjwS1LVVFSNUQ5soYd2Kb48en-gagsegYVYzFVGIYUXxlNr37T4U3YItHj4Qi5-CVLKRFwoCaUe8eOC9rvx_vpW4aAlHWrWko2zBnOpeaqWq9kZy4VH8GxYWcK-zv-ChdHh-fdnjc90cHrI_Aj1mul5RoDLMaJEEOFK_nyAwwrBi0jyKM8EMqn49o5UikeRibej2zYN1IqHXG-CnPFsLBrwBAphdIiO4r2c8FFqKxSsezkkeHaYKRpgVc_z6w_lTunUzcGWSXU7Gc04Fkz4C3YadrfVEIf77Zs1-aRTR1-nGEfpBQYATst-NZ8ja5K-y84JMOS2pAaY4wQswW-s4W__FKWHKRJ8279Xy7aho-98_QkOzk-_bkBn-jzqpKyDXOTUWk3EVJN9JZzmmf9cRhS |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Nb9pAEB1FqRS1h7ZJU5U2TbZSpJ4Mjnf9sUcrBEFaEMqHlJu1ZtdRVWQQ4AM99Sfklv-XX5KZNRioFEVKb8assXeZmX3PO_MW4BgjPloRspMQ2Y8jfJU5KhKeI3nkelp7StgV_G4vaF-L8xv_Zq2Kv9SHqF64kWfYeE0OPtZZYyUaqrTVDULKInwfg_ArEbgR2XXzYiUgRfjcqu1x35GBiJayja7X2Lx-c1paYc11xGqnnNY7UMuHLTNNfteLWVof_PlHx_F_evMe3i7wKItLA9qFLZPvwZs1lcIPcB9rbTOMhnPWVXlBtRDFxGjWNFXp48PfOyKy6BdUisVUrhkSfKVTOrqkrZuwRZxORxNk4resS2mAQzWjzDvWyWm1H38vnTOEo-y0rKRko4zhTKp_lW8rWd8m4iM01qyvsLvTfbhunV2dtp3Ffg7OAGEfcV4jDU8xvGKUCDBQ2IIvz8egotEu_CzMfKE82qydI5HiQaijk9AEAy2lSkPOP8J2PsrNJ2CIkwJpkBuFJ5ngIlBGqUi6Wah5qjHO1MBZ_p3JYCF2TntuDJNSptlLaMCTasBr8L1qPy5lPp5sebC0jmTh7tME-yClwPjn1uBb9TU6Kq2-4JCMCmpDWowRAswaeNYUnrlTEje7cfXp80suOoKdfrOV_Oz0fnyB13S6LKM8gO3ZpDBfEU_N0kPrMo-7oxcK |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Additively+Manufactured+Deformation-Recoverable+and+Broadband+Sound-Absorbing+Microlattice+Inspired+by+the+Concept+of+Traditional+Perforated+Panels&rft.jtitle=Advanced+materials+%28Weinheim%29&rft.au=Li%2C+Xinwei&rft.au=Yu%2C+Xiang&rft.au=Zhai%2C+Wei&rft.date=2021-11-01&rft.issn=1521-4095&rft.eissn=1521-4095&rft.volume=33&rft.issue=44&rft.spage=e2104552&rft_id=info:doi/10.1002%2Fadma.202104552&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0935-9648&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0935-9648&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0935-9648&client=summon |