Additively Manufactured Deformation‐Recoverable and Broadband Sound‐Absorbing Microlattice Inspired by the Concept of Traditional Perforated Panels

Noise pollution is a highly detrimental daily health hazard. Sound absorbers, such as the traditionally used perforated panels, find widespread applications. Nonetheless, modern product designs call for material novelties with enhanced performance and multifunctionality. The advent of additive manuf...

Full description

Saved in:
Bibliographic Details
Published inAdvanced materials (Weinheim) Vol. 33; no. 44; pp. e2104552 - n/a
Main Authors Li, Xinwei, Yu, Xiang, Zhai, Wei
Format Journal Article
LanguageEnglish
Published Weinheim Wiley Subscription Services, Inc 01.11.2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Noise pollution is a highly detrimental daily health hazard. Sound absorbers, such as the traditionally used perforated panels, find widespread applications. Nonetheless, modern product designs call for material novelties with enhanced performance and multifunctionality. The advent of additive manufacturing has brought about the possibilities of functional materials design to be based on structures rather than chemistry. With this in mind, herein, the traditional concept of perforated panels is revisited and is incorporated with additive manufacturing for the development of a novel microlattice‐based sound absorber with additional impact resistance multifunctionality. The structurally optimized microlattice presents excellent broadband absorption with an averaged experimental absorption coefficient of 0.77 across a broad frequency range from 1000 to 6300 Hz. Extensive simulation and experiments reveal absorption mechanisms to be based on viscous flow, thermal and structural damping dissipations while broadband capabilities to be on multiple resonance modes working in tandem. High deformation recovery up to 30% strain is also possible from the strut‐based design and viscoelasticity of the base material. Overall, the excellent properties of the microlattice overcome tradeoffs commonly found in conventional absorbers. Additionally, this work aims to present a new paradigm: revisiting old concepts for the developments of novel materials using contemporary methods. Based on traditional perforated panel concepts, a novel broadband sound‐absorbing microlattice with impact‐recovery multifunctionality is presented. The microlattice boasts high averaged absorption coefficients of 0.77 with mechanisms attributing to synergistic impedance matching and a combination of viscous, thermal, and structural damping dissipation. It is also pseudo‐reusable with high strain recovery at 30% with no degradation of sound absorption observed.
AbstractList Noise pollution is a highly detrimental daily health hazard. Sound absorbers, such as the traditionally used perforated panels, find widespread applications. Nonetheless, modern product designs call for material novelties with enhanced performance and multifunctionality. The advent of additive manufacturing has brought about the possibilities of functional materials design to be based on structures rather than chemistry. With this in mind, herein, the traditional concept of perforated panels is revisited and is incorporated with additive manufacturing for the development of a novel microlattice‐based sound absorber with additional impact resistance multifunctionality. The structurally optimized microlattice presents excellent broadband absorption with an averaged experimental absorption coefficient of 0.77 across a broad frequency range from 1000 to 6300 Hz. Extensive simulation and experiments reveal absorption mechanisms to be based on viscous flow, thermal and structural damping dissipations while broadband capabilities to be on multiple resonance modes working in tandem. High deformation recovery up to 30% strain is also possible from the strut‐based design and viscoelasticity of the base material. Overall, the excellent properties of the microlattice overcome tradeoffs commonly found in conventional absorbers. Additionally, this work aims to present a new paradigm: revisiting old concepts for the developments of novel materials using contemporary methods. Based on traditional perforated panel concepts, a novel broadband sound‐absorbing microlattice with impact‐recovery multifunctionality is presented. The microlattice boasts high averaged absorption coefficients of 0.77 with mechanisms attributing to synergistic impedance matching and a combination of viscous, thermal, and structural damping dissipation. It is also pseudo‐reusable with high strain recovery at 30% with no degradation of sound absorption observed.
Noise pollution is a highly detrimental daily health hazard. Sound absorbers, such as the traditionally used perforated panels, find widespread applications. Nonetheless, modern product designs call for material novelties with enhanced performance and multifunctionality. The advent of additive manufacturing has brought about the possibilities of functional materials design to be based on structures rather than chemistry. With this in mind, herein, the traditional concept of perforated panels is revisited and is incorporated with additive manufacturing for the development of a novel microlattice-based sound absorber with additional impact resistance multifunctionality. The structurally optimized microlattice presents excellent broadband absorption with an averaged experimental absorption coefficient of 0.77 across a broad frequency range from 1000 to 6300 Hz. Extensive simulation and experiments reveal absorption mechanisms to be based on viscous flow, thermal and structural damping dissipations while broadband capabilities to be on multiple resonance modes working in tandem. High deformation recovery up to 30% strain is also possible from the strut-based design and viscoelasticity of the base material. Overall, the excellent properties of the microlattice overcome tradeoffs commonly found in conventional absorbers. Additionally, this work aims to present a new paradigm: revisiting old concepts for the developments of novel materials using contemporary methods.Noise pollution is a highly detrimental daily health hazard. Sound absorbers, such as the traditionally used perforated panels, find widespread applications. Nonetheless, modern product designs call for material novelties with enhanced performance and multifunctionality. The advent of additive manufacturing has brought about the possibilities of functional materials design to be based on structures rather than chemistry. With this in mind, herein, the traditional concept of perforated panels is revisited and is incorporated with additive manufacturing for the development of a novel microlattice-based sound absorber with additional impact resistance multifunctionality. The structurally optimized microlattice presents excellent broadband absorption with an averaged experimental absorption coefficient of 0.77 across a broad frequency range from 1000 to 6300 Hz. Extensive simulation and experiments reveal absorption mechanisms to be based on viscous flow, thermal and structural damping dissipations while broadband capabilities to be on multiple resonance modes working in tandem. High deformation recovery up to 30% strain is also possible from the strut-based design and viscoelasticity of the base material. Overall, the excellent properties of the microlattice overcome tradeoffs commonly found in conventional absorbers. Additionally, this work aims to present a new paradigm: revisiting old concepts for the developments of novel materials using contemporary methods.
Noise pollution is a highly detrimental daily health hazard. Sound absorbers, such as the traditionally used perforated panels, find widespread applications. Nonetheless, modern product designs call for material novelties with enhanced performance and multifunctionality. The advent of additive manufacturing has brought about the possibilities of functional materials design to be based on structures rather than chemistry. With this in mind, herein, the traditional concept of perforated panels is revisited and is incorporated with additive manufacturing for the development of a novel microlattice‐based sound absorber with additional impact resistance multifunctionality. The structurally optimized microlattice presents excellent broadband absorption with an averaged experimental absorption coefficient of 0.77 across a broad frequency range from 1000 to 6300 Hz. Extensive simulation and experiments reveal absorption mechanisms to be based on viscous flow, thermal and structural damping dissipations while broadband capabilities to be on multiple resonance modes working in tandem. High deformation recovery up to 30% strain is also possible from the strut‐based design and viscoelasticity of the base material. Overall, the excellent properties of the microlattice overcome tradeoffs commonly found in conventional absorbers. Additionally, this work aims to present a new paradigm: revisiting old concepts for the developments of novel materials using contemporary methods.
Noise pollution is a highly detrimental daily health hazard. Sound absorbers, such as the traditionally used perforated panels, find widespread applications. Nonetheless, modern product designs call for material novelties with enhanced performance and multifunctionality. The advent of additive manufacturing has brought about the possibilities of functional materials design to be based on structures rather than chemistry. With this in mind, herein, the traditional concept of perforated panels is revisited and is incorporated with additive manufacturing for the development of a novel microlattice‐based sound absorber with additional impact resistance multifunctionality. The structurally optimized microlattice presents excellent broadband absorption with an averaged experimental absorption coefficient of 0.77 across a broad frequency range from 1000 to 6300 Hz. Extensive simulation and experiments reveal absorption mechanisms to be based on viscous flow, thermal and structural damping dissipations while broadband capabilities to be on multiple resonance modes working in tandem. High deformation recovery up to 30% strain is also possible from the strut‐based design and viscoelasticity of the base material. Overall, the excellent properties of the microlattice overcome tradeoffs commonly found in conventional absorbers. Additionally, this work aims to present a new paradigm: revisiting old concepts for the developments of novel materials using contemporary methods.
Author Yu, Xiang
Li, Xinwei
Zhai, Wei
Author_xml – sequence: 1
  givenname: Xinwei
  orcidid: 0000-0002-1702-8670
  surname: Li
  fullname: Li, Xinwei
  organization: National University of Singapore
– sequence: 2
  givenname: Xiang
  surname: Yu
  fullname: Yu, Xiang
  organization: ASTAR
– sequence: 3
  givenname: Wei
  orcidid: 0000-0003-2307-5243
  surname: Zhai
  fullname: Zhai, Wei
  email: mpezwei@nus.edu.sg
  organization: National University of Singapore
BookMark eNqFkc9u1DAQhy1UJLaFK2dLXLhk8d8kPoZtgUpdUUE5R449AVdee7Gdor3xCNx4P56EhEUgVUKcZg7fNzOa3yk6CTEAQk8pWVNC2Attd3rNCKNESMkeoBWVjFaCKHmCVkRxWalatI_Qac63hBBVk3qFvnfWuuLuwB_wVodp1KZMCSw-hzGmnS4uhh9fv70DE-8g6cED1sHilylqOyzd-zgFOxPdkGMaXPiIt86k6HUpzgC-DHnvlnnDAZdPgDcxGNgXHEd8k_SyOgbt8TWkeZ0uM3itA_j8GD0ctc_w5Hc9Qx9eXdxs3lRXb19fbrqryghas0oyUMAHRWnTNnXbkJZzyZhsObPMWjk2oxSaMa4El6LldWNb2kBtrFJ6aDg_Q8-Pc_cpfp4gl37nsgHv5yvilHsmGyFIWxMyo8_uobdxSvP1C9UqJYhgCyWO1PyEnBOMvXHl1xtL0s73lPRLWv2SVv8nrVlb39P2ye10OvxbUEfhi_Nw-A_dd-fb7q_7E53JrJ0
CitedBy_id crossref_primary_10_3390_ma15165600
crossref_primary_10_1016_j_matdes_2024_112946
crossref_primary_10_1038_s41427_024_00565_5
crossref_primary_10_1016_j_matdes_2022_110527
crossref_primary_10_1088_1361_6463_ad9ab2
crossref_primary_10_1016_j_matdes_2024_112703
crossref_primary_10_1016_j_jcis_2023_05_209
crossref_primary_10_1007_s42765_024_00411_x
crossref_primary_10_1021_acsnano_2c06011
crossref_primary_10_1016_j_tws_2024_112603
crossref_primary_10_1021_acs_nanolett_4c05906
crossref_primary_10_1016_j_ijmecsci_2022_107842
crossref_primary_10_1002_adma_202103740
crossref_primary_10_1016_j_jsv_2024_118306
crossref_primary_10_1016_j_apacoust_2024_109930
crossref_primary_10_1016_j_jcis_2024_11_036
crossref_primary_10_1016_j_addma_2022_102676
crossref_primary_10_1016_j_compstruct_2025_118894
crossref_primary_10_1016_j_matdes_2022_111206
crossref_primary_10_1016_j_matdes_2024_112659
crossref_primary_10_1016_j_matdes_2025_113801
crossref_primary_10_1080_17452759_2022_2111585
crossref_primary_10_1016_j_ijmecsci_2022_108092
crossref_primary_10_1016_j_ijmecsci_2024_109526
crossref_primary_10_1002_adma_202310160
crossref_primary_10_1002_admt_202400517
crossref_primary_10_1021_acsami_3c13872
crossref_primary_10_1016_j_tws_2023_111244
crossref_primary_10_1007_s00339_023_06844_2
crossref_primary_10_1038_s41598_024_81496_7
crossref_primary_10_1002_smll_202307369
crossref_primary_10_3390_app122111066
crossref_primary_10_1039_D3TA04895K
crossref_primary_10_1016_j_ijmecsci_2023_108784
crossref_primary_10_1016_j_ijmecsci_2022_107396
crossref_primary_10_1039_D4MH01173B
crossref_primary_10_1016_j_engstruct_2024_119453
crossref_primary_10_1016_j_addma_2023_103438
crossref_primary_10_1016_j_apacoust_2023_109591
crossref_primary_10_1016_j_jmps_2024_105751
crossref_primary_10_1016_j_tws_2023_111498
crossref_primary_10_1103_PhysRevApplied_20_010501
crossref_primary_10_1016_j_matdes_2025_113852
crossref_primary_10_1002_admt_202201757
crossref_primary_10_1080_17452759_2024_2444572
crossref_primary_10_1016_j_matdes_2024_112912
crossref_primary_10_1002_smll_202204145
crossref_primary_10_1121_10_0021880
crossref_primary_10_1002_advs_202501898
crossref_primary_10_1016_j_compstruct_2023_117589
crossref_primary_10_1016_j_addma_2022_103152
crossref_primary_10_1080_17452759_2022_2085119
crossref_primary_10_1080_17452759_2024_2342432
crossref_primary_10_1080_17452759_2024_2425386
crossref_primary_10_1016_j_smmf_2025_100073
crossref_primary_10_1002_adfm_202421746
crossref_primary_10_1002_smll_202403254
crossref_primary_10_1039_D3MH00428G
crossref_primary_10_1080_17452759_2023_2166851
crossref_primary_10_1021_acsami_2c19456
crossref_primary_10_4103_nah_nah_60_23
crossref_primary_10_1007_s12613_023_2684_8
crossref_primary_10_1016_j_ijmecsci_2024_109563
crossref_primary_10_1002_adfm_202210160
crossref_primary_10_1016_j_tws_2024_111815
crossref_primary_10_1016_j_tws_2025_112925
crossref_primary_10_1002_advs_202400250
crossref_primary_10_1038_s42254_023_00659_z
crossref_primary_10_1073_pnas_2407362121
crossref_primary_10_1080_17452759_2024_2412198
crossref_primary_10_1016_j_mtcomm_2023_106344
crossref_primary_10_1016_j_jsv_2022_117527
crossref_primary_10_1080_15376494_2022_2053906
crossref_primary_10_1002_advs_202301567
crossref_primary_10_1016_j_matdes_2023_112354
crossref_primary_10_1016_j_matdes_2024_113544
crossref_primary_10_1016_j_actamat_2024_120700
crossref_primary_10_1063_5_0187328
crossref_primary_10_1002_advs_202405835
crossref_primary_10_1021_acsami_2c03245
crossref_primary_10_1016_j_apacoust_2025_110629
crossref_primary_10_1021_acsnano_3c06921
crossref_primary_10_1002_pc_29656
crossref_primary_10_1002_adfm_202406132
crossref_primary_10_1016_j_carbon_2022_09_009
crossref_primary_10_1002_advs_202305232
crossref_primary_10_1016_j_apacoust_2022_108941
crossref_primary_10_1039_D2MH00977C
crossref_primary_10_1103_PhysRevB_109_104113
crossref_primary_10_1016_j_matdes_2022_110462
crossref_primary_10_1021_acsami_3c02498
crossref_primary_10_1002_adma_202302530
crossref_primary_10_1016_j_compstruct_2024_118371
crossref_primary_10_1002_smtd_202300569
crossref_primary_10_1016_j_addma_2023_103800
crossref_primary_10_1016_j_compositesb_2022_110454
crossref_primary_10_1016_j_ijmecsci_2025_109920
crossref_primary_10_1016_j_apacoust_2025_110698
crossref_primary_10_1016_j_compstruct_2022_116434
crossref_primary_10_1016_j_eml_2022_101855
crossref_primary_10_1007_s10853_022_06886_6
crossref_primary_10_1016_j_tws_2023_111226
crossref_primary_10_1016_j_ceramint_2023_12_110
crossref_primary_10_1002_adfm_202305978
crossref_primary_10_1016_j_addma_2024_104248
crossref_primary_10_1002_admt_202500118
crossref_primary_10_1016_j_ijmecsci_2022_107650
Cites_doi 10.1002/adma.201803334
10.1121/1.423870
10.1121/1.5119224
10.1121/1.2783126
10.1002/admt.202000787
10.1002/adma.202000797
10.1016/j.actamat.2021.116666
10.1002/adma.201705001
10.1016/j.apacoust.2020.107244
10.1002/smll.201902842
10.3390/jfb8040044
10.3390/app9071507
10.1016/j.apacoust.2011.04.010
10.1126/science.1255908
10.1016/j.compositesa.2020.105934
10.1016/j.apmt.2019.100486
10.1088/1361-6463/aafaa3
10.1002/admt.201800410
10.1115/1.4002956
10.1016/j.actamat.2016.05.054
10.1002/smll.202100336
10.1121/1.3596459
10.1039/C7MH00699C
10.1557/mrs.2019.230
10.1021/acsnano.0c01157
10.1016/j.apacoust.2019.107138
10.1063/1.370550
10.1016/S1359-6454(00)00269-X
10.1126/science.1211649
10.1002/adma.201701850
10.1039/C8MH00653A
10.1063/1.4984095
10.1063/5.0042514
10.1146/annurev-matsci-070616-124032
10.1038/s41467-020-17533-6
10.1016/j.addma.2020.101564
10.1002/adem.201600053
10.1002/adma.202005647
10.1002/adma.201301986
10.1039/C7MH00129K
10.1016/j.compositesb.2020.107833
10.1016/j.apacoust.2018.12.008
10.1002/adma.202007348
10.1073/pnas.1817309116
10.1016/j.jsv.2019.115167
10.1002/adfm.201703820
10.1016/j.actamat.2015.12.017
10.1080/17452759.2020.1740747
10.1177/1099636221993880
10.1002/adma.201501708
10.1021/acs.nanolett.8b01241
10.1002/advs.201801670
10.1016/j.matdes.2017.09.006
ContentType Journal Article
Copyright 2021 Wiley‐VCH GmbH
2021 Wiley-VCH GmbH.
Copyright_xml – notice: 2021 Wiley‐VCH GmbH
– notice: 2021 Wiley-VCH GmbH.
DBID AAYXX
CITATION
7SR
8BQ
8FD
JG9
7X8
DOI 10.1002/adma.202104552
DatabaseName CrossRef
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
MEDLINE - Academic
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
METADEX
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
Materials Research Database
CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1521-4095
EndPage n/a
ExternalDocumentID 10_1002_adma_202104552
ADMA202104552
Genre article
GrantInformation_xml – fundername: A*STAR
  funderid: A20E6c0099
GroupedDBID ---
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6P2
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABIJN
ABJNI
ABLJU
ABPVW
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RWM
RX1
RYL
SUPJJ
TN5
UB1
UPT
V2E
W8V
W99
WBKPD
WFSAM
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XV2
YR2
ZZTAW
~02
~IA
~WT
.Y3
31~
6TJ
8WZ
A6W
AANHP
AASGY
AAYOK
AAYXX
ABEML
ACBWZ
ACRPL
ACSCC
ACYXJ
ADMLS
ADNMO
AETEA
AEYWJ
AFFNX
AGHNM
AGQPQ
AGYGG
ASPBG
AVWKF
AZFZN
CITATION
EJD
FEDTE
FOJGT
HF~
HVGLF
LW6
M6K
NDZJH
PALCI
RIWAO
RJQFR
SAMSI
WTY
ZY4
7SR
8BQ
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
JG9
7X8
ID FETCH-LOGICAL-c4162-52e9e3b91178768708335225832d2dd5f7f54a223943548367d817e6cd99ab733
IEDL.DBID DR2
ISSN 0935-9648
1521-4095
IngestDate Thu Jul 10 22:24:23 EDT 2025
Fri Jul 25 07:25:48 EDT 2025
Thu Apr 24 23:06:03 EDT 2025
Tue Jul 01 02:33:07 EDT 2025
Wed Jan 22 16:28:24 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 44
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4162-52e9e3b91178768708335225832d2dd5f7f54a223943548367d817e6cd99ab733
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-1702-8670
0000-0003-2307-5243
PQID 2589940420
PQPubID 2045203
PageCount 13
ParticipantIDs proquest_miscellaneous_2574408600
proquest_journals_2589940420
crossref_citationtrail_10_1002_adma_202104552
crossref_primary_10_1002_adma_202104552
wiley_primary_10_1002_adma_202104552_ADMA202104552
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-11-01
PublicationDateYYYYMMDD 2021-11-01
PublicationDate_xml – month: 11
  year: 2021
  text: 2021-11-01
  day: 01
PublicationDecade 2020
PublicationPlace Weinheim
PublicationPlace_xml – name: Weinheim
PublicationTitle Advanced materials (Weinheim)
PublicationYear 2021
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2021; 6
2017; 8
2007 2020; 122 160
2019; 4
2013; 25
2017; 4
2011
2017; 47
2019; 52
2000; 48
2020; 164
2017; 27
2019 2020; 6 14
2020 2020; 36 187
2021; 206
2019; 148
2011 2019; 72 9
2020; 15
2019; 146
2016; 105
1999; 85
2020; 11
2016 2020; 116 135
2017; 110
2016; 18
2011; 133
2017 2011 2021; 134 130
2020; 18
2018; 5
2020; 472
2021 2018 2019 2014 2019; 33 30 116 345 44
2020 2017; 16 29
2021; 17
2021; 118
2016
1998; 104
2018 2015 2020 2021 2011 2018; 30 27 32 33 334 18
e_1_2_10_23_1
e_1_2_10_21_1
e_1_2_10_2_1
e_1_2_10_16_5
e_1_2_10_4_1
e_1_2_10_16_3
e_1_2_10_18_1
e_1_2_10_16_4
e_1_2_10_18_2
e_1_2_10_6_1
e_1_2_10_16_1
e_1_2_10_16_2
e_1_2_10_8_1
e_1_2_10_14_1
e_1_2_10_37_1
e_1_2_10_14_2
e_1_2_10_13_1
e_1_2_10_34_1
e_1_2_10_11_1
e_1_2_10_32_1
e_1_2_10_30_1
e_1_2_10_29_1
e_1_2_10_27_1
e_1_2_10_25_1
e_1_2_10_25_2
e_1_2_10_24_1
e_1_2_10_22_1
e_1_2_10_20_1
e_1_2_10_17_6
e_1_2_10_1_1
e_1_2_10_17_4
e_1_2_10_17_5
e_1_2_10_17_2
e_1_2_10_3_1
e_1_2_10_17_3
e_1_2_10_19_1
e_1_2_10_15_2
e_1_2_10_38_2
e_1_2_10_5_1
e_1_2_10_17_1
e_1_2_10_38_1
e_1_2_10_36_2
e_1_2_10_7_1
e_1_2_10_15_1
e_1_2_10_36_1
e_1_2_10_12_1
e_1_2_10_35_1
e_1_2_10_9_1
e_1_2_10_10_1
e_1_2_10_33_1
e_1_2_10_31_1
e_1_2_10_28_2
e_1_2_10_28_3
e_1_2_10_28_1
e_1_2_10_26_1
References_xml – year: 2011
– volume: 25
  start-page: 5044
  year: 2013
  publication-title: Adv. Mater.
– volume: 27
  year: 2017
  publication-title: Adv. Funct. Mater.
– volume: 36 187
  year: 2020 2020
  publication-title: Addit. Manuf. Composites, Part B
– volume: 116 135
  start-page: 14
  year: 2016 2020
  publication-title: Acta Mater. Composites, Part A
– volume: 4
  year: 2019
  publication-title: Adv. Mater. Technol.
– volume: 133
  year: 2011
  publication-title: J. Vib. Acoust.
– volume: 122 160
  start-page: 2653
  year: 2007 2020
  publication-title: J. Acoust. Soc. Am. Appl. Acoust.
– volume: 72 9
  start-page: 772 1507
  year: 2011 2019
  publication-title: Appl. Acoust. Appl. Sci.
– volume: 11
  start-page: 3732
  year: 2020
  publication-title: Nat. Commun.
– volume: 17
  year: 2021
  publication-title: Small
– volume: 164
  year: 2020
  publication-title: Appl. Acoust.
– volume: 16 29
  year: 2020 2017
  publication-title: Small Adv. Mater.
– year: 2016
– volume: 104
  start-page: 2861
  year: 1998
  publication-title: J. Acoust. Soc. Am.
– volume: 30 27 32 33 334 18
  start-page: 4296 962 4247
  year: 2018 2015 2020 2021 2011 2018
  publication-title: Adv. Mater. Adv. Mater. Adv. Mater. Adv. Mater. Science Nano Lett.
– volume: 6 14
  start-page: 9675
  year: 2019 2020
  publication-title: Adv. Sci. ACS Nano
– volume: 6
  year: 2021
  publication-title: Adv. Mater. Technol.
– volume: 18
  year: 2020
  publication-title: Appl. Mater. Today
– volume: 5
  start-page: 939
  year: 2018
  publication-title: Mater. Horiz.
– volume: 48
  start-page: 4349
  year: 2000
  publication-title: Acta Mater.
– volume: 85
  start-page: 7528
  year: 1999
  publication-title: J. Appl. Phys.
– volume: 472
  year: 2020
  publication-title: J. Sound Vib.
– volume: 18
  start-page: 1847
  year: 2016
  publication-title: Adv. Eng. Mater.
– volume: 146
  start-page: 649
  year: 2019
  publication-title: J. Acoust. Soc. Am.
– volume: 110
  year: 2017
  publication-title: Appl. Phys. Lett.
– volume: 118
  year: 2021
  publication-title: Appl. Phys. Lett.
– volume: 33 30 116 345 44
  start-page: 6665 1322 758
  year: 2021 2018 2019 2014 2019
  publication-title: Adv. Mater. Adv. Mater. Proc. Natl. Acad. Sci. USA Science MRS Bull.
– volume: 8
  start-page: 44
  year: 2017
  publication-title: J. Funct. Biomater.
– volume: 47
  start-page: 83
  year: 2017
  publication-title: Annu. Rev. Mater. Res.
– volume: 15
  start-page: 242
  year: 2020
  publication-title: Virtual Phys. Prototyping
– volume: 105
  start-page: 75
  year: 2016
  publication-title: Acta Mater.
– volume: 148
  start-page: 1
  year: 2019
  publication-title: Appl. Acoust.
– volume: 52
  year: 2019
  publication-title: J. Phys. D
– volume: 4
  start-page: 673
  year: 2017
  publication-title: Mater. Horiz.
– volume: 206
  year: 2021
  publication-title: Acta Mater.
– volume: 134 130
  start-page: 502 208
  year: 2017 2011 2021
  publication-title: Mater. Des. J. Acoust. Soc. Am. J. Sandwich Struct. Mater.
– volume: 5
  start-page: 28
  year: 2018
  publication-title: Mater. Horiz.
– ident: e_1_2_10_16_2
  doi: 10.1002/adma.201803334
– ident: e_1_2_10_26_1
  doi: 10.1121/1.423870
– ident: e_1_2_10_34_1
  doi: 10.1121/1.5119224
– ident: e_1_2_10_36_1
  doi: 10.1121/1.2783126
– ident: e_1_2_10_4_1
  doi: 10.1002/admt.202000787
– ident: e_1_2_10_17_3
  doi: 10.1002/adma.202000797
– ident: e_1_2_10_7_1
  doi: 10.1016/j.actamat.2021.116666
– ident: e_1_2_10_17_1
  doi: 10.1002/adma.201705001
– ident: e_1_2_10_22_1
  doi: 10.1016/j.apacoust.2020.107244
– ident: e_1_2_10_14_1
  doi: 10.1002/smll.201902842
– ident: e_1_2_10_35_1
  doi: 10.3390/jfb8040044
– ident: e_1_2_10_38_2
  doi: 10.3390/app9071507
– ident: e_1_2_10_38_1
  doi: 10.1016/j.apacoust.2011.04.010
– ident: e_1_2_10_16_4
  doi: 10.1126/science.1255908
– ident: e_1_2_10_15_2
  doi: 10.1016/j.compositesa.2020.105934
– ident: e_1_2_10_19_1
  doi: 10.1016/j.apmt.2019.100486
– ident: e_1_2_10_11_1
  doi: 10.1088/1361-6463/aafaa3
– ident: e_1_2_10_6_1
  doi: 10.1002/admt.201800410
– ident: e_1_2_10_27_1
  doi: 10.1115/1.4002956
– ident: e_1_2_10_1_1
– ident: e_1_2_10_15_1
  doi: 10.1016/j.actamat.2016.05.054
– ident: e_1_2_10_21_1
  doi: 10.1002/smll.202100336
– ident: e_1_2_10_28_2
  doi: 10.1121/1.3596459
– ident: e_1_2_10_20_1
  doi: 10.1039/C7MH00699C
– ident: e_1_2_10_16_5
  doi: 10.1557/mrs.2019.230
– ident: e_1_2_10_18_2
  doi: 10.1021/acsnano.0c01157
– ident: e_1_2_10_36_2
  doi: 10.1016/j.apacoust.2019.107138
– ident: e_1_2_10_37_1
  doi: 10.1063/1.370550
– ident: e_1_2_10_32_1
  doi: 10.1016/S1359-6454(00)00269-X
– ident: e_1_2_10_17_5
  doi: 10.1126/science.1211649
– ident: e_1_2_10_14_2
  doi: 10.1002/adma.201701850
– ident: e_1_2_10_29_1
  doi: 10.1039/C8MH00653A
– ident: e_1_2_10_10_1
  doi: 10.1063/1.4984095
– ident: e_1_2_10_2_1
– ident: e_1_2_10_13_1
  doi: 10.1063/5.0042514
– ident: e_1_2_10_3_1
  doi: 10.1146/annurev-matsci-070616-124032
– ident: e_1_2_10_8_1
  doi: 10.1038/s41467-020-17533-6
– ident: e_1_2_10_25_1
  doi: 10.1016/j.addma.2020.101564
– ident: e_1_2_10_30_1
  doi: 10.1002/adem.201600053
– ident: e_1_2_10_17_4
  doi: 10.1002/adma.202005647
– ident: e_1_2_10_31_1
  doi: 10.1002/adma.201301986
– ident: e_1_2_10_9_1
  doi: 10.1039/C7MH00129K
– ident: e_1_2_10_25_2
  doi: 10.1016/j.compositesb.2020.107833
– ident: e_1_2_10_12_1
  doi: 10.1016/j.apacoust.2018.12.008
– ident: e_1_2_10_16_1
  doi: 10.1002/adma.202007348
– ident: e_1_2_10_16_3
  doi: 10.1073/pnas.1817309116
– ident: e_1_2_10_24_1
  doi: 10.1016/j.jsv.2019.115167
– ident: e_1_2_10_5_1
  doi: 10.1002/adfm.201703820
– ident: e_1_2_10_33_1
  doi: 10.1016/j.actamat.2015.12.017
– ident: e_1_2_10_23_1
  doi: 10.1080/17452759.2020.1740747
– ident: e_1_2_10_28_3
  doi: 10.1177/1099636221993880
– ident: e_1_2_10_17_2
  doi: 10.1002/adma.201501708
– ident: e_1_2_10_17_6
  doi: 10.1021/acs.nanolett.8b01241
– ident: e_1_2_10_18_1
  doi: 10.1002/advs.201801670
– ident: e_1_2_10_28_1
  doi: 10.1016/j.matdes.2017.09.006
SSID ssj0009606
Score 2.6443913
Snippet Noise pollution is a highly detrimental daily health hazard. Sound absorbers, such as the traditionally used perforated panels, find widespread applications....
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage e2104552
SubjectTerms 3D printing
Absorbers
Absorptivity
Additive manufacturing
Broadband
Damping
Deformation
energy absorption
Frequency ranges
Functional materials
Health hazards
Impact resistance
Manufacturing
Materials science
microlattices
Noise pollution
Panels
recoverable
sound absorption
Sound transmission
Viscoelasticity
Viscous flow
Title Additively Manufactured Deformation‐Recoverable and Broadband Sound‐Absorbing Microlattice Inspired by the Concept of Traditional Perforated Panels
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadma.202104552
https://www.proquest.com/docview/2589940420
https://www.proquest.com/docview/2574408600
Volume 33
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEF7Ekx58i_XFCoKnaM1uHnsM1qJCRdSCt7Db3YhYEmmbQz35E7z5__wlzmwebQUR9JaQTdLdzsx-X3bmW0IOIeKDFQE7CYD9ONyTiSND7jqChU1Xa1dyu4LfufYvuvzqwXuYquIv9CHqD27oGTZeo4NLNTyZiIZKbXWDgLJwz8MgjAlbiIpuJ_pRCM-t2B7zHOHzsFJtbLons7fPzkoTqDkNWO2M014msvqtRaLJ83E-Use9128yjv_pzApZKuEojQr7WSVzJl0ji1MihevkI9LaJhj1x7Qj0xxLIfKB0bRl6srHz7d35LHgFliJRWWqKfB7qRUe3eHOTdAiUsNsAET8kXYwC7AvR5h4Ry9TXOyH56kxBTRKz4pCSpolFCZS_VR8rKQ3Ng8fkLGmNxK6O9wg3fb5_dmFU27n4PQA9SHlNcIwBdEVgoQPccLWe7kexBQNZuElQeJx6eJe7Qx4FPMDHZ4Gxu9pIaQKGNsk82mWmi1CASb5wgA1Ck4TzrgvjZShaCaBZkpDmGkQp_o7416pdY5bbvTjQqXZjXHA43rAG-Sobv9SqHz82HK3so649PZhDH0QgkP4azbIQX0Z_BQXX2BIshzboBRjCPiyQVxrCr-8KY5anag-2_7LTTtkAY-L0sldMj8a5GYPMNRI7Vs_-QLF0RQ3
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LTxsxEB5VcGg58GiLCARwpUqcFsLa-_BxFUChZRFqQeptZcdehIg2KMke4MRP4Mb_45cw481uAAlVam95eDexd2b8ffbMZ4DvGPHRipCdRMh-PBGo3FOx8D3J445vjK-E28FPT8PehfjxJ6izCakWptKHaBbcyDNcvCYHpwXpvZlqqDJOOAg5iwgCjMLzdKy3Y1W_ZgpSBNCd3B4PPBmKuNZt7Ph7r69_PS_NwOZLyOrmnKMl0PW_rVJNrnfLid7t370Rcvyv7izD4hSRsqQyoRX4YIvPsPBCp_ALPCbGuByjwS1LVVFSNUQ5soYd2Kb48en-gagsegYVYzFVGIYUXxlNr37T4U3YItHj4Qi5-CVLKRFwoCaUe8eOC9rvx_vpW4aAlHWrWko2zBnOpeaqWq9kZy4VH8GxYWcK-zv-ChdHh-fdnjc90cHrI_Aj1mul5RoDLMaJEEOFK_nyAwwrBi0jyKM8EMqn49o5UikeRibej2zYN1IqHXG-CnPFsLBrwBAphdIiO4r2c8FFqKxSsezkkeHaYKRpgVc_z6w_lTunUzcGWSXU7Gc04Fkz4C3YadrfVEIf77Zs1-aRTR1-nGEfpBQYATst-NZ8ja5K-y84JMOS2pAaY4wQswW-s4W__FKWHKRJ8279Xy7aho-98_QkOzk-_bkBn-jzqpKyDXOTUWk3EVJN9JZzmmf9cRhS
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Nb9pAEB1FqRS1h7ZJU5U2TbZSpJ4Mjnf9sUcrBEFaEMqHlJu1ZtdRVWQQ4AM99Sfklv-XX5KZNRioFEVKb8assXeZmX3PO_MW4BgjPloRspMQ2Y8jfJU5KhKeI3nkelp7StgV_G4vaF-L8xv_Zq2Kv9SHqF64kWfYeE0OPtZZYyUaqrTVDULKInwfg_ArEbgR2XXzYiUgRfjcqu1x35GBiJayja7X2Lx-c1paYc11xGqnnNY7UMuHLTNNfteLWVof_PlHx_F_evMe3i7wKItLA9qFLZPvwZs1lcIPcB9rbTOMhnPWVXlBtRDFxGjWNFXp48PfOyKy6BdUisVUrhkSfKVTOrqkrZuwRZxORxNk4resS2mAQzWjzDvWyWm1H38vnTOEo-y0rKRko4zhTKp_lW8rWd8m4iM01qyvsLvTfbhunV2dtp3Ffg7OAGEfcV4jDU8xvGKUCDBQ2IIvz8egotEu_CzMfKE82qydI5HiQaijk9AEAy2lSkPOP8J2PsrNJ2CIkwJpkBuFJ5ngIlBGqUi6Wah5qjHO1MBZ_p3JYCF2TntuDJNSptlLaMCTasBr8L1qPy5lPp5sebC0jmTh7tME-yClwPjn1uBb9TU6Kq2-4JCMCmpDWowRAswaeNYUnrlTEje7cfXp80suOoKdfrOV_Oz0fnyB13S6LKM8gO3ZpDBfEU_N0kPrMo-7oxcK
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Additively+Manufactured+Deformation-Recoverable+and+Broadband+Sound-Absorbing+Microlattice+Inspired+by+the+Concept+of+Traditional+Perforated+Panels&rft.jtitle=Advanced+materials+%28Weinheim%29&rft.au=Li%2C+Xinwei&rft.au=Yu%2C+Xiang&rft.au=Zhai%2C+Wei&rft.date=2021-11-01&rft.issn=1521-4095&rft.eissn=1521-4095&rft.volume=33&rft.issue=44&rft.spage=e2104552&rft_id=info:doi/10.1002%2Fadma.202104552&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0935-9648&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0935-9648&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0935-9648&client=summon