Size fractionated NET‐Seq reveals a conserved architecture of transcription units around yeast genes
Genomes from yeast to humans are subject to pervasive transcription. A single round of pervasive transcription is sufficient to alter local chromatin conformation, nucleosome dynamics and gene expression, but is hard to distinguish from background signals. Size fractionated native elongating transcr...
Saved in:
Published in | Yeast (Chichester, England) Vol. 41; no. 4; pp. 222 - 241 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
England
Wiley Subscription Services, Inc
01.04.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Genomes from yeast to humans are subject to pervasive transcription. A single round of pervasive transcription is sufficient to alter local chromatin conformation, nucleosome dynamics and gene expression, but is hard to distinguish from background signals. Size fractionated native elongating transcript sequencing (sfNET‐Seq) was developed to precisely map nascent transcripts independent of expression levels. RNAPII‐associated nascent transcripts are fractionation into different size ranges before library construction. When anchored to the transcription start sites (TSS) of annotated genes, the combined pattern of the output metagenes gives the expected reference pattern. Bioinformatic pattern matching to the reference pattern identified 9542 transcription units in Saccharomyces cerevisiae, of which 47% are coding and 53% are noncoding. In total, 3113 (33%) are unannotated noncoding transcription units. Anchoring all transcription units to the TSS or polyadenylation site (PAS) of annotated genes reveals distinctive architectures of linked pairs of divergent transcripts approximately 200nt apart. The Reb1 transcription factor is enriched 30nt downstream of the PAS only when an upstream (TSS −60nt with respect to PAS) noncoding transcription unit co‐occurs with a downstream (TSS +150nt) coding transcription unit and acts to limit levels of upstream antisense transcripts. The potential for extensive transcriptional interference is evident from low abundance unannotated transcription units with variable TSS (median −240nt) initiating within a 500nt window upstream of, and transcribing over, the promoters of protein‐coding genes. This study confirms a highly interleaved yeast genome with different types of transcription units altering the chromatin landscape in distinctive ways, with the potential to exert extensive regulatory control.
In this article, the authors describe high‐resolution mapping of the nascent yeast transcriptome using size fractionated NET‐Seq to resolve overlapping and lowly expressed transcription units, and reveal a distinct architecture of divergent coding and noncoding transcripts initiating approximately 200nts apart at the 5′ and 3′ end of genes. The Reb1 transcription factor binds 30nt downstream from the polyadenylation site of an upstream coding gene when linked to a downstream coding region and functions to limit upstream antisense transcription.
Take‐away
Size fractionated NET‐Seq maps nascent transcripts in Saccharomyces cerevisiae.
sfNET‐Seq discovers transcription units independent of expression levels.
sfNET‐Seq resolves overlapping and lowly expressed transcription units
sfNET‐Seq reveals divergent promoters at the 5′ and 3′ ends of coding genes.
Between tandem genes, Reb1 limits upstream antisense noncoding transcription. |
---|---|
AbstractList | Genomes from yeast to humans are subject to pervasive transcription. A single round of pervasive transcription is sufficient to alter local chromatin conformation, nucleosome dynamics and gene expression, but is hard to distinguish from background signals. Size fractionated native elongating transcript sequencing (sfNET‐Seq) was developed to precisely map nascent transcripts independent of expression levels. RNAPII‐associated nascent transcripts are fractionation into different size ranges before library construction. When anchored to the transcription start sites (TSS) of annotated genes, the combined pattern of the output metagenes gives the expected reference pattern. Bioinformatic pattern matching to the reference pattern identified 9542 transcription units in
Saccharomyces cerevisiae
, of which 47% are coding and 53% are noncoding. In total, 3113 (33%) are unannotated noncoding transcription units. Anchoring all transcription units to the TSS or polyadenylation site (PAS) of annotated genes reveals distinctive architectures of linked pairs of divergent transcripts approximately 200nt apart. The Reb1 transcription factor is enriched 30nt downstream of the PAS only when an upstream (TSS −60nt with respect to PAS) noncoding transcription unit co‐occurs with a downstream (TSS +150nt) coding transcription unit and acts to limit levels of upstream antisense transcripts. The potential for extensive transcriptional interference is evident from low abundance unannotated transcription units with variable TSS (median −240nt) initiating within a 500nt window upstream of, and transcribing over, the promoters of protein‐coding genes. This study confirms a highly interleaved yeast genome with different types of transcription units altering the chromatin landscape in distinctive ways, with the potential to exert extensive regulatory control.
Size fractionated NET‐Seq maps nascent transcripts in
Saccharomyces cerevisiae
.
sfNET‐Seq discovers transcription units independent of expression levels.
sfNET‐Seq resolves overlapping and lowly expressed transcription units
sfNET‐Seq reveals divergent promoters at the 5′ and 3′ ends of coding genes.
Between tandem genes, Reb1 limits upstream antisense noncoding transcription. Genomes from yeast to humans are subject to pervasive transcription. A single round of pervasive transcription is sufficient to alter local chromatin conformation, nucleosome dynamics and gene expression, but is hard to distinguish from background signals. Size fractionated native elongating transcript sequencing (sfNET‐Seq) was developed to precisely map nascent transcripts independent of expression levels. RNAPII‐associated nascent transcripts are fractionation into different size ranges before library construction. When anchored to the transcription start sites (TSS) of annotated genes, the combined pattern of the output metagenes gives the expected reference pattern. Bioinformatic pattern matching to the reference pattern identified 9542 transcription units in Saccharomyces cerevisiae, of which 47% are coding and 53% are noncoding. In total, 3113 (33%) are unannotated noncoding transcription units. Anchoring all transcription units to the TSS or polyadenylation site (PAS) of annotated genes reveals distinctive architectures of linked pairs of divergent transcripts approximately 200nt apart. The Reb1 transcription factor is enriched 30nt downstream of the PAS only when an upstream (TSS −60nt with respect to PAS) noncoding transcription unit co‐occurs with a downstream (TSS +150nt) coding transcription unit and acts to limit levels of upstream antisense transcripts. The potential for extensive transcriptional interference is evident from low abundance unannotated transcription units with variable TSS (median −240nt) initiating within a 500nt window upstream of, and transcribing over, the promoters of protein‐coding genes. This study confirms a highly interleaved yeast genome with different types of transcription units altering the chromatin landscape in distinctive ways, with the potential to exert extensive regulatory control. Genomes from yeast to humans are subject to pervasive transcription. A single round of pervasive transcription is sufficient to alter local chromatin conformation, nucleosome dynamics and gene expression, but is hard to distinguish from background signals. Size fractionated native elongating transcript sequencing (sfNET‐Seq) was developed to precisely map nascent transcripts independent of expression levels. RNAPII‐associated nascent transcripts are fractionation into different size ranges before library construction. When anchored to the transcription start sites (TSS) of annotated genes, the combined pattern of the output metagenes gives the expected reference pattern. Bioinformatic pattern matching to the reference pattern identified 9542 transcription units in Saccharomyces cerevisiae, of which 47% are coding and 53% are noncoding. In total, 3113 (33%) are unannotated noncoding transcription units. Anchoring all transcription units to the TSS or polyadenylation site (PAS) of annotated genes reveals distinctive architectures of linked pairs of divergent transcripts approximately 200nt apart. The Reb1 transcription factor is enriched 30nt downstream of the PAS only when an upstream (TSS −60nt with respect to PAS) noncoding transcription unit co‐occurs with a downstream (TSS +150nt) coding transcription unit and acts to limit levels of upstream antisense transcripts. The potential for extensive transcriptional interference is evident from low abundance unannotated transcription units with variable TSS (median −240nt) initiating within a 500nt window upstream of, and transcribing over, the promoters of protein‐coding genes. This study confirms a highly interleaved yeast genome with different types of transcription units altering the chromatin landscape in distinctive ways, with the potential to exert extensive regulatory control. In this article, the authors describe high‐resolution mapping of the nascent yeast transcriptome using size fractionated NET‐Seq to resolve overlapping and lowly expressed transcription units, and reveal a distinct architecture of divergent coding and noncoding transcripts initiating approximately 200nts apart at the 5′ and 3′ end of genes. The Reb1 transcription factor binds 30nt downstream from the polyadenylation site of an upstream coding gene when linked to a downstream coding region and functions to limit upstream antisense transcription. Take‐away Size fractionated NET‐Seq maps nascent transcripts in Saccharomyces cerevisiae. sfNET‐Seq discovers transcription units independent of expression levels. sfNET‐Seq resolves overlapping and lowly expressed transcription units sfNET‐Seq reveals divergent promoters at the 5′ and 3′ ends of coding genes. Between tandem genes, Reb1 limits upstream antisense noncoding transcription. Genomes from yeast to humans are subject to pervasive transcription. A single round of pervasive transcription is sufficient to alter local chromatin conformation, nucleosome dynamics and gene expression, but is hard to distinguish from background signals. Size fractionated native elongating transcript sequencing (sfNET-Seq) was developed to precisely map nascent transcripts independent of expression levels. RNAPII-associated nascent transcripts are fractionation into different size ranges before library construction. When anchored to the transcription start sites (TSS) of annotated genes, the combined pattern of the output metagenes gives the expected reference pattern. Bioinformatic pattern matching to the reference pattern identified 9542 transcription units in Saccharomyces cerevisiae, of which 47% are coding and 53% are noncoding. In total, 3113 (33%) are unannotated noncoding transcription units. Anchoring all transcription units to the TSS or polyadenylation site (PAS) of annotated genes reveals distinctive architectures of linked pairs of divergent transcripts approximately 200nt apart. The Reb1 transcription factor is enriched 30nt downstream of the PAS only when an upstream (TSS -60nt with respect to PAS) noncoding transcription unit co-occurs with a downstream (TSS +150nt) coding transcription unit and acts to limit levels of upstream antisense transcripts. The potential for extensive transcriptional interference is evident from low abundance unannotated transcription units with variable TSS (median -240nt) initiating within a 500nt window upstream of, and transcribing over, the promoters of protein-coding genes. This study confirms a highly interleaved yeast genome with different types of transcription units altering the chromatin landscape in distinctive ways, with the potential to exert extensive regulatory control.Genomes from yeast to humans are subject to pervasive transcription. A single round of pervasive transcription is sufficient to alter local chromatin conformation, nucleosome dynamics and gene expression, but is hard to distinguish from background signals. Size fractionated native elongating transcript sequencing (sfNET-Seq) was developed to precisely map nascent transcripts independent of expression levels. RNAPII-associated nascent transcripts are fractionation into different size ranges before library construction. When anchored to the transcription start sites (TSS) of annotated genes, the combined pattern of the output metagenes gives the expected reference pattern. Bioinformatic pattern matching to the reference pattern identified 9542 transcription units in Saccharomyces cerevisiae, of which 47% are coding and 53% are noncoding. In total, 3113 (33%) are unannotated noncoding transcription units. Anchoring all transcription units to the TSS or polyadenylation site (PAS) of annotated genes reveals distinctive architectures of linked pairs of divergent transcripts approximately 200nt apart. The Reb1 transcription factor is enriched 30nt downstream of the PAS only when an upstream (TSS -60nt with respect to PAS) noncoding transcription unit co-occurs with a downstream (TSS +150nt) coding transcription unit and acts to limit levels of upstream antisense transcripts. The potential for extensive transcriptional interference is evident from low abundance unannotated transcription units with variable TSS (median -240nt) initiating within a 500nt window upstream of, and transcribing over, the promoters of protein-coding genes. This study confirms a highly interleaved yeast genome with different types of transcription units altering the chromatin landscape in distinctive ways, with the potential to exert extensive regulatory control. Genomes from yeast to humans are subject to pervasive transcription. A single round of pervasive transcription is sufficient to alter local chromatin conformation, nucleosome dynamics and gene expression, but is hard to distinguish from background signals. Size fractionated native elongating transcript sequencing (sfNET-Seq) was developed to precisely map nascent transcripts independent of expression levels. RNAPII-associated nascent transcripts are fractionation into different size ranges before library construction. When anchored to the transcription start sites (TSS) of annotated genes, the combined pattern of the output metagenes gives the expected reference pattern. Bioinformatic pattern matching to the reference pattern identified 9542 transcription units in Saccharomyces cerevisiae, of which 47% are coding and 53% are noncoding. In total, 3113 (33%) are unannotated noncoding transcription units. Anchoring all transcription units to the TSS or polyadenylation site (PAS) of annotated genes reveals distinctive architectures of linked pairs of divergent transcripts approximately 200nt apart. The Reb1 transcription factor is enriched 30nt downstream of the PAS only when an upstream (TSS -60nt with respect to PAS) noncoding transcription unit co-occurs with a downstream (TSS +150nt) coding transcription unit and acts to limit levels of upstream antisense transcripts. The potential for extensive transcriptional interference is evident from low abundance unannotated transcription units with variable TSS (median -240nt) initiating within a 500nt window upstream of, and transcribing over, the promoters of protein-coding genes. This study confirms a highly interleaved yeast genome with different types of transcription units altering the chromatin landscape in distinctive ways, with the potential to exert extensive regulatory control. |
Author | Murray, Struan Nguyen, Tania Xi, Shidong Mellor, Jane Lorenz, Phil |
Author_xml | – sequence: 1 givenname: Shidong surname: Xi fullname: Xi, Shidong organization: University of Oxford – sequence: 2 givenname: Tania surname: Nguyen fullname: Nguyen, Tania organization: University of Oxford – sequence: 3 givenname: Struan surname: Murray fullname: Murray, Struan organization: University of Oxford – sequence: 4 givenname: Phil surname: Lorenz fullname: Lorenz, Phil organization: University of Oxford – sequence: 5 givenname: Jane orcidid: 0000-0002-5196-3734 surname: Mellor fullname: Mellor, Jane email: jane.mellor@bioch.ox.ac.uk organization: University of Oxford |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/38433440$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkc1qFTEYhoNU7GkVvAIJuOlmjsl8k2RmWcrxB0pdtIKuQk7mi6bMSU6TmcrpykvwGr0SM7ZVKIqrQPK8b5LnOyB7IQYk5DlnS85Y_WqHZgkd8EdkwVmnKsYk3yMLppquEgw-7pODnC8Z41zU7ROyD20D0DRsQdy5v0HqkrGjj8GM2NOz1cWPb9_P8YomvEYzZGqojSFjui6nJtkvfkQ7TglpdHRMJmSb_HbO0yn4sfApTqGn5VV5pJ8xYH5KHrvShM_u1kPy4fXq4uRtdfr-zbuT49PKNlzyCoVxNdR9Y0E61iplnVLrGlHINQgE04umw060PXe8IK5sSCstgmxsCzUckqPb3m2KVxPmUW98tjgMJmCcsgYugHeSt-q_aN2BKpIEn1tfPkAv45RC-YgGBg2HmilZqBd31LTeYK-3yW9M2ul72X9utCnmnND9RjjT8xx1MabnORZ0-QC1fjSz4uLbD38LVLeBr37A3T-L9afV8S_-J1Iqrj8 |
CitedBy_id | crossref_primary_10_1002_yea_3936 |
Cites_doi | 10.7554/eLife.03635 10.1016/j.molcel.2015.10.002 10.1093/nar/gkp335 10.1038/nature07667 10.1038/nrg3594 10.1073/pnas.1109994109 10.1016/s1097-2765(03)00438-6 10.4061/2011/653494 10.1016/j.molcel.2011.11.029 10.1016/j.cell.2011.01.003 10.1038/nprot.2014.121 10.1016/j.cell.2006.09.038 10.1126/science.1229386 10.1016/j.cell.2013.10.024 10.7554/eLife.29878 10.1093/nar/gkj013 10.1038/nature07728 10.15252/embj.201797490 10.1101/gad.458008 10.1016/j.molcel.2008.11.020 10.1126/science.abg0162 10.1016/j.molcel.2018.11.037 10.1093/nar/gkaa691 10.1093/bib/bbs017 10.1038/s41586-021-03314-8 10.1101/2021.07.14.452379 10.1371/journal.pone.0015271 10.1016/j.cell.2016.09.045 10.1073/pnas.132270899 10.26508/lsa.202201394 10.1080/19490992.2015.1130779 10.1073/pnas.1311010110 10.1038/nature09652 10.1093/nar/gkv666 10.1126/science.1112009 10.1016/j.molcel.2014.10.026 10.1016/j.cell.2009.02.043 10.1101/gr.204578.116 10.15252/msb.20178007 10.1093/nar/gkr1121 10.1038/nature12121 10.1093/nar/gkx058 10.1126/science.1163853 10.1038/ng.3616 10.1186/gb-2010-11-3-r24 10.7554/eLife.31989 10.1038/nprot.2016.086 10.15252/msb.20145172 10.1016/j.molcel.2015.12.020 10.1016/j.molcel.2017.10.013 10.1016/j.cell.2023.04.012 10.1038/s41467-020-16390-7 10.1016/j.celrep.2021.109755 10.1093/nar/gkw683 10.1038/nrg2522 10.1038/msb.2010.112 10.1016/j.molcel.2017.01.006 10.1016/j.cell.2015.03.027 10.1371/journal.pgen.1003479 10.1101/sqb.2010.75.060 10.1038/nature02538 10.1016/j.tig.2015.10.006 10.1038/s41588-018-0234-5 10.1016/j.molcel.2018.06.017 |
ContentType | Journal Article |
Copyright | 2024 The Authors. published by John Wiley & Sons Ltd. 2024 The Authors. Yeast published by John Wiley & Sons Ltd. 2024. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2024 The Authors. published by John Wiley & Sons Ltd. – notice: 2024 The Authors. Yeast published by John Wiley & Sons Ltd. – notice: 2024. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | 24P AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QR 7TM 8FD FR3 K9. M7N P64 RC3 7X8 7S9 L.6 |
DOI | 10.1002/yea.3931 |
DatabaseName | Wiley Online Library Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Chemoreception Abstracts Nucleic Acids Abstracts Technology Research Database Engineering Research Database ProQuest Health & Medical Complete (Alumni) Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Genetics Abstracts Technology Research Database Algology Mycology and Protozoology Abstracts (Microbiology C) Nucleic Acids Abstracts ProQuest Health & Medical Complete (Alumni) Chemoreception Abstracts Engineering Research Database Biotechnology and BioEngineering Abstracts MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | CrossRef Genetics Abstracts MEDLINE - Academic MEDLINE AGRICOLA |
Database_xml | – sequence: 1 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology Botany |
EISSN | 1097-0061 |
EndPage | 241 |
ExternalDocumentID | 38433440 10_1002_yea_3931 YEA3931 |
Genre | researchArticle Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: Biotechnology and Biological Sciences Research Council (BBSRC) funderid: BB/P00296X/1 – fundername: BBSRC studentship funderid: BB/M011224/1 – fundername: Leverhulme Trust funderid: RPG‐2016‐405 – fundername: The Wellcome Trust funderid: WT089156MA – fundername: Natural Sciences and Engineering Research Council of Canada studentship – fundername: The Wellcome Trust grantid: WT089156MA – fundername: Biotechnology and Biological Sciences Research Council (BBSRC) grantid: BB/P00296X/1 – fundername: BBSRC studentship grantid: BB/M011224/1 – fundername: Leverhulme Trust grantid: RPG-2016-405 |
GroupedDBID | --- -DZ .3N .GA .GJ .Y3 05W 0R~ 10A 123 1L6 1OB 1OC 1ZS 24P 29R 2WC 31~ 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHBH AAHHS AAHQN AAJEY AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABJNI ABLJU ABPVW ACAHQ ACBWZ ACCFJ ACCZN ACFBH ACGFO ACGFS ACIWK ACPOU ACPRK ACRPL ACSCC ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN AEEZP AEGXH AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AHMBA AIAGR AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB AOIJS ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BLYAC BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR1 DR2 DRFUL DRSTM E3Z EBD EBS EJD EMOBN F00 F01 F04 F5P FEDTE G-S G.N GNP GODZA H.T H.X HBH HF~ HGLYW HHY HHZ HVGLF HYE HZ~ IX1 J0M JPC KQ8 KQQ LATKE LAW LC2 LC3 LEEKS LH4 LH6 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM M~E N04 N05 N9A NDZJH NF~ NNB O66 O9- OIG OK1 P2P P2W P2X P4D PALCI PGMZT PQQKQ Q.N Q11 QB0 QRW R.K RBB RIWAO RJQFR ROL RPM RWI RX1 RYL SAMSI SUPJJ SV3 TR2 UB1 V2E V8K W8V W99 WBKPD WH7 WIB WIH WIK WIN WJL WNSPC WOHZO WQJ WRC WXSBR WYISQ XG1 XJT XV2 ZZTAW ~IA ~KM ~WT AAYXX AEYWJ AGHNM AGQPQ AGYGG CITATION CGR CUY CVF ECM EIF NPM 7QR 7TM 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY FR3 K9. M7N P64 RC3 7X8 7S9 L.6 |
ID | FETCH-LOGICAL-c4161-e5af232d4c36f0877cf77b2ee56b35e3ad549e958d1f136ffad56c6ce364c8323 |
IEDL.DBID | DR2 |
ISSN | 0749-503X 1097-0061 |
IngestDate | Fri Jul 11 18:31:05 EDT 2025 Thu Jul 10 18:37:12 EDT 2025 Fri Jul 25 10:29:21 EDT 2025 Thu Apr 03 07:06:07 EDT 2025 Tue Jul 01 00:35:59 EDT 2025 Thu Apr 24 23:01:34 EDT 2025 Wed Jan 22 17:19:50 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Keywords | size fractionated NET‐Seq nascent transcript mapping Reb1 transcription gene regulation S. cerevisiae |
Language | English |
License | Attribution 2024 The Authors. Yeast published by John Wiley & Sons Ltd. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4161-e5af232d4c36f0877cf77b2ee56b35e3ad549e958d1f136ffad56c6ce364c8323 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-5196-3734 |
OpenAccessLink | https://proxy.k.utb.cz/login?url=https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fyea.3931 |
PMID | 38433440 |
PQID | 3034132076 |
PQPubID | 1006444 |
PageCount | 20 |
ParticipantIDs | proquest_miscellaneous_3153196187 proquest_miscellaneous_2937334512 proquest_journals_3034132076 pubmed_primary_38433440 crossref_primary_10_1002_yea_3931 crossref_citationtrail_10_1002_yea_3931 wiley_primary_10_1002_yea_3931_YEA3931 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | April 2024 2024-04-00 20240401 |
PublicationDateYYYYMMDD | 2024-04-01 |
PublicationDate_xml | – month: 04 year: 2024 text: April 2024 |
PublicationDecade | 2020 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: Bognor Regis |
PublicationTitle | Yeast (Chichester, England) |
PublicationTitleAlternate | Yeast |
PublicationYear | 2024 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2022; 375 2010; 11 2017; 6 2023; 186 2006; 34 2017; 45 2002; 99 2016; 32 2008; 32 2020; 11 2013; 9 2003; 12 2018; 7 2021; 36 2013; 14 2009; 10 2014; 3 2015; 43 2013; 155 2020; 48 2005; 309 2008; 22 2021; 592 2018; 72 2013; 110 2018; 71 2006; 127 2014; 9 2010; 5 2016; 48 2014; 56 2018; 37 2014; 10 2016; 44 2010; 75 2015; 161 2017; 65 2017; 68 2016; 167 2008; 322 2009; 137 2011; 7 2012; 109 2009; 457 2009; 458 2016; 11 2004; 429 2011; 2011 2016; 6 2011; 469 2015; 60 2013; 339 2021 2022; 5 2013; 497 2016; 61 2018; 50 2012; 45 2016; 26 2009; 37 2011; 144 2018; 14 2012; 40 e_1_2_9_31_1 e_1_2_9_52_1 e_1_2_9_50_1 e_1_2_9_10_1 e_1_2_9_35_1 e_1_2_9_56_1 e_1_2_9_12_1 e_1_2_9_33_1 e_1_2_9_54_1 e_1_2_9_14_1 e_1_2_9_39_1 e_1_2_9_16_1 e_1_2_9_37_1 e_1_2_9_58_1 e_1_2_9_18_1 e_1_2_9_41_1 e_1_2_9_64_1 e_1_2_9_20_1 e_1_2_9_62_1 e_1_2_9_22_1 e_1_2_9_45_1 e_1_2_9_24_1 e_1_2_9_43_1 e_1_2_9_8_1 e_1_2_9_6_1 e_1_2_9_4_1 e_1_2_9_60_1 e_1_2_9_2_1 e_1_2_9_26_1 e_1_2_9_49_1 e_1_2_9_28_1 e_1_2_9_47_1 e_1_2_9_30_1 e_1_2_9_53_1 e_1_2_9_51_1 e_1_2_9_11_1 e_1_2_9_34_1 e_1_2_9_57_1 e_1_2_9_13_1 e_1_2_9_32_1 e_1_2_9_55_1 e_1_2_9_15_1 e_1_2_9_38_1 e_1_2_9_17_1 e_1_2_9_36_1 e_1_2_9_59_1 e_1_2_9_19_1 e_1_2_9_42_1 e_1_2_9_63_1 e_1_2_9_40_1 e_1_2_9_61_1 e_1_2_9_21_1 e_1_2_9_46_1 e_1_2_9_23_1 e_1_2_9_44_1 e_1_2_9_65_1 e_1_2_9_7_1 e_1_2_9_5_1 e_1_2_9_3_1 e_1_2_9_9_1 e_1_2_9_25_1 e_1_2_9_27_1 e_1_2_9_48_1 e_1_2_9_29_1 |
References_xml | – volume: 10 start-page: 732 issue: 6 year: 2014 article-title: Cell cycle population effects in perturbation studies publication-title: Molecular Systems Biology – volume: 75 start-page: 357 year: 2010 end-page: 364 article-title: Noncoding transcripts in sense and antisense orientation regulate the epigenetic state of ribosomal RNA genes publication-title: Cold Spring Harbor Symposia on Quantitative Biology – volume: 5 issue: 12 year: 2022 article-title: RSC and GRFs confer promoter directionality by restricting divergent noncoding transcription publication-title: Life Science Alliance – volume: 72 start-page: 955 issue: 6 year: 2018 end-page: 969.e7 article-title: General regulatory factors control the fidelity of transcription by restricting non‐coding and ectopic initiation publication-title: Molecular Cell – volume: 14 start-page: 178 issue: 2 year: 2013 end-page: 192 article-title: Integrative Genomics Viewer (IGV): High‐performance genomics data visualization and exploration publication-title: Briefings in Bioinformatics – volume: 322 start-page: 1855 issue: 5909 year: 2008 end-page: 1857 article-title: The antisense transcriptomes of human cells publication-title: Science – volume: 61 start-page: 379 issue: 3 year: 2016 end-page: 392 article-title: Nonsense‐Mediated Decay Restricts LncRNA Levels in Yeast Unless Blocked by Double‐Stranded RNA Structure publication-title: Molecular Cell – volume: 68 start-page: 773 issue: 4 year: 2017 end-page: 785.e6 article-title: Determinants of histone H3K4 methylation patterns publication-title: Molecular Cell – volume: 99 start-page: 8796 issue: 13 year: 2002 end-page: 8801 article-title: Transcriptional collision between convergent genes in budding yeast publication-title: Proceedings of the National Academy of Sciences – volume: 469 start-page: 368 issue: 7330 year: 2011 end-page: 373 article-title: Nascent transcript sequencing visualizes transcription at nucleotide resolution publication-title: Nature – volume: 37 issue: 4 year: 2018 article-title: High‐resolution transcription maps reveal the widespread impact of roadblock termination in yeast publication-title: The EMBO Journal – volume: 2011 year: 2011 article-title: Cryptic transcription and early termination in the control of gene expression publication-title: Genetics Research International – volume: 45 start-page: 470 issue: 4 year: 2012 end-page: 482 article-title: Single‐cell analysis reveals that noncoding RNAs contribute to clonal heterogeneity by modulating transcription factor recruitment publication-title: Molecular Cell – volume: 44 start-page: 8065 issue: 17 year: 2016 end-page: 8072 article-title: Backmasking in the yeast genome: Encoding overlapping information for protein‐coding and RNA degradation publication-title: Nucleic Acids Research – volume: 50 start-page: 1533 issue: 11 year: 2018 end-page: 1541 article-title: Single‐molecule nascent RNA sequencing identifies regulatory domain architecture at promoters and enhancers publication-title: Nature Genetics – volume: 65 start-page: 685 issue: 4 year: 2017 end-page: 698.e8 article-title: Paf1 has distinct roles in transcription elongation and differential transcript fate publication-title: Molecular Cell – volume: 32 start-page: 57 issue: 1 year: 2016 end-page: 71 article-title: The interleaved genome publication-title: Trends in Genetics – volume: 137 start-page: 445 issue: 3 year: 2009 end-page: 458 article-title: Mechanisms that specify promoter nucleosome location and identity publication-title: Cell – volume: 48 start-page: 984 issue: 9 year: 2016 end-page: 994 article-title: Principles for RNA metabolism and alternative transcription initiation within closely spaced promoters publication-title: Nature Genetics – volume: 110 start-page: 15277 issue: 38 year: 2013 end-page: 15282 article-title: Structures of RNA polymerase II complexes with Bye1, a chromatin‐binding PHF3/DIDO homologue publication-title: Proceedings of the National Academy of Sciences of the United States of America – volume: 12 start-page: 1325 issue: 5 year: 2003 end-page: 1332 article-title: Methylation of histone H3 K4 mediates association of the Isw1p ATPase with chromatin publication-title: Molecular Cell – volume: 109 start-page: 1931 issue: 6 year: 2012 end-page: 1936 article-title: Histone density is maintained during transcription mediated by the chromatin remodeler RSC and histone chaperone NAP1 in vitro publication-title: Proceedings of the National Academy of Sciences – volume: 60 start-page: 422 issue: 3 year: 2015 end-page: 434 article-title: Nucleosome stability distinguishes two different promoter types at all protein‐coding genes in yeast publication-title: Molecular Cell – volume: 48 issue: 18 year: 2020 article-title: TIF‐Seq. 2 disentangles overlapping isoforms in complex human transcriptomes publication-title: Nucleic Acids Research – volume: 458 start-page: 362 issue: 7236 year: 2009 end-page: 366 article-title: The DNA‐encoded nucleosome organization of a eukaryotic genome publication-title: Nature – volume: 32 start-page: 878 issue: 6 year: 2008 end-page: 887 article-title: A library of yeast transcription factor motifs reveals a widespread function for Rsc3 in targeting nucleosome exclusion at promoters publication-title: Molecular Cell – volume: 11 start-page: R24 issue: 3 year: 2010 article-title: High‐resolution transcription atlas of the mitotic cell cycle in budding yeast publication-title: Genome Biology – volume: 497 start-page: 127 issue: 7447 year: 2013 end-page: 131 article-title: Extensive transcriptional heterogeneity revealed by isoform profiling publication-title: Nature – volume: 144 start-page: 175 issue: 2 year: 2011 end-page: 186 article-title: High‐resolution genome‐wide mapping of the primary structure of chromatin publication-title: Cell – volume: 161 start-page: 526 issue: 3 year: 2015 end-page: 540 article-title: Mammalian NET‐Seq reveals genome‐wide nascent transcription coupled to RNA processing publication-title: Cell – volume: 45 start-page: 4493 issue: 8 year: 2017 end-page: 4506 article-title: Abf1 and other general regulatory factors control ribosome biogenesis gene expression in budding yeast publication-title: Nucleic Acids Research – volume: 10 start-page: 161 issue: 3 year: 2009 end-page: 172 article-title: Nucleosome positioning and gene regulation: Advances through genomics publication-title: Nature Reviews Genetics – volume: 11 start-page: 1455 issue: 8 year: 2016 end-page: 1476 article-title: Base‐pair‐resolution genome‐wide mapping of active RNA polymerases using precision nuclear run‐on (PRO‐seq publication-title: Nature Protocols – volume: 14 start-page: 880 issue: 12 year: 2013 end-page: 893 article-title: Gene regulation by antisense transcription publication-title: Nature Reviews Genetics – volume: 36 issue: 13 year: 2021 article-title: Spt4 facilitates the movement of RNA polymerase II through the +2 nucleosomal barrier publication-title: Cell Reports – volume: 3 year: 2014 article-title: Transcription mediated insulation and interference direct gene cluster expression switches publication-title: eLife – volume: 9 start-page: 1740 issue: 7 year: 2014 end-page: 1759 article-title: Genome‐wide identification of transcript start and end sites by transcript isoform sequencing publication-title: Nature Protocols – volume: 457 start-page: 1033 issue: 7232 year: 2009 end-page: 1037 article-title: Bidirectional promoters generate pervasive transcription in yeast publication-title: Nature – volume: 592 start-page: 309 issue: 7853 year: 2021 end-page: 314 article-title: A high‐resolution protein architecture of the budding yeast genome publication-title: Nature – volume: 56 start-page: 667 issue: 5 year: 2014 end-page: 680 article-title: Roadblock termination by reb1p restricts cryptic and readthrough transcription publication-title: Molecular Cell – volume: 37 start-page: W202 issue: Suppl. 2 year: 2009 end-page: W208 article-title: MEME SUITE: Tools for motif discovery and searching publication-title: Nucleic Acids Research – year: 2021 article-title: Mapping human transient transcriptomes using single nucleotide resolution 4sU sequencing (SNU‐Seq) publication-title: BioRxiv – volume: 5 issue: 12 year: 2010 article-title: The prevalence and regulation of antisense transcripts in publication-title: PloS one – volume: 375 start-page: 1000 issue: 6584 year: 2022 end-page: 1005 article-title: Transcriptional neighborhoods regulate transcript isoform lengths and expression levels publication-title: Science – volume: 7 year: 2018 article-title: Efficient termination of nuclear lncRNA transcription promotes mitochondrial genome maintenance publication-title: eLife – volume: 167 start-page: 709 issue: 3 year: 2016 end-page: 721.e12 article-title: Genomic nucleosome organization reconstituted with pure proteins publication-title: Cell – volume: 309 start-page: 1564 issue: 5740 year: 2005 end-page: 1566 article-title: Antisense transcription in the mammalian transcriptome publication-title: Science – volume: 429 start-page: 571 issue: 6991 year: 2004 end-page: 574 article-title: Intergenic transcription is required to repress the SER3 gene publication-title: Nature – volume: 71 start-page: 294 issue: 2 year: 2018 end-page: 305.e4 article-title: Systematic study of nucleosome‐displacing factors in budding yeast publication-title: Molecular Cell – volume: 14 issue: 2 year: 2018 article-title: Antisense transcription‐dependent chromatin signature modulates sense transcript dynamics publication-title: Molecular Systems Biology – volume: 9 issue: 5 year: 2013 article-title: A compendium of nucleosome and transcript profiles reveals determinants of chromatin architecture and transcription publication-title: PLoS Genetics – volume: 26 start-page: 799 issue: 6 year: 2016 end-page: 811 article-title: Divergence of a conserved elongation factor and transcription regulation in budding and fission yeast publication-title: Genome Research – volume: 22 start-page: 615 issue: 5 year: 2008 end-page: 626 article-title: A cryptic unstable transcript mediates transcriptional trans‐silencing of the Ty1 retrotransposon in publication-title: Genes & Development – volume: 6 year: 2017 article-title: CRISPRi is not strand‐specific at all loci and redefines the transcriptional landscape publication-title: eLife – volume: 186 start-page: 2438 issue: 11 year: 2023 end-page: 2455.e22 article-title: Sites of transcription initiation drive mRNA isoform selection publication-title: Cell – volume: 127 start-page: 735 issue: 4 year: 2006 end-page: 745 article-title: Antisense transcription controls cell fate in publication-title: Cell – volume: 34 start-page: D446 issue: Suppl. 1 year: 2006 end-page: D451 article-title: The YEASTRACT database: a tool for the analysis of transcription regulatory associations in saccharomyces cerevisiae publication-title: Nucleic Acids Research – volume: 339 start-page: 950 issue: 6122 year: 2013 end-page: 953 article-title: Precise maps of RNA polymerase reveal how promoters direct initiation and pausing publication-title: Science – volume: 155 start-page: 1075 issue: 5 year: 2013 end-page: 1087 article-title: Transcriptome surveillance by selective termination of noncoding RNA synthesis publication-title: Cell – volume: 43 start-page: 7823 issue: 16 year: 2015 end-page: 7837 article-title: Sense and antisense transcription are associated with distinct chromatin architectures across genes publication-title: Nucleic Acids Research – volume: 11 start-page: 2589 issue: 1 year: 2020 article-title: Transcript isoform sequencing reveals widespread promoter‐proximal transcriptional termination in Arabidopsis publication-title: Nature Communications – volume: 7 start-page: 458 year: 2011 article-title: Dynamic transcriptome analysis measures rates of mRNA synthesis and decay in yeast publication-title: Molecular Systems Biology – volume: 6 start-page: 12 issue: 1 year: 2016 end-page: 21 article-title: Using both strands: The fundamental nature of antisense transcription publication-title: BioArchitecture – volume: 40 start-page: 2432 issue: 6 year: 2012 end-page: 2444 article-title: A pre‐initiation complex at the 3′‐end of genes drives antisense transcription independent of divergent sense transcription publication-title: Nucleic Acids Research – ident: e_1_2_9_43_1 doi: 10.7554/eLife.03635 – ident: e_1_2_9_31_1 doi: 10.1016/j.molcel.2015.10.002 – ident: e_1_2_9_3_1 doi: 10.1093/nar/gkp335 – ident: e_1_2_9_27_1 doi: 10.1038/nature07667 – ident: e_1_2_9_47_1 doi: 10.1038/nrg3594 – ident: e_1_2_9_32_1 doi: 10.1073/pnas.1109994109 – ident: e_1_2_9_52_1 doi: 10.1016/s1097-2765(03)00438-6 – ident: e_1_2_9_19_1 doi: 10.4061/2011/653494 – ident: e_1_2_9_12_1 doi: 10.1016/j.molcel.2011.11.029 – ident: e_1_2_9_65_1 doi: 10.1016/j.cell.2011.01.003 – ident: e_1_2_9_48_1 doi: 10.1038/nprot.2014.121 – ident: e_1_2_9_24_1 doi: 10.1016/j.cell.2006.09.038 – ident: e_1_2_9_33_1 doi: 10.1126/science.1229386 – ident: e_1_2_9_53_1 doi: 10.1016/j.cell.2013.10.024 – ident: e_1_2_9_25_1 doi: 10.7554/eLife.29878 – ident: e_1_2_9_55_1 doi: 10.1093/nar/gkj013 – ident: e_1_2_9_63_1 doi: 10.1038/nature07728 – ident: e_1_2_9_14_1 doi: 10.15252/embj.201797490 – ident: e_1_2_9_6_1 doi: 10.1101/gad.458008 – ident: e_1_2_9_4_1 doi: 10.1016/j.molcel.2008.11.020 – ident: e_1_2_9_10_1 doi: 10.1126/science.abg0162 – ident: e_1_2_9_15_1 doi: 10.1016/j.molcel.2018.11.037 – ident: e_1_2_9_60_1 doi: 10.1093/nar/gkaa691 – ident: e_1_2_9_57_1 doi: 10.1093/bib/bbs017 – ident: e_1_2_9_51_1 doi: 10.1038/s41586-021-03314-8 – ident: e_1_2_9_34_1 doi: 10.1101/2021.07.14.452379 – ident: e_1_2_9_44_1 doi: 10.1371/journal.pone.0015271 – ident: e_1_2_9_30_1 doi: 10.1016/j.cell.2016.09.045 – ident: e_1_2_9_50_1 doi: 10.1073/pnas.132270899 – ident: e_1_2_9_62_1 doi: 10.26508/lsa.202201394 – ident: e_1_2_9_41_1 doi: 10.1080/19490992.2015.1130779 – ident: e_1_2_9_29_1 doi: 10.1073/pnas.1311010110 – ident: e_1_2_9_17_1 doi: 10.1038/nature09652 – ident: e_1_2_9_40_1 doi: 10.1093/nar/gkv666 – ident: e_1_2_9_28_1 doi: 10.1126/science.1112009 – ident: e_1_2_9_18_1 doi: 10.1016/j.molcel.2014.10.026 – ident: e_1_2_9_22_1 doi: 10.1016/j.cell.2009.02.043 – ident: e_1_2_9_8_1 doi: 10.1101/gr.204578.116 – ident: e_1_2_9_11_1 doi: 10.15252/msb.20178007 – ident: e_1_2_9_42_1 doi: 10.1093/nar/gkr1121 – ident: e_1_2_9_49_1 doi: 10.1038/nature12121 – ident: e_1_2_9_9_1 doi: 10.1093/nar/gkx058 – ident: e_1_2_9_23_1 doi: 10.1126/science.1163853 – ident: e_1_2_9_16_1 doi: 10.1038/ng.3616 – ident: e_1_2_9_21_1 doi: 10.1186/gb-2010-11-3-r24 – ident: e_1_2_9_37_1 doi: 10.7554/eLife.31989 – ident: e_1_2_9_35_1 doi: 10.1038/nprot.2016.086 – ident: e_1_2_9_46_1 doi: 10.15252/msb.20145172 – ident: e_1_2_9_61_1 doi: 10.1016/j.molcel.2015.12.020 – ident: e_1_2_9_54_1 doi: 10.1016/j.molcel.2017.10.013 – ident: e_1_2_9_2_1 doi: 10.1016/j.cell.2023.04.012 – ident: e_1_2_9_56_1 doi: 10.1038/s41467-020-16390-7 – ident: e_1_2_9_59_1 doi: 10.1016/j.celrep.2021.109755 – ident: e_1_2_9_13_1 doi: 10.1093/nar/gkw683 – ident: e_1_2_9_26_1 doi: 10.1038/nrg2522 – ident: e_1_2_9_39_1 doi: 10.1038/msb.2010.112 – ident: e_1_2_9_20_1 doi: 10.1016/j.molcel.2017.01.006 – ident: e_1_2_9_45_1 doi: 10.1016/j.cell.2015.03.027 – ident: e_1_2_9_5_1 doi: 10.1371/journal.pgen.1003479 – ident: e_1_2_9_7_1 doi: 10.1101/sqb.2010.75.060 – ident: e_1_2_9_36_1 doi: 10.1038/nature02538 – ident: e_1_2_9_38_1 doi: 10.1016/j.tig.2015.10.006 – ident: e_1_2_9_58_1 doi: 10.1038/s41588-018-0234-5 – ident: e_1_2_9_64_1 doi: 10.1016/j.molcel.2018.06.017 |
SSID | ssj0011528 |
Score | 2.4103162 |
Snippet | Genomes from yeast to humans are subject to pervasive transcription. A single round of pervasive transcription is sufficient to alter local chromatin... |
SourceID | proquest pubmed crossref wiley |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 222 |
SubjectTerms | Antisense RNA bioinformatics Chromatin fractionation Gene expression Gene mapping gene regulation genome Genomes Humans nascent transcript mapping nucleosomes Polyadenylation Promoter Regions, Genetic Promoters Reb1 S. cerevisiae Saccharomyces cerevisiae Saccharomyces cerevisiae - genetics size fractionated NET‐Seq transcription transcription (genetics) transcription factors Transcription Factors - genetics Transcription, Genetic Yeast yeasts |
Title | Size fractionated NET‐Seq reveals a conserved architecture of transcription units around yeast genes |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fyea.3931 https://www.ncbi.nlm.nih.gov/pubmed/38433440 https://www.proquest.com/docview/3034132076 https://www.proquest.com/docview/2937334512 https://www.proquest.com/docview/3153196187 |
Volume | 41 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bS9xAFD7oYsGXWm_ttlZGEPsU3WQmk-TRlhURFPECK30Ik7lIadlt91JYn_wJ_kZ_Sc_JJPFSBfEpkJyE2cy5fGdzzncANp0shNKWB8oJTFAiEwZpGKpAG8yHtMGDpEbhwyO5fy4OenGvqqqkXhjPD9H84UaWUfprMnBVjHbuSEOnVmHCXrZQU6kW4aGThjkKcU45VhUDZBbEHd6reWc70U5948NI9B-8fIhWy3CztwDf64X6KpOf25Nxsa2vHnE4vu6XvIO3FQplu15tFmHG9pfgjZ9LOV2Cua8DxIzTZXCnP64sc0Pf_YCw1LCj7tnt9c2p_cOI_AmVlymmqSR7-Bev3v8uwQaOjSkU1o6JTdB_oPyQRjmxKU0NYpfka1fgfK979m0_qCYzBJoSosDGyiEUM0Jz6YhSULskKSJrY1nw2HJlMO20WZya0OHmOIcnpJaoE1Jo9CF8FVr9Qd9-ACZMxF2caUncbfgEFaUuycJMJUlmjNZt-FLvUq4r2nKanvEr94TLUY7Lzen1tWGjkfztqTqekFmrNzqvjHWUYxQX1EmeSHxEcxnNjL6dqL4dTEY5oqKEc4Hw6HkZHpYOLUyTNrz3StQshKcCbxedNmyVqvDsCvOL7i4dP75U8BPMRwi0fDXRGrTGw4n9jEBpXKzDbCSO10vD-AdsRRIZ |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1fT9RAEJ8QxMiLICocoK6J0afCtbvdtvEJzZFT4R7kSM7EZLPdP4ZA7vS4Izme-Ah8Rj-JM91rFZXE-NSknd1s2_nzm3bnNwAvvCyFNo5H2gtMUBIbR3kc68hYzIeMxYOkQuHDnuwei_eDdLAAr-tamMAP0XxwI8uo_DUZOH2Q3v3JGjpzGjN2qqG-Qw29q3zqY8MdhUinaqyKIbKI0jYf1Myz7WS3HnkzFv0BMG_i1Srg7K_A53qpYZ_J6c50Uu6Yy99YHP_zXlbh_hyIsr2gOQ9gwQ3X4G5oTTlbg6U3I4SNs4fgj04uHfPjUACByNSyXqf__er6yH1jxP-E-ss0M7Qre3yBV3_9NcFGnk0oGta-iU3RhaD8mLo5sRk1DmJfyN0-guP9Tv9tN5o3Z4gM5USRS7VHNGaF4dITq6DxWVYmzqWy5Knj2mLm6Yo0t7GPUcTjCWkkqoUUBt0IfwyLw9HQbQATNuE-LYwk-jacQSe5z4q40FlWWGtMC17Vr0mZOXM5NdA4U4FzOVG4XEWPrwXPG8mvga3jLzLb9ZtWc3s9VxjIBRWTZxKnaC6jpdHvEz10o-m5QmCUcS4QId0uw-PKp8V51oL1oEXNQngucLhot-BlpQu3rlB96uzRcfNfBZ_BvW7_8EAdvOt92ILlBHFX2Fy0DYuT8dQ9Qdw0KZ9W9vED_YEVXQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB5VpaBeoBRolz4wEoJT2k3sOMmx0F2V1wrRVlrEwXL8QAi02253kban_gR-I7-EmTgJLVAJcYqUjCMnnsc3iecbgCdelkIbxyPtBSYoiY2jPI51ZCzmQ8biQVKh8NuBPDgWr4bpsN5VSbUwgR-i_eBGllH5azLwE-t3f5GGzp3GhJ1KqG8I2c1Jo_fft9RRCHSqvqoYIYso7fJhQzzbTXabkVdD0R_48ipcreJN_w58bGYatpl82ZlNyx1z_huJ4_89ygrcrmEo2wt6cxcW3GgVbobGlPNVWHo-RtA4vwf-8PO5Y34Syh8Ql1o26B39uPh-6E4ZsT-h9jLNDO3JnnzDq5d_TLCxZ1OKhY1nYjN0ICg_oV5ObE5tg9gncrb34bjfO3pxENWtGSJDGVHkUu0Ri1lhuPTEKWh8lpWJc6kseeq4tph3uiLNbexjFPF4QhqJSiGFQSfCH8DiaDxy68CETbhPCyOJvA3voJPcZ0Vc6CwrrDWmA8-aVVKm5i2n9hlfVWBcThROV9Hr68DjVvIkcHX8RWazWWhVW-uZwjAuqJQ8k3iL9jLaGf080SM3np0phEUZ5wLx0fUyPK48WpxnHVgLStROhOcCh4tuB55WqnDtDNWH3h4dH_6r4CO49W6_r968HLzegOUEQVfYWbQJi9PJzG0haJqW25V1_ATSyRQV |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Size+fractionated+NET%E2%80%90Seq+reveals+a+conserved+architecture+of+transcription+units+around+yeast+genes&rft.jtitle=Yeast+%28Chichester%2C+England%29&rft.au=Xi%2C+Shidong&rft.au=Nguyen%2C+Tania&rft.au=Murray%2C+Struan&rft.au=Lorenz%2C+Phil&rft.date=2024-04-01&rft.issn=0749-503X&rft.eissn=1097-0061&rft.volume=41&rft.issue=4&rft.spage=222&rft.epage=241&rft_id=info:doi/10.1002%2Fyea.3931&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_yea_3931 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0749-503X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0749-503X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0749-503X&client=summon |