Size fractionated NET‐Seq reveals a conserved architecture of transcription units around yeast genes

Genomes from yeast to humans are subject to pervasive transcription. A single round of pervasive transcription is sufficient to alter local chromatin conformation, nucleosome dynamics and gene expression, but is hard to distinguish from background signals. Size fractionated native elongating transcr...

Full description

Saved in:
Bibliographic Details
Published inYeast (Chichester, England) Vol. 41; no. 4; pp. 222 - 241
Main Authors Xi, Shidong, Nguyen, Tania, Murray, Struan, Lorenz, Phil, Mellor, Jane
Format Journal Article
LanguageEnglish
Published England Wiley Subscription Services, Inc 01.04.2024
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Genomes from yeast to humans are subject to pervasive transcription. A single round of pervasive transcription is sufficient to alter local chromatin conformation, nucleosome dynamics and gene expression, but is hard to distinguish from background signals. Size fractionated native elongating transcript sequencing (sfNET‐Seq) was developed to precisely map nascent transcripts independent of expression levels. RNAPII‐associated nascent transcripts are fractionation into different size ranges before library construction. When anchored to the transcription start sites (TSS) of annotated genes, the combined pattern of the output metagenes gives the expected reference pattern. Bioinformatic pattern matching to the reference pattern identified 9542 transcription units in Saccharomyces cerevisiae, of which 47% are coding and 53% are noncoding. In total, 3113 (33%) are unannotated noncoding transcription units. Anchoring all transcription units to the TSS or polyadenylation site (PAS) of annotated genes reveals distinctive architectures of linked pairs of divergent transcripts approximately 200nt apart. The Reb1 transcription factor is enriched 30nt downstream of the PAS only when an upstream (TSS −60nt with respect to PAS) noncoding transcription unit co‐occurs with a downstream (TSS +150nt) coding transcription unit and acts to limit levels of upstream antisense transcripts. The potential for extensive transcriptional interference is evident from low abundance unannotated transcription units with variable TSS (median −240nt) initiating within a 500nt window upstream of, and transcribing over, the promoters of protein‐coding genes. This study confirms a highly interleaved yeast genome with different types of transcription units altering the chromatin landscape in distinctive ways, with the potential to exert extensive regulatory control. In this article, the authors describe high‐resolution mapping of the nascent yeast transcriptome using size fractionated NET‐Seq to resolve overlapping and lowly expressed transcription units, and reveal a distinct architecture of divergent coding and noncoding transcripts initiating approximately 200nts apart at the 5′ and 3′ end of genes. The Reb1 transcription factor binds 30nt downstream from the polyadenylation site of an upstream coding gene when linked to a downstream coding region and functions to limit upstream antisense transcription. Take‐away Size fractionated NET‐Seq maps nascent transcripts in Saccharomyces cerevisiae. sfNET‐Seq discovers transcription units independent of expression levels. sfNET‐Seq resolves overlapping and lowly expressed transcription units sfNET‐Seq reveals divergent promoters at the 5′ and 3′ ends of coding genes. Between tandem genes, Reb1 limits upstream antisense noncoding transcription.
AbstractList Genomes from yeast to humans are subject to pervasive transcription. A single round of pervasive transcription is sufficient to alter local chromatin conformation, nucleosome dynamics and gene expression, but is hard to distinguish from background signals. Size fractionated native elongating transcript sequencing (sfNET‐Seq) was developed to precisely map nascent transcripts independent of expression levels. RNAPII‐associated nascent transcripts are fractionation into different size ranges before library construction. When anchored to the transcription start sites (TSS) of annotated genes, the combined pattern of the output metagenes gives the expected reference pattern. Bioinformatic pattern matching to the reference pattern identified 9542 transcription units in Saccharomyces cerevisiae , of which 47% are coding and 53% are noncoding. In total, 3113 (33%) are unannotated noncoding transcription units. Anchoring all transcription units to the TSS or polyadenylation site (PAS) of annotated genes reveals distinctive architectures of linked pairs of divergent transcripts approximately 200nt apart. The Reb1 transcription factor is enriched 30nt downstream of the PAS only when an upstream (TSS −60nt with respect to PAS) noncoding transcription unit co‐occurs with a downstream (TSS +150nt) coding transcription unit and acts to limit levels of upstream antisense transcripts. The potential for extensive transcriptional interference is evident from low abundance unannotated transcription units with variable TSS (median −240nt) initiating within a 500nt window upstream of, and transcribing over, the promoters of protein‐coding genes. This study confirms a highly interleaved yeast genome with different types of transcription units altering the chromatin landscape in distinctive ways, with the potential to exert extensive regulatory control. Size fractionated NET‐Seq maps nascent transcripts in Saccharomyces cerevisiae . sfNET‐Seq discovers transcription units independent of expression levels. sfNET‐Seq resolves overlapping and lowly expressed transcription units sfNET‐Seq reveals divergent promoters at the 5′ and 3′ ends of coding genes. Between tandem genes, Reb1 limits upstream antisense noncoding transcription.
Genomes from yeast to humans are subject to pervasive transcription. A single round of pervasive transcription is sufficient to alter local chromatin conformation, nucleosome dynamics and gene expression, but is hard to distinguish from background signals. Size fractionated native elongating transcript sequencing (sfNET‐Seq) was developed to precisely map nascent transcripts independent of expression levels. RNAPII‐associated nascent transcripts are fractionation into different size ranges before library construction. When anchored to the transcription start sites (TSS) of annotated genes, the combined pattern of the output metagenes gives the expected reference pattern. Bioinformatic pattern matching to the reference pattern identified 9542 transcription units in Saccharomyces cerevisiae, of which 47% are coding and 53% are noncoding. In total, 3113 (33%) are unannotated noncoding transcription units. Anchoring all transcription units to the TSS or polyadenylation site (PAS) of annotated genes reveals distinctive architectures of linked pairs of divergent transcripts approximately 200nt apart. The Reb1 transcription factor is enriched 30nt downstream of the PAS only when an upstream (TSS −60nt with respect to PAS) noncoding transcription unit co‐occurs with a downstream (TSS +150nt) coding transcription unit and acts to limit levels of upstream antisense transcripts. The potential for extensive transcriptional interference is evident from low abundance unannotated transcription units with variable TSS (median −240nt) initiating within a 500nt window upstream of, and transcribing over, the promoters of protein‐coding genes. This study confirms a highly interleaved yeast genome with different types of transcription units altering the chromatin landscape in distinctive ways, with the potential to exert extensive regulatory control.
Genomes from yeast to humans are subject to pervasive transcription. A single round of pervasive transcription is sufficient to alter local chromatin conformation, nucleosome dynamics and gene expression, but is hard to distinguish from background signals. Size fractionated native elongating transcript sequencing (sfNET‐Seq) was developed to precisely map nascent transcripts independent of expression levels. RNAPII‐associated nascent transcripts are fractionation into different size ranges before library construction. When anchored to the transcription start sites (TSS) of annotated genes, the combined pattern of the output metagenes gives the expected reference pattern. Bioinformatic pattern matching to the reference pattern identified 9542 transcription units in Saccharomyces cerevisiae, of which 47% are coding and 53% are noncoding. In total, 3113 (33%) are unannotated noncoding transcription units. Anchoring all transcription units to the TSS or polyadenylation site (PAS) of annotated genes reveals distinctive architectures of linked pairs of divergent transcripts approximately 200nt apart. The Reb1 transcription factor is enriched 30nt downstream of the PAS only when an upstream (TSS −60nt with respect to PAS) noncoding transcription unit co‐occurs with a downstream (TSS +150nt) coding transcription unit and acts to limit levels of upstream antisense transcripts. The potential for extensive transcriptional interference is evident from low abundance unannotated transcription units with variable TSS (median −240nt) initiating within a 500nt window upstream of, and transcribing over, the promoters of protein‐coding genes. This study confirms a highly interleaved yeast genome with different types of transcription units altering the chromatin landscape in distinctive ways, with the potential to exert extensive regulatory control. In this article, the authors describe high‐resolution mapping of the nascent yeast transcriptome using size fractionated NET‐Seq to resolve overlapping and lowly expressed transcription units, and reveal a distinct architecture of divergent coding and noncoding transcripts initiating approximately 200nts apart at the 5′ and 3′ end of genes. The Reb1 transcription factor binds 30nt downstream from the polyadenylation site of an upstream coding gene when linked to a downstream coding region and functions to limit upstream antisense transcription. Take‐away Size fractionated NET‐Seq maps nascent transcripts in Saccharomyces cerevisiae. sfNET‐Seq discovers transcription units independent of expression levels. sfNET‐Seq resolves overlapping and lowly expressed transcription units sfNET‐Seq reveals divergent promoters at the 5′ and 3′ ends of coding genes. Between tandem genes, Reb1 limits upstream antisense noncoding transcription.
Genomes from yeast to humans are subject to pervasive transcription. A single round of pervasive transcription is sufficient to alter local chromatin conformation, nucleosome dynamics and gene expression, but is hard to distinguish from background signals. Size fractionated native elongating transcript sequencing (sfNET-Seq) was developed to precisely map nascent transcripts independent of expression levels. RNAPII-associated nascent transcripts are fractionation into different size ranges before library construction. When anchored to the transcription start sites (TSS) of annotated genes, the combined pattern of the output metagenes gives the expected reference pattern. Bioinformatic pattern matching to the reference pattern identified 9542 transcription units in Saccharomyces cerevisiae, of which 47% are coding and 53% are noncoding. In total, 3113 (33%) are unannotated noncoding transcription units. Anchoring all transcription units to the TSS or polyadenylation site (PAS) of annotated genes reveals distinctive architectures of linked pairs of divergent transcripts approximately 200nt apart. The Reb1 transcription factor is enriched 30nt downstream of the PAS only when an upstream (TSS -60nt with respect to PAS) noncoding transcription unit co-occurs with a downstream (TSS +150nt) coding transcription unit and acts to limit levels of upstream antisense transcripts. The potential for extensive transcriptional interference is evident from low abundance unannotated transcription units with variable TSS (median -240nt) initiating within a 500nt window upstream of, and transcribing over, the promoters of protein-coding genes. This study confirms a highly interleaved yeast genome with different types of transcription units altering the chromatin landscape in distinctive ways, with the potential to exert extensive regulatory control.Genomes from yeast to humans are subject to pervasive transcription. A single round of pervasive transcription is sufficient to alter local chromatin conformation, nucleosome dynamics and gene expression, but is hard to distinguish from background signals. Size fractionated native elongating transcript sequencing (sfNET-Seq) was developed to precisely map nascent transcripts independent of expression levels. RNAPII-associated nascent transcripts are fractionation into different size ranges before library construction. When anchored to the transcription start sites (TSS) of annotated genes, the combined pattern of the output metagenes gives the expected reference pattern. Bioinformatic pattern matching to the reference pattern identified 9542 transcription units in Saccharomyces cerevisiae, of which 47% are coding and 53% are noncoding. In total, 3113 (33%) are unannotated noncoding transcription units. Anchoring all transcription units to the TSS or polyadenylation site (PAS) of annotated genes reveals distinctive architectures of linked pairs of divergent transcripts approximately 200nt apart. The Reb1 transcription factor is enriched 30nt downstream of the PAS only when an upstream (TSS -60nt with respect to PAS) noncoding transcription unit co-occurs with a downstream (TSS +150nt) coding transcription unit and acts to limit levels of upstream antisense transcripts. The potential for extensive transcriptional interference is evident from low abundance unannotated transcription units with variable TSS (median -240nt) initiating within a 500nt window upstream of, and transcribing over, the promoters of protein-coding genes. This study confirms a highly interleaved yeast genome with different types of transcription units altering the chromatin landscape in distinctive ways, with the potential to exert extensive regulatory control.
Genomes from yeast to humans are subject to pervasive transcription. A single round of pervasive transcription is sufficient to alter local chromatin conformation, nucleosome dynamics and gene expression, but is hard to distinguish from background signals. Size fractionated native elongating transcript sequencing (sfNET-Seq) was developed to precisely map nascent transcripts independent of expression levels. RNAPII-associated nascent transcripts are fractionation into different size ranges before library construction. When anchored to the transcription start sites (TSS) of annotated genes, the combined pattern of the output metagenes gives the expected reference pattern. Bioinformatic pattern matching to the reference pattern identified 9542 transcription units in Saccharomyces cerevisiae, of which 47% are coding and 53% are noncoding. In total, 3113 (33%) are unannotated noncoding transcription units. Anchoring all transcription units to the TSS or polyadenylation site (PAS) of annotated genes reveals distinctive architectures of linked pairs of divergent transcripts approximately 200nt apart. The Reb1 transcription factor is enriched 30nt downstream of the PAS only when an upstream (TSS -60nt with respect to PAS) noncoding transcription unit co-occurs with a downstream (TSS +150nt) coding transcription unit and acts to limit levels of upstream antisense transcripts. The potential for extensive transcriptional interference is evident from low abundance unannotated transcription units with variable TSS (median -240nt) initiating within a 500nt window upstream of, and transcribing over, the promoters of protein-coding genes. This study confirms a highly interleaved yeast genome with different types of transcription units altering the chromatin landscape in distinctive ways, with the potential to exert extensive regulatory control.
Author Murray, Struan
Nguyen, Tania
Xi, Shidong
Mellor, Jane
Lorenz, Phil
Author_xml – sequence: 1
  givenname: Shidong
  surname: Xi
  fullname: Xi, Shidong
  organization: University of Oxford
– sequence: 2
  givenname: Tania
  surname: Nguyen
  fullname: Nguyen, Tania
  organization: University of Oxford
– sequence: 3
  givenname: Struan
  surname: Murray
  fullname: Murray, Struan
  organization: University of Oxford
– sequence: 4
  givenname: Phil
  surname: Lorenz
  fullname: Lorenz, Phil
  organization: University of Oxford
– sequence: 5
  givenname: Jane
  orcidid: 0000-0002-5196-3734
  surname: Mellor
  fullname: Mellor, Jane
  email: jane.mellor@bioch.ox.ac.uk
  organization: University of Oxford
BackLink https://www.ncbi.nlm.nih.gov/pubmed/38433440$$D View this record in MEDLINE/PubMed
BookMark eNqFkc1qFTEYhoNU7GkVvAIJuOlmjsl8k2RmWcrxB0pdtIKuQk7mi6bMSU6TmcrpykvwGr0SM7ZVKIqrQPK8b5LnOyB7IQYk5DlnS85Y_WqHZgkd8EdkwVmnKsYk3yMLppquEgw-7pODnC8Z41zU7ROyD20D0DRsQdy5v0HqkrGjj8GM2NOz1cWPb9_P8YomvEYzZGqojSFjui6nJtkvfkQ7TglpdHRMJmSb_HbO0yn4sfApTqGn5VV5pJ8xYH5KHrvShM_u1kPy4fXq4uRtdfr-zbuT49PKNlzyCoVxNdR9Y0E61iplnVLrGlHINQgE04umw060PXe8IK5sSCstgmxsCzUckqPb3m2KVxPmUW98tjgMJmCcsgYugHeSt-q_aN2BKpIEn1tfPkAv45RC-YgGBg2HmilZqBd31LTeYK-3yW9M2ul72X9utCnmnND9RjjT8xx1MabnORZ0-QC1fjSz4uLbD38LVLeBr37A3T-L9afV8S_-J1Iqrj8
CitedBy_id crossref_primary_10_1002_yea_3936
Cites_doi 10.7554/eLife.03635
10.1016/j.molcel.2015.10.002
10.1093/nar/gkp335
10.1038/nature07667
10.1038/nrg3594
10.1073/pnas.1109994109
10.1016/s1097-2765(03)00438-6
10.4061/2011/653494
10.1016/j.molcel.2011.11.029
10.1016/j.cell.2011.01.003
10.1038/nprot.2014.121
10.1016/j.cell.2006.09.038
10.1126/science.1229386
10.1016/j.cell.2013.10.024
10.7554/eLife.29878
10.1093/nar/gkj013
10.1038/nature07728
10.15252/embj.201797490
10.1101/gad.458008
10.1016/j.molcel.2008.11.020
10.1126/science.abg0162
10.1016/j.molcel.2018.11.037
10.1093/nar/gkaa691
10.1093/bib/bbs017
10.1038/s41586-021-03314-8
10.1101/2021.07.14.452379
10.1371/journal.pone.0015271
10.1016/j.cell.2016.09.045
10.1073/pnas.132270899
10.26508/lsa.202201394
10.1080/19490992.2015.1130779
10.1073/pnas.1311010110
10.1038/nature09652
10.1093/nar/gkv666
10.1126/science.1112009
10.1016/j.molcel.2014.10.026
10.1016/j.cell.2009.02.043
10.1101/gr.204578.116
10.15252/msb.20178007
10.1093/nar/gkr1121
10.1038/nature12121
10.1093/nar/gkx058
10.1126/science.1163853
10.1038/ng.3616
10.1186/gb-2010-11-3-r24
10.7554/eLife.31989
10.1038/nprot.2016.086
10.15252/msb.20145172
10.1016/j.molcel.2015.12.020
10.1016/j.molcel.2017.10.013
10.1016/j.cell.2023.04.012
10.1038/s41467-020-16390-7
10.1016/j.celrep.2021.109755
10.1093/nar/gkw683
10.1038/nrg2522
10.1038/msb.2010.112
10.1016/j.molcel.2017.01.006
10.1016/j.cell.2015.03.027
10.1371/journal.pgen.1003479
10.1101/sqb.2010.75.060
10.1038/nature02538
10.1016/j.tig.2015.10.006
10.1038/s41588-018-0234-5
10.1016/j.molcel.2018.06.017
ContentType Journal Article
Copyright 2024 The Authors. published by John Wiley & Sons Ltd.
2024 The Authors. Yeast published by John Wiley & Sons Ltd.
2024. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2024 The Authors. published by John Wiley & Sons Ltd.
– notice: 2024 The Authors. Yeast published by John Wiley & Sons Ltd.
– notice: 2024. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 24P
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QR
7TM
8FD
FR3
K9.
M7N
P64
RC3
7X8
7S9
L.6
DOI 10.1002/yea.3931
DatabaseName Wiley Online Library Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Chemoreception Abstracts
Nucleic Acids Abstracts
Technology Research Database
Engineering Research Database
ProQuest Health & Medical Complete (Alumni)
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Genetics Abstracts
Technology Research Database
Algology Mycology and Protozoology Abstracts (Microbiology C)
Nucleic Acids Abstracts
ProQuest Health & Medical Complete (Alumni)
Chemoreception Abstracts
Engineering Research Database
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList CrossRef
Genetics Abstracts

MEDLINE - Academic
MEDLINE
AGRICOLA
Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
Botany
EISSN 1097-0061
EndPage 241
ExternalDocumentID 38433440
10_1002_yea_3931
YEA3931
Genre researchArticle
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: Biotechnology and Biological Sciences Research Council (BBSRC)
  funderid: BB/P00296X/1
– fundername: BBSRC studentship
  funderid: BB/M011224/1
– fundername: Leverhulme Trust
  funderid: RPG‐2016‐405
– fundername: The Wellcome Trust
  funderid: WT089156MA
– fundername: Natural Sciences and Engineering Research Council of Canada studentship
– fundername: The Wellcome Trust
  grantid: WT089156MA
– fundername: Biotechnology and Biological Sciences Research Council (BBSRC)
  grantid: BB/P00296X/1
– fundername: BBSRC studentship
  grantid: BB/M011224/1
– fundername: Leverhulme Trust
  grantid: RPG-2016-405
GroupedDBID ---
-DZ
.3N
.GA
.GJ
.Y3
05W
0R~
10A
123
1L6
1OB
1OC
1ZS
24P
29R
2WC
31~
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHBH
AAHHS
AAHQN
AAJEY
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABJNI
ABLJU
ABPVW
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACFBH
ACGFO
ACGFS
ACIWK
ACPOU
ACPRK
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
AEEZP
AEGXH
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AHMBA
AIAGR
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
AOIJS
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BLYAC
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
E3Z
EBD
EBS
EJD
EMOBN
F00
F01
F04
F5P
FEDTE
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HF~
HGLYW
HHY
HHZ
HVGLF
HYE
HZ~
IX1
J0M
JPC
KQ8
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LH6
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
M~E
N04
N05
N9A
NDZJH
NF~
NNB
O66
O9-
OIG
OK1
P2P
P2W
P2X
P4D
PALCI
PGMZT
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RBB
RIWAO
RJQFR
ROL
RPM
RWI
RX1
RYL
SAMSI
SUPJJ
SV3
TR2
UB1
V2E
V8K
W8V
W99
WBKPD
WH7
WIB
WIH
WIK
WIN
WJL
WNSPC
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XJT
XV2
ZZTAW
~IA
~KM
~WT
AAYXX
AEYWJ
AGHNM
AGQPQ
AGYGG
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QR
7TM
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
FR3
K9.
M7N
P64
RC3
7X8
7S9
L.6
ID FETCH-LOGICAL-c4161-e5af232d4c36f0877cf77b2ee56b35e3ad549e958d1f136ffad56c6ce364c8323
IEDL.DBID DR2
ISSN 0749-503X
1097-0061
IngestDate Fri Jul 11 18:31:05 EDT 2025
Thu Jul 10 18:37:12 EDT 2025
Fri Jul 25 10:29:21 EDT 2025
Thu Apr 03 07:06:07 EDT 2025
Tue Jul 01 00:35:59 EDT 2025
Thu Apr 24 23:01:34 EDT 2025
Wed Jan 22 17:19:50 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords size fractionated NET‐Seq
nascent transcript mapping
Reb1
transcription
gene regulation
S. cerevisiae
Language English
License Attribution
2024 The Authors. Yeast published by John Wiley & Sons Ltd.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4161-e5af232d4c36f0877cf77b2ee56b35e3ad549e958d1f136ffad56c6ce364c8323
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-5196-3734
OpenAccessLink https://proxy.k.utb.cz/login?url=https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fyea.3931
PMID 38433440
PQID 3034132076
PQPubID 1006444
PageCount 20
ParticipantIDs proquest_miscellaneous_3153196187
proquest_miscellaneous_2937334512
proquest_journals_3034132076
pubmed_primary_38433440
crossref_primary_10_1002_yea_3931
crossref_citationtrail_10_1002_yea_3931
wiley_primary_10_1002_yea_3931_YEA3931
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate April 2024
2024-04-00
20240401
PublicationDateYYYYMMDD 2024-04-01
PublicationDate_xml – month: 04
  year: 2024
  text: April 2024
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
– name: Bognor Regis
PublicationTitle Yeast (Chichester, England)
PublicationTitleAlternate Yeast
PublicationYear 2024
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2022; 375
2010; 11
2017; 6
2023; 186
2006; 34
2017; 45
2002; 99
2016; 32
2008; 32
2020; 11
2013; 9
2003; 12
2018; 7
2021; 36
2013; 14
2009; 10
2014; 3
2015; 43
2013; 155
2020; 48
2005; 309
2008; 22
2021; 592
2018; 72
2013; 110
2018; 71
2006; 127
2014; 9
2010; 5
2016; 48
2014; 56
2018; 37
2014; 10
2016; 44
2010; 75
2015; 161
2017; 65
2017; 68
2016; 167
2008; 322
2009; 137
2011; 7
2012; 109
2009; 457
2009; 458
2016; 11
2004; 429
2011; 2011
2016; 6
2011; 469
2015; 60
2013; 339
2021
2022; 5
2013; 497
2016; 61
2018; 50
2012; 45
2016; 26
2009; 37
2011; 144
2018; 14
2012; 40
e_1_2_9_31_1
e_1_2_9_52_1
e_1_2_9_50_1
e_1_2_9_10_1
e_1_2_9_35_1
e_1_2_9_56_1
e_1_2_9_12_1
e_1_2_9_33_1
e_1_2_9_54_1
e_1_2_9_14_1
e_1_2_9_39_1
e_1_2_9_16_1
e_1_2_9_37_1
e_1_2_9_58_1
e_1_2_9_18_1
e_1_2_9_41_1
e_1_2_9_64_1
e_1_2_9_20_1
e_1_2_9_62_1
e_1_2_9_22_1
e_1_2_9_45_1
e_1_2_9_24_1
e_1_2_9_43_1
e_1_2_9_8_1
e_1_2_9_6_1
e_1_2_9_4_1
e_1_2_9_60_1
e_1_2_9_2_1
e_1_2_9_26_1
e_1_2_9_49_1
e_1_2_9_28_1
e_1_2_9_47_1
e_1_2_9_30_1
e_1_2_9_53_1
e_1_2_9_51_1
e_1_2_9_11_1
e_1_2_9_34_1
e_1_2_9_57_1
e_1_2_9_13_1
e_1_2_9_32_1
e_1_2_9_55_1
e_1_2_9_15_1
e_1_2_9_38_1
e_1_2_9_17_1
e_1_2_9_36_1
e_1_2_9_59_1
e_1_2_9_19_1
e_1_2_9_42_1
e_1_2_9_63_1
e_1_2_9_40_1
e_1_2_9_61_1
e_1_2_9_21_1
e_1_2_9_46_1
e_1_2_9_23_1
e_1_2_9_44_1
e_1_2_9_65_1
e_1_2_9_7_1
e_1_2_9_5_1
e_1_2_9_3_1
e_1_2_9_9_1
e_1_2_9_25_1
e_1_2_9_27_1
e_1_2_9_48_1
e_1_2_9_29_1
References_xml – volume: 10
  start-page: 732
  issue: 6
  year: 2014
  article-title: Cell cycle population effects in perturbation studies
  publication-title: Molecular Systems Biology
– volume: 75
  start-page: 357
  year: 2010
  end-page: 364
  article-title: Noncoding transcripts in sense and antisense orientation regulate the epigenetic state of ribosomal RNA genes
  publication-title: Cold Spring Harbor Symposia on Quantitative Biology
– volume: 5
  issue: 12
  year: 2022
  article-title: RSC and GRFs confer promoter directionality by restricting divergent noncoding transcription
  publication-title: Life Science Alliance
– volume: 72
  start-page: 955
  issue: 6
  year: 2018
  end-page: 969.e7
  article-title: General regulatory factors control the fidelity of transcription by restricting non‐coding and ectopic initiation
  publication-title: Molecular Cell
– volume: 14
  start-page: 178
  issue: 2
  year: 2013
  end-page: 192
  article-title: Integrative Genomics Viewer (IGV): High‐performance genomics data visualization and exploration
  publication-title: Briefings in Bioinformatics
– volume: 322
  start-page: 1855
  issue: 5909
  year: 2008
  end-page: 1857
  article-title: The antisense transcriptomes of human cells
  publication-title: Science
– volume: 61
  start-page: 379
  issue: 3
  year: 2016
  end-page: 392
  article-title: Nonsense‐Mediated Decay Restricts LncRNA Levels in Yeast Unless Blocked by Double‐Stranded RNA Structure
  publication-title: Molecular Cell
– volume: 68
  start-page: 773
  issue: 4
  year: 2017
  end-page: 785.e6
  article-title: Determinants of histone H3K4 methylation patterns
  publication-title: Molecular Cell
– volume: 99
  start-page: 8796
  issue: 13
  year: 2002
  end-page: 8801
  article-title: Transcriptional collision between convergent genes in budding yeast
  publication-title: Proceedings of the National Academy of Sciences
– volume: 469
  start-page: 368
  issue: 7330
  year: 2011
  end-page: 373
  article-title: Nascent transcript sequencing visualizes transcription at nucleotide resolution
  publication-title: Nature
– volume: 37
  issue: 4
  year: 2018
  article-title: High‐resolution transcription maps reveal the widespread impact of roadblock termination in yeast
  publication-title: The EMBO Journal
– volume: 2011
  year: 2011
  article-title: Cryptic transcription and early termination in the control of gene expression
  publication-title: Genetics Research International
– volume: 45
  start-page: 470
  issue: 4
  year: 2012
  end-page: 482
  article-title: Single‐cell analysis reveals that noncoding RNAs contribute to clonal heterogeneity by modulating transcription factor recruitment
  publication-title: Molecular Cell
– volume: 44
  start-page: 8065
  issue: 17
  year: 2016
  end-page: 8072
  article-title: Backmasking in the yeast genome: Encoding overlapping information for protein‐coding and RNA degradation
  publication-title: Nucleic Acids Research
– volume: 50
  start-page: 1533
  issue: 11
  year: 2018
  end-page: 1541
  article-title: Single‐molecule nascent RNA sequencing identifies regulatory domain architecture at promoters and enhancers
  publication-title: Nature Genetics
– volume: 65
  start-page: 685
  issue: 4
  year: 2017
  end-page: 698.e8
  article-title: Paf1 has distinct roles in transcription elongation and differential transcript fate
  publication-title: Molecular Cell
– volume: 32
  start-page: 57
  issue: 1
  year: 2016
  end-page: 71
  article-title: The interleaved genome
  publication-title: Trends in Genetics
– volume: 137
  start-page: 445
  issue: 3
  year: 2009
  end-page: 458
  article-title: Mechanisms that specify promoter nucleosome location and identity
  publication-title: Cell
– volume: 48
  start-page: 984
  issue: 9
  year: 2016
  end-page: 994
  article-title: Principles for RNA metabolism and alternative transcription initiation within closely spaced promoters
  publication-title: Nature Genetics
– volume: 110
  start-page: 15277
  issue: 38
  year: 2013
  end-page: 15282
  article-title: Structures of RNA polymerase II complexes with Bye1, a chromatin‐binding PHF3/DIDO homologue
  publication-title: Proceedings of the National Academy of Sciences of the United States of America
– volume: 12
  start-page: 1325
  issue: 5
  year: 2003
  end-page: 1332
  article-title: Methylation of histone H3 K4 mediates association of the Isw1p ATPase with chromatin
  publication-title: Molecular Cell
– volume: 109
  start-page: 1931
  issue: 6
  year: 2012
  end-page: 1936
  article-title: Histone density is maintained during transcription mediated by the chromatin remodeler RSC and histone chaperone NAP1 in vitro
  publication-title: Proceedings of the National Academy of Sciences
– volume: 60
  start-page: 422
  issue: 3
  year: 2015
  end-page: 434
  article-title: Nucleosome stability distinguishes two different promoter types at all protein‐coding genes in yeast
  publication-title: Molecular Cell
– volume: 48
  issue: 18
  year: 2020
  article-title: TIF‐Seq. 2 disentangles overlapping isoforms in complex human transcriptomes
  publication-title: Nucleic Acids Research
– volume: 458
  start-page: 362
  issue: 7236
  year: 2009
  end-page: 366
  article-title: The DNA‐encoded nucleosome organization of a eukaryotic genome
  publication-title: Nature
– volume: 32
  start-page: 878
  issue: 6
  year: 2008
  end-page: 887
  article-title: A library of yeast transcription factor motifs reveals a widespread function for Rsc3 in targeting nucleosome exclusion at promoters
  publication-title: Molecular Cell
– volume: 11
  start-page: R24
  issue: 3
  year: 2010
  article-title: High‐resolution transcription atlas of the mitotic cell cycle in budding yeast
  publication-title: Genome Biology
– volume: 497
  start-page: 127
  issue: 7447
  year: 2013
  end-page: 131
  article-title: Extensive transcriptional heterogeneity revealed by isoform profiling
  publication-title: Nature
– volume: 144
  start-page: 175
  issue: 2
  year: 2011
  end-page: 186
  article-title: High‐resolution genome‐wide mapping of the primary structure of chromatin
  publication-title: Cell
– volume: 161
  start-page: 526
  issue: 3
  year: 2015
  end-page: 540
  article-title: Mammalian NET‐Seq reveals genome‐wide nascent transcription coupled to RNA processing
  publication-title: Cell
– volume: 45
  start-page: 4493
  issue: 8
  year: 2017
  end-page: 4506
  article-title: Abf1 and other general regulatory factors control ribosome biogenesis gene expression in budding yeast
  publication-title: Nucleic Acids Research
– volume: 10
  start-page: 161
  issue: 3
  year: 2009
  end-page: 172
  article-title: Nucleosome positioning and gene regulation: Advances through genomics
  publication-title: Nature Reviews Genetics
– volume: 11
  start-page: 1455
  issue: 8
  year: 2016
  end-page: 1476
  article-title: Base‐pair‐resolution genome‐wide mapping of active RNA polymerases using precision nuclear run‐on (PRO‐seq
  publication-title: Nature Protocols
– volume: 14
  start-page: 880
  issue: 12
  year: 2013
  end-page: 893
  article-title: Gene regulation by antisense transcription
  publication-title: Nature Reviews Genetics
– volume: 36
  issue: 13
  year: 2021
  article-title: Spt4 facilitates the movement of RNA polymerase II through the +2 nucleosomal barrier
  publication-title: Cell Reports
– volume: 3
  year: 2014
  article-title: Transcription mediated insulation and interference direct gene cluster expression switches
  publication-title: eLife
– volume: 9
  start-page: 1740
  issue: 7
  year: 2014
  end-page: 1759
  article-title: Genome‐wide identification of transcript start and end sites by transcript isoform sequencing
  publication-title: Nature Protocols
– volume: 457
  start-page: 1033
  issue: 7232
  year: 2009
  end-page: 1037
  article-title: Bidirectional promoters generate pervasive transcription in yeast
  publication-title: Nature
– volume: 592
  start-page: 309
  issue: 7853
  year: 2021
  end-page: 314
  article-title: A high‐resolution protein architecture of the budding yeast genome
  publication-title: Nature
– volume: 56
  start-page: 667
  issue: 5
  year: 2014
  end-page: 680
  article-title: Roadblock termination by reb1p restricts cryptic and readthrough transcription
  publication-title: Molecular Cell
– volume: 37
  start-page: W202
  issue: Suppl. 2
  year: 2009
  end-page: W208
  article-title: MEME SUITE: Tools for motif discovery and searching
  publication-title: Nucleic Acids Research
– year: 2021
  article-title: Mapping human transient transcriptomes using single nucleotide resolution 4sU sequencing (SNU‐Seq)
  publication-title: BioRxiv
– volume: 5
  issue: 12
  year: 2010
  article-title: The prevalence and regulation of antisense transcripts in
  publication-title: PloS one
– volume: 375
  start-page: 1000
  issue: 6584
  year: 2022
  end-page: 1005
  article-title: Transcriptional neighborhoods regulate transcript isoform lengths and expression levels
  publication-title: Science
– volume: 7
  year: 2018
  article-title: Efficient termination of nuclear lncRNA transcription promotes mitochondrial genome maintenance
  publication-title: eLife
– volume: 167
  start-page: 709
  issue: 3
  year: 2016
  end-page: 721.e12
  article-title: Genomic nucleosome organization reconstituted with pure proteins
  publication-title: Cell
– volume: 309
  start-page: 1564
  issue: 5740
  year: 2005
  end-page: 1566
  article-title: Antisense transcription in the mammalian transcriptome
  publication-title: Science
– volume: 429
  start-page: 571
  issue: 6991
  year: 2004
  end-page: 574
  article-title: Intergenic transcription is required to repress the SER3 gene
  publication-title: Nature
– volume: 71
  start-page: 294
  issue: 2
  year: 2018
  end-page: 305.e4
  article-title: Systematic study of nucleosome‐displacing factors in budding yeast
  publication-title: Molecular Cell
– volume: 14
  issue: 2
  year: 2018
  article-title: Antisense transcription‐dependent chromatin signature modulates sense transcript dynamics
  publication-title: Molecular Systems Biology
– volume: 9
  issue: 5
  year: 2013
  article-title: A compendium of nucleosome and transcript profiles reveals determinants of chromatin architecture and transcription
  publication-title: PLoS Genetics
– volume: 26
  start-page: 799
  issue: 6
  year: 2016
  end-page: 811
  article-title: Divergence of a conserved elongation factor and transcription regulation in budding and fission yeast
  publication-title: Genome Research
– volume: 22
  start-page: 615
  issue: 5
  year: 2008
  end-page: 626
  article-title: A cryptic unstable transcript mediates transcriptional trans‐silencing of the Ty1 retrotransposon in
  publication-title: Genes & Development
– volume: 6
  year: 2017
  article-title: CRISPRi is not strand‐specific at all loci and redefines the transcriptional landscape
  publication-title: eLife
– volume: 186
  start-page: 2438
  issue: 11
  year: 2023
  end-page: 2455.e22
  article-title: Sites of transcription initiation drive mRNA isoform selection
  publication-title: Cell
– volume: 127
  start-page: 735
  issue: 4
  year: 2006
  end-page: 745
  article-title: Antisense transcription controls cell fate in
  publication-title: Cell
– volume: 34
  start-page: D446
  issue: Suppl. 1
  year: 2006
  end-page: D451
  article-title: The YEASTRACT database: a tool for the analysis of transcription regulatory associations in saccharomyces cerevisiae
  publication-title: Nucleic Acids Research
– volume: 339
  start-page: 950
  issue: 6122
  year: 2013
  end-page: 953
  article-title: Precise maps of RNA polymerase reveal how promoters direct initiation and pausing
  publication-title: Science
– volume: 155
  start-page: 1075
  issue: 5
  year: 2013
  end-page: 1087
  article-title: Transcriptome surveillance by selective termination of noncoding RNA synthesis
  publication-title: Cell
– volume: 43
  start-page: 7823
  issue: 16
  year: 2015
  end-page: 7837
  article-title: Sense and antisense transcription are associated with distinct chromatin architectures across genes
  publication-title: Nucleic Acids Research
– volume: 11
  start-page: 2589
  issue: 1
  year: 2020
  article-title: Transcript isoform sequencing reveals widespread promoter‐proximal transcriptional termination in Arabidopsis
  publication-title: Nature Communications
– volume: 7
  start-page: 458
  year: 2011
  article-title: Dynamic transcriptome analysis measures rates of mRNA synthesis and decay in yeast
  publication-title: Molecular Systems Biology
– volume: 6
  start-page: 12
  issue: 1
  year: 2016
  end-page: 21
  article-title: Using both strands: The fundamental nature of antisense transcription
  publication-title: BioArchitecture
– volume: 40
  start-page: 2432
  issue: 6
  year: 2012
  end-page: 2444
  article-title: A pre‐initiation complex at the 3′‐end of genes drives antisense transcription independent of divergent sense transcription
  publication-title: Nucleic Acids Research
– ident: e_1_2_9_43_1
  doi: 10.7554/eLife.03635
– ident: e_1_2_9_31_1
  doi: 10.1016/j.molcel.2015.10.002
– ident: e_1_2_9_3_1
  doi: 10.1093/nar/gkp335
– ident: e_1_2_9_27_1
  doi: 10.1038/nature07667
– ident: e_1_2_9_47_1
  doi: 10.1038/nrg3594
– ident: e_1_2_9_32_1
  doi: 10.1073/pnas.1109994109
– ident: e_1_2_9_52_1
  doi: 10.1016/s1097-2765(03)00438-6
– ident: e_1_2_9_19_1
  doi: 10.4061/2011/653494
– ident: e_1_2_9_12_1
  doi: 10.1016/j.molcel.2011.11.029
– ident: e_1_2_9_65_1
  doi: 10.1016/j.cell.2011.01.003
– ident: e_1_2_9_48_1
  doi: 10.1038/nprot.2014.121
– ident: e_1_2_9_24_1
  doi: 10.1016/j.cell.2006.09.038
– ident: e_1_2_9_33_1
  doi: 10.1126/science.1229386
– ident: e_1_2_9_53_1
  doi: 10.1016/j.cell.2013.10.024
– ident: e_1_2_9_25_1
  doi: 10.7554/eLife.29878
– ident: e_1_2_9_55_1
  doi: 10.1093/nar/gkj013
– ident: e_1_2_9_63_1
  doi: 10.1038/nature07728
– ident: e_1_2_9_14_1
  doi: 10.15252/embj.201797490
– ident: e_1_2_9_6_1
  doi: 10.1101/gad.458008
– ident: e_1_2_9_4_1
  doi: 10.1016/j.molcel.2008.11.020
– ident: e_1_2_9_10_1
  doi: 10.1126/science.abg0162
– ident: e_1_2_9_15_1
  doi: 10.1016/j.molcel.2018.11.037
– ident: e_1_2_9_60_1
  doi: 10.1093/nar/gkaa691
– ident: e_1_2_9_57_1
  doi: 10.1093/bib/bbs017
– ident: e_1_2_9_51_1
  doi: 10.1038/s41586-021-03314-8
– ident: e_1_2_9_34_1
  doi: 10.1101/2021.07.14.452379
– ident: e_1_2_9_44_1
  doi: 10.1371/journal.pone.0015271
– ident: e_1_2_9_30_1
  doi: 10.1016/j.cell.2016.09.045
– ident: e_1_2_9_50_1
  doi: 10.1073/pnas.132270899
– ident: e_1_2_9_62_1
  doi: 10.26508/lsa.202201394
– ident: e_1_2_9_41_1
  doi: 10.1080/19490992.2015.1130779
– ident: e_1_2_9_29_1
  doi: 10.1073/pnas.1311010110
– ident: e_1_2_9_17_1
  doi: 10.1038/nature09652
– ident: e_1_2_9_40_1
  doi: 10.1093/nar/gkv666
– ident: e_1_2_9_28_1
  doi: 10.1126/science.1112009
– ident: e_1_2_9_18_1
  doi: 10.1016/j.molcel.2014.10.026
– ident: e_1_2_9_22_1
  doi: 10.1016/j.cell.2009.02.043
– ident: e_1_2_9_8_1
  doi: 10.1101/gr.204578.116
– ident: e_1_2_9_11_1
  doi: 10.15252/msb.20178007
– ident: e_1_2_9_42_1
  doi: 10.1093/nar/gkr1121
– ident: e_1_2_9_49_1
  doi: 10.1038/nature12121
– ident: e_1_2_9_9_1
  doi: 10.1093/nar/gkx058
– ident: e_1_2_9_23_1
  doi: 10.1126/science.1163853
– ident: e_1_2_9_16_1
  doi: 10.1038/ng.3616
– ident: e_1_2_9_21_1
  doi: 10.1186/gb-2010-11-3-r24
– ident: e_1_2_9_37_1
  doi: 10.7554/eLife.31989
– ident: e_1_2_9_35_1
  doi: 10.1038/nprot.2016.086
– ident: e_1_2_9_46_1
  doi: 10.15252/msb.20145172
– ident: e_1_2_9_61_1
  doi: 10.1016/j.molcel.2015.12.020
– ident: e_1_2_9_54_1
  doi: 10.1016/j.molcel.2017.10.013
– ident: e_1_2_9_2_1
  doi: 10.1016/j.cell.2023.04.012
– ident: e_1_2_9_56_1
  doi: 10.1038/s41467-020-16390-7
– ident: e_1_2_9_59_1
  doi: 10.1016/j.celrep.2021.109755
– ident: e_1_2_9_13_1
  doi: 10.1093/nar/gkw683
– ident: e_1_2_9_26_1
  doi: 10.1038/nrg2522
– ident: e_1_2_9_39_1
  doi: 10.1038/msb.2010.112
– ident: e_1_2_9_20_1
  doi: 10.1016/j.molcel.2017.01.006
– ident: e_1_2_9_45_1
  doi: 10.1016/j.cell.2015.03.027
– ident: e_1_2_9_5_1
  doi: 10.1371/journal.pgen.1003479
– ident: e_1_2_9_7_1
  doi: 10.1101/sqb.2010.75.060
– ident: e_1_2_9_36_1
  doi: 10.1038/nature02538
– ident: e_1_2_9_38_1
  doi: 10.1016/j.tig.2015.10.006
– ident: e_1_2_9_58_1
  doi: 10.1038/s41588-018-0234-5
– ident: e_1_2_9_64_1
  doi: 10.1016/j.molcel.2018.06.017
SSID ssj0011528
Score 2.4103162
Snippet Genomes from yeast to humans are subject to pervasive transcription. A single round of pervasive transcription is sufficient to alter local chromatin...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 222
SubjectTerms Antisense RNA
bioinformatics
Chromatin
fractionation
Gene expression
Gene mapping
gene regulation
genome
Genomes
Humans
nascent transcript mapping
nucleosomes
Polyadenylation
Promoter Regions, Genetic
Promoters
Reb1
S. cerevisiae
Saccharomyces cerevisiae
Saccharomyces cerevisiae - genetics
size fractionated NET‐Seq
transcription
transcription (genetics)
transcription factors
Transcription Factors - genetics
Transcription, Genetic
Yeast
yeasts
Title Size fractionated NET‐Seq reveals a conserved architecture of transcription units around yeast genes
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fyea.3931
https://www.ncbi.nlm.nih.gov/pubmed/38433440
https://www.proquest.com/docview/3034132076
https://www.proquest.com/docview/2937334512
https://www.proquest.com/docview/3153196187
Volume 41
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bS9xAFD7oYsGXWm_ttlZGEPsU3WQmk-TRlhURFPECK30Ik7lIadlt91JYn_wJ_kZ_Sc_JJPFSBfEpkJyE2cy5fGdzzncANp0shNKWB8oJTFAiEwZpGKpAG8yHtMGDpEbhwyO5fy4OenGvqqqkXhjPD9H84UaWUfprMnBVjHbuSEOnVmHCXrZQU6kW4aGThjkKcU45VhUDZBbEHd6reWc70U5948NI9B-8fIhWy3CztwDf64X6KpOf25Nxsa2vHnE4vu6XvIO3FQplu15tFmHG9pfgjZ9LOV2Cua8DxIzTZXCnP64sc0Pf_YCw1LCj7tnt9c2p_cOI_AmVlymmqSR7-Bev3v8uwQaOjSkU1o6JTdB_oPyQRjmxKU0NYpfka1fgfK979m0_qCYzBJoSosDGyiEUM0Jz6YhSULskKSJrY1nw2HJlMO20WZya0OHmOIcnpJaoE1Jo9CF8FVr9Qd9-ACZMxF2caUncbfgEFaUuycJMJUlmjNZt-FLvUq4r2nKanvEr94TLUY7Lzen1tWGjkfztqTqekFmrNzqvjHWUYxQX1EmeSHxEcxnNjL6dqL4dTEY5oqKEc4Hw6HkZHpYOLUyTNrz3StQshKcCbxedNmyVqvDsCvOL7i4dP75U8BPMRwi0fDXRGrTGw4n9jEBpXKzDbCSO10vD-AdsRRIZ
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1fT9RAEJ8QxMiLICocoK6J0afCtbvdtvEJzZFT4R7kSM7EZLPdP4ZA7vS4Izme-Ah8Rj-JM91rFZXE-NSknd1s2_nzm3bnNwAvvCyFNo5H2gtMUBIbR3kc68hYzIeMxYOkQuHDnuwei_eDdLAAr-tamMAP0XxwI8uo_DUZOH2Q3v3JGjpzGjN2qqG-Qw29q3zqY8MdhUinaqyKIbKI0jYf1Myz7WS3HnkzFv0BMG_i1Srg7K_A53qpYZ_J6c50Uu6Yy99YHP_zXlbh_hyIsr2gOQ9gwQ3X4G5oTTlbg6U3I4SNs4fgj04uHfPjUACByNSyXqf__er6yH1jxP-E-ss0M7Qre3yBV3_9NcFGnk0oGta-iU3RhaD8mLo5sRk1DmJfyN0-guP9Tv9tN5o3Z4gM5USRS7VHNGaF4dITq6DxWVYmzqWy5Knj2mLm6Yo0t7GPUcTjCWkkqoUUBt0IfwyLw9HQbQATNuE-LYwk-jacQSe5z4q40FlWWGtMC17Vr0mZOXM5NdA4U4FzOVG4XEWPrwXPG8mvga3jLzLb9ZtWc3s9VxjIBRWTZxKnaC6jpdHvEz10o-m5QmCUcS4QId0uw-PKp8V51oL1oEXNQngucLhot-BlpQu3rlB96uzRcfNfBZ_BvW7_8EAdvOt92ILlBHFX2Fy0DYuT8dQ9Qdw0KZ9W9vED_YEVXQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB5VpaBeoBRolz4wEoJT2k3sOMmx0F2V1wrRVlrEwXL8QAi02253kban_gR-I7-EmTgJLVAJcYqUjCMnnsc3iecbgCdelkIbxyPtBSYoiY2jPI51ZCzmQ8biQVKh8NuBPDgWr4bpsN5VSbUwgR-i_eBGllH5azLwE-t3f5GGzp3GhJ1KqG8I2c1Jo_fft9RRCHSqvqoYIYso7fJhQzzbTXabkVdD0R_48ipcreJN_w58bGYatpl82ZlNyx1z_huJ4_89ygrcrmEo2wt6cxcW3GgVbobGlPNVWHo-RtA4vwf-8PO5Y34Syh8Ql1o26B39uPh-6E4ZsT-h9jLNDO3JnnzDq5d_TLCxZ1OKhY1nYjN0ICg_oV5ObE5tg9gncrb34bjfO3pxENWtGSJDGVHkUu0Ri1lhuPTEKWh8lpWJc6kseeq4tph3uiLNbexjFPF4QhqJSiGFQSfCH8DiaDxy68CETbhPCyOJvA3voJPcZ0Vc6CwrrDWmA8-aVVKm5i2n9hlfVWBcThROV9Hr68DjVvIkcHX8RWazWWhVW-uZwjAuqJQ8k3iL9jLaGf080SM3np0phEUZ5wLx0fUyPK48WpxnHVgLStROhOcCh4tuB55WqnDtDNWH3h4dH_6r4CO49W6_r968HLzegOUEQVfYWbQJi9PJzG0haJqW25V1_ATSyRQV
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Size+fractionated+NET%E2%80%90Seq+reveals+a+conserved+architecture+of+transcription+units+around+yeast+genes&rft.jtitle=Yeast+%28Chichester%2C+England%29&rft.au=Xi%2C+Shidong&rft.au=Nguyen%2C+Tania&rft.au=Murray%2C+Struan&rft.au=Lorenz%2C+Phil&rft.date=2024-04-01&rft.issn=0749-503X&rft.eissn=1097-0061&rft.volume=41&rft.issue=4&rft.spage=222&rft.epage=241&rft_id=info:doi/10.1002%2Fyea.3931&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_yea_3931
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0749-503X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0749-503X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0749-503X&client=summon