Metal‐Free Organocatalyzed Atom Transfer Radical Polymerization: Synthesis, Applications, and Future Perspectives
Reversible deactivation radical polymerization (RDRP) is a class of powerful techniques capable of synthesizing polymers with a well‐defined structure, properties, and functionalities. Among the available RDRPs, ATRP is the most investigated. However, the necessity of a metal catalyst represents a d...
Saved in:
Published in | Macromolecular rapid communications. Vol. 42; no. 15; pp. e2100221 - n/a |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Weinheim
Wiley Subscription Services, Inc
01.08.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Reversible deactivation radical polymerization (RDRP) is a class of powerful techniques capable of synthesizing polymers with a well‐defined structure, properties, and functionalities. Among the available RDRPs, ATRP is the most investigated. However, the necessity of a metal catalyst represents a drawback and limits its use for some applications. O‐ATRP emerged as an alternative to traditional ATRP that uses organic compounds that catalyze polymerization under light irradiation instead of metal. The friendly nature and the robustness of O‐ATRP allow its use in the synthesis of tailorable advanced materials with unique properties. In this review, the fundamental aspects of the reductive and oxidative quenching mechanism of O‐ATRP are provided, as well as insights into each component and its role in the reaction. Besides, the breakthrough recent studies that applied O‐ATRP for the synthesis of functional materials are presented, which illustrate the significant potential and impact of this technique across diverse fields.
O‐ATRP has emerged as an important alternative for controllable polymerizations due to the use of photoredox organic catalysts instead of metals. The robustness and friendly‐nature of O‐ATRP endorse its use in the synthesis of tailorable materials with diverse properties. This review covers the fundamental aspects and progress of O‐ATRP, as well as developments in O‐ATRP‐based materials for several areas. |
---|---|
AbstractList | Reversible deactivation radical polymerization (RDRP) is a class of powerful techniques capable of synthesizing polymers with a well‐defined structure, properties, and functionalities. Among the available RDRPs, ATRP is the most investigated. However, the necessity of a metal catalyst represents a drawback and limits its use for some applications. O‐ATRP emerged as an alternative to traditional ATRP that uses organic compounds that catalyze polymerization under light irradiation instead of metal. The friendly nature and the robustness of O‐ATRP allow its use in the synthesis of tailorable advanced materials with unique properties. In this review, the fundamental aspects of the reductive and oxidative quenching mechanism of O‐ATRP are provided, as well as insights into each component and its role in the reaction. Besides, the breakthrough recent studies that applied O‐ATRP for the synthesis of functional materials are presented, which illustrate the significant potential and impact of this technique across diverse fields.
O‐ATRP has emerged as an important alternative for controllable polymerizations due to the use of photoredox organic catalysts instead of metals. The robustness and friendly‐nature of O‐ATRP endorse its use in the synthesis of tailorable materials with diverse properties. This review covers the fundamental aspects and progress of O‐ATRP, as well as developments in O‐ATRP‐based materials for several areas. Reversible deactivation radical polymerization (RDRP) is a class of powerful techniques capable of synthesizing polymers with a well-defined structure, properties, and functionalities. Among the available RDRPs, ATRP is the most investigated. However, the necessity of a metal catalyst represents a drawback and limits its use for some applications. O-ATRP emerged as an alternative to traditional ATRP that uses organic compounds that catalyze polymerization under light irradiation instead of metal. The friendly nature and the robustness of O-ATRP allow its use in the synthesis of tailorable advanced materials with unique properties. In this review, the fundamental aspects of the reductive and oxidative quenching mechanism of O-ATRP are provided, as well as insights into each component and its role in the reaction. Besides, the breakthrough recent studies that applied O-ATRP for the synthesis of functional materials are presented, which illustrate the significant potential and impact of this technique across diverse fields.Reversible deactivation radical polymerization (RDRP) is a class of powerful techniques capable of synthesizing polymers with a well-defined structure, properties, and functionalities. Among the available RDRPs, ATRP is the most investigated. However, the necessity of a metal catalyst represents a drawback and limits its use for some applications. O-ATRP emerged as an alternative to traditional ATRP that uses organic compounds that catalyze polymerization under light irradiation instead of metal. The friendly nature and the robustness of O-ATRP allow its use in the synthesis of tailorable advanced materials with unique properties. In this review, the fundamental aspects of the reductive and oxidative quenching mechanism of O-ATRP are provided, as well as insights into each component and its role in the reaction. Besides, the breakthrough recent studies that applied O-ATRP for the synthesis of functional materials are presented, which illustrate the significant potential and impact of this technique across diverse fields. Reversible deactivation radical polymerization (RDRP) is a class of powerful techniques capable of synthesizing polymers with a well‐defined structure, properties, and functionalities. Among the available RDRPs, ATRP is the most investigated. However, the necessity of a metal catalyst represents a drawback and limits its use for some applications. O‐ATRP emerged as an alternative to traditional ATRP that uses organic compounds that catalyze polymerization under light irradiation instead of metal. The friendly nature and the robustness of O‐ATRP allow its use in the synthesis of tailorable advanced materials with unique properties. In this review, the fundamental aspects of the reductive and oxidative quenching mechanism of O‐ATRP are provided, as well as insights into each component and its role in the reaction. Besides, the breakthrough recent studies that applied O‐ATRP for the synthesis of functional materials are presented, which illustrate the significant potential and impact of this technique across diverse fields. |
Author | R. Rodrigues, Plínio Pioli Vieira, Roniérik Ávila Gonçalves, Sayeny |
Author_xml | – sequence: 1 givenname: Sayeny orcidid: 0000-0002-8635-8227 surname: Ávila Gonçalves fullname: Ávila Gonçalves, Sayeny email: sayeny.avila@gmail.com organization: University of Campinas – sequence: 2 givenname: Plínio orcidid: 0000-0002-6652-5470 surname: R. Rodrigues fullname: R. Rodrigues, Plínio organization: University of Campinas – sequence: 3 givenname: Roniérik orcidid: 0000-0002-1887-3120 surname: Pioli Vieira fullname: Pioli Vieira, Roniérik organization: University of Campinas |
BookMark | eNqFkcFu1DAQhi1UJNrClbMlLhzIYjuOk3BbrViK1KpVKedo1jsGV1472A4oPfEIPGOfBC-LQKqEOHnm1_fbnn9OyJEPHgl5ztmCMyZe7yDqhWBi3wj-iBzzRvCq7kV7VOqiVbyu1RNyktItY6yTTByTdIEZ3P33H-uISC_jJ_BBQ5HmO9zSZQ47ehPBJ4ORXsPWanD0Krh5h9HeQbbBv6EfZp8_Y7LpFV2OoyvMXi8d-C1dT3mKSK8wphF1tl8xPSWPDbiEz36fp-Tj-u3N6qw6v3z3frU8r7TkildCGtZujWaqFUqJ1nBleKNBMdEYbEH0zUYrDQygVmbT9a3elLE0agkGUNen5OXh3jGGLxOmPOxs0ugceAxTGkQjOyUY72VBXzxAb8MUffldoZpOyk6qulCLA6VjSCmiGcZoS-zzwNmwj33Y72D4s4NikA8M2uZf6eQI1v3b1h9s36zD-T-PDBfL69Vf70-VeKCJ |
CitedBy_id | crossref_primary_10_1039_D4CC05772D crossref_primary_10_1134_S1560090424600852 crossref_primary_10_1134_S1811238222700035 crossref_primary_10_31857_S2308113924030018 crossref_primary_10_1002_wnan_1861 crossref_primary_10_1016_j_fpsl_2023_101085 crossref_primary_10_1021_acs_macromol_1c02060 crossref_primary_10_31857_S2308113923700481 crossref_primary_10_1002_pol_20240155 crossref_primary_10_1016_j_eurpolymj_2021_110861 crossref_primary_10_1021_acssuschemeng_4c01406 crossref_primary_10_1002_pol_20220642 crossref_primary_10_1134_S1560090423700975 crossref_primary_10_31857_S2308113923700535 crossref_primary_10_1039_D4PY00407H crossref_primary_10_1039_D1PY01568K crossref_primary_10_1039_D2CS01060G crossref_primary_10_1039_D2QM00644H crossref_primary_10_3390_molecules29122763 crossref_primary_10_3390_polym16101408 crossref_primary_10_3390_ma17081775 crossref_primary_10_1021_polymscitech_4c00039 crossref_primary_10_1039_D1PY01079D crossref_primary_10_1016_j_foodhyd_2023_109558 crossref_primary_10_1016_j_progpolymsci_2022_101555 crossref_primary_10_1002_marc_202200855 crossref_primary_10_1039_D2PY01457B crossref_primary_10_1016_j_eurpolymj_2021_110873 crossref_primary_10_1007_s10570_023_05345_y crossref_primary_10_1016_j_ijbiomac_2024_138775 crossref_primary_10_1007_s00289_023_04942_y crossref_primary_10_1016_j_susmat_2024_e01099 crossref_primary_10_1134_S1560090423701099 crossref_primary_10_1039_D4PY00931B |
Cites_doi | 10.1016/j.reactfunctpolym.2019.104453 10.1021/ma3001719 10.1016/j.eurpolymj.2019.05.023 10.1021/acs.macromol.8b00348 10.1007/s13726-018-0661-2 10.1016/j.polymer.2008.08.054 10.1007/s10570-019-02449-2 10.1007/s10008-018-4164-z 10.1007/s10924-020-01823-7 10.1016/j.phrs.2016.10.016 10.1002/app.46567 10.1016/j.cej.2021.128596 10.1016/j.reactfunctpolym.2020.104541 10.1002/marc.201800466 10.1021/acs.macromol.6b02791 10.1016/j.etap.2019.103220 10.1126/science.aaf3935 10.1016/j.polymer.2014.04.005 10.1021/acs.chemrev.6b00008 10.1021/jacs.9b07230 10.1016/j.toxlet.2005.10.003 10.1016/j.eurpolymj.2020.109565 10.1021/acsami.9b12264 10.1021/jacs.6b11022 10.1021/acs.macromol.7b01335 10.1016/j.dyepig.2019.01.060 10.1002/macp.201800192 10.3390/polym11101577 10.1021/acsmacrolett.8b00497 10.1021/bk-2000-0768.ch024 10.1039/C6RA26290B 10.1007/s00289-014-1244-9 10.1021/acs.macromol.6b01997 10.1002/marc.201700143 10.1080/10601325.2017.1387493 10.1002/jat.1385 10.1021/mz500834g 10.1002/macp.202000008 10.2147/IJN.S112415 10.1039/C9PY01370A 10.3390/polym11040599 10.1021/ma00109a056 10.1021/acsmacrolett.1c00055 10.1021/jacs.6b08068 10.1021/acs.macromol.0c01367 10.1021/acs.iecr.8b05020 10.1021/acs.macromol.8b01401 10.1021/acsami.7b01863 10.1021/ma500842u 10.1021/acs.macromol.9b01275 10.1016/j.matlet.2020.127874 10.1021/acs.macromol.8b02339 10.1021/acs.macromol.8b02688 10.1038/s41467-020-20645-8 10.1007/s00289-019-02773-4 10.1002/chem.201904271 10.1590/S0104-14282008000200006 10.1021/ja00125a035 10.1016/j.cej.2019.01.087 10.1016/j.progpolymsci.2011.08.001 10.1002/marc.201800479 10.1021/acs.macromol.7b02240 10.1021/jacs.5b13455 10.1063/1.5140719 10.1016/j.eurpolymj.2020.109557 10.1016/j.polymer.2009.04.024 10.1016/j.reactfunctpolym.2020.104632 10.1039/C7PY00069C 10.3390/polym9020058 10.1039/C7PY01833A 10.1021/ja510389m 10.1080/03602559.2016.1146905 10.1039/C6PY00251J 10.1002/adma.201706441 10.1021/ma300410v 10.1080/10601325.2019.1681899 10.1021/acs.chemrev.5b00396 10.1039/C6CS00526H 10.1039/C8PY00207J 10.1002/pola.29386 10.1002/pola.28574 10.1039/D0PY00643B 10.1007/s10570-019-02845-8 10.1021/acs.chemrev.5b00586 10.1016/j.snb.2013.03.042 10.1016/j.reactfunctpolym.2020.104547 10.1016/j.apsusc.2019.144799 10.1021/jacs.7b12074 10.1021/ma500883y 10.1002/anie.201711053 10.1016/j.eurpolymj.2020.109724 10.1002/cptc.201800032 10.1016/j.eurpolymj.2019.03.023 10.1016/j.talanta.2021.122160 10.1039/C7PY00114B 10.1039/C9GC00138G 10.1021/acs.macromol.7b00767 10.1002/app.46879 10.1021/ar200242z 10.1021/acs.macromol.6b01752 10.1021/acssuschemeng.8b06726 10.1021/cr9001269 10.1002/cctc.201501389 10.1021/acs.jpca.9b03286 10.1007/s00216-010-4198-2 10.1016/j.msec.2019.110553 10.1016/j.apsusc.2017.11.039 10.1021/acs.macromol.6b01774 10.1007/s10570-019-02528-4 10.1016/j.addr.2016.01.008 10.1021/jacs.7b07829 10.1039/D0SC01194K 10.1016/j.progpolymsci.2003.12.002 10.1039/C8PY00361K 10.1002/pi.5488 10.1016/j.apsusc.2016.08.154 10.1021/ma502044f 10.1021/acs.macromol.7b00502 10.1039/C6PY01417H 10.1039/C6PY01410K 10.1016/j.polymer.2019.122073 10.1002/marc.201700040 10.3390/polym11122026 10.1002/marc.201700423 10.1021/ma052358r 10.1039/C5PY01765C 10.1039/C9PY00774A 10.1002/ange.201412494 10.1021/acsmacrolett.6b00004 10.1002/anie.201910828 10.1021/acsenergylett.7b00999 10.1021/acs.jpca.9b10404 10.1002/chem.201605574 10.1016/j.micromeso.2020.110520 10.1021/jacs.5b02617 10.1016/j.msec.2017.03.261 10.1016/j.polymer.2015.05.043 10.1021/acsmacrolett.6b00295 10.1039/C9PY01742A 10.1021/ja4036016 10.1039/C8PY01459K 10.1021/jacs.7b01694 10.1371/journal.pone.0190880 |
ContentType | Journal Article |
Copyright | 2021 Wiley‐VCH GmbH 2021 Wiley-VCH GmbH. |
Copyright_xml | – notice: 2021 Wiley‐VCH GmbH – notice: 2021 Wiley-VCH GmbH. |
DBID | AAYXX CITATION 7SR 7U5 8FD JG9 JQ2 L7M 7X8 |
DOI | 10.1002/marc.202100221 |
DatabaseName | CrossRef Engineered Materials Abstracts Solid State and Superconductivity Abstracts Technology Research Database Materials Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace MEDLINE - Academic |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace ProQuest Computer Science Collection MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic CrossRef Materials Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1521-3927 |
EndPage | n/a |
ExternalDocumentID | 10_1002_marc_202100221 MARC202100221 |
Genre | reviewArticle |
GrantInformation_xml | – fundername: Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) funderid: 001 – fundername: Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) funderid: 306464/2016‐0 – fundername: Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) funderid: 2018/02508‐5 |
GroupedDBID | --- -~X .3N .GA .Y3 05W 0R~ 10A 1L6 1OB 1OC 1ZS 31~ 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 6P2 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABJNI ABLJU ABPVW ABTAH ACAHQ ACBWZ ACCFJ ACCZN ACGFS ACIWK ACPOU ACRPL ACSCC ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFRAH AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR1 DR2 DRFUL DRSTM DU5 EBD EBS EJD F00 F01 F04 F5P FEDTE G-S G.N GNP GODZA GYXMG H.T H.X HBH HF~ HGLYW HHY HHZ HVGLF HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M6T MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D PALCI Q.N Q11 QB0 QRW R.K RIWAO RJQFR RNS ROL RWB RWI RX1 RYL SAMSI SUPJJ TUS UB1 V2E W8V W99 WBKPD WFSAM WIB WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XV2 ZY4 ZZTAW ~IA ~WT AAYXX ADMLS AEYWJ AGHNM AGQPQ AGYGG CITATION 7SR 7U5 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY JG9 JQ2 L7M 7X8 |
ID | FETCH-LOGICAL-c4161-24f07dfc06726627f16f15ca6025fe7a295bc6ca0aa36fb897cb008cec4afaec3 |
IEDL.DBID | DR2 |
ISSN | 1022-1336 1521-3927 |
IngestDate | Thu Jul 10 23:31:11 EDT 2025 Fri Jul 25 12:21:53 EDT 2025 Thu Apr 24 22:56:48 EDT 2025 Tue Jul 01 03:31:44 EDT 2025 Wed Jan 22 16:28:12 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 15 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4161-24f07dfc06726627f16f15ca6025fe7a295bc6ca0aa36fb897cb008cec4afaec3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
ORCID | 0000-0002-6652-5470 0000-0002-1887-3120 0000-0002-8635-8227 |
PQID | 2558448463 |
PQPubID | 1016394 |
PageCount | 22 |
ParticipantIDs | proquest_miscellaneous_2548620194 proquest_journals_2558448463 crossref_primary_10_1002_marc_202100221 crossref_citationtrail_10_1002_marc_202100221 wiley_primary_10_1002_marc_202100221_MARC202100221 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | August 2021 |
PublicationDateYYYYMMDD | 2021-08-01 |
PublicationDate_xml | – month: 08 year: 2021 text: August 2021 |
PublicationDecade | 2020 |
PublicationPlace | Weinheim |
PublicationPlace_xml | – name: Weinheim |
PublicationTitle | Macromolecular rapid communications. |
PublicationYear | 2021 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2004; 29 2019; 11 2019; 10 2006; 39 2020; 11 2014; 136 2019; 165 2018; 7 2018; 9 2018; 39 2018; 2 2015; 137 1995; 28 2019; 21 2017; 77 2019; 23 2000; 768 2019; 26 2006; 163 2018; 30 2018; 219 2016; 390 2016; 49 2016; 45 2019; 7 2015; 127 2014; 47 2020; 147 2013; 182 2018; 27 2017; 139 2016; 11 2020; 308 2017; 50 2016; 5 2016; 7 2015; 69 2020; 273 2021; 412 2019; 43 2020; 154 2017; 55 2008; 49 2020; 150 2017; 56 2020; 28 2020; 27 2020; 26 2012; 45 2009; 109 2016; 8 2018; 13 2017; 7 2017; 8 2011; 399 2017; 3 2019; 52 2019; 57 2020; 126 2020; 127 2020; 59 2020; 57 2020; 124 2016; 104 2017; 9 2019; 123 2019; 362 2020; 53 2009; 50 2020; 131 2017; 38 2018; 135 2019; 115 2016; 352 2016; 116 2019; 117 2016; 114 2014; 55 2019; 71 2018; 140 2015; 4 2011 2020; 186 2008; 18 2021; 226 2017; 23 1995; 117 2020; 221 2020; 77 2011; 37 2018; 67 2019; 141 2020; 508 2020; 109 2009; 29 2021; 10 2021; 12 2018; 434 2013; 30 2013; 135 2018; 51 2016; 138 2018; 55 2014; 71 2018; 57 e_1_2_9_75_1 e_1_2_9_98_1 e_1_2_9_52_1 e_1_2_9_79_1 e_1_2_9_94_1 e_1_2_9_10_1 e_1_2_9_56_1 e_1_2_9_33_1 e_1_2_9_90_1 e_1_2_9_71_1 e_1_2_9_103_1 e_1_2_9_126_1 e_1_2_9_149_1 e_1_2_9_107_1 e_1_2_9_122_1 e_1_2_9_145_1 e_1_2_9_14_1 e_1_2_9_141_1 e_1_2_9_37_1 e_1_2_9_18_1 e_1_2_9_64_1 e_1_2_9_87_1 e_1_2_9_22_1 e_1_2_9_45_1 e_1_2_9_68_1 e_1_2_9_83_1 e_1_2_9_6_1 e_1_2_9_119_1 e_1_2_9_60_1 e_1_2_9_2_1 e_1_2_9_138_1 e_1_2_9_111_1 e_1_2_9_134_1 e_1_2_9_115_1 e_1_2_9_157_1 e_1_2_9_26_1 e_1_2_9_49_1 e_1_2_9_130_1 e_1_2_9_153_1 e_1_2_9_30_1 e_1_2_9_53_1 e_1_2_9_99_1 e_1_2_9_72_1 e_1_2_9_11_1 e_1_2_9_34_1 e_1_2_9_57_1 e_1_2_9_95_1 e_1_2_9_76_1 e_1_2_9_91_1 e_1_2_9_102_1 e_1_2_9_148_1 e_1_2_9_129_1 e_1_2_9_144_1 e_1_2_9_106_1 e_1_2_9_125_1 e_1_2_9_15_1 e_1_2_9_38_1 e_1_2_9_140_1 e_1_2_9_121_1 e_1_2_9_19_1 e_1_2_9_42_1 e_1_2_9_88_1 e_1_2_9_61_1 e_1_2_9_46_1 e_1_2_9_84_1 e_1_2_9_23_1 e_1_2_9_80_1 e_1_2_9_5_1 e_1_2_9_1_1 e_1_2_9_114_1 e_1_2_9_137_1 e_1_2_9_118_1 e_1_2_9_133_1 e_1_2_9_156_1 e_1_2_9_9_1 Capek I. (e_1_2_9_27_1) 2011 e_1_2_9_152_1 e_1_2_9_69_1 e_1_2_9_110_1 e_1_2_9_31_1 e_1_2_9_50_1 e_1_2_9_73_1 e_1_2_9_35_1 e_1_2_9_77_1 e_1_2_9_96_1 e_1_2_9_12_1 e_1_2_9_54_1 e_1_2_9_92_1 e_1_2_9_109_1 e_1_2_9_101_1 e_1_2_9_128_1 e_1_2_9_105_1 e_1_2_9_124_1 e_1_2_9_147_1 e_1_2_9_39_1 e_1_2_9_120_1 e_1_2_9_16_1 e_1_2_9_58_1 e_1_2_9_143_1 e_1_2_9_20_1 e_1_2_9_62_1 e_1_2_9_89_1 e_1_2_9_24_1 e_1_2_9_43_1 e_1_2_9_66_1 e_1_2_9_85_1 e_1_2_9_81_1 e_1_2_9_4_1 e_1_2_9_113_1 e_1_2_9_117_1 e_1_2_9_155_1 e_1_2_9_136_1 e_1_2_9_151_1 e_1_2_9_28_1 e_1_2_9_47_1 e_1_2_9_132_1 e_1_2_9_74_1 e_1_2_9_51_1 e_1_2_9_78_1 Nicolas J. (e_1_2_9_8_1) 2013; 30 e_1_2_9_13_1 e_1_2_9_32_1 e_1_2_9_55_1 e_1_2_9_97_1 e_1_2_9_93_1 e_1_2_9_108_1 e_1_2_9_70_1 e_1_2_9_127_1 e_1_2_9_100_1 e_1_2_9_123_1 e_1_2_9_104_1 e_1_2_9_146_1 e_1_2_9_17_1 e_1_2_9_36_1 e_1_2_9_59_1 e_1_2_9_142_1 Tran H. M. (e_1_2_9_41_1) 2019; 43 e_1_2_9_63_1 e_1_2_9_40_1 Tran H. M. (e_1_2_9_65_1) 2019; 43 e_1_2_9_21_1 e_1_2_9_67_1 e_1_2_9_44_1 e_1_2_9_86_1 e_1_2_9_7_1 e_1_2_9_82_1 e_1_2_9_3_1 e_1_2_9_112_1 e_1_2_9_139_1 e_1_2_9_116_1 e_1_2_9_135_1 e_1_2_9_158_1 e_1_2_9_25_1 e_1_2_9_131_1 e_1_2_9_154_1 e_1_2_9_48_1 e_1_2_9_29_1 e_1_2_9_150_1 |
References_xml | – year: 2011 – volume: 45 start-page: 4015 year: 2012 publication-title: Macromolecules – volume: 9 start-page: 58 year: 2017 publication-title: Polymers – volume: 127 start-page: 5281 year: 2015 publication-title: Angew. Chem. – volume: 2 start-page: 831 year: 2018 publication-title: ChemPhotoChem – volume: 23 start-page: 583 year: 2019 publication-title: J. Solid State Electrochem. – volume: 136 year: 2014 publication-title: J. Am. Chem. Soc. – volume: 135 year: 2018 publication-title: J. Appl. Polym. Sci. – volume: 13 year: 2018 publication-title: PLoS One – volume: 114 start-page: 56 year: 2016 publication-title: Pharmacol. Res. – volume: 52 start-page: 747 year: 2019 publication-title: Macromolecules – volume: 49 start-page: 7709 year: 2016 publication-title: Macromolecules – volume: 126 year: 2020 publication-title: Eur. Polym. J. – volume: 49 start-page: 7785 year: 2016 publication-title: Macromolecules – volume: 138 start-page: 2411 year: 2016 publication-title: J. Am. Chem. Soc. – volume: 226 year: 2021 publication-title: Talanta – volume: 165 start-page: 223 year: 2019 publication-title: Dyes Pigm. – volume: 50 start-page: 2668 year: 2017 publication-title: Macromolecules – volume: 67 start-page: 127 year: 2018 publication-title: Polym. Int. – volume: 28 start-page: 1721 year: 1995 publication-title: Macromolecules – volume: 147 year: 2020 publication-title: React. Funct. Polym. – volume: 124 start-page: 1068 year: 2020 publication-title: J. Phys. Chem. A – volume: 11 start-page: 2222 year: 2020 publication-title: Polym. Chem. – volume: 10 start-page: 6662 year: 2019 publication-title: Polym. Chem. – volume: 49 start-page: 8088 year: 2016 publication-title: Macromolecules – volume: 10 start-page: 4769 year: 2019 publication-title: Polym. Chem. – volume: 27 start-page: 743 year: 2020 publication-title: Cellulose – volume: 45 start-page: 5321 year: 2012 publication-title: Macromolecules – volume: 7 start-page: 1016 year: 2018 publication-title: ACS Macro Lett. – volume: 7 start-page: 689 year: 2016 publication-title: Polym. Chem. – volume: 71 start-page: 3177 year: 2014 publication-title: Polym. Bull. – volume: 219 year: 2018 publication-title: Macromol. Chem. Phys. – volume: 9 start-page: 1658 year: 2018 publication-title: Polym. Chem. – volume: 140 start-page: 5088 year: 2018 publication-title: J. Am. Chem. Soc. – volume: 47 start-page: 4217 year: 2014 publication-title: Macromolecules – volume: 352 start-page: 1082 year: 2016 publication-title: Science – volume: 139 start-page: 5939 year: 2017 publication-title: J. Am. Chem. Soc. – volume: 127 year: 2020 publication-title: J. Appl. Phys. – volume: 9 year: 2017 publication-title: Appl. Mater. Interfaces – volume: 508 year: 2020 publication-title: Appl. Surf. Sci. – volume: 362 start-page: 721 year: 2019 publication-title: Chem. Eng. J. – volume: 117 start-page: 347 year: 2019 publication-title: Eur. Polym. J. – volume: 45 start-page: 1089 year: 2012 publication-title: Acc. Chem. Res. – volume: 8 start-page: 1617 year: 2016 publication-title: ChemCatChem – volume: 45 start-page: 5803 year: 2016 publication-title: Chem. Soc. Rev. – volume: 434 start-page: 1129 year: 2018 publication-title: Appl. Surf. Sci. – volume: 390 start-page: 710 year: 2016 publication-title: Appl. Surf. Sci. – volume: 7 start-page: 9189 year: 2019 publication-title: ACS Sustainable Chem. Eng. – volume: 5 start-page: 661 year: 2016 publication-title: ACS Macro Lett. – volume: 77 start-page: 420 year: 2017 publication-title: Mater. Sci. Eng., C – volume: 116 start-page: 6743 year: 2016 publication-title: Chem. Rev. – volume: 57 year: 2018 publication-title: Ind. Eng. Chem. Res. – volume: 59 start-page: 3209 year: 2020 publication-title: Angew Chem., Int. Ed. – volume: 7 start-page: 3107 year: 2016 publication-title: Polym. Chem. – volume: 51 start-page: 2367 year: 2018 publication-title: Macromolecules – volume: 11 year: 2019 publication-title: ACS Appl. Mater. Interfaces – volume: 38 year: 2017 publication-title: Macromol. Rapid Commun. – volume: 11 start-page: 4978 year: 2020 publication-title: Polym. Chem. – volume: 117 start-page: 5614 year: 1995 publication-title: J. Am. Chem. Soc. – volume: 7 start-page: 6094 year: 2016 publication-title: Polym. Chem. – volume: 11 start-page: 2026 year: 2019 publication-title: Polymers – volume: 26 start-page: 1633 year: 2020 publication-title: Chem. – Eur. J. – volume: 150 year: 2020 publication-title: React. Funct. Polym. – volume: 221 year: 2020 publication-title: Macromol. Chem. Phys. – volume: 109 year: 2020 publication-title: Mater. Sci. Eng., C – volume: 140 start-page: 1285 year: 2018 publication-title: J. Am. Chem. Soc. – volume: 10 start-page: 926 year: 2019 publication-title: Polym. Chem. – volume: 141 year: 2019 publication-title: J. Am. Chem. Soc. – volume: 57 start-page: 333 year: 2018 publication-title: Angew. Chem., Int. Ed. – volume: 39 year: 2018 publication-title: Macromol. Rapid Commun. – volume: 39 start-page: 4044 year: 2006 publication-title: Macromolecules – volume: 47 start-page: 4930 year: 2014 publication-title: Macromolecules – volume: 11 start-page: 4475 year: 2020 publication-title: Chem. Sci. – volume: 30 start-page: 813 year: 2013 publication-title: Prog. Polym. Sci. – volume: 768 start-page: 347 year: 2000 publication-title: ACS Symp. Ser. – volume: 4 start-page: 192 year: 2015 publication-title: ACS Macro Lett. – volume: 28 start-page: 2931 year: 2020 publication-title: J. Polym. Environ. – volume: 52 start-page: 2304 year: 2019 publication-title: Macromolecules – volume: 131 year: 2020 publication-title: Eur. Polym. J. – volume: 11 start-page: 1577 year: 2019 publication-title: Polymers – volume: 23 start-page: 5972 year: 2017 publication-title: Chem. – Eur. J. – volume: 9 start-page: 2484 year: 2018 publication-title: Polym. Chem. – volume: 135 year: 2013 publication-title: J. Am. Chem. Soc. – volume: 9 start-page: 1757 year: 2018 publication-title: Polym. Chem. – volume: 26 start-page: 5947 year: 2019 publication-title: Cellulose – volume: 77 start-page: 1107 year: 2020 publication-title: Polym. Bull. – volume: 8 start-page: 1972 year: 2017 publication-title: Polym. Chem. – volume: 71 year: 2019 publication-title: Environ. Toxicol. Pharmacol. – volume: 8 start-page: 2899 year: 2017 publication-title: Polym. Chem. – volume: 56 start-page: 857 year: 2017 publication-title: Polym. – Plast. Technol. Eng. – volume: 26 start-page: 5305 year: 2019 publication-title: Cellulose – volume: 115 start-page: 45 year: 2019 publication-title: Eur. Polym. J. – volume: 21 start-page: 2759 year: 2019 publication-title: Green Chem. – volume: 10 start-page: 453 year: 2021 publication-title: ACS Macro Lett. – volume: 11 start-page: 4583 year: 2016 publication-title: Int. J. Nanomed. – volume: 50 start-page: 6903 year: 2017 publication-title: Macromolecules – volume: 139 start-page: 348 year: 2017 publication-title: J. Am. Chem. Soc. – volume: 55 start-page: 85 year: 2018 publication-title: J. Macromol. Sci., Part A: Pure Appl. Chem. – volume: 47 start-page: 8255 year: 2014 publication-title: Macromolecules – volume: 57 start-page: 1265 year: 2019 publication-title: J. Polym. Sci., Part A: Polym. Chem. – volume: 55 start-page: 3017 year: 2017 publication-title: J. Polym. Sci., Part A: Polym. Chem. – volume: 412 year: 2021 publication-title: Chem. Eng. J. – volume: 5 start-page: 258 year: 2016 publication-title: ACS Macro Lett. – volume: 52 start-page: 6725 year: 2019 publication-title: Macromolecules – volume: 308 year: 2020 publication-title: Microporous Mesoporous Mater. – volume: 51 start-page: 7421 year: 2018 publication-title: Macromolecules – volume: 69 start-page: 169 year: 2015 publication-title: Polymer. – volume: 11 start-page: 599 year: 2019 publication-title: Polymers. – volume: 29 start-page: 69 year: 2009 publication-title: J. Appl. Toxicol. – volume: 37 start-page: 18 year: 2011 publication-title: Prog. Polym. Science – volume: 18 start-page: 100 year: 2008 publication-title: Polimeros – volume: 109 start-page: 5051 year: 2009 publication-title: Chem. Rev. – volume: 163 start-page: 109 year: 2006 publication-title: Toxicol. Lett. – volume: 50 start-page: 9115 year: 2017 publication-title: Macromolecules – volume: 57 start-page: 207 year: 2020 publication-title: J. Macromol. Sci., Part A: Pure Appl. Chem. – volume: 55 start-page: 2285 year: 2014 publication-title: Polymer – volume: 3 start-page: 20 year: 2017 publication-title: ACS Energy Lett. – volume: 50 start-page: 4616 year: 2017 publication-title: Macromolecules – volume: 49 start-page: 4762 year: 2008 publication-title: Polymer. – volume: 273 year: 2020 publication-title: Mater. Lett. – volume: 123 start-page: 4727 year: 2019 publication-title: J. Phys. Chem. A – volume: 50 start-page: 2762 year: 2009 publication-title: Polymer. – volume: 7 start-page: 6039 year: 2016 publication-title: Polym. Chem. – volume: 104 start-page: 44 year: 2016 publication-title: Adv. Drug Delivery Rev. – volume: 29 start-page: 183 year: 2004 publication-title: Prog. Polym. Sci. – volume: 116 year: 2016 publication-title: Chem. Rev. – volume: 30 year: 2018 publication-title: Adv. Mater. – volume: 43 start-page: 496 year: 2019 publication-title: Polymer – volume: 399 start-page: 55 year: 2011 publication-title: Anal. Bioanal. Chem. – volume: 50 start-page: 7433 year: 2017 publication-title: Macromolecules – volume: 137 start-page: 5610 year: 2015 publication-title: J. Am. Chem. Soc. – volume: 186 year: 2020 publication-title: Polymer – volume: 182 start-page: 467 year: 2013 publication-title: Sens. Actuators, B – volume: 116 start-page: 1803 year: 2016 publication-title: Chem. Rev. – volume: 138 year: 2016 publication-title: J. Am. Chem. Soc. – volume: 12 start-page: 429 year: 2021 publication-title: Nat. Commun. – volume: 154 year: 2020 publication-title: React. Funct. Polym. – volume: 27 start-page: 881 year: 2018 publication-title: Iran. Polym. J. – volume: 7 start-page: 7789 year: 2017 publication-title: RSC Adv. – volume: 53 start-page: 8352 year: 2020 publication-title: Macromolecules – ident: e_1_2_9_3_1 doi: 10.1016/j.reactfunctpolym.2019.104453 – ident: e_1_2_9_26_1 doi: 10.1021/ma3001719 – ident: e_1_2_9_47_1 doi: 10.1016/j.eurpolymj.2019.05.023 – ident: e_1_2_9_87_1 doi: 10.1021/acs.macromol.8b00348 – ident: e_1_2_9_59_1 doi: 10.1007/s13726-018-0661-2 – ident: e_1_2_9_68_1 doi: 10.1016/j.polymer.2008.08.054 – ident: e_1_2_9_130_1 doi: 10.1007/s10570-019-02449-2 – ident: e_1_2_9_157_1 doi: 10.1007/s10008-018-4164-z – ident: e_1_2_9_103_1 doi: 10.1007/s10924-020-01823-7 – ident: e_1_2_9_108_1 doi: 10.1016/j.phrs.2016.10.016 – volume: 43 start-page: 496 year: 2019 ident: e_1_2_9_41_1 publication-title: Polymer – ident: e_1_2_9_80_1 doi: 10.1002/app.46567 – ident: e_1_2_9_133_1 doi: 10.1016/j.cej.2021.128596 – ident: e_1_2_9_31_1 doi: 10.1021/acs.macromol.8b00348 – ident: e_1_2_9_55_1 doi: 10.1016/j.reactfunctpolym.2020.104541 – ident: e_1_2_9_81_1 doi: 10.1002/marc.201800466 – ident: e_1_2_9_138_1 doi: 10.1021/acs.macromol.6b02791 – ident: e_1_2_9_23_1 doi: 10.1016/j.etap.2019.103220 – ident: e_1_2_9_98_1 doi: 10.1126/science.aaf3935 – ident: e_1_2_9_42_1 doi: 10.1016/j.polymer.2014.04.005 – volume-title: Nanocomposite Structures and Dispersions year: 2011 ident: e_1_2_9_27_1 – ident: e_1_2_9_119_1 doi: 10.1021/acs.chemrev.6b00008 – volume: 30 start-page: 813 year: 2013 ident: e_1_2_9_8_1 publication-title: Prog. Polym. Sci. – ident: e_1_2_9_104_1 doi: 10.1021/jacs.9b07230 – ident: e_1_2_9_22_1 doi: 10.1016/j.toxlet.2005.10.003 – ident: e_1_2_9_140_1 doi: 10.1016/j.eurpolymj.2020.109565 – ident: e_1_2_9_155_1 doi: 10.1021/acsami.9b12264 – ident: e_1_2_9_43_1 doi: 10.1021/jacs.6b11022 – ident: e_1_2_9_50_1 doi: 10.1021/acs.macromol.7b01335 – ident: e_1_2_9_60_1 doi: 10.1016/j.dyepig.2019.01.060 – ident: e_1_2_9_114_1 doi: 10.1002/macp.201800192 – ident: e_1_2_9_115_1 doi: 10.3390/polym11101577 – ident: e_1_2_9_37_1 doi: 10.1021/acsmacrolett.8b00497 – ident: e_1_2_9_111_1 doi: 10.1021/bk-2000-0768.ch024 – ident: e_1_2_9_125_1 doi: 10.1039/C6RA26290B – ident: e_1_2_9_7_1 doi: 10.1007/s00289-014-1244-9 – ident: e_1_2_9_102_1 doi: 10.1021/acs.macromol.6b01997 – ident: e_1_2_9_51_1 doi: 10.1002/marc.201700143 – ident: e_1_2_9_58_1 doi: 10.1080/10601325.2017.1387493 – ident: e_1_2_9_24_1 doi: 10.1002/jat.1385 – ident: e_1_2_9_63_1 doi: 10.1021/mz500834g – ident: e_1_2_9_117_1 doi: 10.1002/macp.202000008 – ident: e_1_2_9_21_1 doi: 10.2147/IJN.S112415 – ident: e_1_2_9_52_1 doi: 10.1039/C9PY01370A – ident: e_1_2_9_127_1 doi: 10.3390/polym11040599 – ident: e_1_2_9_16_1 doi: 10.1021/ma00109a056 – ident: e_1_2_9_49_1 doi: 10.1021/acsmacrolett.1c00055 – ident: e_1_2_9_62_1 doi: 10.1021/jacs.6b08068 – ident: e_1_2_9_105_1 doi: 10.1021/acs.macromol.0c01367 – ident: e_1_2_9_86_1 doi: 10.1021/acs.iecr.8b05020 – ident: e_1_2_9_88_1 doi: 10.1021/acs.macromol.8b01401 – ident: e_1_2_9_126_1 doi: 10.1021/acsami.7b01863 – ident: e_1_2_9_76_1 doi: 10.1021/ma500842u – ident: e_1_2_9_144_1 doi: 10.1021/acs.macromol.9b01275 – ident: e_1_2_9_152_1 doi: 10.1016/j.matlet.2020.127874 – ident: e_1_2_9_145_1 doi: 10.1021/acs.macromol.8b02339 – ident: e_1_2_9_44_1 doi: 10.1021/acs.macromol.8b02688 – ident: e_1_2_9_54_1 doi: 10.1038/s41467-020-20645-8 – ident: e_1_2_9_6_1 doi: 10.1007/s00289-019-02773-4 – ident: e_1_2_9_84_1 doi: 10.1002/chem.201904271 – ident: e_1_2_9_38_1 doi: 10.1021/jacs.6b08068 – ident: e_1_2_9_1_1 doi: 10.1590/S0104-14282008000200006 – ident: e_1_2_9_11_1 doi: 10.1021/ja00125a035 – ident: e_1_2_9_48_1 doi: 10.1016/j.cej.2019.01.087 – ident: e_1_2_9_25_1 doi: 10.1016/j.progpolymsci.2011.08.001 – ident: e_1_2_9_2_1 doi: 10.1002/marc.201800479 – ident: e_1_2_9_118_1 doi: 10.1021/acs.macromol.7b02240 – ident: e_1_2_9_33_1 doi: 10.1021/jacs.5b13455 – ident: e_1_2_9_83_1 doi: 10.1063/1.5140719 – ident: e_1_2_9_121_1 doi: 10.1016/j.eurpolymj.2020.109557 – ident: e_1_2_9_71_1 doi: 10.1016/j.polymer.2009.04.024 – ident: e_1_2_9_151_1 doi: 10.1016/j.reactfunctpolym.2020.104632 – ident: e_1_2_9_100_1 doi: 10.1039/C7PY00069C – ident: e_1_2_9_123_1 doi: 10.3390/polym9020058 – ident: e_1_2_9_120_1 doi: 10.1039/C7PY01833A – ident: e_1_2_9_61_1 doi: 10.1021/ja510389m – ident: e_1_2_9_128_1 doi: 10.1080/03602559.2016.1146905 – ident: e_1_2_9_106_1 doi: 10.1039/C6PY00251J – ident: e_1_2_9_18_1 doi: 10.1002/adma.201706441 – volume: 43 start-page: 496 year: 2019 ident: e_1_2_9_65_1 publication-title: Polymer – ident: e_1_2_9_9_1 doi: 10.1021/ma300410v – ident: e_1_2_9_129_1 doi: 10.1080/10601325.2019.1681899 – ident: e_1_2_9_19_1 doi: 10.1021/acs.chemrev.5b00396 – ident: e_1_2_9_90_1 doi: 10.1039/C6CS00526H – ident: e_1_2_9_20_1 doi: 10.1039/C8PY00207J – ident: e_1_2_9_72_1 doi: 10.1002/pola.29386 – ident: e_1_2_9_93_1 doi: 10.1002/pola.28574 – ident: e_1_2_9_143_1 doi: 10.1039/D0PY00643B – ident: e_1_2_9_149_1 doi: 10.1007/s10570-019-02845-8 – ident: e_1_2_9_35_1 doi: 10.1021/acs.chemrev.5b00586 – ident: e_1_2_9_110_1 doi: 10.1016/j.snb.2013.03.042 – ident: e_1_2_9_153_1 doi: 10.1016/j.reactfunctpolym.2020.104547 – ident: e_1_2_9_154_1 doi: 10.1016/j.apsusc.2019.144799 – ident: e_1_2_9_45_1 doi: 10.1021/jacs.7b12074 – ident: e_1_2_9_75_1 doi: 10.1021/ma500883y – ident: e_1_2_9_101_1 doi: 10.1002/anie.201711053 – ident: e_1_2_9_82_1 doi: 10.1016/j.eurpolymj.2020.109724 – ident: e_1_2_9_139_1 doi: 10.1002/cptc.201800032 – ident: e_1_2_9_4_1 doi: 10.1016/j.eurpolymj.2019.03.023 – ident: e_1_2_9_73_1 doi: 10.1021/acs.macromol.8b01401 – ident: e_1_2_9_132_1 doi: 10.1016/j.talanta.2021.122160 – ident: e_1_2_9_79_1 doi: 10.1039/C7PY00114B – ident: e_1_2_9_131_1 doi: 10.1039/C9GC00138G – ident: e_1_2_9_10_1 doi: 10.1021/acs.macromol.7b00767 – ident: e_1_2_9_29_1 doi: 10.1021/ja510389m – ident: e_1_2_9_135_1 doi: 10.1002/app.46879 – ident: e_1_2_9_40_1 doi: 10.1021/jacs.5b13455 – ident: e_1_2_9_17_1 doi: 10.1021/ar200242z – ident: e_1_2_9_39_1 doi: 10.1021/acs.macromol.6b01752 – ident: e_1_2_9_91_1 doi: 10.1002/macp.202000008 – ident: e_1_2_9_156_1 doi: 10.1021/acssuschemeng.8b06726 – ident: e_1_2_9_13_1 doi: 10.1021/cr9001269 – ident: e_1_2_9_28_1 doi: 10.1016/j.eurpolymj.2019.03.023 – ident: e_1_2_9_32_1 doi: 10.1002/cctc.201501389 – ident: e_1_2_9_46_1 doi: 10.1021/acs.jpca.9b03286 – ident: e_1_2_9_109_1 doi: 10.1007/s00216-010-4198-2 – ident: e_1_2_9_92_1 doi: 10.1021/jacs.6b11022 – ident: e_1_2_9_85_1 doi: 10.1016/j.msec.2019.110553 – ident: e_1_2_9_146_1 doi: 10.1016/j.apsusc.2017.11.039 – ident: e_1_2_9_96_1 doi: 10.1021/acs.macromol.6b01774 – ident: e_1_2_9_150_1 doi: 10.1007/s10570-019-02528-4 – ident: e_1_2_9_107_1 doi: 10.1016/j.addr.2016.01.008 – ident: e_1_2_9_36_1 doi: 10.1021/jacs.7b07829 – ident: e_1_2_9_95_1 doi: 10.1039/D0SC01194K – ident: e_1_2_9_94_1 doi: 10.1002/pola.28574 – ident: e_1_2_9_116_1 doi: 10.1016/j.progpolymsci.2003.12.002 – ident: e_1_2_9_112_1 doi: 10.1039/C8PY00361K – ident: e_1_2_9_113_1 doi: 10.1002/pi.5488 – ident: e_1_2_9_147_1 doi: 10.1016/j.apsusc.2016.08.154 – ident: e_1_2_9_97_1 doi: 10.1021/mz500834g – ident: e_1_2_9_30_1 doi: 10.1021/ma502044f – ident: e_1_2_9_89_1 doi: 10.1021/acs.macromol.7b00502 – ident: e_1_2_9_78_1 doi: 10.1039/C6PY01417H – ident: e_1_2_9_64_1 doi: 10.1039/C8PY00361K – ident: e_1_2_9_67_1 doi: 10.1039/C6PY01410K – ident: e_1_2_9_158_1 doi: 10.1016/j.polymer.2019.122073 – ident: e_1_2_9_34_1 doi: 10.1002/marc.201700040 – ident: e_1_2_9_136_1 doi: 10.3390/polym11122026 – ident: e_1_2_9_141_1 doi: 10.1002/marc.201700423 – ident: e_1_2_9_12_1 doi: 10.1021/ma052358r – ident: e_1_2_9_77_1 doi: 10.1039/C5PY01765C – ident: e_1_2_9_122_1 doi: 10.1039/C9PY00774A – ident: e_1_2_9_5_1 doi: 10.1002/ange.201412494 – ident: e_1_2_9_124_1 doi: 10.1021/acsmacrolett.6b00004 – ident: e_1_2_9_53_1 doi: 10.1002/anie.201910828 – ident: e_1_2_9_137_1 doi: 10.1021/acsenergylett.7b00999 – ident: e_1_2_9_57_1 doi: 10.1021/acs.jpca.9b10404 – ident: e_1_2_9_66_1 doi: 10.1002/chem.201605574 – ident: e_1_2_9_134_1 doi: 10.1016/j.micromeso.2020.110520 – ident: e_1_2_9_15_1 doi: 10.1021/jacs.5b02617 – ident: e_1_2_9_148_1 doi: 10.1016/j.msec.2017.03.261 – ident: e_1_2_9_70_1 doi: 10.1016/j.polymer.2015.05.043 – ident: e_1_2_9_99_1 doi: 10.1021/acsmacrolett.6b00295 – ident: e_1_2_9_56_1 doi: 10.1039/C9PY01742A – ident: e_1_2_9_14_1 doi: 10.1021/ja4036016 – ident: e_1_2_9_69_1 doi: 10.1039/C8PY01459K – ident: e_1_2_9_142_1 doi: 10.1021/jacs.7b01694 – ident: e_1_2_9_74_1 doi: 10.1371/journal.pone.0190880 |
SSID | ssj0008402 |
Score | 2.4885566 |
SecondaryResourceType | review_article |
Snippet | Reversible deactivation radical polymerization (RDRP) is a class of powerful techniques capable of synthesizing polymers with a well‐defined structure,... Reversible deactivation radical polymerization (RDRP) is a class of powerful techniques capable of synthesizing polymers with a well-defined structure,... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | e2100221 |
SubjectTerms | Catalysts Chemical synthesis controlled polymerization Deactivation Functional materials Irradiation Light irradiation metal‐free polymerization Organic compounds organic synthesis O‐ATRP photocatalysts Polymerization Polymers Radiation |
Title | Metal‐Free Organocatalyzed Atom Transfer Radical Polymerization: Synthesis, Applications, and Future Perspectives |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fmarc.202100221 https://www.proquest.com/docview/2558448463 https://www.proquest.com/docview/2548620194 |
Volume | 42 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bS8MwFA7ii754F-eNCIIvdrZpm1bfxnAMQZHpYG_lJE1A1FbW7WE--RP8jf4ST9K1m4II-tbQpJecnub7cnK-EHKMIDcVgglHCvwFBhHzndjXwgHX1yaPMfSUXeV7w7v94GoQDuay-Et9iHrCzXiG_V8bBwdRnM1EQ43UA_I7Zoo2k9ws2DKoqDfTj0L2UoY7kXEhGeOVaqPLzr42_zoqzaDmPGC1I05nlUD1rOVCk8fmeCSa8vWbjON_XmaNrEzhKG2V3886WVDZBllqV7vAbZLiWiE8_3h77wyVojZzM7dTPpNXldLWKH-mdrjTakh7YIM-9DZ_mphAUJnheUHvJhnCzOKhOKWtuXj5KYUspR0rakJvZ0mfxRbpdy7v211nulGDIw0_clig3SjV0oR1jaC89rj2QgkcAZVWEbDzUEguwQXwuRbxeSTR22OpZAAalPS3yWKWZ2qHUIH40fOlxwHCIIoEpJrFKbgaOHC8bIM4laESOVUxN5tpPCWl_jJLTFcmdVc2yEld_6XU7_ix5n5l92Tqx0WChCtGAhtwv0GO6tNoAhNWgUzlY1MnQFqIUDloEGaN_MudkutWr12Xdv_SaI8sm-NyJeI-WRwNx-oA0dFIHFoP-AT55QkH |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Nb9QwEB2h9lAuUL7ElgJGQuLStImTOCm31YrVAt2qWlqJWzR2bAnRJmize9ie-An8Rn4JM84m2yIhJDgmsfPhydjveTzPAK8J5JZaSx0YTV1gksk4yGOnAwxjx3mMaWT9Kt9TNblIPnxOu9WEnAvT6kP0E27sGb6_ZgfnCemjjWooaz0QwZN8yKnk27ytt2dVs42CFPGXNuBJnIvomOp0G0N5dLv-7XFpAzZvQlY_5ozvg-7etl1q8vVwudCH5vo3Icf_-pxduLdGpGLY_kIP4I6tHsLOqNsI7hE0U0sI_ef3H-O5tcInb9Z-1md1bUsxXNRXwo94zs7FDH3cR5zVlyuOBbVJnm_Fp1VFSLP50hyI4Y2Q-YHAqhRjr2sizjZ5n81juBi_Ox9NgvVeDYFhihTIxIVZ6QxHdllT3kXKRalBRZjK2QzlcaqNMhgixsrp_Dgz5PC5sSZBh9bET2Crqiv7FIQmCBnFJlKIaZJlGksn8xJDhwoV3XYAQWepwqyFzHk_jcuilWCWBTdl0TflAN705b-1Eh5_LLnfGb5Yu3JTEOfKicMmKh7Aq_4ymYAjK1jZesllEmKGhJaTAUhv5b88qZgOZ6P-aO9fKr2Encn59KQ4eX_68Rnc5fPtwsR92FrMl_Y5gaWFfuHd4ReAJw0i |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3LbtQwFL1CRQI25S2mFDASEpumTRzHSbsbTYnKo9VooFJ30bVjS6htUk1mFtMVn8A38iW9diaZKRJCgqUTOw_b1z7H1_cY4B2B3FIprgKtaAgUKY-DLLYqwDC2Lo4xiYzf5Xsij07Fp7PkbC2Kv9WH6BfcnGX48doZ-FVp91aioU7qgfgdd0kXSX5XyDBz_fpwshKQIvrS-juJchEbk51sY8j3bpe_PS2tsOY6YvVTTv4QsPvYdqfJ-e58pnb19W86jv_zN49gc4lH2bDtQI_hjqmewP1RdwzcU2iODeHzXz9-5lNjmA_drP2az-LalGw4qy-Zn--smbIJeq8PG9cXC-cJakM8D9jXRUU4s_ne7LDhmsN8h2FVstyrmrDxKuqzeQan-Ydvo6NgeVJDoB1BCriwYVpa7fy6TlHeRtJGiUZJiMqaFPl-orTUGCLG0qpsP9Vk7pk2WqBFo-PnsFHVlXkBTBGAjGIdScREpKnC0vKsxNCiREmPHUDQNVShlzLm7jSNi6IVYOaFq8qir8oBvO_zX7UCHn_Mud21e7E05KYgxpURgxUyHsDb_jY1gfOrYGXqucsjiBcSVhYD4L6R__Km4ng4GfWprX8p9AbujQ_z4svHk88v4YG73O5K3IaN2XRuXhFSmqnX3hhuAGsCC9o |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Metal%E2%80%90Free+Organocatalyzed+Atom+Transfer+Radical+Polymerization%3A+Synthesis%2C+Applications%2C+and+Future+Perspectives&rft.jtitle=Macromolecular+rapid+communications.&rft.au=de+%C3%81vila+Gon%C3%A7alves%2C+Sayeny&rft.au=R.+Rodrigues%2C+Pl%C3%ADnio&rft.au=Pioli+Vieira%2C+Roni%C3%A9rik&rft.date=2021-08-01&rft.issn=1022-1336&rft.eissn=1521-3927&rft.volume=42&rft.issue=15&rft_id=info:doi/10.1002%2Fmarc.202100221&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_marc_202100221 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1022-1336&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1022-1336&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1022-1336&client=summon |