Metal‐Free Organocatalyzed Atom Transfer Radical Polymerization: Synthesis, Applications, and Future Perspectives

Reversible deactivation radical polymerization (RDRP) is a class of powerful techniques capable of synthesizing polymers with a well‐defined structure, properties, and functionalities. Among the available RDRPs, ATRP is the most investigated. However, the necessity of a metal catalyst represents a d...

Full description

Saved in:
Bibliographic Details
Published inMacromolecular rapid communications. Vol. 42; no. 15; pp. e2100221 - n/a
Main Authors Ávila Gonçalves, Sayeny, R. Rodrigues, Plínio, Pioli Vieira, Roniérik
Format Journal Article
LanguageEnglish
Published Weinheim Wiley Subscription Services, Inc 01.08.2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Reversible deactivation radical polymerization (RDRP) is a class of powerful techniques capable of synthesizing polymers with a well‐defined structure, properties, and functionalities. Among the available RDRPs, ATRP is the most investigated. However, the necessity of a metal catalyst represents a drawback and limits its use for some applications. O‐ATRP emerged as an alternative to traditional ATRP that uses organic compounds that catalyze polymerization under light irradiation instead of metal. The friendly nature and the robustness of O‐ATRP allow its use in the synthesis of tailorable advanced materials with unique properties. In this review, the fundamental aspects of the reductive and oxidative quenching mechanism of O‐ATRP are provided, as well as insights into each component and its role in the reaction. Besides, the breakthrough recent studies that applied O‐ATRP for the synthesis of functional materials are presented, which illustrate the significant potential and impact of this technique across diverse fields. O‐ATRP has emerged as an important alternative for controllable polymerizations due to the use of photoredox organic catalysts instead of metals. The robustness and friendly‐nature of O‐ATRP endorse its use in the synthesis of tailorable materials with diverse properties. This review covers the fundamental aspects and progress of O‐ATRP, as well as developments in O‐ATRP‐based materials for several areas.
AbstractList Reversible deactivation radical polymerization (RDRP) is a class of powerful techniques capable of synthesizing polymers with a well‐defined structure, properties, and functionalities. Among the available RDRPs, ATRP is the most investigated. However, the necessity of a metal catalyst represents a drawback and limits its use for some applications. O‐ATRP emerged as an alternative to traditional ATRP that uses organic compounds that catalyze polymerization under light irradiation instead of metal. The friendly nature and the robustness of O‐ATRP allow its use in the synthesis of tailorable advanced materials with unique properties. In this review, the fundamental aspects of the reductive and oxidative quenching mechanism of O‐ATRP are provided, as well as insights into each component and its role in the reaction. Besides, the breakthrough recent studies that applied O‐ATRP for the synthesis of functional materials are presented, which illustrate the significant potential and impact of this technique across diverse fields. O‐ATRP has emerged as an important alternative for controllable polymerizations due to the use of photoredox organic catalysts instead of metals. The robustness and friendly‐nature of O‐ATRP endorse its use in the synthesis of tailorable materials with diverse properties. This review covers the fundamental aspects and progress of O‐ATRP, as well as developments in O‐ATRP‐based materials for several areas.
Reversible deactivation radical polymerization (RDRP) is a class of powerful techniques capable of synthesizing polymers with a well-defined structure, properties, and functionalities. Among the available RDRPs, ATRP is the most investigated. However, the necessity of a metal catalyst represents a drawback and limits its use for some applications. O-ATRP emerged as an alternative to traditional ATRP that uses organic compounds that catalyze polymerization under light irradiation instead of metal. The friendly nature and the robustness of O-ATRP allow its use in the synthesis of tailorable advanced materials with unique properties. In this review, the fundamental aspects of the reductive and oxidative quenching mechanism of O-ATRP are provided, as well as insights into each component and its role in the reaction. Besides, the breakthrough recent studies that applied O-ATRP for the synthesis of functional materials are presented, which illustrate the significant potential and impact of this technique across diverse fields.Reversible deactivation radical polymerization (RDRP) is a class of powerful techniques capable of synthesizing polymers with a well-defined structure, properties, and functionalities. Among the available RDRPs, ATRP is the most investigated. However, the necessity of a metal catalyst represents a drawback and limits its use for some applications. O-ATRP emerged as an alternative to traditional ATRP that uses organic compounds that catalyze polymerization under light irradiation instead of metal. The friendly nature and the robustness of O-ATRP allow its use in the synthesis of tailorable advanced materials with unique properties. In this review, the fundamental aspects of the reductive and oxidative quenching mechanism of O-ATRP are provided, as well as insights into each component and its role in the reaction. Besides, the breakthrough recent studies that applied O-ATRP for the synthesis of functional materials are presented, which illustrate the significant potential and impact of this technique across diverse fields.
Reversible deactivation radical polymerization (RDRP) is a class of powerful techniques capable of synthesizing polymers with a well‐defined structure, properties, and functionalities. Among the available RDRPs, ATRP is the most investigated. However, the necessity of a metal catalyst represents a drawback and limits its use for some applications. O‐ATRP emerged as an alternative to traditional ATRP that uses organic compounds that catalyze polymerization under light irradiation instead of metal. The friendly nature and the robustness of O‐ATRP allow its use in the synthesis of tailorable advanced materials with unique properties. In this review, the fundamental aspects of the reductive and oxidative quenching mechanism of O‐ATRP are provided, as well as insights into each component and its role in the reaction. Besides, the breakthrough recent studies that applied O‐ATRP for the synthesis of functional materials are presented, which illustrate the significant potential and impact of this technique across diverse fields.
Author R. Rodrigues, Plínio
Pioli Vieira, Roniérik
Ávila Gonçalves, Sayeny
Author_xml – sequence: 1
  givenname: Sayeny
  orcidid: 0000-0002-8635-8227
  surname: Ávila Gonçalves
  fullname: Ávila Gonçalves, Sayeny
  email: sayeny.avila@gmail.com
  organization: University of Campinas
– sequence: 2
  givenname: Plínio
  orcidid: 0000-0002-6652-5470
  surname: R. Rodrigues
  fullname: R. Rodrigues, Plínio
  organization: University of Campinas
– sequence: 3
  givenname: Roniérik
  orcidid: 0000-0002-1887-3120
  surname: Pioli Vieira
  fullname: Pioli Vieira, Roniérik
  organization: University of Campinas
BookMark eNqFkcFu1DAQhi1UJNrClbMlLhzIYjuOk3BbrViK1KpVKedo1jsGV1472A4oPfEIPGOfBC-LQKqEOHnm1_fbnn9OyJEPHgl5ztmCMyZe7yDqhWBi3wj-iBzzRvCq7kV7VOqiVbyu1RNyktItY6yTTByTdIEZ3P33H-uISC_jJ_BBQ5HmO9zSZQ47ehPBJ4ORXsPWanD0Krh5h9HeQbbBv6EfZp8_Y7LpFV2OoyvMXi8d-C1dT3mKSK8wphF1tl8xPSWPDbiEz36fp-Tj-u3N6qw6v3z3frU8r7TkildCGtZujWaqFUqJ1nBleKNBMdEYbEH0zUYrDQygVmbT9a3elLE0agkGUNen5OXh3jGGLxOmPOxs0ugceAxTGkQjOyUY72VBXzxAb8MUffldoZpOyk6qulCLA6VjSCmiGcZoS-zzwNmwj33Y72D4s4NikA8M2uZf6eQI1v3b1h9s36zD-T-PDBfL69Vf70-VeKCJ
CitedBy_id crossref_primary_10_1039_D4CC05772D
crossref_primary_10_1134_S1560090424600852
crossref_primary_10_1134_S1811238222700035
crossref_primary_10_31857_S2308113924030018
crossref_primary_10_1002_wnan_1861
crossref_primary_10_1016_j_fpsl_2023_101085
crossref_primary_10_1021_acs_macromol_1c02060
crossref_primary_10_31857_S2308113923700481
crossref_primary_10_1002_pol_20240155
crossref_primary_10_1016_j_eurpolymj_2021_110861
crossref_primary_10_1021_acssuschemeng_4c01406
crossref_primary_10_1002_pol_20220642
crossref_primary_10_1134_S1560090423700975
crossref_primary_10_31857_S2308113923700535
crossref_primary_10_1039_D4PY00407H
crossref_primary_10_1039_D1PY01568K
crossref_primary_10_1039_D2CS01060G
crossref_primary_10_1039_D2QM00644H
crossref_primary_10_3390_molecules29122763
crossref_primary_10_3390_polym16101408
crossref_primary_10_3390_ma17081775
crossref_primary_10_1021_polymscitech_4c00039
crossref_primary_10_1039_D1PY01079D
crossref_primary_10_1016_j_foodhyd_2023_109558
crossref_primary_10_1016_j_progpolymsci_2022_101555
crossref_primary_10_1002_marc_202200855
crossref_primary_10_1039_D2PY01457B
crossref_primary_10_1016_j_eurpolymj_2021_110873
crossref_primary_10_1007_s10570_023_05345_y
crossref_primary_10_1016_j_ijbiomac_2024_138775
crossref_primary_10_1007_s00289_023_04942_y
crossref_primary_10_1016_j_susmat_2024_e01099
crossref_primary_10_1134_S1560090423701099
crossref_primary_10_1039_D4PY00931B
Cites_doi 10.1016/j.reactfunctpolym.2019.104453
10.1021/ma3001719
10.1016/j.eurpolymj.2019.05.023
10.1021/acs.macromol.8b00348
10.1007/s13726-018-0661-2
10.1016/j.polymer.2008.08.054
10.1007/s10570-019-02449-2
10.1007/s10008-018-4164-z
10.1007/s10924-020-01823-7
10.1016/j.phrs.2016.10.016
10.1002/app.46567
10.1016/j.cej.2021.128596
10.1016/j.reactfunctpolym.2020.104541
10.1002/marc.201800466
10.1021/acs.macromol.6b02791
10.1016/j.etap.2019.103220
10.1126/science.aaf3935
10.1016/j.polymer.2014.04.005
10.1021/acs.chemrev.6b00008
10.1021/jacs.9b07230
10.1016/j.toxlet.2005.10.003
10.1016/j.eurpolymj.2020.109565
10.1021/acsami.9b12264
10.1021/jacs.6b11022
10.1021/acs.macromol.7b01335
10.1016/j.dyepig.2019.01.060
10.1002/macp.201800192
10.3390/polym11101577
10.1021/acsmacrolett.8b00497
10.1021/bk-2000-0768.ch024
10.1039/C6RA26290B
10.1007/s00289-014-1244-9
10.1021/acs.macromol.6b01997
10.1002/marc.201700143
10.1080/10601325.2017.1387493
10.1002/jat.1385
10.1021/mz500834g
10.1002/macp.202000008
10.2147/IJN.S112415
10.1039/C9PY01370A
10.3390/polym11040599
10.1021/ma00109a056
10.1021/acsmacrolett.1c00055
10.1021/jacs.6b08068
10.1021/acs.macromol.0c01367
10.1021/acs.iecr.8b05020
10.1021/acs.macromol.8b01401
10.1021/acsami.7b01863
10.1021/ma500842u
10.1021/acs.macromol.9b01275
10.1016/j.matlet.2020.127874
10.1021/acs.macromol.8b02339
10.1021/acs.macromol.8b02688
10.1038/s41467-020-20645-8
10.1007/s00289-019-02773-4
10.1002/chem.201904271
10.1590/S0104-14282008000200006
10.1021/ja00125a035
10.1016/j.cej.2019.01.087
10.1016/j.progpolymsci.2011.08.001
10.1002/marc.201800479
10.1021/acs.macromol.7b02240
10.1021/jacs.5b13455
10.1063/1.5140719
10.1016/j.eurpolymj.2020.109557
10.1016/j.polymer.2009.04.024
10.1016/j.reactfunctpolym.2020.104632
10.1039/C7PY00069C
10.3390/polym9020058
10.1039/C7PY01833A
10.1021/ja510389m
10.1080/03602559.2016.1146905
10.1039/C6PY00251J
10.1002/adma.201706441
10.1021/ma300410v
10.1080/10601325.2019.1681899
10.1021/acs.chemrev.5b00396
10.1039/C6CS00526H
10.1039/C8PY00207J
10.1002/pola.29386
10.1002/pola.28574
10.1039/D0PY00643B
10.1007/s10570-019-02845-8
10.1021/acs.chemrev.5b00586
10.1016/j.snb.2013.03.042
10.1016/j.reactfunctpolym.2020.104547
10.1016/j.apsusc.2019.144799
10.1021/jacs.7b12074
10.1021/ma500883y
10.1002/anie.201711053
10.1016/j.eurpolymj.2020.109724
10.1002/cptc.201800032
10.1016/j.eurpolymj.2019.03.023
10.1016/j.talanta.2021.122160
10.1039/C7PY00114B
10.1039/C9GC00138G
10.1021/acs.macromol.7b00767
10.1002/app.46879
10.1021/ar200242z
10.1021/acs.macromol.6b01752
10.1021/acssuschemeng.8b06726
10.1021/cr9001269
10.1002/cctc.201501389
10.1021/acs.jpca.9b03286
10.1007/s00216-010-4198-2
10.1016/j.msec.2019.110553
10.1016/j.apsusc.2017.11.039
10.1021/acs.macromol.6b01774
10.1007/s10570-019-02528-4
10.1016/j.addr.2016.01.008
10.1021/jacs.7b07829
10.1039/D0SC01194K
10.1016/j.progpolymsci.2003.12.002
10.1039/C8PY00361K
10.1002/pi.5488
10.1016/j.apsusc.2016.08.154
10.1021/ma502044f
10.1021/acs.macromol.7b00502
10.1039/C6PY01417H
10.1039/C6PY01410K
10.1016/j.polymer.2019.122073
10.1002/marc.201700040
10.3390/polym11122026
10.1002/marc.201700423
10.1021/ma052358r
10.1039/C5PY01765C
10.1039/C9PY00774A
10.1002/ange.201412494
10.1021/acsmacrolett.6b00004
10.1002/anie.201910828
10.1021/acsenergylett.7b00999
10.1021/acs.jpca.9b10404
10.1002/chem.201605574
10.1016/j.micromeso.2020.110520
10.1021/jacs.5b02617
10.1016/j.msec.2017.03.261
10.1016/j.polymer.2015.05.043
10.1021/acsmacrolett.6b00295
10.1039/C9PY01742A
10.1021/ja4036016
10.1039/C8PY01459K
10.1021/jacs.7b01694
10.1371/journal.pone.0190880
ContentType Journal Article
Copyright 2021 Wiley‐VCH GmbH
2021 Wiley-VCH GmbH.
Copyright_xml – notice: 2021 Wiley‐VCH GmbH
– notice: 2021 Wiley-VCH GmbH.
DBID AAYXX
CITATION
7SR
7U5
8FD
JG9
JQ2
L7M
7X8
DOI 10.1002/marc.202100221
DatabaseName CrossRef
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Materials Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
MEDLINE - Academic
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
CrossRef
Materials Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1521-3927
EndPage n/a
ExternalDocumentID 10_1002_marc_202100221
MARC202100221
Genre reviewArticle
GrantInformation_xml – fundername: Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
  funderid: 001
– fundername: Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
  funderid: 306464/2016‐0
– fundername: Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
  funderid: 2018/02508‐5
GroupedDBID ---
-~X
.3N
.GA
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
31~
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6P2
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABJNI
ABLJU
ABPVW
ABTAH
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
DU5
EBD
EBS
EJD
F00
F01
F04
F5P
FEDTE
G-S
G.N
GNP
GODZA
GYXMG
H.T
H.X
HBH
HF~
HGLYW
HHY
HHZ
HVGLF
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M6T
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
PALCI
Q.N
Q11
QB0
QRW
R.K
RIWAO
RJQFR
RNS
ROL
RWB
RWI
RX1
RYL
SAMSI
SUPJJ
TUS
UB1
V2E
W8V
W99
WBKPD
WFSAM
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XV2
ZY4
ZZTAW
~IA
~WT
AAYXX
ADMLS
AEYWJ
AGHNM
AGQPQ
AGYGG
CITATION
7SR
7U5
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
JG9
JQ2
L7M
7X8
ID FETCH-LOGICAL-c4161-24f07dfc06726627f16f15ca6025fe7a295bc6ca0aa36fb897cb008cec4afaec3
IEDL.DBID DR2
ISSN 1022-1336
1521-3927
IngestDate Thu Jul 10 23:31:11 EDT 2025
Fri Jul 25 12:21:53 EDT 2025
Thu Apr 24 22:56:48 EDT 2025
Tue Jul 01 03:31:44 EDT 2025
Wed Jan 22 16:28:12 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 15
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4161-24f07dfc06726627f16f15ca6025fe7a295bc6ca0aa36fb897cb008cec4afaec3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
ORCID 0000-0002-6652-5470
0000-0002-1887-3120
0000-0002-8635-8227
PQID 2558448463
PQPubID 1016394
PageCount 22
ParticipantIDs proquest_miscellaneous_2548620194
proquest_journals_2558448463
crossref_primary_10_1002_marc_202100221
crossref_citationtrail_10_1002_marc_202100221
wiley_primary_10_1002_marc_202100221_MARC202100221
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate August 2021
PublicationDateYYYYMMDD 2021-08-01
PublicationDate_xml – month: 08
  year: 2021
  text: August 2021
PublicationDecade 2020
PublicationPlace Weinheim
PublicationPlace_xml – name: Weinheim
PublicationTitle Macromolecular rapid communications.
PublicationYear 2021
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2004; 29
2019; 11
2019; 10
2006; 39
2020; 11
2014; 136
2019; 165
2018; 7
2018; 9
2018; 39
2018; 2
2015; 137
1995; 28
2019; 21
2017; 77
2019; 23
2000; 768
2019; 26
2006; 163
2018; 30
2018; 219
2016; 390
2016; 49
2016; 45
2019; 7
2015; 127
2014; 47
2020; 147
2013; 182
2018; 27
2017; 139
2016; 11
2020; 308
2017; 50
2016; 5
2016; 7
2015; 69
2020; 273
2021; 412
2019; 43
2020; 154
2017; 55
2008; 49
2020; 150
2017; 56
2020; 28
2020; 27
2020; 26
2012; 45
2009; 109
2016; 8
2018; 13
2017; 7
2017; 8
2011; 399
2017; 3
2019; 52
2019; 57
2020; 126
2020; 127
2020; 59
2020; 57
2020; 124
2016; 104
2017; 9
2019; 123
2019; 362
2020; 53
2009; 50
2020; 131
2017; 38
2018; 135
2019; 115
2016; 352
2016; 116
2019; 117
2016; 114
2014; 55
2019; 71
2018; 140
2015; 4
2011
2020; 186
2008; 18
2021; 226
2017; 23
1995; 117
2020; 221
2020; 77
2011; 37
2018; 67
2019; 141
2020; 508
2020; 109
2009; 29
2021; 10
2021; 12
2018; 434
2013; 30
2013; 135
2018; 51
2016; 138
2018; 55
2014; 71
2018; 57
e_1_2_9_75_1
e_1_2_9_98_1
e_1_2_9_52_1
e_1_2_9_79_1
e_1_2_9_94_1
e_1_2_9_10_1
e_1_2_9_56_1
e_1_2_9_33_1
e_1_2_9_90_1
e_1_2_9_71_1
e_1_2_9_103_1
e_1_2_9_126_1
e_1_2_9_149_1
e_1_2_9_107_1
e_1_2_9_122_1
e_1_2_9_145_1
e_1_2_9_14_1
e_1_2_9_141_1
e_1_2_9_37_1
e_1_2_9_18_1
e_1_2_9_64_1
e_1_2_9_87_1
e_1_2_9_22_1
e_1_2_9_45_1
e_1_2_9_68_1
e_1_2_9_83_1
e_1_2_9_6_1
e_1_2_9_119_1
e_1_2_9_60_1
e_1_2_9_2_1
e_1_2_9_138_1
e_1_2_9_111_1
e_1_2_9_134_1
e_1_2_9_115_1
e_1_2_9_157_1
e_1_2_9_26_1
e_1_2_9_49_1
e_1_2_9_130_1
e_1_2_9_153_1
e_1_2_9_30_1
e_1_2_9_53_1
e_1_2_9_99_1
e_1_2_9_72_1
e_1_2_9_11_1
e_1_2_9_34_1
e_1_2_9_57_1
e_1_2_9_95_1
e_1_2_9_76_1
e_1_2_9_91_1
e_1_2_9_102_1
e_1_2_9_148_1
e_1_2_9_129_1
e_1_2_9_144_1
e_1_2_9_106_1
e_1_2_9_125_1
e_1_2_9_15_1
e_1_2_9_38_1
e_1_2_9_140_1
e_1_2_9_121_1
e_1_2_9_19_1
e_1_2_9_42_1
e_1_2_9_88_1
e_1_2_9_61_1
e_1_2_9_46_1
e_1_2_9_84_1
e_1_2_9_23_1
e_1_2_9_80_1
e_1_2_9_5_1
e_1_2_9_1_1
e_1_2_9_114_1
e_1_2_9_137_1
e_1_2_9_118_1
e_1_2_9_133_1
e_1_2_9_156_1
e_1_2_9_9_1
Capek I. (e_1_2_9_27_1) 2011
e_1_2_9_152_1
e_1_2_9_69_1
e_1_2_9_110_1
e_1_2_9_31_1
e_1_2_9_50_1
e_1_2_9_73_1
e_1_2_9_35_1
e_1_2_9_77_1
e_1_2_9_96_1
e_1_2_9_12_1
e_1_2_9_54_1
e_1_2_9_92_1
e_1_2_9_109_1
e_1_2_9_101_1
e_1_2_9_128_1
e_1_2_9_105_1
e_1_2_9_124_1
e_1_2_9_147_1
e_1_2_9_39_1
e_1_2_9_120_1
e_1_2_9_16_1
e_1_2_9_58_1
e_1_2_9_143_1
e_1_2_9_20_1
e_1_2_9_62_1
e_1_2_9_89_1
e_1_2_9_24_1
e_1_2_9_43_1
e_1_2_9_66_1
e_1_2_9_85_1
e_1_2_9_81_1
e_1_2_9_4_1
e_1_2_9_113_1
e_1_2_9_117_1
e_1_2_9_155_1
e_1_2_9_136_1
e_1_2_9_151_1
e_1_2_9_28_1
e_1_2_9_47_1
e_1_2_9_132_1
e_1_2_9_74_1
e_1_2_9_51_1
e_1_2_9_78_1
Nicolas J. (e_1_2_9_8_1) 2013; 30
e_1_2_9_13_1
e_1_2_9_32_1
e_1_2_9_55_1
e_1_2_9_97_1
e_1_2_9_93_1
e_1_2_9_108_1
e_1_2_9_70_1
e_1_2_9_127_1
e_1_2_9_100_1
e_1_2_9_123_1
e_1_2_9_104_1
e_1_2_9_146_1
e_1_2_9_17_1
e_1_2_9_36_1
e_1_2_9_59_1
e_1_2_9_142_1
Tran H. M. (e_1_2_9_41_1) 2019; 43
e_1_2_9_63_1
e_1_2_9_40_1
Tran H. M. (e_1_2_9_65_1) 2019; 43
e_1_2_9_21_1
e_1_2_9_67_1
e_1_2_9_44_1
e_1_2_9_86_1
e_1_2_9_7_1
e_1_2_9_82_1
e_1_2_9_3_1
e_1_2_9_112_1
e_1_2_9_139_1
e_1_2_9_116_1
e_1_2_9_135_1
e_1_2_9_158_1
e_1_2_9_25_1
e_1_2_9_131_1
e_1_2_9_154_1
e_1_2_9_48_1
e_1_2_9_29_1
e_1_2_9_150_1
References_xml – year: 2011
– volume: 45
  start-page: 4015
  year: 2012
  publication-title: Macromolecules
– volume: 9
  start-page: 58
  year: 2017
  publication-title: Polymers
– volume: 127
  start-page: 5281
  year: 2015
  publication-title: Angew. Chem.
– volume: 2
  start-page: 831
  year: 2018
  publication-title: ChemPhotoChem
– volume: 23
  start-page: 583
  year: 2019
  publication-title: J. Solid State Electrochem.
– volume: 136
  year: 2014
  publication-title: J. Am. Chem. Soc.
– volume: 135
  year: 2018
  publication-title: J. Appl. Polym. Sci.
– volume: 13
  year: 2018
  publication-title: PLoS One
– volume: 114
  start-page: 56
  year: 2016
  publication-title: Pharmacol. Res.
– volume: 52
  start-page: 747
  year: 2019
  publication-title: Macromolecules
– volume: 49
  start-page: 7709
  year: 2016
  publication-title: Macromolecules
– volume: 126
  year: 2020
  publication-title: Eur. Polym. J.
– volume: 49
  start-page: 7785
  year: 2016
  publication-title: Macromolecules
– volume: 138
  start-page: 2411
  year: 2016
  publication-title: J. Am. Chem. Soc.
– volume: 226
  year: 2021
  publication-title: Talanta
– volume: 165
  start-page: 223
  year: 2019
  publication-title: Dyes Pigm.
– volume: 50
  start-page: 2668
  year: 2017
  publication-title: Macromolecules
– volume: 67
  start-page: 127
  year: 2018
  publication-title: Polym. Int.
– volume: 28
  start-page: 1721
  year: 1995
  publication-title: Macromolecules
– volume: 147
  year: 2020
  publication-title: React. Funct. Polym.
– volume: 124
  start-page: 1068
  year: 2020
  publication-title: J. Phys. Chem. A
– volume: 11
  start-page: 2222
  year: 2020
  publication-title: Polym. Chem.
– volume: 10
  start-page: 6662
  year: 2019
  publication-title: Polym. Chem.
– volume: 49
  start-page: 8088
  year: 2016
  publication-title: Macromolecules
– volume: 10
  start-page: 4769
  year: 2019
  publication-title: Polym. Chem.
– volume: 27
  start-page: 743
  year: 2020
  publication-title: Cellulose
– volume: 45
  start-page: 5321
  year: 2012
  publication-title: Macromolecules
– volume: 7
  start-page: 1016
  year: 2018
  publication-title: ACS Macro Lett.
– volume: 7
  start-page: 689
  year: 2016
  publication-title: Polym. Chem.
– volume: 71
  start-page: 3177
  year: 2014
  publication-title: Polym. Bull.
– volume: 219
  year: 2018
  publication-title: Macromol. Chem. Phys.
– volume: 9
  start-page: 1658
  year: 2018
  publication-title: Polym. Chem.
– volume: 140
  start-page: 5088
  year: 2018
  publication-title: J. Am. Chem. Soc.
– volume: 47
  start-page: 4217
  year: 2014
  publication-title: Macromolecules
– volume: 352
  start-page: 1082
  year: 2016
  publication-title: Science
– volume: 139
  start-page: 5939
  year: 2017
  publication-title: J. Am. Chem. Soc.
– volume: 127
  year: 2020
  publication-title: J. Appl. Phys.
– volume: 9
  year: 2017
  publication-title: Appl. Mater. Interfaces
– volume: 508
  year: 2020
  publication-title: Appl. Surf. Sci.
– volume: 362
  start-page: 721
  year: 2019
  publication-title: Chem. Eng. J.
– volume: 117
  start-page: 347
  year: 2019
  publication-title: Eur. Polym. J.
– volume: 45
  start-page: 1089
  year: 2012
  publication-title: Acc. Chem. Res.
– volume: 8
  start-page: 1617
  year: 2016
  publication-title: ChemCatChem
– volume: 45
  start-page: 5803
  year: 2016
  publication-title: Chem. Soc. Rev.
– volume: 434
  start-page: 1129
  year: 2018
  publication-title: Appl. Surf. Sci.
– volume: 390
  start-page: 710
  year: 2016
  publication-title: Appl. Surf. Sci.
– volume: 7
  start-page: 9189
  year: 2019
  publication-title: ACS Sustainable Chem. Eng.
– volume: 5
  start-page: 661
  year: 2016
  publication-title: ACS Macro Lett.
– volume: 77
  start-page: 420
  year: 2017
  publication-title: Mater. Sci. Eng., C
– volume: 116
  start-page: 6743
  year: 2016
  publication-title: Chem. Rev.
– volume: 57
  year: 2018
  publication-title: Ind. Eng. Chem. Res.
– volume: 59
  start-page: 3209
  year: 2020
  publication-title: Angew Chem., Int. Ed.
– volume: 7
  start-page: 3107
  year: 2016
  publication-title: Polym. Chem.
– volume: 51
  start-page: 2367
  year: 2018
  publication-title: Macromolecules
– volume: 11
  year: 2019
  publication-title: ACS Appl. Mater. Interfaces
– volume: 38
  year: 2017
  publication-title: Macromol. Rapid Commun.
– volume: 11
  start-page: 4978
  year: 2020
  publication-title: Polym. Chem.
– volume: 117
  start-page: 5614
  year: 1995
  publication-title: J. Am. Chem. Soc.
– volume: 7
  start-page: 6094
  year: 2016
  publication-title: Polym. Chem.
– volume: 11
  start-page: 2026
  year: 2019
  publication-title: Polymers
– volume: 26
  start-page: 1633
  year: 2020
  publication-title: Chem. – Eur. J.
– volume: 150
  year: 2020
  publication-title: React. Funct. Polym.
– volume: 221
  year: 2020
  publication-title: Macromol. Chem. Phys.
– volume: 109
  year: 2020
  publication-title: Mater. Sci. Eng., C
– volume: 140
  start-page: 1285
  year: 2018
  publication-title: J. Am. Chem. Soc.
– volume: 10
  start-page: 926
  year: 2019
  publication-title: Polym. Chem.
– volume: 141
  year: 2019
  publication-title: J. Am. Chem. Soc.
– volume: 57
  start-page: 333
  year: 2018
  publication-title: Angew. Chem., Int. Ed.
– volume: 39
  year: 2018
  publication-title: Macromol. Rapid Commun.
– volume: 39
  start-page: 4044
  year: 2006
  publication-title: Macromolecules
– volume: 47
  start-page: 4930
  year: 2014
  publication-title: Macromolecules
– volume: 11
  start-page: 4475
  year: 2020
  publication-title: Chem. Sci.
– volume: 30
  start-page: 813
  year: 2013
  publication-title: Prog. Polym. Sci.
– volume: 768
  start-page: 347
  year: 2000
  publication-title: ACS Symp. Ser.
– volume: 4
  start-page: 192
  year: 2015
  publication-title: ACS Macro Lett.
– volume: 28
  start-page: 2931
  year: 2020
  publication-title: J. Polym. Environ.
– volume: 52
  start-page: 2304
  year: 2019
  publication-title: Macromolecules
– volume: 131
  year: 2020
  publication-title: Eur. Polym. J.
– volume: 11
  start-page: 1577
  year: 2019
  publication-title: Polymers
– volume: 23
  start-page: 5972
  year: 2017
  publication-title: Chem. – Eur. J.
– volume: 9
  start-page: 2484
  year: 2018
  publication-title: Polym. Chem.
– volume: 135
  year: 2013
  publication-title: J. Am. Chem. Soc.
– volume: 9
  start-page: 1757
  year: 2018
  publication-title: Polym. Chem.
– volume: 26
  start-page: 5947
  year: 2019
  publication-title: Cellulose
– volume: 77
  start-page: 1107
  year: 2020
  publication-title: Polym. Bull.
– volume: 8
  start-page: 1972
  year: 2017
  publication-title: Polym. Chem.
– volume: 71
  year: 2019
  publication-title: Environ. Toxicol. Pharmacol.
– volume: 8
  start-page: 2899
  year: 2017
  publication-title: Polym. Chem.
– volume: 56
  start-page: 857
  year: 2017
  publication-title: Polym. – Plast. Technol. Eng.
– volume: 26
  start-page: 5305
  year: 2019
  publication-title: Cellulose
– volume: 115
  start-page: 45
  year: 2019
  publication-title: Eur. Polym. J.
– volume: 21
  start-page: 2759
  year: 2019
  publication-title: Green Chem.
– volume: 10
  start-page: 453
  year: 2021
  publication-title: ACS Macro Lett.
– volume: 11
  start-page: 4583
  year: 2016
  publication-title: Int. J. Nanomed.
– volume: 50
  start-page: 6903
  year: 2017
  publication-title: Macromolecules
– volume: 139
  start-page: 348
  year: 2017
  publication-title: J. Am. Chem. Soc.
– volume: 55
  start-page: 85
  year: 2018
  publication-title: J. Macromol. Sci., Part A: Pure Appl. Chem.
– volume: 47
  start-page: 8255
  year: 2014
  publication-title: Macromolecules
– volume: 57
  start-page: 1265
  year: 2019
  publication-title: J. Polym. Sci., Part A: Polym. Chem.
– volume: 55
  start-page: 3017
  year: 2017
  publication-title: J. Polym. Sci., Part A: Polym. Chem.
– volume: 412
  year: 2021
  publication-title: Chem. Eng. J.
– volume: 5
  start-page: 258
  year: 2016
  publication-title: ACS Macro Lett.
– volume: 52
  start-page: 6725
  year: 2019
  publication-title: Macromolecules
– volume: 308
  year: 2020
  publication-title: Microporous Mesoporous Mater.
– volume: 51
  start-page: 7421
  year: 2018
  publication-title: Macromolecules
– volume: 69
  start-page: 169
  year: 2015
  publication-title: Polymer.
– volume: 11
  start-page: 599
  year: 2019
  publication-title: Polymers.
– volume: 29
  start-page: 69
  year: 2009
  publication-title: J. Appl. Toxicol.
– volume: 37
  start-page: 18
  year: 2011
  publication-title: Prog. Polym. Science
– volume: 18
  start-page: 100
  year: 2008
  publication-title: Polimeros
– volume: 109
  start-page: 5051
  year: 2009
  publication-title: Chem. Rev.
– volume: 163
  start-page: 109
  year: 2006
  publication-title: Toxicol. Lett.
– volume: 50
  start-page: 9115
  year: 2017
  publication-title: Macromolecules
– volume: 57
  start-page: 207
  year: 2020
  publication-title: J. Macromol. Sci., Part A: Pure Appl. Chem.
– volume: 55
  start-page: 2285
  year: 2014
  publication-title: Polymer
– volume: 3
  start-page: 20
  year: 2017
  publication-title: ACS Energy Lett.
– volume: 50
  start-page: 4616
  year: 2017
  publication-title: Macromolecules
– volume: 49
  start-page: 4762
  year: 2008
  publication-title: Polymer.
– volume: 273
  year: 2020
  publication-title: Mater. Lett.
– volume: 123
  start-page: 4727
  year: 2019
  publication-title: J. Phys. Chem. A
– volume: 50
  start-page: 2762
  year: 2009
  publication-title: Polymer.
– volume: 7
  start-page: 6039
  year: 2016
  publication-title: Polym. Chem.
– volume: 104
  start-page: 44
  year: 2016
  publication-title: Adv. Drug Delivery Rev.
– volume: 29
  start-page: 183
  year: 2004
  publication-title: Prog. Polym. Sci.
– volume: 116
  year: 2016
  publication-title: Chem. Rev.
– volume: 30
  year: 2018
  publication-title: Adv. Mater.
– volume: 43
  start-page: 496
  year: 2019
  publication-title: Polymer
– volume: 399
  start-page: 55
  year: 2011
  publication-title: Anal. Bioanal. Chem.
– volume: 50
  start-page: 7433
  year: 2017
  publication-title: Macromolecules
– volume: 137
  start-page: 5610
  year: 2015
  publication-title: J. Am. Chem. Soc.
– volume: 186
  year: 2020
  publication-title: Polymer
– volume: 182
  start-page: 467
  year: 2013
  publication-title: Sens. Actuators, B
– volume: 116
  start-page: 1803
  year: 2016
  publication-title: Chem. Rev.
– volume: 138
  year: 2016
  publication-title: J. Am. Chem. Soc.
– volume: 12
  start-page: 429
  year: 2021
  publication-title: Nat. Commun.
– volume: 154
  year: 2020
  publication-title: React. Funct. Polym.
– volume: 27
  start-page: 881
  year: 2018
  publication-title: Iran. Polym. J.
– volume: 7
  start-page: 7789
  year: 2017
  publication-title: RSC Adv.
– volume: 53
  start-page: 8352
  year: 2020
  publication-title: Macromolecules
– ident: e_1_2_9_3_1
  doi: 10.1016/j.reactfunctpolym.2019.104453
– ident: e_1_2_9_26_1
  doi: 10.1021/ma3001719
– ident: e_1_2_9_47_1
  doi: 10.1016/j.eurpolymj.2019.05.023
– ident: e_1_2_9_87_1
  doi: 10.1021/acs.macromol.8b00348
– ident: e_1_2_9_59_1
  doi: 10.1007/s13726-018-0661-2
– ident: e_1_2_9_68_1
  doi: 10.1016/j.polymer.2008.08.054
– ident: e_1_2_9_130_1
  doi: 10.1007/s10570-019-02449-2
– ident: e_1_2_9_157_1
  doi: 10.1007/s10008-018-4164-z
– ident: e_1_2_9_103_1
  doi: 10.1007/s10924-020-01823-7
– ident: e_1_2_9_108_1
  doi: 10.1016/j.phrs.2016.10.016
– volume: 43
  start-page: 496
  year: 2019
  ident: e_1_2_9_41_1
  publication-title: Polymer
– ident: e_1_2_9_80_1
  doi: 10.1002/app.46567
– ident: e_1_2_9_133_1
  doi: 10.1016/j.cej.2021.128596
– ident: e_1_2_9_31_1
  doi: 10.1021/acs.macromol.8b00348
– ident: e_1_2_9_55_1
  doi: 10.1016/j.reactfunctpolym.2020.104541
– ident: e_1_2_9_81_1
  doi: 10.1002/marc.201800466
– ident: e_1_2_9_138_1
  doi: 10.1021/acs.macromol.6b02791
– ident: e_1_2_9_23_1
  doi: 10.1016/j.etap.2019.103220
– ident: e_1_2_9_98_1
  doi: 10.1126/science.aaf3935
– ident: e_1_2_9_42_1
  doi: 10.1016/j.polymer.2014.04.005
– volume-title: Nanocomposite Structures and Dispersions
  year: 2011
  ident: e_1_2_9_27_1
– ident: e_1_2_9_119_1
  doi: 10.1021/acs.chemrev.6b00008
– volume: 30
  start-page: 813
  year: 2013
  ident: e_1_2_9_8_1
  publication-title: Prog. Polym. Sci.
– ident: e_1_2_9_104_1
  doi: 10.1021/jacs.9b07230
– ident: e_1_2_9_22_1
  doi: 10.1016/j.toxlet.2005.10.003
– ident: e_1_2_9_140_1
  doi: 10.1016/j.eurpolymj.2020.109565
– ident: e_1_2_9_155_1
  doi: 10.1021/acsami.9b12264
– ident: e_1_2_9_43_1
  doi: 10.1021/jacs.6b11022
– ident: e_1_2_9_50_1
  doi: 10.1021/acs.macromol.7b01335
– ident: e_1_2_9_60_1
  doi: 10.1016/j.dyepig.2019.01.060
– ident: e_1_2_9_114_1
  doi: 10.1002/macp.201800192
– ident: e_1_2_9_115_1
  doi: 10.3390/polym11101577
– ident: e_1_2_9_37_1
  doi: 10.1021/acsmacrolett.8b00497
– ident: e_1_2_9_111_1
  doi: 10.1021/bk-2000-0768.ch024
– ident: e_1_2_9_125_1
  doi: 10.1039/C6RA26290B
– ident: e_1_2_9_7_1
  doi: 10.1007/s00289-014-1244-9
– ident: e_1_2_9_102_1
  doi: 10.1021/acs.macromol.6b01997
– ident: e_1_2_9_51_1
  doi: 10.1002/marc.201700143
– ident: e_1_2_9_58_1
  doi: 10.1080/10601325.2017.1387493
– ident: e_1_2_9_24_1
  doi: 10.1002/jat.1385
– ident: e_1_2_9_63_1
  doi: 10.1021/mz500834g
– ident: e_1_2_9_117_1
  doi: 10.1002/macp.202000008
– ident: e_1_2_9_21_1
  doi: 10.2147/IJN.S112415
– ident: e_1_2_9_52_1
  doi: 10.1039/C9PY01370A
– ident: e_1_2_9_127_1
  doi: 10.3390/polym11040599
– ident: e_1_2_9_16_1
  doi: 10.1021/ma00109a056
– ident: e_1_2_9_49_1
  doi: 10.1021/acsmacrolett.1c00055
– ident: e_1_2_9_62_1
  doi: 10.1021/jacs.6b08068
– ident: e_1_2_9_105_1
  doi: 10.1021/acs.macromol.0c01367
– ident: e_1_2_9_86_1
  doi: 10.1021/acs.iecr.8b05020
– ident: e_1_2_9_88_1
  doi: 10.1021/acs.macromol.8b01401
– ident: e_1_2_9_126_1
  doi: 10.1021/acsami.7b01863
– ident: e_1_2_9_76_1
  doi: 10.1021/ma500842u
– ident: e_1_2_9_144_1
  doi: 10.1021/acs.macromol.9b01275
– ident: e_1_2_9_152_1
  doi: 10.1016/j.matlet.2020.127874
– ident: e_1_2_9_145_1
  doi: 10.1021/acs.macromol.8b02339
– ident: e_1_2_9_44_1
  doi: 10.1021/acs.macromol.8b02688
– ident: e_1_2_9_54_1
  doi: 10.1038/s41467-020-20645-8
– ident: e_1_2_9_6_1
  doi: 10.1007/s00289-019-02773-4
– ident: e_1_2_9_84_1
  doi: 10.1002/chem.201904271
– ident: e_1_2_9_38_1
  doi: 10.1021/jacs.6b08068
– ident: e_1_2_9_1_1
  doi: 10.1590/S0104-14282008000200006
– ident: e_1_2_9_11_1
  doi: 10.1021/ja00125a035
– ident: e_1_2_9_48_1
  doi: 10.1016/j.cej.2019.01.087
– ident: e_1_2_9_25_1
  doi: 10.1016/j.progpolymsci.2011.08.001
– ident: e_1_2_9_2_1
  doi: 10.1002/marc.201800479
– ident: e_1_2_9_118_1
  doi: 10.1021/acs.macromol.7b02240
– ident: e_1_2_9_33_1
  doi: 10.1021/jacs.5b13455
– ident: e_1_2_9_83_1
  doi: 10.1063/1.5140719
– ident: e_1_2_9_121_1
  doi: 10.1016/j.eurpolymj.2020.109557
– ident: e_1_2_9_71_1
  doi: 10.1016/j.polymer.2009.04.024
– ident: e_1_2_9_151_1
  doi: 10.1016/j.reactfunctpolym.2020.104632
– ident: e_1_2_9_100_1
  doi: 10.1039/C7PY00069C
– ident: e_1_2_9_123_1
  doi: 10.3390/polym9020058
– ident: e_1_2_9_120_1
  doi: 10.1039/C7PY01833A
– ident: e_1_2_9_61_1
  doi: 10.1021/ja510389m
– ident: e_1_2_9_128_1
  doi: 10.1080/03602559.2016.1146905
– ident: e_1_2_9_106_1
  doi: 10.1039/C6PY00251J
– ident: e_1_2_9_18_1
  doi: 10.1002/adma.201706441
– volume: 43
  start-page: 496
  year: 2019
  ident: e_1_2_9_65_1
  publication-title: Polymer
– ident: e_1_2_9_9_1
  doi: 10.1021/ma300410v
– ident: e_1_2_9_129_1
  doi: 10.1080/10601325.2019.1681899
– ident: e_1_2_9_19_1
  doi: 10.1021/acs.chemrev.5b00396
– ident: e_1_2_9_90_1
  doi: 10.1039/C6CS00526H
– ident: e_1_2_9_20_1
  doi: 10.1039/C8PY00207J
– ident: e_1_2_9_72_1
  doi: 10.1002/pola.29386
– ident: e_1_2_9_93_1
  doi: 10.1002/pola.28574
– ident: e_1_2_9_143_1
  doi: 10.1039/D0PY00643B
– ident: e_1_2_9_149_1
  doi: 10.1007/s10570-019-02845-8
– ident: e_1_2_9_35_1
  doi: 10.1021/acs.chemrev.5b00586
– ident: e_1_2_9_110_1
  doi: 10.1016/j.snb.2013.03.042
– ident: e_1_2_9_153_1
  doi: 10.1016/j.reactfunctpolym.2020.104547
– ident: e_1_2_9_154_1
  doi: 10.1016/j.apsusc.2019.144799
– ident: e_1_2_9_45_1
  doi: 10.1021/jacs.7b12074
– ident: e_1_2_9_75_1
  doi: 10.1021/ma500883y
– ident: e_1_2_9_101_1
  doi: 10.1002/anie.201711053
– ident: e_1_2_9_82_1
  doi: 10.1016/j.eurpolymj.2020.109724
– ident: e_1_2_9_139_1
  doi: 10.1002/cptc.201800032
– ident: e_1_2_9_4_1
  doi: 10.1016/j.eurpolymj.2019.03.023
– ident: e_1_2_9_73_1
  doi: 10.1021/acs.macromol.8b01401
– ident: e_1_2_9_132_1
  doi: 10.1016/j.talanta.2021.122160
– ident: e_1_2_9_79_1
  doi: 10.1039/C7PY00114B
– ident: e_1_2_9_131_1
  doi: 10.1039/C9GC00138G
– ident: e_1_2_9_10_1
  doi: 10.1021/acs.macromol.7b00767
– ident: e_1_2_9_29_1
  doi: 10.1021/ja510389m
– ident: e_1_2_9_135_1
  doi: 10.1002/app.46879
– ident: e_1_2_9_40_1
  doi: 10.1021/jacs.5b13455
– ident: e_1_2_9_17_1
  doi: 10.1021/ar200242z
– ident: e_1_2_9_39_1
  doi: 10.1021/acs.macromol.6b01752
– ident: e_1_2_9_91_1
  doi: 10.1002/macp.202000008
– ident: e_1_2_9_156_1
  doi: 10.1021/acssuschemeng.8b06726
– ident: e_1_2_9_13_1
  doi: 10.1021/cr9001269
– ident: e_1_2_9_28_1
  doi: 10.1016/j.eurpolymj.2019.03.023
– ident: e_1_2_9_32_1
  doi: 10.1002/cctc.201501389
– ident: e_1_2_9_46_1
  doi: 10.1021/acs.jpca.9b03286
– ident: e_1_2_9_109_1
  doi: 10.1007/s00216-010-4198-2
– ident: e_1_2_9_92_1
  doi: 10.1021/jacs.6b11022
– ident: e_1_2_9_85_1
  doi: 10.1016/j.msec.2019.110553
– ident: e_1_2_9_146_1
  doi: 10.1016/j.apsusc.2017.11.039
– ident: e_1_2_9_96_1
  doi: 10.1021/acs.macromol.6b01774
– ident: e_1_2_9_150_1
  doi: 10.1007/s10570-019-02528-4
– ident: e_1_2_9_107_1
  doi: 10.1016/j.addr.2016.01.008
– ident: e_1_2_9_36_1
  doi: 10.1021/jacs.7b07829
– ident: e_1_2_9_95_1
  doi: 10.1039/D0SC01194K
– ident: e_1_2_9_94_1
  doi: 10.1002/pola.28574
– ident: e_1_2_9_116_1
  doi: 10.1016/j.progpolymsci.2003.12.002
– ident: e_1_2_9_112_1
  doi: 10.1039/C8PY00361K
– ident: e_1_2_9_113_1
  doi: 10.1002/pi.5488
– ident: e_1_2_9_147_1
  doi: 10.1016/j.apsusc.2016.08.154
– ident: e_1_2_9_97_1
  doi: 10.1021/mz500834g
– ident: e_1_2_9_30_1
  doi: 10.1021/ma502044f
– ident: e_1_2_9_89_1
  doi: 10.1021/acs.macromol.7b00502
– ident: e_1_2_9_78_1
  doi: 10.1039/C6PY01417H
– ident: e_1_2_9_64_1
  doi: 10.1039/C8PY00361K
– ident: e_1_2_9_67_1
  doi: 10.1039/C6PY01410K
– ident: e_1_2_9_158_1
  doi: 10.1016/j.polymer.2019.122073
– ident: e_1_2_9_34_1
  doi: 10.1002/marc.201700040
– ident: e_1_2_9_136_1
  doi: 10.3390/polym11122026
– ident: e_1_2_9_141_1
  doi: 10.1002/marc.201700423
– ident: e_1_2_9_12_1
  doi: 10.1021/ma052358r
– ident: e_1_2_9_77_1
  doi: 10.1039/C5PY01765C
– ident: e_1_2_9_122_1
  doi: 10.1039/C9PY00774A
– ident: e_1_2_9_5_1
  doi: 10.1002/ange.201412494
– ident: e_1_2_9_124_1
  doi: 10.1021/acsmacrolett.6b00004
– ident: e_1_2_9_53_1
  doi: 10.1002/anie.201910828
– ident: e_1_2_9_137_1
  doi: 10.1021/acsenergylett.7b00999
– ident: e_1_2_9_57_1
  doi: 10.1021/acs.jpca.9b10404
– ident: e_1_2_9_66_1
  doi: 10.1002/chem.201605574
– ident: e_1_2_9_134_1
  doi: 10.1016/j.micromeso.2020.110520
– ident: e_1_2_9_15_1
  doi: 10.1021/jacs.5b02617
– ident: e_1_2_9_148_1
  doi: 10.1016/j.msec.2017.03.261
– ident: e_1_2_9_70_1
  doi: 10.1016/j.polymer.2015.05.043
– ident: e_1_2_9_99_1
  doi: 10.1021/acsmacrolett.6b00295
– ident: e_1_2_9_56_1
  doi: 10.1039/C9PY01742A
– ident: e_1_2_9_14_1
  doi: 10.1021/ja4036016
– ident: e_1_2_9_69_1
  doi: 10.1039/C8PY01459K
– ident: e_1_2_9_142_1
  doi: 10.1021/jacs.7b01694
– ident: e_1_2_9_74_1
  doi: 10.1371/journal.pone.0190880
SSID ssj0008402
Score 2.4885566
SecondaryResourceType review_article
Snippet Reversible deactivation radical polymerization (RDRP) is a class of powerful techniques capable of synthesizing polymers with a well‐defined structure,...
Reversible deactivation radical polymerization (RDRP) is a class of powerful techniques capable of synthesizing polymers with a well-defined structure,...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage e2100221
SubjectTerms Catalysts
Chemical synthesis
controlled polymerization
Deactivation
Functional materials
Irradiation
Light irradiation
metal‐free polymerization
Organic compounds
organic synthesis
O‐ATRP
photocatalysts
Polymerization
Polymers
Radiation
Title Metal‐Free Organocatalyzed Atom Transfer Radical Polymerization: Synthesis, Applications, and Future Perspectives
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fmarc.202100221
https://www.proquest.com/docview/2558448463
https://www.proquest.com/docview/2548620194
Volume 42
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bS8MwFA7ii754F-eNCIIvdrZpm1bfxnAMQZHpYG_lJE1A1FbW7WE--RP8jf4ST9K1m4II-tbQpJecnub7cnK-EHKMIDcVgglHCvwFBhHzndjXwgHX1yaPMfSUXeV7w7v94GoQDuay-Et9iHrCzXiG_V8bBwdRnM1EQ43UA_I7Zoo2k9ws2DKoqDfTj0L2UoY7kXEhGeOVaqPLzr42_zoqzaDmPGC1I05nlUD1rOVCk8fmeCSa8vWbjON_XmaNrEzhKG2V3886WVDZBllqV7vAbZLiWiE8_3h77wyVojZzM7dTPpNXldLWKH-mdrjTakh7YIM-9DZ_mphAUJnheUHvJhnCzOKhOKWtuXj5KYUspR0rakJvZ0mfxRbpdy7v211nulGDIw0_clig3SjV0oR1jaC89rj2QgkcAZVWEbDzUEguwQXwuRbxeSTR22OpZAAalPS3yWKWZ2qHUIH40fOlxwHCIIoEpJrFKbgaOHC8bIM4laESOVUxN5tpPCWl_jJLTFcmdVc2yEld_6XU7_ix5n5l92Tqx0WChCtGAhtwv0GO6tNoAhNWgUzlY1MnQFqIUDloEGaN_MudkutWr12Xdv_SaI8sm-NyJeI-WRwNx-oA0dFIHFoP-AT55QkH
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Nb9QwEB2h9lAuUL7ElgJGQuLStImTOCm31YrVAt2qWlqJWzR2bAnRJmize9ie-An8Rn4JM84m2yIhJDgmsfPhydjveTzPAK8J5JZaSx0YTV1gksk4yGOnAwxjx3mMaWT9Kt9TNblIPnxOu9WEnAvT6kP0E27sGb6_ZgfnCemjjWooaz0QwZN8yKnk27ytt2dVs42CFPGXNuBJnIvomOp0G0N5dLv-7XFpAzZvQlY_5ozvg-7etl1q8vVwudCH5vo3Icf_-pxduLdGpGLY_kIP4I6tHsLOqNsI7hE0U0sI_ef3H-O5tcInb9Z-1md1bUsxXNRXwo94zs7FDH3cR5zVlyuOBbVJnm_Fp1VFSLP50hyI4Y2Q-YHAqhRjr2sizjZ5n81juBi_Ox9NgvVeDYFhihTIxIVZ6QxHdllT3kXKRalBRZjK2QzlcaqNMhgixsrp_Dgz5PC5sSZBh9bET2Crqiv7FIQmCBnFJlKIaZJlGksn8xJDhwoV3XYAQWepwqyFzHk_jcuilWCWBTdl0TflAN705b-1Eh5_LLnfGb5Yu3JTEOfKicMmKh7Aq_4ymYAjK1jZesllEmKGhJaTAUhv5b88qZgOZ6P-aO9fKr2Encn59KQ4eX_68Rnc5fPtwsR92FrMl_Y5gaWFfuHd4ReAJw0i
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3LbtQwFL1CRQI25S2mFDASEpumTRzHSbsbTYnKo9VooFJ30bVjS6htUk1mFtMVn8A38iW9diaZKRJCgqUTOw_b1z7H1_cY4B2B3FIprgKtaAgUKY-DLLYqwDC2Lo4xiYzf5Xsij07Fp7PkbC2Kv9WH6BfcnGX48doZ-FVp91aioU7qgfgdd0kXSX5XyDBz_fpwshKQIvrS-juJchEbk51sY8j3bpe_PS2tsOY6YvVTTv4QsPvYdqfJ-e58pnb19W86jv_zN49gc4lH2bDtQI_hjqmewP1RdwzcU2iODeHzXz9-5lNjmA_drP2az-LalGw4qy-Zn--smbIJeq8PG9cXC-cJakM8D9jXRUU4s_ne7LDhmsN8h2FVstyrmrDxKuqzeQan-Ydvo6NgeVJDoB1BCriwYVpa7fy6TlHeRtJGiUZJiMqaFPl-orTUGCLG0qpsP9Vk7pk2WqBFo-PnsFHVlXkBTBGAjGIdScREpKnC0vKsxNCiREmPHUDQNVShlzLm7jSNi6IVYOaFq8qir8oBvO_zX7UCHn_Mud21e7E05KYgxpURgxUyHsDb_jY1gfOrYGXqucsjiBcSVhYD4L6R__Km4ng4GfWprX8p9AbujQ_z4svHk88v4YG73O5K3IaN2XRuXhFSmqnX3hhuAGsCC9o
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Metal%E2%80%90Free+Organocatalyzed+Atom+Transfer+Radical+Polymerization%3A+Synthesis%2C+Applications%2C+and+Future+Perspectives&rft.jtitle=Macromolecular+rapid+communications.&rft.au=de+%C3%81vila+Gon%C3%A7alves%2C+Sayeny&rft.au=R.+Rodrigues%2C+Pl%C3%ADnio&rft.au=Pioli+Vieira%2C+Roni%C3%A9rik&rft.date=2021-08-01&rft.issn=1022-1336&rft.eissn=1521-3927&rft.volume=42&rft.issue=15&rft_id=info:doi/10.1002%2Fmarc.202100221&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_marc_202100221
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1022-1336&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1022-1336&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1022-1336&client=summon