Hair regrowth in alopecia areata and re‐pigmentation in vitiligo in response to treatment: Commonalities and differences

Both alopecia areata (AA) and vitiligo share common pathogenesis involving, interferon‐γ (IFN‐γ) and interleukin‐15 (IL‐15) signalling pathways that activate cytotoxic CD8+ T lymphocytes. These shared mechanisms may explain why both diseases respond to currently available treatments (e.g. topical/sy...

Full description

Saved in:
Bibliographic Details
Published inJournal of the European Academy of Dermatology and Venereology Vol. 39; no. 3; pp. 498 - 511
Main Authors Yamaguchi, Hiroki L., Yamaguchi, Yuji, Peeva, Elena
Format Journal Article
LanguageEnglish
Published England John Wiley and Sons Inc 01.03.2025
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Both alopecia areata (AA) and vitiligo share common pathogenesis involving, interferon‐γ (IFN‐γ) and interleukin‐15 (IL‐15) signalling pathways that activate cytotoxic CD8+ T lymphocytes. These shared mechanisms may explain why both diseases respond to currently available treatments (e.g. topical/systemic corticosteroid) and emerging treatment modalities. As compared with the speed of re‐pigmentation in vitiligo lesions, the regeneration of pigmented terminal hair follicles in AA lesions appears fast in response to treatments targeting the inhibition of the Janus kinases (JAKs) and other kinases. We summarize the commonalities and differences between AA and vitiligo focusing on the treatment modalities, followed by recent findings associated with hair follicle stem cells (HFSC) in hair bulge (HBg) and melanocyte stem cells (McSC) in HBg and hair germ (HGm). We then discuss how HFSC and HGm‐McSC are involved in the initiation of anagen phase, followed by pigmented terminal hair regrowth in the recovering AA lesions in association with immunology. We also discuss how HBg‐McSC contribute to the migration of fully dendritic mature melanocytes into interfollicular epidermis and the equal distribution of melanin in recovering vitiligo lesions. Finally, we present four hypotheses to elucidate the delayed distribution of melanin by mature melanocytes in depigmented vitiligo lesions from the aspects of stem cell biology, as compared with quick hair recovery in AA: (1) McSC are less abundant than HFSC. (2) McSC require a long travel, whereas HFSC reside close to hair regeneration trigger point. (3) Keratinocyte scaffold to accept melanin is not well preserved, whereas scaffold for hair regrowth is well preserved. (4) Inhibitors targeting JAKs and other kinases have less direct effects on melanocyte proliferation and differentiation in vitiligo than hair regrowth in AA. Our review provides an overview of treatment modalities and bridges the gap between scientific advancement and clinical practice in AA and vitiligo management. Hair Regrowth in Alopecia Areata. This scheme summarizes recent findings in hair follicle stem cell biology and their implication to regrow hair in alopecia areata. Hair follicle stem cells reside in hair bulge abundantly. Anagen drivers are enhanced and suppressed expression levels of activators and repressors at telogen, respectively. Noradrenaline secreted from niche activates hair follicle regeneration via ADRB2, FOXP1 and FGF18. Hair plucking at high density regenerate hair follicles via TNF‐α. JAG1 + regulatory T lymphocytes regenerate hair follicles. Loss of COL17A1 results in hair follicle miniaturization. Burgundy and navy arrows indicate downregulation and upregulation, respectively. ADRB2, adrenergic receptor B2; BMP2, bone morphogenic protein 2; COL17A1, collagen XVII; DKK1, dickkopf 1; FGF18, fibroblast growth factor 18; FOXP1, forkhead box P1; JAG1, jagged 1; SFRP4, secreted frizzled‐related protein 4; SHH, sonic hedgehog; TNFα, tumour necrosis factor‐α. Re‐pigmentation in Vitiligo. This scheme summarizes recent findings in melanocyte stem cell biology and their implication to re‐pigment vitiligo skin. Melanocyte stem cells reside in lower portion of hair bulge and hair germ at telogen phase and contribute to perifollicular re‐pigmentation. Amplifying melanocytes tend to lose proliferation and migration potential. BMI + CXCR2 + melanocyte stem cells exist in interfollicular epidermis and may contribute to marginal re‐pigmentation. Hair follicle stem cells regulate melanocyte stem cells via cKIT, Wnt and other signals. PAX3 activates MITF, followed by DCT activation, whereas PAX3 directly downregulates DCT and maintains stemness. Noradrenaline induces melanocyte stem cell differentiation and migration via ADRB2. BMI1, B lymphoma Mo‐MLV insertion region 1; cKIT, receptor tyrosine kinase for stem cell factor; CXCR2, chemokine C‐X‐C motif receptor 2; DCT, dopachrome tautomerase; MCAM, melanoma cell adhesion molecule; MITF, microphthalmia associated transcription factor; PAX3, paired box gene 3. Melanocyte Distribution Pattern Differences. The distribution pattern of melanocyte stem cells is different depending on the density of pigmented terminal hair and that of vellus hair. As compared with hair follicle stem cells, melanocyte stem cells are sparsely distributed. Volar melanocyte stem cells reside in eccrine sweat gland and require a long travel to distribute melanocytes in the epidermis. Volar melanocytes is sparse, as compared with melanocytes in hairy skin.
AbstractList Both alopecia areata (AA) and vitiligo share common pathogenesis involving, interferon-γ (IFN-γ) and interleukin-15 (IL-15) signalling pathways that activate cytotoxic CD8+ T lymphocytes. These shared mechanisms may explain why both diseases respond to currently available treatments (e.g. topical/systemic corticosteroid) and emerging treatment modalities. As compared with the speed of re-pigmentation in vitiligo lesions, the regeneration of pigmented terminal hair follicles in AA lesions appears fast in response to treatments targeting the inhibition of the Janus kinases (JAKs) and other kinases. We summarize the commonalities and differences between AA and vitiligo focusing on the treatment modalities, followed by recent findings associated with hair follicle stem cells (HFSC) in hair bulge (HBg) and melanocyte stem cells (McSC) in HBg and hair germ (HGm). We then discuss how HFSC and HGm-McSC are involved in the initiation of anagen phase, followed by pigmented terminal hair regrowth in the recovering AA lesions in association with immunology. We also discuss how HBg-McSC contribute to the migration of fully dendritic mature melanocytes into interfollicular epidermis and the equal distribution of melanin in recovering vitiligo lesions. Finally, we present four hypotheses to elucidate the delayed distribution of melanin by mature melanocytes in depigmented vitiligo lesions from the aspects of stem cell biology, as compared with quick hair recovery in AA: (1) McSC are less abundant than HFSC. (2) McSC require a long travel, whereas HFSC reside close to hair regeneration trigger point. (3) Keratinocyte scaffold to accept melanin is not well preserved, whereas scaffold for hair regrowth is well preserved. (4) Inhibitors targeting JAKs and other kinases have less direct effects on melanocyte proliferation and differentiation in vitiligo than hair regrowth in AA. Our review provides an overview of treatment modalities and bridges the gap between scientific advancement and clinical practice in AA and vitiligo management.
Both alopecia areata (AA) and vitiligo share common pathogenesis involving, interferon‐γ (IFN‐γ) and interleukin‐15 (IL‐15) signalling pathways that activate cytotoxic CD8+ T lymphocytes. These shared mechanisms may explain why both diseases respond to currently available treatments (e.g. topical/systemic corticosteroid) and emerging treatment modalities. As compared with the speed of re‐pigmentation in vitiligo lesions, the regeneration of pigmented terminal hair follicles in AA lesions appears fast in response to treatments targeting the inhibition of the Janus kinases (JAKs) and other kinases. We summarize the commonalities and differences between AA and vitiligo focusing on the treatment modalities, followed by recent findings associated with hair follicle stem cells (HFSC) in hair bulge (HBg) and melanocyte stem cells (McSC) in HBg and hair germ (HGm). We then discuss how HFSC and HGm‐McSC are involved in the initiation of anagen phase, followed by pigmented terminal hair regrowth in the recovering AA lesions in association with immunology. We also discuss how HBg‐McSC contribute to the migration of fully dendritic mature melanocytes into interfollicular epidermis and the equal distribution of melanin in recovering vitiligo lesions. Finally, we present four hypotheses to elucidate the delayed distribution of melanin by mature melanocytes in depigmented vitiligo lesions from the aspects of stem cell biology, as compared with quick hair recovery in AA: (1) McSC are less abundant than HFSC. (2) McSC require a long travel, whereas HFSC reside close to hair regeneration trigger point. (3) Keratinocyte scaffold to accept melanin is not well preserved, whereas scaffold for hair regrowth is well preserved. (4) Inhibitors targeting JAKs and other kinases have less direct effects on melanocyte proliferation and differentiation in vitiligo than hair regrowth in AA. Our review provides an overview of treatment modalities and bridges the gap between scientific advancement and clinical practice in AA and vitiligo management. Hair Regrowth in Alopecia Areata. This scheme summarizes recent findings in hair follicle stem cell biology and their implication to regrow hair in alopecia areata. Hair follicle stem cells reside in hair bulge abundantly. Anagen drivers are enhanced and suppressed expression levels of activators and repressors at telogen, respectively. Noradrenaline secreted from niche activates hair follicle regeneration via ADRB2, FOXP1 and FGF18. Hair plucking at high density regenerate hair follicles via TNF‐α. JAG1 + regulatory T lymphocytes regenerate hair follicles. Loss of COL17A1 results in hair follicle miniaturization. Burgundy and navy arrows indicate downregulation and upregulation, respectively. ADRB2, adrenergic receptor B2; BMP2, bone morphogenic protein 2; COL17A1, collagen XVII; DKK1, dickkopf 1; FGF18, fibroblast growth factor 18; FOXP1, forkhead box P1; JAG1, jagged 1; SFRP4, secreted frizzled‐related protein 4; SHH, sonic hedgehog; TNFα, tumour necrosis factor‐α. Re‐pigmentation in Vitiligo. This scheme summarizes recent findings in melanocyte stem cell biology and their implication to re‐pigment vitiligo skin. Melanocyte stem cells reside in lower portion of hair bulge and hair germ at telogen phase and contribute to perifollicular re‐pigmentation. Amplifying melanocytes tend to lose proliferation and migration potential. BMI + CXCR2 + melanocyte stem cells exist in interfollicular epidermis and may contribute to marginal re‐pigmentation. Hair follicle stem cells regulate melanocyte stem cells via cKIT, Wnt and other signals. PAX3 activates MITF, followed by DCT activation, whereas PAX3 directly downregulates DCT and maintains stemness. Noradrenaline induces melanocyte stem cell differentiation and migration via ADRB2. BMI1, B lymphoma Mo‐MLV insertion region 1; cKIT, receptor tyrosine kinase for stem cell factor; CXCR2, chemokine C‐X‐C motif receptor 2; DCT, dopachrome tautomerase; MCAM, melanoma cell adhesion molecule; MITF, microphthalmia associated transcription factor; PAX3, paired box gene 3. Melanocyte Distribution Pattern Differences. The distribution pattern of melanocyte stem cells is different depending on the density of pigmented terminal hair and that of vellus hair. As compared with hair follicle stem cells, melanocyte stem cells are sparsely distributed. Volar melanocyte stem cells reside in eccrine sweat gland and require a long travel to distribute melanocytes in the epidermis. Volar melanocytes is sparse, as compared with melanocytes in hairy skin.
Both alopecia areata (AA) and vitiligo share common pathogenesis involving, interferon-γ (IFN-γ) and interleukin-15 (IL-15) signalling pathways that activate cytotoxic CD8+ T lymphocytes. These shared mechanisms may explain why both diseases respond to currently available treatments (e.g. topical/systemic corticosteroid) and emerging treatment modalities. As compared with the speed of re-pigmentation in vitiligo lesions, the regeneration of pigmented terminal hair follicles in AA lesions appears fast in response to treatments targeting the inhibition of the Janus kinases (JAKs) and other kinases. We summarize the commonalities and differences between AA and vitiligo focusing on the treatment modalities, followed by recent findings associated with hair follicle stem cells (HFSC) in hair bulge (HBg) and melanocyte stem cells (McSC) in HBg and hair germ (HGm). We then discuss how HFSC and HGm-McSC are involved in the initiation of anagen phase, followed by pigmented terminal hair regrowth in the recovering AA lesions in association with immunology. We also discuss how HBg-McSC contribute to the migration of fully dendritic mature melanocytes into interfollicular epidermis and the equal distribution of melanin in recovering vitiligo lesions. Finally, we present four hypotheses to elucidate the delayed distribution of melanin by mature melanocytes in depigmented vitiligo lesions from the aspects of stem cell biology, as compared with quick hair recovery in AA: (1) McSC are less abundant than HFSC. (2) McSC require a long travel, whereas HFSC reside close to hair regeneration trigger point. (3) Keratinocyte scaffold to accept melanin is not well preserved, whereas scaffold for hair regrowth is well preserved. (4) Inhibitors targeting JAKs and other kinases have less direct effects on melanocyte proliferation and differentiation in vitiligo than hair regrowth in AA. Our review provides an overview of treatment modalities and bridges the gap between scientific advancement and clinical practice in AA and vitiligo management.Both alopecia areata (AA) and vitiligo share common pathogenesis involving, interferon-γ (IFN-γ) and interleukin-15 (IL-15) signalling pathways that activate cytotoxic CD8+ T lymphocytes. These shared mechanisms may explain why both diseases respond to currently available treatments (e.g. topical/systemic corticosteroid) and emerging treatment modalities. As compared with the speed of re-pigmentation in vitiligo lesions, the regeneration of pigmented terminal hair follicles in AA lesions appears fast in response to treatments targeting the inhibition of the Janus kinases (JAKs) and other kinases. We summarize the commonalities and differences between AA and vitiligo focusing on the treatment modalities, followed by recent findings associated with hair follicle stem cells (HFSC) in hair bulge (HBg) and melanocyte stem cells (McSC) in HBg and hair germ (HGm). We then discuss how HFSC and HGm-McSC are involved in the initiation of anagen phase, followed by pigmented terminal hair regrowth in the recovering AA lesions in association with immunology. We also discuss how HBg-McSC contribute to the migration of fully dendritic mature melanocytes into interfollicular epidermis and the equal distribution of melanin in recovering vitiligo lesions. Finally, we present four hypotheses to elucidate the delayed distribution of melanin by mature melanocytes in depigmented vitiligo lesions from the aspects of stem cell biology, as compared with quick hair recovery in AA: (1) McSC are less abundant than HFSC. (2) McSC require a long travel, whereas HFSC reside close to hair regeneration trigger point. (3) Keratinocyte scaffold to accept melanin is not well preserved, whereas scaffold for hair regrowth is well preserved. (4) Inhibitors targeting JAKs and other kinases have less direct effects on melanocyte proliferation and differentiation in vitiligo than hair regrowth in AA. Our review provides an overview of treatment modalities and bridges the gap between scientific advancement and clinical practice in AA and vitiligo management.
Author Yamaguchi, Yuji
Yamaguchi, Hiroki L.
Peeva, Elena
AuthorAffiliation 1 Inflammation & Immunology Research Unit Pfizer Cambridge Massachusetts USA
2 Inflammation & Immunology Research Unit Pfizer Collegeville Pennsylvania USA
AuthorAffiliation_xml – name: 2 Inflammation & Immunology Research Unit Pfizer Collegeville Pennsylvania USA
– name: 1 Inflammation & Immunology Research Unit Pfizer Cambridge Massachusetts USA
Author_xml – sequence: 1
  givenname: Hiroki L.
  surname: Yamaguchi
  fullname: Yamaguchi, Hiroki L.
  organization: Pfizer
– sequence: 2
  givenname: Yuji
  orcidid: 0000-0003-4338-2662
  surname: Yamaguchi
  fullname: Yamaguchi, Yuji
  organization: Pfizer
– sequence: 3
  givenname: Elena
  surname: Peeva
  fullname: Peeva, Elena
  email: elena.peeva@pfizer.com
  organization: Pfizer
BackLink https://www.ncbi.nlm.nih.gov/pubmed/39258892$$D View this record in MEDLINE/PubMed
BookMark eNp1kcFu1DAQhi1URLeFAy-AcoRDWo-dpA4XhLZAQZW4AFfLccZbV44d7OxW7YlH4Bl5EpzuFrUIfBlL8_3_P5o5IHs-eCTkOdAjyO_4st8cMcoBHpEFVI0oORV8jyxoy5qybet2nxykdEkpBajFE7LPW1YL0bIFuTlTNhYRVzFcTReF9YVyYURtVaEiqikX3-f-rx8_R7sa0E9qssHP4MZO1tlVmP8R0xh8wmIKxTTrZvJ1sQzDELxymcR069RbYzCi15ieksdGuYTPdvWQfH3_7svyrDz__OHj8u15qStooARgba2avql5YxCMqRpaQXfSdYoCU1AJNKCM7mhvmGn4SV-xTuiaQodIWc8PyZut77juBux1niwqJ8doBxWvZVBWPux4eyFXYSMBRA2sgezwcucQw_c1pkkONml0TnkM6yQ5UCYEp5Rl9MX9sD8pdxvPwPEW0DGkFNFIbbc7zdnWSaByvqnMN5W3N82KV38p7kz_xe7cr6zD6_-D8tPpt63iN5a3tKU
CitedBy_id crossref_primary_10_1111_exd_15177
Cites_doi 10.1084/jem.20210116
10.1038/nrdp.2015.11
10.1007/s40257-022-00752-6
10.1016/j.cell.2015.02.016
10.1056/NEJMoa2110343
10.1016/j.jaad.2017.01.056
10.1126/science.1092436
10.1083/jcb.200311122
10.1083/jcb.200602132
10.1007/s00403-018-1830-z
10.1074/jbc.M112.372425
10.1126/science.aam5809
10.1016/j.jid.2018.01.030
10.1111/ijd.16114
10.1038/nm.3194
10.1016/j.jid.2019.03.1142
10.1073/pnas.1205742109
10.1038/nature09114
10.1038/s41586-019-1085-7
10.1111/j.1365-4632.2009.04332.x
10.1056/NEJMoa2118828
10.1126/sciadv.1500973
10.1016/S0140-6736(23)00222-2
10.1038/nature05766
10.1111/jdv.19022
10.1126/science.1201647
10.1016/j.cell.2017.05.002
10.1007/s40257-023-00808-1
10.1016/j.jaci.2018.11.031
10.1111/all.14814
10.1080/08830180701690835
10.1038/sj.jid.5700938
10.1242/dev.021295
10.1016/j.isci.2022.105238
10.1007/s13555-019-00329-y
10.1056/NEJMcp0804388
10.1016/j.immuni.2006.05.012
10.1016/j.immuni.2017.01.009
10.1001/jamadermatol.2014.1875
10.1111/exd.12264
10.1016/j.jaad.2023.04.033
10.1016/j.ajpath.2010.10.021
10.1080/14728222.2023.2193329
10.1016/j.jid.2017.08.038
10.1038/nm1328
10.1111/j.1600-0749.2006.00358.x
10.1016/S0092-8674(00)00050-7
10.3390/ijms22094581
10.1111/exd.12369
10.1111/1346-8138.16207
10.3389/fimmu.2021.652191
10.3109/01913123.2013.870274
10.1111/all.15071
10.1016/j.immuni.2016.05.008
10.1038/nature11847
10.1016/j.cell.2021.06.022
10.1159/000506103
10.1007/s13555-020-00447-y
10.1046/j.0022-202x.2001.01575.x
10.1038/s41586-021-03638-5
10.1038/nature11393
10.1016/j.phrs.2024.107059
10.1016/j.jaad.2018.12.047
10.1111/jdv.18810
10.1001/jamadermatol.2015.1520
10.1038/nm.3645
10.1016/j.jdermsci.2017.06.018
10.1111/exd.13868
10.1016/j.jaad.2015.09.073
10.1111/pcmr.12375
10.1097/MOP.0000000000000375
10.1038/s41586-023-05960-6
10.1111/j.0022-202X.2005.23760.x
10.1016/j.annder.2022.03.006
10.1038/nature12602
10.1016/j.jaci.2021.10.036
10.1096/fj.07-9475com
10.1038/s41586-023-06172-8
10.1016/j.det.2019.08.004
10.1016/j.jaad.2020.04.138
10.1038/416854a
10.1038/nm.3643
10.1111/j.1468-3083.2011.04223.x
10.1016/S0140-6736(14)60763-7
10.7554/eLife.52712
10.1126/scitranslmed.aam7710
10.1016/j.cell.2020.06.031
10.1111/bjd.15651
10.1038/nature03292
10.1016/j.jid.2020.06.004
10.1111/jdv.17187
10.1038/jid.2010.34
10.1074/jbc.R700026200
10.3390/ijms25084409
10.1016/j.jaad.2022.11.005
10.1016/j.jdermsci.2015.03.003
10.1001/jamadermatol.2014.504
10.1016/j.immuni.2021.09.001
10.1136/bmj.1.4869.1016
10.1684/ejd.2010.0853
10.1111/jdv.19842
10.1038/jid.2015.126
10.1056/NEJMra1103442
10.1111/all.15561
10.1001/2013.jamadermatol.386
10.1038/d41586‐020‐01808‐5
10.1111/jdv.19451
10.1126/science.aad4395
10.3390/ijms21145137
10.1002/biof.29
10.1111/jdv.19768
10.1038/s41586-020-1935-3
10.1111/pcmr.12297
10.1016/0092-8674(90)90696-C
10.1016/j.jaad.2020.03.004
10.1126/science.1239730
10.1126/science.284.5414.638
10.1016/j.cell.2011.05.004
10.1016/j.jdermsci.2012.01.010
10.1126/science.1248373
10.3389/fimmu.2023.1243556
10.1016/j.jaci.2023.09.021
10.1111/jdv.19450
ContentType Journal Article
Copyright 2024 The Author(s). published by John Wiley & Sons Ltd on behalf of European Academy of Dermatology and Venereology.
2024 The Author(s). Journal of the European Academy of Dermatology and Venereology published by John Wiley & Sons Ltd on behalf of European Academy of Dermatology and Venereology.
Copyright_xml – notice: 2024 The Author(s). published by John Wiley & Sons Ltd on behalf of European Academy of Dermatology and Venereology.
– notice: 2024 The Author(s). Journal of the European Academy of Dermatology and Venereology published by John Wiley & Sons Ltd on behalf of European Academy of Dermatology and Venereology.
DBID 24P
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
DOI 10.1111/jdv.20311
DatabaseName Wiley Online Library Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE

CrossRef
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Online Library Open Access (WRLC)
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
DocumentTitleAlternate Regenerative medicine in AA and vitiligo
EISSN 1468-3083
EndPage 511
ExternalDocumentID PMC11851261
39258892
10_1111_jdv_20311
JDV20311
Genre reviewArticle
Journal Article
Review
GroupedDBID ---
--K
.3N
.GA
.Y3
05W
0R~
10A
1B1
1OB
1OC
1~5
24P
29L
31~
33P
36B
3SF
4.4
4G.
50Y
50Z
51W
51X
52M
52N
52O
52P
52R
52S
52T
52U
52V
52W
52X
53G
5GY
5HH
5LA
5VS
66C
7-5
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A01
A03
AAEDT
AAESR
AAEVG
AAHHS
AAHQN
AAIPD
AALRI
AAMNL
AANHP
AANLZ
AAONW
AAQFI
AAQXK
AASGY
AAXRX
AAXUO
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABJNI
ABQWH
ABWVN
ABXGK
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACGOF
ACMXC
ACPOU
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADBTR
ADEOM
ADIZJ
ADKYN
ADMGS
ADMUD
ADNMO
ADOZA
ADZMN
AE3
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFEBI
AFFPM
AFGKR
AFPWT
AFTJW
AFWVQ
AFZJQ
AHBTC
AHEFC
AIACR
AITYG
AIURR
AIWBW
AJBDE
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMXJE
BROTX
BRXPI
BY8
C45
CAG
CO8
COF
CS3
CYRXZ
D-6
D-7
D-E
D-F
DC6
DCZOG
DPXWK
DR2
DRFUL
DRMAN
DRSTM
DU5
EBS
EJD
ESX
EX3
F00
F01
F04
F5P
FDB
FEDTE
FGOYB
FUBAC
FZ0
G-S
G.N
GODZA
H.X
HF~
HGLYW
HVGLF
HZI
HZ~
IHE
IX1
J0M
K48
KBYEO
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M41
MEWTI
MK4
MRFUL
MRMAN
MRSTM
MSFUL
MSMAN
MSSTM
MXFUL
MXMAN
MXSTM
N04
N05
NF~
NQ-
O66
O9-
OIG
OVD
OZT
P2P
P2W
P2X
P2Z
P4B
P4D
PALCI
Q.N
Q11
QB0
R.K
R2-
RIG
RIWAO
RJQFR
ROL
RPZ
RX1
SAMSI
SEW
SUPJJ
TEORI
UB1
UHS
W8V
W99
WBKPD
WHWMO
WIH
WIJ
WIK
WOHZO
WOW
WQJ
WRC
WUP
WVDHM
WXI
WXSBR
XG1
YFH
ZZTAW
~IA
~WT
AAYXX
ACVFH
ADCNI
AEUPX
AEYWJ
AFPUW
AGHNM
AGQPQ
AGYGG
AIGII
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
5PM
ID FETCH-LOGICAL-c4161-11295a6d6536fe1ff46041b7bba012a148ef1afcb0df2f637d42b8c501bee02d3
IEDL.DBID DR2
ISSN 0926-9959
1468-3083
IngestDate Thu Aug 21 18:27:43 EDT 2025
Thu Jul 10 23:53:20 EDT 2025
Fri Apr 25 03:26:35 EDT 2025
Tue Jul 01 05:20:40 EDT 2025
Thu Apr 24 23:09:19 EDT 2025
Tue Feb 25 10:00:11 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
License Attribution-NonCommercial-NoDerivs
2024 The Author(s). Journal of the European Academy of Dermatology and Venereology published by John Wiley & Sons Ltd on behalf of European Academy of Dermatology and Venereology.
This is an open access article under the terms of the http://creativecommons.org/licenses/by-nc-nd/4.0/ License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non‐commercial and no modifications or adaptations are made.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4161-11295a6d6536fe1ff46041b7bba012a148ef1afcb0df2f637d42b8c501bee02d3
Notes Hiroki L. Yamaguchi and Yuji Yamaguchi contributed equally to this work.
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
ObjectType-Review-3
content type line 23
ORCID 0000-0003-4338-2662
OpenAccessLink https://proxy.k.utb.cz/login?url=https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fjdv.20311
PMID 39258892
PQID 3102883002
PQPubID 23479
PageCount 14
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_11851261
proquest_miscellaneous_3102883002
pubmed_primary_39258892
crossref_citationtrail_10_1111_jdv_20311
crossref_primary_10_1111_jdv_20311
wiley_primary_10_1111_jdv_20311_JDV20311
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate March 2025
PublicationDateYYYYMMDD 2025-03-01
PublicationDate_xml – month: 03
  year: 2025
  text: March 2025
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
– name: Hoboken
PublicationTitle Journal of the European Academy of Dermatology and Venereology
PublicationTitleAlternate J Eur Acad Dermatol Venereol
PublicationYear 2025
Publisher John Wiley and Sons Inc
Publisher_xml – name: John Wiley and Sons Inc
References 2015; 78
2004; 165
2012; 366
2023; 78
2010; 466
2017; 88
2015; 386
2014; 27
2022; 25
1999; 284
2006; 175
2019; 568
2020; 10
2022; 219
2012; 489
2024; 38
2014; 23
2014; 20
1990; 61
2023; 62
2010; 20
2021; 76
2015; 135
2017; 77
2018; 178
2006; 25
2019; 28
2020; 577
2023; 616
2009; 360
2008; 22
2012; 26
2024; 25
2023; 618
2021; 84
2017; 169
1954; 1
2016; 44
2019; 9
2004; 303
2007; 447
2020; 140
2007; 282
2013; 502
2020; 38
2013; 342
2014; 150
2021; 141
2002; 416
2012; 109
2021; 54
2010; 49
2018; 359
2000; 102
2005; 124
2014; 38
2020; 21
2016; 28
2018; 10
2005; 11
2011; 145
2012; 287
2021; 22
2013; 22
2023; 37
2017; 46
2016; 74
2013; 19
2021; 35
2020; 5
2023; 24
2018; 138
2023; 27
2020; 9
2024; 153
2022; 77
2021; 594
2007; 20
2012; 66
2016; 351
2007; 26
2015; 1
2015; 161
2023; 14
2007; 127
2020; 83
2013; 149
2005; 433
2020; 182
2023; 401
2021; 184
2024; 200
2011; 178
2009; 136
2011; 332
2022; 49
2019; 143
2022; 386
2015; 151
2022; 387
2009; 35
2015; 28
2021; 12
2023; 88
2023; 89
2020
2018; 310
2020; 236
2010; 130
2013; 495
2022; 149
2001; 117
2014; 343
e_1_2_13_120_1
e_1_2_13_24_1
e_1_2_13_47_1
e_1_2_13_20_1
e_1_2_13_66_1
e_1_2_13_101_1
e_1_2_13_43_1
e_1_2_13_124_1
e_1_2_13_85_1
e_1_2_13_8_1
e_1_2_13_62_1
e_1_2_13_81_1
e_1_2_13_92_1
Boukhedouni N (e_1_2_13_115_1) 2020; 5
e_1_2_13_96_1
e_1_2_13_117_1
e_1_2_13_17_1
e_1_2_13_13_1
e_1_2_13_36_1
e_1_2_13_59_1
e_1_2_13_32_1
e_1_2_13_55_1
e_1_2_13_78_1
e_1_2_13_112_1
e_1_2_13_51_1
e_1_2_13_74_1
e_1_2_13_70_1
e_1_2_13_4_1
e_1_2_13_105_1
e_1_2_13_88_1
e_1_2_13_29_1
e_1_2_13_109_1
e_1_2_13_25_1
e_1_2_13_48_1
e_1_2_13_100_1
e_1_2_13_21_1
e_1_2_13_44_1
e_1_2_13_67_1
e_1_2_13_104_1
e_1_2_13_123_1
e_1_2_13_86_1
e_1_2_13_9_1
e_1_2_13_40_1
e_1_2_13_63_1
e_1_2_13_82_1
e_1_2_13_91_1
e_1_2_13_95_1
e_1_2_13_116_1
e_1_2_13_99_1
e_1_2_13_18_1
e_1_2_13_14_1
e_1_2_13_111_1
e_1_2_13_37_1
e_1_2_13_79_1
e_1_2_13_10_1
e_1_2_13_56_1
e_1_2_13_33_1
e_1_2_13_75_1
e_1_2_13_52_1
e_1_2_13_71_1
e_1_2_13_5_1
e_1_2_13_108_1
e_1_2_13_49_1
e_1_2_13_122_1
e_1_2_13_26_1
e_1_2_13_68_1
e_1_2_13_45_1
e_1_2_13_87_1
e_1_2_13_22_1
e_1_2_13_64_1
e_1_2_13_103_1
e_1_2_13_41_1
e_1_2_13_60_1
e_1_2_13_83_1
e_1_2_13_6_1
e_1_2_13_90_1
e_1_2_13_94_1
e_1_2_13_98_1
e_1_2_13_119_1
e_1_2_13_19_1
e_1_2_13_15_1
e_1_2_13_38_1
e_1_2_13_57_1
e_1_2_13_110_1
e_1_2_13_11_1
e_1_2_13_34_1
e_1_2_13_53_1
e_1_2_13_76_1
e_1_2_13_114_1
e_1_2_13_30_1
e_1_2_13_72_1
e_1_2_13_2_1
e_1_2_13_107_1
e_1_2_13_121_1
e_1_2_13_27_1
e_1_2_13_46_1
e_1_2_13_69_1
e_1_2_13_102_1
e_1_2_13_125_1
e_1_2_13_23_1
e_1_2_13_42_1
e_1_2_13_65_1
e_1_2_13_84_1
e_1_2_13_7_1
e_1_2_13_61_1
e_1_2_13_80_1
e_1_2_13_93_1
e_1_2_13_97_1
e_1_2_13_118_1
e_1_2_13_39_1
e_1_2_13_35_1
e_1_2_13_16_1
e_1_2_13_58_1
e_1_2_13_113_1
e_1_2_13_31_1
e_1_2_13_77_1
e_1_2_13_12_1
e_1_2_13_54_1
e_1_2_13_73_1
e_1_2_13_50_1
e_1_2_13_3_1
e_1_2_13_106_1
e_1_2_13_89_1
e_1_2_13_28_1
References_xml – volume: 135
  start-page: 2068
  issue: 8
  year: 2015
  end-page: 2076
  article-title: Narrow band ultraviolet B treatment for human vitiligo is associated with proliferation, migration, and differentiation of melanocyte precursors
  publication-title: J Invest Dermatol
– volume: 149
  start-page: 222
  issue: 4
  year: 2022
  end-page: 227
  article-title: Alopecia areata: recent advances and emerging therapies
  publication-title: Ann Dermatol Venereol
– volume: 54
  start-page: 2321
  issue: 10
  year: 2021
  end-page: 2337
  article-title: Disruption of the endopeptidase ADAM10‐notch signaling axis leads to skin dysbiosis and innate lymphoid cell‐mediated hair follicle destruction
  publication-title: Immunity
– volume: 343
  start-page: 1353
  issue: 6177
  year: 2014
  end-page: 1356
  article-title: Beta‐catenin activation regulates tissue growth non‐cell autonomously in the hair stem cell niche
  publication-title: Science
– volume: 46
  start-page: 287
  issue: 2
  year: 2017
  end-page: 300
  article-title: CD49a expression defines tissue‐resident CD8(+) T cells poised for cytotoxic function in human skin
  publication-title: Immunity
– volume: 109
  start-page: E2794
  issue: 41
  year: 2012
  end-page: E2802
  article-title: TCR signaling via Tec kinase ITK and interferon regulatory factor 4 (IRF4) regulates CD8+ T‐cell differentiation
  publication-title: Proc Natl Acad Sci USA
– volume: 21
  issue: 14
  year: 2020
  article-title: The effect of JAK inhibitor on the survival, anagen re‐entry, and hair follicle immune privilege restoration in human dermal papilla cells
  publication-title: Int J Mol Sci
– volume: 38
  start-page: 687
  issue: 4
  year: 2024
  end-page: 694
  article-title: European expert consensus statement on the systemic treatment of alopecia areata
  publication-title: J Eur Acad Dermatol Venereol
– volume: 25
  start-page: 4409
  issue: 8
  year: 2024
  article-title: Pathogenesis of alopecia areata and vitiligo: commonalities and differences
  publication-title: Int J Mol Sci
– volume: 14
  year: 2023
  article-title: Inhibition of T‐cell activity in alopecia areata: recent developments and new directions
  publication-title: Front Immunol
– volume: 88
  start-page: 159
  issue: 2
  year: 2017
  end-page: 166
  article-title: Precise role of dermal fibroblasts on melanocyte pigmentation
  publication-title: J Dermatol Sci
– volume: 1
  issue: 9
  year: 2015
  article-title: Pharmacologic inhibition of JAK‐STAT signaling promotes hair growth
  publication-title: Sci Adv
– volume: 284
  start-page: 638
  issue: 5414
  year: 1999
  end-page: 641
  article-title: Requirement for Tec kinases Rlk and Itk in T cell receptor signaling and immunity
  publication-title: Science
– volume: 178
  start-page: 632
  issue: 3
  year: 2018
  end-page: 639
  article-title: Paracrine regulation of melanogenesis
  publication-title: Br J Dermatol
– volume: 310
  start-page: 425
  issue: 5
  year: 2018
  end-page: 430
  article-title: Increased tenascin C and DKK1 in vitiligo: possible role of fibroblasts in acral and non‐acral disease
  publication-title: Arch Dermatol Res
– volume: 20
  start-page: 1043
  issue: 9
  year: 2014
  end-page: 1049
  article-title: Alopecia areata is driven by cytotoxic T lymphocytes and is reversed by JAK inhibition
  publication-title: Nat Med
– volume: 466
  start-page: 113
  issue: 7302
  year: 2010
  end-page: 117
  article-title: Genome‐wide association study in alopecia areata implicates both innate and adaptive immunity
  publication-title: Nature
– volume: 184
  start-page: 4268
  issue: 16
  year: 2021
  end-page: 4283
  article-title: NNT mediates redox‐dependent pigmentation via a UVB‐ and MITF‐independent mechanism
  publication-title: Cell
– volume: 182
  start-page: 578
  issue: 3
  year: 2020
  end-page: 593
  article-title: Cell types promoting goosebumps form a niche to regulate hair follicle stem cells
  publication-title: Cell
– volume: 35
  start-page: 193
  issue: 2
  year: 2009
  end-page: 199
  article-title: Physiological factors that regulate skin pigmentation
  publication-title: Biofactors
– volume: 44
  start-page: 1406
  issue: 6
  year: 2016
  end-page: 1421
  article-title: Inflammasome‐dependent induction of adaptive NK cell memory
  publication-title: Immunity
– volume: 37
  start-page: 666
  issue: 4
  year: 2023
  end-page: 679
  article-title: Systematic review of newer agents for the management of alopecia areata in adults: Janus kinase inhibitors, biologics and phosphodiesterase‐4 inhibitors
  publication-title: J Eur Acad Dermatol Venereol
– volume: 236
  start-page: 571
  issue: 6
  year: 2020
  end-page: 592
  article-title: Vitiligo: a review
  publication-title: Dermatology
– volume: 76
  start-page: 3053
  issue: 10
  year: 2021
  end-page: 3065
  article-title: An integrated scalp and blood biomarker approach suggests the systemic nature of alopecia areata
  publication-title: Allergy
– volume: 78
  start-page: 143
  issue: 2
  year: 2015
  end-page: 148
  article-title: Site‐specific migration of human fetal melanocytes in volar skin
  publication-title: J Dermatol Sci
– volume: 23
  start-page: 283
  issue: 4
  year: 2014
  end-page: 286
  article-title: T helper 17 and Tregs: a novel proposed mechanism for NB‐UVB in vitiligo
  publication-title: Exp Dermatol
– volume: 88
  start-page: 395
  issue: 2
  year: 2023
  end-page: 403
  article-title: Efficacy and safety of oral ritlecitinib for the treatment of active nonsegmental vitiligo: a randomized phase 2b clinical trial
  publication-title: J Am Acad Dermatol
– volume: 37
  start-page: 2208
  issue: 11
  year: 2023
  end-page: 2221
  article-title: The possible role of Wnt/beta‐catenin signalling in vitiligo treatment
  publication-title: J Eur Acad Dermatol Venereol
– volume: 577
  start-page: 676
  issue: 7792
  year: 2020
  end-page: 681
  article-title: Hyperactivation of sympathetic nerves drives depletion of melanocyte stem cells
  publication-title: Nature
– volume: 22
  start-page: 1009
  issue: 4
  year: 2008
  end-page: 1020
  article-title: Dickkopf 1 (DKK1) regulates skin pigmentation and thickness by affecting Wnt/beta‐catenin signaling in keratinocytes
  publication-title: FASEB J
– volume: 149
  start-page: 68
  issue: 1
  year: 2013
  end-page: 73
  article-title: The efficacy of afamelanotide and narrowband UV‐B phototherapy for repigmentation of vitiligo
  publication-title: JAMA Dermatol
– volume: 84
  start-page: 370
  issue: 2
  year: 2021
  end-page: 380
  article-title: Cross‐sectional study of blood biomarkers of patients with moderate to severe alopecia areata reveals systemic immune and cardiovascular biomarker dysregulation
  publication-title: J Am Acad Dermatol
– volume: 117
  start-page: 1412
  issue: 6
  year: 2001
  end-page: 1420
  article-title: Protease‐activated receptor 2, a receptor involved in melanosome transfer, is upregulated in human skin by ultraviolet irradiation
  publication-title: J Invest Dermatol
– volume: 594
  start-page: 547
  issue: 7864
  year: 2021
  end-page: 552
  article-title: Tracing the origin of hair follicle stem cells
  publication-title: Nature
– volume: 351
  issue: 6273
  year: 2016
  article-title: Hair follicle aging is driven by transepidermal elimination of stem cells via COL17A1 proteolysis
  publication-title: Science
– volume: 35
  start-page: 1299
  issue: 6
  year: 2021
  end-page: 1308
  article-title: Therapeutic management in paediatric alopecia areata: a systematic review
  publication-title: J Eur Acad Dermatol Venereol
– volume: 10
  start-page: 1185
  issue: 6
  year: 2020
  end-page: 1198
  article-title: Vitiligo, from physiopathology to emerging treatments: a review
  publication-title: Dermatol Ther (Heidelb)
– volume: 25
  start-page: 79
  issue: 1
  year: 2006
  end-page: 91
  article-title: The Tec family tyrosine kinases Itk and Rlk regulate the development of conventional CD8+ T cells
  publication-title: Immunity
– volume: 11
  start-page: 1351
  issue: 12
  year: 2005
  end-page: 1354
  article-title: Stem cells in the hair follicle bulge contribute to wound repair but not to homeostasis of the epidermis
  publication-title: Nat Med
– volume: 175
  start-page: 563
  issue: 4
  year: 2006
  end-page: 569
  article-title: CCN3 controls 3D spatial localization of melanocytes in the human skin through DDR1
  publication-title: J Cell Biol
– volume: 568
  start-page: 344
  issue: 7752
  year: 2019
  end-page: 350
  article-title: Stem cell competition orchestrates skin homeostasis and ageing
  publication-title: Nature
– volume: 495
  start-page: 98
  issue: 7439
  year: 2013
  end-page: 102
  article-title: NFIB is a governor of epithelial‐melanocyte stem cell behaviour in a shared niche
  publication-title: Nature
– volume: 26
  start-page: 333
  issue: 5–6
  year: 2007
  end-page: 348
  article-title: Role of Txk, a member of the Tec family of tyrosine kinases, in immune‐inflammatory diseases
  publication-title: Int Rev Immunol
– volume: 502
  start-page: 513
  issue: 7472
  year: 2013
  end-page: 518
  article-title: Spatial organization within a niche as a determinant of stem‐cell fate
  publication-title: Nature
– volume: 1
  start-page: 1016
  issue: 4869
  year: 1954
  end-page: 1017
  article-title: The number of melanocytes in human epidermis
  publication-title: Br Med J
– volume: 387
  start-page: 1445
  issue: 16
  year: 2022
  end-page: 1455
  article-title: Two phase 3, randomized, controlled trials of ruxolitinib cream for vitiligo
  publication-title: N Engl J Med
– volume: 12
  year: 2021
  article-title: Resident memory T cells in autoimmune skin diseases
  publication-title: Front Immunol
– volume: 26
  start-page: 1577
  issue: 12
  year: 2012
  end-page: 1580
  article-title: Repeated exposure of human fibroblasts to UVR induces secretion of stem cell factor and senescence
  publication-title: J Eur Acad Dermatol Venereol
– volume: 151
  start-page: 42
  issue: 1
  year: 2015
  end-page: 50
  article-title: Afamelanotide and narrowband UV‐B phototherapy for the treatment of vitiligo: a randomized multicenter trial
  publication-title: JAMA Dermatol
– volume: 9
  year: 2020
  article-title: Hair follicle stem cells regulate retinoid metabolism to maintain the self‐renewal niche for melanocyte stem cells
  publication-title: eLife
– volume: 20
  start-page: 2
  issue: 1
  year: 2007
  end-page: 13
  article-title: Regulation of human skin pigmentation and responses to ultraviolet radiation
  publication-title: Pigment Cell Res
– volume: 178
  start-page: 679
  issue: 2
  year: 2011
  end-page: 687
  article-title: UV‐B radiation induces macrophage migration inhibitory factor‐mediated melanogenesis through activation of protease‐activated receptor‐2 and stem cell factor in keratinocytes
  publication-title: Am J Pathol
– volume: 359
  start-page: 114
  issue: 6371
  year: 2018
  end-page: 119
  article-title: S1P‐dependent interorgan trafficking of group 2 innate lymphoid cells supports host defense
  publication-title: Science
– volume: 89
  start-page: S9
  issue: 2S
  year: 2023
  end-page: S15
  article-title: The dermatoscope in the hair clinic: trichoscopy of scarring and nonscarring alopecia
  publication-title: J Am Acad Dermatol
– volume: 150
  start-page: 748
  issue: 7
  year: 2014
  end-page: 751
  article-title: Effects of low‐dose recombinant interleukin 2 to promote T‐regulatory cells in alopecia areata
  publication-title: JAMA Dermatol
– volume: 77
  start-page: 318
  issue: 2
  year: 2017
  end-page: 327
  article-title: Long‐term follow‐up of patients undergoing autologous noncultured melanocyte‐keratinocyte transplantation for vitiligo and other leukodermas
  publication-title: J Am Acad Dermatol
– volume: 37
  start-page: 2173
  issue: 11
  year: 2023
  end-page: 2184
  article-title: Worldwide expert recommendations for the diagnosis and management of vitiligo: position statement from the International Vitiligo Task Force part 1: towards a new management algorithm
  publication-title: J Eur Acad Dermatol Venereol
– volume: 219
  issue: 1
  year: 2022
  article-title: Sphingosine 1‐phosphate receptor 5 (S1PR5) regulates the peripheral retention of tissue‐resident lymphocytes
  publication-title: J Exp Med
– volume: 77
  start-page: 897
  issue: 3
  year: 2022
  end-page: 906
  article-title: Phase 2a randomized clinical trial of dupilumab (anti‐IL‐4Ralpha) for alopecia areata patients
  publication-title: Allergy
– volume: 401
  start-page: 1518
  issue: 10387
  year: 2023
  end-page: 1529
  article-title: Efficacy and safety of ritlecitinib in adults and adolescents with alopecia areata: a randomised, double‐blind, multicentre, phase 2b‐3 trial
  publication-title: Lancet
– volume: 20
  start-page: 231
  issue: 2
  year: 2010
  end-page: 232
  article-title: Association between polymorphisms of discoidin domain receptor tyrosine kinase 1 (DDR1) and non‐segmental vitiligo in the Korean population
  publication-title: Eur J Dermatol
– volume: 140
  start-page: 29
  issue: 1
  year: 2020
  end-page: 37
  article-title: Harnessing the power of regenerative therapy for vitiligo and alopecia areata
  publication-title: J Invest Dermatol
– volume: 10
  issue: 450
  year: 2018
  article-title: Antibody blockade of IL‐15 signaling has the potential to durably reverse vitiligo
  publication-title: Sci Transl Med
– volume: 141
  start-page: 265
  issue: 2
  year: 2021
  end-page: 273
  article-title: The genetic basis of vitiligo
  publication-title: J Invest Dermatol
– volume: 102
  start-page: 451
  issue: 4
  year: 2000
  end-page: 461
  article-title: Involvement of follicular stem cells in forming not only the follicle but also the epidermis
  publication-title: Cell
– volume: 74
  start-page: 370
  issue: 2
  year: 2016
  end-page: 371
  article-title: Rapid skin repigmentation on oral ruxolitinib in a patient with coexistent vitiligo and alopecia areata (AA)
  publication-title: J Am Acad Dermatol
– volume: 153
  start-page: 161
  issue: 1
  year: 2024
  end-page: 172
  article-title: Improvements in immune/melanocyte biomarkers with JAK3/TEC family kinase inhibitor ritlecitinib in vitiligo
  publication-title: J Allergy Clin Immunol
– volume: 386
  start-page: 74
  issue: 9988
  year: 2015
  end-page: 84
  article-title: Vitiligo
  publication-title: Lancet
– volume: 62
  start-page: 279
  issue: 3
  year: 2023
  end-page: 289
  article-title: Systemic therapies in vitiligo: a review
  publication-title: Int J Dermatol
– volume: 169
  start-page: 1119
  issue: 6
  year: 2017
  end-page: 1129
  article-title: Regulatory T cells in skin facilitate epithelial stem cell differentiation
  publication-title: Cell
– volume: 28
  start-page: 463
  issue: 4
  year: 2016
  end-page: 469
  article-title: Understanding autoimmunity of vitiligo and alopecia areata
  publication-title: Curr Opin Pediatr
– volume: 151
  start-page: 1110
  issue: 10
  year: 2015
  end-page: 1112
  article-title: Tofacitinib citrate for the treatment of vitiligo: a pathogenesis‐directed therapy
  publication-title: JAMA Dermatol
– volume: 22
  start-page: 785
  issue: 12
  year: 2013
  end-page: 789
  article-title: Vitiligo and alopecia areata: apples and oranges?
  publication-title: Exp Dermatol
– volume: 24
  start-page: 165
  issue: 2
  year: 2023
  end-page: 186
  article-title: Vitiligo treatments: review of current therapeutic modalities and JAK inhibitors
  publication-title: Am J Clin Dermatol
– volume: 38
  start-page: e677
  year: 2024
  end-page: e679
  article-title: The effect of abnormal secretion of DKK1 by fibroblasts on melanocytes function in vitiligo
  publication-title: J Eur Acad Dermatol Venereol
– volume: 27
  start-page: 189
  issue: 3
  year: 2023
  end-page: 206
  article-title: Treatment update for vitiligo based on autoimmune inhibition and melanocyte protection
  publication-title: Expert Opin Ther Targets
– volume: 28
  start-page: 476
  issue: 4
  year: 2015
  end-page: 480
  article-title: Maintenance of distinct melanocyte populations in the interfollicular epidermis
  publication-title: Pigment Cell Melanoma Res
– volume: 138
  start-page: 355
  issue: 2
  year: 2018
  end-page: 364
  article-title: Vitiligo skin is imprinted with resident memory CD8 T cells expressing CXCR3
  publication-title: J Invest Dermatol
– volume: 124
  start-page: 1326
  issue: 6
  year: 2005
  end-page: 1332
  article-title: Mechanisms of skin tanning in different racial/ethnic groups in response to ultraviolet radiation
  publication-title: J Invest Dermatol
– volume: 66
  start-page: 163
  issue: 2
  year: 2012
  end-page: 165
  article-title: DKK1 is highly expressed in the dermis of vitiligo lesion: is there association between DKK1 and vitiligo?
  publication-title: J Dermatol Sci
– volume: 366
  start-page: 1515
  issue: 16
  year: 2012
  end-page: 1525
  article-title: Alopecia areata
  publication-title: N Engl J Med
– volume: 145
  start-page: 941
  issue: 6
  year: 2011
  end-page: 955
  article-title: Coordinated activation of Wnt in epithelial and melanocyte stem cells initiates pigmented hair regeneration
  publication-title: Cell
– volume: 447
  start-page: 316
  issue: 7142
  year: 2007
  end-page: 320
  article-title: Wnt‐dependent de novo hair follicle regeneration in adult mouse skin after wounding
  publication-title: Nature
– volume: 83
  start-page: 123
  issue: 1
  year: 2020
  end-page: 130
  article-title: The Alopecia Areata Consensus of Experts (ACE) study: results of an international expert opinion on treatments for alopecia areata
  publication-title: J Am Acad Dermatol
– volume: 1
  year: 2015
  article-title: Vitiligo
  publication-title: Nat Rev Dis Primers
– volume: 287
  start-page: 23769
  issue: 28
  year: 2012
  end-page: 23778
  article-title: Tyrosine kinase Btk is required for NK cell activation
  publication-title: J Biol Chem
– volume: 200
  year: 2024
  article-title: Properties of FDA‐approved small molecule protein kinase inhibitors: a 2024 update
  publication-title: Pharmacol Res
– volume: 24
  start-page: 895
  issue: 6
  year: 2023
  end-page: 912
  article-title: Alopecia areata: current treatments and new directions
  publication-title: Am J Clin Dermatol
– volume: 416
  start-page: 854
  issue: 6883
  year: 2002
  end-page: 860
  article-title: Dominant role of the niche in melanocyte stem‐cell fate determination
  publication-title: Nature
– volume: 20
  start-page: 847
  issue: 8
  year: 2014
  end-page: 856
  article-title: Emerging interactions between skin stem cells and their niches
  publication-title: Nat Med
– volume: 89
  start-page: 758
  issue: 4
  year: 2023
  end-page: 763
  article-title: White hair in alopecia areata: clinical forms and proposed physiopathologic mechanisms
  publication-title: J Am Acad Dermatol
– volume: 22
  issue: 9
  year: 2021
  article-title: Mesenchymal stem cells antagonize IFN‐induced proinflammatory changes and growth inhibition effects via Wnt/beta‐catenin and JAK/STAT pathway in human outer root sheath cells and hair follicles
  publication-title: Int J Mol Sci
– volume: 27
  start-page: 1039
  issue: 6
  year: 2014
  end-page: 1050
  article-title: A melanocyte–melanoma precursor niche in sweat glands of volar skin
  publication-title: Pigment Cell Melanoma Res
– volume: 138
  start-page: 1591
  issue: 7
  year: 2018
  end-page: 1600
  article-title: Dissecting Wnt signaling for melanocyte regulation during wound healing
  publication-title: J Invest Dermatol
– volume: 49
  start-page: 19
  issue: 1
  year: 2022
  end-page: 36
  article-title: Alopecia areata: current understanding of the pathophysiology and update on therapeutic approaches, featuring the Japanese dermatological association guidelines
  publication-title: J Dermatol
– volume: 127
  start-page: 2637
  issue: 11
  year: 2007
  end-page: 2644
  article-title: Hepatocyte growth factor establishes autocrine and paracrine feedback loops for the protection of skin cells after UV irradiation
  publication-title: J Invest Dermatol
– volume: 303
  start-page: 359
  issue: 5656
  year: 2004
  end-page: 363
  article-title: Defining the epithelial stem cell niche in skin
  publication-title: Science
– volume: 618
  start-page: 808
  issue: 7966
  year: 2023
  end-page: 817
  article-title: Signalling by senescent melanocytes hyperactivates hair growth
  publication-title: Nature
– volume: 616
  start-page: 774
  issue: 7958
  year: 2023
  end-page: 782
  article-title: Dedifferentiation maintains melanocyte stem cells in a dynamic niche
  publication-title: Nature
– volume: 25
  issue: 10
  year: 2022
  article-title: Human cutaneous interfollicular melanocytes differentiate temporarily under genotoxic stress
  publication-title: iScience
– volume: 161
  start-page: 277
  issue: 2
  year: 2015
  end-page: 290
  article-title: Organ‐level quorum sensing directs regeneration in hair stem cell populations
  publication-title: Cell
– volume: 342
  start-page: 1226
  issue: 6163
  year: 2013
  end-page: 1230
  article-title: Interfollicular epidermal stem cells self‐renew via autocrine Wnt signaling
  publication-title: Science
– volume: 49
  start-page: 317
  issue: 3
  year: 2010
  end-page: 323
  article-title: Clinical study of repigmentation patterns with either narrow‐band ultraviolet B (NBUVB) or 308 nm excimer laser treatment in Korean vitiligo patients
  publication-title: Int J Dermatol
– volume: 165
  start-page: 275
  issue: 2
  year: 2004
  end-page: 285
  article-title: Mesenchymal‐epithelial interactions in the skin: increased expression of dickkopf1 by palmoplantar fibroblasts inhibits melanocyte growth and differentiation
  publication-title: J Cell Biol
– volume: 61
  start-page: 1329
  issue: 7
  year: 1990
  end-page: 1337
  article-title: Label‐retaining cells reside in the bulge area of pilosebaceous unit: implications for follicular stem cells, hair cycle, and skin carcinogenesis
  publication-title: Cell
– volume: 78
  start-page: 1047
  issue: 4
  year: 2023
  end-page: 1059
  article-title: Scalp biomarkers during dupilumab treatment support Th2 pathway pathogenicity in alopecia areata
  publication-title: Allergy
– year: 2020
  article-title: Temprian therapeutics: developing a gene‐based treatment for vitiligo
  publication-title: Nature
– volume: 136
  start-page: 367
  issue: 3
  year: 2009
  end-page: 372
  article-title: Embryonic hair follicle fate change by augmented beta‐catenin through Shh and Bmp signaling
  publication-title: Development
– volume: 19
  start-page: 924
  issue: 7
  year: 2013
  end-page: 929
  article-title: Direct migration of follicular melanocyte stem cells to the epidermis after wounding or UVB irradiation is dependent on Mc1r signaling
  publication-title: Nat Med
– volume: 38
  start-page: 186
  issue: 3
  year: 2014
  end-page: 198
  article-title: Immunohistochemical study of melanocyte‐melanocyte stem cell lineage in vitiligo; a clue to interfollicular melanocyte stem cell reservoir
  publication-title: Ultrastruct Pathol
– volume: 130
  start-page: 1813
  issue: 7
  year: 2010
  end-page: 1818
  article-title: Genetic variants of the DDR1 gene are associated with vitiligo in two independent Brazilian population samples
  publication-title: J Invest Dermatol
– volume: 37
  start-page: 2185
  issue: 11
  year: 2023
  end-page: 2195
  article-title: Worldwide expert recommendations for the diagnosis and management of vitiligo: position statement from the international vitiligo task force‐part 2: specific treatment recommendations
  publication-title: J Eur Acad Dermatol Venereol
– volume: 38
  start-page: 37
  issue: 1
  year: 2020
  end-page: 53
  article-title: How it works: the immunology underlying phototherapy
  publication-title: Dermatol Clin
– volume: 433
  start-page: 884
  issue: 7028
  year: 2005
  end-page: 887
  article-title: Pax3 functions at a nodal point in melanocyte stem cell differentiation
  publication-title: Nature
– volume: 5
  issue: 11
  year: 2020
  article-title: Type‐1 cytokines regulate MMP‐9 production and E‐cadherin disruption to promote melanocyte loss in vitiligo. JCI
  publication-title: Insight
– volume: 9
  start-page: 655
  issue: 4
  year: 2019
  end-page: 683
  article-title: Scoping review on the use of drugs targeting JAK/STAT pathway in atopic dermatitis, vitiligo, and alopecia areata
  publication-title: Dermatol Ther (Heidelb)
– volume: 489
  start-page: 257
  issue: 7415
  year: 2012
  end-page: 262
  article-title: Distinct contribution of stem and progenitor cells to epidermal maintenance
  publication-title: Nature
– volume: 143
  start-page: 2095
  issue: 6
  year: 2019
  end-page: 2107
  article-title: Blood endotyping distinguishes the profile of vitiligo from that of other inflammatory and autoimmune skin diseases
  publication-title: J Allergy Clin Immunol
– volume: 28
  start-page: 667
  issue: 6
  year: 2019
  end-page: 673
  article-title: Involvement of non‐melanocytic skin cells in vitiligo
  publication-title: Exp Dermatol
– volume: 332
  start-page: 586
  issue: 6029
  year: 2011
  end-page: 589
  article-title: Self‐organizing and stochastic behaviors during the regeneration of hair stem cells
  publication-title: Science
– volume: 386
  start-page: 1687
  issue: 18
  year: 2022
  end-page: 1699
  article-title: Two phase 3 trials of Baricitinib for alopecia areata
  publication-title: N Engl J Med
– volume: 149
  start-page: 1318
  issue: 4
  year: 2022
  end-page: 1328
  article-title: Ritlecitinib and brepocitinib demonstrate significant improvement in scalp alopecia areata biomarkers
  publication-title: J Allergy Clin Immunol
– volume: 360
  start-page: 160
  issue: 2
  year: 2009
  end-page: 169
  article-title: Clinical practice. Vitiligo
  publication-title: N Engl J Med
– volume: 282
  start-page: 27557
  issue: 38
  year: 2007
  end-page: 27561
  article-title: The regulation of skin pigmentation
  publication-title: J Biol Chem
– ident: e_1_2_13_20_1
  doi: 10.1084/jem.20210116
– ident: e_1_2_13_32_1
  doi: 10.1038/nrdp.2015.11
– ident: e_1_2_13_35_1
  doi: 10.1007/s40257-022-00752-6
– ident: e_1_2_13_84_1
  doi: 10.1016/j.cell.2015.02.016
– ident: e_1_2_13_10_1
  doi: 10.1056/NEJMoa2110343
– ident: e_1_2_13_56_1
  doi: 10.1016/j.jaad.2017.01.056
– ident: e_1_2_13_73_1
  doi: 10.1126/science.1092436
– ident: e_1_2_13_111_1
  doi: 10.1083/jcb.200311122
– ident: e_1_2_13_116_1
  doi: 10.1083/jcb.200602132
– ident: e_1_2_13_121_1
  doi: 10.1007/s00403-018-1830-z
– ident: e_1_2_13_65_1
  doi: 10.1074/jbc.M112.372425
– ident: e_1_2_13_83_1
  doi: 10.1126/science.aam5809
– ident: e_1_2_13_102_1
  doi: 10.1016/j.jid.2018.01.030
– ident: e_1_2_13_37_1
  doi: 10.1111/ijd.16114
– ident: e_1_2_13_101_1
  doi: 10.1038/nm.3194
– ident: e_1_2_13_6_1
  doi: 10.1016/j.jid.2019.03.1142
– ident: e_1_2_13_68_1
  doi: 10.1073/pnas.1205742109
– ident: e_1_2_13_2_1
  doi: 10.1038/nature09114
– ident: e_1_2_13_90_1
  doi: 10.1038/s41586-019-1085-7
– ident: e_1_2_13_107_1
  doi: 10.1111/j.1365-4632.2009.04332.x
– ident: e_1_2_13_39_1
  doi: 10.1056/NEJMoa2118828
– ident: e_1_2_13_123_1
  doi: 10.1126/sciadv.1500973
– ident: e_1_2_13_11_1
  doi: 10.1016/S0140-6736(23)00222-2
– ident: e_1_2_13_86_1
  doi: 10.1038/nature05766
– ident: e_1_2_13_60_1
  doi: 10.1111/jdv.19022
– ident: e_1_2_13_76_1
  doi: 10.1126/science.1201647
– ident: e_1_2_13_80_1
  doi: 10.1016/j.cell.2017.05.002
– ident: e_1_2_13_12_1
  doi: 10.1007/s40257-023-00808-1
– ident: e_1_2_13_22_1
  doi: 10.1016/j.jaci.2018.11.031
– ident: e_1_2_13_21_1
  doi: 10.1111/all.14814
– ident: e_1_2_13_66_1
  doi: 10.1080/08830180701690835
– ident: e_1_2_13_53_1
  doi: 10.1038/sj.jid.5700938
– ident: e_1_2_13_74_1
  doi: 10.1242/dev.021295
– ident: e_1_2_13_105_1
  doi: 10.1016/j.isci.2022.105238
– ident: e_1_2_13_63_1
  doi: 10.1007/s13555-019-00329-y
– ident: e_1_2_13_31_1
  doi: 10.1056/NEJMcp0804388
– ident: e_1_2_13_64_1
  doi: 10.1016/j.immuni.2006.05.012
– ident: e_1_2_13_19_1
  doi: 10.1016/j.immuni.2017.01.009
– ident: e_1_2_13_58_1
  doi: 10.1001/jamadermatol.2014.1875
– ident: e_1_2_13_4_1
  doi: 10.1111/exd.12264
– ident: e_1_2_13_114_1
  doi: 10.1016/j.jaad.2023.04.033
– ident: e_1_2_13_52_1
  doi: 10.1016/j.ajpath.2010.10.021
– ident: e_1_2_13_36_1
  doi: 10.1080/14728222.2023.2193329
– ident: e_1_2_13_38_1
  doi: 10.1016/j.jid.2017.08.038
– ident: e_1_2_13_88_1
  doi: 10.1038/nm1328
– ident: e_1_2_13_47_1
  doi: 10.1111/j.1600-0749.2006.00358.x
– ident: e_1_2_13_85_1
  doi: 10.1016/S0092-8674(00)00050-7
– ident: e_1_2_13_125_1
  doi: 10.3390/ijms22094581
– ident: e_1_2_13_45_1
  doi: 10.1111/exd.12369
– ident: e_1_2_13_113_1
  doi: 10.1111/1346-8138.16207
– ident: e_1_2_13_7_1
  doi: 10.3389/fimmu.2021.652191
– ident: e_1_2_13_106_1
  doi: 10.3109/01913123.2013.870274
– ident: e_1_2_13_25_1
  doi: 10.1111/all.15071
– ident: e_1_2_13_28_1
  doi: 10.1016/j.immuni.2016.05.008
– ident: e_1_2_13_98_1
  doi: 10.1038/nature11847
– ident: e_1_2_13_100_1
  doi: 10.1016/j.cell.2021.06.022
– ident: e_1_2_13_34_1
  doi: 10.1159/000506103
– ident: e_1_2_13_44_1
  doi: 10.1007/s13555-020-00447-y
– ident: e_1_2_13_55_1
  doi: 10.1046/j.0022-202x.2001.01575.x
– ident: e_1_2_13_71_1
  doi: 10.1038/s41586-021-03638-5
– ident: e_1_2_13_108_1
  doi: 10.1038/nature11393
– ident: e_1_2_13_67_1
  doi: 10.1016/j.phrs.2024.107059
– ident: e_1_2_13_87_1
  doi: 10.1016/j.jaad.2018.12.047
– ident: e_1_2_13_13_1
  doi: 10.1111/jdv.18810
– ident: e_1_2_13_62_1
  doi: 10.1001/jamadermatol.2015.1520
– ident: e_1_2_13_18_1
  doi: 10.1038/nm.3645
– ident: e_1_2_13_49_1
  doi: 10.1016/j.jdermsci.2017.06.018
– ident: e_1_2_13_51_1
  doi: 10.1111/exd.13868
– ident: e_1_2_13_61_1
  doi: 10.1016/j.jaad.2015.09.073
– ident: e_1_2_13_104_1
  doi: 10.1111/pcmr.12375
– ident: e_1_2_13_5_1
  doi: 10.1097/MOP.0000000000000375
– ident: e_1_2_13_95_1
  doi: 10.1038/s41586-023-05960-6
– ident: e_1_2_13_112_1
  doi: 10.1111/j.0022-202X.2005.23760.x
– ident: e_1_2_13_14_1
  doi: 10.1016/j.annder.2022.03.006
– ident: e_1_2_13_77_1
  doi: 10.1038/nature12602
– ident: e_1_2_13_70_1
  doi: 10.1016/j.jaci.2021.10.036
– ident: e_1_2_13_117_1
  doi: 10.1096/fj.07-9475com
– ident: e_1_2_13_27_1
  doi: 10.1038/s41586-023-06172-8
– ident: e_1_2_13_46_1
  doi: 10.1016/j.det.2019.08.004
– ident: e_1_2_13_23_1
  doi: 10.1016/j.jaad.2020.04.138
– ident: e_1_2_13_91_1
  doi: 10.1038/416854a
– ident: e_1_2_13_109_1
  doi: 10.1038/nm.3643
– ident: e_1_2_13_54_1
  doi: 10.1111/j.1468-3083.2011.04223.x
– ident: e_1_2_13_33_1
  doi: 10.1016/S0140-6736(14)60763-7
– ident: e_1_2_13_97_1
  doi: 10.7554/eLife.52712
– ident: e_1_2_13_43_1
  doi: 10.1126/scitranslmed.aam7710
– ident: e_1_2_13_78_1
  doi: 10.1016/j.cell.2020.06.031
– ident: e_1_2_13_50_1
  doi: 10.1111/bjd.15651
– ident: e_1_2_13_94_1
  doi: 10.1038/nature03292
– ident: e_1_2_13_3_1
  doi: 10.1016/j.jid.2020.06.004
– ident: e_1_2_13_17_1
  doi: 10.1111/jdv.17187
– ident: e_1_2_13_118_1
  doi: 10.1038/jid.2010.34
– ident: e_1_2_13_48_1
  doi: 10.1074/jbc.R700026200
– ident: e_1_2_13_8_1
  doi: 10.3390/ijms25084409
– ident: e_1_2_13_40_1
  doi: 10.1016/j.jaad.2022.11.005
– ident: e_1_2_13_93_1
  doi: 10.1016/j.jdermsci.2015.03.003
– ident: e_1_2_13_81_1
  doi: 10.1001/jamadermatol.2014.504
– ident: e_1_2_13_82_1
  doi: 10.1016/j.immuni.2021.09.001
– ident: e_1_2_13_110_1
  doi: 10.1136/bmj.1.4869.1016
– ident: e_1_2_13_119_1
  doi: 10.1684/ejd.2010.0853
– ident: e_1_2_13_122_1
  doi: 10.1111/jdv.19842
– ident: e_1_2_13_103_1
  doi: 10.1038/jid.2015.126
– ident: e_1_2_13_16_1
  doi: 10.1056/NEJMra1103442
– ident: e_1_2_13_24_1
  doi: 10.1111/all.15561
– ident: e_1_2_13_57_1
  doi: 10.1001/2013.jamadermatol.386
– ident: e_1_2_13_42_1
  doi: 10.1038/d41586‐020‐01808‐5
– ident: e_1_2_13_29_1
  doi: 10.1111/jdv.19451
– ident: e_1_2_13_79_1
  doi: 10.1126/science.aad4395
– ident: e_1_2_13_124_1
  doi: 10.3390/ijms21145137
– ident: e_1_2_13_59_1
  doi: 10.1002/biof.29
– ident: e_1_2_13_9_1
  doi: 10.1111/jdv.19768
– ident: e_1_2_13_99_1
  doi: 10.1038/s41586-020-1935-3
– ident: e_1_2_13_92_1
  doi: 10.1111/pcmr.12297
– ident: e_1_2_13_72_1
  doi: 10.1016/0092-8674(90)90696-C
– ident: e_1_2_13_15_1
  doi: 10.1016/j.jaad.2020.03.004
– ident: e_1_2_13_89_1
  doi: 10.1126/science.1239730
– volume: 5
  issue: 11
  year: 2020
  ident: e_1_2_13_115_1
  article-title: Type‐1 cytokines regulate MMP‐9 production and E‐cadherin disruption to promote melanocyte loss in vitiligo. JCI
  publication-title: Insight
– ident: e_1_2_13_69_1
  doi: 10.1126/science.284.5414.638
– ident: e_1_2_13_96_1
  doi: 10.1016/j.cell.2011.05.004
– ident: e_1_2_13_120_1
  doi: 10.1016/j.jdermsci.2012.01.010
– ident: e_1_2_13_75_1
  doi: 10.1126/science.1248373
– ident: e_1_2_13_26_1
  doi: 10.3389/fimmu.2023.1243556
– ident: e_1_2_13_41_1
  doi: 10.1016/j.jaci.2023.09.021
– ident: e_1_2_13_30_1
  doi: 10.1111/jdv.19450
SSID ssj0001158
Score 2.443978
SecondaryResourceType review_article
Snippet Both alopecia areata (AA) and vitiligo share common pathogenesis involving, interferon‐γ (IFN‐γ) and interleukin‐15 (IL‐15) signalling pathways that activate...
Both alopecia areata (AA) and vitiligo share common pathogenesis involving, interferon-γ (IFN-γ) and interleukin-15 (IL-15) signalling pathways that activate...
SourceID pubmedcentral
proquest
pubmed
crossref
wiley
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 498
SubjectTerms Alopecia Areata - drug therapy
Alopecia Areata - physiopathology
Alopecia Areata - therapy
Hair - growth & development
Hair Follicle
Humans
Melanocytes
Review
Vitiligo - drug therapy
Vitiligo - physiopathology
Vitiligo - therapy
Title Hair regrowth in alopecia areata and re‐pigmentation in vitiligo in response to treatment: Commonalities and differences
URI https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fjdv.20311
https://www.ncbi.nlm.nih.gov/pubmed/39258892
https://www.proquest.com/docview/3102883002
https://pubmed.ncbi.nlm.nih.gov/PMC11851261
Volume 39
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEB6VHiouFFoegVItFYdeXDn2eu3QEwKqqFJRVVHUA5K1z9QitavUyaEnfgK_kV_CzPpBQ6mEeoqlnThrZ2b3--yZbwDexppgqEsDN9JIUCKdBjIxoyCTXPDMkSQUFScffRbjU354lpytwH5XC9PoQ_QP3Cgy_HpNAS7V1c0gNwukd7Gv66VcLQJEJ3-koxDp-FV4FImANLVaVSGfxdN9c3kvugUwb-dJ3sSvfgM6WIdv3dSbvJPve_Na7enrv1Qd73ltj-FRC0zZ-8aTnsCKLTdg7ah99b4J12NZzNjMTpC31-esKJmcVr55PZMEPPGjNDj-68fPy2Jy0ZY0lWS4KOpiWkwqOp41ObmW1RXrk9zfMapTaTgBMnd_pq5zC65jT-H04NOXD-OgbdwQaOJLAWG4RAojklg4O3SOi5APVaqUxP1QIgOzbiidVqFxkRNxanikMp2EQ2VtGJn4GayWVWlfAFOJ0Y5rrWzquHKkXmfi0AqZJkpFMh3AbvcX5rpVNafmGtO8Zzdmkft7OYCd3vSykfL4l9Gbzg9yDDR6eyJLW82v8pigWBbjDjKA541f9KdBkJlk2QhHsiWP6Q1IxHt5pCzOvZg3EjzEXAJ_eNd7xN1Tyw8_fvUHL__f9BU8jKhhsU-a24LVeja3rxFF1WobHkT8eNsHzW8A3x4M
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3JbtRAEG2FIAEXdsiwNgikXBx5bXuQOCCGaLJMDihBuZleJ1YGe-TxTEROfAIfwq_wE3wJVe2FDAGJSw6cbKlL7ba7qvpVu_oVIS8CiTDUxI7pSwhQfBk7PFJ9J-EhCxODlFB4OHm0x4YH4fZhdLhCvrVnYWp-iG7DDS3D-ms0cNyQPmvlagHxXeB5TUrljv58AgHb7PXWAGb3pe9vvtt_O3SamgKORCjvILyIOFMsCpjRnjEhc0NPxEJwcNUcggNtPG6kcJXxDQtiFfoikZHrCa1dXwXQ7yVyGSuII1P_4P0vsirAVtbv933mIItXw2Nk84baoS6vfucg7fnMzLOI2S55mzfI9_Zj1ZkuxxvzSmzI0994JP-Xr3mTXG-wN31TG8stsqLz2-TKqMkuuENOhzwraanHZXFSHdEsp3xSTDVoL-WIreGSK2j_8eXrNBt_ak5t5Si4yKpsko0LvC_rtGNNq4J2efyvKB7FqcOeTM9sT21xGnDVd8nBhbz5PbKaF7leI1RESppQSqFjEwqDBH0qcDXjcSSEz-MeWW91JpUNcTvWD5mkXQCnFqmdux553olOa7aSPwk9axUvBV-CP4h4rov5LA0QbSYBLJI9cr9WxK4bwNFRkvShJVlS0U4AecqXW_LsyPKVQwwLsJLBg9etCv59aOn24IO9efDvok_J1eH-aDfd3drbeUiu-Vif2eYIPiKrVTnXjwE0VuKJtVVKPl60Ov8Ezx97pw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF6VIlVcEO-GR1kQSL1YstfrtYPUAyKN0pZWPVDUm9lnainYUeoGwYmfwP_ov-KXMLN-qFFB4tJTLO1oY3k8s9_nnf2GkDexRhjq0sANNRAUptNAJmYYZJILnjmUhMLDyYdHYnLC90-T0zVy2Z2FafQh-g9uGBk-X2OAz427GuRmCfQujqK2ovLAfv8GfO18Z28Ezn3L2Hj304dJ0LYUCDQi-QDRRSKFEUksnI2c4yLkkUqVkpCpJXAD6yLptAqNY07EqeFMZToJI2VtyEwM894it3FzEevHGD_u0z5AK5_2h0wEKOLVyhj5sqHuVlcXv2uI9nph5lXA7Fe88T1yt4Wq9H3zbt0na7Z8QDYO2834h-THRBYLurBTYPL1GS1KKmeVb2dPJUJR-CkNjP_--WteTL-2h5xKNFwWdTErphVeL5oqXUvrivZl7-8onlxpWAJweT9T18sFMtsjcnIjz_0xWS-r0m4SqhKjHdda2dRx5VDPzsShFTJNlGIyHZDt7hnnutU5x3Ybs7znO2aZe3cMyOvedN6Ie_zN6FXnqBxCD_dTZGmri_M8RnCWxbCmDMiTxnH9NAA7kywbwki24tLeAGW9V0fK4szLewPlAxQm4I-3vff_fWv5_uizv3j6_6YvycbxaJx_3Ds6eEbuMOxm7CvqnpP1enFhXwDEqtWWf7Up-XLTsfQHjf85-Q
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Hair+regrowth+in+alopecia+areata+and+re-pigmentation+in+vitiligo+in+response+to+treatment%3A+Commonalities+and+differences&rft.jtitle=Journal+of+the+European+Academy+of+Dermatology+and+Venereology&rft.au=Yamaguchi%2C+Hiroki+L&rft.au=Yamaguchi%2C+Yuji&rft.au=Peeva%2C+Elena&rft.date=2025-03-01&rft.issn=1468-3083&rft.eissn=1468-3083&rft.volume=39&rft.issue=3&rft.spage=498&rft_id=info:doi/10.1111%2Fjdv.20311&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0926-9959&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0926-9959&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0926-9959&client=summon