Hair regrowth in alopecia areata and re‐pigmentation in vitiligo in response to treatment: Commonalities and differences
Both alopecia areata (AA) and vitiligo share common pathogenesis involving, interferon‐γ (IFN‐γ) and interleukin‐15 (IL‐15) signalling pathways that activate cytotoxic CD8+ T lymphocytes. These shared mechanisms may explain why both diseases respond to currently available treatments (e.g. topical/sy...
Saved in:
Published in | Journal of the European Academy of Dermatology and Venereology Vol. 39; no. 3; pp. 498 - 511 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
England
John Wiley and Sons Inc
01.03.2025
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Both alopecia areata (AA) and vitiligo share common pathogenesis involving, interferon‐γ (IFN‐γ) and interleukin‐15 (IL‐15) signalling pathways that activate cytotoxic CD8+ T lymphocytes. These shared mechanisms may explain why both diseases respond to currently available treatments (e.g. topical/systemic corticosteroid) and emerging treatment modalities. As compared with the speed of re‐pigmentation in vitiligo lesions, the regeneration of pigmented terminal hair follicles in AA lesions appears fast in response to treatments targeting the inhibition of the Janus kinases (JAKs) and other kinases. We summarize the commonalities and differences between AA and vitiligo focusing on the treatment modalities, followed by recent findings associated with hair follicle stem cells (HFSC) in hair bulge (HBg) and melanocyte stem cells (McSC) in HBg and hair germ (HGm). We then discuss how HFSC and HGm‐McSC are involved in the initiation of anagen phase, followed by pigmented terminal hair regrowth in the recovering AA lesions in association with immunology. We also discuss how HBg‐McSC contribute to the migration of fully dendritic mature melanocytes into interfollicular epidermis and the equal distribution of melanin in recovering vitiligo lesions. Finally, we present four hypotheses to elucidate the delayed distribution of melanin by mature melanocytes in depigmented vitiligo lesions from the aspects of stem cell biology, as compared with quick hair recovery in AA: (1) McSC are less abundant than HFSC. (2) McSC require a long travel, whereas HFSC reside close to hair regeneration trigger point. (3) Keratinocyte scaffold to accept melanin is not well preserved, whereas scaffold for hair regrowth is well preserved. (4) Inhibitors targeting JAKs and other kinases have less direct effects on melanocyte proliferation and differentiation in vitiligo than hair regrowth in AA. Our review provides an overview of treatment modalities and bridges the gap between scientific advancement and clinical practice in AA and vitiligo management.
Hair Regrowth in Alopecia Areata. This scheme summarizes recent findings in hair follicle stem cell biology and their implication to regrow hair in alopecia areata. Hair follicle stem cells reside in hair bulge abundantly. Anagen drivers are enhanced and suppressed expression levels of activators and repressors at telogen, respectively. Noradrenaline secreted from niche activates hair follicle regeneration via ADRB2, FOXP1 and FGF18. Hair plucking at high density regenerate hair follicles via TNF‐α. JAG1 + regulatory T lymphocytes regenerate hair follicles. Loss of COL17A1 results in hair follicle miniaturization. Burgundy and navy arrows indicate downregulation and upregulation, respectively. ADRB2, adrenergic receptor B2; BMP2, bone morphogenic protein 2; COL17A1, collagen XVII; DKK1, dickkopf 1; FGF18, fibroblast growth factor 18; FOXP1, forkhead box P1; JAG1, jagged 1; SFRP4, secreted frizzled‐related protein 4; SHH, sonic hedgehog; TNFα, tumour necrosis factor‐α. Re‐pigmentation in Vitiligo. This scheme summarizes recent findings in melanocyte stem cell biology and their implication to re‐pigment vitiligo skin. Melanocyte stem cells reside in lower portion of hair bulge and hair germ at telogen phase and contribute to perifollicular re‐pigmentation. Amplifying melanocytes tend to lose proliferation and migration potential. BMI + CXCR2 + melanocyte stem cells exist in interfollicular epidermis and may contribute to marginal re‐pigmentation. Hair follicle stem cells regulate melanocyte stem cells via cKIT, Wnt and other signals. PAX3 activates MITF, followed by DCT activation, whereas PAX3 directly downregulates DCT and maintains stemness. Noradrenaline induces melanocyte stem cell differentiation and migration via ADRB2. BMI1, B lymphoma Mo‐MLV insertion region 1; cKIT, receptor tyrosine kinase for stem cell factor; CXCR2, chemokine C‐X‐C motif receptor 2; DCT, dopachrome tautomerase; MCAM, melanoma cell adhesion molecule; MITF, microphthalmia associated transcription factor; PAX3, paired box gene 3. Melanocyte Distribution Pattern Differences. The distribution pattern of melanocyte stem cells is different depending on the density of pigmented terminal hair and that of vellus hair. As compared with hair follicle stem cells, melanocyte stem cells are sparsely distributed. Volar melanocyte stem cells reside in eccrine sweat gland and require a long travel to distribute melanocytes in the epidermis. Volar melanocytes is sparse, as compared with melanocytes in hairy skin. |
---|---|
AbstractList | Both alopecia areata (AA) and vitiligo share common pathogenesis involving, interferon-γ (IFN-γ) and interleukin-15 (IL-15) signalling pathways that activate cytotoxic CD8+ T lymphocytes. These shared mechanisms may explain why both diseases respond to currently available treatments (e.g. topical/systemic corticosteroid) and emerging treatment modalities. As compared with the speed of re-pigmentation in vitiligo lesions, the regeneration of pigmented terminal hair follicles in AA lesions appears fast in response to treatments targeting the inhibition of the Janus kinases (JAKs) and other kinases. We summarize the commonalities and differences between AA and vitiligo focusing on the treatment modalities, followed by recent findings associated with hair follicle stem cells (HFSC) in hair bulge (HBg) and melanocyte stem cells (McSC) in HBg and hair germ (HGm). We then discuss how HFSC and HGm-McSC are involved in the initiation of anagen phase, followed by pigmented terminal hair regrowth in the recovering AA lesions in association with immunology. We also discuss how HBg-McSC contribute to the migration of fully dendritic mature melanocytes into interfollicular epidermis and the equal distribution of melanin in recovering vitiligo lesions. Finally, we present four hypotheses to elucidate the delayed distribution of melanin by mature melanocytes in depigmented vitiligo lesions from the aspects of stem cell biology, as compared with quick hair recovery in AA: (1) McSC are less abundant than HFSC. (2) McSC require a long travel, whereas HFSC reside close to hair regeneration trigger point. (3) Keratinocyte scaffold to accept melanin is not well preserved, whereas scaffold for hair regrowth is well preserved. (4) Inhibitors targeting JAKs and other kinases have less direct effects on melanocyte proliferation and differentiation in vitiligo than hair regrowth in AA. Our review provides an overview of treatment modalities and bridges the gap between scientific advancement and clinical practice in AA and vitiligo management. Both alopecia areata (AA) and vitiligo share common pathogenesis involving, interferon‐γ (IFN‐γ) and interleukin‐15 (IL‐15) signalling pathways that activate cytotoxic CD8+ T lymphocytes. These shared mechanisms may explain why both diseases respond to currently available treatments (e.g. topical/systemic corticosteroid) and emerging treatment modalities. As compared with the speed of re‐pigmentation in vitiligo lesions, the regeneration of pigmented terminal hair follicles in AA lesions appears fast in response to treatments targeting the inhibition of the Janus kinases (JAKs) and other kinases. We summarize the commonalities and differences between AA and vitiligo focusing on the treatment modalities, followed by recent findings associated with hair follicle stem cells (HFSC) in hair bulge (HBg) and melanocyte stem cells (McSC) in HBg and hair germ (HGm). We then discuss how HFSC and HGm‐McSC are involved in the initiation of anagen phase, followed by pigmented terminal hair regrowth in the recovering AA lesions in association with immunology. We also discuss how HBg‐McSC contribute to the migration of fully dendritic mature melanocytes into interfollicular epidermis and the equal distribution of melanin in recovering vitiligo lesions. Finally, we present four hypotheses to elucidate the delayed distribution of melanin by mature melanocytes in depigmented vitiligo lesions from the aspects of stem cell biology, as compared with quick hair recovery in AA: (1) McSC are less abundant than HFSC. (2) McSC require a long travel, whereas HFSC reside close to hair regeneration trigger point. (3) Keratinocyte scaffold to accept melanin is not well preserved, whereas scaffold for hair regrowth is well preserved. (4) Inhibitors targeting JAKs and other kinases have less direct effects on melanocyte proliferation and differentiation in vitiligo than hair regrowth in AA. Our review provides an overview of treatment modalities and bridges the gap between scientific advancement and clinical practice in AA and vitiligo management. Hair Regrowth in Alopecia Areata. This scheme summarizes recent findings in hair follicle stem cell biology and their implication to regrow hair in alopecia areata. Hair follicle stem cells reside in hair bulge abundantly. Anagen drivers are enhanced and suppressed expression levels of activators and repressors at telogen, respectively. Noradrenaline secreted from niche activates hair follicle regeneration via ADRB2, FOXP1 and FGF18. Hair plucking at high density regenerate hair follicles via TNF‐α. JAG1 + regulatory T lymphocytes regenerate hair follicles. Loss of COL17A1 results in hair follicle miniaturization. Burgundy and navy arrows indicate downregulation and upregulation, respectively. ADRB2, adrenergic receptor B2; BMP2, bone morphogenic protein 2; COL17A1, collagen XVII; DKK1, dickkopf 1; FGF18, fibroblast growth factor 18; FOXP1, forkhead box P1; JAG1, jagged 1; SFRP4, secreted frizzled‐related protein 4; SHH, sonic hedgehog; TNFα, tumour necrosis factor‐α. Re‐pigmentation in Vitiligo. This scheme summarizes recent findings in melanocyte stem cell biology and their implication to re‐pigment vitiligo skin. Melanocyte stem cells reside in lower portion of hair bulge and hair germ at telogen phase and contribute to perifollicular re‐pigmentation. Amplifying melanocytes tend to lose proliferation and migration potential. BMI + CXCR2 + melanocyte stem cells exist in interfollicular epidermis and may contribute to marginal re‐pigmentation. Hair follicle stem cells regulate melanocyte stem cells via cKIT, Wnt and other signals. PAX3 activates MITF, followed by DCT activation, whereas PAX3 directly downregulates DCT and maintains stemness. Noradrenaline induces melanocyte stem cell differentiation and migration via ADRB2. BMI1, B lymphoma Mo‐MLV insertion region 1; cKIT, receptor tyrosine kinase for stem cell factor; CXCR2, chemokine C‐X‐C motif receptor 2; DCT, dopachrome tautomerase; MCAM, melanoma cell adhesion molecule; MITF, microphthalmia associated transcription factor; PAX3, paired box gene 3. Melanocyte Distribution Pattern Differences. The distribution pattern of melanocyte stem cells is different depending on the density of pigmented terminal hair and that of vellus hair. As compared with hair follicle stem cells, melanocyte stem cells are sparsely distributed. Volar melanocyte stem cells reside in eccrine sweat gland and require a long travel to distribute melanocytes in the epidermis. Volar melanocytes is sparse, as compared with melanocytes in hairy skin. Both alopecia areata (AA) and vitiligo share common pathogenesis involving, interferon-γ (IFN-γ) and interleukin-15 (IL-15) signalling pathways that activate cytotoxic CD8+ T lymphocytes. These shared mechanisms may explain why both diseases respond to currently available treatments (e.g. topical/systemic corticosteroid) and emerging treatment modalities. As compared with the speed of re-pigmentation in vitiligo lesions, the regeneration of pigmented terminal hair follicles in AA lesions appears fast in response to treatments targeting the inhibition of the Janus kinases (JAKs) and other kinases. We summarize the commonalities and differences between AA and vitiligo focusing on the treatment modalities, followed by recent findings associated with hair follicle stem cells (HFSC) in hair bulge (HBg) and melanocyte stem cells (McSC) in HBg and hair germ (HGm). We then discuss how HFSC and HGm-McSC are involved in the initiation of anagen phase, followed by pigmented terminal hair regrowth in the recovering AA lesions in association with immunology. We also discuss how HBg-McSC contribute to the migration of fully dendritic mature melanocytes into interfollicular epidermis and the equal distribution of melanin in recovering vitiligo lesions. Finally, we present four hypotheses to elucidate the delayed distribution of melanin by mature melanocytes in depigmented vitiligo lesions from the aspects of stem cell biology, as compared with quick hair recovery in AA: (1) McSC are less abundant than HFSC. (2) McSC require a long travel, whereas HFSC reside close to hair regeneration trigger point. (3) Keratinocyte scaffold to accept melanin is not well preserved, whereas scaffold for hair regrowth is well preserved. (4) Inhibitors targeting JAKs and other kinases have less direct effects on melanocyte proliferation and differentiation in vitiligo than hair regrowth in AA. Our review provides an overview of treatment modalities and bridges the gap between scientific advancement and clinical practice in AA and vitiligo management.Both alopecia areata (AA) and vitiligo share common pathogenesis involving, interferon-γ (IFN-γ) and interleukin-15 (IL-15) signalling pathways that activate cytotoxic CD8+ T lymphocytes. These shared mechanisms may explain why both diseases respond to currently available treatments (e.g. topical/systemic corticosteroid) and emerging treatment modalities. As compared with the speed of re-pigmentation in vitiligo lesions, the regeneration of pigmented terminal hair follicles in AA lesions appears fast in response to treatments targeting the inhibition of the Janus kinases (JAKs) and other kinases. We summarize the commonalities and differences between AA and vitiligo focusing on the treatment modalities, followed by recent findings associated with hair follicle stem cells (HFSC) in hair bulge (HBg) and melanocyte stem cells (McSC) in HBg and hair germ (HGm). We then discuss how HFSC and HGm-McSC are involved in the initiation of anagen phase, followed by pigmented terminal hair regrowth in the recovering AA lesions in association with immunology. We also discuss how HBg-McSC contribute to the migration of fully dendritic mature melanocytes into interfollicular epidermis and the equal distribution of melanin in recovering vitiligo lesions. Finally, we present four hypotheses to elucidate the delayed distribution of melanin by mature melanocytes in depigmented vitiligo lesions from the aspects of stem cell biology, as compared with quick hair recovery in AA: (1) McSC are less abundant than HFSC. (2) McSC require a long travel, whereas HFSC reside close to hair regeneration trigger point. (3) Keratinocyte scaffold to accept melanin is not well preserved, whereas scaffold for hair regrowth is well preserved. (4) Inhibitors targeting JAKs and other kinases have less direct effects on melanocyte proliferation and differentiation in vitiligo than hair regrowth in AA. Our review provides an overview of treatment modalities and bridges the gap between scientific advancement and clinical practice in AA and vitiligo management. |
Author | Yamaguchi, Yuji Yamaguchi, Hiroki L. Peeva, Elena |
AuthorAffiliation | 1 Inflammation & Immunology Research Unit Pfizer Cambridge Massachusetts USA 2 Inflammation & Immunology Research Unit Pfizer Collegeville Pennsylvania USA |
AuthorAffiliation_xml | – name: 2 Inflammation & Immunology Research Unit Pfizer Collegeville Pennsylvania USA – name: 1 Inflammation & Immunology Research Unit Pfizer Cambridge Massachusetts USA |
Author_xml | – sequence: 1 givenname: Hiroki L. surname: Yamaguchi fullname: Yamaguchi, Hiroki L. organization: Pfizer – sequence: 2 givenname: Yuji orcidid: 0000-0003-4338-2662 surname: Yamaguchi fullname: Yamaguchi, Yuji organization: Pfizer – sequence: 3 givenname: Elena surname: Peeva fullname: Peeva, Elena email: elena.peeva@pfizer.com organization: Pfizer |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/39258892$$D View this record in MEDLINE/PubMed |
BookMark | eNp1kcFu1DAQhi1URLeFAy-AcoRDWo-dpA4XhLZAQZW4AFfLccZbV44d7OxW7YlH4Bl5EpzuFrUIfBlL8_3_P5o5IHs-eCTkOdAjyO_4st8cMcoBHpEFVI0oORV8jyxoy5qybet2nxykdEkpBajFE7LPW1YL0bIFuTlTNhYRVzFcTReF9YVyYURtVaEiqikX3-f-rx8_R7sa0E9qssHP4MZO1tlVmP8R0xh8wmIKxTTrZvJ1sQzDELxymcR069RbYzCi15ieksdGuYTPdvWQfH3_7svyrDz__OHj8u15qStooARgba2avql5YxCMqRpaQXfSdYoCU1AJNKCM7mhvmGn4SV-xTuiaQodIWc8PyZut77juBux1niwqJ8doBxWvZVBWPux4eyFXYSMBRA2sgezwcucQw_c1pkkONml0TnkM6yQ5UCYEp5Rl9MX9sD8pdxvPwPEW0DGkFNFIbbc7zdnWSaByvqnMN5W3N82KV38p7kz_xe7cr6zD6_-D8tPpt63iN5a3tKU |
CitedBy_id | crossref_primary_10_1111_exd_15177 |
Cites_doi | 10.1084/jem.20210116 10.1038/nrdp.2015.11 10.1007/s40257-022-00752-6 10.1016/j.cell.2015.02.016 10.1056/NEJMoa2110343 10.1016/j.jaad.2017.01.056 10.1126/science.1092436 10.1083/jcb.200311122 10.1083/jcb.200602132 10.1007/s00403-018-1830-z 10.1074/jbc.M112.372425 10.1126/science.aam5809 10.1016/j.jid.2018.01.030 10.1111/ijd.16114 10.1038/nm.3194 10.1016/j.jid.2019.03.1142 10.1073/pnas.1205742109 10.1038/nature09114 10.1038/s41586-019-1085-7 10.1111/j.1365-4632.2009.04332.x 10.1056/NEJMoa2118828 10.1126/sciadv.1500973 10.1016/S0140-6736(23)00222-2 10.1038/nature05766 10.1111/jdv.19022 10.1126/science.1201647 10.1016/j.cell.2017.05.002 10.1007/s40257-023-00808-1 10.1016/j.jaci.2018.11.031 10.1111/all.14814 10.1080/08830180701690835 10.1038/sj.jid.5700938 10.1242/dev.021295 10.1016/j.isci.2022.105238 10.1007/s13555-019-00329-y 10.1056/NEJMcp0804388 10.1016/j.immuni.2006.05.012 10.1016/j.immuni.2017.01.009 10.1001/jamadermatol.2014.1875 10.1111/exd.12264 10.1016/j.jaad.2023.04.033 10.1016/j.ajpath.2010.10.021 10.1080/14728222.2023.2193329 10.1016/j.jid.2017.08.038 10.1038/nm1328 10.1111/j.1600-0749.2006.00358.x 10.1016/S0092-8674(00)00050-7 10.3390/ijms22094581 10.1111/exd.12369 10.1111/1346-8138.16207 10.3389/fimmu.2021.652191 10.3109/01913123.2013.870274 10.1111/all.15071 10.1016/j.immuni.2016.05.008 10.1038/nature11847 10.1016/j.cell.2021.06.022 10.1159/000506103 10.1007/s13555-020-00447-y 10.1046/j.0022-202x.2001.01575.x 10.1038/s41586-021-03638-5 10.1038/nature11393 10.1016/j.phrs.2024.107059 10.1016/j.jaad.2018.12.047 10.1111/jdv.18810 10.1001/jamadermatol.2015.1520 10.1038/nm.3645 10.1016/j.jdermsci.2017.06.018 10.1111/exd.13868 10.1016/j.jaad.2015.09.073 10.1111/pcmr.12375 10.1097/MOP.0000000000000375 10.1038/s41586-023-05960-6 10.1111/j.0022-202X.2005.23760.x 10.1016/j.annder.2022.03.006 10.1038/nature12602 10.1016/j.jaci.2021.10.036 10.1096/fj.07-9475com 10.1038/s41586-023-06172-8 10.1016/j.det.2019.08.004 10.1016/j.jaad.2020.04.138 10.1038/416854a 10.1038/nm.3643 10.1111/j.1468-3083.2011.04223.x 10.1016/S0140-6736(14)60763-7 10.7554/eLife.52712 10.1126/scitranslmed.aam7710 10.1016/j.cell.2020.06.031 10.1111/bjd.15651 10.1038/nature03292 10.1016/j.jid.2020.06.004 10.1111/jdv.17187 10.1038/jid.2010.34 10.1074/jbc.R700026200 10.3390/ijms25084409 10.1016/j.jaad.2022.11.005 10.1016/j.jdermsci.2015.03.003 10.1001/jamadermatol.2014.504 10.1016/j.immuni.2021.09.001 10.1136/bmj.1.4869.1016 10.1684/ejd.2010.0853 10.1111/jdv.19842 10.1038/jid.2015.126 10.1056/NEJMra1103442 10.1111/all.15561 10.1001/2013.jamadermatol.386 10.1038/d41586‐020‐01808‐5 10.1111/jdv.19451 10.1126/science.aad4395 10.3390/ijms21145137 10.1002/biof.29 10.1111/jdv.19768 10.1038/s41586-020-1935-3 10.1111/pcmr.12297 10.1016/0092-8674(90)90696-C 10.1016/j.jaad.2020.03.004 10.1126/science.1239730 10.1126/science.284.5414.638 10.1016/j.cell.2011.05.004 10.1016/j.jdermsci.2012.01.010 10.1126/science.1248373 10.3389/fimmu.2023.1243556 10.1016/j.jaci.2023.09.021 10.1111/jdv.19450 |
ContentType | Journal Article |
Copyright | 2024 The Author(s). published by John Wiley & Sons Ltd on behalf of European Academy of Dermatology and Venereology. 2024 The Author(s). Journal of the European Academy of Dermatology and Venereology published by John Wiley & Sons Ltd on behalf of European Academy of Dermatology and Venereology. |
Copyright_xml | – notice: 2024 The Author(s). published by John Wiley & Sons Ltd on behalf of European Academy of Dermatology and Venereology. – notice: 2024 The Author(s). Journal of the European Academy of Dermatology and Venereology published by John Wiley & Sons Ltd on behalf of European Academy of Dermatology and Venereology. |
DBID | 24P AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM |
DOI | 10.1111/jdv.20311 |
DatabaseName | Wiley Online Library Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE CrossRef MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: 24P name: Wiley Online Library Open Access (WRLC) url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
DocumentTitleAlternate | Regenerative medicine in AA and vitiligo |
EISSN | 1468-3083 |
EndPage | 511 |
ExternalDocumentID | PMC11851261 39258892 10_1111_jdv_20311 JDV20311 |
Genre | reviewArticle Journal Article Review |
GroupedDBID | --- --K .3N .GA .Y3 05W 0R~ 10A 1B1 1OB 1OC 1~5 24P 29L 31~ 33P 36B 3SF 4.4 4G. 50Y 50Z 51W 51X 52M 52N 52O 52P 52R 52S 52T 52U 52V 52W 52X 53G 5GY 5HH 5LA 5VS 66C 7-5 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A01 A03 AAEDT AAESR AAEVG AAHHS AAHQN AAIPD AALRI AAMNL AANHP AANLZ AAONW AAQFI AAQXK AASGY AAXRX AAXUO AAYCA AAZKR ABCQN ABCUV ABEML ABJNI ABQWH ABWVN ABXGK ACAHQ ACBWZ ACCFJ ACCZN ACGFS ACGOF ACMXC ACPOU ACRPL ACSCC ACXBN ACXQS ACYXJ ADBBV ADBTR ADEOM ADIZJ ADKYN ADMGS ADMUD ADNMO ADOZA ADZMN AE3 AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFEBI AFFPM AFGKR AFPWT AFTJW AFWVQ AFZJQ AHBTC AHEFC AIACR AITYG AIURR AIWBW AJBDE ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ASPBG ATUGU AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMXJE BROTX BRXPI BY8 C45 CAG CO8 COF CS3 CYRXZ D-6 D-7 D-E D-F DC6 DCZOG DPXWK DR2 DRFUL DRMAN DRSTM DU5 EBS EJD ESX EX3 F00 F01 F04 F5P FDB FEDTE FGOYB FUBAC FZ0 G-S G.N GODZA H.X HF~ HGLYW HVGLF HZI HZ~ IHE IX1 J0M K48 KBYEO LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M41 MEWTI MK4 MRFUL MRMAN MRSTM MSFUL MSMAN MSSTM MXFUL MXMAN MXSTM N04 N05 NF~ NQ- O66 O9- OIG OVD OZT P2P P2W P2X P2Z P4B P4D PALCI Q.N Q11 QB0 R.K R2- RIG RIWAO RJQFR ROL RPZ RX1 SAMSI SEW SUPJJ TEORI UB1 UHS W8V W99 WBKPD WHWMO WIH WIJ WIK WOHZO WOW WQJ WRC WUP WVDHM WXI WXSBR XG1 YFH ZZTAW ~IA ~WT AAYXX ACVFH ADCNI AEUPX AEYWJ AFPUW AGHNM AGQPQ AGYGG AIGII CITATION CGR CUY CVF ECM EIF NPM 7X8 AAMMB AEFGJ AGXDD AIDQK AIDYY 5PM |
ID | FETCH-LOGICAL-c4161-11295a6d6536fe1ff46041b7bba012a148ef1afcb0df2f637d42b8c501bee02d3 |
IEDL.DBID | DR2 |
ISSN | 0926-9959 1468-3083 |
IngestDate | Thu Aug 21 18:27:43 EDT 2025 Thu Jul 10 23:53:20 EDT 2025 Fri Apr 25 03:26:35 EDT 2025 Tue Jul 01 05:20:40 EDT 2025 Thu Apr 24 23:09:19 EDT 2025 Tue Feb 25 10:00:11 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Language | English |
License | Attribution-NonCommercial-NoDerivs 2024 The Author(s). Journal of the European Academy of Dermatology and Venereology published by John Wiley & Sons Ltd on behalf of European Academy of Dermatology and Venereology. This is an open access article under the terms of the http://creativecommons.org/licenses/by-nc-nd/4.0/ License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non‐commercial and no modifications or adaptations are made. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4161-11295a6d6536fe1ff46041b7bba012a148ef1afcb0df2f637d42b8c501bee02d3 |
Notes | Hiroki L. Yamaguchi and Yuji Yamaguchi contributed equally to this work. ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 ObjectType-Review-3 content type line 23 |
ORCID | 0000-0003-4338-2662 |
OpenAccessLink | https://proxy.k.utb.cz/login?url=https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fjdv.20311 |
PMID | 39258892 |
PQID | 3102883002 |
PQPubID | 23479 |
PageCount | 14 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_11851261 proquest_miscellaneous_3102883002 pubmed_primary_39258892 crossref_citationtrail_10_1111_jdv_20311 crossref_primary_10_1111_jdv_20311 wiley_primary_10_1111_jdv_20311_JDV20311 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | March 2025 |
PublicationDateYYYYMMDD | 2025-03-01 |
PublicationDate_xml | – month: 03 year: 2025 text: March 2025 |
PublicationDecade | 2020 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: Hoboken |
PublicationTitle | Journal of the European Academy of Dermatology and Venereology |
PublicationTitleAlternate | J Eur Acad Dermatol Venereol |
PublicationYear | 2025 |
Publisher | John Wiley and Sons Inc |
Publisher_xml | – name: John Wiley and Sons Inc |
References | 2015; 78 2004; 165 2012; 366 2023; 78 2010; 466 2017; 88 2015; 386 2014; 27 2022; 25 1999; 284 2006; 175 2019; 568 2020; 10 2022; 219 2012; 489 2024; 38 2014; 23 2014; 20 1990; 61 2023; 62 2010; 20 2021; 76 2015; 135 2017; 77 2018; 178 2006; 25 2019; 28 2020; 577 2023; 616 2009; 360 2008; 22 2012; 26 2024; 25 2023; 618 2021; 84 2017; 169 1954; 1 2016; 44 2019; 9 2004; 303 2007; 447 2020; 140 2007; 282 2013; 502 2020; 38 2013; 342 2014; 150 2021; 141 2002; 416 2012; 109 2021; 54 2010; 49 2018; 359 2000; 102 2005; 124 2014; 38 2020; 21 2016; 28 2018; 10 2005; 11 2011; 145 2012; 287 2021; 22 2013; 22 2023; 37 2017; 46 2016; 74 2013; 19 2021; 35 2020; 5 2023; 24 2018; 138 2023; 27 2020; 9 2024; 153 2022; 77 2021; 594 2007; 20 2012; 66 2016; 351 2007; 26 2015; 1 2015; 161 2023; 14 2007; 127 2020; 83 2013; 149 2005; 433 2020; 182 2023; 401 2021; 184 2024; 200 2011; 178 2009; 136 2011; 332 2022; 49 2019; 143 2022; 386 2015; 151 2022; 387 2009; 35 2015; 28 2021; 12 2023; 88 2023; 89 2020 2018; 310 2020; 236 2010; 130 2013; 495 2022; 149 2001; 117 2014; 343 e_1_2_13_120_1 e_1_2_13_24_1 e_1_2_13_47_1 e_1_2_13_20_1 e_1_2_13_66_1 e_1_2_13_101_1 e_1_2_13_43_1 e_1_2_13_124_1 e_1_2_13_85_1 e_1_2_13_8_1 e_1_2_13_62_1 e_1_2_13_81_1 e_1_2_13_92_1 Boukhedouni N (e_1_2_13_115_1) 2020; 5 e_1_2_13_96_1 e_1_2_13_117_1 e_1_2_13_17_1 e_1_2_13_13_1 e_1_2_13_36_1 e_1_2_13_59_1 e_1_2_13_32_1 e_1_2_13_55_1 e_1_2_13_78_1 e_1_2_13_112_1 e_1_2_13_51_1 e_1_2_13_74_1 e_1_2_13_70_1 e_1_2_13_4_1 e_1_2_13_105_1 e_1_2_13_88_1 e_1_2_13_29_1 e_1_2_13_109_1 e_1_2_13_25_1 e_1_2_13_48_1 e_1_2_13_100_1 e_1_2_13_21_1 e_1_2_13_44_1 e_1_2_13_67_1 e_1_2_13_104_1 e_1_2_13_123_1 e_1_2_13_86_1 e_1_2_13_9_1 e_1_2_13_40_1 e_1_2_13_63_1 e_1_2_13_82_1 e_1_2_13_91_1 e_1_2_13_95_1 e_1_2_13_116_1 e_1_2_13_99_1 e_1_2_13_18_1 e_1_2_13_14_1 e_1_2_13_111_1 e_1_2_13_37_1 e_1_2_13_79_1 e_1_2_13_10_1 e_1_2_13_56_1 e_1_2_13_33_1 e_1_2_13_75_1 e_1_2_13_52_1 e_1_2_13_71_1 e_1_2_13_5_1 e_1_2_13_108_1 e_1_2_13_49_1 e_1_2_13_122_1 e_1_2_13_26_1 e_1_2_13_68_1 e_1_2_13_45_1 e_1_2_13_87_1 e_1_2_13_22_1 e_1_2_13_64_1 e_1_2_13_103_1 e_1_2_13_41_1 e_1_2_13_60_1 e_1_2_13_83_1 e_1_2_13_6_1 e_1_2_13_90_1 e_1_2_13_94_1 e_1_2_13_98_1 e_1_2_13_119_1 e_1_2_13_19_1 e_1_2_13_15_1 e_1_2_13_38_1 e_1_2_13_57_1 e_1_2_13_110_1 e_1_2_13_11_1 e_1_2_13_34_1 e_1_2_13_53_1 e_1_2_13_76_1 e_1_2_13_114_1 e_1_2_13_30_1 e_1_2_13_72_1 e_1_2_13_2_1 e_1_2_13_107_1 e_1_2_13_121_1 e_1_2_13_27_1 e_1_2_13_46_1 e_1_2_13_69_1 e_1_2_13_102_1 e_1_2_13_125_1 e_1_2_13_23_1 e_1_2_13_42_1 e_1_2_13_65_1 e_1_2_13_84_1 e_1_2_13_7_1 e_1_2_13_61_1 e_1_2_13_80_1 e_1_2_13_93_1 e_1_2_13_97_1 e_1_2_13_118_1 e_1_2_13_39_1 e_1_2_13_35_1 e_1_2_13_16_1 e_1_2_13_58_1 e_1_2_13_113_1 e_1_2_13_31_1 e_1_2_13_77_1 e_1_2_13_12_1 e_1_2_13_54_1 e_1_2_13_73_1 e_1_2_13_50_1 e_1_2_13_3_1 e_1_2_13_106_1 e_1_2_13_89_1 e_1_2_13_28_1 |
References_xml | – volume: 135 start-page: 2068 issue: 8 year: 2015 end-page: 2076 article-title: Narrow band ultraviolet B treatment for human vitiligo is associated with proliferation, migration, and differentiation of melanocyte precursors publication-title: J Invest Dermatol – volume: 149 start-page: 222 issue: 4 year: 2022 end-page: 227 article-title: Alopecia areata: recent advances and emerging therapies publication-title: Ann Dermatol Venereol – volume: 54 start-page: 2321 issue: 10 year: 2021 end-page: 2337 article-title: Disruption of the endopeptidase ADAM10‐notch signaling axis leads to skin dysbiosis and innate lymphoid cell‐mediated hair follicle destruction publication-title: Immunity – volume: 343 start-page: 1353 issue: 6177 year: 2014 end-page: 1356 article-title: Beta‐catenin activation regulates tissue growth non‐cell autonomously in the hair stem cell niche publication-title: Science – volume: 46 start-page: 287 issue: 2 year: 2017 end-page: 300 article-title: CD49a expression defines tissue‐resident CD8(+) T cells poised for cytotoxic function in human skin publication-title: Immunity – volume: 109 start-page: E2794 issue: 41 year: 2012 end-page: E2802 article-title: TCR signaling via Tec kinase ITK and interferon regulatory factor 4 (IRF4) regulates CD8+ T‐cell differentiation publication-title: Proc Natl Acad Sci USA – volume: 21 issue: 14 year: 2020 article-title: The effect of JAK inhibitor on the survival, anagen re‐entry, and hair follicle immune privilege restoration in human dermal papilla cells publication-title: Int J Mol Sci – volume: 38 start-page: 687 issue: 4 year: 2024 end-page: 694 article-title: European expert consensus statement on the systemic treatment of alopecia areata publication-title: J Eur Acad Dermatol Venereol – volume: 25 start-page: 4409 issue: 8 year: 2024 article-title: Pathogenesis of alopecia areata and vitiligo: commonalities and differences publication-title: Int J Mol Sci – volume: 14 year: 2023 article-title: Inhibition of T‐cell activity in alopecia areata: recent developments and new directions publication-title: Front Immunol – volume: 88 start-page: 159 issue: 2 year: 2017 end-page: 166 article-title: Precise role of dermal fibroblasts on melanocyte pigmentation publication-title: J Dermatol Sci – volume: 1 issue: 9 year: 2015 article-title: Pharmacologic inhibition of JAK‐STAT signaling promotes hair growth publication-title: Sci Adv – volume: 284 start-page: 638 issue: 5414 year: 1999 end-page: 641 article-title: Requirement for Tec kinases Rlk and Itk in T cell receptor signaling and immunity publication-title: Science – volume: 178 start-page: 632 issue: 3 year: 2018 end-page: 639 article-title: Paracrine regulation of melanogenesis publication-title: Br J Dermatol – volume: 310 start-page: 425 issue: 5 year: 2018 end-page: 430 article-title: Increased tenascin C and DKK1 in vitiligo: possible role of fibroblasts in acral and non‐acral disease publication-title: Arch Dermatol Res – volume: 20 start-page: 1043 issue: 9 year: 2014 end-page: 1049 article-title: Alopecia areata is driven by cytotoxic T lymphocytes and is reversed by JAK inhibition publication-title: Nat Med – volume: 466 start-page: 113 issue: 7302 year: 2010 end-page: 117 article-title: Genome‐wide association study in alopecia areata implicates both innate and adaptive immunity publication-title: Nature – volume: 184 start-page: 4268 issue: 16 year: 2021 end-page: 4283 article-title: NNT mediates redox‐dependent pigmentation via a UVB‐ and MITF‐independent mechanism publication-title: Cell – volume: 182 start-page: 578 issue: 3 year: 2020 end-page: 593 article-title: Cell types promoting goosebumps form a niche to regulate hair follicle stem cells publication-title: Cell – volume: 35 start-page: 193 issue: 2 year: 2009 end-page: 199 article-title: Physiological factors that regulate skin pigmentation publication-title: Biofactors – volume: 44 start-page: 1406 issue: 6 year: 2016 end-page: 1421 article-title: Inflammasome‐dependent induction of adaptive NK cell memory publication-title: Immunity – volume: 37 start-page: 666 issue: 4 year: 2023 end-page: 679 article-title: Systematic review of newer agents for the management of alopecia areata in adults: Janus kinase inhibitors, biologics and phosphodiesterase‐4 inhibitors publication-title: J Eur Acad Dermatol Venereol – volume: 236 start-page: 571 issue: 6 year: 2020 end-page: 592 article-title: Vitiligo: a review publication-title: Dermatology – volume: 76 start-page: 3053 issue: 10 year: 2021 end-page: 3065 article-title: An integrated scalp and blood biomarker approach suggests the systemic nature of alopecia areata publication-title: Allergy – volume: 78 start-page: 143 issue: 2 year: 2015 end-page: 148 article-title: Site‐specific migration of human fetal melanocytes in volar skin publication-title: J Dermatol Sci – volume: 23 start-page: 283 issue: 4 year: 2014 end-page: 286 article-title: T helper 17 and Tregs: a novel proposed mechanism for NB‐UVB in vitiligo publication-title: Exp Dermatol – volume: 88 start-page: 395 issue: 2 year: 2023 end-page: 403 article-title: Efficacy and safety of oral ritlecitinib for the treatment of active nonsegmental vitiligo: a randomized phase 2b clinical trial publication-title: J Am Acad Dermatol – volume: 37 start-page: 2208 issue: 11 year: 2023 end-page: 2221 article-title: The possible role of Wnt/beta‐catenin signalling in vitiligo treatment publication-title: J Eur Acad Dermatol Venereol – volume: 577 start-page: 676 issue: 7792 year: 2020 end-page: 681 article-title: Hyperactivation of sympathetic nerves drives depletion of melanocyte stem cells publication-title: Nature – volume: 22 start-page: 1009 issue: 4 year: 2008 end-page: 1020 article-title: Dickkopf 1 (DKK1) regulates skin pigmentation and thickness by affecting Wnt/beta‐catenin signaling in keratinocytes publication-title: FASEB J – volume: 149 start-page: 68 issue: 1 year: 2013 end-page: 73 article-title: The efficacy of afamelanotide and narrowband UV‐B phototherapy for repigmentation of vitiligo publication-title: JAMA Dermatol – volume: 84 start-page: 370 issue: 2 year: 2021 end-page: 380 article-title: Cross‐sectional study of blood biomarkers of patients with moderate to severe alopecia areata reveals systemic immune and cardiovascular biomarker dysregulation publication-title: J Am Acad Dermatol – volume: 117 start-page: 1412 issue: 6 year: 2001 end-page: 1420 article-title: Protease‐activated receptor 2, a receptor involved in melanosome transfer, is upregulated in human skin by ultraviolet irradiation publication-title: J Invest Dermatol – volume: 594 start-page: 547 issue: 7864 year: 2021 end-page: 552 article-title: Tracing the origin of hair follicle stem cells publication-title: Nature – volume: 351 issue: 6273 year: 2016 article-title: Hair follicle aging is driven by transepidermal elimination of stem cells via COL17A1 proteolysis publication-title: Science – volume: 35 start-page: 1299 issue: 6 year: 2021 end-page: 1308 article-title: Therapeutic management in paediatric alopecia areata: a systematic review publication-title: J Eur Acad Dermatol Venereol – volume: 10 start-page: 1185 issue: 6 year: 2020 end-page: 1198 article-title: Vitiligo, from physiopathology to emerging treatments: a review publication-title: Dermatol Ther (Heidelb) – volume: 25 start-page: 79 issue: 1 year: 2006 end-page: 91 article-title: The Tec family tyrosine kinases Itk and Rlk regulate the development of conventional CD8+ T cells publication-title: Immunity – volume: 11 start-page: 1351 issue: 12 year: 2005 end-page: 1354 article-title: Stem cells in the hair follicle bulge contribute to wound repair but not to homeostasis of the epidermis publication-title: Nat Med – volume: 175 start-page: 563 issue: 4 year: 2006 end-page: 569 article-title: CCN3 controls 3D spatial localization of melanocytes in the human skin through DDR1 publication-title: J Cell Biol – volume: 568 start-page: 344 issue: 7752 year: 2019 end-page: 350 article-title: Stem cell competition orchestrates skin homeostasis and ageing publication-title: Nature – volume: 495 start-page: 98 issue: 7439 year: 2013 end-page: 102 article-title: NFIB is a governor of epithelial‐melanocyte stem cell behaviour in a shared niche publication-title: Nature – volume: 26 start-page: 333 issue: 5–6 year: 2007 end-page: 348 article-title: Role of Txk, a member of the Tec family of tyrosine kinases, in immune‐inflammatory diseases publication-title: Int Rev Immunol – volume: 502 start-page: 513 issue: 7472 year: 2013 end-page: 518 article-title: Spatial organization within a niche as a determinant of stem‐cell fate publication-title: Nature – volume: 1 start-page: 1016 issue: 4869 year: 1954 end-page: 1017 article-title: The number of melanocytes in human epidermis publication-title: Br Med J – volume: 387 start-page: 1445 issue: 16 year: 2022 end-page: 1455 article-title: Two phase 3, randomized, controlled trials of ruxolitinib cream for vitiligo publication-title: N Engl J Med – volume: 12 year: 2021 article-title: Resident memory T cells in autoimmune skin diseases publication-title: Front Immunol – volume: 26 start-page: 1577 issue: 12 year: 2012 end-page: 1580 article-title: Repeated exposure of human fibroblasts to UVR induces secretion of stem cell factor and senescence publication-title: J Eur Acad Dermatol Venereol – volume: 151 start-page: 42 issue: 1 year: 2015 end-page: 50 article-title: Afamelanotide and narrowband UV‐B phototherapy for the treatment of vitiligo: a randomized multicenter trial publication-title: JAMA Dermatol – volume: 9 year: 2020 article-title: Hair follicle stem cells regulate retinoid metabolism to maintain the self‐renewal niche for melanocyte stem cells publication-title: eLife – volume: 20 start-page: 2 issue: 1 year: 2007 end-page: 13 article-title: Regulation of human skin pigmentation and responses to ultraviolet radiation publication-title: Pigment Cell Res – volume: 178 start-page: 679 issue: 2 year: 2011 end-page: 687 article-title: UV‐B radiation induces macrophage migration inhibitory factor‐mediated melanogenesis through activation of protease‐activated receptor‐2 and stem cell factor in keratinocytes publication-title: Am J Pathol – volume: 359 start-page: 114 issue: 6371 year: 2018 end-page: 119 article-title: S1P‐dependent interorgan trafficking of group 2 innate lymphoid cells supports host defense publication-title: Science – volume: 89 start-page: S9 issue: 2S year: 2023 end-page: S15 article-title: The dermatoscope in the hair clinic: trichoscopy of scarring and nonscarring alopecia publication-title: J Am Acad Dermatol – volume: 150 start-page: 748 issue: 7 year: 2014 end-page: 751 article-title: Effects of low‐dose recombinant interleukin 2 to promote T‐regulatory cells in alopecia areata publication-title: JAMA Dermatol – volume: 77 start-page: 318 issue: 2 year: 2017 end-page: 327 article-title: Long‐term follow‐up of patients undergoing autologous noncultured melanocyte‐keratinocyte transplantation for vitiligo and other leukodermas publication-title: J Am Acad Dermatol – volume: 37 start-page: 2173 issue: 11 year: 2023 end-page: 2184 article-title: Worldwide expert recommendations for the diagnosis and management of vitiligo: position statement from the International Vitiligo Task Force part 1: towards a new management algorithm publication-title: J Eur Acad Dermatol Venereol – volume: 219 issue: 1 year: 2022 article-title: Sphingosine 1‐phosphate receptor 5 (S1PR5) regulates the peripheral retention of tissue‐resident lymphocytes publication-title: J Exp Med – volume: 77 start-page: 897 issue: 3 year: 2022 end-page: 906 article-title: Phase 2a randomized clinical trial of dupilumab (anti‐IL‐4Ralpha) for alopecia areata patients publication-title: Allergy – volume: 401 start-page: 1518 issue: 10387 year: 2023 end-page: 1529 article-title: Efficacy and safety of ritlecitinib in adults and adolescents with alopecia areata: a randomised, double‐blind, multicentre, phase 2b‐3 trial publication-title: Lancet – volume: 20 start-page: 231 issue: 2 year: 2010 end-page: 232 article-title: Association between polymorphisms of discoidin domain receptor tyrosine kinase 1 (DDR1) and non‐segmental vitiligo in the Korean population publication-title: Eur J Dermatol – volume: 140 start-page: 29 issue: 1 year: 2020 end-page: 37 article-title: Harnessing the power of regenerative therapy for vitiligo and alopecia areata publication-title: J Invest Dermatol – volume: 10 issue: 450 year: 2018 article-title: Antibody blockade of IL‐15 signaling has the potential to durably reverse vitiligo publication-title: Sci Transl Med – volume: 141 start-page: 265 issue: 2 year: 2021 end-page: 273 article-title: The genetic basis of vitiligo publication-title: J Invest Dermatol – volume: 102 start-page: 451 issue: 4 year: 2000 end-page: 461 article-title: Involvement of follicular stem cells in forming not only the follicle but also the epidermis publication-title: Cell – volume: 74 start-page: 370 issue: 2 year: 2016 end-page: 371 article-title: Rapid skin repigmentation on oral ruxolitinib in a patient with coexistent vitiligo and alopecia areata (AA) publication-title: J Am Acad Dermatol – volume: 153 start-page: 161 issue: 1 year: 2024 end-page: 172 article-title: Improvements in immune/melanocyte biomarkers with JAK3/TEC family kinase inhibitor ritlecitinib in vitiligo publication-title: J Allergy Clin Immunol – volume: 386 start-page: 74 issue: 9988 year: 2015 end-page: 84 article-title: Vitiligo publication-title: Lancet – volume: 62 start-page: 279 issue: 3 year: 2023 end-page: 289 article-title: Systemic therapies in vitiligo: a review publication-title: Int J Dermatol – volume: 169 start-page: 1119 issue: 6 year: 2017 end-page: 1129 article-title: Regulatory T cells in skin facilitate epithelial stem cell differentiation publication-title: Cell – volume: 28 start-page: 463 issue: 4 year: 2016 end-page: 469 article-title: Understanding autoimmunity of vitiligo and alopecia areata publication-title: Curr Opin Pediatr – volume: 151 start-page: 1110 issue: 10 year: 2015 end-page: 1112 article-title: Tofacitinib citrate for the treatment of vitiligo: a pathogenesis‐directed therapy publication-title: JAMA Dermatol – volume: 22 start-page: 785 issue: 12 year: 2013 end-page: 789 article-title: Vitiligo and alopecia areata: apples and oranges? publication-title: Exp Dermatol – volume: 24 start-page: 165 issue: 2 year: 2023 end-page: 186 article-title: Vitiligo treatments: review of current therapeutic modalities and JAK inhibitors publication-title: Am J Clin Dermatol – volume: 38 start-page: e677 year: 2024 end-page: e679 article-title: The effect of abnormal secretion of DKK1 by fibroblasts on melanocytes function in vitiligo publication-title: J Eur Acad Dermatol Venereol – volume: 27 start-page: 189 issue: 3 year: 2023 end-page: 206 article-title: Treatment update for vitiligo based on autoimmune inhibition and melanocyte protection publication-title: Expert Opin Ther Targets – volume: 28 start-page: 476 issue: 4 year: 2015 end-page: 480 article-title: Maintenance of distinct melanocyte populations in the interfollicular epidermis publication-title: Pigment Cell Melanoma Res – volume: 138 start-page: 355 issue: 2 year: 2018 end-page: 364 article-title: Vitiligo skin is imprinted with resident memory CD8 T cells expressing CXCR3 publication-title: J Invest Dermatol – volume: 124 start-page: 1326 issue: 6 year: 2005 end-page: 1332 article-title: Mechanisms of skin tanning in different racial/ethnic groups in response to ultraviolet radiation publication-title: J Invest Dermatol – volume: 66 start-page: 163 issue: 2 year: 2012 end-page: 165 article-title: DKK1 is highly expressed in the dermis of vitiligo lesion: is there association between DKK1 and vitiligo? publication-title: J Dermatol Sci – volume: 366 start-page: 1515 issue: 16 year: 2012 end-page: 1525 article-title: Alopecia areata publication-title: N Engl J Med – volume: 145 start-page: 941 issue: 6 year: 2011 end-page: 955 article-title: Coordinated activation of Wnt in epithelial and melanocyte stem cells initiates pigmented hair regeneration publication-title: Cell – volume: 447 start-page: 316 issue: 7142 year: 2007 end-page: 320 article-title: Wnt‐dependent de novo hair follicle regeneration in adult mouse skin after wounding publication-title: Nature – volume: 83 start-page: 123 issue: 1 year: 2020 end-page: 130 article-title: The Alopecia Areata Consensus of Experts (ACE) study: results of an international expert opinion on treatments for alopecia areata publication-title: J Am Acad Dermatol – volume: 1 year: 2015 article-title: Vitiligo publication-title: Nat Rev Dis Primers – volume: 287 start-page: 23769 issue: 28 year: 2012 end-page: 23778 article-title: Tyrosine kinase Btk is required for NK cell activation publication-title: J Biol Chem – volume: 200 year: 2024 article-title: Properties of FDA‐approved small molecule protein kinase inhibitors: a 2024 update publication-title: Pharmacol Res – volume: 24 start-page: 895 issue: 6 year: 2023 end-page: 912 article-title: Alopecia areata: current treatments and new directions publication-title: Am J Clin Dermatol – volume: 416 start-page: 854 issue: 6883 year: 2002 end-page: 860 article-title: Dominant role of the niche in melanocyte stem‐cell fate determination publication-title: Nature – volume: 20 start-page: 847 issue: 8 year: 2014 end-page: 856 article-title: Emerging interactions between skin stem cells and their niches publication-title: Nat Med – volume: 89 start-page: 758 issue: 4 year: 2023 end-page: 763 article-title: White hair in alopecia areata: clinical forms and proposed physiopathologic mechanisms publication-title: J Am Acad Dermatol – volume: 22 issue: 9 year: 2021 article-title: Mesenchymal stem cells antagonize IFN‐induced proinflammatory changes and growth inhibition effects via Wnt/beta‐catenin and JAK/STAT pathway in human outer root sheath cells and hair follicles publication-title: Int J Mol Sci – volume: 27 start-page: 1039 issue: 6 year: 2014 end-page: 1050 article-title: A melanocyte–melanoma precursor niche in sweat glands of volar skin publication-title: Pigment Cell Melanoma Res – volume: 138 start-page: 1591 issue: 7 year: 2018 end-page: 1600 article-title: Dissecting Wnt signaling for melanocyte regulation during wound healing publication-title: J Invest Dermatol – volume: 49 start-page: 19 issue: 1 year: 2022 end-page: 36 article-title: Alopecia areata: current understanding of the pathophysiology and update on therapeutic approaches, featuring the Japanese dermatological association guidelines publication-title: J Dermatol – volume: 127 start-page: 2637 issue: 11 year: 2007 end-page: 2644 article-title: Hepatocyte growth factor establishes autocrine and paracrine feedback loops for the protection of skin cells after UV irradiation publication-title: J Invest Dermatol – volume: 303 start-page: 359 issue: 5656 year: 2004 end-page: 363 article-title: Defining the epithelial stem cell niche in skin publication-title: Science – volume: 618 start-page: 808 issue: 7966 year: 2023 end-page: 817 article-title: Signalling by senescent melanocytes hyperactivates hair growth publication-title: Nature – volume: 616 start-page: 774 issue: 7958 year: 2023 end-page: 782 article-title: Dedifferentiation maintains melanocyte stem cells in a dynamic niche publication-title: Nature – volume: 25 issue: 10 year: 2022 article-title: Human cutaneous interfollicular melanocytes differentiate temporarily under genotoxic stress publication-title: iScience – volume: 161 start-page: 277 issue: 2 year: 2015 end-page: 290 article-title: Organ‐level quorum sensing directs regeneration in hair stem cell populations publication-title: Cell – volume: 342 start-page: 1226 issue: 6163 year: 2013 end-page: 1230 article-title: Interfollicular epidermal stem cells self‐renew via autocrine Wnt signaling publication-title: Science – volume: 49 start-page: 317 issue: 3 year: 2010 end-page: 323 article-title: Clinical study of repigmentation patterns with either narrow‐band ultraviolet B (NBUVB) or 308 nm excimer laser treatment in Korean vitiligo patients publication-title: Int J Dermatol – volume: 165 start-page: 275 issue: 2 year: 2004 end-page: 285 article-title: Mesenchymal‐epithelial interactions in the skin: increased expression of dickkopf1 by palmoplantar fibroblasts inhibits melanocyte growth and differentiation publication-title: J Cell Biol – volume: 61 start-page: 1329 issue: 7 year: 1990 end-page: 1337 article-title: Label‐retaining cells reside in the bulge area of pilosebaceous unit: implications for follicular stem cells, hair cycle, and skin carcinogenesis publication-title: Cell – volume: 78 start-page: 1047 issue: 4 year: 2023 end-page: 1059 article-title: Scalp biomarkers during dupilumab treatment support Th2 pathway pathogenicity in alopecia areata publication-title: Allergy – year: 2020 article-title: Temprian therapeutics: developing a gene‐based treatment for vitiligo publication-title: Nature – volume: 136 start-page: 367 issue: 3 year: 2009 end-page: 372 article-title: Embryonic hair follicle fate change by augmented beta‐catenin through Shh and Bmp signaling publication-title: Development – volume: 19 start-page: 924 issue: 7 year: 2013 end-page: 929 article-title: Direct migration of follicular melanocyte stem cells to the epidermis after wounding or UVB irradiation is dependent on Mc1r signaling publication-title: Nat Med – volume: 38 start-page: 186 issue: 3 year: 2014 end-page: 198 article-title: Immunohistochemical study of melanocyte‐melanocyte stem cell lineage in vitiligo; a clue to interfollicular melanocyte stem cell reservoir publication-title: Ultrastruct Pathol – volume: 130 start-page: 1813 issue: 7 year: 2010 end-page: 1818 article-title: Genetic variants of the DDR1 gene are associated with vitiligo in two independent Brazilian population samples publication-title: J Invest Dermatol – volume: 37 start-page: 2185 issue: 11 year: 2023 end-page: 2195 article-title: Worldwide expert recommendations for the diagnosis and management of vitiligo: position statement from the international vitiligo task force‐part 2: specific treatment recommendations publication-title: J Eur Acad Dermatol Venereol – volume: 38 start-page: 37 issue: 1 year: 2020 end-page: 53 article-title: How it works: the immunology underlying phototherapy publication-title: Dermatol Clin – volume: 433 start-page: 884 issue: 7028 year: 2005 end-page: 887 article-title: Pax3 functions at a nodal point in melanocyte stem cell differentiation publication-title: Nature – volume: 5 issue: 11 year: 2020 article-title: Type‐1 cytokines regulate MMP‐9 production and E‐cadherin disruption to promote melanocyte loss in vitiligo. JCI publication-title: Insight – volume: 9 start-page: 655 issue: 4 year: 2019 end-page: 683 article-title: Scoping review on the use of drugs targeting JAK/STAT pathway in atopic dermatitis, vitiligo, and alopecia areata publication-title: Dermatol Ther (Heidelb) – volume: 489 start-page: 257 issue: 7415 year: 2012 end-page: 262 article-title: Distinct contribution of stem and progenitor cells to epidermal maintenance publication-title: Nature – volume: 143 start-page: 2095 issue: 6 year: 2019 end-page: 2107 article-title: Blood endotyping distinguishes the profile of vitiligo from that of other inflammatory and autoimmune skin diseases publication-title: J Allergy Clin Immunol – volume: 28 start-page: 667 issue: 6 year: 2019 end-page: 673 article-title: Involvement of non‐melanocytic skin cells in vitiligo publication-title: Exp Dermatol – volume: 332 start-page: 586 issue: 6029 year: 2011 end-page: 589 article-title: Self‐organizing and stochastic behaviors during the regeneration of hair stem cells publication-title: Science – volume: 386 start-page: 1687 issue: 18 year: 2022 end-page: 1699 article-title: Two phase 3 trials of Baricitinib for alopecia areata publication-title: N Engl J Med – volume: 149 start-page: 1318 issue: 4 year: 2022 end-page: 1328 article-title: Ritlecitinib and brepocitinib demonstrate significant improvement in scalp alopecia areata biomarkers publication-title: J Allergy Clin Immunol – volume: 360 start-page: 160 issue: 2 year: 2009 end-page: 169 article-title: Clinical practice. Vitiligo publication-title: N Engl J Med – volume: 282 start-page: 27557 issue: 38 year: 2007 end-page: 27561 article-title: The regulation of skin pigmentation publication-title: J Biol Chem – ident: e_1_2_13_20_1 doi: 10.1084/jem.20210116 – ident: e_1_2_13_32_1 doi: 10.1038/nrdp.2015.11 – ident: e_1_2_13_35_1 doi: 10.1007/s40257-022-00752-6 – ident: e_1_2_13_84_1 doi: 10.1016/j.cell.2015.02.016 – ident: e_1_2_13_10_1 doi: 10.1056/NEJMoa2110343 – ident: e_1_2_13_56_1 doi: 10.1016/j.jaad.2017.01.056 – ident: e_1_2_13_73_1 doi: 10.1126/science.1092436 – ident: e_1_2_13_111_1 doi: 10.1083/jcb.200311122 – ident: e_1_2_13_116_1 doi: 10.1083/jcb.200602132 – ident: e_1_2_13_121_1 doi: 10.1007/s00403-018-1830-z – ident: e_1_2_13_65_1 doi: 10.1074/jbc.M112.372425 – ident: e_1_2_13_83_1 doi: 10.1126/science.aam5809 – ident: e_1_2_13_102_1 doi: 10.1016/j.jid.2018.01.030 – ident: e_1_2_13_37_1 doi: 10.1111/ijd.16114 – ident: e_1_2_13_101_1 doi: 10.1038/nm.3194 – ident: e_1_2_13_6_1 doi: 10.1016/j.jid.2019.03.1142 – ident: e_1_2_13_68_1 doi: 10.1073/pnas.1205742109 – ident: e_1_2_13_2_1 doi: 10.1038/nature09114 – ident: e_1_2_13_90_1 doi: 10.1038/s41586-019-1085-7 – ident: e_1_2_13_107_1 doi: 10.1111/j.1365-4632.2009.04332.x – ident: e_1_2_13_39_1 doi: 10.1056/NEJMoa2118828 – ident: e_1_2_13_123_1 doi: 10.1126/sciadv.1500973 – ident: e_1_2_13_11_1 doi: 10.1016/S0140-6736(23)00222-2 – ident: e_1_2_13_86_1 doi: 10.1038/nature05766 – ident: e_1_2_13_60_1 doi: 10.1111/jdv.19022 – ident: e_1_2_13_76_1 doi: 10.1126/science.1201647 – ident: e_1_2_13_80_1 doi: 10.1016/j.cell.2017.05.002 – ident: e_1_2_13_12_1 doi: 10.1007/s40257-023-00808-1 – ident: e_1_2_13_22_1 doi: 10.1016/j.jaci.2018.11.031 – ident: e_1_2_13_21_1 doi: 10.1111/all.14814 – ident: e_1_2_13_66_1 doi: 10.1080/08830180701690835 – ident: e_1_2_13_53_1 doi: 10.1038/sj.jid.5700938 – ident: e_1_2_13_74_1 doi: 10.1242/dev.021295 – ident: e_1_2_13_105_1 doi: 10.1016/j.isci.2022.105238 – ident: e_1_2_13_63_1 doi: 10.1007/s13555-019-00329-y – ident: e_1_2_13_31_1 doi: 10.1056/NEJMcp0804388 – ident: e_1_2_13_64_1 doi: 10.1016/j.immuni.2006.05.012 – ident: e_1_2_13_19_1 doi: 10.1016/j.immuni.2017.01.009 – ident: e_1_2_13_58_1 doi: 10.1001/jamadermatol.2014.1875 – ident: e_1_2_13_4_1 doi: 10.1111/exd.12264 – ident: e_1_2_13_114_1 doi: 10.1016/j.jaad.2023.04.033 – ident: e_1_2_13_52_1 doi: 10.1016/j.ajpath.2010.10.021 – ident: e_1_2_13_36_1 doi: 10.1080/14728222.2023.2193329 – ident: e_1_2_13_38_1 doi: 10.1016/j.jid.2017.08.038 – ident: e_1_2_13_88_1 doi: 10.1038/nm1328 – ident: e_1_2_13_47_1 doi: 10.1111/j.1600-0749.2006.00358.x – ident: e_1_2_13_85_1 doi: 10.1016/S0092-8674(00)00050-7 – ident: e_1_2_13_125_1 doi: 10.3390/ijms22094581 – ident: e_1_2_13_45_1 doi: 10.1111/exd.12369 – ident: e_1_2_13_113_1 doi: 10.1111/1346-8138.16207 – ident: e_1_2_13_7_1 doi: 10.3389/fimmu.2021.652191 – ident: e_1_2_13_106_1 doi: 10.3109/01913123.2013.870274 – ident: e_1_2_13_25_1 doi: 10.1111/all.15071 – ident: e_1_2_13_28_1 doi: 10.1016/j.immuni.2016.05.008 – ident: e_1_2_13_98_1 doi: 10.1038/nature11847 – ident: e_1_2_13_100_1 doi: 10.1016/j.cell.2021.06.022 – ident: e_1_2_13_34_1 doi: 10.1159/000506103 – ident: e_1_2_13_44_1 doi: 10.1007/s13555-020-00447-y – ident: e_1_2_13_55_1 doi: 10.1046/j.0022-202x.2001.01575.x – ident: e_1_2_13_71_1 doi: 10.1038/s41586-021-03638-5 – ident: e_1_2_13_108_1 doi: 10.1038/nature11393 – ident: e_1_2_13_67_1 doi: 10.1016/j.phrs.2024.107059 – ident: e_1_2_13_87_1 doi: 10.1016/j.jaad.2018.12.047 – ident: e_1_2_13_13_1 doi: 10.1111/jdv.18810 – ident: e_1_2_13_62_1 doi: 10.1001/jamadermatol.2015.1520 – ident: e_1_2_13_18_1 doi: 10.1038/nm.3645 – ident: e_1_2_13_49_1 doi: 10.1016/j.jdermsci.2017.06.018 – ident: e_1_2_13_51_1 doi: 10.1111/exd.13868 – ident: e_1_2_13_61_1 doi: 10.1016/j.jaad.2015.09.073 – ident: e_1_2_13_104_1 doi: 10.1111/pcmr.12375 – ident: e_1_2_13_5_1 doi: 10.1097/MOP.0000000000000375 – ident: e_1_2_13_95_1 doi: 10.1038/s41586-023-05960-6 – ident: e_1_2_13_112_1 doi: 10.1111/j.0022-202X.2005.23760.x – ident: e_1_2_13_14_1 doi: 10.1016/j.annder.2022.03.006 – ident: e_1_2_13_77_1 doi: 10.1038/nature12602 – ident: e_1_2_13_70_1 doi: 10.1016/j.jaci.2021.10.036 – ident: e_1_2_13_117_1 doi: 10.1096/fj.07-9475com – ident: e_1_2_13_27_1 doi: 10.1038/s41586-023-06172-8 – ident: e_1_2_13_46_1 doi: 10.1016/j.det.2019.08.004 – ident: e_1_2_13_23_1 doi: 10.1016/j.jaad.2020.04.138 – ident: e_1_2_13_91_1 doi: 10.1038/416854a – ident: e_1_2_13_109_1 doi: 10.1038/nm.3643 – ident: e_1_2_13_54_1 doi: 10.1111/j.1468-3083.2011.04223.x – ident: e_1_2_13_33_1 doi: 10.1016/S0140-6736(14)60763-7 – ident: e_1_2_13_97_1 doi: 10.7554/eLife.52712 – ident: e_1_2_13_43_1 doi: 10.1126/scitranslmed.aam7710 – ident: e_1_2_13_78_1 doi: 10.1016/j.cell.2020.06.031 – ident: e_1_2_13_50_1 doi: 10.1111/bjd.15651 – ident: e_1_2_13_94_1 doi: 10.1038/nature03292 – ident: e_1_2_13_3_1 doi: 10.1016/j.jid.2020.06.004 – ident: e_1_2_13_17_1 doi: 10.1111/jdv.17187 – ident: e_1_2_13_118_1 doi: 10.1038/jid.2010.34 – ident: e_1_2_13_48_1 doi: 10.1074/jbc.R700026200 – ident: e_1_2_13_8_1 doi: 10.3390/ijms25084409 – ident: e_1_2_13_40_1 doi: 10.1016/j.jaad.2022.11.005 – ident: e_1_2_13_93_1 doi: 10.1016/j.jdermsci.2015.03.003 – ident: e_1_2_13_81_1 doi: 10.1001/jamadermatol.2014.504 – ident: e_1_2_13_82_1 doi: 10.1016/j.immuni.2021.09.001 – ident: e_1_2_13_110_1 doi: 10.1136/bmj.1.4869.1016 – ident: e_1_2_13_119_1 doi: 10.1684/ejd.2010.0853 – ident: e_1_2_13_122_1 doi: 10.1111/jdv.19842 – ident: e_1_2_13_103_1 doi: 10.1038/jid.2015.126 – ident: e_1_2_13_16_1 doi: 10.1056/NEJMra1103442 – ident: e_1_2_13_24_1 doi: 10.1111/all.15561 – ident: e_1_2_13_57_1 doi: 10.1001/2013.jamadermatol.386 – ident: e_1_2_13_42_1 doi: 10.1038/d41586‐020‐01808‐5 – ident: e_1_2_13_29_1 doi: 10.1111/jdv.19451 – ident: e_1_2_13_79_1 doi: 10.1126/science.aad4395 – ident: e_1_2_13_124_1 doi: 10.3390/ijms21145137 – ident: e_1_2_13_59_1 doi: 10.1002/biof.29 – ident: e_1_2_13_9_1 doi: 10.1111/jdv.19768 – ident: e_1_2_13_99_1 doi: 10.1038/s41586-020-1935-3 – ident: e_1_2_13_92_1 doi: 10.1111/pcmr.12297 – ident: e_1_2_13_72_1 doi: 10.1016/0092-8674(90)90696-C – ident: e_1_2_13_15_1 doi: 10.1016/j.jaad.2020.03.004 – ident: e_1_2_13_89_1 doi: 10.1126/science.1239730 – volume: 5 issue: 11 year: 2020 ident: e_1_2_13_115_1 article-title: Type‐1 cytokines regulate MMP‐9 production and E‐cadherin disruption to promote melanocyte loss in vitiligo. JCI publication-title: Insight – ident: e_1_2_13_69_1 doi: 10.1126/science.284.5414.638 – ident: e_1_2_13_96_1 doi: 10.1016/j.cell.2011.05.004 – ident: e_1_2_13_120_1 doi: 10.1016/j.jdermsci.2012.01.010 – ident: e_1_2_13_75_1 doi: 10.1126/science.1248373 – ident: e_1_2_13_26_1 doi: 10.3389/fimmu.2023.1243556 – ident: e_1_2_13_41_1 doi: 10.1016/j.jaci.2023.09.021 – ident: e_1_2_13_30_1 doi: 10.1111/jdv.19450 |
SSID | ssj0001158 |
Score | 2.443978 |
SecondaryResourceType | review_article |
Snippet | Both alopecia areata (AA) and vitiligo share common pathogenesis involving, interferon‐γ (IFN‐γ) and interleukin‐15 (IL‐15) signalling pathways that activate... Both alopecia areata (AA) and vitiligo share common pathogenesis involving, interferon-γ (IFN-γ) and interleukin-15 (IL-15) signalling pathways that activate... |
SourceID | pubmedcentral proquest pubmed crossref wiley |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 498 |
SubjectTerms | Alopecia Areata - drug therapy Alopecia Areata - physiopathology Alopecia Areata - therapy Hair - growth & development Hair Follicle Humans Melanocytes Review Vitiligo - drug therapy Vitiligo - physiopathology Vitiligo - therapy |
Title | Hair regrowth in alopecia areata and re‐pigmentation in vitiligo in response to treatment: Commonalities and differences |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fjdv.20311 https://www.ncbi.nlm.nih.gov/pubmed/39258892 https://www.proquest.com/docview/3102883002 https://pubmed.ncbi.nlm.nih.gov/PMC11851261 |
Volume | 39 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEB6VHiouFFoegVItFYdeXDn2eu3QEwKqqFJRVVHUA5K1z9QitavUyaEnfgK_kV_CzPpBQ6mEeoqlnThrZ2b3--yZbwDexppgqEsDN9JIUCKdBjIxoyCTXPDMkSQUFScffRbjU354lpytwH5XC9PoQ_QP3Cgy_HpNAS7V1c0gNwukd7Gv66VcLQJEJ3-koxDp-FV4FImANLVaVSGfxdN9c3kvugUwb-dJ3sSvfgM6WIdv3dSbvJPve_Na7enrv1Qd73ltj-FRC0zZ-8aTnsCKLTdg7ah99b4J12NZzNjMTpC31-esKJmcVr55PZMEPPGjNDj-68fPy2Jy0ZY0lWS4KOpiWkwqOp41ObmW1RXrk9zfMapTaTgBMnd_pq5zC65jT-H04NOXD-OgbdwQaOJLAWG4RAojklg4O3SOi5APVaqUxP1QIgOzbiidVqFxkRNxanikMp2EQ2VtGJn4GayWVWlfAFOJ0Y5rrWzquHKkXmfi0AqZJkpFMh3AbvcX5rpVNafmGtO8Zzdmkft7OYCd3vSykfL4l9Gbzg9yDDR6eyJLW82v8pigWBbjDjKA541f9KdBkJlk2QhHsiWP6Q1IxHt5pCzOvZg3EjzEXAJ_eNd7xN1Tyw8_fvUHL__f9BU8jKhhsU-a24LVeja3rxFF1WobHkT8eNsHzW8A3x4M |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3JbtRAEG2FIAEXdsiwNgikXBx5bXuQOCCGaLJMDihBuZleJ1YGe-TxTEROfAIfwq_wE3wJVe2FDAGJSw6cbKlL7ba7qvpVu_oVIS8CiTDUxI7pSwhQfBk7PFJ9J-EhCxODlFB4OHm0x4YH4fZhdLhCvrVnYWp-iG7DDS3D-ms0cNyQPmvlagHxXeB5TUrljv58AgHb7PXWAGb3pe9vvtt_O3SamgKORCjvILyIOFMsCpjRnjEhc0NPxEJwcNUcggNtPG6kcJXxDQtiFfoikZHrCa1dXwXQ7yVyGSuII1P_4P0vsirAVtbv933mIItXw2Nk84baoS6vfucg7fnMzLOI2S55mzfI9_Zj1ZkuxxvzSmzI0994JP-Xr3mTXG-wN31TG8stsqLz2-TKqMkuuENOhzwraanHZXFSHdEsp3xSTDVoL-WIreGSK2j_8eXrNBt_ak5t5Si4yKpsko0LvC_rtGNNq4J2efyvKB7FqcOeTM9sT21xGnDVd8nBhbz5PbKaF7leI1RESppQSqFjEwqDBH0qcDXjcSSEz-MeWW91JpUNcTvWD5mkXQCnFqmdux553olOa7aSPwk9axUvBV-CP4h4rov5LA0QbSYBLJI9cr9WxK4bwNFRkvShJVlS0U4AecqXW_LsyPKVQwwLsJLBg9etCv59aOn24IO9efDvok_J1eH-aDfd3drbeUiu-Vif2eYIPiKrVTnXjwE0VuKJtVVKPl60Ov8Ezx97pw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF6VIlVcEO-GR1kQSL1YstfrtYPUAyKN0pZWPVDUm9lnainYUeoGwYmfwP_ov-KXMLN-qFFB4tJTLO1oY3k8s9_nnf2GkDexRhjq0sANNRAUptNAJmYYZJILnjmUhMLDyYdHYnLC90-T0zVy2Z2FafQh-g9uGBk-X2OAz427GuRmCfQujqK2ovLAfv8GfO18Z28Ezn3L2Hj304dJ0LYUCDQi-QDRRSKFEUksnI2c4yLkkUqVkpCpJXAD6yLptAqNY07EqeFMZToJI2VtyEwM894it3FzEevHGD_u0z5AK5_2h0wEKOLVyhj5sqHuVlcXv2uI9nph5lXA7Fe88T1yt4Wq9H3zbt0na7Z8QDYO2834h-THRBYLurBTYPL1GS1KKmeVb2dPJUJR-CkNjP_--WteTL-2h5xKNFwWdTErphVeL5oqXUvrivZl7-8onlxpWAJweT9T18sFMtsjcnIjz_0xWS-r0m4SqhKjHdda2dRx5VDPzsShFTJNlGIyHZDt7hnnutU5x3Ybs7znO2aZe3cMyOvedN6Ie_zN6FXnqBxCD_dTZGmri_M8RnCWxbCmDMiTxnH9NAA7kywbwki24tLeAGW9V0fK4szLewPlAxQm4I-3vff_fWv5_uizv3j6_6YvycbxaJx_3Ds6eEbuMOxm7CvqnpP1enFhXwDEqtWWf7Up-XLTsfQHjf85-Q |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Hair+regrowth+in+alopecia+areata+and+re-pigmentation+in+vitiligo+in+response+to+treatment%3A+Commonalities+and+differences&rft.jtitle=Journal+of+the+European+Academy+of+Dermatology+and+Venereology&rft.au=Yamaguchi%2C+Hiroki+L&rft.au=Yamaguchi%2C+Yuji&rft.au=Peeva%2C+Elena&rft.date=2025-03-01&rft.issn=1468-3083&rft.eissn=1468-3083&rft.volume=39&rft.issue=3&rft.spage=498&rft_id=info:doi/10.1111%2Fjdv.20311&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0926-9959&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0926-9959&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0926-9959&client=summon |