Gene silencing of two acetylcholinesterases reveals their cholinergic and non-cholinergic functions in Rhopalosiphum padi and Sitobion avenae

BACKGROUD The function of acetylcholinesterase (AChE) is to terminate synaptic transmission by hydrolysing the neurotransmitter acetylcholine (ACh) in the synaptic cleft, and thus it is an effective target for organophosphate (OP) and carbamate (CB) insecticides. RESULTS The transcript levels of the...

Full description

Saved in:
Bibliographic Details
Published inPest management science Vol. 71; no. 4; pp. 523 - 530
Main Authors Xiao, Da, Lu, Yan-Hui, Shang, Qing-Li, Song, Dun-Lun, Gao, Xi-Wu
Format Journal Article
LanguageEnglish
Published Chichester, UK John Wiley & Sons, Ltd 01.04.2015
Wiley Subscription Services, Inc
Subjects
Online AccessGet full text

Cover

Loading…
Abstract BACKGROUD The function of acetylcholinesterase (AChE) is to terminate synaptic transmission by hydrolysing the neurotransmitter acetylcholine (ACh) in the synaptic cleft, and thus it is an effective target for organophosphate (OP) and carbamate (CB) insecticides. RESULTS The transcript levels of the four Ace genes were dramatically suppressed by injection of their respective dsRNA in Rhopalosiphum padi and Sitobion avenae. However, the AChE activity changes in the Ace1 knockdown aphids were consistent with the significant transcript level changes of Ace1 genes in these aphids, but not for Ace2. Bioassay results indicated that the suppression of RpAce1 increased its susceptibilities to pirimicarb and malathion, and SaAce1 silencing also increased susceptibility to pirimicarb in S. avenae, whereas the knockdowns of RpAce2 and SaAce2 had a slight effect on their susceptibilities. The knockdown of Ace1 genes also caused significant reductions in fecundity in the aphids of their parental generation. CONCLUSIONS These results suggest that AChE1 is a predominant cholinergic enzyme and is the target of anticholinesterase insecticides in both R. padi and S. avenae. It also plays a non‐cholinergic role in fecundity of these aphids. AChE2 may also be important for the toxicological function, although its importance appeared to be lower than that of AChE1. © 2014 Society of Chemical Industry
AbstractList Abstract BACKGROUD The function of acetylcholinesterase ( AChE ) is to terminate synaptic transmission by hydrolysing the neurotransmitter acetylcholine ( ACh ) in the synaptic cleft, and thus it is an effective target for organophosphate ( OP ) and carbamate ( CB ) insecticides. RESULTS The transcript levels of the four Ace genes were dramatically suppressed by injection of their respective dsRNA in Rhopalosiphum padi and Sitobion avenae . However, the AChE activity changes in the Ace1 knockdown aphids were consistent with the significant transcript level changes of Ace1 genes in these aphids, but not for Ace2 . Bioassay results indicated that the suppression of RpAce1 increased its susceptibilities to pirimicarb and malathion, and SaAce1 silencing also increased susceptibility to pirimicarb in S. avenae , whereas the knockdowns of RpAce2 and SaAce2 had a slight effect on their susceptibilities. The knockdown of Ace1 genes also caused significant reductions in fecundity in the aphids of their parental generation. CONCLUSIONS These results suggest that AChE1 is a predominant cholinergic enzyme and is the target of anticholinesterase insecticides in both R. padi and S. avenae . It also plays a non‐cholinergic role in fecundity of these aphids. AChE2 may also be important for the toxicological function, although its importance appeared to be lower than that of AChE1 . © 2014 Society of Chemical Industry
BACKGROUD The function of acetylcholinesterase (AChE) is to terminate synaptic transmission by hydrolysing the neurotransmitter acetylcholine (ACh) in the synaptic cleft, and thus it is an effective target for organophosphate (OP) and carbamate (CB) insecticides. RESULTS The transcript levels of the four Ace genes were dramatically suppressed by injection of their respective dsRNA in Rhopalosiphum padi and Sitobion avenae. However, the AChE activity changes in the Ace1 knockdown aphids were consistent with the significant transcript level changes of Ace1 genes in these aphids, but not for Ace2. Bioassay results indicated that the suppression of RpAce1 increased its susceptibilities to pirimicarb and malathion, and SaAce1 silencing also increased susceptibility to pirimicarb in S. avenae, whereas the knockdowns of RpAce2 and SaAce2 had a slight effect on their susceptibilities. The knockdown of Ace1 genes also caused significant reductions in fecundity in the aphids of their parental generation. CONCLUSIONS These results suggest that AChE1 is a predominant cholinergic enzyme and is the target of anticholinesterase insecticides in both R. padi and S. avenae. It also plays a non‐cholinergic role in fecundity of these aphids. AChE2 may also be important for the toxicological function, although its importance appeared to be lower than that of AChE1. © 2014 Society of Chemical Industry
BACKGROUD The function of acetylcholinesterase (AChE) is to terminate synaptic transmission by hydrolysing the neurotransmitter acetylcholine (ACh) in the synaptic cleft, and thus it is an effective target for organophosphate (OP) and carbamate (CB) insecticides. RESULTS The transcript levels of the four Ace genes were dramatically suppressed by injection of their respective dsRNA in Rhopalosiphum padi and Sitobion avenae . However, the AChE activity changes in the Ace1 knockdown aphids were consistent with the significant transcript level changes of Ace1 genes in these aphids, but not for Ace2 . Bioassay results indicated that the suppression of RpAce1 increased its susceptibilities to pirimicarb and malathion, and SaAce1 silencing also increased susceptibility to pirimicarb in S. avenae , whereas the knockdowns of RpAce2 and SaAce2 had a slight effect on their susceptibilities. The knockdown of Ace1 genes also caused significant reductions in fecundity in the aphids of their parental generation. CONCLUSIONS These results suggest that AChE1 is a predominant cholinergic enzyme and is the target of anticholinesterase insecticides in both R. padi and S. avenae . It also plays a non-cholinergic role in fecundity of these aphids. AChE2 may also be important for the toxicological function, although its importance appeared to be lower than that of AChE1. copyright 2014 Society of Chemical Industry
The function of acetylcholinesterase (AChE) is to terminate synaptic transmission by hydrolysing the neurotransmitter acetylcholine (ACh) in the synaptic cleft, and thus it is an effective target for organophosphate (OP) and carbamate (CB) insecticides. The transcript levels of the four Ace genes were dramatically suppressed by injection of their respective dsRNA in Rhopalosiphum padi and Sitobion avenae. However, the AChE activity changes in the Ace1 knockdown aphids were consistent with the significant transcript level changes of Ace1 genes in these aphids, but not for Ace2. Bioassay results indicated that the suppression of RpAce1 increased its susceptibilities to pirimicarb and malathion, and SaAce1 silencing also increased susceptibility to pirimicarb in S. avenae, whereas the knockdowns of RpAce2 and SaAce2 had a slight effect on their susceptibilities. The knockdown of Ace1 genes also caused significant reductions in fecundity in the aphids of their parental generation. These results suggest that AChE1 is a predominant cholinergic enzyme and is the target of anticholinesterase insecticides in both R. padi and S. avenae. It also plays a non-cholinergic role in fecundity of these aphids. AChE2 may also be important for the toxicological function, although its importance appeared to be lower than that of AChE1.
The function of acetylcholinesterase (AChE) is to terminate synaptic transmission by hydrolysing the neurotransmitter acetylcholine (ACh) in the synaptic cleft, and thus it is an effective target for organophosphate (OP) and carbamate (CB) insecticides. The transcript levels of the four Ace genes were dramatically suppressed by injection of their respective dsRNA in Rhopalosiphum padi and Sitobion avenae. However, the AChE activity changes in the Ace1 knockdown aphids were consistent with the significant transcript level changes of Ace1 genes in these aphids, but not for Ace2. Bioassay results indicated that the suppression of RpAce1 increased its susceptibilities to pirimicarb and malathion, and SaAce1 silencing also increased susceptibility to pirimicarb in S. avenae, whereas the knockdowns of RpAce2 and SaAce2 had a slight effect on their susceptibilities. The knockdown of Ace1 genes also caused significant reductions in fecundity in the aphids of their parental generation. These results suggest that AChE1 is a predominant cholinergic enzyme and is the target of anticholinesterase insecticides in both R. padi and S. avenae. It also plays a non-cholinergic role in fecundity of these aphids. AChE2 may also be important for the toxicological function, although its importance appeared to be lower than that of AChE1.
Author Song, Dun-Lun
Lu, Yan-Hui
Xiao, Da
Gao, Xi-Wu
Shang, Qing-Li
Author_xml – sequence: 1
  givenname: Da
  surname: Xiao
  fullname: Xiao, Da
  organization: Department of Entomology, China Agricultural University, Beijing, China
– sequence: 2
  givenname: Yan-Hui
  surname: Lu
  fullname: Lu, Yan-Hui
  organization: Department of Entomology, China Agricultural University, Beijing, China
– sequence: 3
  givenname: Qing-Li
  surname: Shang
  fullname: Shang, Qing-Li
  organization: College of Plant Science, Jilin University, Changchun, China
– sequence: 4
  givenname: Dun-Lun
  surname: Song
  fullname: Song, Dun-Lun
  organization: Department of Entomology, China Agricultural University, Beijing, China
– sequence: 5
  givenname: Xi-Wu
  surname: Gao
  fullname: Gao, Xi-Wu
  email: gaoxiwu@263.net.cn
  organization: Department of Entomology, China Agricultural University, Beijing, China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/24729410$$D View this record in MEDLINE/PubMed
BookMark eNp10d1qFDEUB_AgLfZD8Q0k4IWCTM3XZDKXuuhWqFq2it6FTOZMN3U2GZOZ1n0I39lsd11E8Coh55eTE_4n6MAHDwg9oeSMEsJeDemMK0IeoGNaMlmIulYH-736doROUrohhNR1zR6iIyYqVgtKjtGvOXjAyfXgrfPXOHR4vAvYWBjXvV2G3nlII0STIOEIt2D6hMcluIh31XjtLDa-xXmk4u-zbvJ2dMEn7DxeLMNg-pDcsJxWeDCtu79z5cbQZIPNLXgDj9Bhlx-Ax7v1FH159_bz7Ly4-DR_P3t9UVhBJSnKsmMNMU0tK8GpaZRpWcc72qhaqJJxa1UuS0rKlpGKSAbCKFJSabuqK0nLT9GLbd8hhh9T_qBeuWSh742HMCVNpVRMSMp5ps_-oTdhij5Pt1FCUUEZy-r5VtkYUorQ6SG6lYlrTYneJKSHpDcJZfl0129qVtDu3Z9IMni5BXc5lPX_-ujLq127YqtdTunnXpv4XcuKV6X--nGuzxcLPn8z-6Av-W9mb6vW
CODEN PMSCFC
CitedBy_id crossref_primary_10_3390_v8120329
crossref_primary_10_1371_journal_pone_0248749
crossref_primary_10_3390_insects11090557
crossref_primary_10_1016_j_cbpb_2017_01_007
crossref_primary_10_1021_acs_jafc_3c03493
crossref_primary_10_1038_srep30166
crossref_primary_10_3390_v8110316
crossref_primary_10_1002_arch_21377
crossref_primary_10_31993_2308_6459_2023_106_1_15625
crossref_primary_10_1002_arch_21554
crossref_primary_10_3390_genes10120951
crossref_primary_10_1007_s42994_021_00036_3
crossref_primary_10_3390_molecules22071118
crossref_primary_10_3390_agriculture12122108
crossref_primary_10_1186_s12864_020_6466_7
crossref_primary_10_1002_ps_4258
crossref_primary_10_1002_ps_5599
crossref_primary_10_3390_vaccines8020162
crossref_primary_10_1016_j_pestbp_2017_03_004
Cites_doi 10.1111/j.0962-1075.2004.00513.x
10.1016/j.bbrc.2006.12.088
10.1111/j.1742-4658.2007.06237.x
10.1371/journal.pone.0004349
10.1042/bj3590175
10.1673/031.013.0901
10.1016/0006-2952(75)90443-8
10.1098/rspb.2002.2122
10.1073/pnas.0508866103
10.1016/S0006-291X(03)01101-X
10.1038/35067589
10.1093/jmedent/43.5.878
10.1016/j.pestbp.2008.11.007
10.1016/j.jinsphys.2008.12.005
10.1016/j.coph.2005.01.014
10.1016/j.pestbp.2006.09.005
10.1016/j.pestbp.2012.01.004
10.1046/j.1365-2583.1998.72055.x
10.1016/0003-2697(76)90527-3
10.1016/j.bbrc.2008.11.046
10.1016/j.cbi.2008.03.018
10.1007/BF00554410
10.1111/j.1365-2583.2005.00576.x
10.1016/0006-2952(61)90145-9
10.1371/journal.pone.0032288
10.1016/j.pestbp.2005.12.002
10.1006/pest.1996.0064
10.1016/j.ibmb.2009.11.001
10.1002/j.1460-2075.1986.tb04591.x
10.1016/S0965-1748(01)00159-X
10.1093/molbev/msm025
10.1673/031.006.3801
10.1098/rspb.2006.3621
10.1158/0008-5472.CAN-04-0649
10.1371/journal.pgen.0030205
10.1017/S0007485309006725
10.3389/fnmol.2012.00040
10.1016/j.ibmb.2007.12.008
10.1186/1475-2875-8-70
10.1002/arch.21007
10.1038/423136b
10.1016/0301-0082(89)90031-2
10.1016/j.pestbp.2004.12.003
10.1111/j.1365-2583.2011.01081.x
10.1016/j.cbi.2010.03.034
10.1139/G05-104
10.1016/j.ibmb.2008.07.007
10.1038/srep00288
10.1186/1472-6750-7-63
10.1126/science.1091789
ContentType Journal Article
Copyright 2014 Society of Chemical Industry
2014 Society of Chemical Industry.
Copyright Wiley Subscription Services, Inc. Apr 2015
Copyright_xml – notice: 2014 Society of Chemical Industry
– notice: 2014 Society of Chemical Industry.
– notice: Copyright Wiley Subscription Services, Inc. Apr 2015
DBID BSCLL
CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7QR
7SS
7ST
7T7
7U7
8FD
C1K
FR3
P64
SOI
RC3
DOI 10.1002/ps.3800
DatabaseName Istex
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
Chemoreception Abstracts
Entomology Abstracts (Full archive)
Environment Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Toxicology Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
Biotechnology and BioEngineering Abstracts
Environment Abstracts
Genetics Abstracts
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
Entomology Abstracts
Technology Research Database
Toxicology Abstracts
Chemoreception Abstracts
Engineering Research Database
Industrial and Applied Microbiology Abstracts (Microbiology A)
Environment Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
Genetics Abstracts
DatabaseTitleList CrossRef

Entomology Abstracts
Entomology Abstracts
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Agriculture
EISSN 1526-4998
EndPage 530
ExternalDocumentID 3630212361
10_1002_ps_3800
24729410
PS3800
ark_67375_WNG_HRR3GBCM_P
Genre article
Research Support, Non-U.S. Gov't
Journal Article
Feature
GroupedDBID ---
.3N
.GA
.Y3
05W
0R~
10A
123
1L6
1OC
29O
31~
33P
3SF
3WU
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABEML
ABHUG
ABIJN
ABJNI
ABPVW
ABWRO
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACFBH
ACGFS
ACIWK
ACPOU
ACPRK
ACSCC
ACXBN
ACXME
ACXQS
ADAWD
ADBBV
ADDAD
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFRAH
AFVGU
AFZJQ
AGJLS
AHBTC
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BSCLL
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
ECGQY
EJD
F00
F01
F04
F5P
FEDTE
G-S
G.N
GNP
GODZA
H.T
H.X
HHY
HHZ
HVGLF
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
P2W
P2X
P4D
PQQKQ
Q.N
Q11
QB0
QRW
R.K
ROL
RWI
RX1
RYL
SUPJJ
UB1
V2E
W8V
W99
WBFHL
WBKPD
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XV2
Y6R
~IA
~KM
~WT
AAHBH
AITYG
HGLYW
OIG
1OB
CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7QR
7SS
7ST
7T7
7U7
8FD
C1K
FR3
P64
SOI
RC3
ID FETCH-LOGICAL-c4160-55f2b0ab967431ab8ad2f3f1b8948523cc8b0a6105d207062e4a80516cf7f50d3
IEDL.DBID DR2
ISSN 1526-498X
IngestDate Fri Aug 16 11:33:50 EDT 2024
Fri Sep 13 06:26:02 EDT 2024
Thu Sep 26 15:45:51 EDT 2024
Sat Sep 28 08:22:12 EDT 2024
Sat Aug 24 01:04:30 EDT 2024
Wed Jan 17 05:00:56 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords acetylcholinesterase
gene function
RNA interference
Rhopalosiphum padi
Sitobion avenae
Language English
License 2014 Society of Chemical Industry.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4160-55f2b0ab967431ab8ad2f3f1b8948523cc8b0a6105d207062e4a80516cf7f50d3
Notes ark:/67375/WNG-HRR3GBCM-P
istex:63E3535154CF7B6DC266AF57989F598B4B74EB46
ArticleID:PS3800
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 24729410
PQID 1664814122
PQPubID 46069
PageCount 8
ParticipantIDs proquest_miscellaneous_1668246133
proquest_journals_1664814122
crossref_primary_10_1002_ps_3800
pubmed_primary_24729410
wiley_primary_10_1002_ps_3800_PS3800
istex_primary_ark_67375_WNG_HRR3GBCM_P
PublicationCentury 2000
PublicationDate 2015-04
April 2015
2015-Apr
2015-04-00
20150401
PublicationDateYYYYMMDD 2015-04-01
PublicationDate_xml – month: 04
  year: 2015
  text: 2015-04
PublicationDecade 2010
PublicationPlace Chichester, UK
PublicationPlace_xml – name: Chichester, UK
– name: England
– name: London
PublicationTitle Pest management science
PublicationTitleAlternate Pest. Manag. Sci
PublicationYear 2015
Publisher John Wiley & Sons, Ltd
Wiley Subscription Services, Inc
Publisher_xml – name: John Wiley & Sons, Ltd
– name: Wiley Subscription Services, Inc
References Osta MA, Christophides GK and Kafatos FC, Effects of mosquito genes on plasmodium development. Science 303:2030-2032 (2004).
Lu YH, He YP and Gao XW, Comparative studies on acetylcholinesterase characteristics between the aphids, Sitobion avenae and Rhopalosiphum padi. J Insect Sci 13:9 (2013).
Soreq H and Seidman S, Acetylcholinesterase - new roles for an old actor. Nat Rev Neurosci 2:294-302 (2001).
Kono Y and Tomita T, Amino acid substitutions conferring insecticide insensitivity in Ace-paralogous acetylcholinesterase. Pestic Biochem Physiol 85:123-132 (2006).
Bourguet D, Raymond M, Bisset J, Pasteur N and Arpagaus M, Duplication of the Ace.1 locus in Culex pipiens mosquitoes from the Caribbean. Biochem Genet 34:351-362 (1996).
Hall LMC and Spierer P, The Ace locus of Drosophila melanogaster: structural gene for acetylcholinesterase with an unusual 5′ leader. EMBO J 5:2949-2954 (1986).
Weill M, Lutfalla G, Mogensen K, Chandre F, Berthomieu A, Berticat C et al., Insecticide resistance in mosquito vectors. Nature 423:136-137 (2003).
Gao XW, Introduction of Ellman procedure for assay of cholinesterases in crude enzymatic preparations modified by Gorun. Chin Bull Entomol 33:245-246 (1987).
Weill M, Fort P, Berthomieu A, Dubois MP, Pasteur N and Raymond M, A novel acetylcholinesterase gene in mosquitoes codes for the insecticide target and is non-homologous to the ace gene Drosophila. Proc R Soc Lond B 269:2007-2016 (2002).
Nabeshima T, Kozaki T, Tomita T and Kono Y, An amino acid substitution on the second acetylcholinesterase in the pirimicarb-resistant strains of the peach potato aphid, Myzus persicae. Biochem Biophys Res Commun 307:15-22 (2003).
Lu YH and Gao XW, A method for mass culture of wheat aphids. Chin Bull Entomol 44:289-290 (2007).
Toda S, Komazaki S, Tomita T and Kono Y, Two amino acid substitutions in acetylcholinesterase associated with pirimicarb and organophosphorous insecticide resistance in the cotton aphid, Aphis gossypii Glover (Homoptera: Aphididae). Insect Mol Biol 13:549-553 (2004).
Pegan K, Matkovic U, Mars T, Mis K, Pirkmajer S, Brecelj J et al., Acetylcholinesterase is involved in apoptosis in the precursors of human muscle regeneration. Chem Biol Interact 187:96-100 (2010).
Fournier D and Mutero A, Modification of acetylcholinesterase as a mechanism of resistance to insecticides. Comp Biochem Physiol 108C:19-31 (1994).
Ellman GL, Courtney KD, Andres VJR and Featherstone RM, A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem Pharmacol 7:88-95 (1961).
Jiang XJ, Qu MJ, Denholm I, Fang JC, Jiang WH and Han ZJ, Mutation in acetylcholinesterase 1 associated with triazophos resistance in rice stem borer, Chilo suppressalis (Lepidoptera: Pyralidae). Biochem Biophys Res Commun 378:269-272 (2009).
Labbe P, Berthomieu A, Berticat C, Alout H, Raymond M, Lenormand T et al., Independent duplications of the acetylcholinesterase gene conferring insecticide resistance in the mosquito Culex pipiens. Mol Biol Evol 24:1056-1067 (2007).
Togawa T, Dunn WA, Emmons AC, Nagao J and Willis JH, Developmental expression patterns of cuticular protein genes with the R&R Consensus from Anopheles gambiae. Insect Biochem Mol Biol 38:508-519 (2008).
Pang YP, Singh SK, Gao Y, Lassiter TL, Mishra RK, Zhu KY et al., Selective and irreversible inhibitors of aphid acetylcholinesterases: steps toward human-safe insecticides. PLoS ONE 4:e4349 (2009).
Park SE, Kim ND and Yoo YH, Acetylcholinesterase plays a pivotal role in apoptosome formation. Cancer Res 64:2652-2655 (2004).
Arakane Y, Muthukrishnan S, Kramer KJ, Specht CA, Tomoyasu Y, Lorenzen MD et al., The Tribolium chitin synthase genes TcCHS1 and TcCHS2 are specialized for synthesis of epidermal cuticle and midgut peritrophic matrix. Insect Mol Biol 14:453-463 (2005).
Alon M, Alon F, Nauen R and Morin S, Organophosphates' resistance in the B-biotype of Bemisia tabaci (Hemiptera: Aleyrodidae) is associated with a point mutation in an ace1-type acetylcholinesterase and overexpression of carboxylesterase. Insect Biochem Mol Biol 38:940-949 (2008).
Zhou XG, Oi FM and Scharf ME, Social exploitation of hexamerin: RNAi reveals a major caste-regulatory factor in termites. Proc Natl Acad Sci USA 103:4499-4504 (2006).
Paraoanu LE and Layer PG, Acetylcholinesterase in cell adhesion, neurite growth and network formation. FEBS J 275:618-624 (2008).
Revuelta L, Piulachs MD, Bellés X, Castañera P, Ortego F, Díaz-Ruíz JR et al., RNAi of ace1 and ace2 in Blattella germanica reveals their differential contribution to acetylcholinesterase activity and sensitivity to insecticides. Insect Biochem Mol Biol 39:913-919 (2009).
Gao JR, Kambhampati S and Zhu KY, Molecular cloning and characterization of a greenbug (Schizaphis graminum) cDNA encoding acetylcholinesterase possibly evolved from a duplicate gene lineage. Insect Biochem Mol Biol 32:765-775 (2002).
Hui XM, Yang LW, He GL, Yang QP, Han ZJ and Li F, RNA interference of ace1 and ace2 in Chilo suppressalis reveals their different contributions to motor ability and larval growth. Insect Mol Biol 20:507-518 (2011).
Silman I and Sussman JL, Acetylcholinesterase: 'classical' and 'non-classical' functions and pharmacology. Curr Opin Pharmacol 5:293-302 (2005).
Lu YH, Park Y, Gao XW, Zhang X, Yao JX, Pang YP et al., Cholinergic and non-cholinergic functions of two acetylcholinesterase genes revealed by gene-silencing in Tribolium castaneum. Sci Rep 2:288 (2012).
Li BL, Chen W, Liu L, Zhang XC, Bao YY, Chen JA et al., Molecular characterization of two acetylcholinesterase genes from the brown planthopper, Nilaparvata lugens (Hemiptera: Delphacidae). Pestic Biochem Physiol 102:198-203 (2012).
Labbé P, Berticat C, Berthomieu A, Unal S, Bernard C, Weill M et al., Forty years of erratic insecticide resistance evolution in the mosquito Culex pipiens. PLoS Genet 3:e205 (2007).
Toutant JP, Insect acetylcholinesterase: catalytic properties, tissue distribution and molecular forms. Prog Neurobiol 32:423-446 (1989).
Walsh SB, Dolden TA, Moores GD, Kristensen M, Lewis T, Devonshire AL et al., Identification and characterization of mutations in housefly (Musca domestica) acetylcholinesterase involved in insecticide resistance. Biochem J 359:175-181 (2001).
Seino A, Kazuma T, Tan AJ, Tanaka H, Kono Y, Mita K et al., Analysis of two acetylcholinesterase genes in Bombyx mori. Pestic Biochem Physiol 88:92-101 (2007).
Lee DW, Choi JY, Kim WT, Je YH, Song JT, Chung BK et al., Mutations of acetylcholinesterase 1 contribute to prothiofos-resistance in Plutella xylostella (L.). Biochem Biophys Res Commun 353:591-597 (2007).
Mutti NS, Park Y, Reese JC and Reeck GR, RNAi knockdown of a salivary transcript leading to lethality in the pea aphid, Acyrthosiphon pisum. J Insect Sci 6:38 (2006).
Djogbénou L, Labbé P, Chandre F, Pasteur N and Weill M, Ace-1 duplication in Anopheles gambiae: a challenge for malaria control. Malaria J 8:70 (2009).
Lu YH, Pang YP, Park Y, Gao XW, Yao JX, Zhang X et al., Genome organization, phylogenies, expression patterns, and three-dimensional protein models of two acetylcholinesterase genes from the red flour beetle. PloS ONE 7:e32288 (2012).
Baek JH, Kim JI, Lee DW, Chung BK, Miyata T and Lee SH, Identification and characterization of ace1-type acetylcholinesterase likely associated with organophosphate resistance in Plutella xylostella. Pestic Biochem Physiol 81:164-175 (2005).
Djogbénou L, Chandre F, Berthomieu A, Dabire R, Koffi A, Alout H et al., Evidence of introgression of the ace-1R mutation and of the ace-1 duplication in West African Anopheles gambiae s. s. PLoS ONE 3:e2172 (2008).
Jaubert-Possamai S, Le Trionnaire G, Bonhomme J, Christophides GK, Rispe C and Tagu D, Gene knockdown by RNAi in the pea aphid Acyrthosiphon pisum. BMC Biotechnol 7:63 (2007).
Cui F, Raymond M, Berthomieu A, Alout H, Weill M and Qiao Cl, Recent emergence of insensitive acetylcholinesterase in Chinese populations of the mosquito Culex pipiens (Diptera: Culicidae). J Med Entomol 43:878-883 (2006).
He GL, Sun Y and Li F, RNA interference of two acetylcholinesterase genes in Plutella xylostella reveals their different function. Arch Insect Biochem Physiol 79:75-86 (2012).
Moores GD, Gao XW, Denholm I and Devonshire AL, Characterisation of insensitive acetylcholinesterase in insecticide-resistant cotton aphids, Aphis gossypii Glover (Homoptera: Aphididae). Pestic Biochem Physiol 56:102-110 (1996).
Zhou X and Xia Y, Cloning of an acetylcholinesterase gene in Locusta migratoria manilensis related to organophosphate insecticide resistance. Pestic Biochem Physiol 93:77-84 (2009).
Malcolm CA, Bourguet D, Ascolillo A, Rooker SJ, Garvey CF, Hall LMC et al., A sex-linked Ace gene, not linked to insensitive acetylcholinesterase-mediated insecticide resistance in Culex pipiens. Insect Mol Biol 7:107-120 (1998).
Alout H and Weill M, Amino-acid substitutions in acetylcholinesterase 1 involved in insecticide resistance in mosquitoes. Chem Biol Interact 175:138-141 (2008).
Bradford MM, A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248-254 (1976).
Chen MH and Han ZJ, Cloning and sequence analysis of 2 different acetylcholinesterase genes in Rhopalosiphum padi and Sitobion avenae. Genome 49:239-243 (2006).
Lu YH and Gao XW, Multiple mechanisms responsible for differential susceptibilities of Sitobion avenae (Fabricius) and Rhopalosiphum padi (Linnaeus) to pirimicarb. Bull Entomol Res 99:611-617 (2009).
Zhang XJ and Greenberg DS, Acetylcholinesterase involvement in apoptosis. Front Mol Neurosci 5:40 (2012).
Smissaert HR, el Hamid FM and Overmeer WP, The minimum acetycholinesterase (AChE) fraction compatible with life derived by aid of a simple model explaining the degree of dominance of resistance to inhibitors in AChE 'mutants'. Biochem Pharmacol 24:1043-1047 (1975).
Kumar M, Gupta GP and Rajam MV, Silencing of acetylcholinesterase gene of Helicoverpa armigera by siRNA affects larval grow
1987; 33
2004; 64
1994; 108C
2008; 38
2010; 187
2008; 3
1996; 34
2009; 55
2009; 99
1989; 32
2013; 13
1961; 7
2009; 93
1976; 72
1986; 5
2011; 20
2002; 269
2007; 7
2007; 3
2008; 275
2007; 24
2004; 303
2012; 102
2002; 32
2006; 273
2006; 6
2005; 81
2012; 79
2009; 378
1996; 56
2003; 307
2006; 85
2012; 2
2006; 43
2006; 49
2007; 353
2004; 13
2005; 5
1975; 24
2009; 8
2001; 2
2009; 4
2003; 423
1998; 7
2012; 7
2007; 88
2007; 44
2008; 175
2012; 5
2001; 359
2006; 103
2009; 39
2005; 14
e_1_2_6_51_1
e_1_2_6_53_1
e_1_2_6_32_1
e_1_2_6_30_1
Gao XW (e_1_2_6_44_1) 1987; 33
e_1_2_6_19_1
e_1_2_6_13_1
e_1_2_6_36_1
e_1_2_6_11_1
e_1_2_6_34_1
e_1_2_6_17_1
e_1_2_6_55_1
e_1_2_6_15_1
e_1_2_6_38_1
e_1_2_6_43_1
e_1_2_6_20_1
e_1_2_6_41_1
Djogbénou L (e_1_2_6_28_1) 2008; 3
e_1_2_6_9_1
e_1_2_6_5_1
e_1_2_6_7_1
e_1_2_6_24_1
e_1_2_6_49_1
e_1_2_6_22_1
e_1_2_6_45_1
e_1_2_6_26_1
e_1_2_6_47_1
e_1_2_6_52_1
e_1_2_6_54_1
e_1_2_6_10_1
e_1_2_6_31_1
Lu YH (e_1_2_6_40_1) 2007; 44
e_1_2_6_50_1
Fournier D (e_1_2_6_3_1) 1994; 108
Cui F (e_1_2_6_23_1) 2006; 43
e_1_2_6_14_1
e_1_2_6_35_1
e_1_2_6_12_1
e_1_2_6_33_1
e_1_2_6_18_1
e_1_2_6_39_1
e_1_2_6_16_1
e_1_2_6_37_1
e_1_2_6_42_1
e_1_2_6_21_1
e_1_2_6_8_1
e_1_2_6_4_1
e_1_2_6_6_1
e_1_2_6_25_1
e_1_2_6_48_1
e_1_2_6_2_1
e_1_2_6_29_1
e_1_2_6_27_1
e_1_2_6_46_1
References_xml – volume: 4
  start-page: e4349
  year: 2009
  article-title: Selective and irreversible inhibitors of aphid acetylcholinesterases: steps toward human‐safe insecticides
  publication-title: PLoS ONE
– volume: 3
  issue: e2172
  year: 2008
  article-title: Evidence of introgression of the mutation and of the duplication in West African
  publication-title: PLoS ONE
– volume: 303
  start-page: 2030
  year: 2004
  end-page: 2032
  article-title: Effects of mosquito genes on plasmodium development
  publication-title: Science
– volume: 7
  start-page: 88
  year: 1961
  end-page: 95
  article-title: A new and rapid colorimetric determination of acetylcholinesterase activity
  publication-title: Biochem Pharmacol
– volume: 32
  start-page: 765
  year: 2002
  end-page: 775
  article-title: Molecular cloning and characterization of a greenbug ( ) cDNA encoding acetylcholinesterase possibly evolved from a duplicate gene lineage
  publication-title: Insect Biochem Mol Biol
– volume: 20
  start-page: 507
  year: 2011
  end-page: 518
  article-title: RNA interference of 1 and 2 in reveals their different contributions to motor ability and larval growth
  publication-title: Insect Mol Biol
– volume: 7
  start-page: e32288
  year: 2012
  article-title: Genome organization, phylogenies, expression patterns, and three‐dimensional protein models of two acetylcholinesterase genes from the red flour beetle
  publication-title: PloS ONE
– volume: 7
  start-page: 107
  year: 1998
  end-page: 120
  article-title: A sex‐linked gene, not linked to insensitive acetylcholinesterase‐mediated insecticide resistance in
  publication-title: Insect Mol Biol
– volume: 99
  start-page: 611
  year: 2009
  end-page: 617
  article-title: Multiple mechanisms responsible for differential susceptibilities of (Fabricius) and (Linnaeus) to pirimicarb
  publication-title: Bull Entomol Res
– volume: 6
  start-page: 38
  year: 2006
  article-title: RNAi knockdown of a salivary transcript leading to lethality in the pea aphid,
  publication-title: J Insect Sci
– volume: 3
  start-page: e205
  year: 2007
  article-title: Forty years of erratic insecticide resistance evolution in the mosquito
  publication-title: PLoS Genet
– volume: 2
  start-page: 294
  year: 2001
  end-page: 302
  article-title: Acetylcholinesterase – new roles for an old actor
  publication-title: Nat Rev Neurosci
– volume: 108C
  start-page: 19
  year: 1994
  end-page: 31
  article-title: Modification of acetylcholinesterase as a mechanism of resistance to insecticides
  publication-title: Comp Biochem Physiol
– volume: 5
  start-page: 40
  year: 2012
  article-title: Acetylcholinesterase involvement in apoptosis
  publication-title: Front Mol Neurosci
– volume: 7
  start-page: 63
  year: 2007
  article-title: Gene knockdown by RNAi in the pea aphid
  publication-title: BMC Biotechnol
– volume: 378
  start-page: 269
  year: 2009
  end-page: 272
  article-title: Mutation in acetylcholinesterase 1 associated with triazophos resistance in rice stem borer, (Lepidoptera: Pyralidae)
  publication-title: Biochem Biophys Res Commun
– volume: 307
  start-page: 15
  year: 2003
  end-page: 22
  article-title: An amino acid substitution on the second acetylcholinesterase in the pirimicarb‐resistant strains of the peach potato aphid
  publication-title: Myzus persicae. Biochem Biophys Res Commun
– volume: 24
  start-page: 1043
  year: 1975
  end-page: 1047
  article-title: The minimum acetycholinesterase (AChE) fraction compatible with life derived by aid of a simple model explaining the degree of dominance of resistance to inhibitors in AChE ‘mutants’
  publication-title: Biochem Pharmacol
– volume: 34
  start-page: 351
  year: 1996
  end-page: 362
  article-title: Duplication of the locus in mosquitoes from the Caribbean
  publication-title: Biochem Genet
– volume: 44
  start-page: 289
  year: 2007
  end-page: 290
  article-title: A method for mass culture of wheat aphids
  publication-title: Chin Bull Entomol
– volume: 55
  start-page: 273
  year: 2009
  end-page: 278
  article-title: Silencing of acetylcholinesterase gene of by siRNA affects larval growth and its life cycle
  publication-title: J Insect Physiol
– volume: 39
  start-page: 913
  year: 2009
  end-page: 919
  article-title: RNAi of and in reveals their differential contribution to acetylcholinesterase activity and sensitivity to insecticides
  publication-title: Insect Biochem Mol Biol
– volume: 175
  start-page: 138
  year: 2008
  end-page: 141
  article-title: Amino‐acid substitutions in acetylcholinesterase 1 involved in insecticide resistance in mosquitoes
  publication-title: Chem Biol Interact
– volume: 88
  start-page: 92
  year: 2007
  end-page: 101
  article-title: Analysis of two acetylcholinesterase genes in
  publication-title: Pestic Biochem Physiol
– volume: 273
  start-page: 2595
  year: 2006
  end-page: 2604
  article-title: Acetylcholinesterase genes within the Diptera: takeover and loss in true flies
  publication-title: Proc R Soc Lond B
– volume: 423
  start-page: 136
  year: 2003
  end-page: 137
  article-title: Insecticide resistance in mosquito vectors
  publication-title: Nature
– volume: 33
  start-page: 245
  year: 1987
  end-page: 246
  article-title: Introduction of Ellman procedure for assay of cholinesterases in crude enzymatic preparations modified by Gorun
  publication-title: Chin Bull Entomol
– volume: 72
  start-page: 248
  year: 1976
  end-page: 254
  article-title: A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein–dye binding
  publication-title: Anal Biochem
– volume: 187
  start-page: 96
  year: 2010
  end-page: 100
  article-title: Acetylcholinesterase is involved in apoptosis in the precursors of human muscle regeneration
  publication-title: Chem Biol Interact
– volume: 269
  start-page: 2007
  year: 2002
  end-page: 2016
  article-title: A novel acetylcholinesterase gene in mosquitoes codes for the insecticide target and is non‐homologous to the gene
  publication-title: Proc R Soc Lond B
– volume: 85
  start-page: 123
  year: 2006
  end-page: 132
  article-title: Amino acid substitutions conferring insecticide insensitivity in ‐paralogous acetylcholinesterase
  publication-title: Pestic Biochem Physiol
– volume: 79
  start-page: 75
  year: 2012
  end-page: 86
  article-title: RNA interference of two acetylcholinesterase genes in reveals their different function
  publication-title: Arch Insect Biochem Physiol
– volume: 49
  start-page: 239
  year: 2006
  end-page: 243
  article-title: Cloning and sequence analysis of 2 different acetylcholinesterase genes in and
  publication-title: Genome
– volume: 14
  start-page: 453
  year: 2005
  end-page: 463
  article-title: The genes and are specialized for synthesis of epidermal cuticle and midgut peritrophic matrix
  publication-title: Insect Mol Biol
– volume: 275
  start-page: 618
  year: 2008
  end-page: 624
  article-title: Acetylcholinesterase in cell adhesion, neurite growth and network formation
  publication-title: FEBS J
– volume: 43
  start-page: 878
  year: 2006
  end-page: 883
  article-title: Recent emergence of insensitive acetylcholinesterase in Chinese populations of the mosquito (Diptera: Culicidae)
  publication-title: J Med Entomol
– volume: 102
  start-page: 198
  year: 2012
  end-page: 203
  article-title: Molecular characterization of two acetylcholinesterase genes from the brown planthopper, (Hemiptera: Delphacidae)
  publication-title: Pestic Biochem Physiol
– volume: 64
  start-page: 2652
  year: 2004
  end-page: 2655
  article-title: Acetylcholinesterase plays a pivotal role in apoptosome formation
  publication-title: Cancer Res
– volume: 13
  start-page: 9
  year: 2013
  article-title: Comparative studies on acetylcholinesterase characteristics between the aphids, and
  publication-title: J Insect Sci
– volume: 13
  start-page: 549
  year: 2004
  end-page: 553
  article-title: Two amino acid substitutions in acetylcholinesterase associated with pirimicarb and organophosphorous insecticide resistance in the cotton aphid, Glover (Homoptera: Aphididae)
  publication-title: Insect Mol Biol
– volume: 93
  start-page: 77
  year: 2009
  end-page: 84
  article-title: Cloning of an acetylcholinesterase gene in related to organophosphate insecticide resistance
  publication-title: Pestic Biochem Physiol
– volume: 353
  start-page: 591
  year: 2007
  end-page: 597
  article-title: Mutations of acetylcholinesterase 1 contribute to prothiofos‐resistance in (L.)
  publication-title: Biochem Biophys Res Commun
– volume: 24
  start-page: 1056
  year: 2007
  end-page: 1067
  article-title: Independent duplications of the acetylcholinesterase gene conferring insecticide resistance in the mosquito
  publication-title: Mol Biol Evol
– volume: 56
  start-page: 102
  year: 1996
  end-page: 110
  article-title: Characterisation of insensitive acetylcholinesterase in insecticide‐resistant cotton aphids, Glover (Homoptera: Aphididae)
  publication-title: Pestic Biochem Physiol
– volume: 359
  start-page: 175
  year: 2001
  end-page: 181
  article-title: Identification and characterization of mutations in housefly ( ) acetylcholinesterase involved in insecticide resistance
  publication-title: Biochem J
– volume: 2
  start-page: 288
  year: 2012
  article-title: Cholinergic and non‐cholinergic functions of two acetylcholinesterase genes revealed by gene‐silencing in
  publication-title: Sci Rep
– volume: 5
  start-page: 293
  year: 2005
  end-page: 302
  article-title: Acetylcholinesterase: ‘classical’ and ‘non‐classical’ functions and pharmacology
  publication-title: Curr Opin Pharmacol
– volume: 38
  start-page: 940
  year: 2008
  end-page: 949
  article-title: Organophosphates' resistance in the B‐biotype of (Hemiptera: Aleyrodidae) is associated with a point mutation in an ‐type acetylcholinesterase and overexpression of carboxylesterase
  publication-title: Insect Biochem Mol Biol
– volume: 103
  start-page: 4499
  year: 2006
  end-page: 4504
  article-title: Social exploitation of hexamerin: RNAi reveals a major caste‐regulatory factor in termites
  publication-title: Proc Natl Acad Sci USA
– volume: 8
  start-page: 70
  year: 2009
  article-title: duplication in : a challenge for malaria control
  publication-title: Malaria J
– volume: 32
  start-page: 423
  year: 1989
  end-page: 446
  article-title: Insect acetylcholinesterase: catalytic properties, tissue distribution and molecular forms
  publication-title: Prog Neurobiol
– volume: 5
  start-page: 2949
  year: 1986
  end-page: 2954
  article-title: The locus of : structural gene for acetylcholinesterase with an unusual 5′ leader
  publication-title: EMBO J
– volume: 81
  start-page: 164
  year: 2005
  end-page: 175
  article-title: Identification and characterization of ‐type acetylcholinesterase likely associated with organophosphate resistance in
  publication-title: Pestic Biochem Physiol
– volume: 38
  start-page: 508
  year: 2008
  end-page: 519
  article-title: Developmental expression patterns of cuticular protein genes with the R&R Consensus from
  publication-title: Insect Biochem Mol Biol
– ident: e_1_2_6_21_1
  doi: 10.1111/j.0962-1075.2004.00513.x
– volume: 44
  start-page: 289
  year: 2007
  ident: e_1_2_6_40_1
  article-title: A method for mass culture of wheat aphids
  publication-title: Chin Bull Entomol
  contributor:
    fullname: Lu YH
– ident: e_1_2_6_22_1
  doi: 10.1016/j.bbrc.2006.12.088
– ident: e_1_2_6_32_1
  doi: 10.1111/j.1742-4658.2007.06237.x
– ident: e_1_2_6_53_1
  doi: 10.1371/journal.pone.0004349
– ident: e_1_2_6_30_1
  doi: 10.1042/bj3590175
– ident: e_1_2_6_39_1
  doi: 10.1673/031.013.0901
– ident: e_1_2_6_54_1
  doi: 10.1016/0006-2952(75)90443-8
– ident: e_1_2_6_4_1
  doi: 10.1098/rspb.2002.2122
– ident: e_1_2_6_50_1
  doi: 10.1073/pnas.0508866103
– ident: e_1_2_6_11_1
  doi: 10.1016/S0006-291X(03)01101-X
– ident: e_1_2_6_51_1
  doi: 10.1038/35067589
– volume: 43
  start-page: 878
  year: 2006
  ident: e_1_2_6_23_1
  article-title: Recent emergence of insensitive acetylcholinesterase in Chinese populations of the mosquito Culex pipiens (Diptera: Culicidae)
  publication-title: J Med Entomol
  doi: 10.1093/jmedent/43.5.878
  contributor:
    fullname: Cui F
– ident: e_1_2_6_55_1
  doi: 10.1016/j.pestbp.2008.11.007
– ident: e_1_2_6_35_1
  doi: 10.1016/j.jinsphys.2008.12.005
– ident: e_1_2_6_52_1
  doi: 10.1016/j.coph.2005.01.014
– volume: 33
  start-page: 245
  year: 1987
  ident: e_1_2_6_44_1
  article-title: Introduction of Ellman procedure for assay of cholinesterases in crude enzymatic preparations modified by Gorun
  publication-title: Chin Bull Entomol
  contributor:
    fullname: Gao XW
– ident: e_1_2_6_14_1
  doi: 10.1016/j.pestbp.2006.09.005
– ident: e_1_2_6_17_1
  doi: 10.1016/j.pestbp.2012.01.004
– ident: e_1_2_6_20_1
  doi: 10.1046/j.1365-2583.1998.72055.x
– ident: e_1_2_6_45_1
  doi: 10.1016/0003-2697(76)90527-3
– ident: e_1_2_6_16_1
  doi: 10.1016/j.bbrc.2008.11.046
– ident: e_1_2_6_24_1
  doi: 10.1016/j.cbi.2008.03.018
– ident: e_1_2_6_25_1
  doi: 10.1007/BF00554410
– ident: e_1_2_6_49_1
  doi: 10.1111/j.1365-2583.2005.00576.x
– ident: e_1_2_6_43_1
  doi: 10.1016/0006-2952(61)90145-9
– ident: e_1_2_6_10_1
  doi: 10.1371/journal.pone.0032288
– ident: e_1_2_6_9_1
  doi: 10.1016/j.pestbp.2005.12.002
– ident: e_1_2_6_42_1
  doi: 10.1006/pest.1996.0064
– ident: e_1_2_6_18_1
  doi: 10.1016/j.ibmb.2009.11.001
– ident: e_1_2_6_6_1
  doi: 10.1002/j.1460-2075.1986.tb04591.x
– ident: e_1_2_6_7_1
  doi: 10.1016/S0965-1748(01)00159-X
– ident: e_1_2_6_26_1
  doi: 10.1093/molbev/msm025
– ident: e_1_2_6_41_1
  doi: 10.1673/031.006.3801
– ident: e_1_2_6_8_1
  doi: 10.1098/rspb.2006.3621
– ident: e_1_2_6_31_1
  doi: 10.1158/0008-5472.CAN-04-0649
– ident: e_1_2_6_27_1
  doi: 10.1371/journal.pgen.0030205
– ident: e_1_2_6_38_1
  doi: 10.1017/S0007485309006725
– ident: e_1_2_6_34_1
  doi: 10.3389/fnmol.2012.00040
– volume: 108
  start-page: 19
  year: 1994
  ident: e_1_2_6_3_1
  article-title: Modification of acetylcholinesterase as a mechanism of resistance to insecticides
  publication-title: Comp Biochem Physiol
  contributor:
    fullname: Fournier D
– ident: e_1_2_6_46_1
  doi: 10.1016/j.ibmb.2007.12.008
– ident: e_1_2_6_29_1
  doi: 10.1186/1475-2875-8-70
– ident: e_1_2_6_37_1
  doi: 10.1002/arch.21007
– ident: e_1_2_6_5_1
  doi: 10.1038/423136b
– ident: e_1_2_6_2_1
  doi: 10.1016/0301-0082(89)90031-2
– ident: e_1_2_6_12_1
  doi: 10.1016/j.pestbp.2004.12.003
– ident: e_1_2_6_36_1
  doi: 10.1111/j.1365-2583.2011.01081.x
– ident: e_1_2_6_33_1
  doi: 10.1016/j.cbi.2010.03.034
– volume: 3
  issue: 2172
  year: 2008
  ident: e_1_2_6_28_1
  article-title: Evidence of introgression of the ace‐1R mutation and of the ace‐1 duplication in West African Anopheles gambiae s. s
  publication-title: PLoS ONE
  contributor:
    fullname: Djogbénou L
– ident: e_1_2_6_13_1
  doi: 10.1139/G05-104
– ident: e_1_2_6_15_1
  doi: 10.1016/j.ibmb.2008.07.007
– ident: e_1_2_6_19_1
  doi: 10.1038/srep00288
– ident: e_1_2_6_47_1
  doi: 10.1186/1472-6750-7-63
– ident: e_1_2_6_48_1
  doi: 10.1126/science.1091789
SSID ssj0009992
Score 2.2754428
Snippet BACKGROUD The function of acetylcholinesterase (AChE) is to terminate synaptic transmission by hydrolysing the neurotransmitter acetylcholine (ACh) in the...
The function of acetylcholinesterase (AChE) is to terminate synaptic transmission by hydrolysing the neurotransmitter acetylcholine (ACh) in the synaptic...
Abstract BACKGROUD The function of acetylcholinesterase ( AChE ) is to terminate synaptic transmission by hydrolysing the neurotransmitter acetylcholine ( ACh...
BACKGROUD The function of acetylcholinesterase (AChE) is to terminate synaptic transmission by hydrolysing the neurotransmitter acetylcholine (ACh) in the...
SourceID proquest
crossref
pubmed
wiley
istex
SourceType Aggregation Database
Index Database
Publisher
StartPage 523
SubjectTerms acetylcholinesterase
Acetylcholinesterase - genetics
Acetylcholinesterase - metabolism
Animals
Aphididae
Aphids - drug effects
Aphids - genetics
Aphids - metabolism
Bioassays
Carbamates - pharmacology
Cholinesterase Inhibitors - metabolism
Enzymes
gene function
Gene Silencing
Genes
Insect Proteins - genetics
Insect Proteins - metabolism
Insecticides - pharmacology
Insects
Malathion - pharmacology
Pest control
Pyrimidines - pharmacology
Rhopalosiphum padi
RNA interference
Sitobion avenae
Species Specificity
Toxicology
Title Gene silencing of two acetylcholinesterases reveals their cholinergic and non-cholinergic functions in Rhopalosiphum padi and Sitobion avenae
URI https://api.istex.fr/ark:/67375/WNG-HRR3GBCM-P/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fps.3800
https://www.ncbi.nlm.nih.gov/pubmed/24729410
https://www.proquest.com/docview/1664814122/abstract/
https://search.proquest.com/docview/1668246133
Volume 71
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NbtQwELZQe4EDLf8pBRmp4pbtxrET51gq2hVSq2pLxYqLZTsxXbVNok1WBU68ATwjT8KMk91uEUgI5RD5T3HsmfFne_yZkB3ksGNxakMhI5igOJaGmc0hmFh8kJ4E1yGPjpPRGX83EZOVq746fojlghtqhrfXqODaNLs3pKF1M4gB7YD1RRo9hEPjG-IogD1-n1OwJOSZnHTHZbHkbl_u1ji0jk36-U8g8zZm9YPOwQb5uKhu52tyMZi3ZmC__sbk-F__s0nu91CU7nWy84DcKcqH5N7ep1lPx1FAaIWu8BH5jhzVtJniOSWIoJWj7XVFtS3aL5doRtGFHk80N0VDkRoKRJv6nQjap87AzlJd5rSsyp_ffqzG4gDrdYBOSzo-h7n8ZdVM6_P5Fa11PvWlTtH8QB6qwUTr4jE5O3j7fn8U9hc6hBZw3zAUwjEz1CbDkw-RNlLnzMUuMhI5alhsrYRkAHQiZ2CKElZwLcFqJNalTgzz-AlZg_oVzwg1aaZ54riNtANM5TIHQCm3CcutlCbiAaGL7lV1x9uhOoZmpupGYUsH5LXv9mW6nl2gm1sq1IfjQzUaj-PDN_tH6iQg2wu5UL2GNypKEi4jHjEWkFfLZNBN3HDRZVHNfR6JfH1xHJCnnTwtP8Y4TGt4BLXY8VLxt1qqk1N8bf1btufkLiA60bkWbZO1djYvXgBqas1LryC_APhVFak
link.rule.ids 315,786,790,1382,27957,27958,46329,46753
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELagPUAPvEsDBYxUcct249iJcywV7QLdVbVtxUocLMeJ6aoliTZZ8TjxD-A38kuYcbLbFoGEUA5R_FAce2b82Z75QsgWctixMDa-kAEsUCyL_cRk8BgZvJCeBPchh6NocMLfTMSk86rEWJiWH2K54Yaa4ew1KjhuSG9fsIZWdS8EuHOdrIKyC7ecGl9QRwHwcSedgkU-T-SkDZjFqttdxSsz0Sp26uc_wcyrqNVNO3u3yftFg1tvk7PevEl75utvXI7_90V3yK0OjdKdVnzukmt5cY-s7XyYdYwcOTxdYiy8T74jTTWtpxiqBAm0tLT5VFJt8ubLOVpS9KLHoOY6rymyQ4F0U3cYQbvcGZhaqouMFmXx89uPy6k4xzo1oNOCjk9hOX9e1tPqdP6RVjqbulpHaIGgDNVgpXX-gJzsvTreHfjdPx18A9Cv7wthWdrXaYLBD4FOpc6YDW2QSqSpYaExErIB04mMgTWKWM61BMMRGRtb0c_CdbIC7cs3CE3jRPPIchNoC7DKJhawUmYilhkp04B7hC7GV1UtdYdqSZqZqmqFPe2RF27cl_l6doaebrFQ70b7ajAeh_svd4fq0CObC8FQnZLXKogiLgMeMOaR58tsUE88c9FFXs5dGYmUfWHokYetQC1fxjisbHgArdhyYvG3VqrDI7w9-rdiz8iNwfHwQB28Hr19TG4CwBOtp9EmWWlm8_wJgKgmfeq05RdH8hnL
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLZgkxA8cIcFBhhp4i1d4ziO-zg2unJZVXVMVHuxHCdm1bYkalJxeeIfwG_kl3COk3YdAgmhPES-KY59zvFn-_gzIVvIYcfC2PiRDGCCYlns90wKQWHwQXoSXIc8GIrBEX8ziSYrV301_BDLBTfUDGevUcHL1G5fkIaWVScEtHOVrHMRMhTovfEFcxTgHrfRGTHh856cNOdlseh2W_DSQLSObfr5TyjzMmh1o07_Fjle1LdxNjntzOukY77-RuX4Xz90m9xssSjdaYTnDrmS5XfJjZ2Ps5aPI4PQCl_hPfIdSappNcWDShBBC0vrTwXVJqu_nKEdRR96PNJcZRVFbiiQbeq2ImibOgNDS3We0rzIf377sRqLI6xTAjrN6fgEJvNnRTUtT-bntNTp1JU6RPsDeagGG62z--So_-r97sBvb3TwDQC_rh9FliVdnfTw6EOgE6lTZkMbJBJJalhojIRkQHRRysAWCZZxLcFsCGNjG3XT8AFZg_plG4QmcU9zYbkJtAVQZXsWkFJqBEuNlEnAPUIX3avKhrhDNRTNTJWVwpb2yAvX7ct0PTtFP7c4Uh-G-2owHof7L3cP1Mgjmwu5UK2KVyoQgsuAB4x55PkyGZQTd1x0nhVzl0ciYV8YeuRhI0_LjzEO8xoeQC22nFT8rZZqdIivR_-W7Rm5Ntrrq3evh28fk-uA7qLGzWiTrNWzefYEEFSdPHW68gv0ABh6
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Gene+silencing+of+two+acetylcholinesterases+reveals+their+cholinergic+and+non%E2%80%90cholinergic+functions+in+Rhopalosiphum+padi+and+Sitobion+avenae&rft.jtitle=Pest+management+science&rft.au=Xiao%2C+Da&rft.au=Lu%2C+Yan%E2%80%90Hui&rft.au=Shang%2C+Qing%E2%80%90Li&rft.au=Song%2C+Dun%E2%80%90Lun&rft.date=2015-04-01&rft.pub=John+Wiley+%26+Sons%2C+Ltd&rft.issn=1526-498X&rft.eissn=1526-4998&rft.volume=71&rft.issue=4&rft.spage=523&rft.epage=530&rft_id=info:doi/10.1002%2Fps.3800&rft.externalDBID=10.1002%252Fps.3800&rft.externalDocID=PS3800
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1526-498X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1526-498X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1526-498X&client=summon