EEG spatial inter-channel connectivity analysis: A GCN-based dual stream approach to distinguish mental fatigue status

Mental fatigue is defined as a decline in the ability and efficiency of mental activities. A lot of research suggests that the transition from alertness to fatigue is accompanied by alterations in correlation patterns among various brain regions. However, conventional methods for detecting mental fa...

Full description

Saved in:
Bibliographic Details
Published inArtificial intelligence in medicine Vol. 157; p. 102996
Main Authors Chen, Kun, Chai, Shulong, Xie, Tianli, Liu, Quan, Ma, Li
Format Journal Article
LanguageEnglish
Published Netherlands Elsevier B.V 01.11.2024
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Mental fatigue is defined as a decline in the ability and efficiency of mental activities. A lot of research suggests that the transition from alertness to fatigue is accompanied by alterations in correlation patterns among various brain regions. However, conventional methods for detecting mental fatigue seldom emphases inter-channel connectivity in the spatial domain. To fill this gap, this paper explores the spatial inter-channel connectivity in alertness and fatigue, employing spectral graph convolutional networks (GCN) for mental fatigue detection. We utilized Pearson correlation coefficients (PCC) to establish temporal connections and magnitude-squared coherence (MSC) for spectral connections. Topological features of the brain network were then analysed. To enhance the learning of spatial inter-channel connectivity, a dual-graph strategy transforms edge features into node features, serving as inputs to the spectral GCN. By simultaneously learning PCC and MSC features, the model results indicate significant differences in some brain network characteristics between alert and fatigue states. It confirms that the synchronicity of brain operations differs in the alert state compared to mental fatigue, and indicates that fatigue states can influence correlation patterns among different brain regions. Our approach is evaluated on a self-designed experimental dataset containing 7 subjects, demonstrating a classification accuracy of 89.59 % in group-level experiments and 95.24 % at the subject level. Additionally, on the public dataset SEED-VIG containing 23 subjects, our method achieves an accuracy of 86.58 %. In summary, this paper proposes a neural network approach based on a dynamic functional connectivity network. The network integrates both temporal and spectral connections with the goal of simultaneously learning spatial inter-channel connectivity in time and frequency domains. This effectively accomplishes fatigue state detection, highlighting that fatigue significantly influences correlations among different brain regions. •Mental fatigue status features vary with channels, thus requiring model adaptation.•Spectral and temporal connections reflect the EEG properties within individuals.•Graph convolutional network with dual transformation learns feature representation.
AbstractList Mental fatigue is defined as a decline in the ability and efficiency of mental activities. A lot of research suggests that the transition from alertness to fatigue is accompanied by alterations in correlation patterns among various brain regions. However, conventional methods for detecting mental fatigue seldom emphases inter-channel connectivity in the spatial domain. To fill this gap, this paper explores the spatial inter-channel connectivity in alertness and fatigue, employing spectral graph convolutional networks (GCN) for mental fatigue detection. We utilized Pearson correlation coefficients (PCC) to establish temporal connections and magnitude-squared coherence (MSC) for spectral connections. Topological features of the brain network were then analysed. To enhance the learning of spatial inter-channel connectivity, a dual-graph strategy transforms edge features into node features, serving as inputs to the spectral GCN. By simultaneously learning PCC and MSC features, the model results indicate significant differences in some brain network characteristics between alert and fatigue states. It confirms that the synchronicity of brain operations differs in the alert state compared to mental fatigue, and indicates that fatigue states can influence correlation patterns among different brain regions. Our approach is evaluated on a self-designed experimental dataset containing 7 subjects, demonstrating a classification accuracy of 89.59 % in group-level experiments and 95.24 % at the subject level. Additionally, on the public dataset SEED-VIG containing 23 subjects, our method achieves an accuracy of 86.58 %. In summary, this paper proposes a neural network approach based on a dynamic functional connectivity network. The network integrates both temporal and spectral connections with the goal of simultaneously learning spatial inter-channel connectivity in time and frequency domains. This effectively accomplishes fatigue state detection, highlighting that fatigue significantly influences correlations among different brain regions.Mental fatigue is defined as a decline in the ability and efficiency of mental activities. A lot of research suggests that the transition from alertness to fatigue is accompanied by alterations in correlation patterns among various brain regions. However, conventional methods for detecting mental fatigue seldom emphases inter-channel connectivity in the spatial domain. To fill this gap, this paper explores the spatial inter-channel connectivity in alertness and fatigue, employing spectral graph convolutional networks (GCN) for mental fatigue detection. We utilized Pearson correlation coefficients (PCC) to establish temporal connections and magnitude-squared coherence (MSC) for spectral connections. Topological features of the brain network were then analysed. To enhance the learning of spatial inter-channel connectivity, a dual-graph strategy transforms edge features into node features, serving as inputs to the spectral GCN. By simultaneously learning PCC and MSC features, the model results indicate significant differences in some brain network characteristics between alert and fatigue states. It confirms that the synchronicity of brain operations differs in the alert state compared to mental fatigue, and indicates that fatigue states can influence correlation patterns among different brain regions. Our approach is evaluated on a self-designed experimental dataset containing 7 subjects, demonstrating a classification accuracy of 89.59 % in group-level experiments and 95.24 % at the subject level. Additionally, on the public dataset SEED-VIG containing 23 subjects, our method achieves an accuracy of 86.58 %. In summary, this paper proposes a neural network approach based on a dynamic functional connectivity network. The network integrates both temporal and spectral connections with the goal of simultaneously learning spatial inter-channel connectivity in time and frequency domains. This effectively accomplishes fatigue state detection, highlighting that fatigue significantly influences correlations among different brain regions.
Mental fatigue is defined as a decline in the ability and efficiency of mental activities. A lot of research suggests that the transition from alertness to fatigue is accompanied by alterations in correlation patterns among various brain regions. However, conventional methods for detecting mental fatigue seldom emphases inter-channel connectivity in the spatial domain. To fill this gap, this paper explores the spatial inter-channel connectivity in alertness and fatigue, employing spectral graph convolutional networks (GCN) for mental fatigue detection. We utilized Pearson correlation coefficients (PCC) to establish temporal connections and magnitude-squared coherence (MSC) for spectral connections. Topological features of the brain network were then analysed. To enhance the learning of spatial inter-channel connectivity, a dual-graph strategy transforms edge features into node features, serving as inputs to the spectral GCN. By simultaneously learning PCC and MSC features, the model results indicate significant differences in some brain network characteristics between alert and fatigue states. It confirms that the synchronicity of brain operations differs in the alert state compared to mental fatigue, and indicates that fatigue states can influence correlation patterns among different brain regions. Our approach is evaluated on a self-designed experimental dataset containing 7 subjects, demonstrating a classification accuracy of 89.59 % in group-level experiments and 95.24 % at the subject level. Additionally, on the public dataset SEED-VIG containing 23 subjects, our method achieves an accuracy of 86.58 %. In summary, this paper proposes a neural network approach based on a dynamic functional connectivity network. The network integrates both temporal and spectral connections with the goal of simultaneously learning spatial inter-channel connectivity in time and frequency domains. This effectively accomplishes fatigue state detection, highlighting that fatigue significantly influences correlations among different brain regions. •Mental fatigue status features vary with channels, thus requiring model adaptation.•Spectral and temporal connections reflect the EEG properties within individuals.•Graph convolutional network with dual transformation learns feature representation.
Mental fatigue is defined as a decline in the ability and efficiency of mental activities. A lot of research suggests that the transition from alertness to fatigue is accompanied by alterations in correlation patterns among various brain regions. However, conventional methods for detecting mental fatigue seldom emphases inter-channel connectivity in the spatial domain. To fill this gap, this paper explores the spatial inter-channel connectivity in alertness and fatigue, employing spectral graph convolutional networks (GCN) for mental fatigue detection. We utilized Pearson correlation coefficients (PCC) to establish temporal connections and magnitude-squared coherence (MSC) for spectral connections. Topological features of the brain network were then analysed. To enhance the learning of spatial inter-channel connectivity, a dual-graph strategy transforms edge features into node features, serving as inputs to the spectral GCN. By simultaneously learning PCC and MSC features, the model results indicate significant differences in some brain network characteristics between alert and fatigue states. It confirms that the synchronicity of brain operations differs in the alert state compared to mental fatigue, and indicates that fatigue states can influence correlation patterns among different brain regions. Our approach is evaluated on a self-designed experimental dataset containing 7 subjects, demonstrating a classification accuracy of 89.59 % in group-level experiments and 95.24 % at the subject level. Additionally, on the public dataset SEED-VIG containing 23 subjects, our method achieves an accuracy of 86.58 %. In summary, this paper proposes a neural network approach based on a dynamic functional connectivity network. The network integrates both temporal and spectral connections with the goal of simultaneously learning spatial inter-channel connectivity in time and frequency domains. This effectively accomplishes fatigue state detection, highlighting that fatigue significantly influences correlations among different brain regions.
ArticleNumber 102996
Author Liu, Quan
Xie, Tianli
Chen, Kun
Ma, Li
Chai, Shulong
Author_xml – sequence: 1
  givenname: Kun
  surname: Chen
  fullname: Chen, Kun
  email: kunchen@whut.edu.cn
– sequence: 2
  givenname: Shulong
  surname: Chai
  fullname: Chai, Shulong
  email: 288047@whut.edu.cn
– sequence: 3
  givenname: Tianli
  surname: Xie
  fullname: Xie, Tianli
  email: 1979047643@whut.edu.cn
– sequence: 4
  givenname: Quan
  surname: Liu
  fullname: Liu, Quan
  email: quanliu@whut.edu.cn
– sequence: 5
  givenname: Li
  surname: Ma
  fullname: Ma, Li
  email: excellentmary@whut.edu.cn
BackLink https://www.ncbi.nlm.nih.gov/pubmed/39406075$$D View this record in MEDLINE/PubMed
BookMark eNqFkcGO0zAQhi20iO0uvAFCPnJJsZM4iVcIaVWVgrSCC5ytiTPZTkmdYjuV-vbrKguHvdSXkazvG1v_f8Ou3OiQsfdSLKWQ1afdEnzcY7fMRV6mq1zr6hVbyKYusrypxBVbCF0UWVGp-prdhLATQtSlrN6w60KXohK1WrDjer3h4QCRYODkIvrMbsE5HLgd07CRjhRPHBwMp0Dhjt_zzepH1kLAjndTskL0CHsOh4MfwW55HHlHIZJ7nChs-R5dTFSfnnicMNEQp_CWve5hCPjued6y31_Xv1bfsoefm--r-4fMllLFrO-Fam3T9LqulOyK85G2zQUIq3poqtxWqmyhFVorpWpsdStB5Q1ADkqXxS37OO9Nf_s7YYhmT8HiMIDDcQqmkLJOoWhRJPTDMzq1KVZz8LQHfzL_skpAOQPWjyF47P8jUphzJWZn5krMuRIzV5K0uxeapZQBjS56oOGS_GWWMYV0JPQmWEJnsSOfujHdSJcWfH6xwA7kyMLwB0-X9Scg775H
CitedBy_id crossref_primary_10_1038_s41598_025_86234_1
crossref_primary_10_1002_adts_202401423
Cites_doi 10.1186/1471-2202-5-42
10.3389/fneur.2018.00915
10.1063/5.0056139
10.1109/TNSRE.2021.3110665
10.1016/j.biopsycho.2005.08.007
10.1016/j.aei.2023.101978
10.1007/s10462-019-09694-8
10.1016/j.brainres.2009.03.015
10.1109/CME55444.2022.10063316
10.1088/1741-2552/aa5a98
10.1063/5.0008434
10.1109/CMVIT.2017.25
10.1142/S0129065722500034
10.3390/math11051189
10.1016/j.bspc.2021.103360
10.1109/ASAP52443.2021.00012
10.1016/j.ijmedinf.2018.08.010
10.4236/psych.2015.65055
10.1109/CW49994.2020.00037
10.1016/j.bspc.2020.102129
10.1109/TNSRE.2018.2791936
10.1016/j.neuroimage.2009.10.003
10.1016/j.image.2016.05.018
10.1007/s11571-021-09714-w
10.1109/TPAMI.2007.1115
10.1016/j.neubiorev.2004.10.009
10.1016/j.ergon.2004.12.003
10.1016/j.compbiomed.2022.106431
10.1109/TAU.1973.1162496
10.3390/electronics8111208
10.1109/TCDS.2020.2985539
10.1109/TIM.2020.3044719
10.1109/TCDS.2019.2929858
10.1109/TITS.2018.2868499
10.1016/j.bspc.2021.102598
10.3390/su12051971
10.1109/TSMCA.2012.2207103
10.1093/occmed/kqu168
10.1038/386604a0
10.1109/TAFFC.2018.2817622
10.1016/j.autcon.2023.104887
10.1109/ACCESS.2020.3025818
10.14257/ijca.2016.9.3.30
10.3389/fnbot.2022.834952
10.1016/j.imu.2023.101410
10.1109/JSEN.2020.3012404
10.1109/CSCI54926.2021.00245
10.3389/fgene.2022.1015531
10.1016/j.eswa.2021.116339
10.1111/psyp.13554
10.1109/MSP.2012.2235192
10.3389/fbioe.2021.706229
10.1109/TNSRE.2020.2999599
ContentType Journal Article
Copyright 2024 Elsevier B.V.
Copyright © 2024 Elsevier B.V. All rights reserved.
Copyright_xml – notice: 2024 Elsevier B.V.
– notice: Copyright © 2024 Elsevier B.V. All rights reserved.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1016/j.artmed.2024.102996
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic


MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Computer Science
EISSN 1873-2860
ExternalDocumentID 39406075
10_1016_j_artmed_2024_102996
S0933365724002380
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
--K
--M
.1-
.DC
.FO
.~1
0R~
1B1
1P~
1RT
1~.
1~5
23N
4.4
457
4G.
53G
5GY
5VS
7-5
71M
77K
8P~
9JM
9JN
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AATTM
AAWTL
AAXKI
AAXUO
AAYFN
AAYWO
ABBOA
ABBQC
ABFNM
ABIVO
ABJNI
ABMAC
ABMZM
ABWVN
ABXDB
ACDAQ
ACGFS
ACIEU
ACIUM
ACNNM
ACRLP
ACRPL
ACVFH
ACZNC
ADBBV
ADCNI
ADEZE
ADJOM
ADMUD
ADNMO
AEBSH
AEIPS
AEKER
AENEX
AEUPX
AEVXI
AFJKZ
AFPUW
AFRHN
AFTJW
AFXIZ
AGCQF
AGHFR
AGQPQ
AGUBO
AGYEJ
AHHHB
AHZHX
AIALX
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AJRQY
AJUYK
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ANZVX
AOUOD
APXCP
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
BNPGV
CS3
EBS
EFJIC
EFKBS
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
GBOLZ
HEA
HMK
HMO
HVGLF
HZ~
IHE
J1W
KOM
LZ2
M29
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
ROL
RPZ
SAE
SDF
SDG
SDP
SEL
SES
SEW
SPC
SPCBC
SSH
SSV
SSZ
T5K
UHS
WH7
WUQ
Z5R
~G-
AACTN
AFCTW
AFKWA
AJOXV
AMFUW
RIG
AAYXX
AGRNS
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
ID FETCH-LOGICAL-c415t-ff05bc88f97651d333331cb20a0c5fa862c654bab0995557eb9b1a528aa2a5943
IEDL.DBID .~1
ISSN 0933-3657
1873-2860
IngestDate Fri Jul 11 06:43:35 EDT 2025
Wed Aug 06 16:36:18 EDT 2025
Tue Jul 01 00:24:42 EDT 2025
Thu Apr 24 23:04:17 EDT 2025
Sat Nov 16 15:56:01 EST 2024
Tue Aug 26 17:10:56 EDT 2025
IsPeerReviewed true
IsScholarly true
Keywords Graph convolutional network
Mental fatigue detection
Dual-graph
Functional connectivity networks
Magnitude-squared coherence
Pearson correlation coefficient
Language English
License Copyright © 2024 Elsevier B.V. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c415t-ff05bc88f97651d333331cb20a0c5fa862c654bab0995557eb9b1a528aa2a5943
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 39406075
PQID 3117074903
PQPubID 23479
ParticipantIDs proquest_miscellaneous_3117074903
pubmed_primary_39406075
crossref_primary_10_1016_j_artmed_2024_102996
crossref_citationtrail_10_1016_j_artmed_2024_102996
elsevier_sciencedirect_doi_10_1016_j_artmed_2024_102996
elsevier_clinicalkey_doi_10_1016_j_artmed_2024_102996
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate November 2024
2024-11-00
20241101
PublicationDateYYYYMMDD 2024-11-01
PublicationDate_xml – month: 11
  year: 2024
  text: November 2024
PublicationDecade 2020
PublicationPlace Netherlands
PublicationPlace_xml – name: Netherlands
PublicationTitle Artificial intelligence in medicine
PublicationTitleAlternate Artif Intell Med
PublicationYear 2024
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Murata, Uetake, Takasawa (bb0070) 2005; 35
Zhang, Zhao, Qu, Liu, Pang (bb0185) 2023; 11
Hou, Jia, Lun (bb0310) 2020
Xu (bb0005) 2018; 9
Wang, Xu, Bezerianos, Chen, Zhang (bb0175) 2020; 70
Fingelkurts, Fingelkurts, Kähkönen (bb0270) 2005; 28
Chen, Wang, He (bb0295) 2022; 191
Bao (bb0105) 2022; 16
Baig, Aslam, Shum (bb0345) 2020; 53
Benesty, Chen, Huang, Cohen (bb0210) 2009
Defferrard, Bresson, Vandergheynst (bb0235) 2016
Jackson (bb0195) 2015; 65
Woolson (bb0225) 2005; 8
Soares, Monteiro, Lobo, Couto, Cunha, Ferreira (bb0015) 2020; 12
Ye, Yin, Zhao, Tian, Sun (bb0165) 2022; 72
Boksem, Meijman, Lorist (bb0010) 2006; 72
2021: IEEE, pp. 33–40.
2020: IEEE, pp. 180–187.
2022: IEEE, pp. 302–305.
Jia, Lin, Wang (bb0335) 2020
Jia, Lin, Wang (bb0340) 2021; 29
Jia, Xiao, Ji (bb0100) 2023; 152
R. Suppiah, A. Sharma, N. Kim, and K. Abidi, "A Novel Event-Related Desynchronization/Synchronization with Gamma Peak EEG model for Motor State Identification," in
Shahid, Wilkinson, Marcu, Shapiro (bb0020) 2011
Cohen (bb0190) 1997; 386
Dhillon, Guan, Kulis (bb0250) 2007; 29
D. Wen
Crichton (bb0025) 2001; 10
F. Zhang, J. Su, L. Geng, and Z. Xiao, "Driver fatigue detection based on eye state recognition," in
Sikander, Anwar (bb0035) 2018; 20
Yan, Xiong, Lin (bb0330) 2018
Wang, Zhao, He, Zhang (bb0255) 2021; 92
Gao (bb0085) 2019; 30
Zhang, Song, Aletras (bb0300) 2018
Wang (bb0130) 2020; 28
R. Li, Z. Lan, J. Cui, O. Sourina, and L. Wang, "EEG-based recognition of driver state related to situation awareness using graph convolutional networks," in
Wang, Huang, Gu, Cao, Fang (bb0155) 2023; 151
Song, Zheng, Song (bb0325) 2018; 11
Hou (bb0115) 2022; 9
Mehmood (bb0160) 2023; 56
Tononi (bb0265) 2004; 5
Zhang, Wang, Wu, Xu (bb0320) 2020; 91
Zhuang, Kehua, Wang, Chen (bb0040) 2020; 8
Huang, Li, Zhang, Zhang (bb0060) 2018; 119
Che, Zheng, Chen, Song, Li (bb0110) 2022; 32
2018.
Kołodziej (bb0065) 2020; 20
Tran, Craig, Craig, Chai, Nguyen (bb0370) 2020; 57
Munj, Taz, Arslanturk, Heath (bb0365) 2022; 13
Rubinov, Sporns (bb0220) 2010; 52
Zheng, Wang, He, Zhang (bb0260) 2022; 16
Kar, Routray (bb0275) 2012; 43
Xiong, Gao, Yang, Yu, Huang (bb0080) 2016; 9
Zheng, Lu (bb0205) 2016; 14
Zou, Qiu, Huang, Luo, Bai (bb0135) 2020; 62
"RFC-HyPGCN: A runtime sparse feature compress accelerator for skeleton-based GCNs action recognition model with hybrid pruning," in
2017: IEEE, pp. 105–110.
2021: IEEE, pp. 1169–1175.
Wang (bb0280) 2020; 13
Taz, Arslanturk (bb0360) 2023; 43
Hammond, Vandergheynst, Gribonval, Analysis (bb0245) 2011; 30
Abel, Benami, Louzoun (bb0305) 2019
Dimitrakopoulos (bb0290) 2018; 26
Trejo, Kubitz, Rosipal, Kochavi, Montgomery (bb0055) 2015; 6
F. Monti, O. Shchur, A. Bojchevski, O. Litany, S. Günnemann, and M. M. Bronstein, "Dual-primal graph convolutional networks,"
Shuman, Narang, Frossard, Ortega, Vandergheynst (bb0240) 2013; 30
Lorist, Bezdan (bb0285) 2009; 1270
Hajinoroozi, Mao, Jung, Lin, Huang (bb0090) 2016; 47
M. Su, W. Li, F. Peng, W. Zhou, R. Zhang, and Y. Wen, "EEG-Based Mental Fatigue Detection Using CNN-LSTM," in
Shahid, Wilkinson, Marcu, Shapiro (bb0030) 2011
Li, Zhang, Tian, Jin, Fardad, Zafarani (bb0350) 2022
Bose, Wang, Dragomir, Thakor, Bezerianos, Li (bb0075) 2019; 12
Cohen (bb0140) 2009
Lin, Qiu, Liu, Zhang, Zhang, Mu (bb0120) 2021; 68
Yue, Wang (bb0095) 2019; 8
Carter, Knapp, Nuttall (bb0145) 1973; 21
Saradadevi, Bajaj (bb0045) 2008; 8
Zhang, Wang, Wu, Xu, Ping, Jiang (bb0125) 2020; 91
Defferrard (10.1016/j.artmed.2024.102996_bb0235) 2016
Zhang (10.1016/j.artmed.2024.102996_bb0125) 2020; 91
Jackson (10.1016/j.artmed.2024.102996_bb0195) 2015; 65
Dimitrakopoulos (10.1016/j.artmed.2024.102996_bb0290) 2018; 26
Gao (10.1016/j.artmed.2024.102996_bb0085) 2019; 30
10.1016/j.artmed.2024.102996_bb0355
Kołodziej (10.1016/j.artmed.2024.102996_bb0065) 2020; 20
Taz (10.1016/j.artmed.2024.102996_bb0360) 2023; 43
Sikander (10.1016/j.artmed.2024.102996_bb0035) 2018; 20
Cohen (10.1016/j.artmed.2024.102996_bb0140) 2009
10.1016/j.artmed.2024.102996_bb0150
Saradadevi (10.1016/j.artmed.2024.102996_bb0045) 2008; 8
Rubinov (10.1016/j.artmed.2024.102996_bb0220) 2010; 52
Fingelkurts (10.1016/j.artmed.2024.102996_bb0270) 2005; 28
Huang (10.1016/j.artmed.2024.102996_bb0060) 2018; 119
Hou (10.1016/j.artmed.2024.102996_bb0310) 2020
Lorist (10.1016/j.artmed.2024.102996_bb0285) 2009; 1270
Li (10.1016/j.artmed.2024.102996_bb0350) 2022
Jia (10.1016/j.artmed.2024.102996_bb0335) 2020
Abel (10.1016/j.artmed.2024.102996_bb0305) 2019
Boksem (10.1016/j.artmed.2024.102996_bb0010) 2006; 72
Trejo (10.1016/j.artmed.2024.102996_bb0055) 2015; 6
Yue (10.1016/j.artmed.2024.102996_bb0095) 2019; 8
Hajinoroozi (10.1016/j.artmed.2024.102996_bb0090) 2016; 47
Dhillon (10.1016/j.artmed.2024.102996_bb0250) 2007; 29
Benesty (10.1016/j.artmed.2024.102996_bb0210) 2009
Wang (10.1016/j.artmed.2024.102996_bb0255) 2021; 92
Bose (10.1016/j.artmed.2024.102996_bb0075) 2019; 12
Munj (10.1016/j.artmed.2024.102996_bb0365) 2022; 13
10.1016/j.artmed.2024.102996_bb0200
Che (10.1016/j.artmed.2024.102996_bb0110) 2022; 32
Shahid (10.1016/j.artmed.2024.102996_bb0030) 2011
Carter (10.1016/j.artmed.2024.102996_bb0145) 1973; 21
Crichton (10.1016/j.artmed.2024.102996_bb0025) 2001; 10
Cohen (10.1016/j.artmed.2024.102996_bb0190) 1997; 386
Chen (10.1016/j.artmed.2024.102996_bb0295) 2022; 191
Bao (10.1016/j.artmed.2024.102996_bb0105) 2022; 16
Zhang (10.1016/j.artmed.2024.102996_bb0185) 2023; 11
Wang (10.1016/j.artmed.2024.102996_bb0280) 2020; 13
Murata (10.1016/j.artmed.2024.102996_bb0070) 2005; 35
Zheng (10.1016/j.artmed.2024.102996_bb0205) 2016; 14
Zou (10.1016/j.artmed.2024.102996_bb0135) 2020; 62
Kar (10.1016/j.artmed.2024.102996_bb0275) 2012; 43
Tran (10.1016/j.artmed.2024.102996_bb0370) 2020; 57
Xiong (10.1016/j.artmed.2024.102996_bb0080) 2016; 9
Jia (10.1016/j.artmed.2024.102996_bb0100) 2023; 152
Soares (10.1016/j.artmed.2024.102996_bb0015) 2020; 12
Lin (10.1016/j.artmed.2024.102996_bb0120) 2021; 68
Tononi (10.1016/j.artmed.2024.102996_bb0265) 2004; 5
Hou (10.1016/j.artmed.2024.102996_bb0115) 2022; 9
Wang (10.1016/j.artmed.2024.102996_bb0155) 2023; 151
Wang (10.1016/j.artmed.2024.102996_bb0130) 2020; 28
Baig (10.1016/j.artmed.2024.102996_bb0345) 2020; 53
10.1016/j.artmed.2024.102996_bb0050
10.1016/j.artmed.2024.102996_bb0170
Wang (10.1016/j.artmed.2024.102996_bb0175) 2020; 70
Yan (10.1016/j.artmed.2024.102996_bb0330) 2018
Jia (10.1016/j.artmed.2024.102996_bb0340) 2021; 29
Woolson (10.1016/j.artmed.2024.102996_bb0225) 2005; 8
Ye (10.1016/j.artmed.2024.102996_bb0165) 2022; 72
Zhuang (10.1016/j.artmed.2024.102996_bb0040) 2020; 8
Zhang (10.1016/j.artmed.2024.102996_bb0300) 2018
Shuman (10.1016/j.artmed.2024.102996_bb0240) 2013; 30
Mehmood (10.1016/j.artmed.2024.102996_bb0160) 2023; 56
Shahid (10.1016/j.artmed.2024.102996_bb0020) 2011
Song (10.1016/j.artmed.2024.102996_bb0325) 2018; 11
10.1016/j.artmed.2024.102996_bb0180
Xu (10.1016/j.artmed.2024.102996_bb0005) 2018; 9
Zhang (10.1016/j.artmed.2024.102996_bb0320) 2020; 91
Hammond (10.1016/j.artmed.2024.102996_bb0245) 2011; 30
Zheng (10.1016/j.artmed.2024.102996_bb0260) 2022; 16
References_xml – reference: M. Su, W. Li, F. Peng, W. Zhou, R. Zhang, and Y. Wen, "EEG-Based Mental Fatigue Detection Using CNN-LSTM," in
– volume: 386
  start-page: 604
  year: 1997
  end-page: 608
  ident: bb0190
  article-title: Temporal dynamics of brain activation during a working memory task
  publication-title: Nature
– reference: D. Wen
– year: 2018
  ident: bb0300
  article-title: Graph node-feature convolution for representation learning
– start-page: 29
  year: 2016
  ident: bb0235
  article-title: Convolutional neural networks on graphs with fast localized spectral filtering
  publication-title: Adv Neural Inf Proces Syst
– year: 2018
  ident: bb0330
  article-title: “spatial temporal graph convolutional networks for skeleton-based action recognition,” in
– reference: , 2020: IEEE, pp. 180–187.
– volume: 68
  year: 2021
  ident: bb0120
  article-title: Fatigue driving recognition based on deep learning and graph neural network
  publication-title: Biomed Signal Process Control
– volume: 56
  year: 2023
  ident: bb0160
  article-title: Deep learning-based construction equipment operators’ mental fatigue classification using wearable EEG sensor data
  publication-title: Adv Eng Inform
– volume: 5
  start-page: 1
  year: 2004
  end-page: 22
  ident: bb0265
  article-title: An information integration theory of consciousness
  publication-title: BMC Neurosci
– volume: 30
  start-page: 83
  year: 2013
  end-page: 98
  ident: bb0240
  article-title: The emerging field of signal processing on graphs: Extending high-dimensional data analysis to networks and other irregular domains
  publication-title: IEEE Signal Process Mag
– volume: 30
  start-page: 129
  year: 2011
  end-page: 150
  ident: bb0245
  article-title: Wavelets on graphs via spectral graph theory Applied and Computational Harmonic
  publication-title: Analysis
– volume: 57
  year: 2020
  ident: bb0370
  article-title: The influence of mental fatigue on brain activity: evidence from a systematic review with meta-analyses
  publication-title: Psychophysiology
– volume: 12
  start-page: 323
  year: 2019
  end-page: 331
  ident: bb0075
  article-title: Regression-based continuous driving fatigue estimation: toward practical implementation
  publication-title: IEEE T Cogn Dev Syst
– reference: , "RFC-HyPGCN: A runtime sparse feature compress accelerator for skeleton-based GCNs action recognition model with hybrid pruning," in
– volume: 20
  start-page: 15213
  year: 2020
  end-page: 15223
  ident: bb0065
  article-title: Fatigue detection caused by office work with the use of EOG signal
  publication-title: IEEE Sens J
– year: 2019
  ident: bb0305
  article-title: Topological based classification using graph convolutional networks
– volume: 10
  start-page: 706
  year: 2001
  ident: bb0025
  article-title: Visual analogue scale (VAS)
  publication-title: J Clin Nurs
– volume: 6
  start-page: 572
  year: 2015
  ident: bb0055
  article-title: EEG-based estimation and classification of mental fatigue
  publication-title: Psychology
– volume: 43
  year: 2023
  ident: bb0360
  article-title: Unveiling genetic variant-level biomarkers for aggressive prostate cancer
  publication-title: Inform Med Unlocked
– volume: 32
  start-page: 2250003
  year: 2022
  ident: bb0110
  article-title: Decoding color visual working memory from EEG signals using graph convolutional neural networks
  publication-title: Int J Neural Syst
– reference: R. Suppiah, A. Sharma, N. Kim, and K. Abidi, "A Novel Event-Related Desynchronization/Synchronization with Gamma Peak EEG model for Motor State Identification," in
– volume: 26
  start-page: 740
  year: 2018
  end-page: 749
  ident: bb0290
  article-title: Functional connectivity analysis of mental fatigue reveals different network topological alterations between driving and vigilance tasks
  publication-title: IEEE Trans Neural Syst Rehabil Eng
– volume: 13
  start-page: 1015531
  year: 2022
  ident: bb0365
  article-title: Biomarker-driven drug repurposing on biologically similar cancers with DNA-repair deficiencies
  publication-title: Front Genet
– volume: 72
  year: 2022
  ident: bb0165
  article-title: Identification of mental fatigue levels in a language understanding task based on multi-domain EEG features and an ensemble convolutional neural network
  publication-title: Biomed Signal Process Control
– volume: 72
  start-page: 123
  year: 2006
  end-page: 132
  ident: bb0010
  article-title: Mental fatigue, motivation and action monitoring
  publication-title: Biol Psychol
– volume: 8
  year: 2005
  ident: bb0225
  article-title: Wilcoxon signed-rank test
  publication-title: Encyclopedia of Biostatistics
– volume: 152
  year: 2023
  ident: bb0100
  article-title: End-to-end fatigue driving EEG signal detection model based on improved temporal-graph convolution network
  publication-title: Comput Biol Med
– start-page: 161
  year: 2011
  end-page: 162
  ident: bb0030
  article-title: “Fatigue assessment scale (FAS),” in
– volume: 30
  start-page: 2755
  year: 2019
  end-page: 2763
  ident: bb0085
  article-title: EEG-based spatio–temporal convolutional neural network for driver fatigue evaluation
  publication-title: IEEE T Neur Net Lear
– volume: 91
  year: 2020
  ident: bb0320
  article-title: Partial directed coherence based graph convolutional neural networks for driving fatigue detection
  publication-title: Rev Sci Instrum
– reference: 2018.
– volume: 13
  start-page: 668
  year: 2020
  end-page: 678
  ident: bb0280
  article-title: Driving fatigue recognition with functional connectivity based on phase synchronization
  publication-title: IEEE Trans Cogn Dev Syst
– volume: 9
  start-page: 329
  year: 2016
  end-page: 338
  ident: bb0080
  article-title: Classifying driving fatigue based on combined entropy measure using EEG signals
  publication-title: Int J Control Autom
– start-page: 1
  year: 2022
  end-page: 14
  ident: bb0350
  article-title: Graph sparsification with graph convolutional networks
  publication-title: Int J Data Sci Anal
– volume: 16
  year: 2022
  ident: bb0105
  article-title: Linking multi-layer dynamical GCN with style-based recalibration CNN for EEG-based emotion recognition
  publication-title: Front Neurorobot
– volume: 21
  start-page: 337
  year: 1973
  end-page: 344
  ident: bb0145
  article-title: Estimation of the magnitude-squared coherence function via overlapped fast Fourier transform processing
  publication-title: IEEE Trans Audio Electroacoust
– reference: F. Monti, O. Shchur, A. Bojchevski, O. Litany, S. Günnemann, and M. M. Bronstein, "Dual-primal graph convolutional networks,"
– volume: 28
  start-page: 1790
  year: 2020
  end-page: 1799
  ident: bb0130
  article-title: Dynamic reorganization of functional connectivity unmasks fatigue related performance declines in simulated driving
  publication-title: IEEE Trans Neural Syst Rehabil Eng
– volume: 8
  start-page: 183
  year: 2008
  end-page: 188
  ident: bb0045
  article-title: Driver fatigue detection using mouth and yawning analysis
  publication-title: Int J Comput Sci Net
– reference: , 2017: IEEE, pp. 105–110.
– volume: 12
  start-page: 1971
  year: 2020
  ident: bb0015
  article-title: Analyzing driver drowsiness: from causes to effects
  publication-title: Sustainability
– reference: R. Li, Z. Lan, J. Cui, O. Sourina, and L. Wang, "EEG-based recognition of driver state related to situation awareness using graph convolutional networks," in
– start-page: 1
  year: 2009
  end-page: 4
  ident: bb0210
  article-title: Pearson correlation coefficient
  publication-title: Noise reduction in speech processing
– start-page: 1324
  year: 2020
  end-page: 1330
  ident: bb0335
  article-title: GraphSleepNet: Adaptive Spatial-Temporal Graph Convolutional Networks for Sleep Stage Classification," in
  publication-title: IJCAI
– volume: 8
  start-page: 1208
  year: 2019
  ident: bb0095
  article-title: EEG-based 3D visual fatigue evaluation using CNN
  publication-title: Electronics
– volume: 119
  start-page: 39
  year: 2018
  end-page: 46
  ident: bb0060
  article-title: Detection of mental fatigue state with wearable ECG devices
  publication-title: Int J Med Inform
– reference: , 2021: IEEE, pp. 33–40.
– reference: F. Zhang, J. Su, L. Geng, and Z. Xiao, "Driver fatigue detection based on eye state recognition," in
– reference: , 2021: IEEE, pp. 1169–1175.
– volume: 29
  start-page: 1944
  year: 2007
  end-page: 1957
  ident: bb0250
  article-title: Weighted graph cuts without eigenvectors a multilevel approach
  publication-title: IEEE Trans Pattern Anal Mach Intell
– volume: 92
  year: 2021
  ident: bb0255
  article-title: Phase lag index-based graph attention networks for detecting driving fatigue
  publication-title: Rev Sci Instrum
– volume: 20
  start-page: 2339
  year: 2018
  end-page: 2352
  ident: bb0035
  article-title: Driver fatigue detection systems: a review
  publication-title: IEEE Trans Intell Transp Syst
– volume: 8
  start-page: 173440
  year: 2020
  end-page: 173449
  ident: bb0040
  article-title: Driver fatigue detection method based on eye states with pupil and iris segmentation
  publication-title: IEEE Access
– volume: 191
  start-page: 116339
  year: 2022
  ident: bb0295
  article-title: Two-dimensional phase lag index image representation of electroencephalography for automated recognition of driver fatigue using convolutional neural network
  publication-title: Expert Syst Appl
– volume: 14
  year: 2016
  ident: bb0205
  article-title: A Multimodal Approach to Estimating Vigilance Using EEG and Forehead EOG
  publication-title: J Neural Eng
– volume: 11
  start-page: 532
  year: 2018
  end-page: 541
  ident: bb0325
  article-title: EEG emotion recognition using dynamical graph convolutional neural networks
  publication-title: IEEE Trans Affect Comput
– volume: 29
  start-page: 1977
  year: 2021
  end-page: 1986
  ident: bb0340
  article-title: Multi-view spatial-temporal graph convolutional networks with domain generalization for sleep stage classification
  publication-title: IEEE Trans Neural Syst Rehabil Eng
– volume: 91
  year: 2020
  ident: bb0125
  article-title: Partial directed coherence based graph convolutional neural networks for driving fatigue detection
  publication-title: Rev Sci Instrum
– start-page: 1
  year: 2009
  end-page: 4
  ident: bb0140
  article-title: Pearson correlation coefficient
  publication-title: Noise reduction in speech processing
– volume: 70
  start-page: 1
  year: 2020
  end-page: 11
  ident: bb0175
  article-title: Linking attention-based multiscale CNN with dynamical GCN for driving fatigue detection
  publication-title: IEEE Trans Instrum Meas
– volume: 11
  start-page: 1189
  year: 2023
  ident: bb0185
  article-title: A mental workload classification method based on gcn modified by squeeze-and-excitation residual
  publication-title: Mathematics
– reference: , 2022: IEEE, pp. 302–305.
– volume: 16
  start-page: 325
  year: 2022
  end-page: 336
  ident: bb0260
  article-title: EEG-based brain functional connectivity representation using amplitude locking value for fatigue-driving recognition
  publication-title: Cogn Neurodyn
– volume: 28
  start-page: 827
  year: 2005
  end-page: 836
  ident: bb0270
  article-title: Functional connectivity in the brain—is it an elusive concept?
  publication-title: Neurosci Biobehav Rev
– volume: 151
  year: 2023
  ident: bb0155
  article-title: Identifying mental fatigue of construction workers using EEG and deep learning
  publication-title: Autom Constr
– volume: 43
  start-page: 666
  year: 2012
  end-page: 672
  ident: bb0275
  article-title: Effect of sleep deprivation on functional connectivity of EEG channels
  publication-title: IEEE Trans Syst Man Cybern Syst Hum
– volume: 47
  start-page: 549
  year: 2016
  end-page: 555
  ident: bb0090
  article-title: EEG-based prediction of driver’s cognitive performance by deep convolutional neural network
  publication-title: Signal Process Image Commun
– year: 2020
  ident: bb0310
  article-title: GCNs-Net: A Graph Convolutional Neural Network Approach for Decoding Time-resolved EEG Motor Imagery Signals
– volume: 65
  start-page: 86
  year: 2015
  ident: bb0195
  article-title: The Chalder fatigue scale (CFQ 11)
  publication-title: Occup Med
– start-page: 167
  year: 2011
  end-page: 168
  ident: bb0020
  article-title: “fatigue severity scale (FSS),” in
– volume: 9
  year: 2022
  ident: bb0115
  article-title: Deep feature mining via the attention-based bidirectional long short term memory graph convolutional neural network for human motor imagery recognition
  publication-title: Front Bioeng Biotechnol
– volume: 9
  start-page: 915
  year: 2018
  ident: bb0005
  article-title: How physical activities affect mental fatigue based on EEG energy, connectivity, and complexity
  publication-title: Front Neurol
– volume: 1270
  start-page: 95
  year: 2009
  end-page: 106
  ident: bb0285
  article-title: The influence of mental fatigue and motivation on neural network dynamics; an EEG coherence study
  publication-title: Brain Res
– volume: 62
  year: 2020
  ident: bb0135
  article-title: The functional brain network based on the combination of shortest path tree and its application in fatigue driving state recognition and analysis of the neural mechanism of fatigue driving
  publication-title: Biomed Signal Process Control
– volume: 35
  start-page: 761
  year: 2005
  end-page: 770
  ident: bb0070
  article-title: Evaluation of mental fatigue using feature parameter extracted from event-related potential
  publication-title: Int J Ind Ergon
– volume: 52
  start-page: 1059
  year: 2010
  end-page: 1069
  ident: bb0220
  article-title: Complex network measures of brain connectivity: uses and interpretations
  publication-title: Neuroimage
– volume: 53
  start-page: 1207
  year: 2020
  end-page: 1232
  ident: bb0345
  article-title: Filtering techniques for channel selection in motor imagery EEG applications: a survey
  publication-title: Artif Intell Rev
– volume: 5
  start-page: 1
  issue: 1
  year: 2004
  ident: 10.1016/j.artmed.2024.102996_bb0265
  article-title: An information integration theory of consciousness
  publication-title: BMC Neurosci
  doi: 10.1186/1471-2202-5-42
– volume: 9
  start-page: 915
  year: 2018
  ident: 10.1016/j.artmed.2024.102996_bb0005
  article-title: How physical activities affect mental fatigue based on EEG energy, connectivity, and complexity
  publication-title: Front Neurol
  doi: 10.3389/fneur.2018.00915
– volume: 92
  issue: 9
  year: 2021
  ident: 10.1016/j.artmed.2024.102996_bb0255
  article-title: Phase lag index-based graph attention networks for detecting driving fatigue
  publication-title: Rev Sci Instrum
  doi: 10.1063/5.0056139
– volume: 29
  start-page: 1977
  year: 2021
  ident: 10.1016/j.artmed.2024.102996_bb0340
  article-title: Multi-view spatial-temporal graph convolutional networks with domain generalization for sleep stage classification
  publication-title: IEEE Trans Neural Syst Rehabil Eng
  doi: 10.1109/TNSRE.2021.3110665
– volume: 72
  start-page: 123
  issue: 2
  year: 2006
  ident: 10.1016/j.artmed.2024.102996_bb0010
  article-title: Mental fatigue, motivation and action monitoring
  publication-title: Biol Psychol
  doi: 10.1016/j.biopsycho.2005.08.007
– volume: 56
  year: 2023
  ident: 10.1016/j.artmed.2024.102996_bb0160
  article-title: Deep learning-based construction equipment operators’ mental fatigue classification using wearable EEG sensor data
  publication-title: Adv Eng Inform
  doi: 10.1016/j.aei.2023.101978
– volume: 53
  start-page: 1207
  issue: 2
  year: 2020
  ident: 10.1016/j.artmed.2024.102996_bb0345
  article-title: Filtering techniques for channel selection in motor imagery EEG applications: a survey
  publication-title: Artif Intell Rev
  doi: 10.1007/s10462-019-09694-8
– volume: 1270
  start-page: 95
  year: 2009
  ident: 10.1016/j.artmed.2024.102996_bb0285
  article-title: The influence of mental fatigue and motivation on neural network dynamics; an EEG coherence study
  publication-title: Brain Res
  doi: 10.1016/j.brainres.2009.03.015
– ident: 10.1016/j.artmed.2024.102996_bb0170
  doi: 10.1109/CME55444.2022.10063316
– volume: 14
  issue: 2
  year: 2016
  ident: 10.1016/j.artmed.2024.102996_bb0205
  article-title: A Multimodal Approach to Estimating Vigilance Using EEG and Forehead EOG
  publication-title: J Neural Eng
  doi: 10.1088/1741-2552/aa5a98
– volume: 91
  issue: 7
  year: 2020
  ident: 10.1016/j.artmed.2024.102996_bb0320
  article-title: Partial directed coherence based graph convolutional neural networks for driving fatigue detection
  publication-title: Rev Sci Instrum
  doi: 10.1063/5.0008434
– ident: 10.1016/j.artmed.2024.102996_bb0050
  doi: 10.1109/CMVIT.2017.25
– volume: 8
  start-page: 183
  issue: 6
  year: 2008
  ident: 10.1016/j.artmed.2024.102996_bb0045
  article-title: Driver fatigue detection using mouth and yawning analysis
  publication-title: Int J Comput Sci Net
– volume: 32
  start-page: 2250003
  issue: 02
  year: 2022
  ident: 10.1016/j.artmed.2024.102996_bb0110
  article-title: Decoding color visual working memory from EEG signals using graph convolutional neural networks
  publication-title: Int J Neural Syst
  doi: 10.1142/S0129065722500034
– start-page: 29
  year: 2016
  ident: 10.1016/j.artmed.2024.102996_bb0235
  article-title: Convolutional neural networks on graphs with fast localized spectral filtering
  publication-title: Adv Neural Inf Proces Syst
– year: 2019
  ident: 10.1016/j.artmed.2024.102996_bb0305
– volume: 11
  start-page: 1189
  issue: 5
  year: 2023
  ident: 10.1016/j.artmed.2024.102996_bb0185
  article-title: A mental workload classification method based on gcn modified by squeeze-and-excitation residual
  publication-title: Mathematics
  doi: 10.3390/math11051189
– volume: 72
  year: 2022
  ident: 10.1016/j.artmed.2024.102996_bb0165
  article-title: Identification of mental fatigue levels in a language understanding task based on multi-domain EEG features and an ensemble convolutional neural network
  publication-title: Biomed Signal Process Control
  doi: 10.1016/j.bspc.2021.103360
– ident: 10.1016/j.artmed.2024.102996_bb0355
  doi: 10.1109/ASAP52443.2021.00012
– volume: 119
  start-page: 39
  year: 2018
  ident: 10.1016/j.artmed.2024.102996_bb0060
  article-title: Detection of mental fatigue state with wearable ECG devices
  publication-title: Int J Med Inform
  doi: 10.1016/j.ijmedinf.2018.08.010
– year: 2020
  ident: 10.1016/j.artmed.2024.102996_bb0310
– volume: 6
  start-page: 572
  issue: 05
  year: 2015
  ident: 10.1016/j.artmed.2024.102996_bb0055
  article-title: EEG-based estimation and classification of mental fatigue
  publication-title: Psychology
  doi: 10.4236/psych.2015.65055
– ident: 10.1016/j.artmed.2024.102996_bb0180
  doi: 10.1109/CW49994.2020.00037
– volume: 62
  year: 2020
  ident: 10.1016/j.artmed.2024.102996_bb0135
  article-title: The functional brain network based on the combination of shortest path tree and its application in fatigue driving state recognition and analysis of the neural mechanism of fatigue driving
  publication-title: Biomed Signal Process Control
  doi: 10.1016/j.bspc.2020.102129
– volume: 26
  start-page: 740
  issue: 4
  year: 2018
  ident: 10.1016/j.artmed.2024.102996_bb0290
  article-title: Functional connectivity analysis of mental fatigue reveals different network topological alterations between driving and vigilance tasks
  publication-title: IEEE Trans Neural Syst Rehabil Eng
  doi: 10.1109/TNSRE.2018.2791936
– volume: 52
  start-page: 1059
  issue: 3
  year: 2010
  ident: 10.1016/j.artmed.2024.102996_bb0220
  article-title: Complex network measures of brain connectivity: uses and interpretations
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2009.10.003
– volume: 47
  start-page: 549
  year: 2016
  ident: 10.1016/j.artmed.2024.102996_bb0090
  article-title: EEG-based prediction of driver’s cognitive performance by deep convolutional neural network
  publication-title: Signal Process Image Commun
  doi: 10.1016/j.image.2016.05.018
– volume: 16
  start-page: 325
  issue: 2
  year: 2022
  ident: 10.1016/j.artmed.2024.102996_bb0260
  article-title: EEG-based brain functional connectivity representation using amplitude locking value for fatigue-driving recognition
  publication-title: Cogn Neurodyn
  doi: 10.1007/s11571-021-09714-w
– year: 2018
  ident: 10.1016/j.artmed.2024.102996_bb0330
– volume: 29
  start-page: 1944
  issue: 11
  year: 2007
  ident: 10.1016/j.artmed.2024.102996_bb0250
  article-title: Weighted graph cuts without eigenvectors a multilevel approach
  publication-title: IEEE Trans Pattern Anal Mach Intell
  doi: 10.1109/TPAMI.2007.1115
– volume: 28
  start-page: 827
  issue: 8
  year: 2005
  ident: 10.1016/j.artmed.2024.102996_bb0270
  article-title: Functional connectivity in the brain—is it an elusive concept?
  publication-title: Neurosci Biobehav Rev
  doi: 10.1016/j.neubiorev.2004.10.009
– start-page: 1
  year: 2009
  ident: 10.1016/j.artmed.2024.102996_bb0140
  article-title: Pearson correlation coefficient
  publication-title: Noise reduction in speech processing
– volume: 35
  start-page: 761
  issue: 8
  year: 2005
  ident: 10.1016/j.artmed.2024.102996_bb0070
  article-title: Evaluation of mental fatigue using feature parameter extracted from event-related potential
  publication-title: Int J Ind Ergon
  doi: 10.1016/j.ergon.2004.12.003
– volume: 152
  year: 2023
  ident: 10.1016/j.artmed.2024.102996_bb0100
  article-title: End-to-end fatigue driving EEG signal detection model based on improved temporal-graph convolution network
  publication-title: Comput Biol Med
  doi: 10.1016/j.compbiomed.2022.106431
– volume: 21
  start-page: 337
  issue: 4
  year: 1973
  ident: 10.1016/j.artmed.2024.102996_bb0145
  article-title: Estimation of the magnitude-squared coherence function via overlapped fast Fourier transform processing
  publication-title: IEEE Trans Audio Electroacoust
  doi: 10.1109/TAU.1973.1162496
– volume: 8
  start-page: 1208
  issue: 11
  year: 2019
  ident: 10.1016/j.artmed.2024.102996_bb0095
  article-title: EEG-based 3D visual fatigue evaluation using CNN
  publication-title: Electronics
  doi: 10.3390/electronics8111208
– volume: 13
  start-page: 668
  issue: 3
  year: 2020
  ident: 10.1016/j.artmed.2024.102996_bb0280
  article-title: Driving fatigue recognition with functional connectivity based on phase synchronization
  publication-title: IEEE Trans Cogn Dev Syst
  doi: 10.1109/TCDS.2020.2985539
– volume: 70
  start-page: 1
  year: 2020
  ident: 10.1016/j.artmed.2024.102996_bb0175
  article-title: Linking attention-based multiscale CNN with dynamical GCN for driving fatigue detection
  publication-title: IEEE Trans Instrum Meas
  doi: 10.1109/TIM.2020.3044719
– volume: 12
  start-page: 323
  issue: 2
  year: 2019
  ident: 10.1016/j.artmed.2024.102996_bb0075
  article-title: Regression-based continuous driving fatigue estimation: toward practical implementation
  publication-title: IEEE T Cogn Dev Syst
  doi: 10.1109/TCDS.2019.2929858
– volume: 30
  start-page: 2755
  issue: 9
  year: 2019
  ident: 10.1016/j.artmed.2024.102996_bb0085
  article-title: EEG-based spatio–temporal convolutional neural network for driver fatigue evaluation
  publication-title: IEEE T Neur Net Lear
– volume: 30
  start-page: 129
  issue: 2
  year: 2011
  ident: 10.1016/j.artmed.2024.102996_bb0245
  article-title: Wavelets on graphs via spectral graph theory Applied and Computational Harmonic
  publication-title: Analysis
– volume: 20
  start-page: 2339
  issue: 6
  year: 2018
  ident: 10.1016/j.artmed.2024.102996_bb0035
  article-title: Driver fatigue detection systems: a review
  publication-title: IEEE Trans Intell Transp Syst
  doi: 10.1109/TITS.2018.2868499
– start-page: 1
  year: 2022
  ident: 10.1016/j.artmed.2024.102996_bb0350
  article-title: Graph sparsification with graph convolutional networks
  publication-title: Int J Data Sci Anal
– volume: 68
  year: 2021
  ident: 10.1016/j.artmed.2024.102996_bb0120
  article-title: Fatigue driving recognition based on deep learning and graph neural network
  publication-title: Biomed Signal Process Control
  doi: 10.1016/j.bspc.2021.102598
– volume: 12
  start-page: 1971
  issue: 5
  year: 2020
  ident: 10.1016/j.artmed.2024.102996_bb0015
  article-title: Analyzing driver drowsiness: from causes to effects
  publication-title: Sustainability
  doi: 10.3390/su12051971
– start-page: 1
  year: 2009
  ident: 10.1016/j.artmed.2024.102996_bb0210
  article-title: Pearson correlation coefficient
– volume: 43
  start-page: 666
  issue: 3
  year: 2012
  ident: 10.1016/j.artmed.2024.102996_bb0275
  article-title: Effect of sleep deprivation on functional connectivity of EEG channels
  publication-title: IEEE Trans Syst Man Cybern Syst Hum
  doi: 10.1109/TSMCA.2012.2207103
– ident: 10.1016/j.artmed.2024.102996_bb0150
– volume: 65
  start-page: 86
  issue: 1
  year: 2015
  ident: 10.1016/j.artmed.2024.102996_bb0195
  article-title: The Chalder fatigue scale (CFQ 11)
  publication-title: Occup Med
  doi: 10.1093/occmed/kqu168
– volume: 386
  start-page: 604
  issue: 6625
  year: 1997
  ident: 10.1016/j.artmed.2024.102996_bb0190
  article-title: Temporal dynamics of brain activation during a working memory task
  publication-title: Nature
  doi: 10.1038/386604a0
– volume: 11
  start-page: 532
  issue: 3
  year: 2018
  ident: 10.1016/j.artmed.2024.102996_bb0325
  article-title: EEG emotion recognition using dynamical graph convolutional neural networks
  publication-title: IEEE Trans Affect Comput
  doi: 10.1109/TAFFC.2018.2817622
– volume: 151
  year: 2023
  ident: 10.1016/j.artmed.2024.102996_bb0155
  article-title: Identifying mental fatigue of construction workers using EEG and deep learning
  publication-title: Autom Constr
  doi: 10.1016/j.autcon.2023.104887
– start-page: 161
  year: 2011
  ident: 10.1016/j.artmed.2024.102996_bb0030
– volume: 8
  start-page: 173440
  year: 2020
  ident: 10.1016/j.artmed.2024.102996_bb0040
  article-title: Driver fatigue detection method based on eye states with pupil and iris segmentation
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.3025818
– volume: 9
  start-page: 329
  issue: 3
  year: 2016
  ident: 10.1016/j.artmed.2024.102996_bb0080
  article-title: Classifying driving fatigue based on combined entropy measure using EEG signals
  publication-title: Int J Control Autom
  doi: 10.14257/ijca.2016.9.3.30
– start-page: 167
  year: 2011
  ident: 10.1016/j.artmed.2024.102996_bb0020
– volume: 16
  year: 2022
  ident: 10.1016/j.artmed.2024.102996_bb0105
  article-title: Linking multi-layer dynamical GCN with style-based recalibration CNN for EEG-based emotion recognition
  publication-title: Front Neurorobot
  doi: 10.3389/fnbot.2022.834952
– volume: 43
  year: 2023
  ident: 10.1016/j.artmed.2024.102996_bb0360
  article-title: Unveiling genetic variant-level biomarkers for aggressive prostate cancer
  publication-title: Inform Med Unlocked
  doi: 10.1016/j.imu.2023.101410
– volume: 20
  start-page: 15213
  issue: 24
  year: 2020
  ident: 10.1016/j.artmed.2024.102996_bb0065
  article-title: Fatigue detection caused by office work with the use of EOG signal
  publication-title: IEEE Sens J
  doi: 10.1109/JSEN.2020.3012404
– volume: 8
  year: 2005
  ident: 10.1016/j.artmed.2024.102996_bb0225
  article-title: Wilcoxon signed-rank test
  publication-title: Encyclopedia of Biostatistics
– ident: 10.1016/j.artmed.2024.102996_bb0200
  doi: 10.1109/CSCI54926.2021.00245
– year: 2018
  ident: 10.1016/j.artmed.2024.102996_bb0300
– volume: 13
  start-page: 1015531
  year: 2022
  ident: 10.1016/j.artmed.2024.102996_bb0365
  article-title: Biomarker-driven drug repurposing on biologically similar cancers with DNA-repair deficiencies
  publication-title: Front Genet
  doi: 10.3389/fgene.2022.1015531
– volume: 191
  start-page: 116339
  year: 2022
  ident: 10.1016/j.artmed.2024.102996_bb0295
  article-title: Two-dimensional phase lag index image representation of electroencephalography for automated recognition of driver fatigue using convolutional neural network
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2021.116339
– volume: 57
  issue: 5
  year: 2020
  ident: 10.1016/j.artmed.2024.102996_bb0370
  article-title: The influence of mental fatigue on brain activity: evidence from a systematic review with meta-analyses
  publication-title: Psychophysiology
  doi: 10.1111/psyp.13554
– volume: 91
  issue: 7
  year: 2020
  ident: 10.1016/j.artmed.2024.102996_bb0125
  article-title: Partial directed coherence based graph convolutional neural networks for driving fatigue detection
  publication-title: Rev Sci Instrum
  doi: 10.1063/5.0008434
– volume: 30
  start-page: 83
  issue: 3
  year: 2013
  ident: 10.1016/j.artmed.2024.102996_bb0240
  article-title: The emerging field of signal processing on graphs: Extending high-dimensional data analysis to networks and other irregular domains
  publication-title: IEEE Signal Process Mag
  doi: 10.1109/MSP.2012.2235192
– start-page: 1324
  year: 2020
  ident: 10.1016/j.artmed.2024.102996_bb0335
  article-title: GraphSleepNet: Adaptive Spatial-Temporal Graph Convolutional Networks for Sleep Stage Classification," in
  publication-title: IJCAI
– volume: 10
  start-page: 706
  issue: 5
  year: 2001
  ident: 10.1016/j.artmed.2024.102996_bb0025
  article-title: Visual analogue scale (VAS)
  publication-title: J Clin Nurs
– volume: 9
  year: 2022
  ident: 10.1016/j.artmed.2024.102996_bb0115
  article-title: Deep feature mining via the attention-based bidirectional long short term memory graph convolutional neural network for human motor imagery recognition
  publication-title: Front Bioeng Biotechnol
  doi: 10.3389/fbioe.2021.706229
– volume: 28
  start-page: 1790
  issue: 8
  year: 2020
  ident: 10.1016/j.artmed.2024.102996_bb0130
  article-title: Dynamic reorganization of functional connectivity unmasks fatigue related performance declines in simulated driving
  publication-title: IEEE Trans Neural Syst Rehabil Eng
  doi: 10.1109/TNSRE.2020.2999599
SSID ssj0007416
Score 2.4165869
Snippet Mental fatigue is defined as a decline in the ability and efficiency of mental activities. A lot of research suggests that the transition from alertness to...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 102996
SubjectTerms Adult
Brain - diagnostic imaging
Brain - physiopathology
Dual-graph
Electroencephalography - methods
Female
Functional connectivity networks
Graph convolutional network
Humans
Magnitude-squared coherence
Male
Mental Fatigue - physiopathology
Mental fatigue detection
Neural Networks, Computer
Pearson correlation coefficient
Young Adult
Title EEG spatial inter-channel connectivity analysis: A GCN-based dual stream approach to distinguish mental fatigue status
URI https://www.clinicalkey.com/#!/content/1-s2.0-S0933365724002380
https://dx.doi.org/10.1016/j.artmed.2024.102996
https://www.ncbi.nlm.nih.gov/pubmed/39406075
https://www.proquest.com/docview/3117074903
Volume 157
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELaqIiEuPMprC1RG4mo2Dz8SbqvVtguoe4FKvVljr1O2Ktmqu-HY385M7CxCAhWRWyJPnPgx34w83wxj70Bl0ikdRHAGhISQiwqBU0idBw--AqOJKHy60PMz-elcne-x6cCFobDKpPujTu-1dXoyTqM5vl6txl_IFy-1MhQFicBDfruUhlb5-9tfYR5kcfT59spSUOuBPtfHeOH7EHPQSywk5TCoKXX_n-Hpb-ZnD0PHj9nDZD_ySfzEJ2wvtAfs0VCbgaetesDun6ZD86fsx2x2wjcUOY2ClB7iRhDdtw1X3FOYi48FJDik_CQf-ISfTBeCAG7JiavFiVEC3_mQgJxv13xJyqG96FabbzwWCOANdnHRBU4kpW7zjJ0dz75O5yKVWxAeUXwrmiZTzldVgxaKypclXbl3RQaZVw2g6-O1kg4cGpVKKRNc7XJQRQVQgKpl-Zztt-s2vGS8NqiAfeHRtlBSSgCvc0BPyyAie6fdiJXDKFufcpFTSYwrOwSdXdo4N5bmxsa5GTGxk7qOuTjuaK-GCbQDzxQ1o0WwuEPO7OR-W4v_IPl2WCcWtymdvUAb1t3GllThx8g6K0fsRVxAu3-g4vQaTbfD_-73FXtAd5Ej-Zrtb2-68AaNpa076nfDEbs3-fh5vvgJSNgTpw
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9swDBaKFNh2abfulXUPDdhViB-SbPcWBGnTtcllLdCbQClym6Fziibu7x8ZyQEGdOgwH23TL0n8SJjfR8a-gUqkVdoLbwsQEnwqSgROIXXqHbgSCk1E4elMTy7l9yt1tcNGHReGyiqj7w8-feOt455B_JqDu8Vi8INy8VyrgqogEXgwb98ldSrVY7vD07PJbOuQKejYSO7luSCDjkG3KfPCSyLsYKKYSZIxqEi9_3GE-lsEukGi45dsL4aQfBie8hXb8c0B2-_aM_C4Wg_Ys2n8b_6aPYzHJ3xFxdNoSAoR94IYv42_5Y4qXVzoIcEhSpQc8SE_Gc0EYdycE12LE6kEfvFOg5yvl3xO_qG5bherGx56BPAab3Hdek48pXb1hl0ejy9GExE7LgiHQL4WdZ0o68qyxiBFpfOcttTZLIHEqRow-3FaSQsW40qlVOFtZVNQWQmQgapk_pb1mmXj3zNeFeiDXeYwvFBSSgCnU8Bkq0BQdlbbPsu7r2xclCOnrhi3pqs7-2nC2BgaGxPGps_E1uouyHE8cb7qBtB0VFN0jgbx4gm7Ymv3x3T8B8uv3TwxuFLp9ws0ftmuTE5NfgpZJXmfvQsTaPsO1J9eY_T24b_v-4U9n1xMz8356ezskL2gI4Ey-ZH11vet_4Sx09p-jmvjN639Flg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=EEG+spatial+inter-channel+connectivity+analysis%3A+A+GCN-based+dual+stream+approach+to+distinguish+mental+fatigue+status&rft.jtitle=Artificial+intelligence+in+medicine&rft.au=Chen%2C+Kun&rft.au=Chai%2C+Shulong&rft.au=Xie%2C+Tianli&rft.au=Liu%2C+Quan&rft.date=2024-11-01&rft.issn=0933-3657&rft.volume=157&rft.spage=102996&rft_id=info:doi/10.1016%2Fj.artmed.2024.102996&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_artmed_2024_102996
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0933-3657&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0933-3657&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0933-3657&client=summon