Turbulent boundary layer flow subject to streamwise oscillation of spanwise wall-velocity
Direct numerical simulations have been performed to study the effect of a stationary distribution of spanwise wall-velocity that oscillates in the streamwise direction on a turbulent boundary layer. For the first time, a spatially developing flow with this type of forcing is studied. The part of the...
Saved in:
Published in | Physics of fluids (1994) Vol. 23; no. 8; pp. 081703 - 081703-4 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
Melville, NY
American Institute of Physics
01.08.2011
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Direct numerical simulations have been performed to study the effect of a stationary distribution of spanwise wall-velocity that oscillates in the streamwise direction on a turbulent boundary layer. For the first time, a spatially developing flow with this type of forcing is studied. The part of the boundary layer which flows over the alternating wall-velocity section is greatly affected with a drag reduction close to 50% which exhibits an oscillatory distribution with a wavenumber which is twice that of the imposed wall-velocity. The maximum in drag reduction occurs where the wall velocity is at its maximum (or minimum) and the minimum occurs where the wall velocity is zero. Comparisons of the mean spanwise velocity profiles with the analytical solution to the laminar Navier-Stokes equations show very good agreement. The streamwise velocity profile indicates a thickening of the viscous sub-layer when scaled with the local friction velocity and an upward shifting of the logarithmic region when scaled with the reference (unmanipulated) friction velocity. An estimation of the idealized power consumption shows that-with the present wall forcing magnitude-more energy is required for the spatial oscillation than what is saved by drag reduction. |
---|---|
AbstractList | Direct numerical simulations have been performed to study the effect of a stationary distribution of spanwise wall-velocity that oscillates in the streamwise direction on a turbulent boundary layer. For the first time, a spatially developing flow with this type of forcing is studied. The part of the boundary layer which flows over the alternating wall-velocity section is greatly affected with a drag reduction close to 50% which exhibits an oscillatory distribution with a wavenumber which is twice that of the imposed wall-velocity. The maximum in drag reduction occurs where the wall velocity is at its maximum (or minimum) and the minimum occurs where the wall velocity is zero. Comparisons of the mean spanwise velocity profiles with the analytical solution to the laminar Navier-Stokes equations show very good agreement. The streamwise velocity profile indicates a thickening of the viscous sub-layer when scaled with the local friction velocity and an upward shifting of the logarithmic region when scaled with the reference (unmanipulated) friction velocity. An estimation of the idealized power consumption shows that-with the present wall forcing magnitude-more energy is required for the spatial oscillation than what is saved by drag reduction. |
Author | Skote, M. |
Author_xml | – sequence: 1 givenname: M. surname: Skote fullname: Skote, M. email: mskote@ntu.edu.sg. organization: School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798 |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=24524255$$DView record in Pascal Francis |
BookMark | eNp1kE1rAyEQhqWk0CTtof_ASw89bKLr6uqlUEK_INBLeuhJ1FXYYNagpiH_vpuvHkp7mmHmmZd53xEYdKGzANxiNMGIkSmeEFYyVPILMMSIi6JmjA32fY0Kxgi-AqOUlgghIko2BJ-LTdQbb7sMddh0jYo76NXORuh82MK00UtrMswBphytWm3bZGFIpvVe5TZ0MDiY1qo7zLfK--LL-mDavLsGl075ZG9OdQw-np8Ws9di_v7yNnucF6bCNBdON9SZWgtRIdHUmltNLDaEaIGoqTkzuOGc1LrfWKW446ah2lXCUOGUM2QM7o66a5WM8i6qzrRJrmO76s3IsqJlVVLac9MjZ2JIKVon-y8PHnJUrZcYyX2CEstTgv3F_a-Ls-hf7MORTWfV_-GfyOU5cunJN67Fiu8 |
CODEN | PHFLE6 |
CitedBy_id | crossref_primary_10_1016_j_paerosci_2021_100713 crossref_primary_10_3390_fluids7020065 crossref_primary_10_1007_s11431_016_9013_6 crossref_primary_10_1063_1_4923234 crossref_primary_10_1017_jfm_2021_533 crossref_primary_10_1103_PhysRevFluids_5_064611 crossref_primary_10_3390_en9030154 crossref_primary_10_13111_2066_8201_2021_13_2_5 crossref_primary_10_1155_2015_891037 crossref_primary_10_1016_j_ijheatfluidflow_2014_08_002 crossref_primary_10_1007_s10494_018_9979_2 crossref_primary_10_1017_jfm_2014_40 crossref_primary_10_1063_1_4816290 crossref_primary_10_1063_1_5144589 crossref_primary_10_1017_jfm_2016_485 crossref_primary_10_3389_arc_2023_12272 crossref_primary_10_1103_PhysRevFluids_4_093904 crossref_primary_10_1016_j_ijheatfluidflow_2024_109314 crossref_primary_10_1080_14685248_2012_655743 crossref_primary_10_1017_jfm_2022_855 crossref_primary_10_1017_jfm_2023_498 crossref_primary_10_1007_s10494_023_00463_w crossref_primary_10_1088_0169_5983_47_2_025503 crossref_primary_10_1155_2015_253249 crossref_primary_10_3390_fluids9090220 crossref_primary_10_1017_jfm_2018_948 crossref_primary_10_1063_1_4903973 crossref_primary_10_1063_5_0061279 crossref_primary_10_1007_s10494_018_9917_3 crossref_primary_10_1063_5_0087966 crossref_primary_10_1017_jfm_2013_344 crossref_primary_10_1063_5_0049459 crossref_primary_10_1007_s10494_015_9599_z crossref_primary_10_1063_5_0160209 crossref_primary_10_1007_s10494_018_9926_2 crossref_primary_10_1103_PhysRevFluids_4_063904 crossref_primary_10_1017_jfm_2014_122 crossref_primary_10_1016_j_ijheatfluidflow_2020_108770 crossref_primary_10_1017_jfm_2018_349 |
Cites_doi | 10.1088/1468-5248/4/1/007 10.1016/j.ijheatfluidflow.2007.12.005 10.1142/S0217984910023864 10.1017/S0022112004001855 10.1017/S0022112010004398 10.1017/S002211200200157X 10.1080/14685248.2010.538397 10.1146/annurev.fluid.010908.165221 10.1017/S0022112009006077 10.1063/1.1477922 10.1088/1468-5248/5/1/024 10.1063/1.1827274 10.1016/S0142-727X(00)00070-9 10.1063/1.869538 10.1063/1.2825428 10.1016/j.expthermflusci.2004.01.010 10.2514/2.1750 10.1063/1.3491203 10.1063/1.3266945 10.2514/2.526 10.1146/annurev.fluid.35.101101.161213 10.1063/1.868052 10.1007/BF00856638 10.1017/S0022112000001889 10.1063/1.858381 10.1063/1.858653 |
ContentType | Journal Article |
Copyright | 2011 American Institute of Physics 2015 INIST-CNRS |
Copyright_xml | – notice: 2011 American Institute of Physics – notice: 2015 INIST-CNRS |
DBID | AAYXX CITATION IQODW |
DOI | 10.1063/1.3626028 |
DatabaseName | CrossRef Pascal-Francis |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Applied Sciences Physics |
EISSN | 1089-7666 |
EndPage | 081703-4 |
ExternalDocumentID | 24524255 10_1063_1_3626028 |
GroupedDBID | -~X 1UP 2-P 29O 4.4 5VS 6TJ AAAAW AABDS AAEUA AAPUP AAYIH ABJNI ACBRY ACGFS ACLYJ ACNCT ACZLF ADCTM AEJMO AENEX AFATG AFHCQ AGKCL AGLKD AGMXG AGTJO AHSDT AIDUJ AJJCW AJQPL ALEPV ALMA_UNASSIGNED_HOLDINGS ATXIE AWQPM BPZLN CS3 DU5 EBS EJD ESX F5P FDOHQ FFFMQ HAM H~9 M6X M71 M73 NPSNA O-B P2P RIP RNS ROL RQS SC5 TN5 UCJ UQL WH7 ~02 AAGWI AAYXX ABJGX ADMLS BDMKI CITATION 0ZJ 2WC AFFNX IQODW NEUPN RDFOP XJT |
ID | FETCH-LOGICAL-c415t-fbd5fc7b99409d7b8eb3e1c33b905c786c1d8837bb8eeaa8f8cd5bf49c59fafc3 |
ISSN | 1070-6631 |
IngestDate | Mon Jul 21 09:17:40 EDT 2025 Thu Apr 24 23:00:03 EDT 2025 Tue Jul 01 03:20:05 EDT 2025 Fri Jun 21 00:20:08 EDT 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 8 |
Keywords | Turbulent flow Drag reduction Digital simulation Periodic oscillation Boundary conditions Modelling Boundary layers Moving wall |
Language | English |
License | CC BY 4.0 |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c415t-fbd5fc7b99409d7b8eb3e1c33b905c786c1d8837bb8eeaa8f8cd5bf49c59fafc3 |
OpenAccessLink | https://aip.scitation.org/doi/pdf/10.1063/1.3626028 |
ParticipantIDs | pascalfrancis_primary_24524255 crossref_citationtrail_10_1063_1_3626028 crossref_primary_10_1063_1_3626028 scitation_primary_10_1063_1_3626028Turbulent_boundary_l |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2011-08-01 |
PublicationDateYYYYMMDD | 2011-08-01 |
PublicationDate_xml | – month: 08 year: 2011 text: 2011-08-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Melville, NY |
PublicationPlace_xml | – name: Melville, NY |
PublicationTitle | Physics of fluids (1994) |
PublicationYear | 2011 |
Publisher | American Institute of Physics |
Publisher_xml | – name: American Institute of Physics |
References | Kasagi, N.; Suzuki, Y.; Fukagata, K. 2009; 41 Quadrio, M.; Ricco, P.; Viotti, C. 2009; 627 Choi, K.; DeBisschop, J.; Clayton, B. 1998; 36 Ricco, P.; Quadrio, M. 2008; 29 Quadrio, M.; Sibilla, S. 2000; 424 Ricco, P. 2004; 5 Quadrio, M.; Ricco, P. 2011; 667 Choi, J.; Xu, C.; Sung, H. 2002; 40 Duggleby, A.; Ball, K.; Paul, M. 2007; 19 Auteri, F.; Baron, A.; Belan, M.; Campanardi, G.; Quadrio, M. 2010; 22 Karniadakis, G.; Choi, K. 2003; 35 Quadrio, M.; Ricco, P. 2003; 4 Di Cicca, G.; Iuso, G.; Spazzini, P.; Onorato, M. 2002; 467 Jung, W.; Mangiavacchi, N.; Akhavan, R. 1992; 4 Quadrio, M.; Ricco, P. 2004; 521 Choi, K.; Clayton, B. 2001; 22 Ricco, P.; Wu, S. 2004; 29 Viotti, C.; Quadrio, M.; Luchini, P. 2009; 21 Baron, A.; Quadrio, M. 1996; 55 Choi, K.; Graham, M. 1998; 10 Yudhistira, I.; Skote, M. 2011; 12 Xu, C.; Huang, W. 2005; 17 Choi, K.-S. 2002; 14 Fang, J.; Lu, L. 2010; 24 Laadhari, F.; Skandaji, L.; Morel, R. 1994; 6 Kim, J.; Hussain, F. 1993; 5 (2023070422162089200_c18) 2002; 467 (2023070422162089200_c19) 2004; 29 (2023070422162089200_c10) 2000; 424 (2023070422162089200_c22) 2010; 22 (2023070422162089200_c2) 2003; 35 (2023070422162089200_c4) 1996; 55 (2023070422162089200_c8) 2005; 17 (2023070422162089200_c13) 1994; 6 (2023070422162089200_c17) 2002; 14 (2023070422162089200_c5) 2002; 40 (2023070422162089200_c12) 2010; 24 (2023070422162089200_c26) 2011; 667 (2023070422162089200_c9) 2008; 29 (2023070422162089200_c25) 2009; 627 (2023070422162089200_c21) 1998; 10 (2023070422162089200_c3) 1992; 4 (2023070422162089200_c15) 1998; 36 (2023070422162089200_c7) 2004; 521 (2023070422162089200_c23) 2011; 12 (2023070422162089200_c20) 2004; 5 (2023070422162089200_c24) 2009; 21 (2023070422162089200_c14) 1997 2023070422162089200_c27 (2023070422162089200_c6) 2003; 4 (2023070422162089200_c16) 2001; 22 (2023070422162089200_c1) 2009; 41 (2023070422162089200_c11) 2007; 19 (2023070422162089200_c28) 1993; 5 |
References_xml | – volume: 4 start-page: 7 year: 2003 publication-title: J. Turbul. doi: 10.1088/1468-5248/4/1/007 – volume: 29 start-page: 601 year: 2008 publication-title: Int. J. Heat Fluid Flow doi: 10.1016/j.ijheatfluidflow.2007.12.005 – volume: 24 start-page: 1457 year: 2010 publication-title: Mod. Phys. Lett. B doi: 10.1142/S0217984910023864 – volume: 521 start-page: 251 year: 2004 publication-title: J. Fluid Mech. doi: 10.1017/S0022112004001855 – volume: 667 start-page: 135 year: 2011 publication-title: J. Fluid Mech. doi: 10.1017/S0022112010004398 – volume: 467 start-page: 41 year: 2002 publication-title: J. Fluid Mech. doi: 10.1017/S002211200200157X – volume: 12 start-page: 9 year: 2011 publication-title: J. Turbul. doi: 10.1080/14685248.2010.538397 – volume: 41 start-page: 231 year: 2009 publication-title: Annu. Rev. Fluid Mech. doi: 10.1146/annurev.fluid.010908.165221 – volume: 627 start-page: 161 year: 2009 publication-title: J. Fluid Mech. doi: 10.1017/S0022112009006077 – volume: 14 start-page: 2530 year: 2002 publication-title: Phys. Fluids doi: 10.1063/1.1477922 – volume: 5 start-page: 24 year: 2004 publication-title: J. Turbul. doi: 10.1088/1468-5248/5/1/024 – volume: 17 start-page: 018101 year: 2005 publication-title: Phys. Fluids doi: 10.1063/1.1827274 – volume: 22 start-page: 1 year: 2001 publication-title: Int. J. Heat Fluid Flow doi: 10.1016/S0142-727X(00)00070-9 – volume: 10 start-page: 7 year: 1998 publication-title: Phys. Fluids doi: 10.1063/1.869538 – volume: 19 start-page: 125107 year: 2007 publication-title: Phys. Fluids doi: 10.1063/1.2825428 – volume: 29 start-page: 41 year: 2004 publication-title: Exp. Therm. Fluid Sci. doi: 10.1016/j.expthermflusci.2004.01.010 – volume: 40 start-page: 842 year: 2002 publication-title: AIAA J. doi: 10.2514/2.1750 – volume: 22 start-page: 115103 year: 2010 publication-title: Phys. Fluids doi: 10.1063/1.3491203 – volume: 21 start-page: 115109 year: 2009 publication-title: Phys. Fluids doi: 10.1063/1.3266945 – volume: 36 start-page: 1157 year: 1998 publication-title: AIAA J. doi: 10.2514/2.526 – volume: 35 start-page: 45 year: 2003 publication-title: Annu. Rev. Fluid Mech. doi: 10.1146/annurev.fluid.35.101101.161213 – volume: 6 start-page: 3218 year: 1994 publication-title: Phys. Fluids doi: 10.1063/1.868052 – volume: 55 start-page: 311 year: 1996 publication-title: Appl. Sci. Res. doi: 10.1007/BF00856638 – volume: 424 start-page: 217 year: 2000 publication-title: J. Fluid Mech. doi: 10.1017/S0022112000001889 – volume: 4 start-page: 1605 year: 1992 publication-title: Phys. Fluids A doi: 10.1063/1.858381 – volume: 5 start-page: 695 year: 1993 publication-title: Phys. Fluids A doi: 10.1063/1.858653 – volume: 24 start-page: 1457 year: 2010 ident: 2023070422162089200_c12 article-title: Large Eddy simulation of compressible turbulent channel flow with active Spanwise wall fluctuations publication-title: Mod. Phys. Lett. B doi: 10.1142/S0217984910023864 – volume: 22 start-page: 115103 year: 2010 ident: 2023070422162089200_c22 article-title: Experimental assessment of drag reduction by traveling waves in a turbulent pipe flow publication-title: Phys. Fluids doi: 10.1063/1.3491203 – volume: 10 start-page: 7 year: 1998 ident: 2023070422162089200_c21 article-title: Drag reduction of turbulent pipe flows by circular-wall oscillation publication-title: Phys. Fluids doi: 10.1063/1.869538 – volume: 29 start-page: 41 year: 2004 ident: 2023070422162089200_c19 article-title: On the effects of lateral wall oscillations on a turbulent boundary layer publication-title: Exp. Therm. Fluid Sci. doi: 10.1016/j.expthermflusci.2004.01.010 – volume: 4 start-page: 1605 year: 1992 ident: 2023070422162089200_c3 article-title: Suppression of turbulence in wall-bounded flows by high-frequency spanwise oscillations publication-title: Phys. Fluids A doi: 10.1063/1.858381 – volume: 36 start-page: 1157 year: 1998 ident: 2023070422162089200_c15 article-title: Turbulent boundary-layer control by means of spanwise wall oscillation publication-title: AIAA J. doi: 10.2514/2.526 – volume: 5 start-page: 695 year: 1993 ident: 2023070422162089200_c28 article-title: Propagation velocity of perturbations in turbulent channel flow publication-title: Phys. Fluids A doi: 10.1063/1.858653 – volume: 41 start-page: 231 year: 2009 ident: 2023070422162089200_c1 article-title: Microelectromechanical systems-based feedback control of turbulence for skin friction reduction publication-title: Annu. Rev. Fluid Mech. doi: 10.1146/annurev.fluid.010908.165221 – volume: 4 start-page: 7 year: 2003 ident: 2023070422162089200_c6 article-title: Initial response of a turbulent channel flow to spanwise oscillation of the walls publication-title: J. Turbul. doi: 10.1088/1468-5248/4/1/007 – volume: 35 start-page: 45 year: 2003 ident: 2023070422162089200_c2 article-title: Mechanisms on transverse motions in turbulent wall flows publication-title: Annu. Rev. Fluid Mech. doi: 10.1146/annurev.fluid.35.101101.161213 – volume: 14 start-page: 2530 year: 2002 ident: 2023070422162089200_c17 article-title: Near-wall structure of turbulent boundary layer with spanwise-wall oscillation publication-title: Phys. Fluids doi: 10.1063/1.1477922 – volume: 467 start-page: 41 year: 2002 ident: 2023070422162089200_c18 article-title: Particle image velocimetry investigation of a turbulent boundary layer manipulated by spanwise wall oscillations publication-title: J. Fluid Mech. doi: 10.1017/S002211200200157X – volume: 40 start-page: 842 year: 2002 ident: 2023070422162089200_c5 article-title: Drag reduction by spanwise wall oscillation in wall-bounded turbulent flows publication-title: AIAA J. doi: 10.2514/2.1750 – volume: 17 start-page: 018101 year: 2005 ident: 2023070422162089200_c8 article-title: Transient response of reynolds stress transport to spanwise wall oscillation in a turbulent channel flow publication-title: Phys. Fluids doi: 10.1063/1.1827274 – volume: 19 start-page: 125107 year: 2007 ident: 2023070422162089200_c11 article-title: The effect of spanwise wall oscillation on turbulent pipe flow structures resulting in drag reduction publication-title: Phys. Fluids doi: 10.1063/1.2825428 – ident: 2023070422162089200_c27 – volume: 521 start-page: 251 year: 2004 ident: 2023070422162089200_c7 article-title: Critical assessment of turbulent drag reduction through spanwise wall oscillations publication-title: J. Fluid Mech. doi: 10.1017/S0022112004001855 – year: 1997 ident: 2023070422162089200_c14 article-title: Turbulent boundary layer drag reduction using an oscillating wall – volume: 29 start-page: 601 year: 2008 ident: 2023070422162089200_c9 article-title: Wall-oscillation conditions for drag reduction in turbulent channel flow publication-title: Int. J. Heat Fluid Flow doi: 10.1016/j.ijheatfluidflow.2007.12.005 – volume: 5 start-page: 24 year: 2004 ident: 2023070422162089200_c20 article-title: Modification of near-wall turbulence due to spanwise wall oscillations publication-title: J. Turbul. doi: 10.1088/1468-5248/5/1/024 – volume: 627 start-page: 161 year: 2009 ident: 2023070422162089200_c25 article-title: Streamwise-travelling waves of spanwise wall velocity for turbulent drag reduction publication-title: J. Fluid Mech. doi: 10.1017/S0022112009006077 – volume: 667 start-page: 135 year: 2011 ident: 2023070422162089200_c26 article-title: The laminar generalized Stokes layer and turbulent drag reduction publication-title: J. Fluid Mech. doi: 10.1017/S0022112010004398 – volume: 12 start-page: 9 year: 2011 ident: 2023070422162089200_c23 article-title: Direct numerical simulation of a turbulent boundary layer over an oscillating wall publication-title: J. Turbul. doi: 10.1080/14685248.2010.538397 – volume: 55 start-page: 311 year: 1996 ident: 2023070422162089200_c4 article-title: Turbulent drag reduction by spanwise wall oscillations publication-title: Appl. Sci. Res. doi: 10.1007/BF00856638 – volume: 6 start-page: 3218 year: 1994 ident: 2023070422162089200_c13 article-title: Turbulence reduction in a boundary layer by a local spanwise oscillating surface publication-title: Phys. Fluids doi: 10.1063/1.868052 – volume: 424 start-page: 217 year: 2000 ident: 2023070422162089200_c10 article-title: Numerical simulation of turbulent flow in a pipe oscillating around its axis publication-title: J. Fluid Mech. doi: 10.1017/S0022112000001889 – volume: 22 start-page: 1 year: 2001 ident: 2023070422162089200_c16 article-title: The mechanism of turbulent drag reduction with wall oscillation publication-title: Int. J. Heat Fluid Flow doi: 10.1016/S0142-727X(00)00070-9 – volume: 21 start-page: 115109 year: 2009 ident: 2023070422162089200_c24 article-title: Streamwise oscillation of spanwise velocity at the wall of a channel for turbulent drag reduction publication-title: Phys. Fluids doi: 10.1063/1.3266945 |
SSID | ssj0003926 |
Score | 2.2137794 |
Snippet | Direct numerical simulations have been performed to study the effect of a stationary distribution of spanwise wall-velocity that oscillates in the streamwise... |
SourceID | pascalfrancis crossref scitation |
SourceType | Index Database Enrichment Source Publisher |
StartPage | 081703 |
SubjectTerms | Boundary layer and shear turbulence Exact sciences and technology Fluid dynamics Fundamental areas of phenomenology (including applications) Physics Turbulence control Turbulent flows, convection, and heat transfer |
Title | Turbulent boundary layer flow subject to streamwise oscillation of spanwise wall-velocity |
URI | http://dx.doi.org/10.1063/1.3626028 |
Volume | 23 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELegEwKE-BggusFkIR6QKpdm-bIfJwaaEOVlmzSeIp9jS9VCM62pKvjrd44dt4EiDV6iynWd6n4X38-X-yDkHRgBQgrOVJIAS4wwDEADM5FE65TZOAV7UJx-y07Oky8X6cW621ubXdLAWP3amlfyP6jiGOJqs2T_AdmwKA7gZ8QXr4gwXm-H8RJlYs3GCNruSNc_R5VEDj0yVb0aLZZgnSyWXdqMEPljNbOOe7R5VRWIIm4o83Z8JauK2QAiNWt6r3rbGFHVRnyYajkrXW0nIZINJ8LpZe3a7E3Hm24E5xf1bgS38-Gzz5B-uCHtx7hgeebaonTbpUsP9mrBt-7CSHusQ2BsS91MfO53r9L1bxYoxAW2b8SzuIgK_9O7ZOcQ-f_hgOwcHU-_ngYji7Quc-Gk7l93RaOy-EO4b49qPLqSC9R649qVPCT3Udou2GGDT5w9JY_9QYAeOVSfkTt6vkue-EMB9VvuYpfc8_J_Tr4HuGkHN23hphZu6uGmTU3XcNMNuGltaAc37cH9gpx__nT28YT5zhj4SEVpwwyUqVE5INYTUebANcQ6UnEMYpKqnGcqKjmPc8BvtJTccFWmYBKhUmGkUfFLMpjXc_2K0MxwiTxb6ziDBASqj-a5hgQXVqnUkyF53wmx6CRmu5dUxR9gDcnbMPXK1UrZNumgh0SYaUMA0ICkQ5IHaP6-TJB40Um8qPZuc_998mCt_q_JoLle6jfIKxs48Dp2A_pne8Q |
linkProvider | EBSCOhost |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Turbulent+boundary+layer+flow+subject+to+streamwise+oscillation+of+spanwise+wall-velocity&rft.jtitle=Physics+of+fluids+%281994%29&rft.au=Skote%2C+M.&rft.date=2011-08-01&rft.issn=1070-6631&rft.eissn=1089-7666&rft.volume=23&rft.issue=8&rft_id=info:doi/10.1063%2F1.3626028&rft.externalDBID=n%2Fa&rft.externalDocID=10_1063_1_3626028 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1070-6631&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1070-6631&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1070-6631&client=summon |