Turbulent boundary layer flow subject to streamwise oscillation of spanwise wall-velocity

Direct numerical simulations have been performed to study the effect of a stationary distribution of spanwise wall-velocity that oscillates in the streamwise direction on a turbulent boundary layer. For the first time, a spatially developing flow with this type of forcing is studied. The part of the...

Full description

Saved in:
Bibliographic Details
Published inPhysics of fluids (1994) Vol. 23; no. 8; pp. 081703 - 081703-4
Main Author Skote, M.
Format Journal Article
LanguageEnglish
Published Melville, NY American Institute of Physics 01.08.2011
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Direct numerical simulations have been performed to study the effect of a stationary distribution of spanwise wall-velocity that oscillates in the streamwise direction on a turbulent boundary layer. For the first time, a spatially developing flow with this type of forcing is studied. The part of the boundary layer which flows over the alternating wall-velocity section is greatly affected with a drag reduction close to 50% which exhibits an oscillatory distribution with a wavenumber which is twice that of the imposed wall-velocity. The maximum in drag reduction occurs where the wall velocity is at its maximum (or minimum) and the minimum occurs where the wall velocity is zero. Comparisons of the mean spanwise velocity profiles with the analytical solution to the laminar Navier-Stokes equations show very good agreement. The streamwise velocity profile indicates a thickening of the viscous sub-layer when scaled with the local friction velocity and an upward shifting of the logarithmic region when scaled with the reference (unmanipulated) friction velocity. An estimation of the idealized power consumption shows that-with the present wall forcing magnitude-more energy is required for the spatial oscillation than what is saved by drag reduction.
AbstractList Direct numerical simulations have been performed to study the effect of a stationary distribution of spanwise wall-velocity that oscillates in the streamwise direction on a turbulent boundary layer. For the first time, a spatially developing flow with this type of forcing is studied. The part of the boundary layer which flows over the alternating wall-velocity section is greatly affected with a drag reduction close to 50% which exhibits an oscillatory distribution with a wavenumber which is twice that of the imposed wall-velocity. The maximum in drag reduction occurs where the wall velocity is at its maximum (or minimum) and the minimum occurs where the wall velocity is zero. Comparisons of the mean spanwise velocity profiles with the analytical solution to the laminar Navier-Stokes equations show very good agreement. The streamwise velocity profile indicates a thickening of the viscous sub-layer when scaled with the local friction velocity and an upward shifting of the logarithmic region when scaled with the reference (unmanipulated) friction velocity. An estimation of the idealized power consumption shows that-with the present wall forcing magnitude-more energy is required for the spatial oscillation than what is saved by drag reduction.
Author Skote, M.
Author_xml – sequence: 1
  givenname: M.
  surname: Skote
  fullname: Skote, M.
  email: mskote@ntu.edu.sg.
  organization: School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=24524255$$DView record in Pascal Francis
BookMark eNp1kE1rAyEQhqWk0CTtof_ASw89bKLr6uqlUEK_INBLeuhJ1FXYYNagpiH_vpuvHkp7mmHmmZd53xEYdKGzANxiNMGIkSmeEFYyVPILMMSIi6JmjA32fY0Kxgi-AqOUlgghIko2BJ-LTdQbb7sMddh0jYo76NXORuh82MK00UtrMswBphytWm3bZGFIpvVe5TZ0MDiY1qo7zLfK--LL-mDavLsGl075ZG9OdQw-np8Ws9di_v7yNnucF6bCNBdON9SZWgtRIdHUmltNLDaEaIGoqTkzuOGc1LrfWKW446ah2lXCUOGUM2QM7o66a5WM8i6qzrRJrmO76s3IsqJlVVLac9MjZ2JIKVon-y8PHnJUrZcYyX2CEstTgv3F_a-Ls-hf7MORTWfV_-GfyOU5cunJN67Fiu8
CODEN PHFLE6
CitedBy_id crossref_primary_10_1016_j_paerosci_2021_100713
crossref_primary_10_3390_fluids7020065
crossref_primary_10_1007_s11431_016_9013_6
crossref_primary_10_1063_1_4923234
crossref_primary_10_1017_jfm_2021_533
crossref_primary_10_1103_PhysRevFluids_5_064611
crossref_primary_10_3390_en9030154
crossref_primary_10_13111_2066_8201_2021_13_2_5
crossref_primary_10_1155_2015_891037
crossref_primary_10_1016_j_ijheatfluidflow_2014_08_002
crossref_primary_10_1007_s10494_018_9979_2
crossref_primary_10_1017_jfm_2014_40
crossref_primary_10_1063_1_4816290
crossref_primary_10_1063_1_5144589
crossref_primary_10_1017_jfm_2016_485
crossref_primary_10_3389_arc_2023_12272
crossref_primary_10_1103_PhysRevFluids_4_093904
crossref_primary_10_1016_j_ijheatfluidflow_2024_109314
crossref_primary_10_1080_14685248_2012_655743
crossref_primary_10_1017_jfm_2022_855
crossref_primary_10_1017_jfm_2023_498
crossref_primary_10_1007_s10494_023_00463_w
crossref_primary_10_1088_0169_5983_47_2_025503
crossref_primary_10_1155_2015_253249
crossref_primary_10_3390_fluids9090220
crossref_primary_10_1017_jfm_2018_948
crossref_primary_10_1063_1_4903973
crossref_primary_10_1063_5_0061279
crossref_primary_10_1007_s10494_018_9917_3
crossref_primary_10_1063_5_0087966
crossref_primary_10_1017_jfm_2013_344
crossref_primary_10_1063_5_0049459
crossref_primary_10_1007_s10494_015_9599_z
crossref_primary_10_1063_5_0160209
crossref_primary_10_1007_s10494_018_9926_2
crossref_primary_10_1103_PhysRevFluids_4_063904
crossref_primary_10_1017_jfm_2014_122
crossref_primary_10_1016_j_ijheatfluidflow_2020_108770
crossref_primary_10_1017_jfm_2018_349
Cites_doi 10.1088/1468-5248/4/1/007
10.1016/j.ijheatfluidflow.2007.12.005
10.1142/S0217984910023864
10.1017/S0022112004001855
10.1017/S0022112010004398
10.1017/S002211200200157X
10.1080/14685248.2010.538397
10.1146/annurev.fluid.010908.165221
10.1017/S0022112009006077
10.1063/1.1477922
10.1088/1468-5248/5/1/024
10.1063/1.1827274
10.1016/S0142-727X(00)00070-9
10.1063/1.869538
10.1063/1.2825428
10.1016/j.expthermflusci.2004.01.010
10.2514/2.1750
10.1063/1.3491203
10.1063/1.3266945
10.2514/2.526
10.1146/annurev.fluid.35.101101.161213
10.1063/1.868052
10.1007/BF00856638
10.1017/S0022112000001889
10.1063/1.858381
10.1063/1.858653
ContentType Journal Article
Copyright 2011 American Institute of Physics
2015 INIST-CNRS
Copyright_xml – notice: 2011 American Institute of Physics
– notice: 2015 INIST-CNRS
DBID AAYXX
CITATION
IQODW
DOI 10.1063/1.3626028
DatabaseName CrossRef
Pascal-Francis
DatabaseTitle CrossRef
DatabaseTitleList
CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Physics
EISSN 1089-7666
EndPage 081703-4
ExternalDocumentID 24524255
10_1063_1_3626028
GroupedDBID -~X
1UP
2-P
29O
4.4
5VS
6TJ
AAAAW
AABDS
AAEUA
AAPUP
AAYIH
ABJNI
ACBRY
ACGFS
ACLYJ
ACNCT
ACZLF
ADCTM
AEJMO
AENEX
AFATG
AFHCQ
AGKCL
AGLKD
AGMXG
AGTJO
AHSDT
AIDUJ
AJJCW
AJQPL
ALEPV
ALMA_UNASSIGNED_HOLDINGS
ATXIE
AWQPM
BPZLN
CS3
DU5
EBS
EJD
ESX
F5P
FDOHQ
FFFMQ
HAM
H~9
M6X
M71
M73
NPSNA
O-B
P2P
RIP
RNS
ROL
RQS
SC5
TN5
UCJ
UQL
WH7
~02
AAGWI
AAYXX
ABJGX
ADMLS
BDMKI
CITATION
0ZJ
2WC
AFFNX
IQODW
NEUPN
RDFOP
XJT
ID FETCH-LOGICAL-c415t-fbd5fc7b99409d7b8eb3e1c33b905c786c1d8837bb8eeaa8f8cd5bf49c59fafc3
ISSN 1070-6631
IngestDate Mon Jul 21 09:17:40 EDT 2025
Thu Apr 24 23:00:03 EDT 2025
Tue Jul 01 03:20:05 EDT 2025
Fri Jun 21 00:20:08 EDT 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 8
Keywords Turbulent flow
Drag reduction
Digital simulation
Periodic oscillation
Boundary conditions
Modelling
Boundary layers
Moving wall
Language English
License CC BY 4.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c415t-fbd5fc7b99409d7b8eb3e1c33b905c786c1d8837bb8eeaa8f8cd5bf49c59fafc3
OpenAccessLink https://aip.scitation.org/doi/pdf/10.1063/1.3626028
ParticipantIDs pascalfrancis_primary_24524255
crossref_citationtrail_10_1063_1_3626028
crossref_primary_10_1063_1_3626028
scitation_primary_10_1063_1_3626028Turbulent_boundary_l
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2011-08-01
PublicationDateYYYYMMDD 2011-08-01
PublicationDate_xml – month: 08
  year: 2011
  text: 2011-08-01
  day: 01
PublicationDecade 2010
PublicationPlace Melville, NY
PublicationPlace_xml – name: Melville, NY
PublicationTitle Physics of fluids (1994)
PublicationYear 2011
Publisher American Institute of Physics
Publisher_xml – name: American Institute of Physics
References Kasagi, N.; Suzuki, Y.; Fukagata, K. 2009; 41
Quadrio, M.; Ricco, P.; Viotti, C. 2009; 627
Choi, K.; DeBisschop, J.; Clayton, B. 1998; 36
Ricco, P.; Quadrio, M. 2008; 29
Quadrio, M.; Sibilla, S. 2000; 424
Ricco, P. 2004; 5
Quadrio, M.; Ricco, P. 2011; 667
Choi, J.; Xu, C.; Sung, H. 2002; 40
Duggleby, A.; Ball, K.; Paul, M. 2007; 19
Auteri, F.; Baron, A.; Belan, M.; Campanardi, G.; Quadrio, M. 2010; 22
Karniadakis, G.; Choi, K. 2003; 35
Quadrio, M.; Ricco, P. 2003; 4
Di Cicca, G.; Iuso, G.; Spazzini, P.; Onorato, M. 2002; 467
Jung, W.; Mangiavacchi, N.; Akhavan, R. 1992; 4
Quadrio, M.; Ricco, P. 2004; 521
Choi, K.; Clayton, B. 2001; 22
Ricco, P.; Wu, S. 2004; 29
Viotti, C.; Quadrio, M.; Luchini, P. 2009; 21
Baron, A.; Quadrio, M. 1996; 55
Choi, K.; Graham, M. 1998; 10
Yudhistira, I.; Skote, M. 2011; 12
Xu, C.; Huang, W. 2005; 17
Choi, K.-S. 2002; 14
Fang, J.; Lu, L. 2010; 24
Laadhari, F.; Skandaji, L.; Morel, R. 1994; 6
Kim, J.; Hussain, F. 1993; 5
(2023070422162089200_c18) 2002; 467
(2023070422162089200_c19) 2004; 29
(2023070422162089200_c10) 2000; 424
(2023070422162089200_c22) 2010; 22
(2023070422162089200_c2) 2003; 35
(2023070422162089200_c4) 1996; 55
(2023070422162089200_c8) 2005; 17
(2023070422162089200_c13) 1994; 6
(2023070422162089200_c17) 2002; 14
(2023070422162089200_c5) 2002; 40
(2023070422162089200_c12) 2010; 24
(2023070422162089200_c26) 2011; 667
(2023070422162089200_c9) 2008; 29
(2023070422162089200_c25) 2009; 627
(2023070422162089200_c21) 1998; 10
(2023070422162089200_c3) 1992; 4
(2023070422162089200_c15) 1998; 36
(2023070422162089200_c7) 2004; 521
(2023070422162089200_c23) 2011; 12
(2023070422162089200_c20) 2004; 5
(2023070422162089200_c24) 2009; 21
(2023070422162089200_c14) 1997
2023070422162089200_c27
(2023070422162089200_c6) 2003; 4
(2023070422162089200_c16) 2001; 22
(2023070422162089200_c1) 2009; 41
(2023070422162089200_c11) 2007; 19
(2023070422162089200_c28) 1993; 5
References_xml – volume: 4
  start-page: 7
  year: 2003
  publication-title: J. Turbul.
  doi: 10.1088/1468-5248/4/1/007
– volume: 29
  start-page: 601
  year: 2008
  publication-title: Int. J. Heat Fluid Flow
  doi: 10.1016/j.ijheatfluidflow.2007.12.005
– volume: 24
  start-page: 1457
  year: 2010
  publication-title: Mod. Phys. Lett. B
  doi: 10.1142/S0217984910023864
– volume: 521
  start-page: 251
  year: 2004
  publication-title: J. Fluid Mech.
  doi: 10.1017/S0022112004001855
– volume: 667
  start-page: 135
  year: 2011
  publication-title: J. Fluid Mech.
  doi: 10.1017/S0022112010004398
– volume: 467
  start-page: 41
  year: 2002
  publication-title: J. Fluid Mech.
  doi: 10.1017/S002211200200157X
– volume: 12
  start-page: 9
  year: 2011
  publication-title: J. Turbul.
  doi: 10.1080/14685248.2010.538397
– volume: 41
  start-page: 231
  year: 2009
  publication-title: Annu. Rev. Fluid Mech.
  doi: 10.1146/annurev.fluid.010908.165221
– volume: 627
  start-page: 161
  year: 2009
  publication-title: J. Fluid Mech.
  doi: 10.1017/S0022112009006077
– volume: 14
  start-page: 2530
  year: 2002
  publication-title: Phys. Fluids
  doi: 10.1063/1.1477922
– volume: 5
  start-page: 24
  year: 2004
  publication-title: J. Turbul.
  doi: 10.1088/1468-5248/5/1/024
– volume: 17
  start-page: 018101
  year: 2005
  publication-title: Phys. Fluids
  doi: 10.1063/1.1827274
– volume: 22
  start-page: 1
  year: 2001
  publication-title: Int. J. Heat Fluid Flow
  doi: 10.1016/S0142-727X(00)00070-9
– volume: 10
  start-page: 7
  year: 1998
  publication-title: Phys. Fluids
  doi: 10.1063/1.869538
– volume: 19
  start-page: 125107
  year: 2007
  publication-title: Phys. Fluids
  doi: 10.1063/1.2825428
– volume: 29
  start-page: 41
  year: 2004
  publication-title: Exp. Therm. Fluid Sci.
  doi: 10.1016/j.expthermflusci.2004.01.010
– volume: 40
  start-page: 842
  year: 2002
  publication-title: AIAA J.
  doi: 10.2514/2.1750
– volume: 22
  start-page: 115103
  year: 2010
  publication-title: Phys. Fluids
  doi: 10.1063/1.3491203
– volume: 21
  start-page: 115109
  year: 2009
  publication-title: Phys. Fluids
  doi: 10.1063/1.3266945
– volume: 36
  start-page: 1157
  year: 1998
  publication-title: AIAA J.
  doi: 10.2514/2.526
– volume: 35
  start-page: 45
  year: 2003
  publication-title: Annu. Rev. Fluid Mech.
  doi: 10.1146/annurev.fluid.35.101101.161213
– volume: 6
  start-page: 3218
  year: 1994
  publication-title: Phys. Fluids
  doi: 10.1063/1.868052
– volume: 55
  start-page: 311
  year: 1996
  publication-title: Appl. Sci. Res.
  doi: 10.1007/BF00856638
– volume: 424
  start-page: 217
  year: 2000
  publication-title: J. Fluid Mech.
  doi: 10.1017/S0022112000001889
– volume: 4
  start-page: 1605
  year: 1992
  publication-title: Phys. Fluids A
  doi: 10.1063/1.858381
– volume: 5
  start-page: 695
  year: 1993
  publication-title: Phys. Fluids A
  doi: 10.1063/1.858653
– volume: 24
  start-page: 1457
  year: 2010
  ident: 2023070422162089200_c12
  article-title: Large Eddy simulation of compressible turbulent channel flow with active Spanwise wall fluctuations
  publication-title: Mod. Phys. Lett. B
  doi: 10.1142/S0217984910023864
– volume: 22
  start-page: 115103
  year: 2010
  ident: 2023070422162089200_c22
  article-title: Experimental assessment of drag reduction by traveling waves in a turbulent pipe flow
  publication-title: Phys. Fluids
  doi: 10.1063/1.3491203
– volume: 10
  start-page: 7
  year: 1998
  ident: 2023070422162089200_c21
  article-title: Drag reduction of turbulent pipe flows by circular-wall oscillation
  publication-title: Phys. Fluids
  doi: 10.1063/1.869538
– volume: 29
  start-page: 41
  year: 2004
  ident: 2023070422162089200_c19
  article-title: On the effects of lateral wall oscillations on a turbulent boundary layer
  publication-title: Exp. Therm. Fluid Sci.
  doi: 10.1016/j.expthermflusci.2004.01.010
– volume: 4
  start-page: 1605
  year: 1992
  ident: 2023070422162089200_c3
  article-title: Suppression of turbulence in wall-bounded flows by high-frequency spanwise oscillations
  publication-title: Phys. Fluids A
  doi: 10.1063/1.858381
– volume: 36
  start-page: 1157
  year: 1998
  ident: 2023070422162089200_c15
  article-title: Turbulent boundary-layer control by means of spanwise wall oscillation
  publication-title: AIAA J.
  doi: 10.2514/2.526
– volume: 5
  start-page: 695
  year: 1993
  ident: 2023070422162089200_c28
  article-title: Propagation velocity of perturbations in turbulent channel flow
  publication-title: Phys. Fluids A
  doi: 10.1063/1.858653
– volume: 41
  start-page: 231
  year: 2009
  ident: 2023070422162089200_c1
  article-title: Microelectromechanical systems-based feedback control of turbulence for skin friction reduction
  publication-title: Annu. Rev. Fluid Mech.
  doi: 10.1146/annurev.fluid.010908.165221
– volume: 4
  start-page: 7
  year: 2003
  ident: 2023070422162089200_c6
  article-title: Initial response of a turbulent channel flow to spanwise oscillation of the walls
  publication-title: J. Turbul.
  doi: 10.1088/1468-5248/4/1/007
– volume: 35
  start-page: 45
  year: 2003
  ident: 2023070422162089200_c2
  article-title: Mechanisms on transverse motions in turbulent wall flows
  publication-title: Annu. Rev. Fluid Mech.
  doi: 10.1146/annurev.fluid.35.101101.161213
– volume: 14
  start-page: 2530
  year: 2002
  ident: 2023070422162089200_c17
  article-title: Near-wall structure of turbulent boundary layer with spanwise-wall oscillation
  publication-title: Phys. Fluids
  doi: 10.1063/1.1477922
– volume: 467
  start-page: 41
  year: 2002
  ident: 2023070422162089200_c18
  article-title: Particle image velocimetry investigation of a turbulent boundary layer manipulated by spanwise wall oscillations
  publication-title: J. Fluid Mech.
  doi: 10.1017/S002211200200157X
– volume: 40
  start-page: 842
  year: 2002
  ident: 2023070422162089200_c5
  article-title: Drag reduction by spanwise wall oscillation in wall-bounded turbulent flows
  publication-title: AIAA J.
  doi: 10.2514/2.1750
– volume: 17
  start-page: 018101
  year: 2005
  ident: 2023070422162089200_c8
  article-title: Transient response of reynolds stress transport to spanwise wall oscillation in a turbulent channel flow
  publication-title: Phys. Fluids
  doi: 10.1063/1.1827274
– volume: 19
  start-page: 125107
  year: 2007
  ident: 2023070422162089200_c11
  article-title: The effect of spanwise wall oscillation on turbulent pipe flow structures resulting in drag reduction
  publication-title: Phys. Fluids
  doi: 10.1063/1.2825428
– ident: 2023070422162089200_c27
– volume: 521
  start-page: 251
  year: 2004
  ident: 2023070422162089200_c7
  article-title: Critical assessment of turbulent drag reduction through spanwise wall oscillations
  publication-title: J. Fluid Mech.
  doi: 10.1017/S0022112004001855
– year: 1997
  ident: 2023070422162089200_c14
  article-title: Turbulent boundary layer drag reduction using an oscillating wall
– volume: 29
  start-page: 601
  year: 2008
  ident: 2023070422162089200_c9
  article-title: Wall-oscillation conditions for drag reduction in turbulent channel flow
  publication-title: Int. J. Heat Fluid Flow
  doi: 10.1016/j.ijheatfluidflow.2007.12.005
– volume: 5
  start-page: 24
  year: 2004
  ident: 2023070422162089200_c20
  article-title: Modification of near-wall turbulence due to spanwise wall oscillations
  publication-title: J. Turbul.
  doi: 10.1088/1468-5248/5/1/024
– volume: 627
  start-page: 161
  year: 2009
  ident: 2023070422162089200_c25
  article-title: Streamwise-travelling waves of spanwise wall velocity for turbulent drag reduction
  publication-title: J. Fluid Mech.
  doi: 10.1017/S0022112009006077
– volume: 667
  start-page: 135
  year: 2011
  ident: 2023070422162089200_c26
  article-title: The laminar generalized Stokes layer and turbulent drag reduction
  publication-title: J. Fluid Mech.
  doi: 10.1017/S0022112010004398
– volume: 12
  start-page: 9
  year: 2011
  ident: 2023070422162089200_c23
  article-title: Direct numerical simulation of a turbulent boundary layer over an oscillating wall
  publication-title: J. Turbul.
  doi: 10.1080/14685248.2010.538397
– volume: 55
  start-page: 311
  year: 1996
  ident: 2023070422162089200_c4
  article-title: Turbulent drag reduction by spanwise wall oscillations
  publication-title: Appl. Sci. Res.
  doi: 10.1007/BF00856638
– volume: 6
  start-page: 3218
  year: 1994
  ident: 2023070422162089200_c13
  article-title: Turbulence reduction in a boundary layer by a local spanwise oscillating surface
  publication-title: Phys. Fluids
  doi: 10.1063/1.868052
– volume: 424
  start-page: 217
  year: 2000
  ident: 2023070422162089200_c10
  article-title: Numerical simulation of turbulent flow in a pipe oscillating around its axis
  publication-title: J. Fluid Mech.
  doi: 10.1017/S0022112000001889
– volume: 22
  start-page: 1
  year: 2001
  ident: 2023070422162089200_c16
  article-title: The mechanism of turbulent drag reduction with wall oscillation
  publication-title: Int. J. Heat Fluid Flow
  doi: 10.1016/S0142-727X(00)00070-9
– volume: 21
  start-page: 115109
  year: 2009
  ident: 2023070422162089200_c24
  article-title: Streamwise oscillation of spanwise velocity at the wall of a channel for turbulent drag reduction
  publication-title: Phys. Fluids
  doi: 10.1063/1.3266945
SSID ssj0003926
Score 2.2137794
Snippet Direct numerical simulations have been performed to study the effect of a stationary distribution of spanwise wall-velocity that oscillates in the streamwise...
SourceID pascalfrancis
crossref
scitation
SourceType Index Database
Enrichment Source
Publisher
StartPage 081703
SubjectTerms Boundary layer and shear turbulence
Exact sciences and technology
Fluid dynamics
Fundamental areas of phenomenology (including applications)
Physics
Turbulence control
Turbulent flows, convection, and heat transfer
Title Turbulent boundary layer flow subject to streamwise oscillation of spanwise wall-velocity
URI http://dx.doi.org/10.1063/1.3626028
Volume 23
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELegEwKE-BggusFkIR6QKpdm-bIfJwaaEOVlmzSeIp9jS9VCM62pKvjrd44dt4EiDV6iynWd6n4X38-X-yDkHRgBQgrOVJIAS4wwDEADM5FE65TZOAV7UJx-y07Oky8X6cW621ubXdLAWP3amlfyP6jiGOJqs2T_AdmwKA7gZ8QXr4gwXm-H8RJlYs3GCNruSNc_R5VEDj0yVb0aLZZgnSyWXdqMEPljNbOOe7R5VRWIIm4o83Z8JauK2QAiNWt6r3rbGFHVRnyYajkrXW0nIZINJ8LpZe3a7E3Hm24E5xf1bgS38-Gzz5B-uCHtx7hgeebaonTbpUsP9mrBt-7CSHusQ2BsS91MfO53r9L1bxYoxAW2b8SzuIgK_9O7ZOcQ-f_hgOwcHU-_ngYji7Quc-Gk7l93RaOy-EO4b49qPLqSC9R649qVPCT3Udou2GGDT5w9JY_9QYAeOVSfkTt6vkue-EMB9VvuYpfc8_J_Tr4HuGkHN23hphZu6uGmTU3XcNMNuGltaAc37cH9gpx__nT28YT5zhj4SEVpwwyUqVE5INYTUebANcQ6UnEMYpKqnGcqKjmPc8BvtJTccFWmYBKhUmGkUfFLMpjXc_2K0MxwiTxb6ziDBASqj-a5hgQXVqnUkyF53wmx6CRmu5dUxR9gDcnbMPXK1UrZNumgh0SYaUMA0ICkQ5IHaP6-TJB40Um8qPZuc_998mCt_q_JoLle6jfIKxs48Dp2A_pne8Q
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Turbulent+boundary+layer+flow+subject+to+streamwise+oscillation+of+spanwise+wall-velocity&rft.jtitle=Physics+of+fluids+%281994%29&rft.au=Skote%2C+M.&rft.date=2011-08-01&rft.issn=1070-6631&rft.eissn=1089-7666&rft.volume=23&rft.issue=8&rft_id=info:doi/10.1063%2F1.3626028&rft.externalDBID=n%2Fa&rft.externalDocID=10_1063_1_3626028
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1070-6631&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1070-6631&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1070-6631&client=summon